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A B S T R A C T

Direct Load Control (DLC) is a demand response strategy in which customers receive compensation from
utilities in return for permitting them to regulate the operation of specific equipment. This paper analyzes
the impacts of DLC programs on the transition to renewable energy within the European electricity system
towards 2060. The study quantifies the achievable hourly potential for DLC across Europe in the residential
sector. By implementing and developing a DLC module within the stochastic capacity expansion model EMPIRE,
we investigate how costs, long-term investments, and long-term marginal prices are affected by residential DLC
participation rates. The research utilizes a comprehensive DLC dataset, including ten appliances such as electric
vehicles, heat pumps, refrigeration, and others. This dataset serves as the basis for creating four storylines to
investigate the integration of these programs into the European electricity system. The results indicate that
residential DLC programs have some impact on grid-battery deployment, PV plant penetration, and electricity
prices. In the best-case scenario, involving ambitious participation of residential loads in DLC programs without
compensation, cost savings are about 1% versus not introducing DLC. The findings contribute to understanding
the value of demand response programs in Europe, indicating that the savings they bring might not be sufficient
to provide enough incentives or compensation for widespread participation in such programs. That is, from a
long-term investment or capacity expansion perspective, it may not be worthwhile to soley include residential
demand response in the planning of the electricity system.
1. Introduction

The European electricity system is undergoing a transformation with
the rapid integration of Variable Renewable Energy Sources (VRES)
driven by rising electricity demand, cost competitiveness, and climate
policies [1]. This evolution necessitates greater system flexibility due
to the growth of VRES and the phasing out of conventional thermal
power plants [2]. A potential focus is now on demand-side manage-
ment [3,4] to shape electricity demand, influencing both long-term
capacity investments and short-term price variability [5]. In this regard,
the deployment of smart meters in Europe has enabled a bottom-up
restructuring of the electricity sector. With over half of EU countries
reaching a minimum of 10% smart meter penetration and ten countries

Abbreviations: SOC, State of Charge; DLC, Direct Load Control; DR, Demand Response; RLG, Responsive Load Group; ESS, Energy Storage System; VRES,
Variable Renewable Energy Sources; DW, Dishwasher; WM, Washing Machine; TD, Tumble Dryer; SH, Space Heater; HP, Heat Pump; WH, Water Heater; CP,
Circulation Pump; AC, Air Conditioning; Ref, Refrigerators and freezers; EV, Electric Vehicle; EMPIRE, European Model for Power system Investments with
Renewable Energy; NUTS, Nomenclature of territorial units for statistics
∗ Corresponding author.
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exceeding 80% [6], end-users are no longer passive consumers with
fixed electricity demands. Emphasizing the importance of end-users,
the EU Strategic Energy Technology Plan [7] places them at the heart of
the European energy transition, recognizing their potential to generate,
store, and manage electricity. Hence, the development prospects of de-
mand response programs offer possibilities for empowering consumers
and shaping the investments for a low-carbon power system.

In the literature, demand response impacts on the capacity expan-
sion of the power system has been explored in some computational
studies. De Jonghe et al. [8] develop three deterministic mathematical
programming methods to study the impact of demand response on
the cost-optimal generation mix, and they find that demand response
facilitates increased investments in wind capacity. Asensio et al. [9]
develop a bi-level optimization model considering capacity expansion
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and demand response, and they demonstrate that demand response
can defer network investments by solving an equivalent deterministic
mixed-integer linear program. Misconel et al. [10] use a deterministic
linear program (ELTRAMOD) to compare demand response impacts in
two 100% renewable electricity systems: one centralized relying on
wind power and one decentralized relying on solar power. This and
other related studies assume demand response estimates, see review
in [11]. A central work on estimating theoretical estimates of European
demand response has been the work of [12,13] while authors in [11]
propose a methodology to calculate estimates of demand response
for different categories. In contrast, [14] performs an empirical study
for the U.S. based on actual experiences of industrial loads and their
value for peak load reduction. Other studies combine estimates with
empirical findings in the context of micro-grids [15,16].

Whether empirical or theoretical in nature, a central question re-
mains: does the value of demand response outweigh its costs, i.e., does
it provide enough incentive for participation? For instance, [17] esti-
mates the total demand response potential in Northern Europe to be
between 15% to 30% of peak demand. They find that demand response
yields lower costs and emissions. Similarly, [18] notes the role of
demand response in reducing prices in capacity markets. Despite these
potentials, technical and social barriers to demand response deploy-
ment are reviewed by [19], while [20] conducts cost–benefit analyses
to review the economic viability of demand response. Both studies
note the uncertainty of demand response measurement and verification
as well as the lack of energy market setting (e.g., well-established
marketplaces for demand-side flexibility).

Other studies have shown the importance of considering endoge-
nous uncertainty when assessing the capacity expansion of the power
system with large penetration of VRES [21–23]. Although most stud-
ies exploring demand response do not consider endogenous uncer-
tainty [8–10], this is partially addressed by [24], who explore the
impact of seven groups of demand response in the residential, indus-
trial, and commercial sectors on the European power system towards
2050. There, demand response potentials are assumed to respond per-
fectly to market signals by performing a system wide cost minimization,
i.e., demand response is simulated as Direct Load Control (DLC). How-
ever, the authors estimate direct load control potentials based on
theoretical estimates from a study in Germany [25]. To ensure a more
realistic estimation of demand response potential in capacity expansion
models, equivalent direct load control potential must consider the
residential sector’s willingness for DLC and the technical load shift
constraints, including response time, shift time, and hourly availabil-
ity. That is, existing literature has used mostly theoretical estimates
of demand elasticity and uniformly applied to the residential sector
(e.g., not distinguishing appliances or EVs) and without distinctions
between European countries (e.g., willingness to load shifting in Spain
is different than in Norway).

In this paper, we present a novel DLC module integrated into a
capacity expansion model (EMPIRE model1), offering fresh insights into
he willingness of residential consumers in Europe to engage in demand
esponse programs. By employing an empirical study applied to real
ife consumers, we assess achievable residential flexibility using an
xtensive dataset encompassing demand response participation in all
f Europe, while also including the actual willingness to participate
n DLC programs. The computational study explores various scenar-
os for residential DLC program participation factors up to 2060. To
he authors’ knowledge, no previous study has explored DLC impacts
n long-term capacity expansion of the European electricity system
owards 2060 considering endogenous uncertainty while using real

1 European Model for Power system Investments with Renewable Energy
EMPIRE) developed at NTNU, refer to more details and information at Backe
t al. [26] and https://www.ntnu.edu/web/iot/energy/energy-models-hub/
mpire.
2

empirical estimates of the hourly DLC potential from the residential
sector encompassing multiple appliances and all European countries.
In short, the paper’s main contributions are as follows:

• Quantify the achievable hourly potential of residential DLC across
Europe from 2023 to 2060 using the stochastic capacity ex-
pansion model EMPIRE. This constitutes a large-scale compu-
tational analysis conducted in 31 European countries, covering
multiple investment periods (2023 to 2060) while ensuring the
representation of hourly supply–demand balance.

