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Abstract

The aim of the present thesis was to improve our fundamental understanding of the
dynamics of turbulence at the small and large-scales produced in a von Kármán
swirling flow. The body of the work was based on the particle image velocimetry
(PIV) measurements performed within a large-size facility which enabled large
Reynolds numbers but with large length-scales accessible to PIV. This thesis has
focused primarily on three topics that are connected to each other through a well-
known concept in turbulence theory, the energy cascade. The first study invest-
igated the small-scale dynamics and kinematics of turbulence. The second study
investigated the free decay of turbulence, a phenomenon that facilitates evaluating
the large-scales to the small-scales energy transfer through the cascade process.
Finally, the third study investigated the large-scale, energetic harmonic motions in
the flow with and without modulations in the turbulent forcing.

In the small-scale study, the interactions between the vortices at the dissipation
scale with the surrounding fluid were investigated. An experimental data set of ho-
mogenous turbulence from scanning PIV [Lawson and Dawson, 2014, 2015] at the
center of the von Kármán swirling flow along with a direct numerical simulation
(DNS) data set of homogeneous isotropic turbulence were studied. A recent defin-
ition of objective vortex structure [Haller et al., 2016] was implemented for the
first time on a fully resolved 3D experimental dataset of small-scale turbulence to
detect the vortex structures in the flow fields. Various statistics conditioned on the
structures and volume of the flow were presented and compared. To investigate the
interaction of the vortices with the background fluid, enstrophy transport equation
was evaluated in the radial and axial direction of the vortices. In addition, the en-
trainment velocity was calculated on the boundary of the vortices. Overall, it was
shown that the vortices interacted with the surrounding fluid by exchanging mass,
enstrophy, and momentum in a manner that is very similar to turbulent entrainment
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in free shear flows.

In the decay study, the stationary homogeneous turbulence generated by the counter-
rotating impellers went though a free decay process by stopping the impellers. This
decay process was characterized by measuring the flow field using stereoscopic
PIV. This procedure was repeated many times to ensure a reasonable convergence
of turbulence statistics. It was shown that when considering the velocity magnitude
from all three velocity components to monitor the decay of the turbulent kinetic
energy, an exponential decay in time was obtained with an exponent of n =�1.62,
k(t)⇠ tn, steeper than the theoretical predictions of Saffman (n =�1.2) and Loit-
siansky (n = �1.43). However, analyzing the individual velocity components,
revealed that the decay in the axial direction closely followed Loitsiansky predic-
tion with an exponent of n = �1.38 whereas, the radial and circumferential velo-
city components were in the saturation/confinement regime with an exponent of
n = �1.99. The growth rates of the integral length-scales in time also confirmed
the Loitsiansky prediction in the axial direction, and the saturation/confinement
regime in the other directions.

The third study was motivated by the findings of Baj et al. [2019] who identified
the presence of an energetic slowly rotating structure in a von Kármán swirling
flow. To investigate this, various cases were designed and measured using stereo-
scopic PIV. It was shown that when the Reynolds number was lower than a critical
value as hypothesized by Cortet et al. [2010], an energetic large-scale structure
emerged in the stationary flow oscillating in all directions at approximately twice
the frequency of the impellers. However, at a Reynolds number beyond the critical
range, the structure was not observed. Various scenarios of harmonic and ran-
dom modulations were imposed on the impellers to investigate the dependence on
turbulent boundary conditions on the appearance or suppression of the instability.
The structure clearly emerges when a harmonic phase shift is imposed in between
the impellers during the modulation. The structure accounted for approximately
40% of the kinetic energy of the flow and oscillated in the axial and circumferential
directions. The oscillation in the axial direction was more pronounced. Moreover,
the structure had an oval shape and the frequency of its oscillation was locked to
the modulation frequency. The cross-correlation between the velocity field and
forcing revealed that the axial oscillation phase was approximately 0.2p ahead of
the oscillation phase in the circumferential direction.



Preface

This thesis was submitted to the Norwegian University of Science and Techno-
logy (NTNU) for partial fulfillment of the requirements for the degree of philo-
sophiae doctor. The doctoral work was carried out in the Thermo Fluids group at
the Department of Energy and Process Engineering (EPT), from September 2020
to September 2024. The work has been supervised by Professor James R. Dawson
and co-supervised by Professor Markus Holzner.

The research was funded internally by the Faculty of Engineering (IV), Norwegian
University of Science and Technology (NTNU).

The thesis is made up of four chapters and three scientific articles. Chapter 1
presents an introduction to the topic, a brief literature review on von Kármán swirl-
ing flows, along with the objectives and outline. Chapter 2 provides the turbulence
theory and the related concepts along with the mathematical analysis techniques
used in this thesis. This chapter helps the reader to understand and interpret the
motivations and findings of the present work. Chapter 3 provides an overview
of the apparatus, the measurement diagnostics (PIV), along with the conducted
experiments. A brief conclusion of the work and summary of the scientific art-
icles are given in chapter 4. The articles are attached in full text at the end of the
thesis and cover three main topics. Article 1 investigates the interaction between
small-scale vortex structures and the surrounding fluid. Article 2 investigates the
free decay of turbulence in a von Kármán swirling flow. Article 3 investigates har-
monic large-scale motions in a von Kármán swirling flow with and without forcing
modulations.

A list of the articles with a summary of the authors contribution is provided:
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Chapter 1

Introduction

1.1 What is turbulence?
‘Turbulence is the most important unsolved problem of classical physics.’
Richard Feynman (1970) [Feynman et al., 2011]

Turbulence does not have a precise definition but its features are recognizable and
can be described. Turbulence is the random and chaotic motion of fluid elements
that rapidly transfers momentum, compared to the slow transfer of momentum in
laminar flow where fluid elements move in parallel layers. At low flow velocities,
viscosity is able to damp instabilities in the system keeping the fluid elements in an
ordered structure. However, at sufficiently high velocities the inertia of the fluid
element exceeds viscous effects which paves the way for various instabilities to
grow and drive the system to turbulence.

Turbulence is ubiquitous in nature and engineering applications, because it trans-
fers heat, mass, momentum, and species. Thus, understanding turbulence is essen-
tial. We see fluid motion everywhere in our world and in most cases, this motion
belongs to a category of turbulent flows. In contrast with other complex phenom-
ena in physics, we can often easily see turbulence with the naked eye, for example,
fast flowing rivers, smoke from a chimney, and atmosphere and ocean currents.
However, it remains extremely challenging to comprehend, interpret, and describe
[Tsinober, 2009].

The motion of a fluid element in an incompressible turbulent flow far from any
boundaries is determined by a competition between inertia, viscous, and pressure
forces and described by the Navier-Stokes equation. The Navier-Stokes equation
is a second order nonlinear partial differential equation (PDE) for the momentum
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2 Introduction

field derived from Newton’s second law of motion. The reason behind the com-
plexity of turbulence can be summarized briefly with 3N’s that are intrinsic features
of the Navier-Stokes equation, i.e. nonlinearity, nonlocality, and non-integrability.
Nonlinearity, which is expressed through the inertia term, causes self-interactions
between different structures of turbulence inside the flow field. Nonlocality, which
is due to the pressure gradient term, passes the information between distinct re-
gions of the flow field via pressure waves so that the motion of a fluid element can
be affected by the motion of far away fluid elements. Finally, if it was possible
to integrate the Navier-Stokes equations analytically over a volume, one could de-
termine all fluid motions subjected to any forcing. However, Navier-Stokes at large
velocities possess mechanisms of self-randomization which makes the dynamical
system non-integrable [Tsinober, 2009].

Depending on the distance of the flow from a wall (boundary), incompressible
turbulent flows can be divided into two general groups of (i) free shear and (ii)
wall bounded flows. In free shear flows, turbulence is caused by mean velocity
differences, remote from walls. Jets, wakes, and mixing layers are well-known
examples of free shear flows and are shown in figure 1.1. On the other hand, most
turbulent flows in nature and engineering applications are bounded by at least one
solid surface (wall). Wall bounded flows include internal flows, such as flows in
pipes and ducts, and external flows, such as atmospheric boundary layer and the
flow of rivers [Pope, 2000].

Due to its great significance in natural phenomena and technological applications,
turbulence has been studied for over a century. There have been groundbreaking
findings along the way that altered our understanding of turbulence yet we still
lack a complete theory. Most of these findings have been possible thanks to the
rapid advancements in computers and experimental measurement techniques in
the recent decades. However, our understanding of turbulence is still limited and
it seems we still have a long and challenging path ahead of us.

1.2 Von Kármán swirling flow
This thesis focuses on stationary turbulence generated in a closed cylindrical con-
tainer in between two counter-rotating impellers, known as von Kármán swirling
flow which is essentially a stirred vessel. This type of flow has gained consid-
erable attention in turbulence research since the original work of von Kármán
[1921] where the flow induced by an infinitely large rotating disk was analytic-
ally investigated. Later on, Batchelor [1951] introduced a second counter-rotating
disk. Batchelor [1951] and Stuart [1954] performed analytical investigations on
the flow generated between the two infinite coaxial disks. Stewartson [1953] and
Picha and Eckert [1958] considered finite counter-rotating disks which became a
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(a) (b)

(c)

Figure 1.1: Examples of free shear flows; (a) far field of a turbulent jet, source: West-
erweel et al. [2009], (b) turbulent wake behind an inclined flat plate, source: Cantwell
[1981], and (c) turbulent mixing layer, source: Brown and Roshko [1974].

standard configuration in numerous experimental studies afterwards. A review of
the analytical solutions available for infinite disks is presented in Zandbergen and
Dijkstra [1987]. It is worth noting that the name ’von Kármán swirling flow’ be-
came common after being used in the above mentioned review paper. Overall, the
attempts to find an analytical solution for von Kármán swirling flows with finite
disks at high Reynolds numbers have not been successful.

Figure 1.2 shows the mean flow pattern of a von Kármán swirling flow consists of
a primary rotationally shearing flow, horizontal shear layers, generated due to the
counter-rotation of impellers. A secondary flow is induced by the pressure gradi-
ents in form of pumping circulations in the vertical planes around the flow axis.
This stationary shear flow has been of interest in experimental studies of turbu-
lence, as it can generate high Reynolds numbers in a relatively small-size facility
where the region close to the geometrical center of the flow provides homogeneous
turbulence with near zero mean flow and high velocity fluctuations [Lawson and
Dawson, 2014, 2015]. Reynolds number for this flow is defined as Re = WR2/n
where W is impeller rotational speed, R is impeller radius, and n is the kinematic
viscosity of the flow. This definition indicates that for a constant kinematic viscos-
ity, high Reynolds numbers are achieved in a von Kármán swirling flow either by
increasing the rotational speed or radius of the impeller.
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Figure 1.2: Schematic of the mean flow pattern in a von Kármán swirling flow. The
horizontal shear layers are depicted in blue and the vertical circulation patterns are in
black. The square at the center illustrates the region with high fluctuations and near zero
mean flow. Source: Aligolzadeh et al. [2023].

Experimental studies can be generally categorized into two groups; i) studies of
small-scale measurements where the focus is on the structures and statistics at the
dissipation scale and ii) studies of large-scale measurements where the focus is on
the dynamics and global instabilities of the flow motion in the inertial and energy
injection scales.

Many studies have been devoted to the investigation of small-scale structures and
intermittency [Belin et al., 1996; Bonn et al., 1993; Cadot et al., 1995; Chainais
et al., 1999; Douady et al., 1991; Faller et al., 2021; Fauve et al., 1993; La Porta
et al., 2000; Worth, 2010; Worth and Nickels, 2011], as well as Lagrangian track-
ing and dynamics of accelerating particles in turbulence [Angriman et al., 2020;
Brown et al., 2009; Cheminet et al., 2022; Huck et al., 2017; La Porta et al., 2001;
Ouellette et al., 2006a,b; Volk et al., 2011; Voth et al., 1998, 2002]. Moreover,
dissipation scaling [Zocchi et al., 1994], velocity gradients dynamics [Lawson and
Dawson, 2015], assessment of Kolmogorov’s refined hypothesis [Lawson et al.,
2019], the inter-scale energy transfer [Knutsen et al., 2020], and non-viscous dis-
sipation [Debue et al., 2021] are examples of other small-scale related topics in-
vestigated using a von Kármán swirling flow.

On the other hand, experimental studies of the large-scale flow motions are not as
well reported as the small-scales, but have shown interesting phenomena, in partic-
ular global instabilities and symmetry breaking. Ravelet et al. [2008] investigated
the transition from laminar regime to fully developed turbulence over a wide range
of Reynolds numbers. They found that the transition started at Re ⇡ 1000 reaching
a fully turbulent state at Re ⇡ 3300. Furthermore, they suggested that the trans-
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ition in a von Kármán swirling flow is globally supercritical, i.e. the dynamics of
transition can be characterized by the velocity fluctuations in the flow.

The majority of these large-scale studies are focused on the symmetry breaking
behaviors in the flow in the form of instabilities. The mean velocity field of a von
Kármán swirling flow with counter-rotating impellers is geometrically symmet-
ric with respect to any p radian rotation around any line on the equatorial plane
passing the axis of rotation, i.e. Rp symmetry in figure 1.3(a). The deviation from
Rp symmetry (symmetry breaking) can be measured in time by space-averaged
angular momentum. When this parameter is not equal to zero, the symmetry is
broken. An example of such a symmetry breaking behavior is shown in figure
1.3(b) which shows how the time-series of angular momentum is not instantan-
eously zero but fluctuates. The features and dynamics of the symmetry breaking
have been investigated by Cadot et al. [2003]; Cortet et al. [2010]; de la Torre and
Burguete [2007]; Ravelet et al. [2004]. Cortet et al. [2010] showed experimental
evidence that the symmetry breaking behavior goes through a critical phase trans-
ition within the range 5⇥104 < Re < 105.

In a recent series of studies, Baj et al. [2019]; Berning and Rösgen [2023]; Berning
et al. [2017] observed energetic large-scale flow structures slowly rotating around
the axis of rotation as illustrated in figure 1.4. Baj et al. [2019] reported that the
identified structure resembled macro-instabilities in stirred vessels [Doulgerakis
et al., 2011]. Aside from the effects that the symmetry breaking and instability
structures can have on the overall dynamics of turbulence, they can be of interest
from a practical point of view, e.g. manipulation of the mixing features within the
system.

Due to the size and complexity of von Kármán swirling flows, performing direct
numerical simulations (DNS) to study the turbulence, even for low Reynolds num-
bers, still remains very challenging. To avoid this complexity at high Reynolds
numbers, some simplifications are necessary. For example, turbulence models and
large eddy simulations (LES) can be employed to obtain limited information about
the flow. Nore et al. [2003] studied symmetry breaking and bifurcation in a von
Kármán swirling flow at low Reynolds numbers using the assumptions of axisym-
metry and Rp symmetry to simplify the computations. Kreuzahler et al. [2014]
performed a DNS study of the flow at Re ⇡ 3000 using a volume penalization
method, i.e. activating source terms in equations to ensure the required boundary
condition, which showed good agreement with previous experimental observations
about the global flow profiles and the poloidal and toroidal mean velocities. Pon-
cet et al. [2008] compared the results of a numerical simulation using a Reynolds
stress model (RSM) with the available data from the experiments. They showed
that the numerical predictions of the mean circumferential velocity profile were
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(a) (b)

Figure 1.3: Symmetry breaking behavior; (a) the mean velocity field of a von Kármán
swirling flow with counter-rotating impellers is symmetric with respect to any p radian
rotation around any line on the equatorial plane passing the axis of rotation, i.e. Rp sym-
metry and (b) when space-averaged angular momentum I(t) is not zero, Rp symmetry is
temporally broken. Source: Cortet et al. [2010].

Figure 1.4: Topology of the first two POD modes at the center of a von Kármán swirling
flow in Baj et al. [2019]. The iso-surfaces illustrate the magnitude of the contribution to the
total velocity field normalized by the velocity fluctuations r.m.s. in mode 1 (on the left) and
mode 2 (on the right). Mode 2 is a rotation of mode 1 around the vertical axis and together
they form a structure. The structure slowly rotates around the axis at approximately 0.1 of
the impeller frequency. Source: Baj et al. [2019].
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in good agreement with point velocity measurements using laser Doppler veloci-
metry (LDV). In a more recent study, Nore et al. [2018] used LES to study the
hydrodynamics and magneto-hydrodynamics in a von Kármán swirling flow for
Reynolds numbers up to Re = 105. Their results supported the conjecture that
by increasing the kinetic Reynolds number toward infinity, the critical magnetic
Reynolds number approaches a constant.

1.3 Objectives
The objective of the thesis is to fill gaps regarding some fundamental features of
turbulence and its dynamics in a von Kármán swirling flow at both the small and
large-scales. The main objectives are:

i) to investigate the kinematics and dynamics of vortex structures at the dissip-
ation scale and their interaction with the surrounding background fluid using an
objective definition of vortices.

ii) to characterize the free decay of turbulence and its behavior in different dir-
ections of the flow, along with the comparison with the well-known analytical
predictions in the turbulence theory.

iii) to understand the dynamics of the large-scale harmonic motions in the flow and
their dependence on the Reynolds number and forcing modulations.

1.4 Outline
The thesis is organized as follows. In Chapter 2 the theoretical framework of
turbulence is provided in some detail including the equations and key concepts,
which is necessary to understand the motivations, analyses and results presented
in this thesis. Chapter 3 first provides some details of the large-size von Kármán
swirling flow facility in which the measurements were conducted. Next, principles
of particle image velocimetry (PIV) and more specifically, stereoscopic PIV, that
was used as the main experimental measurement technique, are described. The last
section of this chapter explains the experiments performed in the facility. Chapter 4
provides a brief conclusion of the turbulence features investigated and summarizes
the research articles that report the novel findings of this thesis. The research
articles are attached to the end of the thesis.
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Chapter 2

Turbulence theory

This chapter provides a brief theoretical background as a framework for under-
standing the motivations behind this research, the methods used, and the funda-
mental physics necessary to interpret the results. We refer the interested reader to
well-known books on turbulent flows, such as Davidson [2015], Pope [2000], and
Tsinober [2009], for more details and deeper discussions.

2.1 Governing equations
For an incompressible three dimensional flow (xi=1,2,3), the continuity (mass con-
servation) and momentum (Navier-Stokes) equations are presented in equations
2.1 and 2.2, respectively:

∂Ui

∂xi
= 0 (2.1)

DUi

Dt
=

∂Ui

∂ t
+Uj

∂Ui

∂x j
=� 1

r
∂P
∂xi

+n ∂ 2Ui

∂x2
j

(2.2)

—2P =�r ∂Ui

∂x j

∂Uj

∂xi
(2.3)

P(x) =
r
4p

Z 
∂Ui

∂x j

∂Uj

∂xi

�

x=x⇤

dx⇤

|x� x⇤| (2.4)

where Ui is the velocity in the ith direction, r is density, P is pressure, and n is the
kinematic viscosity of the flow. Equation 2.2 shows a balance between the inertia
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10 Turbulence theory

of the fluid element (left hand side of the equation, i.e. DU/Dt) and the forces
imposed on it (right hand side of the equation, i.e. the pressure force: �1/r—P and
the viscous force: n—2U). By taking the divergence of the Navier-Stokes equation
and using the continuity equation, a direct relation between the pressure field and
the velocity field is derived in equation 2.3 for an incompressible flow known as
the Poisson equation. The Poisson equation can be written in an integral form in
equation 2.4 for a finite domain. These equations show an important feature in
fluid dynamics, nonlocality, which is of special importance in turbulence. It means
that the activities of the velocity field at any local region in the flow field is felt
by the remote regions of the flow through the pressure field, P, and the force that
it applies on the fluid elements, �—P. The pressure field passes the information
between different regions of the flow field via pressure waves that are infinitely
fast, relative to speed of sound, in incompressible flows. For the case of turbulence
this implies that at any time instant, eddies interact with each other no matter how
far away they are located in the flow field. However, this interaction is a function of
distance and activities within the closer regions in space are of more significance
according to equation 2.4.

The vorticity vector describes the rotation of fluid elements and is defined in equa-
tion 2.5 as the curl of the velocity vector (w = —⇥U), where xi jk is Levi-Civita
(alternating) symbol. The vorticity evolution equation can be derived in equation
2.6 by taking the curl of the Navier-Stokes equation (equation 2.2).

wi = xi jk
∂Uk

∂x j
(2.5)

Dwi

Dt
=

∂wi

∂ t
+Uj

∂wi

∂x j
= w jSi j +n ∂ 2wi

∂x2
j

(2.6)

where Si j = (∂Ui/∂x j + ∂Uj/∂xi)/2 is the rate of strain tensor. This equation
indicates that the material derivative of vorticity (Dwi/Dt) is balanced by the in-
viscid phenomenon of vortex stretching (w jSi j) and the viscous phenomenon of
vorticity diffusion (n∂ 2wi/∂x2

j ). It is worth mentioning that the pressure term in
the Navier-Stokes equation (2.2) vanishes in the vorticity evolution equation of an
incompressible flow (2.6) (�—⇥—p/r = 0). In most cases, we are more interested
in the magnitude of vorticity rather than its direction. The square of the magnitude
represents the local rotational energy that helps us identify turbulent structures
within the flow. The rotational energy of the fluid element can be represented by
enstrophy where w2 = wiwi. Using equation 2.6, an evolution equation can be
derived for enstrophy, i.e. enstrophy transport equation and is shown in equation
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2.7:

Dw2

Dt
=

∂w2

∂ t
+Uj

∂w2

∂x j
= 2wiw jSi j +n ∂ 2w2

∂x j∂x j
�2n ∂wi

∂x j

∂wi

∂x j
(2.7)

Similar to equation 2.6, equation 2.7 shows that the evolution of enstrophy (Dw2/Dt)
is governed by a competition between the inviscid phenomenon of enstrophy pro-
duction/ depression (vortex stretching) 2wiw jSi j and the viscous phenomena of en-
strophy diffusion n∂ 2w2/∂x j∂x j and enstrophy dissipation �2n(∂wi/∂x j)(∂wi/∂x j).

Similar to enstrophy, total strain is defined as S2 = Si jSi j. Total strain plays an
important role in the dynamics of turbulence as it is directly connected to kinetic
energy dissipation of fluid elements and turbulent structures. Evolution of total
strain follows equation 2.8:

DS2

Dt
=�2Si jS jkSki �

1
2

wiw jSi j �2Si j
∂ 2P

∂xi∂x j
+2nSi j—2Si j (2.8)

The term �2Si jS jkSki� (1/2)wiw jSi j �2Si j(∂ 2P/(∂xi∂x j)) on the right hand side
of equation 2.8 is called inviscid production of total strain, similar to the inviscid
enstrophy production term 2wiw jSi j in equation 2.7. In homogeneous turbulence,
it can be shown that on average h�2Si jS jkSki � (1/2)wiw jSi ji = hwiw jSi ji > 0
are strictly positive, whereas hSi j(∂ 2P/(∂xi∂x j))i = 0. Therefore, these inviscid
terms generate total strain and enstrophy within the flow when we consider the av-
erage picture of homogenous turbulence [Betchov, 1956; Taylor, 1938a; Tsinober,
2009].

2.2 Statistical approach to turbulence
Even though the Navier-Stokes equation is deterministic, it can only be solved
analytically for simplified flows at low Reynolds numbers, i.e. laminar flow. By
increasing the Reynolds number sufficiently, the flow becomes turbulent where
the velocity field shows chaotic behavior. This was first studied in the pioneering
experiments of Reynolds [1883] in a tube as shown in figure 2.1. Reynolds injected
dye at the inlet of a tube flow. He observed that when flow velocity was low, the
dye followed a straight line in the tube. However, when he increased the flow
velocity the dye pattern became wavy and eventually random. Reynolds proposed
that this random velocity can be treated as fluctuations around a mean value. This
led to Reynolds decomposition in equation 2.9:
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(a)

(b) (c)

Figure 2.1: Reynolds’ pioneering experiments on transition from laminar to turbulent flow
in a tube; (a) sketch of the setup, (b) injected dye follows a straight line at low velocity
(laminar flow), and (c) by increasing the flow velocity, the dye pattern becomes wavy and
eventually random (turbulent flow). Source: Reynolds [1883].

Ui(x j, t) = hUii+ui(x j, t) (2.9)

where Ui(x j, t) is the instantaneous velocity, hUii is the ensemble average velocity,
and ui(x j, t) is the velocity fluctuations. This decomposition provides a useful
statistical approach to study stationary turbulence and is illustrated schematically
in figure 2.2. The instantaneous velocity in this figure Ui(t), fluctuates around a
mean value over time. The same procedure can be used for other quantities. For
example, the pressure field can be decomposed as P(x j, t) = hPi+ p(x j, t).

Reynolds [1895] applied the decomposition to the Navier-Stokes equation to derive
an average momentum equation for steady turbulence known as Reynolds average
Navier-Stokes (RANS) equation in 2.10:

∂ hUii
∂ t

+ hUji
∂ hUii
∂x j

=� 1
r

∂ hPi
∂xi

+n ∂ 2hUii
∂x2

j
�

∂ huiu ji
∂x j

(2.10)

Equation 2.10 is similar to the Navier-Stokes equation in 2.2, except for an extra
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hUii

ui(t)

t

U
i(
t)

=
hU

ii
+

u
i(
t)

Figure 2.2: Instantaneous velocity of stationary turbulence Ui(t) fluctuates ui(t) around a
mean value hUii over time.

term �∂ huiu ji/∂x j that only appears in the RANS equation. The term is known
as the Reynolds stresses. Appearance of the Reynolds stresses leads to a closure
problem in the system of equations as there are more unknowns than equations.
In a steady 3D turbulence four equations exist, the RANS equations in each direc-
tion and one equation for continuity. However, we have more than four unknowns,
average velocities in each direction, average pressure and the Reynolds stresses.
This makes the RANS equations unsolvable unless extra information about the
Reynolds stresses is provided or assumed. Therefore, the statistical approach in
turbulence necessarily leads to the closure problem, which requires ad-hoc hypo-
theses or assumptions to close the system of equations.

By taking a statistical approach we moved from a deterministic system of equa-
tions to an under-determined system. The Navier-Stokes equation is deterministic
but produces quantities, Ui and P , with chaotic behavior at high Reynolds num-
bers. However, the quantities of interest in the statistical approach, for example
huiu ji, do not show random behavior and are reproducible in any experiment [Dav-
idson, 2015].

Using Reynolds decomposition one can assess how turbulent the flow is; the root
mean square (r.m.s.) of the velocity fluctuation field, u0i, is defined in equation 2.11
and the turbulent kinetic energy (TKE), k, is defined in equation 2.12:

r.m.s.(ui) = u0i = hu2
i i1/2 (2.11)

k =
1
2
huiuii (2.12)
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The evolution of TKE follows equation 2.13 and is governed by transport, produc-
tion, and dissipation terms (equations 2.14-2.16):

∂k
∂ t

+ hUii
∂k
∂xi

+
∂T 0

i
∂xi

= P �hei (2.13)

where:
T 0

i =
1
2
huiu ju ji+ hui pi/r �2nhu jsi ji : transport (2.14)

P =�huiu ji
∂ hUii
∂x j

: production (2.15)

hei= 2nhsi jsi ji : dissipation (2.16)

Equation 2.13 indicates that the material derivative of TKE, Dk/Dt = ∂k/∂ t +
hUii∂k/∂xi is balanced by three phenomena: (i) the production term P in equa-
tion 2.15 generally transfers energy from the mean flow to the turbulence, (ii) the
dissipation term hei in equation 2.16 drains the energy of turbulence and dissipates
it into heat, and (iii) the transport term ∂T 0

i /∂xi in equation 2.14 spatially redistrib-
utes TKE within the flow via motion of turbulent eddies, pressure perturbations,
and viscous stresses.

2.3 Homogeneity and isotropy
Taking the statistical approach in turbulence leads to quantities that are non-random
and reproducible. This is a big advantage compared to the chaotic behavior of the
variables in the non-statistical approach. However, one needs to use some assump-
tions or hypotheses to address the closure problem in the statistical approach. Ho-
mogeneity and isotropy are examples of such assumptions that have been widely
used in the statistical approach. Taylor [1938a] and Batchelor [1946] defined and
used these concepts for velocity fluctuations ui, whereas Kolmogorov [1941b] used
them for velocity increments dui(x,r) = ui(x+r)�ui(x). Here, we present and ad-
opt the definition of local homogeneity/ isotropy provided by Monin and Yaglom
[1975] based on the velocity increments. In this definition, turbulence is locally
homogeneous when statistical properties of the velocity increment are independent
of position x in space. Local isotropy holds when in addition to the local homo-
geneity, the statistical properties of the velocity increment are invariant under all
rotations and projections of the coordinate axes within the flow.

Perfectly homogeneous isotropic turbulence (HIT) does not exist in nature and
engineering applications, but grid turbulence in wind tunnels is a good approxim-
ation for HIT in its spanwise direction and has been used extensively over the past
few decades to study turbulence. In addition, the theory of turbulence is based
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on HIT. To provide some examples of the resulting simplifications, the average
product of fluctuations in different directions are zero, huiu ji= 0 and the average
dissipation rate simplifies to hei= 15nh(∂u1/∂x1)2i. Equation 2.13 for the evolu-
tion of TKE, takes its simplest form ∂k/∂ t =�hei as the transport and production
terms become zero. The main reasons behind the popularity of HIT in turbulence
research can be summarized to: (i) it is a simplified version of real flow that is
easier to work with in analytical theories and (ii) it does not have a fingerprint
of often linear external forcing resulting from mean shear, buoyancy, etc. in real
flow. These fingerprints are difficult to separate from the nonlinear behavior of
turbulence which is assumed to be at least partially universal [Tsinober, 2009].

2.4 The energy cascade and scales in turbulence
The concept of the energy cascade is the bedrock of the turbulence theory. It was
first conceptualized by Richardson [1926] and later on formulated and theorized
by Kolmogorov [1941b]. These are shown schematically in figures 2.3 and 2.4. It
states that, on average, energy is externally injected into the flow at the largest scale
L0, whose size is comparable to a characteristic length of the flow geometry. This
is shown by energy containing range in figure 2.4. The injected energy cascades
down internally, into the universal equilibrium range, toward increasingly smaller
scales. The process continues until it reaches the end of the cascade, where the
energy dissipates into heat at the smallest scale through action of viscosity. This
is known as dissipation or Kolmogorov length-scale, h . If one considers that there
is a large enough separation between large and small-scales, the length-scales in-
volved in the universal equilibrium range can be divided into two subranges; (i)
the inertial subrange where the viscous phenomena are negligible and the strain
field of the flow transfers the energy to the smaller scales by inviscid mechan-
isms, and (ii) the viscous or dissipation subrange where the viscous phenomena
become significant enough and eventually dominant. These are shown in figure
2.4. Kolmogorov [1941b] hypothesized that the motion of the flow at the smallest
scales is self-similar and only depends on two parameters; kinematic viscosity n
and dissipation rate e . Consequently, Kolmogorov length h , time th , and velocity
uh scales are defined in equations 2.17-2.19:

h =

✓
n3

e

◆1/4

(2.17)

th =
⇣n

e

⌘1/2
(2.18)
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Figure 2.3: Based on the Richardson-Kolmogorov picture of turbulence, kinetic energy
cascades down toward the smaller scales on average. This process continues until the
dissipation scale, where the kinetic energy is dissipated into heat.

Figure 2.4: Energy spectrum of turbulence (the energy cascade) based on wavenumber
E(k) and the related subranges. The spectrum follows Kolmogorov’s -5/3 law in the
inertial subrange.
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uh = (ne)1/4 (2.19)

The rate of the energy injected into the flow can be estimated as U 2
0 /T0 =U 3

0 /L0
where U0, L0, and T0 are the characteristic velocity, length, and time scales at the
large-scale. Since this energy rate is equal to the dissipation rate at the smallest
scale, following the Kolmogorov theory, the scaling argument e ⇠U 3

0 /L0 is valid
and is used to find a relation that estimates the ratio between the smallest and the
largest scales of turbulence (scale separation) in equation 2.20:

h
L0

⇠ Re�3/4 (2.20)

Equation 2.20 suggests that by increasing the Reynolds number Re = U0L0/n in
the same facility, i.e. fixed L0, the Kolmogorov length-scale becomes continu-
ously smaller and a wider range of scale separation can be achieved. However,
the decrease in the Kolmogorov length-scale poses a challenge as it makes the
experimental measurements of the small-scales difficult.

Another widely used length-scale in turbulence is Taylor micro-scale, l , defined
in equation 2.21 for homogeneous isotropic turbulence (HIT). This length-scale
belongs to the inertial sub-range h ⌧ l ⌧L0, but it does not have a clear physical
interpretation [Pope, 2000]. The Reynolds number based on the Taylor micro-scale
Rl is consequently defined in equation 2.22.

l = u0
s

15n
hei (2.21)

Rl =
u0l
n

(2.22)

The Kolmogorov theory of turbulence is based on the velocity increments dui(x,r)=
ui(x+ r)�ui(x), instead of velocity fluctuations itself. The velocity increments of
different orders are represented by the p-order structure function in equation 2.23.
The Kolmogorov theory predicts that equations 2.24 and 2.25 should hold for the
second and third order structure functions in the inertial subrange, h ⌧ r ⌧ L0,
at high Reynolds numbers. Equation 2.24 is known as Kolmogorov’s 2/3 law in
physical space or equivalently, �5/3 law in Fourier space based on wavenumber as
shown in figure 2.4. In these formulations, C2 and CK were believed to be absolute
constants valid for any turbulent flow at high enough Reynolds numbers. Equation



18 Turbulence theory

2.25 is usually referred to as Kolmogorov’s �4/5 law. These equations indicate
the distribution and fluxes of turbulent kinetic energy among different scales of
flow motion within the inertial subrange. They can also be used to estimate the
dissipation rate of the flow, when highly resolved velocity field is not available to
calculate the dissipation rate directly.

Sp(r) =
D⇣

[u(x+r)�u(x)] · r
r

⌘pE
(2.23)

S2(r) =C2hei2/3r2/3 , E(k) =CKhei2/3k�5/3 (2.24)

S3(r) =�4
5
heir (2.25)

To identify and measure turbulent structures, the two-point correlation of the velo-
city fluctuations is defined in equation 2.26 for homogeneous turbulence (Ri j(x,r, t)=
Ri j(r, t)):

Ri j(r, t) = hui(x+ r, t)u j(x, t)i (2.26)

The integral length-scale is then defined as the area under the curve of the normal-
ized two-point correlation function in equation 2.27. The integral length-scale is a
good approximation for the average size of the largest coherent motions (eddies)
within the flow field. The integrand in equation 2.27, Ri j(r, t)/Ri j(0, t), decays
from 1 at r = 0 to 0 at r = •. Therefore, the integral is bounded. However, it is
not usually practical to reach large distances due to the limited spatial extent of the
measurements or numerical simulations. A solution has been proposed by De Jong
et al. [2009] in which an exponential decay function is fitted to the available profile
of Ri j(r, t)/Ri j(0, t) in the range 0 < r < rmax. The fit extrapolates the missing tail,
i.e. Aexp(�Br) in the range rmax < r < •.

Li j(t) =
Z •

0

Ri j(r, t)
Ri j(0, t)

dr =
Z rmax

0

Ri j(r, t)
Ri j(0, t)

dr+
Z •

rmax

Aexp(�Br)dr (2.27)

2.5 The dynamics of the small-scales of turbulence
"This suggests that the most important processes associated with production of
vorticity and energy transfer resemble a jet collision and not the swirling of a con-
tracting jet." Betchov [1956]
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The most prominent features of turbulence are the rotation of fluid elements and
the dissipation of kinetic energy. These two features are interconnected through
the velocity gradient tensor (VGT), Ai j = ∂ui/∂x j, where the rate of strain tensor
(dissipation) Si j = (Ai j +AT

i j)/2 is the symmetric part and the rotation tensor Wi j =

(Ai j �AT
i j)/2 is the antisymmetric part of VGT, Ai j = Si j +Wi j. The velocity field

can be fully determined by the vorticity field (—2ui = �(—⇥w)i) or the strain
field (—2ui = 2∂ si j/∂x j) along with appropriate boundary conditions. However,
the connection between the fields of vorticity and strain is strongly nonlocal and
turbulence statistics show that they are weakly correlated in space.

Since the seminal studies of Taylor [1937, 1938a] and Kolmogorov [1941a,b], ve-
locity gradients have been used extensively to investigate the dynamics of tur-
bulence and the energy cascade. The velocity gradients determine the structures
of vorticity and strain, along with their interactions in the universal equilibrium
range. Thus, after the flow becomes self-similar (the universal equilibrium range)
the mechanisms of turbulence are fully governed by VGT. For example, dissipa-
tion which is commonly agreed to be the final stage of the energy cascade process
is represented by the symmetric part of VGT, i.e. the field of strain e = 2nsi jsi j =
2ns2.

The nonlinear interaction between the vorticity and strain fields results in the in-
viscid phenomenon of vortex stretching/ compression. Vortex stretching produces
enstrophy on average, hwiw jsi ji> 0, which was first discovered in the theoretical
study of HIT by Taylor [1938a]. It turns out that 3D turbulence cannot exist (or
sustain itself) without a net production of enstrophy. Even though vortex stretch-
ing/ enstrophy production is an important process in turbulence dynamics, it is not
the leading agent in the energy cascade. The energy cascade and dissipation in par-
ticular are strongly associated with the self-amplification of the rate of strain and
vortex compression rather than vortex stretching as discovered by Betchov [1956].
In addition to hwiw jsi ji being positive, the self-production of strain �hsi js jkskii in
equation 2.8 is also positive in turbulent flows on average. Since the enstrophy
production term appears with a negative sign in this equation, it works on average
as a sink term that drains the energy of strain (dissipation), s2. Thus, enstrophy
production/ vortex stretching suppresses the energy cascade and it does not act in
favor of it, as suggested by Taylor [1938a].

Self-amplification of the velocity derivatives both in the shape of enstrophy pro-
duction and production of total strain is an intrinsic feature of turbulence. It is
worth mentioning that these productions are orders of magnitude higher than the
productions directly resulting from the external forcing. This can be checked in
DNS studies of HIT boxes where the flow is commonly forced by activating an ex-
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ternal body force term, f , in the Navier-Stokes equation. This external body force
appears in the equations for the evolution of total strain and enstrophy as si j fi j and
wi(—⇥ f )i terms, respectively. It turns out that in the range of moderate to high
Reynolds numbers, the magnitudes of these terms are orders of magnitude smal-
ler than the magnitudes of the self-amplification terms. This difference increases
with Reynolds number [Tsinober, 2009]. Thus, the self-amplification of velocity
gradients, i.e. production of enstrophy and total strain, is a universal feature of
turbulence and independent from the external forcing at the large-scales.

Another important feature of self-amplification is that it is quasi-stationary in time.
This means when the whole volume of flow considered, the production of en-
strophy or total strain is balanced by the viscous destruction of these quantities
at any time instant. This is a result of Tennekes and Lumley (TL) balance, i.e.
hwiw jsi ji⇡�nhwi—2wii in homogeneous turbulence [Tsinober, 2009]. Therefore,
the time derivative of the overall enstrophy or total strain is significantly smaller
than the corresponding production and destruction values.

When geometrical statistics of the small-scales are considered, certain features
appear to be valid in a wide range of turbulent flows. The preferential align-
ment between the vorticity vector and the direction of intermediate principal strain
was first discovered in DNS of HIT by Kerr [1985] and Ashurst et al. [1987] and
has been observed in many other studies afterward, both numerically and exper-
imentally. Some examples of such an alignment are shown in figure 2.5 from
the studies of Elsinga and Marusic [2010] in a turbulent boundary layer, Bux-
ton and Ganapathisubramani [2010] in an axisymmetric turbulent jet, and Buaria
et al. [2020] in DNS of forced isotropic turbulence. The results show a preferen-
tial alignment between the vorticity vector and the intermediate principal direc-
tion, whereas a tendency to orient normally to the compressive principal direction
is observed. The intermediate eigenvalue is positive on average. Therefore, the
alignment leads to production of enstrophy via vortex stretching.

Another geometrical feature that seems to be universal is the average radius of the
small-scale vortex structures or so-called ’worms’. In the DNS study of Jiménez
et al. [1993], the average radius was calculated and reported to be approximately
5h . Similar sizes have been observed by many experimental and numerical studies
later on [da Silva et al., 2011; Ganapathisubramani et al., 2008; Ghira et al., 2022;
Neamtu-Halic et al., 2021]. In addition, Jiménez et al. [1993] and Jiménez and
Wray [1998] showed that these structures possess a low level of stretching and
are relatively stable, i.e. they are frozen/ passive within the flow field. When
the statistics of the alignment between the vorticity vector and the principal strain
directions is conditioned inside the small-scale vortex structures, a strong tendency
is observed for the vorticity vector to align with the intermediate eigendirection,
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(a) (b)

(c)

Figure 2.5: Examples of probability distribution functions of cosine of the angles between
the eigendirections of the rate of strain tensor and the vorticity vector. Here, i = 1 is the
largest stretching, i = 2 is the intermediate, and i = 3 is the most compressive eigendirec-
tion: (a) turbulent boundary layer, source: Elsinga and Marusic [2010], (b) axisymmetric
turbulent jet, source: Buxton and Ganapathisubramani [2010], and (c) DNS of forced iso-
tropic turbulence, source: Buaria et al. [2020].
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but being normal to the extensive and compressive eigendirections [Buaria et al.,
2020; Frisch, 1995].

Self-amplification is a nonlinear process and is mostly associated with large strain,
i.e. alignment between the largest strain and vorticity, and finite curvature of the
vortex lines. Thus, the regions of the flow occupied by the structures of intense
vorticity/ enstrophy (small-scale vortices or ’worms’) are the regions with reduced
nonlinearity and self-amplification is negligible in these regions. This means that
small-scale vortex structures do not play a significant role in the overall dynamics
of turbulence. On the other hand, structures of intense strain, where nonlinearity
is maximized, are significant for turbulence dynamics and the cascade process.

As discussed in this subsection, vortices at the dissipation scale are considered in-
significant in overall dynamics of turbulence due to their lack of self-amplification
and being frozen in the flow field. However, are they active in other important
aspects, for example, exchange of mass, momentum, and enstrophy with the back-
ground flow? We will investigate this question in Article 1.

2.6 The dynamics of the large-scales of turbulence
The Kolmogorov theory addresses certain fundamental questions in the small and
intermediate range of scales in turbulence, the universal equilibrium range. How-
ever, it does not provide any information about the large-scales of turbulence,
where the energy is injected into the flow. Large-scale dynamics are of practical
importance in natural phenomena and engineering applications, but finding a uni-
versal theory at the large-scales is not possible. The reason is that the large-scale
motions of turbulence have the characteristic size comparable to the size of the
apparatus that the flow is generated in. Thus, they are partially determined by the
flow geometry, boundary conditions, and the specific instabilities in the flow. In
other words, these motions are case dependent and can change from one flow to
another.

Numerous studies have been performed to investigate these motions in different
flows, such as spanwise structures, hairpin vortices, and uniform momentum zones
(UMZs) in boundary layers [Adrian, 2007; de Silva et al., 2016; Lee et al., 2017;
Lee, 2017; Tomkins and Adrian, 2003], large-scale and very-large-scale motions
(VLSMs) in pipe flows [Hellström et al., 2015, 2016; Kim and Adrian, 1999],
quiescent cores, long motions of streamwise velocity fluctuations, and large-scale
circulations in channel flows [Asadi et al., 2022; Hwang et al., 2016; Kwon et al.,
2014; Lee et al., 2014; Liu et al., 2001; Zampiron et al., 2020], large-scale circu-
lation (LSC) in turbulent Rayleigh-Bénard convection [Brown and Ahlers, 2009;
Funfschilling and Ahlers, 2004; Mishra et al., 2011], and Taylor rolls in turbu-
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lent Taylor-Couette flows [Grossmann et al., 2016; Huisman et al., 2012; Ostilla-
Mónico et al., 2014, 2016] to name just a few. In a nutshell, these studies show that
the behavior of turbulence at the large-scale is quite nonlocal in time and space.
This means turbulence (i) has a long memory of the past motions and (ii) is affected
by the activities in the distant regions of the flow. For these reasons, large-scale
turbulence shows a richer range of behaviors compared to the intermediate and
small-scales [Pope, 2000].

One of the first attempts in understanding the dynamics of the large-scales was
made by Loitsyansky. He claimed that an integral invariant in isotropic turbu-
lence, I in equation 2.28, existed [Loitsiansky, 1939]. Later on, Landau indicated
that this invariant was the consequence of conservation of angular momentum in
the flow, i.e. a cloud of turbulent motion maintained its angular momentum as it
evolved [Landau and Lifshitz, 1959].