• Develop a new DLC module for the EMPIRE model. Also, re-
lease the updated version of the open source EMPIRE modeling
framework with the DLC module2

• Quantify how costs, investments, and long-term marginal prices
in the European electricity system are impacted by different
participation rates for residential DLC across Europe.

• Provide a wide range of sensitivity analyses to illustrate the
low value DLC provides compared to the incentives required to
activate demand response.

The remainder of the paper is organized into four sections: Section 2
describes the input data and DLC constraints as well as the simulation
instances (case studies). Section 3 describes the EMPIRE model and the
DLC module developed in the computational study. Section 4 presents
the results, and Section 5 suggests further work and concludes this
paper.

2. Computational study and input data

This section briefly covers the DLC dataset and flexibility constraints
employed in this study before delving into the mathematical formula-
tion of the DLC module within the EMPIRE modeling framework, along
with necessary adjustments for its implementation.

2.1. Raw direct load control dataset
The ten residential devices used in this study were selected due

to their high-power demand and ability to be flexible with regard to
timing of use. The electric consuming devices are Dishwasher (DW),
Washing Machine (WM), Tumble Dryer (TD), electric Space Heater
(SH), electric air-to-air Heat Pump (HP), electric Water Heater (WH)
with storage capabilities, heat Circulation Pump (CP), Air Conditioning
(AC), Refrigerators and freezers (Ref), and fully battery Electric Vehicle
(EV). Annual demand profiles for each of these devices are generated on
the NUTS2 (Nomenclature of territorial units for statistics (NUTS)) level
for the EU27, United Kingdom, Switzerland, and Norway on an hourly
granularity from 2022 to 2050 for a representative day for each month
(i.e. 24 h for an average day in each month). A combination of R [27]
and Python [28] were used for data processing, estimation of demand
flexibility, and visualization. The Python and R scripts along with the
input and final data for this paper are freely available for external users.
These resources are hosted on Zenodo (see O’Reilly et al. [29]).

2.2. Direct load control participation
As previously mentioned, existing literature has explored Pan-

European analyses and the attainable potentials of residential demand
response, although these estimations have certain limitations [11,25].
With these considerations in mind, our study derives realistic participa-
tion rates for DLC programs by conducting a comprehensive literature
review, as summarized in the Appendix (Table 5). To account for
optimism bias, participation rates obtained from surveys were adjusted
by a factor of 0.45 before calculating the Average DR Participation -
Adjusted, indicated in the final row for each device.3 This conserva-
tive adjustment factor, derived from AEG [31], was determined by

2 Refer to version 1.1.0 of EMPIRE (Access link).
3 For further insight into optimism bias, refer to Flyvbjerg [30].
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Table 1
DLC participation by country and device (N = 6163).

Countries Wash Ref Air conditioning Water heater Heat Electric vehicle Other

Austria 23.1 25 16 22.2 15 19.7 13.4
Belgium 11.9 12.8 8.2 11.4 7.7 10.1 6.9
Bulgaria 35.4 38.3 24.6 34 23 30.1 20.6
Croatia 34.4 37.1 23.8 33 22.3 29.2 20
Cyprus 14.1 15.3 9.8 13.6 9.2 12 8.2
Czech_Republic 19.7 21.3 13.7 18.9 12.8 16.8 11.5
Denmark 18 19.4 12.5 17.3 11.6 15.3 10.4
Estonia 22.1 23.9 15.3 21.3 14.3 18.8 12.9
Finland 22.8 24.6 15.8 21.8 14.7 19.3 13.2
France 31.5 34 21.8 30.2 20.4 26.7 18.3
Germany 16.2 17.5 11.2 15.6 10.5 13.8 9.4
Greece 31.8 34.3 22 30.5 20.6 27 18.5
Hungary 33.1 35.7 22.9 31.7 21.4 28.1 19.2
Ireland 28.4 30.7 19.7 27.2 18.4 24.1 16.5
Italy 28 30.2 19.4 26.8 18.1 23.8 16.2
Latvia 21.2 22.9 14.7 20.4 13.7 18 12.3
Lithuania 30.4 32.8 21 29.1 19.7 25.8 17.6
Luxembourg 15.8 17.1 11 15.2 10.2 13.4 9.2
Malta 29.9 32.2 20.7 28.6 19.3 25.4 17.3
Norway 18.6 20.1 12.9 17.8 12 15.8 10.8
Poland 24.5 26.5 17 23.5 15.9 20.8 14.2
Portugal 43.3 46.8 30 41.6 28 36.8 25.2
Romania 35.3 38.1 24.5 33.9 22.9 30 20.5
Slovakia 31.1 33.6 21.5 29.8 20.1 26.4 18.1
Slovenia 30.2 32.6 20.9 28.9 19.5 25.6 17.5
Spain 26.6 28.7 18.4 25.5 17.2 22.6 15.4
Sweden 23.3 25.2 16.2 22.4 15.1 19.8 13.6
Switzerland 39.2 42.3 27.1 37.6 25.4 33.3 22.8
The Netherlands 15.2 16.4 10.5 14.6 9.9 12.9 8.8
United Kingdom 21.7 23.4 15 20.8 14 18.4 12.6

Average 26.35 28.46 18.25 25.28 17.06 22.38 15.3

Notes: Wash: includes washing machines, tumble driers, and dish washers; Ref: includes refrigerators and freezers; and Heat: includes electric storage
heater, heat pumps, and heat circulation pumps.
t
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comparing unadjusted adoption rates of a specific program to actual
program participation rates across diverse jurisdictions in the Midwest
USA.

Due to the heterogeneity between the countries in our study, the
2018 Pan-European survey from the ECHOES H2020 project [32] was
re-analyzed and applied to the results of the literature review to capture
country-level differences in the willingness to participate in DLC. This
question is reproduced below.

Would you allow your grid operator to remotely switch on and off non
critical appliances in your home if you were offered an annual discount
of [Bid value]?

The responses were based on a five point likeability scale from ‘very
unlikely’ to ‘very likely’. A respondent was coded as 1 if they responded
‘likely’ or ‘very likely’ and a 0 otherwise. The ‘bid value’ was country
specific and given in the respondent’s national currency. These bid
values were calculated to be 10% of the average annual household elec-
tricity expenditure in each nation. Thus, these bid values are weighted
by the relative cost of electricity in each nation. The result for each
country was divided by the average of the sample (35%) and multiplied
by the Average DR Participation - Adjusted to estimate the participation
rates for the device in each country that are shown in Table 1. The
profiles described in Section 2.1 are multiplied with the participation
rates shown in this section to attain achievable–technical–economic
potentials.