I =�
Z

r2hUiuiidr = constant. (2.28)

Based on this hypothesis, Kolmogorov [1941a] derived a relation for freely decay-
ing turbulence in equation 2.29, also known as Loitsyansky decay law. This equa-
tion indicates a temporal exponential decay of TKE (exponent: �10/7 ⇡ �1.43)
and an exponential growth of the integral length-scale (exponent: 2/7 ⇡ 0.29).

k(t) =
1
2

uiui ⇠ t�10/7, L(t)⇠ t2/7 (2.29)

In 1956, Batchelor proved that the assumption Loitsyansky made about the non-
local effect of the pressure field to derive equation 2.28 was not always valid.
Therefore, the claims about the Loitsyansky invariant became problematic. Batch-
elor showed that the pressure field can pass information through pressure waves
between remote regions of the flow, in contrast with the assumption of Loitsyansky
[Batchelor and Proudman, 1956]. Saffman showed that the integral in equation
2.28 diverges for some cases of isotropic turbulence [Saffman, 1967]. This was a
solid end to the validity of the Loitsyansky invariant and thereafter has been called
Loitsyansky integral. Nevertheless, this integral plays an important role in the en-
ergy transfer process. In Fourier space, the energy spectrum based on wavenumber
E(k) can be approximated in equation 2.30 where I appears in the coefficient of
the k4 term and L known as Saffman integral, defined in equation 2.31, appears
in the coefficient of the k2 term. When the conservation of linear momentum is
assumed, it can be shown that the Saffman integral, L , is an invariant. However,
this assumption is not generally valid.
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E(k) = L k2

4p2 +
I k4

24p2 + · · · (2.30)

L =
Z
hUiuiidr (2.31)

When the conservation of angular momentum is assumed, L = 0 and the energy
spectra will be of the type E(k) ⇠ I k4 + · · · , known as Batchhelor spectra or
Batchelor turbulence. On the other hand, when the conservation of linear mo-
mentum is assumed, L 6= 0 and the spectra will be of the type E(k)⇠L k2+ · · · ,
known as Saffman spectra or Saffman turbulence. Similar to the Loitsyansky de-
cay law in equation 2.29 in Batchelor turbulence, relations for the temporal decay
of TKE (k(t)) and growth of the integral length-scale (L(t)) are derived for the
free decay of Saffman turbulence in equation 2.32. Here, the decay exponent is
�6/5 =�1.2 and the growth exponent is 2/5 = 0.4:

k(t)⇠ t�6/5, L(t)⇠ t2/5 (2.32)

The most common way of studying turbulent decay experimentally is by passing a
steady flow through a grid, shown in figure 2.6(a), and measuring the flow velocity
field downstream as exemplified in the seminal work of Batchelor and Townsend
[1948], where it was shown that the decay of grid turbulence follows a power-law
decay function. For downstream of the grid, the flow is homogeneous in span-
wise direction and the TKE decays with streamwise distance. When only point
measurements are available, Taylor’s frozen flow hypothesis [Taylor, 1938b] can
be used to perform a linear conversion of the measured spatial data into temporal
data. Taylor’s hypothesis states that when the mean flow is significantly higher
than the fluctuations, turbulent structures or eddies are advected by the mean flow
and do not evolve over short distances.

After the original work of Batchelor and Townsend [1948], decay of grid turbu-
lence has been extensively studied in wind tunnel experiments. Comte-Bellot and
Corrsin [1966] found the decay exponent to lie within the range [�1.29,�1.15]
and Warhaft and Lumley [1978] estimated it to be �1.34. More recently, Krog-
stad and Davidson [2009, 2011] used classical and multi-scale grids, shown in
figure 2.6(b), to investigate the decay of homogeneous turbulence in a large wind
tunnel facility. They found the Saffman decay exponent (k ⇠ t�1.2) sufficiently
downstream from the grids in both cases. Sinhuber et al. [2015] used a classical
grid to study the decay of moderate to high Reynolds numbers homogeneous flow
(104 < Re < 5⇥106) using a low-viscosity fluid. They also reported the Saffman
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(a) (b)

(c)

Figure 2.6: Grid turbulence; (a) schematic of a classical square mesh grid made of bars
with diameter d and mesh size M, source: Pope [2000], (b) schematic of multi-scale grids,
source: Krogstad and Davidson [2011], (c) a square-fractal-element grid, source:Hearst
and Lavoie [2014].

decay exponent within the range of the Reynolds numbers studied. The decay
has also been measured after fractal grids. It started with the study of Hurst and
Vassilicos [2007] where a very rapid exponential decay was reported after the grid
and George and Wang [2009] proposed an analytical solution for decay that was
in agreement with the observed exponential behavior. However, measurements of
Valente and Vassilicos [2011] showed that the flow after the fractal grids followed
a power-law decay with a high exponent of n ⇡�2.5. In another study, Hearst and
Lavoie [2014] studied a square-fractal-element grid shown in figure 2.6(c). The
grid pattern and its dimensions were designed proportional to the size of the wind
tunnel. This enabled the emergence of different regimes of decay downstream of
the grid. They found a decay exponent of �1.38 (k ⇠ t�1.38), far away from the
grid which is close to the Loitsyansky prediction of �1.43. However, the decay
exponent was reported to be �2.79 in the near grid region. The authors stated that
this rapid decay was due to poor transverse homogeneity of the mean flow close to
the grid.

In addition to the wind tunnel grid experiments, the free decay of turbulence can



26 Turbulence theory

be studied in other flow configurations which produce homogeneous flow. Esteban
et al. [2019] studied the decay of homogeneous anisotropic turbulence generated
by Random Jet Arrays (RJAs) with zero-mean flow and high fluctuations. They
identified three consecutive regimes of decay within their measurements; (i) during
the initial period, a quick decay rate was observed with an exponent of �2.3, (ii)
a classical Loitsyansky decay regime emerged with an exponent of �1.4, (iii) the
final decay regime appeared with an exponent of �1.8. They showed that the
final regime was caused by the finite size of the facility and that this confinement
prevented the continuous growth of the integral length-scale. This effect is known
as saturation or confinement effect in the decay literature [Panickacheril John et al.,
2022; Skrbek and Stalp, 2000].

Freely decaying turbulence has also been studied numerically using DNS in HIT
boxes with periodic boundary conditions. Panickacheril John et al. [2022] gathered
and reviewed the decay exponents available in the literature with a focus on DNS
studies. The collected decay exponents vary by 100% among different studies
and lie somewhere within the range [�2,�1]. The authors concluded that the
initial condition and the arbitrariness in identifying the virtual origin (used to fit
the power-law decay function) were the main reasons behind these variations.

The studies available on decay measurements in homogeneous flows with near zero
mean are very limited and to the best of author’s knowledge do not exist in von
Kármán swirling flows. We will investigate the decay behavior in a von Kármán
swirling flow in Article 2. In addition, dynamics of large-scale motions in the flow
are not well-studied and in Article 3 we will investigate the effects of Reynolds
number and forcing strategy on these dynamics.

2.7 Entrainment and detrainment of turbulent mixing
An important feature of turbulent flows at the small-scales is intermittency as
shown in the pioneering work of Batchelor and Townsend [1949]. This means
the flow field is occupied locally and non-uniformly by turbulent structures, i.e.
small-scale vortices, embedded in a less active (less rotational) background fluid.
As discussed earlier in the dynamics of the small-scales, the vortex structures are
passive and not significant in the overall dynamics of turbulence. However, they
can be significant when one considers their interactions with the background fluid
to exchange mass, momentum, and enstrophy across the vortex boundary. This can
be investigated by adopting a methodological approach used in the study of turbu-
lent non-turbulent interface (TNTI) [Holzner and Lüthi, 2011; Kankanwadi and
Buxton, 2022; Mathew and Basu, 2002; Mistry et al., 2016, 2019; Neamtu-Halic
et al., 2019, 2020; Westerweel et al., 2005; Wolf et al., 2012].
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(a) (b)

(c)

Figure 2.7: Examples of TNTI in: (a) turbulent jet, source: Mistry et al. [2016], (b)
turbulent mixing layer, source: Balamurugan et al. [2020], and (c) turbulent wake after an
airfoil, source: Zhang and Wu [2022].

In this section, we briefly introduce local entrainment across TNTI which plays
an important role in transfer of mass and momentum. The coexistence and in-
teraction between turbulent and irrotational non-turbulent regions are important
phenomena in turbulence. These two regions are separated by a sharp and highly
contorted interface known as turbulent non-turbulent interface (TNTI). The inter-
actions through the interface are observable in a variety of flow configurations both
in nature and engineering applications, e.g. jets, wakes, and mixing layers shown
in figure 2.7 just to mention a few.

In the seminal study of entrainment in a turbulent jet by Westerweel et al. [2005],
it was shown that a finite jump in the tangential velocity existed at the inter-
face between the turbulent and non-turbulent regions. This jump contributed to
propagation of the interface toward the non-turbulent region by inducing small-
scale eddy motions in the irrational fluid (viscous nibbling). This resulted in the
conclusion that the non-viscous process of large-scale engulfment is not a dom-
inant phenomenon in local entrainment physics. Later, Holzner and Lüthi [2011]
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(a) (b)

Figure 2.8: Schematic of the evolution of TNTI between time step t0 in (a) and t0 + dt
in (b). The movement of the interface (TNTI) is the superposition of the entrainment and
local fluid velocity at the interface (advection). Source: Mistry et al. [2019].

proved the existence of a laminar superlayer at the interface, which was initially
proposed by Corrsin and Kistler [1955], with a thickness and local velocity com-
parable to the Kolmogorov scales that controls the entrainment process. They
showed that the small local velocity of the laminar superlayer is compensated by
the large contorted area of the interface which keeps the overall rate of entrain-
ment independent of the flow viscosity, but governed by the non-viscous motions
of large-scale eddies.

The entrainment velocity is defined as the relative velocity normal to the TNTI,
V = vnn = us � uI where us is the velocity of the interface and uI is the local
velocity of the fluid at the interface. This is shown in figure 2.8. The unit vector
n = —w2/|—w2| denotes the normal vector at TNTI , an iso-surface of enstrophy,
that points toward the turbulent region. Here, vn  0 means entrainment of the
irrotational non-turbulent fluid into the turbulent region, while vn > 0 indicates
that the fluid elements in the turbulent region are detrained out to the non-turbulent
region across TNTI [Mistry et al., 2019].

Given that TNTI is an iso-surface of enstrophy, i.e. Dsw2/Dst = 0, Holzner and
Lüthi [2011] derived equations 2.33 and 2.34 for evolution of the TNTI. By com-
bining equation 2.34 and the enstrophy transport equation 2.7, they derived equa-
tion 2.35 for the entrainment velocity across TNTI as:

Dsw2

Dst
=

∂w2

∂ t
+us, j

∂w2

∂x j
=

∂w2

∂ t
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= 0 (2.33)
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Even though this equation was initially derived to calculate the entrainment velo-
city across TNTI, it can also be applied on any iso-surface of enstrophy within the
flow field (Dsw2/Dst = 0). The obtained velocity can be physically interpreted
as the relative flow velocity, i.e. the flow velocity observed by the observer mov-
ing with the iso-surface. Equation 2.35 will be used in Article 1 to evaluate the
entrainment/ detrainment behavior at the boundary of the vortices.

2.8 Some stochastic methods to study turbulence
2.8.1 Cross-correlation and auto-correlation of time signals

The cross-correlation of two time signals is a measure of the similarity between
them when one signal is shifted with respect to the other one. The mathematical
formulation is presented in equation 2.36. In this equation, rFG is the normalized
cross-correlation of the signals F(t) = hFi+ f (t) and G(t) = hGi+g(t) as a func-
tion of the signal shift, s. When the cross-correlation is performed with the same
signal, it is called auto-correlation in equation 2.37. Based on these normalized
definitions, �1  rFG(s) 1 and rFF(0) = 1.

rFG(s) =
h f (t)g(t + s)ip
h f 2(t)ihg2(t)i

(2.36)

rFF(s) =
h f (t) f (t + s)i

h f 2(t)i (2.37)

2.8.2 Power spectral density (PSD)

In certain problems, it is useful to present a time signal in frequency domain, i.e.
Fourier space. This becomes specially relevant when harmonic motions are in-
volved in the time signal. Power spectral density (PSD) expresses the energy dis-
tribution of a time signal in Fourier space. Therefore, PSD analysis facilitates the
assessment of the frequencies that are connected to the energetic harmonic mo-
tions and their significance based on the amplitudes. PSD of a velocity fluctuation
signal, yuu, is defined as the Fourier transform of the auto-correlation of that signal
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(non-normalized) in the time domain in equation 2.38. Using Parseval theorem and
given that PSD is an even function of frequency f , equation 2.39 is derived. This
equation indicates that the kinetic energy distribution of the velocity fluctuation
signal in time, u2(t), is represented by PSD in frequency domain, yuu( f ).

yuu( f ) =
Z •

�•
ruu(s)hu2(t)i e�i2p f s ds (2.38)

hu2(t)i= 2
Z •

0
yuu( f ) d f (2.39)

2.8.3 Proper orthogonal decomposition (POD)

As mentioned earlier, two-point velocity correlations are useful to study turbu-
lence. They can be interpreted as an indication of coherent motions or structures
within the flow. Proper orthogonal decomposition (POD) is a model order re-
duction technique that uses two-point velocity correlations to decompose the flow
field into characteristic flow motions in space, i.e. modes Fn(x j). Each of these
modes are modulated by a time coefficient, an(t) in equation 2.40. These char-
acteristic motions are orthonormal spatial functions, equation 2.41, resulting from
eigenvalue analysis. Using the definition of POD in equation 2.40 combined with
the orthonormal property of the deterministic spatial functions in equation 2.41,
equation 2.42 is derived for the coefficients. The modes are ordered based on the
average kinetic energy in a descending order, i.e. mode n = 1 is the most energetic.
The kinetic energy of each mode in time can be simply calculated as a2

n(t) because
the modes (spatial functions) are orthonormal (equation 2.41). Therefore, the kin-
etic energy of the flow is equal to the summation of the average kinetic energy of
the modes in equation 2.43. In the present work, economy-size singular value de-
composition (SVD) is used to calculate the POD modes and their time coefficients
from the velocity fluctuations. We refer the interested reader to Brunton and Kutz
[2022] for a detailed discussion about POD and the calculation methods.

ui(x j, t) =
•

Â
n=1

an(t) Fn(x j) (2.40)

ZZZ

V
Fn(x j)Fm(x j) dV =

⇢
0 for n 6= m
1 for n = m (2.41)

an(t) =
ZZZ

V
ui(x j, t) Fn(x j) dV (2.42)
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Chapter 3

Apparatus and experiments

In this chapter, first the facility that was used to conduct the experiments is de-
scribed. Next, the principles of the experimental measurement technique used in
this study, particle image velocimetry (PIV), are briefly explained. We refer the
interested readers to Adrian and Westerweel [2011], Raffel et al. [2018], and LaV-
ision GmbH [2020] for the detailed discussions about various aspects of PIV. The
last section of the chapter provides some details of the performed experiments.

3.1 The von Kármán swirling flow facility
The rig that was used for the experimental measurements is a large size von Kármán
flow facility which is made of a dodecagonal Plexiglass tank with 2 m height and
2 m across filled with water. A schematic of the facility with the main dimensions
is presented in figure 3.1. The top and bottom of the facility are fitted with two
identical impellers with a diameter D = 1.6 m. The impellers have 8 straight vanes
and are spaced H = 1.25 m away from each other in the vertical direction. This
gives an aspect ratio of D/H = 1.6/1.25 = 1.28 for the facility. The impellers
are driven by two stepper motors which transfer the rotational motion to the im-
pellers through pulleys and gearboxes. The impellers can be driven and controlled
independently at a speed within the range of 0.1 to 5 RPM. The main reason be-
hind the physically large size of the facility is to reach high Reynolds numbers,
Re = R2W/n , at relatively low flow velocities. This makes the Kolmogorov scales
large and slow, since h ⇠ L0 Re�3/4 in equation 2.20. As a result, it will be pos-
sible to perform state of the art volumetric measurements of turbulent structures
at the dissipation scale as exemplified in Lawson and Dawson [2014, 2015] and
Worth [2010]; Worth and Nickels [2011].

33
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Figure 3.1: Schematic of the von Kármán swirling flow facility used in the present study.

In normal operation the two impellers counter rotate at a fixed angular velocity and
a stationary von Kármán swirling flow is generated. The counter rotation creates
rotational shear flow in cylindrical coordinates (toroidal shearing motion) acting
in opposite directions, at the equatorial horizontal plane passing through the cen-
ter point of the axis of rotation. The circumferential velocity magnitude, from the
toroidal shearing, decreases when moving away from the impeller (forcing bound-
ary), until it reaches almost zero in the horizontal equatorial plane where the two
shear layers meet as shown in figure 3.2 by green. This rotational shear flow drives
a centrifugal pumping force that leads to a secondary circulatory flow pattern in
the vertical plane passing through the axis of rotation (poloidal circulating motion
shown in figure 3.2 by red), where the flow is pulled away from the high pressure/
low velocity region close to the axis toward the low pressure/ high velocity region
near the tip of the impeller. The mean flow pattern composed of the toroidal and
poloidal motions are sketched in figure 3.2. In the region close to the geometrical
center of the facility, the mean flow approaches zero and is dominated by velo-
city fluctuations. The turbulence generated in this region is homogeneous but not
isotropic as the flow preserves some axisymmetric features from the large-scale
forcing [Lawson and Dawson, 2014, 2015]. The facility was previously used in
a number of studies to investigate the dynamics and kinematics of turbulence at
the dissipation scale [Cardesa et al., 2013; Hunt et al., 2013; Lawson and Dawson,
2014, 2015; Worth, 2010; Worth and Nickels, 2011].
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(a) (b)

Figure 3.2: Mean flow pattern of von Kármán swirling flow as a superposition of toroidal
(green vectors) and poloidal (red streamlines) motions.

3.2 Particle Image Velocimetry (PIV)
Particle image velocimetry (PIV) is a non-intrusive optical measurement technique
that has become a standard tool in experimental fluid mechanics to measure velo-
city fields and indirectly pressure field. In the recent years, due to the improvement
and affordability of digital lasers and cameras, along with robust image processing
algorithms, one can measure the velocity field in a plane or a volume of the flow.

The main idea of the technique is straightforward. A flow field is seeded with
small neutrally buoyant particles that have a small Stokes number and can follow
the flow field. A light source, usually a laser or LEDs, is focused into a sheet or
volume of the flow. When the seeding particles scatter light, they make a clear
contrast with the background fluid as exemplified in the images in figure 3.3.

For seeding particles with a diameter similar or larger than the wavelength of the
incoming light source, this will be an elastic scattered light referred to as Mie scat-
tering. The intensity of the scattered light in Mie scattering is proportional to the
square diameter of the seeded particle. After taking consecutive images from the
seeded flow, the velocity field can be calculated either by adopting a Lagrangian
framework in which we track the particles over time, known as particle tracking
velocimetry (PTV), or we can adopt an Eulerian framework, known as PIV. In
PIV, a common technique is implementing cross-correlation between the consec-
utive images as shown in figures 3.4 and 3.5. The particle images are divided into
smaller sub-areas known as interrogation windows. Each interrogation window in
the first frame at time t is cross-correlated within the neighboring region in the
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(a) (b)

Figure 3.3: Consecutive images of a flow seeded with particles scattering light. The
particles move approximately 5 pixels in the horizontal direction between the two images.
Source: LaVision GmbH [2017].

second frame at time t +dt. This will give a cross-correlation map for each inter-
rogation window (figure 3.5). The position of the peak in the cross-correlation map
indicates the distance that the particles in each interrogation window have moved
between the times t and t +dt. The displacement distance is used to calculate the
most probable velocity vector that represents the average velocity of the particle
within each interrogation window. This procedure provides an Eulerian velocity
field in the measurement domain at time t. More details and the related mathemat-
ical formulations can be found in Adrian and Westerweel [2011] and Raffel et al.
[2018].

The PIV technique measures the velocity of the tracer particles as a surrogate for
velocity field, making it important to ensure that the tracer particles follow the flow
field as precisely as possible. To assess how well particles track the flow, a non-
dimensional number known as the Stokes number is used and defined in equation
3.1 where t f is the characteristic time-scale of the flow field and tp is the tracer
particle response time defined in equation 3.2. In this equation, L f and Uf are the
characteristic length and velocity of the flow, rp is the density of particle, r f is the
flow density, µ f is the dynamic viscosity of the flow, and dp is the diameter of the
particle.

Stk =
tp

t f
< 0.1 (3.1)

tp =
(rp �r f )d2

p

18µ f
, t f =

L f

Uf
) Stk =

(rp �r f )d2
pUf

18µ f L f
(3.2)

Equation 3.1 shows that the Stokes number needs to be near zero for the particle to
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Figure 3.4: Example of the set-up and measurement procedure for 2C-2D PIV in a wind
tunnel. Source: Raffel et al. [2018].

Figure 3.5: PIV cross correlation between the two frames of a double frame image to find
the peak and consequently, the local velocity vector. Source: LaVision GmbH [2020].
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follow the flow field most accurately. This requires the diameter of the particle to
be as small as possible. On the other hand with reference to the earlier discussion
about Mie scattering, very small particles are not practical in PIV as the intensity
of the light scattered from the particle is proportionate to the square of its diameter
(d2

p) and very small particles will give poor signal to noise ratio. Thus, this works
as an opposing requirement for the diameter of the particle and a trade off needs
to be made. As a rule of thumb, Stk < 0.1 is considered sufficient [Tropea et al.,
2007].

Pulsed lasers are commonly used in PIV measurements as the light source, be-
cause they act as a flash and one can collimate their beams. In low speed PIV
(low acquisition frequency), high power double pulse lasers are used. Use of low
speed PIV is common in turbulence research because statistics obtained over many
large eddy turnover times are desirable for the convergence of turbulence statistics.
These lasers provide two consecutive high energy pulses delayed by a very short
time gap, dt. These pulses go through an arrangement of optics to make a thin laser
sheet illuminating the particles field. The time delay between the two laser pulses
is adjusted based on the flow velocity. On the one hand, the time delay should not
be too large as the particles in the first image might be gone out of the field of
view before the second image is taken, i.e. no or weak cross-correlation between
the images will be obtained. On the other hand, very short time delay between the
two images results in the particles almost not moving. This introduces a signific-
ant uncertainty in evaluation of the velocity fields. These maximum and minimum
limits for the displacement of particles limits the dynamic range in PIV. A trade
off needs to be made for the time delay to reach acceptable cross-correlation and
uncertainty values.

Similar to most measurements techniques, a calibration process is necessary. The
camera captures the position of the tracer particle on the digital sensor indicated by
the pixel coordinate. Thus, it is necessary to establish a mapping function between
pixel space and physical/real space of measurement. This is achieved by placing
a calibration target with a known grid pattern in the field of view for the measure-
ment, aligned with the light sheet. By taking images from the calibration target,
a grid pattern is obtained in pixel space. The coordinates of the same grid pattern
are known in both the real and pixel spaces and a mapping function can be fitted.
Different options can be used as the calibration mapping function but the most
common ones in PIV are the pinhole model and polynomials. The pinhole model
is the simplest camera model that uses basic trigonometrical relations as the map-
ping function. However, the polynomial fit uses third or higher order polynomials
to model the perspective and optical image distortions [LaVision GmbH, 2020].
Since the polynomial fit provides higher accuracy, it was used as the preferred
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(a) (b)

Figure 3.6: 2D versus stereoscopic PIV; (a) 2D PIV only captures the projection of the
velocity vector on the light sheet, which introduces significant perspective error when
the flow is not parallel to the light sheet. However, stereoscopic PIV avoids perspective
error by benefiting from two independent views and triangulation to measure all the three
components of velocity. Source: LaVision GmbH [2020]. (b) Perspective error when an
out of plane motion is captured by a single camera. Source: Prasad [2000].

method of calibration in the thesis.