2.3. Quantitative characterization of flexible residential loads

The flexibility of the devices are constrained by power and opera-
tional limitations. Max Capacity is the upper limit for power demand
with respect to the device type, region, and year. It is estimated using
the number of residential devices and the nominal power of the device
type. Max Reduction is the load for each device which is estimated using
3

—

the hour’s share of the annual final energy demand. Max Dispatch is
he difference between Max Capacity and Max Reduction. It represents
he potential for increasing power demand in a given hour. Scaling the
ower constraints by the participation rates adjusts them from theo-
etical potentials to realistic potentials by considering the likelihood of
esidential participation.

Table 2 below, shows the operational limitations that identify
hether the load can be delayed, advanced, or both (DLC direction) and

how many hours the DLC event can take place (t.shift). Our study esti-
mates the contribution of pan-European residential direct load control
(DLC) to support the transition to a carbon free energy system using Gils
[12] as a starting point for residential flexibility. Capturing region
specific DLC strategies is out of scope of the project but we believe the
parameter selection and residential focus provides enough evidence to
achieve the study objective and detail to support future region specific
investigation. In a real-world application, various control strategies can
be employed to optimize the operation of heating, ventilation, and air
conditioning (HVAC) systems. The t.shift parameter, or duration of a
DLC event, is defined as the length of time a residential device can
be delayed or advanced before the load needs to be balanced. Viable
t.shift parameters and DLC program characteristics (e.g., DLC event
duration and frequency) depend on local climate, thermal insulation,
comfort levels, level of activity in the household, and remuneration for
the participation. Hence, for some countries or regions our parameters
may be unrealistic and thus a word of caution is given when applying
them to a broader context.

Average hourly flexibility potentials by country and selected years
are shown in Fig. 1.4 The values in Fig. 1 are the yearly average of
the aggregated hourly potentials for load delay and load advancement.
Differences in country populations captures most of the variation seen

4 These values have not been adjusted by country level participation rates
theoretical-technical-economic potentials.
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Fig. 1. Average hourly flexibility potentials for sample countries and select years (MW).
between countries for a particular year. The growth in flexibility poten-
tials across time is largely driven by the expectations for high electric
vehicle and heat pump saturation. France shows the highest potential
for load delay and advancement for all the years with 1714 MW,
2028 MW, 2963 MW, and 3260 MW for 2023, 2030, 2040, and 2050,
respectively. Luxembourg shows the highest growth rate in flexibility
potential for the sample between the select years. The increase from
15 MW of potential to 28 MW between 2030 and 2040 is due to
4

the high annual replacement rate of their vehicle stock (12%) and
expectations in their electric vehicle transition for the country [37–39].
For more information and details on the DLC dataset refer to [40].

2.4. Adjusting direct load control dataset to be used in EMPIRE

The following adjustments are made in the raw DLC dataset to align
it with EMPIRE:
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Table 2
Demand response shift constraints.

Appliance DLC direction t.shift Reference

Electric Vehicle Delay 4 [33]a

Dryer Delay and Advance 6 [12]
Washing Machine Delay and Advance 6 [12]
Dish Washer Delay and Advance 6 [12]
Storage Heater Advance 12 [12]
Water Heater Advance 12 [12]
Refrigeration Delay 2 [12]
Air Conditioning Delay 2 [12]
Circulation Pump Delay 2 [12]
Heat Pump Advance 2 [34–36]a

a Conservative values were assumed based on the literature.

1. The DLC dataset provides estimates on the NUTS2 level DLC
potentials. However, in EMPIRE each country is considered as
a single node to diminish the computational burden of the
problem. In this regard, the DLC potential of all NUTS2 level
nodes of each county is aggregated in the first step. There is only
one exception. Unlike all other countries, Norway is modeled as
five nodes. The NUTS2 level regions of Norway are then mapped
into these five nodes as follows: NO02 → NO1; NO08 → NO1;
NO09 → NO2; NO06 → NO3; NO07 → NO4; and NO0 A → NO5.

2. The DLC dataset provides estimates from 2020–2050. The hori-
zon of our study is from 2020 to 2060. We have assumed that the
DLC potentials remain constant from 2050 to 2060. However, in
the storylines that are defined later in this study, an increase
factor is considered which results in higher DLC potential year
by year.

3. As mentioned in Section 2, there are ten appliances in the
provided DLC data set. The goal of this study is not to assess the
impact of each appliance separately. Therefore, we aggregate the
loads based on their responsiveness — similar shift times and di-
rection of load shifts (i.e., delay and advance). This classification
decreases the computational burden of the model. In this study,
the loads are categorized into the following five Responsive Load
Groups (RLGs):

• RLG1: Air conditioning, refrigeration, and circulation
pumps (only can be delayed up to two hours)

• RLG2: Dryer, washing machine, and dishwasher (can be
both delayed and advanced up to six hours)

• RLG3: Storage heater and water heater (only can be ad-
vanced up to 12 h)

• RLG4: Electric vehicle (only can be delayed up to four
hours)

• RLG5: Heat pump (only can be advanced up to two hours)

2.5. Participation of residential loads in DLC programs: Storylines

To comprehensively discuss the impact of responsive loads on the
energy transition in the European power system, four storylines were
implemented:

• Base Case: No DLC program considered.
• Case I: For this case, we utilized the DLC dataset explained

in Section 2.1. Accordingly, we assumed that the participation
rates of loads – a metric that indicates the willingness of loads
to participate in DLC programs – remain constant for all years.
The maximum reductions and increases of each year are then
calculated by multiplying the theoretic flexibility potentials of
that year and the fixed participation rates of related countries and
load types. However, the assumption that the participation rates
remain constant may not be entirely realistic. To this end, we also
5

introduced Case II.
• Case II: In this scenario, we assume that an increasing number
of loads become interested in participating in DLC programs.
Specifically, we assume that 4% of new loads – those that were
not previously participating in DLC programs – decide to enroll
each year. Fig. 2 shows the average participation rates of various
appliances in several sample years for this case.

• Case III: In this case, we assume that all the residential loads
are willing to participate in DLC programs. This case may not
be realistic; however, through it, we can investigate the maxi-
mum realistic impact of participation of residential loads on the
transition of the European electricity system.

• Case IV: This case is the same as Case II with double shift times.
There is a limitation with the DLC module in the EMPIRE mod-
eling framework; the shift times are modeled through sequential
time windows with the duration of shift times. Concerning this
explanation, the loads cannot be shifted between these windows.
Therefore, the results yield a lower bound of the impact of DLC
programs, and increasing the shift times will compensate for this.

3. Method

3.1. Overview of the EMPIRE modeling framework

EMPIRE is a linear multi-horizon stochastic programming model to
study long-term investment planning of a power system. The electricity
system is presented as a network of nodes and arcs in the model.
The nodes represent a country or a region, whereas the arcs represent
cross-border transmission between countries/regions. The model takes
decision on two temporal scales: (i) an investment temporal scale with
5-year time steps, and (ii) an operational temporal scale with hourly
time steps. The input to the model includes technology costs, exist-
ing capacities, technological constraints, maximum resource potential,
carbon emission constraints, and demand, while the output includes
investments and production in generation, storage, and transmission,
as well as resulting carbon emissions. The model has been used in
multiple studies to analyze the decarbonization of the European power
system. The EMPIRE model was recently published as an open-source
model [26].