Two-dimensional PIV can only capture the projection of the velocity vectors into
the plane of the light sheet as shown in figure 3.6(a). If the flow is fully three
dimensional, significant projection errors can be introduced as the particles move
through the laser sheet. The resulting perspective error is shown in figure 3.6(b)
and formulated in equation 3.3 [Prasad, 2000]. The error intensifies by the ratio
between the out-of-plane to in-plane motion (Dz/Dx and Dz/Dy) along with the
projection of the off-axis angle (qx and qy). Therefore, to minimize the projection
error in the 2D PIV measurement of a fully three dimensional flow, it is recom-
mended to ensure a large viewing distance compared to the dimension of the field
of view, i.e. using a long focal lens on the camera [Raffel et al., 2018].

PE = (PEx,PEy) =
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�1,
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◆
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An effective way to address this problem is to use an extra camera. The two cam-
eras look at the light sheet from different angles, known as stereoscopic PIV, en-
ables the projection of the velocity vectors to be obtained in two planes as shown
in figure 3.6(a). These projections and the angles of the cameras to the light sheet
are then used to work out all three components of velocity through triangulation
to obtain a 2D-3C velocity field. Since stereoscopic PIV is based on three dimen-
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Figure 3.7: A two-level calibration target used in stereoscopic PIV. Here, the distance
between the levels is 2 mm and the dots are located on a 10 mm grid. Source: Raffel et al.
[2018].

sional triangulation, the calibration needs to be performed on at least two separate
levels in space. This is usually achieved by using a two-level grid pattern as shown
in figure 3.7.

Another advantage of using stereoscopic PIV is self-calibration. Self-calibration
process maps the spatial position of the tracer particles in the images taken at the
same time from the two cameras. A particle is expected to be reconstructed at the
exact same position in space from the two cameras. However, error sources such as
misalignment between the light sheet and the calibration target, that the mapping
function is initially based on, lead to disparity. The self-calibration process uses
the disparity to modify the mapping function and minimizes the calibration errors
resulting form different sources to almost zero. These are shown in figures 3.8 and
3.9.

Like any other measurement technique, PIV is prone to errors and uncertainties.
The uncertainty can result among others from particle image size, velocity gradi-
ents, interrogation window size, light intensity, and delay time in double-frame
images. In order to minimize the uncertainty in the measurements of this study:
(i) it was ensured to have particles moved in double-frame images at least 1/4
of the interrogation window size (32/4=8 pixels), (ii) the size of the particles in
the images were approximately 2-3 pixels to avoid peak locking, (iii) the uncer-
tainty maps calculated based on the method proposed by Wieneke [2015] in DaVis
software were checked to ensure the minimum level of uncertainty in the meas-
urements [LaVision GmbH, 2020], (iv) the peaks in the spatial correlation maps
at different spots in the images were checked to ensure having a reasonable signal
to noise ratio, and (v) self-calibration was used to minimize the uncertainty from
calibration errors.
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Figure 3.8: Self-calibration uses the disparity of the particle positions from the different
camera images to rectify the mapping function. The goal is to minimize the calibration
errors through minimizing the disparity. Here, self-calibration is used to rectify the mis-
alignment between the light sheet and the calibration target. Source: LaVision GmbH
[2020].

Figure 3.9: An example of the disparity field between the reconstructed positions of the
particles from two cameras, because of a slight misalignment between the calibration target
and the light sheet. Performing self-calibration minimizes the disparity. Source: Raffel
et al. [2018].
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3.3 Experiments
Three different experiments were performed in the facility: (i) characterization of
the mean flow and its fluctuations, (ii) decay experiments, and (iii) forcing modu-
lations experiments. The next sub-sections describe these measurements.

3.3.1 Mean flow characterization

The first experiment aimed at characterizing the mean flow in the facility both in
the center and regions close to the boundaries (wall and impellers). Due to the
large size of the facility and its dodecagonal geometry, simultaneous measurement
of the field of view this large was not feasible. A composite/ stitched image of
the measured mean flow inside the facility is shown in figure 3.10(a). The mean
flow was produced by stitching the separate mean flows from smaller fields of
view, 50cm⇥50cm, shown in figure 3.10(b). The mean flow clearly shows the
toroidal and poloidal motions. The span of the measurement covered more than
a quarter of the vertical plane passing through the center of the tank, i.e. 1.1R in
the axial and 1.2R in the radial direction. The stationary flow was measured at
1, 2, and 3 RPM corresponding to Re = R2W/n = 6⇥ 104, 1.2⇥ 105, and 1.8⇥
105. Stereoscopic PIV with a forward-forward scattering configuration was used
to perform the measurements.

To quantify the uncertainty in this measurement, the uncertainty of mean is eval-
uated [Benedict and Gould, 1996]. Figure 3.11 illustrates the histogram of uncer-
tainty of axial mean velocity over the spatial points in a field of view of 50cm⇥
50cm located at the center of the tank. The uncertainty at each point is normal-
ized by the impeller tip velocity DV/RW. In total, N = 3910 snapshots with
407⇥408 = 166056 spatial points were used to calculate the histogram. The his-
togram has values whithin the range 3⇥ 10�3 < DV/RW < 3.4⇥ 10�3 where the
peak is located at DV/RW = 3.14⇥10�3.

3.3.2 Decay experiments

Figure 3.12 illustrates the setup that was used to study freely decaying turbu-
lence. In this study, after reaching the stationary flow condition, the counter-
rotating impellers were stopped and the velocity field measurement was started
immediately. A field of view (FoV) of 18cm⇥18cm was located at the geo-
metrical center of the tank where the flow is homogeneous and has a negligible
mean flow. The measurement continued until the flow came to rest. The meas-
urement was repeated to ensure a reasonable convergence of turbulence statistics.
The stationary flows of 2, 3, and 4 RPM corresponding to Reynolds numbers of
Re = R2W/n = 1.27⇥ 105,1.91⇥ 105, and 2.54⇥ 105 were used as initial con-
ditions. These cases are referred to as 1, 2, and 3 in table 3.1. They correspond



3.3. Experiments 43

(a) (b)

Figure 3.10: (a) Mean velocity profile of the stationary flow at Re = 1.21⇥105 measured
in the facility using stereoscopic PIV . The filled color contour represents the out of plane
(circumferential) velocity and the stream lines represent the radial and axial velocities.
The spatial coordinates are normalized by the impeller radius R and the velocities are
normalized by the impeller tip velocity RW. (b) The mean velocity profile was generated
by stitching the mean flows from four fields of view. The field of views are shown by
colored squares and each covered 50cm⇥ 50cm inside the tank. The measurement was
extended spatially in the radial and axial directions to cover more than the impeller radius
in both directions.
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Figure 3.11: Histogram of uncertainty of axial mean velocity over the spatial points in a
field of view of 50cm⇥ 50cm located at the center of the tank. The uncertainty at each
point is normalized by the impeller tip velocity DV/RW.
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(a) (b)

Figure 3.12: The von Kármán swirling flow facility along with the stereoscopic PIV setup
used in the study of turbulence decay; (a) image of the setup in the laboratory and (b)
sketch of the measurement setup. The cameras and the laser sheet were arranged in a
forward-backward scattering configuration.

to measurement duration of 10, 15, and 20 impeller revolutions, respectively (ap-
proximately 5 minutes). Each of the cases was repeated 30 times. In addition,
another case of 4 RPM was measured 168 times, but with a shorter duration of
8.4 impeller revolutions (approximately 2.1 minutes). This case is referred to as
4 in table 3.1. In total, 3⇥ 30+ 168 = 258 runs of decay were measured. A spe-
cial requirement for this measurement was adjusting the PIV double-frame time
gap dt, as through the measurements the flow velocity decayed and the time gap
needed to be increased continuously. We used a linear cumulative increase of dt,
dtn+1 = dtn +d t, where d t is a constant and the acquisition order is shown by the
superscript n.
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3.3.3 Forcing modulations experiments

Figure 3.13 depicts the measurement setup employed in the study of large-scale
harmonic motions with and without forcing modulations. For these measurements,
two sets of cameras were used (four cameras in total). One set of cameras were
focused on a large field of view, while the other set were focused on a small field
of view to perform simultaneous measurements with different spatial resolutions.
In addition, a mirror was attached at the end side of the tank where the light sheet
would leave the facility. Reflecting back the light sheet into the measurement field
using this mirror helped increasing the intensity of the light sheet and improved
the signal to noise ratio. In total, 13 cases were investigated consisting of four
groups: sub-critical Reynolds number, supercritical Reynolds number (reference),
harmonic modulations, and random modulations. Table 3.2 provides an overview
of the measurements. Here, sub-critical and supercritical Reynolds numbers refer
to Reynolds numbers lower and higher than the critical Reynolds number range 5⇥
104 < ReC < 105 proposed by Cortet et al. [2010] where the symmetry-breaking
behavior in a von Kármán swirling flow is most significant. In the harmonic and
random modulation cases, the duration of the measurements covered at least 1000
revolutions of the impellers. In the sub-critical Reynolds number case, the two
impellers counter-rotated at 0.2 RPM ( fL = 0.2/60 = 3.3⇥ 10�3 Hz and WL =
2p fL). In the reference case (supercritical Reynolds number), the two impellers
counter-rotated at a constant speed of 2 RPM ( f0 = 2/60 = 3.3⇥ 10�2 Hz and
W0 = 2p f0). In the harmonic modulation cases, the rotational speed of the top
and bottom impellers were set to equations 3.4 and 3.5, respectively. In these
equations, the harmonic modulations are characterized by Am as the amplitude,
fm as the frequency, and Dfm as the phase shift between impellers. These three
were varied to generate different harmonic forcing cases. The base case was set to
(Am, fm/ f0,Dfm) = (0.25,0.1,p). The remaining harmonic cases were generated
from the base case by changing a single variable: Am = (0.15,0.25,0.35), fm/ f0 =
(0.05,0.10,0.15), and Dfm = (p/4,p/2,3p/4,p).

In the random modulation cases, equation 3.6 (Langevin equation, see Pope [2000])
was used to determine the impeller velocity. In this equation, the parameters were
set to s = 0.255 (equal to the normalized rms of velocity fluctuations in the ref-
erence case), T1 = 300s (corresponding to 1/ fm of the base harmonic case), and
T2 = 1s (which sets the rms value of the angular accelerations to ' s/

p
T1T2).

N(0,1) represents a random number generator function that followed the standard
normal distribution with an average of 0 and a standard deviation of 1. Dt was the
time step of modulation. Two random modulations were investigated: synchron-
ized random where Wt(t) =�Wb(t) = Wr(t) and asynchronized random where the
random generator (N(0,1)) in equation 3.6 generated independent values for the
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top and bottom impellers, i.e. Wt(t) 6=�Wb(t).

Wt(t) = W0 +W0Am sin(2p fmt +Dfm) (3.4)

Wb(t) =�W0 +W0Am sin(2p fmt) (3.5)

Wr(t) = W0 +(Wr(t �Dt)�W0)(1�
Dt
T1

)+
sz (t)Dtp

T1T2

q
1� e�2 Dt

T2

z (t) = z (t �Dt)e�
Dt
T2 +N(0,1)

(3.6)
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(a) (b)

(c)

Figure 3.13: The von Kármán swirling flow facility along with the stereoscopic PIV setup
used in the study of large-scale harmonic motions; (a) image of the setup in the laboratory,
(b) two sets of cameras, four in total, were used to perform simultaneous measurements
with different spatial resolutions, and (c) sketch of the measurement setup. The cameras
and the laser sheet were arranged in a forward-forward scattering configuration.
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Chapter 4

Summary of the research articles

4.1 Brief concluding remarks
In this thesis, dynamics of turbulence were studied both at the small and large
scales in a von Kármán swirling flow.

In the study of the small-scales in Article 1, an experimental data set of volumetric
scanning PIV at the center of a von Kármán swirling flow [Lawson and Dawson,
2014, 2015] along with a DNS data set of homogeneous isotropic turbulence [Li
et al., 2008] were analyzed. This was the first successful implementation of a
recent objective definition of vortex structures proposed by Haller et al. [2016] that
resulted in 3D vortices at the dissipation scale of turbulence in experimental data.
Our analysis showed that even though small-scale vortex structures are not active
in overall dynamics of turbulence due to the lack of self-amplification [Jiménez
et al., 1993; Tsinober, 2009], they are important in another aspect, i.e. interaction
with the surrounding background fluid through exchange of mass, momentum, and
enstrophy.

Next, in Article 2 our measurements of freely decaying turbulence in a von Kármán
swirling flow at high Reynolds number showed that TKE decayed faster than the
well known theoretical predictions of Loitsiansky [1939] and Saffman [1967].
However, after decomposing TKE into the contributions from different velocity
components, it was observed that the velocity field followed the Loitsyansky decay
in the axial direction of the flow whereas other components, radial and circumfer-
ential, were in the saturation/confinement regime.

Finally, in Article 3 measurements were conducted to investigate a large-scale en-
ergetic and slowly rotating structure in von Kármán flows previously reported by
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Baj et al. [2019]. The results showed that the structure only appeares below the
critical Reynolds number suggested by Cortet et al. [2010]. In addition, the struc-
ture emerges at a Reynolds number higher than the critical value by applying a
harmonic forcing modulation that imposes a harmonic phase shift between the two
impellers. This structure is expected to affect the mixing property of the flow at
the large-scale along with a fingerprint through various scales of motion.

4.2 Summary of articles
The rest of this chapter summarizes the three research articles that are attached in
their full lengths to the end of this thesis.

Article 1:
Entrainment, detrainment and enstrophy transport by small-scale vortex struc-
tures
Farid Aligolzadeh, Markus Holzner, and James R. Dawson
Published in Journal of Fluid Mechanics

In Article 1, we investigated features of small-scale vortices in both experimental
and DNS data to show consistency between the results. In the experimental data
set, three dimensional three components (3D-3C) velocity field was produced from
scanning PIV measurements at the center of a von Kármán swirling flow facility
with a spatial resolution of 1h where Rl = 179 [Lawson and Dawson, 2014, 2015].
The DNS data set was forced isotropic turbulence of Rl = 418 with a spatial res-
olution of 2.2h , from Johns Hopkins turbulence database [Li et al., 2008].

To detect the vortex structures, we implemented the definition of Objective Eu-
lerian Coherent Structures (OECSs) proposed by Haller et al. [2016]. The main
advantages of this method are (i) avoiding thresholding (arbitrariness in defining
the vortex boundary) and (ii) being observer independent. The analysis was per-
formed on 1003 available volumetric snapshots of the experimental data set where
12500 vortices were detected in total, along with 9274 vortices identified in 50
snapshots of the DNS data set. The average radius of the vortices was equal to
5.1h occupying 1.4% of the volume of the flow, in agreement with the available
studies [da Silva et al., 2011; Ganapathisubramani et al., 2008; Ghira et al., 2022;
Jiménez and Wray, 1998; Jiménez et al., 1993].

To gain an insight into the distinctions between the vortices and the flow field as a
whole, we provided statistics conditioned on the vortices versus the whole volume
of the flow. The p.d.f.s and joint p.d.f. of enstrophy and dissipation showed that
the vortices were intense realizations of enstrophy covered by the regions of high
straining (dissipation). In addition, enstrophy and dissipation scale together inside
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the vortices. The p.d.f.s of the alignment between the vorticity vector and eigen-
vectors of the rate of strain tensor were calculated, as this alignment is important
in the phenomena of vortex stretching and compression. The results indicated that
the vorticity vector had a strong preference to be aligned with the intermediate ei-
genvector while orienting normal to the extensive and compressive eigenvectors.
This was different from the volume of the flow where the vorticity vector showed
a tendency to orient normal to the compressive eigenvector, align with the inter-
mediate eigenvector, and neutral to the extensive eigenvector.

To investigate the interaction between the detected vortex structures and the sur-
rounding fluid (background flow), all the terms in the enstrophy transport and
entrainment velocity equations were calculated on the radial and axial directions
of the vortices. The p.d.f. of the radial entrainment/ detrainment velocity at the
boundary of the vortices was slightly skewed in favor of entrainment. Overall, the
entrainment p.d.f. at the boundary was very similar to TNTI in free shear flows
such as jets and mixing layers. Contour of the average entrainment velocity in the
radial and axial directions showed that the entrainment velocity was maximum at
the center of the vortex, while decaying when marching out in the radial and axial
directions. From this picture and the flow being statistically stationary, i.e. vortices
do not grow in size over time, it was conjectured that the net average entrainment
in the radial direction at the boundary was balanced by a net average detrainment
at the two axial ends of the vortices.

It was shown that the entrainment was highly correlated with the inviscid phe-
nomenon of vortex stretching (enstrophy production), whereas the detrainment
was highly correlated with the viscous phenomena of enstrophy diffusion and dis-
sipation. This behavior was in contrast with TNTI where entrainment and de-
trainment are only controlled by the viscous phenomena due to the presence of
viscous/laminar superlayer. However, our result resembled turbulent-turbulent in-
terface (TTI) where vortex stretching plays a significant role in local entrainment.

A comparison was made between the detected vortices and Burgers’ vortex model.
The p.d.f.s of the radii from the structures and Burgers’ vortices showed a good
agreement, but it was found that Burgers’ vortex model overestimated the radial
enstrophy decay compared to detected structures. The average enstrophy transport
equation conditioned on the radial direction of the vortices and Burgers’ vortex
model showed a consistent competition between the vortex stretching and the vis-
cous diffusion and dissipation. However, Burgers’ vortex model was not able to
predict the enstrophy transport/ entrainment behavior observed in the axial direc-
tion of the detected vortex structures.
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Article 2:
Experiments of turbulent decay in a von Kármán swirling flow at high Reyn-
olds number
Farid Aligolzadeh, Pawel Baj, and James R. Dawson
Under consideration for publication in Journal of Fluid Mechanics

In Article 2, we reported the results of our measurements at the center of a high
Reynolds number von Kármán swirling flow after the impellers were stopped. This
study belongs to a category in turbulence referred to as freely decaying turbulence
that has been extensively studied both numerically in HIT boxes and experiment-
ally, mostly in grid turbulence. However to the best knowledge of the authors,
freely decaying turbulence has not been studied experimentally or numerically in
a von Kármán swirling flow, even though this flow has served a canonical role in
studies of turbulence over the past few decades. As discussed in §2.6, study of the
decay provides useful information about the dynamics of the large-scales in the
stationary turbulence, because the stationary flow is the initial condition for the
decay after removing the energy injection into the system.

In this study, we investigated three Reynolds numbers, Re = R2W/n = 1.27⇥105,
1.91⇥ 105, and 2.54⇥ 105. After stopping the impellers, we monitored the evol-
ution of the velocity field in time by using stereoscopic PIV. The measurement
lasted 10-20 impeller rotation periods, depending on the case. We repeated the
identical measurements many times to ensure a reasonable convergence of turbu-
lence statistics. In total, 258 runs of turbulent decay were measured.

The results showed that the decay of TKE consisted of two parts. An initial trans-
ition period where TKE remained almost constant over 2.58 impeller rotation peri-
ods, as a result of the inertia of the stationary flow, followed by a classical power-
law decay with an exponent of n=�1.62, i.e. k(t)⇠ t�1.62. The decay process was
further investigated by evaluating the contributions to TKE from different velocity
components. The velocity components in the radial and circumferential directions
showed a decay exponent of n = �1.99, wheras the exponent was n = �1.38 in
the axial direction. These exponents suggested the saturation/confinement effect
in the radial and circumferential directions and the Loitsyansky decay in the axial
direction. This was further explored by evaluating the evolution of longitudinal
integral length-scales in the axial and radial direction, which showed a power-law
increase in the axial direction with an exponent close to 2/7 (Loitsyansky pre-
diction), whereas the length-scale did not grow in the radial direction (saturation/
confinement). Overall, this study found the Loitsyansky decay pattern in the axial
direction of the flow, but the saturation regimes in other directions.



4.2. Summary of articles 55

Article 3:
Experimental investigation of large-scale harmonic motions in a von Kármán
swirling flow
Farid Aligolzadeh, Pawel Baj, and James R. Dawson
Under consideration for publication in Journal of Fluid Mechanics

In Article 3, the large-scales of a high Reynolds number von Kármán swirling flow
were studied. Even though most studies in von Kármán swirling flows are focused
on the structures and dynamics of turbulence at the dissipation scales, close to the
stagnation point of the flow, some interesting phenomena have been observed at
the large-scales, e.g. symmetry breaking behavior [de la Torre and Burguete, 2007]
and presence of an energetic and large structure that rotates slowly around the flow
axis [Baj et al., 2019]. This study was motivated by the findings of Baj et al. [2019]
about the rotating structure observed at Re = 3⇥104. The aim of this study was to
investigate the effects of the Reynolds number below and beyond the critical range,
i.e. 5⇥104 <Rec < 105 suggested by Cortet et al. [2010], and forcing modulations
on the appearance or suppression of the instability. Experimental measurements
were performed using stereoscopic PIV in a 50cm ⇥ 50cm field of view at the
center of a large von Kármán flow facility.

In the below critical Reynolds number case without forcing modulation Re =
1.2⇥104, we observed an oval-shape, large energetic structure similar to the struc-
ture reported in Baj et al. [2019]. However, our detected structure showed a dif-
ferent oscillation frequency f/ f0 ⇡ 2, f0 is the impeller frequency, whereas it was
reported to be f/ f0 ⇡ 0.1 in Baj et al. [2019]. In addition, our structure showed
oscillations in all directions of the flow, i.e. radial, circumferential, and axial,
whereas Baj et al. [2019] reported the oscillations only in the radial and circumfer-
ential directions. Our conjecture was that the observed discrepancies were because
of the geometrical differences between the two facilities in which the experiments
were conducted. This is aligned with the large-scales of turbulence being sensitive
to the features of the apparatus, boundary conditions, intrinsic instabilities, etc.

Next, the Reynolds number was increased beyond the critical range to Re = 1.2⇥
105, labeled as the reference case. However, the large-scale harmonic structure
did not appear in this case. We applied modulations to the impellers in the ref-
erence case to identify whether the instability emerges as a result. We investig-
ated a broad range of parameters space (Am, fm,Dfm) in harmonic forcing mod-
ulations in forms of Wt(t) = W0(1+ Am sin(2p fmt +Dfm)) for the top impeller
and Wb(t) = W0(�1+Am sin(2p fmt)) for the bottom impeller, in addition to two
random modulations (Langevin forcing with and without phase shift between the
impellers). In the harmonic cases, a parameter space of Am = (0.15,0.25,0.35),
fm/ f0 = (0.05,0.1,0.15), and Dfm = (p/4,p/2,3p/4,p) was assessed.
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The results showed that only when a harmonic phase shift (Dfm 6= p) existed
between the two impellers, the harmonic motion in the flow was activated. When
Dfm = 3p/4, a large-scale oscillation in the axial direction of the flow was ob-
served at the modulation frequency fm/ f0 = 0.1. On the other hand, the oscil-
lation appeared in both the axial and circumferential directions of the flow when
Dfm = p/2 and p/4. Further analysis showed that this large-scale structure was
an energetic oval-shape flow pattern that accounted for approximately 40% of the
kinetic energy of the flow oscillating along the axial and circumferential directions,
locked to the modulation frequency. Changing the other two parameters, Am and
fm, did not activate the harmonic motion when there was no harmonic phase shift
between the impellers. In addition, the random modulation forcing both with and
without phase shift did not activate a harmonic flow pattern. In the harmonic mod-
ulation cases with a significant phase shift between the impellers, Dfm = p/2 and
p/4, the oscillation in the axial direction was more pronounced than the circum-
ferential direction. Investigation of the cross-correlations between the forcing and
velocity field showed a phase delay of approximately 0.2p between the oscillations
in the axial and circumferential directions.
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The interaction of small-scale vortical structures with the surrounding fluid are
studied using a fully resolved three-dimensional experimental data set of homogeneous
turbulence measured at the centre of a von Kármán mixing flow facility and a direct
numerical simulation (DNS) data set of forced isotropic turbulence. To identify the
small-scale vortices and their boundaries, an objective observer-independent definition
was implemented to avoid arbitrariness and is the first implementation applied to
experimental measurements of small-scale turbulence. Volume-averaged and conditional
statistics are presented to demonstrate consistency between the experimental and DNS
data sets. To examine the interaction of the structures with the surrounding flow field,
we examine the flow across the boundary of vortex structures by adopting a similar
methodological approach to that used to investigate the local entrainment and detrainment
across the turbulent–non-turbulent interface. The probability density function (p.d.f.)
of entrainment velocity conditioned on the vortex boundary exhibited a non-Gaussian
distribution that skewed slightly in favour of entrainment and is remarkably similar to
the p.d.f.s of entrainment velocity observed in boundary layers and jets. We analyse the
enstrophy transport equation conditioned on radial and axial coordinates of the vortices to
quantify the inviscid and viscous components of the entrainment/detrainment process. A
comparison with Burgers vortices is made and it is found that the Burgers vortex model
captures the vortex structure average size and the mechanisms of enstrophy transport in the
radial direction, but is unable to capture local statistics and describe the governing physics
along the axes of the vortices.
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1. Introduction
The nature and structure of small-scale vortex structures have received considerable
attention in turbulence research and are typically defined as concentrated regions of
high enstrophy with life-times greater than the characteristic time scale of the flow
(Dubief & Delcayre 2000). These vortex tubes, filaments or so-called worms are the most
prominent small-scale structures at the dissipation scale having been identified in early
numerical simulations and experimentally observed by, amongst others, Siggia (1981),
Kerr (1985), She, Jackson & Orszag (1990), Vincent & Meneguzzi (1991), Cadot, Douady
& Couder (1995), Jiménez et al. (1993), Jiménez & Wray (1998) and Ishihara, Gotoh &
Kaneda (2009). Over the last few decades, the growth in computational power and new
experimental methods have enabled observation of small-scale vortices at ever higher
Reynolds numbers and in an increasingly wide range of flows. They appear to have
some universal features such as the preferential alignment of the vorticity vector with the
direction of intermediate principal strain found by Ashurst et al. (1987) and their average
radius of about 5η, where η is the Kolmogorov length scale, as verified in homogeneous
isotropic turbulence (Jiménez et al. 1993; Jiménez & Wray 1998; Ghira, Elsinga & Da
Silva 2022), jets (Ganapathisubramani, Lakshminarasimhan & Clemens 2008; da Silva,
dos Reis & Pereira 2011), channel flows (Kang, Tanahashi & Miyauchi 2009) and stratified
flows (Neamtu-Halic et al. 2021). Although the alignment of the vorticity vector with the
intermediate principal strain holds at small scales, and has been observed in a wide range
of flows, at larger length scales the vorticity preferentially aligns instead with the most
stretching principal strain (Ishihara, Yamazaki & Kaneda 2001; Leung, Swaminathan &
Davidson 2012).

In the seminal direct numerical simulation (DNS) of homogeneous isotropic turbulence
by Jiménez et al. (1993), it was found that small-scale vortex tubes produced low levels
of stretching demonstrating that self-amplification did not play a significant role in
their evolution. Jiménez et al. (1993) draw attention to the resemblance between these
small-scale vortices and axially stretched stable Burgers vortices by considering their
stability and lack of coupling with the strain field. The implication of this is significant
as it showed that at the small scale, these high-enstrophy vortex structures do not play a
significant role in the overall dynamics of the flow and can therefore be considered passive.
This was also emphasized by Tsinober (2009), who noted that the lack of self-amplification
via interaction with the strain field means that the worms are rather passive and decoupled
from the strain field. This is in direct contrast with sheet-like, strained vortices whose
presence modifies the local strain field significantly (Moffatt, Kida & Ohkitani 1994; Le
Dizes, Rossi & Moffatt 1996; Davidson 2015). In a later study, Jiménez & Wray (1998)
investigated the relationship between stretching at the points of maximum vorticity inside
the worms with their corresponding radii. The joint probability density function (p.d.f.) of
these two parameters showed good agreement with the values of radii based on the stable
Burgers vortex model. These observations have been expanded to include other flows, for
example the turbulent plane jet by da Silva et al. (2011). However, the lack of interaction
with the strain field does not mean that vortex tubes do not interact with the local flow in
other important ways, for example through the exchange of mass and momentum with their
surroundings. These interactions have not been investigated in detail to date. In this paper
we employ a fully resolved experimental data set and DNS to investigate the interaction of
vortex filaments with the surrounding flow. This is done by implementing a robust method
to detect the boundary of the vortices and then analysing conditional flow features to show
that they entrain and detrain mass and momentum.

When it comes to precisely defining and detecting small-scale vortical structures,
researchers usually adopt one of two well-known and broadly used approaches:
973 A5-22
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Entrainment by small-scale vortices

thresholding on the vorticity (Hussain 1986; Jiménez et al. 1993; da Silva et al. 2011;
Ghira et al. 2022) or the vorticity relative to the strain field (Hua & Klein 1998).
The problem with these classical detection methods is that they are arbitrary and
depend on the observer’s frame of reference (Haller 2005). For instance, using classical
detection methods, an observer in fixed laboratory coordinates will not identify the same
vortex structures as an observer that is moving with the flow. Methods developed in
a recent string of research articles, summarized in the review paper by Haller (2015),
have been shown to overcome these limitations and permit identification of objective
(i.e. observer-independent) coherent structures necessary for repeatable experiments.
The method proposed by Haller et al. (2016) to detect rotationally coherent structures
from the vorticity field was previously adapted and implemented to identify large-scale
vortex structures in three-dimensional turbulence measurements of a gravity flow by
Neamtu-Halic et al. (2019). The primary advantage of this method is that it provides an
objectively defined vortex boundary permitting an investigation of the conditional fluxes
across it to reveal how small-scale vortical structures interact with the surrounding flow
from both a local and global perspective.

The aim of this study is to investigate the interaction of objectively identified small-scale
vortical structures in more detail than what has been done so far in the literature to
obtain a better understanding of their interaction with the surrounding flow. We adopt an
approach which treats them as turbulent structures embedded in a turbulent background
flow and borrows a similar methodological approach to that used to investigate local
entrainment across turbulent–non-turbulent interfaces (TNTIs) as exemplified by Mathew
& Basu (2002), Westerweel et al. (2005), Holzner & Lüthi (2011), Wolf et al. (2012),
Mistry et al. (2016) and Mistry, Philip & Dawson (2019) in order to evaluate their
interaction with the surrounding flow by evaluating the enstrophy transport equation which
enables direct comparison with the Burgers vortex model. (Although we adopt a similar
methodology to that of these studies, we are not suggesting an equivalence between the
boundary of a vortex structure and the TNTI.) To do this we make use of two data
sets. The first is a fully resolved three-dimensional experimental data set of stationary
homogeneous turbulence measured at the centre of a von Kármán mixing flow with a
Reynolds number based on the Taylor microscale of R� = 179 (Lawson & Dawson 2014,
2015). Until recently, experimental access to the full velocity gradient tensor of small-scale
turbulence at reasonably high Reynolds number has remained elusive and almost all
previous studies of small-scale vortical structures have been restricted to DNS data sets
without an experimental counterpart. This is the first time that the three-dimensional
objective vortex definition of Haller et al. (2016) has been implemented on an experimental
data set of resolved small-scale turbulence. To complement the experimental data set,
results are compared with the DNS data set of homogeneous isotropic turbulence of Li
et al. (2008) at R� = 418.

The paper is organized as follows. Section 2 describes the large-scale von Kármán
facility, a brief description of the experimental data set from Lawson & Dawson (2014,
2015) and the implementation of the detection method by Haller et al. (2016) for objective
Eulerian coherent structures (OECS) as well as how to calculate the entrainment velocity
from the enstrophy transport equation derived by Holzner & Lüthi (2011). The results in
§ 3 begin with presenting volume-averaged and conditional statistics of the small-scale
vortices to illustrate consistency between the experimental and DNS data sets. Attention
is then turned to statistics of entrainment and the balance of the different terms in the
enstrophy transport equation. The enstrophy balance is considered from two different
perspectives, the first being conditioning on the radial direction of the vortices and the
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2 m

2 m

1.25 m

1.6 m

Figure 1. Two-dimensional schematic of the large tank facility with dimensions. The blue lines show the flow
pattern in azimuthal (horizontal) planes and the black lines show the flow pattern in an axial (vertical) plane
passing the geometric centre of the tank. The measurement volume is represented by a square at the centre of
the tank.

second from conditioning on their axes. The results are discussed and interpreted in the
context of expected quantities from the Burgers vortex model.

2. Methods

2.1. Description of facility and data sets
The experimental data set used in this study is from the scanning particle image
velocimetry measurements of homogeneous axisymmetric turbulence produced by the
large von Kármán mixing flow facility reported in Lawson & Dawson (2014, 2015). Due
to the large size of the facility and the slow rotation rate of the impellers, spatially
and temporally resolved measurements at the Kolmogorov scale were achievable. A
two-dimensional schematic of the experimental facility is shown in figure 1 highlighting
key dimensions and the general flow pattern. The flow inside the tank can be considered
a superposition of a stationary axisymmetric shear flow generated by the counter-rotating
impellers and a centrifugal pumping leading to a radially inward flow along the mid-plane
of the tank and axial flow away from the geometric centre along the rotational symmetry
axis. The shear generated by the counter-rotation of the impellers results in a region of
homogeneous, axisymmetric turbulence near the centre of the tank with a near-zero mean
velocity in all directions (Lawson & Dawson 2014, 2015).

The facility is comprised of a large dodecagonal Perspex tank that is 2 m tall and 2 m
in cross-section that was filled with water. The impellers at the top and bottom of the tank
were 1.6 m in diameter and operated at constant angular velocity in a counter-rotating
mode. Vertical baffles were placed at each vertex with the same height as the tank
protruding 100 mm into the flow. The Reynolds number based on the impeller radius
defined as Re = ΩIR2

I /ν, where ΩI is the rate of rotation of the impellers, RI is the radius
of the impellers and ν is the kinematic viscosity of the flow, was 23 000. The Reynolds
number based on Taylor microscale was R� = 179 and the Kolmogorov length scale was
η = 0.926 mm. The measurement volume was located at the geometric centre of the tank
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Entrainment by small-scale vortices

with dimensions Lx × Ly × Lz = 129 mm × 128 mm × 26.2 mm. The spatial resolution
of the data set was approximately 1η over a non-dimensional measurement volume
of Lx/η × Ly/η × Lz/η = 135 × 134 × 25.4. The data set consists of 1003 statistically
independent volumes constructed from a time series of 10 volumetric vector fields with a
particle image velocimetry separation time of ≈ 0.068τη, where τη is the Kolmogorov time
scale. There was no spatial averaging applied to the data. A predictor-corrector scheme
was implemented in a Lagrangian tracking algorithm performing forward and backward
in time over the time-resolved velocity fields to minimize noise (Novara & Scarano 2013).
The data set is of very low noise and highly resolved enabling direct comparisons with
DNS up to third-order gradient statistics (Lawson & Dawson 2014, 2015).

A DNS data set of forced isotropic turbulence of R� = 418 from the Johns Hopkins
Turbulence Database (Li et al. 2008) was also analysed for comparison with the
experimental data set. This DNS data set is a time series of a periodic forced cube with
10243 nodes over five large-eddy turnover times. Fifty independent volumes of the flow
(snapshots of the cubes with 1283 nodes) with a dimension size of Lx/η × Ly/η × Lz/η =
279 × 279 × 279 were chosen at random time steps over the five large-eddy turnover
times. The spatial resolution is about 2.2η.

2.2. Detection of OECS
To analyse the intense small-scale vortex structures a robust detection method based on
the definition of OECS proposed by Haller et al. (2016) was implemented. The OECS are
detected using a scalar field corresponding to the instantaneous vorticity deviation (IVD)
which is defined in (2.1):

IVD(x, t) = |ω(x, t) − ω̄(t)|, (2.1)

where ω(x, t) is the vorticity vector at the time step t at point x in space and ω̄(t) is
the average value of vorticity over the volume of the flow at the time step t. Since the
DNS is homogeneous and isotropic and the experimental data are also approximately
homogeneous and isotropic with negligible mean flow, the normalization by the volumetric
average is not sensitive to volume size. However, in other flows that are not homogeneous
and isotropic, the normalization by the volumetric average in the OECS method may
introduce a dependence of the results on volume size that should be taken into account.
This definition is an observer-independent (objective) scalar field that represents the local
rotation rate of fluid elements. The OECS are defined as a nested family of tubular level
surfaces of IVD(x, t) in which the value of IVD(x, t) is non-increasing when moving
outward from the centre. Along each of these tubular surfaces the rotation rates of the
fluid elements are equal. The boundary is defined as the outermost almost convex level
surface of IVD(x, t) and the centre is the maximum level surface of the nested family.
As discussed in Haller et al. (2016), this definition detects vortical structures that are
observer-independent and ensures instantaneous coherence in the rate of their material
bulk rotation. No thresholding is therefore needed to define/detect these vortical structures.
We refer the reader to Haller (2015) and Haller et al. (2016) for further details.

The numerical detection algorithm used to detect the three-dimensional OECS to the
data set of Lawson & Dawson (2015) is described in detail by Neamtu-Halic et al.
(2019). Therefore we only provide a brief description of the detection algorithm for
completeness. The detection algorithm consists of three main steps. In the first step, the
vorticity field is evaluated followed by the IVD scalar field according to (2.1). In the second
step, ridges corresponding to the local maximum values of the IVD are detected using
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a three-dimensional gradient ascent method starting from point clouds of high spatial
gradient of IVD values as the initial guess. The Cauchy–Lipschitz theorem was used
to solve the ordinary differential equation of the gradient ascent algorithm. The ridges
represent the centre lines of the vortex structures. In the third step, two-dimensional
contours of IVD are calculated on planes locally normal to the ridges which are then
used to build three-dimensional level surfaces for the structures. The outermost convex
level surface is chosen as the boundary of the structure. Successful implementation
for the detection of small-scale structures requires a fully resolved three-dimensional
three-component velocity field with low levels of noise. So far, this has only been applied
to the experimental data set by Neamtu-Halic et al. (2019) where the resulting structures
were comparatively large on average (R ≈ 15η).

2.3. Equations and models
To investigate the flow field within and immediately surrounding the vortex filaments as
well as compare with the Burgers vortex model, the detected boundaries of the vortex
filaments are treated with the methodological approach applied to the TNTI enabling
the investigation of the fluxes passing across it. To do this we evaluate various terms
in the enstrophy transport equation (2.2), where the first term on the right-hand side
(2ωiωjsij) corresponds to the inviscid production/destruction of enstrophy by vortex
stretching/compression, the second term (ν(∂2ω2/∂xj∂xj)) is the viscous diffusion of
enstrophy due to the presence of gradients and the final term (−2ν(∂ωi/∂xj)(∂ωi/∂xj))
corresponds to the viscous dissipation of enstrophy (Pope 2000; Tsinober 2009):

Dω2

Dt
= 2ωiωjsij + ν

∂2ω2

∂xj∂xj
− 2ν

∂ωi

∂xj

∂ωi

∂xj
. (2.2)

Using the enstrophy transport equation, Holzner & Lüthi (2011) derived an equation for
the entrainment velocity, vn, which can be applied at the boundary of the structures:

vn = −
2ωiωjsij

|∇ω2|
−

ν
∂2ω2

∂xj∂xj

|∇ω2|
+

2ν
∂ωi

∂xj

∂ωi

∂xj

|∇ω2|
, (2.3)

where the entrainment velocity, vn, is defined as V = vnn̂ = us − u. In this definition,
us is the velocity vector of an iso-surface element, for example the boundary of the
vortex structure, u is the fluid velocity vector at the iso-surface and n̂ = ∇ω2/|∇ω2|
is the iso-surface normal vector. Based on this definition, vn ≤ 0 corresponds to the
entrainment of fluid from the surroundings into the structures whereas vn > 0 corresponds
to the detrainment of fluid from inside the structures to the surrounding fluid (Holzner
& Lüthi 2011; Mistry et al. 2019). Based on the entrainment velocity, the local flux of
other quantities across the boundary can be calculated through multiplication with vn.
For example, the specific flux of enstrophy defined as vnω

2 and the kinetic energy vnuiui.
Equation (2.3) is valid on an iso-surface of enstrophy and follows from the fact that for an
observer moving with an iso-surface (denoted by the superscript s) the iso-level is constant,
i.e. Dsω2/Dst = 0 (Holzner & Lüthi 2011). According to the definition of the IVD in
(2.1) and given that ω̄(t) is a constant under statistically stationary and homogeneous
conditions, it follows that Dsω2/Dst = 0 and Ds(IVD)/Dst = 0 are interchangeable.
Thus, (2.3) can be used to calculate the entrainment velocity at the boundary of detected
vortex structures where the IVD is considered.
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Entrainment by small-scale vortices

We also compare features of the small-scale vortical structures with the classical
Burgers vortex model to further elucidate similarities and differences. For a Burgers vortex
(Burgers 1948), it is assumed that the flow is incompressible and the vorticity field is
unidirectional. The vorticity field is normally assumed to be one-dimensional or both the
vorticity field and the strain field axisymmetric (Saffman 1995). A sketch of Burgers vortex
is shown in figure 2. The stability of the Burgers vortex results from a balance between
the inviscid effects of vortex stretching and viscous effects of vorticity diffusion and
dissipation. This leads to outflow along the axis of symmetry (uz) and radial entrainment
(ur) to maintain the rotational energy and mass conservation. The radial velocity is shown
in (2.4) where α > 0 is the strain of the flow and it is a constant. Equation (2.5) governs the
enstrophy profile where RB is the Burgers vortex radius and ν is the kinematic viscosity.
In the Burgers vortex model all the terms in the enstrophy transport equation (2.2) can
be evaluated analytically by using (2.5)–(2.9) (Taveira & da Silva 2014; Davidson 2015;
Watanabe et al. 2017).

ur(r) = −1
2αr, (2.4)

ωz(r) = ω0 exp

(

− r2

R2
B

)

;ω0 = ω(r = 0), R2
B = 4ν

α
, (2.5)

2ωiωjsij = 2ω2
z (r)α = 2ω2

0α exp

(

−2
r2

R2
B

)

, (2.6)

ν
∂2ω2

∂xj∂xj
= ν

1
r

∂

∂r

(

r
∂ω2

z (r)
∂r

)

= 2αω2
0

(

2
r2

R2
B

− 1

)

exp

(

−2
r2

R2
B

)

, (2.7)

−2ν
∂ωi

∂xj

∂ωi

∂xj
= −2ν

(
∂ωz(r)

∂r

)2
= −2αω2

0

(
r2

R2
B

)

exp

(

−2
r2

R2
B

)

, (2.8)

Dω2

Dt
= ur(r)

∂ω2
z (r)
∂r

= 2αω2
0

(
r2

R2
B

)

exp

(

−2
r2

R2
B

)

. (2.9)

(1)

3. Results

3.1. Statistics of the structures and the flow field
In this section, volume-averaged statistics and statistics conditioned on the inside of the
structures from both the experimental and DNS data sets are presented and discussed.
An example of the objectively identified three-dimensional intense vortical structures in
a measured volume of the flow is shown in figure 3(a). The black curved lines denote
the centre of the structures, the magenta surfaces the boundary of each structure and the
colour shading corresponds to the normalized enstrophy field, ω2/⟨ω2⟩s, where ⟨∼ ⟩s is
the volume average of the corresponding snapshot. In total, 12 466 structures were detected
over the 1003 snapshots of the experimental data set. A similar example is shown in
figure 3(b) obtained from a single volume of the DNS data set. Overall 9274 structures
were detected over the 50 snapshots of the DNS data set.

Figure 4 shows the p.d.f.s of the normalized radius of the structures for the experiment
and DNS defined as R∗ = R/η, where R is the distance between the centre of the structure
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Vorticity convection
(inward)

Vorticity convection
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Vortex stretching
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Vorticity diffusion
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Figure 2. The Burgers vortex model.
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Figure 3. Examples of the structures (magenta surfaces) in single volumes of the (a) experimental and (b) DNS
data sets with the corresponding enstrophy values. The enstrophy values are normalized by the corresponding
volume average of the snapshots, ⟨ω2⟩s. The spatial dimensions are normalized by the Kolmogorov length
scale, η.

and its boundary. As the cross-sections of the structures are contorted, the radii are
evaluated at various random points along the boundary of each structure with the average
radius of the structures found to be ⟨R⟩ = 5.1η which is in a good agreement with
previous studies (Jiménez et al. 1993; Ganapathisubramani et al. 2008; da Silva et al.
2011; Neamtu-Halic et al. 2021). The volume of the structures occupied 1.4 % of the
whole volume of the flow field which is also in a good agreement with the value of ≈1 %
reported by Jiménez et al. (1993). This confirms that both the identification method and the
experimental data set are sufficiently well resolved and consistent with DNS as expected
from previous work of Lawson & Dawson (2015).

973 A5-82
  
.

3
:1

 
 40

53
2/

.
75

37
/

:3
.1

/
73

/:
3

:/
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Figure 4. The p.d.f.s of normalized radius of the structures (R/η) of the (a) experimental and (b) DNS data
sets.

The objective detection method used herein initially follows similar steps to the
thresholding method used in Jiménez et al. (1993). However, the methods diverge once
the process of determining the centre lines of the vortex structures takes place. In Jiménez
et al. (1993) the enstrophy profile of the vortex is assumed to decay exponentially
to detect the boundary, whereas the objective detection method detects the outermost
almost convex iso-surface as the boundary. Thus, one might expect small variations in
the radii of the detected vortex structures to occur depending on the method. However,
figure 4, i.e. p.d.f.(R/η), is similar to the analogous figures in the works of Jiménez et al.
(1993), Jiménez & Wray (1998), da Silva et al. (2011) and Ghira et al. (2022) where the
thresholding detection method is used giving confidence that the two methods yield similar
results for resolved homogeneous and isotropic data sets.