Investment decisions in EMPIRE are first-stage decisions in the
model, meaning investment decisions are made subject to endoge-
nous operational uncertainty through the representation of different
stochastic operational scenarios. Note that we do not consider uncer-
tainty regarding long-term assumptions, e.g., future technology costs or
long-term electricity demand development.

Operational decisions are second-stage decisions, meaning they are
made with perfect information within each operational scenario. The
difference between operational scenarios represents the short-term un-
certainties related to the variable production of renewable energy
resources and system load. The operational scenarios are either rep-
resentative seasonal weeks (168 h) or representative peak days (24 h).
For each investment period, there are at least four representative weeks
(winter, spring, summer, and fall) and two representative peak days.
One of the peak days contains the highest load combined for all
countries/regions, and the other peak day contains the highest load of
any single country/region.

The objective of EMPIRE is to optimize the long-term investments
in generation, storage, and cross-border transmission subject to opti-
mized operations within each stochastic scenario. Assuming that the
electricity market is perfectly competitive, the objective is to minimize
the system’s total cost:

min 𝑧 =
∑

𝑖∈
(1 + 𝑟)−5(𝑖−1)×

[

∑ ∑

𝑐gen
𝑔,𝑖 𝑥

gen
𝑛,𝑔,𝑖 +

∑

𝑐tran
𝑙,𝑖 𝑥tran

𝑙,𝑖 +

𝑛∈ 𝑔∈𝑛 𝑙∈
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Fig. 2. Average participation rates of various residential loads for some sample years in Case II and Case IV .
∑

𝑛∈

∑

𝑏∈𝑛

(

𝑐storPW
𝑏,𝑖 𝑥storPW

𝑛,𝑏,𝑖 + 𝑐storEN
𝑏,𝑖 𝑥storEN

𝑛,𝑏,𝑖
)

+

𝜗
∑

𝜔∈𝛺
𝜋𝜔

∑

𝑠∈
𝛼𝑠

∑

ℎ∈𝑠

∑

𝑛∈

(

∑

𝑔∈𝑛

𝑞gen
𝑔,𝑖 𝑦

gen
𝑛,𝑔,ℎ,𝑖,𝜔 + 𝑞ll

𝑛,𝑖𝑦
ll
𝑛,ℎ,𝑖,𝜔

) ]

. (1)

The first four terms in Eq. (1) quantifies the capital expenditure for
investments in generator types , transmission lines, and storage types
 summed over all nodes  and bidirectional arcs . The last two
terms in (1) quantifies expected operational expenditure for generator
types  and load shedding scaled with the scenario probability 𝜋 and
he seasonal weighting factor 𝛼 to scale representative time periods to
ne year. Note that all costs are discounted at an annual rate 𝑟, and

operational expenditure is scaled with 𝜗 =
∑4

𝑗=0(1 + 𝑟)−𝑗 to represent a
five year period.

For more details on the mathematical formulation of EMPIRE,
please see the software documentation provided in the open source
repository [26].

3.2. Direct load control module in EMPIRE

The EMPIRE modeling framework has been equipped with a DLC
module, enabling us to incorporate DLC programs in the long-term
investment planning of an electricity system. Each responsive load
group (RLG) within the DLC module is represented as a virtual En-
ergy Storage System (ESS), with charging/discharging efficiency of
one. Accordingly, the mathematical formulation of the constraints that
describe RLGs and ESSs are almost the same. In this regard, the notation
of the variables associated with RLGs is similar to those of ESSs, but
may convey different meanings. For example, 𝑦chrg and 𝑦dischrg denote
respectively the upward and downward deviations from the base load
profile for RLGs, which is different from charging and discharging of
ESS. Note that Table 3 presents an overview of the notation of the
variables and parameters for the DLC module in EMPIRE.

Two types of costs are associated with DLC programs: (1) cost of
payments to responsive loads for DLC activation and (2) technological
costs, including equipment, software, and human resources. The acti-
vation cost associated with DLC programs is integrated into the model
by incorporating the following term into the objective function:

𝜗
∑

𝜋𝜔
∑

𝛼𝑠
∑ ∑

𝑞DLCpay
𝑛,𝑏,𝑖

∑
𝑦dischrg𝑛,𝑏,ℎ,𝑖,𝜔 + 𝑦chrg𝑛,𝑏,ℎ,𝑖,𝜔

2
, (2)
6

𝜔∈𝛺 𝑠∈ 𝑛∈ 𝑏∈DR
𝑛 ℎ∈𝑠
Table 3
Notation and symbols.

Indices and Sets

𝑛(𝑏) Set (index) of ESSs (including RLGs) at node 𝑛.
DR

𝑛 ⊂ 𝑛 Set of RLGs at node 𝑛.
⃖⃖⃖⃗DR

𝑛 ⊂ DR
𝑛 Set of delaying-only RLGs at node 𝑛.

⃖⃖⃖⃖DR
𝑛 ⊂ DR

𝑛 Set of advancing-only RLGs at node 𝑛.
𝑠 = {ℎ1

𝑠 , ℎ
2
𝑠 ,… , |𝑠|} Set (index) of operational periods within season 𝑠.

(𝑖) Set (index) of investment periods.
 (𝑛) Set (index) of nodes.
(𝑠) Set (index) of seasons.
𝛺(𝜔) Set (index) of scenarios.

Parameters

𝑞DLCpay
𝑛,𝑏,𝑖 DLC activation cost of RLG 𝑏.
𝐷𝑅maxDis

𝑛,𝑏,ℎ,𝑖,𝜔 Maximum potential of hourly upward deviation from
the base load profile (load increase) for RLG 𝑏 at
node 𝑛, investment period 𝑖, hour ℎ, and scenario 𝜔.

𝐷𝑅maxRed
𝑛,𝑏,ℎ,𝑖,𝜔 Maximum potential of hourly downward deviation

from the base load profile (load decrease) for RLG 𝑏 at
node 𝑛, investment period 𝑖, hour ℎ, and scenario 𝜔.

𝐷𝑅bline
𝑛,𝑏,ℎ,𝑖,𝜔 Cumulative value of the parameter 𝐷𝑅maxRed

𝑛,𝑏,ℎ,𝑖,𝜔 over
operational hours (ℎ) for RLG 𝑏 at node 𝑛, investment
period 𝑖, hour ℎ, and scenario 𝜔.

𝐷𝑅max
𝑛,𝑏,ℎ,𝑖,𝜔 Maximum upward deviation of RLG 𝑏 from its

cumulative base load profile. A parameter defined to
model shift windows.