To quantify the rotational energy and intermittency of the small-scale structures, p.d.f.s
of normalized enstrophy ω2/⟨ω2⟩ are plotted in figure 5(a) for the experiment (black
lines) and DNS (grey lines), where ⟨ω2⟩ is the enstrophy spatially averaged over the
whole measurement volume and all the snapshots. The dashed lines show the p.d.f.s
throughout the volume, whereas the solid lines show the p.d.f.s conditioned on the inside
of the structures. A logarithmic binning is used to calculate the p.d.f.s and are plotted
on log – log scale. Good agreement is found across the data sets. The p.d.f.s from the
experiment and DNS both intersect at around ω2/⟨ω2⟩ = 1. When ω2/⟨ω2⟩ < 1, the
p.d.f.s of the volumetric enstrophy are significantly higher and peak at ω2/⟨ω2⟩ ≈ 10−2

and also extend to much lower values ω2/⟨ω2⟩ ≈ 10−6 than the p.d.f.s conditioned on
the inside of the structures. When ω2/⟨ω2⟩ > 1, conditioned on the structures shows
slightly greater enstrophy values before falling off with similar values to the volumetric
average. The p.d.f.s show that increasingly high-enstrophy events are similarly rare in the
volume-averaged and conditional statistics, whereas low-enstrophy events are much less
prevalent for the conditioned statistics.

We can draw a similar comparison between the local and volumetric dissipation where
it is normalized as ϵ/⟨ϵ⟩. The dissipation, ϵ, is defined as ϵ = 2νsijsij, where ν is the
kinematic viscosity of the flow and sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the rate of strain tensor.
The ensemble average dissipation is denoted as ⟨ϵ⟩ and evaluated over the full data set.
Figure 5(b) shows the p.d.f.s of the normalized dissipation for the whole volume (dashed
lines) and conditioned on the inside of the structures (solid lines) for both the experiments
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Figure 5. The p.d.f.s of normalized (a) enstrophy and (b) dissipation of the structures (solid lines) and
volume (dashed lines). The black curves represent the experiment and the grey curves represent DNS.

and DNS. Again it is observed that the volumetric and conditioned p.d.f.s intersect when
ϵ/⟨ϵ⟩ = 1. When ϵ/⟨ϵ⟩ > 1 the p.d.f.s show that the structures contribute slightly higher
dissipation compared with the volume. On the other hand, the structures contribute less
than the total volume when ϵ/⟨ϵ⟩ < 1. Nevertheless, the small-scale vortices still produce
significant dissipation. Similar to the p.d.f.s of enstrophy, the probability that the vortex
structures contain higher dissipation events is greater when compared to the whole volume.
However, the difference for dissipation is not as large as for the case of enstrophy. This
means that the structures are an intense realization of enstrophy with some overlap with
regions of high dissipation/strain in the flow field (Davidson 2015).

To better understand the relationship between enstrophy and dissipation, spatial
correlations in the from of joint p.d.f.s (j.p.d.f.s) are plotted in figure 6. These show
that the volumetric j.p.d.f.s (dashed contours) for the experimental and DNS data sets
exhibit a similar distribution to that reported in Yeung, Donzis & Sreenivasan (2012).
When conditioned on the inside of the small-scale structures, shown by the solid contours,
the j.p.d.f.s are shifted upwards and to the right towards higher values of enstrophy and
dissipation. The j.p.d.f.s also show a preferred diagonal alignment (more symmetric with
respect to the diagonal) which is consistent with an increase in local R� as discussed
in the work of Yeung et al. (2012). This means that there is a preferential increase in
the joint probability of extreme events of enstrophy and dissipation inside the structures.
Furthermore, enstrophy and dissipation appear to scale similarly inside the structures
which suggests a physical dependence between vorticity and strain even though it is
not clear which one of them is the cause and which one is the effect (Jiménez et al.
1993).

The importance of the relationship between vorticity and the rate of strain dates back
to Taylor (1938) who postulated that the stretching of small-scale vortices caused them
to break up into yet smaller vortices and was therefore expected to be an important
mechanism in the turbulent cascade. However, it was not until the DNS work by Ashurst
et al. (1987) which permitted access to the full velocity gradient tensor which showed that
instantaneously, the vorticity vector is aligned with the intermediate eigenvector of the rate
of strain tensor, rather than the extensive eigenvector, and is predominantly positive. The
alignment of the vectors is observer-independent and is important to the phenomenon of
vortex stretching (2ωiωjsij) which produces enstrophy (Tsinober 2009).
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Figure 6. Joint p.d.f.s of normalized enstrophy and dissipation for the (a) experiment and (b) DNS. The solid

contours represent the structures and the dashed contours represent the volume.

The alignment between the vorticity vector ω = (ω1, ω2, ω3) and the eigenvectors
of the rate of strain tensor e = (e1, e2, e3), where ordering of the eigenvalues is σ1 ≥
σ2 ≥ σ3, can be investigated by plotting the cosine of the angles between these vectors:
cos θi = ei · ω/|ω|. From the continuity equation, it follows that the sum σ1 + σ2 + σ3 = 0
which means that σ1 is always positive and its corresponding eigenvector, e1, is the
extensive eigenvector. In contrast, σ3 is always negative and its corresponding eigenvector,
e3, is compressive. The value of σ2 is determined by the sum of σ1 and σ3 and can
be either negative or positive and is the intermediate eigenvalue with a corresponding
eigenvector, e2.

The p.d.f.s of the cosine of the angles between the vorticity vector and the eigenvectors
are plotted in figure 7(a,b) where the solid and dashed lines correspond to the alignments
conditioned on the inside of the structures and the volume, respectively. Overall, the
experimental data and DNS show excellent agreement. Considering the volume-based
statistics first, the vorticity vector and the intermediate eigenvector are well aligned with
each other as the peak values of the p.d.f.s occur at cos θ2 = ±1 and appears to be a
universal aspect of turbulent flow (Elsinga & Marusic 2010). The alignment between the
vorticity vector and the compressive eigenvector shows a peak at cos θ3 = 0 showing
that the two vectors are predominantly normal to each other, whereas the extensive
eigenvector indicates no preferential alignment. When conditioned on the structures,
the vorticity vector is also aligned with the intermediate eigenvector but it is normal
to both the extensive and compressive eigenvectors. A much higher peak at cos θ3 = 0
is observed when conditioned on the inside of the structures. These results indicate
that vorticity vectors inside the structures exhibit a strong preferred alignment with
the intermediate eigenvector but normal to the extensive and compressive eigenvectors
(Frisch 1995; Tsinober 2009; Buaria, Bodenschatz & Pumir 2020). Since the vorticity
vector is only aligned with the intermediate eigenvector, we consider the distribution
of the eigenvalues and, in particular, σ2. Figure 8(a,b) plots p.d.f.s of eigenvalues of
the rate of strain tensor for the same cases as considered in figure 7. As expected,
σ1 > 0 and σ3 < 0 for the volume and structures whereas the p.d.f. of σ2 contains
both negative and positive values but is positive on average, ⟨σ2⟩ > 0. An insight into
enstrophy production is gained by considering the average vortex stretching which can be
written as ⟨2ωiωjsij⟩ = 2ω2(⟨σ1 cos2 θ1⟩ + ⟨σ2 cos2 θ2⟩ + ⟨σ3 cos2 θ3⟩) (Tsinober 2009).
This relation is used to calculate the shares, relative to each alignment, in the total
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Figure 7. Alignment between vorticity vector and the eigenvectors of the rate of strain tensor for the
(a) experiment and (b) DNS. The solid lines represent the structures and the dashed lines represent the
volume.
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Figure 8. The p.d.f.s of the normalized eigenvalues of the rate of strain tensor for the (a) experiment and
(b) DNS. The solid lines represent the structures and the dashed lines represent the volume.

production/destruction of enstrophy, i.e. ⟨σj cos2 θj⟩/
√∑

⟨σi cos2 θi⟩2. This is shown in
table 1. Clearly the contributions of the extensive and compressive eigenvalues become
weaker in favour of the intermediate eigenvalue inside the structures as expected from
figure 7. However, the contribution from the extensive eigenvalue remains prominent and,
overall, the ratio of enstrophy production to destruction increases. This is consistent with
the picture that, on average, the production of enstrophy via vortex stretching inside the
structures is more significant compared with the flow field as a whole.

3.2. Kinematics/dynamics of the structures

3.2.1. Entrainment
To further elucidate the local flow field in a frame of reference relative to
the high-enstrophy small-scale structures, we consider them as being embedded
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Experiment DNS

Contribution Structures Volume Structures Volume

⟨σ1 cos2 θ1⟩√∑
⟨σi cos2 θi⟩2

0.700 0.823 0.639 0.818

⟨σ2 cos2 θ2⟩√∑
⟨σi cos2 θi⟩2

0.677 0.355 0.732 0.352

⟨σ3 cos2 θ3⟩√∑
⟨σi cos2 θi⟩2

−0.226 −0.443 −0.235 −0.455

Table 1. Enstrophy production (vortex stretching) contribution shares due to alignment between the vorticity
vector and the rate of strain eigenvectors and the corresponding eigenvalues for the experiment and DNS.

in a predominantly quiescent flow and their detected boundaries are treated
with the methodological approach applied at the TNTI. We then calculate the
entrainment/detrainment velocity and the rate of enstrophy production, diffusion and
dissipation across the boundaries using (2.3) and (2.2). Analysing the interaction of
structures in this way will reveal how they interact with the flow in terms of mass and
momentum exchange and permit direct comparison with the Burgers vortex model.

Figure 9 shows the p.d.f.s of the entrainment velocity, vn, vortex stretching, enstrophy
diffusion and dissipation terms from (2.3) for the experiment (solid lines) and DNS
(dashed lines). The values are normalized by the corresponding Kolmogorov velocity
scale, uη = (ν⟨ϵ⟩)1/4. With the exception of enstrophy dissipation, the peaks in the p.d.f. of
the various terms are all slightly negative and exhibit non-Gaussian distributions. Overall
good agreement between the DNS and the experiments is observed. The p.d.f. of the
entrainment velocity vn is similar to those observed in other flows at the TNTI (Holzner &
Lüthi 2011; Wolf et al. 2012; Mistry et al. 2019) which shows a fine balance in favour of
entrainment over detrainment noting that the tail on the left-hand side, which corresponds
to entrainment, has higher values compared with the right-hand side which corresponds
to detrainment. This demonstrates that, on average, the structures are radially entraining
fluid from the quiescent surroundings as ⟨vn⟩ < 0. The contribution of vortex stretching
to the entrainment velocity, −2ωiωjsij/|∇ω2|, is shown by the red line and exhibits
higher probabilities than the entrainment velocity which is balanced by the contribution
of viscous diffusion of enstrophy. Viscous diffusion peaks slightly on the negative side
but shows higher probabilities in the tails when vn/uη > 0. On the right-hand side, the
tails of the viscous effects of enstrophy dissipation and diffusion have higher p.d.f. values
compared with vortex stretching. This provides direct evidence that vortex stretching is
a dominant mechanism that drives entrainment (vn < 0) whereas the viscous effects of
enstrophy diffusion and dissipation contribute predominantly to detrainment (vn > 0).
This is in contrast with the behaviour of viscous and inviscid budgets across the TNTI
of free shear flow where the viscous effect is always dominant in both entrainment and
detrainment regions and is an indication of viscous/laminar superlayer at the turbulence
boundary (Holzner & Lüthi 2011). However, the behaviour of the vortex boundary is
similar to that of the turbulent–turbulent interface where vortex stretching is dominant
and viscous superlayer is not present (Kankanwadi & Buxton 2022).

The picture that emerges is that the overall behaviour of the small-scale structures
appears similar to that of stable Burgers vortices where the radial entrainment of
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Figure 9. The p.d.f.s of normalized entrainment velocity, vn/uη, at the boundary of the structures and
its components (budgets: vortex stretching, −2ωiωjsij/(|∇ω2|uη); diffusion, −ν(∂2ω2/∂xj∂xj)/(|∇ω2|uη);
dissipation, 2ν(∂ωi/∂xj)(∂ωi/∂xj)/(|∇ω2|uη)) for the experiment (solid lines) and DNS (dashed lines).

surrounding low-enstrophy fluid into the vortex is the result of a competition between
vortex stretching, enstrophy diffusion and enstrophy dissipation. In a stable Burgers vortex
the radial entrainment velocity is ur = −(α/2)r, where α is a positive constant (the strain
rate) and hence ur < 0 (Davidson 2015) and is consistent with the average picture of the
detected vortex structures observed in the experimental and DNS data sets even though
the local statistics are not in full agreement with the Burgers vortex model.

We examine the local dependence of the entrainment velocity on the radius (size) of
the structures by plotting the j.p.d.f.s of the normalized entrainment velocity, vn/uη, and
the normalized radius, R/η, in figure 10. The experimental data are presented with solid
lines and DNS with dashed lines as previously. The drop-shaped j.p.d.f.s are very slightly
skewed towards the region of negative entrainment velocity which means that over all
the sizes of R/η plotted, the structures are on average radially entraining fluid from their
surroundings. The peak of the correlation between the magnitude of entrainment velocity
and radius occurs when 2 . R/η . 6. This shows that the entrainment/detrainment of the
structures is most active when the local radius is between approximately 2η and 6η.

Next, we investigate how entrainment varies both radially and along the axial direction
of the structures. In figure 11(a), we plot the average entrainment velocity conditioned on
the radial and axial directions of the vortices, (vn/uη)(r/R, l/η). Since the detected vortex
structures are nested families of IVD iso-surfaces, the iso surfaces of IVD correspond to
iso-surfaces of enstrophy as discussed in § 2.3. Thus, the entrainment velocity and the
budgets in (2.3) can be calculated anywhere inside and in the vicinity of structures. The
result can be interpreted as the radial velocity relative to the local iso-enstrophy surface
when away from the boundary of the vortex, or alternatively, the entrainment velocity
that holds for varying choice of enstrophy iso-surface boundaries. Since the length of the
vortices is cropped by the finite size of the observation volume in the experiment, we
here focus on DNS data only. The maximum entrainment velocity is on average located
in the central region of the vortices extending ≈ ±5η along the vortex axis (r/R = 0)
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Figure 10. Joint p.d.f.s of normalized entrainment velocity, vn/uη, and normalized radius of the structures,
R/η, for the experiment (solid contours) and DNS (dashed contours).

and radially outwards to about half the radius. Moving along the axis of the vortex along
r/R = 0 the vn/uη decays towards both ends of the vortices to near zero values. Since the
vortices occupy a finite volume of the domain, statistical stationarity would require that
on average there is no gain or loss of mass for the average structure. Given the net radial
entrainment observed here, one would expect a net detrainment across the boundary at the
tips of the structure. The axial decrease of vn is consistent with that argument even though
we do not observe a change of sign over the considered length, presumably because our
detection method crops the structure before the tip which is a singular point where the
cross sectional area approaches zero.

To investigate the spatial pattern of the different contributions to entrainment, we
consider the terms (budgets) on the right-hand side of (2.3) conditioned on the radial
and axial directions plotted in figure 11(b–d) for the DNS data set. Contour of vortex
stretching shows a strong contribution in favour of entrainment with maximum negative
values concentrated along the vortex axis decaying to very low levels near the vortex
boundary. The data show a slight peak centred at l/η = 0 extending ≈ ±5l/η before
decaying along the vortex length. The effects of enstrophy diffusion, shown in figure 11(c),
exhibit similar behaviour but in favour of detrainment. Figure 11(d) shows comparatively
low, but slightly positive uniform values of enstrophy dissipation inside the vortices in
favour of detrainment. Greater values of dissipation are found outside the vortices. The
contribution of dissipation to the overall balance of the entrainment/detrainment velocity
is small.

The Burgers vortex is a one-dimensional model and cannot capture any heterogeneity
along the vortex axis by definition. However, it can still be a good model for the
radial dynamics. To investigate the similarities and differences of the vortex filaments
with Burgers vortices in more detail, we now compare statistical quantities from the
experimental and DNS data with the quantities predicted by the Burgers vortex model
(Jiménez et al. 1993; Jiménez & Wray 1998; da Silva et al. 2011; Watanabe et al. 2017;
Ghira et al. 2022). Beginning with the radii of the filaments, p.d.f.s of the ratio of measured
radius of the structures from the experiments and DNS to the equivalent Burgers radius,
R/RB, are plotted in figure 12. Here RB was calculated for the structures based on the
stretching values along the centre lines, α0 = ωiωjsij/ω

2
0 at r = 0, using the formula
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Figure 11. Filled contours of average normalized entrainment velocity and its budgets (terms in (2.3)) in radial
(r/R) and axial (l/η) directions of the structures for the DNS data set: (a) entrainment velocity, (b) vortex
stretching, (c) diffusion and (d) dissipation.

RB =
√

4ν/α0 in (2.5). The overall trends of the p.d.f.s from the experiment and DNS
are in reasonably good agreement. The main differences are that the experimental data are
more skewed on the left-hand side of R/RB = 1 with a slightly different slope for vortices
with larger radii. The maximum probabilities occur between R/RB ≈ 0.65 and 0.75 for
both the experiments and DNS as well as small differences in the mean ⟨R/RB⟩ = 0.95
and 1.1. These data show that, on average, the radius of the structures and the equivalent
Burgers vortex radius obtained from the experimental data are in good agreement with
numerical studies, such as the DNS of Jiménez & Wray (1998) and da Silva et al. (2011),
but there are some variations in the local statistics. In the DNS studies of Jiménez et al.
(1993), Jiménez & Wray (1998), da Silva et al. (2011) and Ghira et al. (2022), the peak
value of p.d.f.(R/RB) occurs at R/RB = 1, slightly different from figure 12 in the present
study. We believe this slight difference is due to the vortex detection method being used. In
the above-mentioned studies, a thresholding detection method based on exponential decay
of enstrophy in the radial direction (following the Burgers vortex model) was used. Here,
no assumption is made about the form of the enstrophy decay.

Another feature of the Burgers vortex model is that the radial enstrophy distribution in
the vortex follows an exponential profile from the centre line. To test the robustness of this
assumption, enstrophy profiles as well as profiles of the mean deviation of the structures
for the experimental and the DNS data sets are plotted for comparison. The mean radial
profiles of the normalized enstrophy of the vortices and the equivalent Burgers vortex
model are plotted in figure 13(a) for the experiments and DNS with black lines as well as
the model values for the equivalent Burgers vortices in grey line. Good agreement between
the model, experiments and DNS is found near the vortex core, r/R = 0. Moving away
from the vortex core, both the experiments and DNS depart from the Burgers model which
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Figure 12. The p.d.f.s of the ratio between radius of the structures and the equivalent Burgers vortex radius
for the experiment (solid line) and DNS (dashed line).

predicts a faster decay with r. Although the trends for the experiments and DNS are similar,
it is difficult to untangle whether the Burgers model overestimates the decay of enstrophy
towards the boundary of the structures or whether the resolution of the experiments
and DNS underestimates the decay in enstrophy. Figure 13(b) plots the deviation of the
experiments and DNS from the Burgers model by calculating

δ
( r

R

)
=
〈ω2

( r
R

)
− ω2

B

(
r

RB

)

ω2
0

〉

× 100 (%) (3.1)

for the experimental and DNS data sets within the range of 0 ≤ r/R ≤ 2. The curves show
the mean radial profile of δ. As can be seen from this figure, the local agreement is poor
away from the vortex core in both cases which is postulated to be at least partly related to
a lack of spatial resolution.

We next compare the ratio of the measured entrainment velocity with the entrainment
velocity predicted from the Burgers vortex model. The equivalent entrainment velocity is
calculated using the radial velocity formula at the boundary, vn,B = ur=RB = −(α0/2)RB
(Davidson 2015). Figure 14 plots the p.d.f.s of the entrainment velocity ratio for the
experiment (solid line) and DNS (dashed line). For the experiment, the peak of the p.d.f.
occurs at vn/vn,B ≈ 0.8 and the mean value is ⟨vn/vn,B⟩ = 0.79, whereas for DNS the
peak is at vn/vn,B ≈ 0.9 and the mean value is ⟨vn/vn,B⟩ = 1.1. Overall, the fact that
⟨vn/vn,B⟩ ≈ 1 shows that the Burgers model reasonably captures the entrainment velocity.
Similar to the case of the p.d.f.s of radii (figure 12), the distributions are non-Gaussian
with the positive tails having larger values away from vn/vn,B = 1.

3.2.2. Enstrophy balance
The different terms (budgets) of the enstrophy transport equation (2.2) are now investigated
along the radial and axial directions of the structures in a similar manner to that in § 3.2.1.
To construct a picture of how enstrophy is distributed in a vortex, figure 15 plots filled
contours of the average enstrophy profile conditioned on the radial and axial directions
for the DNS data only and not the experiment as the length of the vortices is cropped
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Figure 13. Enstrophy profiles. (a) The mean radial profile of the normalized enstrophy of the vortices and the
equivalent Burgers vortex model for the experiments and DNS and (b) the deviation of the experiments and
DNS from the Burgers model.
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Figure 14. The p.d.f.s of the ratio between the entrainment velocity of the structures and the equivalent
entrainment velocity from the Burgers vortex model for the experiment (solid line) and DNS (dashed line).

by the finite size of the observation volume in the experiment. On average, the peak of
enstrophy occurs at the centre of the vortex, i.e. (r/R, l/η) = (0, 0), which decays in the
radial direction towards the vortex boundary and along the vortex axis but to a lesser
extent.

The normalized conditional averaged radial profiles of the different terms in the
enstrophy transport equation are shown in figure 16 for the experiments (solid lines), DNS
(dashed lines) and the equivalent Burgers vortices (with dot markers). All cases considered
show reasonably similar trends indicative of having similar governing physics. On average,
at the centre of the structures, the viscous terms of diffusion with a near-negligible
contribution from dissipation are balanced by inviscid vortex stretching as exhibited by
the material derivative of enstrophy tending close to zero. Marching towards the boundary
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Figure 15. Filled contours of average normalized enstrophy (ω2/⟨ω2⟩) in radial (r/R) and axial (l/η)

directions of the structures for the DNS data set.

from the vortex core, the absolute values of both vortex stretching and diffusion decrease
whilst the dissipation increases. The rate of decrease is greater for the diffusion term.
Together this results in the total derivative of enstrophy increasing to a peak at r/R ≈ 0.7
followed by a gentle decay towards zero. In the region r/RB > 1 of the Burgers vortex
model, the viscous diffusion term dominates over the inviscid vortex stretching term.
This behaviour is qualitatively similar to that of viscous superlayer at TNTI. However,
in contrast with the Burgers vortex model and TNTI, the inviscid vortex stretching term is
still dominant over the viscous diffusion term in the r/RB > 1 region of the detected vortex
structures. Comparing the radial distribution of diffusion and dissipation shows that in the
regions near the core, diffusion is the major contribution to the viscous effects, whereas
near the vortex boundary dissipation becomes the dominant contributor.

Similar to § 3.2.1, plotting the enstrophy transport equation terms (2.2) conditionally
averaged on the radial and axial directions of the structures can provide a more complete
picture of the active physical phenomena inside the structures. Here we only consider the
vortices from the DNS data set and not the equivalent Burgers vortices. The reason is that
the Burgers vortex model by definition is infinitely long and the quantities of interest, i.e.
enstrophy and the terms in the enstrophy transport equation (equations (2.5)–(2.9)), are
independent of the axial distance. Figure 17 plots the terms (budgets) of the enstrophy
transport equation (2.2). In the radial direction, figure 17 confirms figure 16, and in the
axial direction they show the decay of all the quantities considered which is in contrast
with the Burgers vortex model.

4. Conclusion
In this paper we investigated how small-scale vortex structures interact locally with the
surrounding quiescent flow using a temporally and spatially resolved experimental data
set of homogeneous turbulence of a von Kármán mixing flow and a DNS data set of
forced isotropic turbulence. To detect the boundary of the small-scale vortex structures
about which the local entrainment can be evaluated, an objective definition to identify
the vortical structures introduced by Haller et al. (2016) was implemented on both data
sets and was the first successful implementation in experimentally resolved measurements
of small-scale turbulence at high Reynolds number. The average radius of the vortex
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Figure 16. Normalized enstrophy transport equation terms (material derivative of enstrophy
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and enstrophy dissipation −2ν(∂ωi/∂xj)(∂ωi/∂xj) × ⟨ω2⟩−3/2) conditioned on the radial direction of the
structures for the cases of the experiment (solid lines), equivalent Burgers vortex of the experiment (solid
lines with dot markers), DNS (dashed lines) and equivalent Burgers vortex of the DNS (dashed lines with dot
markers).
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structures was found to be 5.1η and that they occupied about 1.4 % of the measured
flow volume on average in agreement with the reported values in the literature (≈ 5η
and ≈ 1 %). Comparing p.d.f.s of volume-averaged enstrophy and dissipation with those
conditioned on the inside of the structures revealed that the latter contained higher peak
values of enstrophy and dissipation but a decreased probability of low-enstrophy and
low-dissipation events. These differences between the volume- and structure-averaged
p.d.f.s were more pronounced for enstrophy and the enstrophy production to destruction
ratio was found to be significantly higher inside the vortex structures. Volume-averaged
and structure-averaged j.p.d.f.s of enstrophy and dissipation were found to scale similarly
inside the vortex structures. The alignments between the vorticity vector and the rate
of strain eigenvectors showed that inside the vortex structures the vorticity vectors were
aligned with the intermediate eigenvector and normal to the compressive and extensional
eigenvectors.

By considering the vortex structures as being embedded in a predominantly quiescent
flow and conditioning on their boundary, the entrainment velocity and enstrophy budgets
were determined. The p.d.f. of entrainment velocity exhibits a non-Gaussian distribution
of entrainment and detrainment skewed slightly in favour of entrainment. The p.d.f. and the
fine balance in favour of entrainment over detrainment is remarkably similar to the p.d.f.s
of entrainment velocity observed across the TNTI reported in boundary layers and jets.
The entrainment velocity was found to reach a peak near the vortex core decaying radially
outwards towards the vortex boundary and along its axis. The decrease in the magnitude
of the entrainment velocity was consistent with the flow being statistically stationary
(the vortices cannot grow on average) and the net radial entrainment is expected to be
balanced by the net detrainment at the ends of the vortices. A strong correlation between
entrainment and vortex stretching was observed (inviscid effect) whereas detrainment was
found to be correlated with enstrophy diffusion and dissipation events (viscous effects).
This is in contrast with what is observed at the TNTI in free shear flow where the viscous
effect is dominant due to the presence of the viscous/laminar superlayer. However, the
behaviour of vortex boundary is similar to that of turbulent–turbulent interface where
vortex stretching (inviscid effect) is dominant and viscous superlayer is no longer present.
The j.p.d.f. of radius and entrainment velocity showed that entrainment/detrainment was
most active when the local radii of the vortices were between 2η and 6η. A direct
comparison with Burgers vortices was performed with both the experimental and the DNS
data sets. The p.d.f.s of the local radius were non-Gaussian but good agreement between
the experimental data, DNS and the equivalent Burgers vortex was found. Compared
with the DNS and experimental data, the Burgers vortex model overestimates the rate
of decay in the enstrophy profile of the vortices. Conditional budgets of the enstrophy
transport equation were examined and compared with the Burgers model confirming that
the competition between vortex stretching and diffusion was the dominant mechanism.
It was found that marching towards the boundary both vortex stretching and diffusion
gradually weakened as dissipation strengthened with all terms approaching zero just
outside the vortex boundary.
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ABSTRACT

Intense small-scale vortical structures also known as ‘fil-
aments� or ‘worms’ have been studied in a wide range of tur-
bulent flows, mostly using DNS. In the present study, we in-
vestigate vorticity dynamics of vortex filaments at the dissipa-
tion scale in a fully resolved three-dimensional experimental
data set of a turbulent mixing flow measured at the center of
a large von Kármán mixing tank at a Rel = 179. To avoid
arbitrariness inherent to threshold-dependent detection crite-
ria and dependence of the results on the observer, an objective
vortex detection method proposed by Haller et al. (2016) is
implemented. One thousand instantaneous 3D velocity fields
are studied. These fields were measured at random times with
a spatial resolution of 1h , where h is the Kolmogorov length
scale. About 12500 structures were detected having an aver-
age radius of 5.1h , which is similar to previous findings on
vortex filaments in HIT and turbulent jets and channels. Lo-
cal features related to the structures and global features of the
flow were investigated and compared. Structures are character-
ized by high vorticity and low strain and the vorticity vector is
predominantly aligned with the intermediate strain eigenvector
that has a positive eigenvalue on average. The vorticity vector
is predominantly oriented normally to the compressive and ex-
tensional strain eigenvectors suggesting that the structures are
quasi one-dimensional and shows that enstrophy production
inside the structures results from vortex stretching. We further
investigate the mechanisms that sustain the vortical structures
by treating them as turbulent structures embedded in a less tur-
bulent ambient flow, analogous to a turbulent flow separated
by a turbulent/nonturbulent interface from its quiescent sur-
roundings, and we analyze the entrainment/detrainment across
their boundaries. This analysis shows that the structures are
entraining ambient fluid on average in radial direction and that
this entrainment is a result of the competing effects of non-
viscous and viscous phenomena consistent with Burgers’ vor-
tex model.

Introduction/Motivation

In turbulent flows, vortical structures are defined as re-
gions of concentrated enstrophy with a life time larger than
the characteristic time scale of the flow (Dubief & Delcayre,
2000). Intense vortical structures (IVSs) at the dissipation
scale, often called worms or filaments, have shown univer-
sal features among a variety of different turbulent flows such
as homogeneous isotropic turbulence (Jiménez et al., 1993;
Jiménez & Wray, 1998), jets (Ganapathisubramani et al.,
2008; da Silva et al., 2011), channel flows (Kang et al., 2009),
stratified flows (Neamtu-Halic et al., 2021). These studies
have shown that worms or vortex filaments have a radius of
about 5h , where h = ( n3

e )1/4 is the Kolmogorov length scale.
In the DNS study of Jiménez et al. (1993) it was shown that
stretching, a = wiw jsi j/w2, is relatively low in small-scale
vortices which indicates lack of self-amplification. The lack
of self-amplification means that the vortices are passive and
decoupled from the straining field of the flow. The worms are
sustained by the strain field of the flow but the strain field is
not affected by the presence of the worms. So, the worms are
the consequence of turbulence dynamics and not important in
evolution of the dynamics. For larger size vortices the strain
field and the vortices show a two-way interaction with each
other. The strain field is modified by the presence of the large
scale vortices and the modified strain field modifies back the
vortices. So on the contrary to small scale vortices, the large
scale vortices are dynamically important in evolution of turbu-
lence (Tsinober, 2009). Despite the many efforts to understand
the importance and interactions of vortical structures with the
surrounding flow, our understanding is still incomplete. In par-
ticular, the way vortical structures exchange mass, momentum
and vorticity with the surrounding fluid has remained obscure.
We show that fine-scale vortical structures are by no means
passive in the sense of exchange, i.e. the interact with the back-
ground flow by entraining (detraining) mass radially (axially)
and are thus not frozen to the flow or passively advected.
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In addition to the inherent difficulty in obtaining fully resolved
volumetric time-resolved measurements, there is the additional
challenge of robust identification of high enstrophy structures.
The intense vortical structures are usually detected by using
a threshold on the norm of the vorticity field or the intensity
of vorticity relative to the strain field, which are not objective
detection methods. That is, besides the dependence on a user-
dependent threshold, the results also depend on the observer,
i.e. a change of reference system will yield different structures.
In this study, we use a recent method proposed by Haller et al.
(2016) based on the vorticity deviation to objectively detect the
structures in our experimental data set. The method isolates a
coherent fluid volume, in which fluid elements complete equal
bulk material rotation relative to the mean rotation. The result-
ing coherent structures do not change with reference system
and are truly objective. Recently, the method has been suc-
cessfully applied to 3D turbulence (Neamtu-Halic et al., 2019).
However, it has not yet been used in a more fundamental HIT
set up with a moderately large Reynolds number forcing ex-
hibiting a broad range of vortex sizes.
Our aim here is to study the interaction of the worms with the
surrounding flow based on an objective detection method that
provides the boundaries of the structures and allows quanti-
fying the exchange of mass, momentum and vorticity across
them.

Description of the experimental data set
The experimental data set that is analyzed in this study

is from the scanning particle image velocimetry (PIV) mea-
surement of homogeneous turbulent flow between a pair of
counter-rotating impellers in a large von Kármán mixing tank
facility (Lawson & Dawson, 2014, 2015). A two-dimensional
sketch of the facility with its dimensions and the theoretical
flow pattern inside the tank is shown in figure 1. The facility
is a dodecagonal tank made of Perspex with 2m height and 2m
width. The diameter of the impellers is 1.6m and the vertical
distance between the two impellers is about 1.25m. The ax-
isymmetric shear generated by the revolution of the impellers
induces a secondary flow pattern because of the centrifugal
pumping effect. The superposition of the primary flow pattern
(axisymmetric shear) and the secondary flow pattern (centrifu-
gal pumping) makes homogeneous turbulence at the center of
the tank with almost zero mean velocity and high level of tur-
bulent fluctuations. The Reynolds number of the flow based
on the impeller radius ReRI = WIR2

I /n is 23,000 where WI is
the rotational speed of the impellers, RI is the radius of the
impellers, and n is the kinematic viscosity of the fluid. The
Reynolds number based on Taylor micro-scale of the flow is
Rl = 179 and the Kolmogorov length scale is h = 0.926mm.
The spatial resolution of the data set is about 1h . The non-
dimensional volume of the flow is Lx/h ⇥ Ly/h ⇥ Lz/h =
135⇥134⇥25.4. In total, the data set consists of 1003 statis-
tically independent volumes with long and random separation
times between consecutive acquisitions. The detailed descrip-
tion of the volumetric scanning-PIV measurement technique
that is used to achieve the velocity fields can be found in Law-
son & Dawson (2014).

Objective Eulerian Coherent Structure defini-
tion and the detection method

To detect the fine-scale vortical structures objectively in
the flow field the definition of Objective Eulerian Coherent
Structure (OECS) proposed by Haller et al. (2016) has been

2m

1.6m

2m

1.25m

Figure 1. Schematic of the big von Kármán mixing flow fa-
cility.

implemented. The definition of OECS is based on Instanta-
neous Vorticity Deviation (IVD) scalar field.

IV D(x, t) = |w(x, t)�w(t)| (1)

where w = —⇥u is the vorticity vector and w is the spa-
tially averaged vorticity vector at each time step. OECS is de-
fined as a nested family of level sufaces of IVD. The value of
IVD does not increase when marching outwards from the cen-
ter. The center has the maximum value of IVD and the bound-
ary is defined as the outermost convex level surface. This defi-
nition of vortical structure is observer-independent and ensures
instantaneous coherence of the rate of material bulk rotation
relative to the mean background rotation (Haller et al., 2016).
An algorithm based on the presented definition has been devel-
oped and implemented to detect the three dimensional vortical
structures. The algorithm is explained in details in Neamtu-
Halic et al. (2019).

Burgers’ vortex model
Since some features of the small-scale vortical structures

are compared to the Burgers’ vortex model, a short description
of it is provided here. The Burgers’ vortex model is an ex-
act solution of incompressible Navier-Stokes equation by as-
suming that the vorticity field is unidirectional. It means that
the vorticity field is either one dimensional or both the vortic-
ity and strain fields are axisymmetric (Saffman, 1995). Burg-
ers’ vortices are stable as their radii do not change. Vorticity
is produced by the inviscid phenomenon of vortex stretching
(w ·—u) inside the vortex and is diffused outward by the vis-
cous phenomenon of vorticity diffusion (n—2w). The compet-
ing effects of these phenomena lead to entrainment of fluid in
radial direction into the vortex and detrainment of fluid along
the axial direction to conserve rotational energy and mass (fig-
ure 2). Since an exact solution exists for the flow of Burgers’
vortex, all the parameters related to the velocity field and ve-
locity gradient tensor can be calculated analytically.
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Figure 2. Burgers’ vortex model.

RESULTS
In figure 3 the intense vortical structures in a snapshot

of the experimental data set are shown. The black curved
lines show the center of the structures and the pink surfaces
show the boundary of each structure. In total, about 12500
structures have been detected over the 1003 snapshots of the
data set. The average radius of the structures is 5.1h (figure 4)
and were found to occupy 1.4% of the measurement volume
which is in agreement with the DNS study of Jiménez et al.
(1993).

The J-PDFs of enstrophy (w2 = w.w where w is
the vorticity vector) and dissipation (e = 2nsi jsi j where
si j =

1
2 (

∂ui
∂x j

+
∂u j
∂xi

) is the rate of strain tensor) are calcu-
lated for the whole volume of flow (figure 5) and within
the structures (figure 6), separately. By comparing these
J-PDFs one can see a shift towards the high-vorticity and
low-strain quadrant for the points within the structures. Also,
a noticeable preference can be seen for the J-PDF within
the structures to get aligned with the diagonal line of the
enstrophy-dissipation figure. This preference shows that the
extreme events of enstrophy and dissipation scale together
inside the structures.

Further insight can be gained by considering the
alignment between the vorticity vector w = (w1,w2,w3)
and the rate-of-strain eigenvectors e = (e1,e2,e3), where
s1 � s2 � s3 are the corresponding eigenvalues, as it affects
the vortex stretching phenomenon (production/destruction
of enstrophy, wiw jsi j) (Tsinober, 2009). For incompressible
flows, from the continuity equation ( ∂ui

∂xi
= 0) it can be

concluded that s1 + s2 + s3 = 0. This means than s1 > 0
and s3 < 0 everywhere in a flow field and that the value
of s2 can be either positive or negative depending on the
value that the sum of s1 and s3 has (s2 = �(s1 +s3)). The
alignments, cos(qi) = ei · w

|w| , are calculated for the whole
volume of the flow and within the structures and shown in
figure 7. For the case of the whole volume it can be seen

that the vorticity vector and the intermediate eigenvector are
well-aligned with each other. The alignment between the
vorticity vector and the compressive eigenvector was found
and shows that these two vectors are mostly perpendicular to
each other. However, the PDF of the alignment between the
vorticity vector and the extensional eigenvector showed no
preferential alignment. The preferential alignment between
the vorticity and the intermediate strain eigenvector seems to
be a universal feature of turbulent flows (Elsinga & Marusic,
2010). On the other hand, for the case of inside the structures
it can be seen that the vorticity vector is also aligned with the
intermediate eigenvector but it is normal to both extensional
and compressive eigenvectors. So, one can interpret these
structures as quasi 1-D with weak curvature because the
vorticity vectors inside them have a strong preference to be
aligned with the intermediate eigenvector and to be normal
to the rest of the eigenvectors (Tsinober, 2009). As it was
discussed earlier, the intermediate eigenvalue s2 can take ei-
ther positive or negative values. For the case of the structures,
since the vorticity vector has a strong preference to be only
aligned with the intermediate eigenvalue the sign that s2 takes
determines if the dominant topological phenomenon is vortex
stretching (wiw jsi j > 0) or vortex compression (wiw jsi j < 0).
Figure 8 shows PDFs of the three eigenvalues of the rate of
strain tensor for both the cases of whole volume and inside
the structures. The PDFs of the eigenvalues for the case of
inside the structures have wider tails compared to the whole
volume of flow. This means that these structures are intense
realization of vortex stretching/compression in the flow field.
As it is expected the value of s1 is only positive and the value
of s3 is only negative. For s2 it can be seen that both negative
and positive values are probable but on average it is positive
for the both cases of whole volume and inside the structures
(h s2

hw2i0.5 i > 0). It can be concluded that these structures are
stretched on average by the strain field of the flow.

Since these intense vortex filaments tend to be embed-
ded in a more quiescent (i.e. mostly characterized by rather
weak enstrophy) flow, we can treat the boundary of the vortex
filaments as an internal interface (Eisma et al., 2015; Ishihara
et al., 2013), analogous to the turbulent/non-turbulent interface
of free shear flows and evaluate whether they entrain and/or
detrain flow. To investigate this, a formula for calculating the
entrainment velocity, vn, derived by Holzner & Lüthi (2011) is
used (equation 2):

vn =�
2wiw jsi j

|—w2|
�

n ∂ 2w2

∂x j∂x j

|—w2|
+

2n ∂wi
∂x j

∂wi
∂x j

|—w2|
(2)

Here the entrainment velocity, vn, is defined as
vnn = us �u where us is the velocity of an isosurface element,
u is the flow velocity at that isosurface, and n = —w2

|—w2| is the
normal vector to the isosurface. According to this definition,
when vn  0 fluid elements at the isosurface are entrained into
the structure and when vn > 0 fluid elements are detrained
out of the structure (Mistry et al., 2019). Figure 9 shows
the entrainment velocity and its components in equation 2
evaluated on the boundary of the structures. The entrainment
velocity is negative on average which means that the structures
are entraining ambient fluid on average. To conserve mass the
same amount of fluid needs to be detrained axially in order
to preserve the total volume of the vortices. Furthermore,
by comparing the different terms in the entrainment velocity
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Figure 3. Example of OECSs in a snapshot of the experimental data set. Dimensions are normalized by the Kolmogorov length scale.
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the whole volume.

equation we can see that the average entrainment results from
a competition between inviscid and viscous effects. Figure 9
shows that local entrainment ( vn

uh
 0) happens where local

vortex stretching is greater than vorticity diffusion. On the
other hand, detrainment ( vn

uh
> 0) occurs when the summation

of local effects of vorticity diffusion and dissipation are
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Figure 6. J-PDF of normalized enstrophy and dissipation for
the structures.

greater than the local vortex stretching. This behaviour is
consistent with a stable Burgers’ vortex model where the
ambient fluid is entrained to the vortex from the boundary in
radial direction, ur = �a

2 r < 0, and that the vortex remains
stable because of the balance between inviscid and viscous
phenomena acting on it.

To further investigate the importance of different physical
phenomena in the vortical structures and to compare them with
the Burgers’ vortex model, all the terms in enstrophy transport
equation (equation 3) are calculated along the radial lines of
the structures. This equation implies that the rate of change
of enstrophy (the material derivative, Dw2

Dt = ∂w2

∂ t + u j
∂w2

∂x j
)

desscribes a competition between inviscid vortex stretching
(2wiw jsi j) , the viscous diffusion of enstrophy (n ∂ 2w2

∂x j∂x j
), and

enstrophy dissipation (�2n ∂wi
∂x j

∂wi
∂x j

). Figure 10 plots the av-
eraged values of these terms conditioned on radial directions
of the structures. The terms are normalized by t3

h where
th = ( n3

e )1/2 is the Kolmogorov time scale. The horizontal
axis of the plot represents the normalized radius of the struc-
tures. For each radial line, the radial distance from the center
(r) is normalized by the local radius of the structure (R).
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Dw2

Dt
= 2wiw jsi j +n ∂ 2w2

∂x j∂x j
�2n ∂wi

∂x j

∂wi
∂x j

(3)

Figure 10 shows that near the center of the structures
( r

R = 0), enstrophy diffusion is more dominant than both vor-
tex stretching and enstrophy dissipation, the latter of which has
relatively small values resulting in Dw2

Dt < 0. By marching to-
wards the boundary from the center both vortex stretching and
enstrophy diffusion become weaker as dissipation gradually
increases. The rate of change of diffusion is faster than vortex
stretching which results in Dw2

Dt > 0 after r
R ⇡ 0.2. Dissipa-

tion reaches a maximum near the boundary of the structures.
As r

R > 1, all the terms become constant (flat). To compare
the behaviour with Burgers’ vortex model, equivalent Burg-
ers’ vortices are considered and the same terms of the equa-
tion are calculated and plotted in figure 11. The equivalent
Burgers’ vortices are achieved by calculating stretching (a0)
and enstrophy (w2

0 ) at the center of the structures. By know-
ing a0 and w2

0 and using the analytical relations available for
Burgers’ vortex model all the desired terms can be calculated.
By comparing figures 10 and 11 a similar competition between
the different terms in the enstrophy transport equation can be
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Figure 9. PDFs of entrainment velocity, vn, at the boundary
of the structures and its components.
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Figure 10. Averaged enstrophy transport equation terms con-
ditioned on radial lines inside the structures.

observed although with some small changes in their magni-
tude which shows that, on average the Burgers’ vortex model
reproduces the dominant physics of the small-scale structures
quite well.

SUMMARY & CONCLUSIONS
In this study, features of small-scale vortical structures

(’worms’) in a fully resolved 3D-3C experimental data set
of homogeneous axisymmetric turbulence with an Rel = 179
measured at at the center of a large-scale von Kármán mixing
tank are investigated. To avoid the arbitrariness in the defi-
nition of vortices (thresholding), an objective definition based
on Objective Eulerian Coherent Structure (OECS) proposed
by Haller et al. (2016) is implemented to detect the vortices
in the volumetric velocity fields. In total, 12500 vortices were
detected in 1003 volumes of the turbulent flow. The average
radius of the structures is hRi= 5.1h that is in agreement with
hRi ⇡ 5h widely reported in the literature for DNS studies.
Small-scale vortex structures were found to occupy 1.4% of
the volume of the flow in agreement with ⇠ 1% reported in
the literature from DNS. Joint PDFs of enstrophy and dissipa-
tion within the volume and conditioned inside the structures
were showed that the values of enstrophy and dissipation are
concentrated in the small-scale vortices compared to the whole
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Figure 11. Averaged enstrophy transport equation terms of
the equivalent Burgers’ vortex model conditioned on radial
lines inside the structures.

flow field and that they scale inside the structures. The align-
ment of the vorticity vector and eigenvectors of the rate of
strain tensor showed the vorticity vector has a strong tendency
to be aligned with the intermediate eigenvector and be normal
to the compressive and extensional eigenvectors as found in
previous turbulent flows. Since the average value of the inter-
mediate eigenvalue is positive (hs2i > 0) vortex stretching is
the dominant topological phenomenon.