𝐷𝑅min
𝑛,𝑏,ℎ,𝑖,𝜔 Maximum downward deviation of RLG 𝑏 from its

cumulative base load profile. A parameter defined to
model shift windows.

𝑡shift
𝑏 Shif time or the maximum number of hours the DLC

event can take place (also referred to as t.shift).

Operation-related variables

𝑤StorOpe
𝑛,𝑏,ℎ,𝑖,𝜔 If 𝑏 ∈ 𝐵DR: Net deviation from the cumulative base

load profile (𝐷𝑅bline
𝑛,𝑏,ℎ,𝑖,𝜔) of RLG 𝑏 until operational

hour ℎ at node 𝑛, investment period 𝑖, and scenario 𝜔.
𝜂chrg𝑖,𝑏 Loss percentage when increasing or decreasing load. If

𝑏 ∈ 𝐵DR this parameter is equal to one.
𝑦chrg𝑛,𝑏,ℎ,𝑖,𝜔 If 𝑏 ∈ 𝐵DR: Hourly upward DLC activation (load

increase) for RLG 𝑏 at node 𝑛, investment period 𝑖,
hour ℎ, and scenario 𝜔.

𝑦dischrg𝑛,𝑏,ℎ,𝑖,𝜔 If 𝑏 ∈ 𝐵DR: Hourly downward DLC activation (load
reduction) for RLG 𝑏 at node 𝑛, investment period 𝑖,
hour ℎ, and scenario 𝜔.
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𝑛,𝑏,ℎ,𝑖,𝜔, 𝐷𝑅maxDis

𝑛,𝑏,ℎ,𝑖,𝜔) for a sample scenario of RLG4 in Austria during investment period 2020–2025.
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here 𝑞DLCpay
𝑛,𝑏,𝑖 represents DLC activation cost, which is multiplied by the

otal activated DLC. The total activated DLC is half of the accumulated
alues of 𝑦dischrg𝑛,𝑏,ℎ,𝑖,𝜔 and 𝑦chrg𝑛,𝑏,ℎ,𝑖,𝜔 because the other half represents the re-
overy of the activated DLC. All the other parameters in this expression
ave been explained below Eq. (1). The payment cost is disregarded
n the first set of case studies, referred to as (P0). Consequently, the

results reveal the maximum benefit of implementing residential DLC
programs. However, when no DLC activation cost is considered, the
responsive loads may be activated without impacting the objective
function. To phase out the non-beneficial DLC activation, a set of case
studies with a small activation cost for DLC, referred to as (P1), is also
investigated. The results provide valuable information, including the
average present value of DLC activation per MWh, aiding stakeholders
and policymakers in assessing the financial benefits and feasibility of
adopting such programs. Additionally, for further analysis, a separate
section (Section 4.6) is designated to study the impact of operational
costs associated with the implementation of DLC programs.

Technological costs associated with DLC programs can be imple-
mented similarly to the ESS’s investment costs existing in EMPIRE;
however, in this study, these costs are overlooked due to the limited
available data. This assumption is justifiable since homeowners them-
selves bear a significant portion of the technological expenses related to
DLC programs, particularly the technologies involved in transitioning to
smart homes in residential sectors. Moreover, it is noteworthy that the
information and communication technologies required for implement-
ing DLC programs are also utilized for other purposes, such as meter
reading in residential sectors, thereby reducing the manpower required
for this task.

3.2.1. Parameters of the DLC module in EMPIRE
To begin with, it is important to note that the current version

of the DLC module within EMPIRE necessitates the pre-calculation of
a few parameters. These parameters are derived from two available
parameters in the raw DLC dataset: maximum reduction and maxi-
mum dispatch, denoted with 𝐷𝑅maxRed

𝑛,𝑏,ℎ,𝑖,𝜔 and 𝐷𝑅maxDis
𝑛,𝑏,ℎ,𝑖,𝜔, respectively. The

ey parameters that require pre-calculation are denoted as 𝐷𝑅bline
𝑛,𝑏,ℎ,𝑖,𝜔,

min max
7

𝑅𝑛,𝑏,ℎ,𝑖,𝜔, and 𝐷𝑅𝑛,𝑏,ℎ,𝑖,𝜔 (refer to Table 3). This section provides an
llustrative example of how these parameters are calculated. Note that
n this example, the duration of the regular season – a parameter of
MPIRE – is assumed to be 24 h.

Fig. 3 illustrates the two available parameters in the raw DLC
ataset – namely maximum reduction (𝐷𝑅maxRed

𝑛,𝑏,ℎ,𝑖,𝜔) and maximum dispatch
𝐷𝑅maxDis

𝑛,𝑏,ℎ,𝑖,𝜔) – for RLG4, which only includes electric vehicles, for a
pecific node and investment period spanning over 24 h. As depicted
n this figure, the sum of these two parameters remains constant and is
quivalent to the load demand of a case in which all loads within the
LG are simultaneously connected to the grid, referred to as Maximum
apacity. Maximum reduction represents the base load profile of RLG4,
hat is, the portion of RLG4’s load demand connected to the grid at
our ℎ. Maximum dispatch is then the difference between these two
arameters.

Moving on the next parameter, 𝐷𝑅bline
𝑛,𝑏,ℎ,𝑖,𝜔, it represents the cu-

ulative values of 𝐷𝑅maxRed
𝑛,𝑏,ℎ,𝑖,𝜔 over the window of a regular season.

athematically, it is calculated as follows:

𝑅bline
𝑛,𝑏,ℎ,𝑖,𝜔 =

ℎ′≤ℎ
∑

ℎ′=ℎ1𝑠

𝐷𝑅maxRed
𝑛,𝑏,ℎ′ ,𝑖,𝜔 ∶

𝑛 ∈  , ∀𝑏 ∈ DR, ∀ℎ ∈ 𝑠, ∀𝑠 ∈  , ∀𝑖 ∈ ,∀𝜔 ∈ 𝛺. (3)

The two remaining parameters, 𝐷𝑅min
𝑛,𝑏,ℎ,𝑖,𝜔 and 𝐷𝑅max

𝑛,𝑏,ℎ,𝑖,𝜔, are specifi-
ally defined to model the shift windows. Fig. 4 visually presents these
wo parameters along with 𝐷𝑅bline

𝑛,𝑏,ℎ,𝑖,𝜔 for the same node and investment
eriod as illustrated in Fig. 3. Within each shift window, the values of
𝑅max are equal to the value of 𝐷𝑅bline at the end of the shift window,
nd the values of 𝐷𝑅min are equal to the value of 𝐷𝑅bline at the hour
efore the beginning of the shift window. Mathematically, these are
xpressed as follows:

𝑅min
𝑛,𝑏,ℎ,𝑖,𝜔 = 𝐷𝑅bline

𝑛,𝑏,ℎ′ ,𝑖,𝜔 ∶ (4)

𝑛 ∈  , ∀𝑏 ∈ DR, ∀ℎ ∈ 𝑠,∀𝑠 ∈  , ∀𝑖 ∈ ,∀𝜔 ∈ 𝛺, ℎ′ =
⌊

ℎ
𝑡shift
𝑏 +1

⌋

×(𝑡shift
𝑏 +1),

𝑅max
𝑛,𝑏,ℎ,𝑖,𝜔 = 𝐷𝑅bline

𝑛,𝑏,ℎ′ ,𝑖,𝜔 ∶ (5)

𝑛 ∈  , ∀𝑏 ∈ DR, ∀ℎ ∈ 𝑠,∀𝑠 ∈  , ∀𝑖 ∈ ,∀𝜔 ∈ 𝛺, ℎ′ =
⌈

ℎ
shift

⌉

×(𝑡shift
𝑏 +1).
𝑡𝑏 +1
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Fig. 4. DLC module parameters: 𝐷𝑅bline
𝑛,𝑏,ℎ,𝑖,𝜔, 𝐷𝑅min

𝑛,𝑏,ℎ,𝑖,𝜔, and 𝐷𝑅max
𝑛,𝑏,ℎ,𝑖,𝜔.
For the first shift window, the values of 𝐷𝑅min are set zero. Note
hat the last shift window in each season should be closed even if its
ength is less than t.shift to prevent the seasonal shift of energy in the
ystem.

.2.2. Mathematical formulation of DLC module in EMPIRE
This section presents the mathematical formulation of the DLC

odule and provides further insights into the distinctions between
LGs and ESSs in EMPIRE. Similar to ESSs, where the state of charge

s calculated for each operational period, the DLC module in EMPIRE
equires tracking the total activated DLC until the end of each opera-
ional period to properly model the t.shift of RLGs. This is accomplished
hrough the following constraints:
stor
𝑛,𝑏,ℎ,𝑖,𝜔 = 𝜂chrg𝑏 𝑦chrg𝑛,𝑏,ℎ,𝑖,𝜔 − 𝑦dischrg𝑛,𝑏,ℎ,𝑖,𝜔 +𝐷𝑅maxRed

𝑛,𝑏,ℎ,𝑖,𝜔 ∶

𝑛 ∈  , 𝑏 ∈ DR
𝑛 , ℎ = ℎ1𝑠 , 𝑠 ∈  , 𝑖 ∈ , 𝜔 ∈ 𝛺, (6)

stor
𝑛,𝑏,ℎ,𝑖,𝜔 = 𝑤stor

𝑛,𝑏,ℎ−1,𝑖,𝜔 + 𝜂chrg𝑏 𝑦chrg𝑛,𝑏,ℎ,𝑖,𝜔 − 𝑦dischrg𝑛,𝑏,ℎ,𝑖,𝜔 +𝐷𝑅maxRed
𝑛,𝑏,ℎ,𝑖,𝜔 ∶

𝑛 ∈  , 𝑏 ∈ DR
𝑛 , ℎ ∈ {ℎ2𝑠 ,… , |𝑠|}, 𝑠 ∈  , 𝑖 ∈ , 𝜔 ∈ 𝛺, (7)

where Eq. (6) represents the first hour of a season and Eq. (7) represents
the remaining hours. In Eqs. (6) and (7), the term 𝐷𝑅maxRed

𝑖,𝑏,ℎ,𝜔 is an
additional component compared to the energy balance equation of
ESSs. This addition is made to distinguish between RLGs and ESSs
and to indicate that loads deviate from their base load profiles. If the
values of both upward and downward DLC activation (i.e., 𝑦chrg𝑛,𝑏,ℎ,𝑖,𝜔
and 𝑦dischrg𝑛,𝑏,ℎ,𝑖,𝜔, respectively) remain zero throughout a season, the vari-
able 𝑤stor

𝑛,𝑏,ℎ,𝑖,𝜔 accumulates the base load profile (𝐷𝑅maxRed
𝑖,𝑏,ℎ,𝜔 ) and follows

𝑅bline
𝑖,𝑏,ℎ,𝜔. Consequently, at each hour, the difference between 𝑤stor

𝑛,𝑏,ℎ,𝑖,𝜔
and 𝐷𝑅bline

𝑖,𝑏,ℎ,𝜔 yields the total activated DLC and the recovery.
The hourly upward and downward deviations (load increment and

reduction) from the RLG’s base load profile are respectively limited
to the corresponding maximum potential of increase and decrease as
below:

0 ≤ 𝑦chrg𝑛,𝑏,ℎ,𝑖,𝜔 ≤ 𝐷𝑅maxDis
𝑛,𝑏,ℎ,𝑖,𝜔 ∶ ∀𝑛 ∈  , ∀𝑏 ∈ DR

𝑛 , ∀ℎ ∈ 𝑠, 𝑠 ∈  ,∀𝑖 ∈ ,∀𝜔 ∈ 𝛺,

(8)
0 ≤ 𝑦disch

𝑛,𝑏,ℎ,𝑖,𝜔 ≤ 𝐷𝑅maxRed
𝑛,𝑏,ℎ,𝑖,𝜔 ∶ ∀𝑛 ∈  , ∀𝑏 ∈ DR

𝑛 , ∀ℎ ∈ 𝑠, 𝑠 ∈  ,∀𝑖 ∈ ,∀𝜔 ∈ 𝛺.
8

(9)
Unlike the State of Charge (SOC) of ESSs that is restricted to its
energy capacity, for an RLG, the variable 𝑤stor

𝑛,𝑏,ℎ,𝑖,𝜔 has no direct limita-
tion. This variable is employed to model the shift windows through the
following constraints:

⎧

⎪

⎨

⎪

⎩

𝑤stor
𝑛,𝑏,ℎ,𝑖,𝜔 ≤ 𝐷𝑅max

𝑛,𝑏,ℎ,𝑖,𝜔 ∶ 𝑏 ∉ ⃖⃖⃖⃗DR
𝑛

𝑤stor
𝑛,𝑏,ℎ,𝑖,𝜔 ≤ 𝐷𝑅bline

𝑛,𝑏,ℎ,𝑖,𝜔 ∶ 𝑏 ∈ ⃖⃖⃖⃗DR
𝑛

∶ ∀𝑛 ∈  , ∀𝑏 ∈ DR
𝑛 , ∀ℎ ∈ 𝑠, 𝑠 ∈  ,∀𝑖 ∈ ,∀𝜔 ∈ 𝛺,

(10)

⎧

⎪

⎨

⎪

⎩

𝑤stor
𝑛,𝑏,ℎ,𝑖,𝜔 ≥ 𝐷𝑅min

𝑛,𝑏,ℎ,𝑖,𝜔 ∶ 𝑏 ∉ ⃖⃖⃖⃖DR
𝑛

𝑤stor
𝑛,𝑏,ℎ,𝑖,𝜔 ≥ 𝐷𝑅bline

𝑛,𝑏,ℎ,𝑖,𝜔 ∶ 𝑏 ∈ ⃖⃖⃖⃖DR
𝑛

∶ ∀𝑛 ∈  , ∀𝑏 ∈ DR
𝑛 , ∀ℎ ∈ 𝑠, 𝑠 ∈  ,∀𝑖 ∈ ,∀𝜔 ∈ 𝛺.