To investigate the exchange of mass by the small-scale
vortices, the entrainment velocity equation was solved on the
boundary of the structures showing that they, on average, en-
train relatively ambient flow from the surroundings. The total
volume of the structures does not change in homogeneous sta-
tionary turbulence, the mass entrainment is compensated by
the mass outflow along the axial direction. It is also shown
that the local entrainment/detrainment at the boundary is the
result of a competition between inviscid and viscous phenom-
ena. This exchange of mass is accompanied with exchange
of momentum, energy, and enstrophy with the ambient fluid.
Therefore the structures are not passive in this sense. Finally,
the enstrophy transport equation conditioned on radial lines of
the vortices was studied and compared to those of equivalent
Burgers’ vortices. The results indicate that Burgers’ vortex
model on average reasonably captures the flow physics of the
vortex structures.
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ABSTRACT
Von Kármán swirling flow is often used as a canonical

case to study stationary turbulence experimentally. Although
many studies focus on the structure and statistics of turbulence
produced at the centre of this flow, several studies focusing
on the large-scale global features of the flow have identified
interesting phenomena such as equatorial symmetry breaking
(de la Torre & Burguete, 2007; Cortet et al., 2010). In this pa-
per, we investigated the potential presence and characteristics
of a large-scale slowly rotating structure with high kinetic en-
ergy content. The structure was recently identified by Baj et al.
(2019) at Re = 3⇥ 104. However, we considered a Reynolds
number higher than the critical phase transition range proposed
by Cortet et al. (2010), i.e. 5 ⇥ 104 < Rec < 105. Stereo-
scopic particle image velocimetry (PIV) was used to measure
the stationary flow at Re = 1.21⇥105, but such a structure was
not observed. However, we found that introducing a modula-
tion with harmonic phase shift between the impellers caused
a large-scale oval-shape structure to emerge in the flow. The
structure showed oscillations in the axial and circumferential
directions of the flow at the modulation frequency, with the ax-
ial oscillation being the most significant. The detected struc-
ture contained approximately 40% of the kinetic energy of the
measured flow.

INTRODUCTION
It is widely agreed that large-scale turbulent motions are

flow dependent, whereas their small-scale counterparts pos-
sess certain universal features regardless of the flow type. The
length scales of the large-scale motions are comparable to the
physical size of the flow. Consequently, these motions are
greatly impacted by the specific flow geometry, boundary con-
ditions, and instabilities inherent to the flow (Pope, 2000).
These motions have been of interest in turbulence research as
many natural and engineering applications are related to the
large-scale motions, e.g. mixing, drag force, and heat trans-
fer. Some examples of these studies are in pipe flow (Hell-
ström et al., 2015), boundary layer (Lee, 2017), channel flow
(Lee et al., 2014), Rayleigh-Bénard flow (Mishra et al., 2011),

and Couette flow (Lee & Moser, 2018). The overall conclu-
sion from these studies is that turbulence demonstrates a much
wider range of features at large-scales in odds with certain
well-established models, e.g. turbulent-viscosity hypothesis.
Moreover, large-scale turbulence exhibits nonlocality in time
and space, meaning that the turbulent process has a long mem-
ory and is influenced by events that occur at remote distances
within the flow field (Pope, 2000).

Research on stationary turbulence generated by two
counter-rotating discs, known as von Kármán swirling flow,
has been conducted since the early works of von Kármán
(1921), Batchelor (1951) and Picha & Eckert (1958). The
flow is particularly suitable for experimental studies because
it produces homogeneous turbulence with high velocity fluc-
tuations and a negligible mean flow at the center of the ap-
paratus, where a stagnation point is established. Most stud-
ies on this flow have focused on the dissipation scales near
the flow center (Lawson & Dawson, 2015; Debue et al., 2021;
Aligolzadeh et al., 2022, 2023). However, the literature on
the large-scale features of the flow is relatively limited. de la
Torre & Burguete (2007) observed symmetry breaking behav-
ior of the velocity field in a von Kármán flow at Re ' 3⇥105.
This symmetry breaking manifests itself as a slow dynamic,
random inversion between two states (bi-stability) when the
impellers are counter-rotating. On the other hand, a periodic
inversion pattern is observed when a low frequency harmonic
forcing is applied to one of the impellers. In a related study,
Cortet et al. (2010) proposed that turbulence in von Kármán
swirling flow undergoes a critical phase transition within the
range 5⇥104 < Re < 105. This hypothesis is based on exper-
imental observations of significant maxima required for sym-
metry breaking within a specific range of impeller forcing. In
a recent study, Baj et al. (2019) discovered a large-scale, low-
frequency velocity structure with high kinetic energy rotating
around the axis at Re ' 3⇥104. The topology of the detected
structure reported to be similar to macro-instabilities observed
in stirred vessels (Doulgerakis et al., 2011).

The present study aimed to build on the findings of Baj
et al. (2019) to examine whether the structure exists be-
yond the critical phase transition Reynolds number reported
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Figure 1: Von Kármán swirling flow: (a) sketch of the
facility along with the key dimensions and the mean flow
pattern and (b) the stereoscopic PIV measurement setup.

by Cortet et al. (2010). Another objective was to determine
whether it was feasible to activate a similar structure by mod-
ulating the impellers.

EXPERIMENTAL PROCEDURE
The measurements were conducted in the large-size von

Kármán swirling flow facility at Norwegian University of Sci-
ence and Technology, Trondheim, Norway. Two identical im-
pellers with a radius of R = 0.8m were located at the top and
bottom of a dodecagonal transparent plexiglass tank, 2m tall
and 2m across, filled with water. The impellers were 1.25m
apart. Sub-figure 1a depicts a schematic of the facility, high-
lighting its key dimensions. Moreover, it illustrates the mean
flow pattern, which is characterized by a primary horizontal
shear layer. This layer, in turn, induces a secondary vertical
circulation pattern due to the centrifugal pumping force.

As a reference case, the two impellers were set to counter-
rotate at a speed of 2rpm ( f0 = 2/60 = 0.033 Hz, W0 = 2p f0),
which corresponded to a Reynolds number of Re = R2W0/n '
1.2⇥105. In other cases, modulations were introduced either
harmonically, as described in equation 1 for the top impeller
and equation 2 for the bottom impeller, or randomly using
Langevin forcing (see Pope (2000)). In the harmonic cases,
modulation amplitude, frequency, and phase shift between the

impellers were represented by Am, fm, and Dfm, respectively.

Wt(t) = W0

⇣
1+Am sin(2p fmt +Dfm)

⌘
(1)

Wb(t) = W0

⇣
�1+Am sin(2p fmt)

⌘
(2)

A total of 11 cases were measured, including the reference
case, 8 cases of harmonic modulations, and 2 cases of ran-
dom modulations. The base case of harmonic modulation
was set to Am = 0.25, fm/ f0 = 0.1, and Dfm = p . The rest
of the harmonic modulation cases were produced by varying
only one of the three parameters in the base case. These pa-
rameters took the following values: Am = [0.15, 0.25, 0.35],
fm/ f0 = [0.05, 0.1, 0.15], and Dfm = [p/4, p/2, 3p/4, p].
However, the present paper discusses only the results for
Dfm = p,3p/4,p/2,p/4 while the other two parameters were
kept fixed at Am = 0.25 and fm/ f0 = 0.1. Equations 1 and
2 can be used to decompose the normalized rotation speed
of the facility into two components: solid body rotation W⇤

sb,
i.e. co-rotation, as shown in equation 3, and shearing W⇤

sh, i.e.
counter-rotation, as shown in equation 4:

W⇤
sb(t) =

Wt(t)+Wb(t)
2W0

= 2Am cos
⇣Dfm

2

⌘
sin

⇣
2p fmt +

Dfm
2

⌘ (3)

W⇤
sh(t) =

Wt(t)�Wb(t)
2W0

= 1+Am sin
⇣Dfm

2

⌘
cos

⇣
2p fmt +

Dfm
2

⌘ (4)

When Dfm = p , the two impellers counter-rotate
(W⇤

sb(t) = 0). As Dfm decreases, amplitude of the harmonic
co-rotation between the impellers increases (W⇤

sb(t) 6= 0). The
maximum is reached at Dfm = 0 (W⇤

sb(t) = 2Am sin(2p fmt)).
In the reference case, only pure shearing was present, i.e.
W⇤

sb,re f (t) = 0 and W⇤
sh,re f (t) = 1. Figure 2 demonstrates the

profiles of the normalized rotational speed decomposition in
different cases over a period of modulation. The correlation
coefficient between the solid body and shearing rotations was
maximum at Dfm = p/2, with a value of r = 0.01. It then
decreased to r = 0.007 at p/4 and 3p/4, and finally reached
r = 0 at Dfm = p .

Stereoscopic PIV was used to measure the velocity fields
at the center of the facility. The field of view (FoV) was
' 50⇥50 cm2. The spatial resolution of the measurement was
Dx = 3.68 mm ' 13.8h where h was the Kolmogorov length-
scale of the flow. The setup for the stereoscopic PIV measure-
ment is shown in sub-figure 1b. The measurements obtained
all three components of velocity in a plane (FoV). To ensure a
reasonable convergence of turbulence statistics, the time span
of the measurements covered at least 1000 rotations of the im-
pellers based on W0 (2rpm). The length-scales from the mea-
surements were normalized by the impeller radius, x⇤ = x/R,
and the time-scales were normalized by the impeller frequency
in the reference case, t⇤ = t f0. Reynolds decomposition was
implemented on the velocity fields from the measurements, Ui,
to calculate the velocity fluctuations ui =Ui�Ui (Pope, 2000).
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Figure 2: Normalized decomposition of the rotational ve-
locity into shearing, W⇤

sh in gray, and solid body rotation,
W⇤

sb in black, in the harmonic modulation cases.

RESULTS
To investigate the effect of forcing modulation on the flow

field characteristics, the root mean square (rms) of velocity
fluctuations and integral length-scales were calculated in dif-
ferent cases followed by power spectral density (PSD) and
proper orthogonal decomposition (POD) analyses to provide
a more comprehensive picture. Overall, the flow was predom-
inantly affected when Dfm 6= p , i.e. some degree of solid body
rotation existed. This can be observed by comparing the re-
sults between the cases. The analysis of velocity components
indicated that the modulation effect was most pronounced in
the axial direction, followed by the circumferential direction,
and finally to a limited extent in the radial direction. However,
the effect was missing in the flow field when Dfm = p , i.e.
pure shearing, even when fm and Am were varied.

Table 1 presents the rms of velocity fluctuations averaged
over FoV in the modulated cases with different Dfm values,
normalized by the corresponding values in the reference case.
The rms was defined as u0i = (u2

i )
1/2, where ⇤ and h⇤i repre-

sent ensemble averaging in time (over realizations) and space
(over the FoV), respectively. The rms of velocity fluctuations
with instantaneous counter-rotation (Dfm = p) was very sim-
ilar to the reference values. However, by introducing a har-
monic phase shift between the impellers, the rms values de-
viated form the reference case. As the phase shift increased,
the rms values in the axial direction exhibited an incremen-
tal trend. The maximum value of hu02i/hu02,re f i was 1.29 at
Dfm = p/4. On the other hand, in the radial direction, the
rms values decreased as the harmonic phase shift increased.
We observe a convex function in the circumferential direc-
tion and the total rms, with the minimum values occurring at
Dfm = p/2. The convex trend is also observable, to a lesser
degree, in the radial and axial directions. Although the authors
are uncertain about the reasons behind this behavior, they spec-
ulate that the convexity is linked to the forcing strategy. The
forcing modulation was the superposition of harmonic shear-
ing and solid body rotation, with the highest correlation at p/2,
as discussed in the experimental procedure section.

To complement the analysis of the velocity fluctuations
and investigate whether the changes in kinetic energy are ac-
companied by changes in the average length-scales of turbu-
lent motions in different directions, the longitudinal integral
length-scales in the axial and radial directions of the flow
were estimated using equation 5 (De Jong et al., 2009). In
this equation, the two point autocorrelation function is calcu-
lated over the available range of FoV from a PIV measure-
ment (0 < r < rmax) followed by fitting an exponential curve

Table 1: The spatially averaged rms of velocity fluctu-
ations in the radial (u01), axial (u02), and circumferential
(u03) directions of the flow, normalized by the reference
case.

(Am,
fm
f0
, Dfm

p ) hu01i
hu01,re f i

hu02i
hu02,re f i

hu03i
hu03,re f i

hu0i
hu0re f i

(0.25, 0.1, 1) 1.01 1.02 1.00 1.01

(0.25, 0.1, 0.75) 0.98 1.14 1.03 1.03

(0.25, 0.1, 0.5) 0.76 1.13 0.81 0.85

(0.25, 0.1, 0.25) 0.81 1.29 0.97 0.98

to estimate the missing tail outside the measurement domain
(rmax < r < •). The measured velocity field in the radial-axial
(x1 � x2) plane was used to calculate L11 and L22 in table 2.

Lii =
Z •

0

hui(x)ui(x+ eir)i
hu2

i (x)i
dr

'
Z rmax

0

hui(x)ui(x+ eir)i
hu2

i (x)i
dr+

Z •

rmax

ai exp(bir)dr

(5)

Table 2: The longitudinal integral length-scales in the ra-
dial (L11) and axial (L22) directions of the flow, normal-
ized by the reference case.

(Am,
fm
f0
, Dfm

p ) L11
L11,re f

L22
L22,re f

L22
L11

(0.25, 0.1, 1) 0.95 1.02 0.74

(0.25, 0.1, 0.75) 0.95 1.30 0.94

(0.25, 0.1, 0.5) 0.91 2.09 1.56

(0.25, 0.1, 0.25) 0.87 2.53 1.98

When the impellers counter-rotated (Dfm = p), the inte-
gral length-scales in table 2 varied within ±5% compared to
the reference case. However, when solid body rotation was
introduced (0 < Dfm < p), a significant continuous growth
appeared in the axial direction, accompanied by a decreasing
trend in the radial direction. The maximum growth occurred at
Dfm = p/4 where L22/L22,re f = 2.53. In agreement with this
growth in the axial direction, the aspect ratio of the length-
scales increased significantly from L22/L11 = 0.68 in the ref-
erence case to L22/L11 = 1.98 for Dfm = p/4. Thus, mod-
ulations with harmonic phase shift between the impellers in-
creased both the kinetic energy and size of the turbulent struc-
ture in the axial direction of the flow. The increase in size
was more significant than the kinetic energy, i.e. L22/L22,re f =
2.53 while hu02i/hu02,re f i= 1.29. This implies that a large-scale
motion in the axial direction was activated due to the modula-
tion with some degree of harmonic solid body rotation, where
the intensity of this motion varied with Dfm.
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To further investigate this, figure 3 shows the PSDs of the
velocity fluctuations, normalized by the reference case. PSD is
defined as the Fourier transform of the auto-correlation func-
tion of the velocity fluctuations (equation 6). Figure 3 dis-
plays the spatially averaged PSDs of velocity fluctuations in
the radial u1, axial u2, and circumferential u3 directions of the
flow. The area under the PSD curve in the frequency domain
is equal to the rms of the corresponding velocity fluctuation in
the real (time) domain. The aim here is to investigate the distri-
bution of kinetic energy in the frequency domain with respect
to the reference case. This demonstrates how forcing modula-
tions affected the energy distribution in various directions, and
whether energy distribution peaks emerged at certain frequen-
cies.

Suiui( f ) =
Z •

�•
Ruiui(t)e�ı2p f t dt (6)

Sub-figure 3a, the reference case, does not exhibit any
peaks in any direction. The same is observed in sub-figure
3b where Dfm = p . However, sub-figures 3d (Dfm = p/2)
and 3e (Dfm = p/4) illustrate significant peaks in the ax-
ial and circumferential directions at the modulation frequency
f/ f0 = fm/ f0 = 0.1. The peak in the axial direction is more
prominent than the circumferential direction. Furthermore,
sub-figure 3c (Dfm = 3p/4) exhibits a significant peak in the
axial direction at the modulation frequency. However, the peak
in the circumferential direction disappears. Figure 3 also in-
dicates that when the peaks emerged, the energy was shifted
only from low frequencies toward the peak frequency (mod-
ulation frequency) while the higher frequencies remained un-
affected, similar to the stationary forcing condition (reference
case). This redistribution of kinetic energy in the frequency
domain might imply that the signature of large-scale forcing
modulation was nearly absent at the smaller scales of the tur-
bulent cascade. Further analysis is required to investigate this
in more detail.

To evaluate the characteristic flow motions corresponding
to the energy peaks observed in the PSD plots (figure 3), POD
analysis was utilized (equation 7):

ui(x j, t) =
•
Â
n=1

an(t)Fn
i (x j) (7)

First, we consider the stationary forcing (reference case)
and subsequently, the analogous plots for the harmonic forcing
modulations are presented. This facilitates the comparison be-
tween these cases. Sub-figures 4a and 4b display the first two
POD modes (Fn

i (x j)) in the reference case, while sub-figure
4c illustrates the PSDs of the time coefficients of these modes
(PSD(an(t))). No peak appeared in the PSD plots of the coef-
ficients. Finally, sub-figure 4d demonstrates the energy share
of the modes, i.e. (a2

n(t)/Â•
n=1 a2

n(t))⇥ 100(%)), indicating
that the first four modes accounted for 64% of the total fluctu-
ation energy of the flow, while the first two modes accounted
for 47%. Figures 5, 6, 7, and 8 depict plots similar to figure 4,
with Dfm values of p , 3p/4, p/2, and p/4, respectively. The
values of Am = 0.25 and fm/ f0 = 0.1 were kept unchanged.
In figure 5, when Dfm = p , the PSDs plot did not exhibit any
peaks (only the first two are presented here). In figure 6, when
Dfm = 3p/4, the PSDs of the first two modes did not show
any peaks. However, in modes 3 and 4, peaks appeared at the
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Figure 3: Normalized PSDs of velocity fluctuations in the
radial (u1), axial (u2), and circumferential (u3) directions
within the cases (Am = 0.25, fm/ f0 = 0.1, Dfm): (a) ref-
erence (no modulation), (b) Dfm = p , (c) Dfm = 3p/4,
(d) Dfm = p/2, (e) Dfm = p/4.

modulation frequency where the two modes contributed to a
total of 12.6+ 6.2 = 18.8% of the kinetic energy of the flow.
These modes are topologically paired and together formed a
single structure. The PSDs of their time coefficients indicate
that this structure oscillated harmonically only in the axial di-
rection at the modulation frequency. However, it was axisym-
metric in the circumferential direction without any oscillation
at a specific frequency. In figures 7 and 8, PSD peaks ap-
peared in modes 1, 2, and 4 for Dfm = p/2 and Dfm = p/4.
The first two modes accounted for 24.3+ 16.1 = 40.4% and
22.8+13.6 = 36.4% of the kinetic energy of the flow, respec-
tively. The first two modes are paired and together formed
an energetic structure that resembled an oval. In addition, the
PSDs of their time coefficients suggest that the structure os-
cillated harmonically at the modulation frequency in both the
axial and circumferential directions.

CONCLUSION
In this paper, we investigated the presence of large-scale

harmonic motions in a von Kármán swirling flow at Re =
1.21⇥ 105, a Reynolds number higher than the critical range
hypothesised by Cortet et al. (2010), i.e. 5⇥104 < Rec < 105.
This study was motivated by the observations of Baj et al.
(2019) at Re = 3 ⇥ 104, below the critical range. We used
stereoscopic PIV to measure the flow in our large-size facil-
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Figure 4: POD analysis of the reference case; (a) mode 1
and (b) mode 2 , i.e. Fn=1

i (x j) and Fn=2
i (x j) where u⇤1

and u⇤2 are shown as the streamlines and u⇤3 as the filled
contour. (c) PSDs of the time coefficients of modes 1
and 2. (d) The energy share of the modes.
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Figure 5: POD analysis of the case (Am = 0.25, fm/ f0 =
0.1, Dfm = p); (a) mode 1 and (b) mode 2 , i.e. Fn=1

i (x j)
and Fn=2

i (x j) where u⇤1 and u⇤2 are shown as the stream-
lines and u⇤3 as the filled contour. (c) PSDs of the time
coefficients of modes 1 and 2. (d) The energy share of
the modes.
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Figure 6: POD analysis of the case (Am = 0.25, fm/ f0 =
0.1, Dfm = 3p/4); (a) mode 3 and (b) mode 4 , i.e.
Fn=3

i (x j) and Fn=4
i (x j) where u⇤1 and u⇤2 are shown as

the streamlines and u⇤3 as the filled contour. (c) PSDs of
the time coefficients of modes 3 and 4. (d) The energy
share of the modes.
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Figure 7: POD analysis of the case (Am = 0.25, fm/ f0 =
0.1, Dfm = p/2); (a) mode 1 and (b) mode 2 , i.e.
Fn=1

i (x j) and Fn=2
i (x j) where u⇤1 and u⇤2 are shown as

the streamlines and u⇤3 as the filled contour. (c) PSDs of
the time coefficients of modes 1 and 2. (d) The energy
share of the modes.
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Figure 8: POD analysis of the case (Am = 0.25, fm/ f0 =
0.1, Dfm = p/4); (a) mode 1 and (b) mode 2 , i.e.
Fn=1

i (x j) and Fn=2
i (x j) where u⇤1 and u⇤2 are shown as

the streamlines and u⇤3 as the filled contour. (c) PSDs of
the time coefficients of modes 1 and 2. (d) The energy
share of the modes.

ity. No such a structure was detected in the stationary flow.
The possibility of activating a similar large-scale harmonically
oscillating structure was explored by applying harmonic mod-
ulations to the impellers. Various numerical techniques were
employed to assess the flow fields from the measurements,
such as rms of velocity fluctuations (u0i), longitudinal integral
length-scales (Lii), PSD, and POD. The results indicated that
when the amplitude of solid body rotation increased (decreas-
ing Dfm from p to p/4), the rms of velocity fluctuations and
the longitudinal integral length-scale in the axial direction of
the flow, u02 and L22, showed incremental trends. The growth
rate of L22 was more pronounced than that of u02. The PSD and
POD analyses revealed the appearance of a large-scale oval-
shape structure in the flow with harmonic oscillations only
when solid body rotation was introduced (Dfm 6= p). When
Dfm = p/4 and p/2, the structure showed the most signifi-
cant energetic harmonic oscillations in the axial direction of
the flow, while the circumferential direction showed weaker
harmonic oscillations. The oscillating structure accounted for
approximately 40% of the kinetic energy of the flow. However,
when Dfm = 3p/4, the harmonic oscillation emerged only in
the axial direction of the flow, and not in the circumferential
direction. This axially oscillating structure accounted for ap-
proximately 20% of the kinetic energy of the flow. The radial
direction of the flow in the mentioned cases did not exhibit any
significant harmonic oscillations.
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