(11)

At the end of each shift window, all activated DLC must be adjusted;
therefore, 𝐷𝑅min

𝑛,𝑏,ℎ,𝑖,𝜔 and 𝐷𝑅max
𝑛,𝑏,ℎ,𝑖,𝜔 must be equal as is ensured by (4)

and (5).
In Fig. 4, with the explanation provided in the prior paragraph as

a backdrop and according to Eqs. (10) and (11), the variable 𝑤stor
𝑛,𝑏,ℎ,𝑖,𝜔

can take values in the following regions:

1. Both pink and blue regions for RLGs that can be both advanced
and delayed

2. Only pink region for advancing-only RLGs
3. Only blue region for delaying-only RLGs

4. Numerical results

This section reports and analyzes the results. The focus is mostly
on the impact of residential DLC programs on long-term investment
planning. However, the short-term operation of a few nodes for specific
scenarios and investment periods is also investigated in the Appendix.

4.1. Implementation of DLC programs for residential sectors: The benefit

The total system cost for each case is summarized in Table 4, where

total system costs include both investment and operational costs. The
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Table 4
Total system cost improvement with DLC (excluding associated costs with DLC – (P0)) compared to Base Case.
Parameter Case studies

Base case Case I Case II Case III Case IV

Total Cost [EUR] 2.199 × 1012 2.193 × 1012 2.187 × 1012 2.181 × 1012 2.177 × 1012

Improve Percentage – 0.25% 0.55% 0.80% 0.97%
Fig. 5. Activated DLC for all case studies during each investment period.
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esults belong to (P0), where costs related to DLC were disregarded.
his represents the upper limit of cost improvement achievable with
esidential DLC programs. Compared to the base case, Case I(P0),
n which the participation rates are fixed, yields the smallest cost
eduction (−0.25%), and Case IV(P0), with doubled shift times and
ncremental participation rates, provides the highest cost reduction
−0.97%). Cost reductions range from 5.42 billion EUR to 21.4 billion
UR. By neglecting DLC costs, these cost reductions represent the
avings in the European electricity system due to the availability of
esidential DLC. Note that there could be more savings related to DLC
hat is not captured by the modeling scope of EMPIRE.

.1.1. Activated DLC in various case studies
This section compares the activated DLC in different storylines and

nvestment periods. The activated DLC refers to the responsive loads
hat have been either delayed or advanced.

Fig. 5.a shows the annual activated DLC for all storylines without
LC activation cost (P0). As can be seen in Fig. 5.a, the annual
ctivated DLC in each case follows the trend of the DLC potential
input data) in the corresponding case. In Case I(P0), the participation
ates were assumed to remain fixed; therefore, the activated DLC, in
his case, is not as large as in the other case studies. The increase in
ctivated DLC in Case I(P0) is due to the increase in load profiles
ver time. Case II(P0) and Case IV(P0) experiences a large increase
n the activated DLC over time. The reason is the increment in the
articipation rates over time. In Case III(P0), full residential load
articipation in DLC programs leads to the highest annual activated
LC during all investment periods except the last one. In the eighth

nvestment period (i.e., ‘2040–2045’), the annual activated DLC in Case
V(P0) surpasses that of Case III(P0). The participation rates in Case
V(P0) during this investment period is less than Case III(P0) (see
9

a

ig. 2). However, the shift times considered doubled. Comparing these
wo cases reveals the importance of shift times.

As mentioned earlier, no cost was considered for DLC activation
n the first set of case studies. To this end, in some situations, the
esponsive loads may be activated without any benefit to the system.
his, for example, may occur when the marginal prices are fixed for
everal consecutive hours. As discussed in Section 3.2, to phase out this
rom the activated DLC, a very small cost (0.004 EUR/MWh) is assigned
or the activation of responsive loads. Fig. 5.b shows the results for
ases I–IV(P1). Although the objective function remained almost the
ame, the activated DLC decreased significantly. It is thus necessary to
onsider this small penalty if the value of the annual activated DLC will
e used for post-analysis and policy making. Fig. 5.b provides a clearer
mphasis on the significance of shift times compared to the previous
ase. Notably, even with considerably lower participation rates, the
otal activated DLC in Case IV(P1) surpasses that of Case III(P1) during
he fifth investment period. Further analysis regarding activated DLC by
onsidering DLC activation costs is provided in Section 4.6.

As a final point in this section, we have evaluated the ratio between
he activated DLC and the total load in each node of the system.
ig. 6 shows the ratio between activated DLC and the total load for
ll countries for two investment periods: (a) investment period ‘2020–
025’ in Case I(P1), and (b) investment period ‘2050–2055’ in Case
V(P1). Note that Bosnia and Herzegovina, Macedonia, and Serbia
ere excluded from this figure because no DLC data was available

or these countries. According to the results, France, Germany, Great
ritain, and Italy have the highest activated DLC. This is consistent with
he magnitude of the DLC potentials. The activated DLC in Germany
xceeds the activated DLC in France in Case IV(P1) in the investment
eriod ‘2050–2055’, while France has higher activation in Case I(P1)
uring the investment period ‘2025–2025’. This is justified by taking

look at the participation rates in these two cases. The participation
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Fig. 6. Annual activated DLC during two investment periods. The size of the boxes is a relative indication of the value of activated DLC in different countries. Various colors
indicate the ratio between annual activated DLC and the total annual load in each country. Note that the activated DLC in Norway is shown for five regions.
rates of various appliances in France are higher in the provided data
(Section 2.1). However, the share of loads that participate in DLC
programs in Case IV(P1) increases annually, and the participation rates
of countries with lower initial values grow faster according to the
description of this storyline. This explains the reason that the activated
DLC in Germany exceeds France in Case IV(P1) during the investment
period ‘2050–2055’.

Another important observation from Fig. 6 is the ratio between DLC
and total load. According to the results, the activated DLC reaches a
little higher than 1.4% of the total load during the investment period
‘2020–2025’ in Case I(P1). This value increases to about 4.5% in
Case IV(P1) during the investment period ‘2050–2055’. Case IV(P1)
is an ambitious storyline for residential DLC programs in European
10
electricity system. Even in this case, this rate exceeds 3.5% for a few
countries which reveals a limitation of this study: The DLC dataset only
includes the residential sector.

4.2. Impact of residential DLC programs on generation investments

In this section, we investigate the impact of DLC programs on
the capacity expansion of generation resources during all investment
periods. Note that the energy storage devices will be discussed later in
a separate section.

Fig. 7 shows the result of the EMPIRE modeling framework for
the installed capacity of various generation resources in the European
electricity system from 2020 to 2060. The implementation of residential



Sustainable Energy, Grids and Networks 38 (2024) 101198M. Barani et al.
Fig. 7. European energy transition: Installed capacity of various resources during 2020–2050 without residential DLC programs (Base Case).
DLC programs makes no visible change in this figure. The same figure
but for Case IV(P0) can be found in the Appendix (Fig. 18). The
annual production of different power generation technologies can also
be found in the Appendix in Fig. 19.

In order to investigate the impact of residential DLC programs on
the installed capacity of various resources, differences between all the
case studies with DLC and the Base Case have been calculated and
shown in Fig. 8.a for the investment period ‘2050–2055’. In addition,
Fig. 8.b shows the differences between the cases with DLC and the Base
Case in terms of the annual production of various generation types
for the same investment period. To enhance clarity, some generation
types, including oil, nuclear, and geo, were excluded from the figure,
as their differences were insignificant. The most salient observation
from the figure is that, in all four cases, a portion of the wind and
lignite generation is being substituted with PV production, and this
substitution increases as the potential of responsive loads rises from
Case I(P0) to Case IV(P0). These substitutions result from the interac-
tion of various factors within the system, encompassing the potential
for demand response, the intermittency and availability of both PV
and wind energy, the investment and operational costs associated with
different resources, as well as the CO2 emission limit, all of which
contribute to system optimization with a focus on cost minimization.
Notably, PV production is heavily influenced by sunlight availability.
With increased responsive load potential, the system can strategically
shift demand to periods when PV generation is more abundant (typi-
cally during daylight hours). This shift in demand can reduce the need
for electricity from other sources, leading to reduced wind and lignite
generation, which is the most cost-effective option. In some cases, the
increase in the amount of PV generation, particularly in Case IV(P0),
exceeds the decrease in wind and lignite-based power generation.
Additionally, there is a minor increase in waste and bio-based power
production, which is compensated by a decline in coal, gas, wave,
and Hydro-based generation. Although the reduction of investments
in lignite is small in some cases, the corresponding decrease in its
expected generation is substantial, indicating that the installed lignite
capacity has higher utilization. Concluding this section, it is noteworthy
11
that the overall changes in installed generation capacities is minimal,
accounting for less than 0.5%.

4.3. Impacts of residential DLC programs on investments in the storage
systems

The EMPIRE modeling framework derives the optimal investments
in generation resources, energy storage systems, and transmission lines.
An important question is then ‘‘Which of these elements is influenced
the most by the implementation of residential DLC programs?’’ The short
answer is energy storage systems, more specifically li-ion batteries. This
is not surprising since responsive loads provide similar functionality to
energy storage systems: They shift the loads from one time period to
another time period.

Fig. 9 shows the annual discharge of li-ion batteries and their
installed capacity. As can be seen, the annual discharge consistently
follows the trend in installed capacity in all cases. The figure shows
that implementing residential DLC programs in the European electricity
system effectively decreases the usage of li-ion storage devices. The
reliance on the li-ion batteries decreases as the DLC potential increases
from Case I(P0) to Case IV(P0). In Case IV(P0), the annual discharge
of the li-ion storage devices is close to zero until 2050. Nevertheless,
during the last two investment periods, even Case IV(P0), which
includes an ambitious amount of available residential responsive loads,
requires the installation of li-ion batteries since the penetration of VRES
is very high. Note that for all cases, the investment in the capacity and
charging/discharging rate of li-ion batteries follows the same trend as
the annual expected discharge of li-ion batteries for all cases.

4.4. Impacts of residential DLC programs on investments in cross-border
transmission

This section briefly examines the impact of DLC programs on
transmission lines. All case studies that include DLC programs show
a decrease in the total investment in transmission lines compared to

the Base Case, as shown in Fig. 10.a. This reduction in investment
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Fig. 8. Changes in installed capacities and annual production of various generation resources in the 7th investment period (2050–2055).

Fig. 9. Li-ion batteries: (a) Installed energy capacity, and (b) Annual expected discharge of Li-Ion batteries.
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Fig. 10. Impact of residential DLC programs on the transmission lines: (a) investments,
and (b) transferred energy.

increases as the flexibility potential increases from Case I(P0) to
ase III(P0). However, although Case IV(P0) has the lowest total
ost, it achieves a smaller reduction in transmission line investments.
his is because the smallest total cost depends on the combination of

nvestments in ESSs, generation resources, and transmission lines as a
hole, and not necessarily on the smallest investment in transmission

ines alone. To fully comprehend why this occurs, it is essential to
nalyze investments in all nodes and investment periods, which is
eyond the scope of this study.

Fig. 10.b shows the reduction in total energy transferred through
ransmission lines. The trend in total transferred energy follows that of
he related investments. However, when comparing Case II(P0) and
ase IV(P0), Case II(P0) shows a smaller reduction in transferred
nergy compared to its reduction in investment. This is due to two
easons. Firstly, the reduction in investment in Case II(P0) occurs in
ater investment periods. Secondly, the usage of transmission lines is
ore efficient in Case IV(P0).

.5. Impact of residential DLC programs on hourly marginal costs

The value of lost loads is generally high [41]; therefore the load
nterruption incurs a high cost to the system. In EMPIRE, the load shed-
ing cost is 22 000 EUR/MWh in the initial investment period, meaning
hat the occurrence of load shedding in a particular hour increases the
ourly marginal cost of the corresponding hour to 22 000 EUR/MWh.
he value is then discounted for subsequent investment periods using
he discounting rate of 0.05, as considered in this study. Fig. 11.b shows
he hourly discounted peak prices during each investment period for
ll case studies. As can be seen in this figure, the maximum hourly
arginal cost during periods ‘2025–2030’, ‘2035–2040’, and ‘2035–
040’ is equal to load shedding cost in some cases, indicating that load
nterruption occurred. This is also confirmed in Fig. 20 in the Appendix.
n some cases, the implementation of DLC programs can effectively
ecrease the maximum hourly marginal cost of certain periods, as seen
n Fig. 11.b. During the first two investment periods, Case III(P0)
erforms better than other cases as it includes the maximum theoretical
LC potential. After some periods, Case IV(P0) performs better in
iminishing the peak prices since the DLC potential increases in this
13
ase over time, and the shift windows were considered doubled in
his case compared to Case I(P0). However, an observation from this
igure is the increase in peak prices for some cases with DLC programs,
ndicating that the DLC programs do not necessarily guarantee the
eduction in peak prices in all investment periods.

The average price per MWh for all case studies is presented in
ig. 11.a. The results indicate that the implementation of DLC programs
ay not necessarily lead to a decrease in the average price per MWh for

ll investment periods. For example, during the sixth investment period
245–2050), Cases I(P0), II(P0), and III(P0) have a higher average
rice per MWh compared to the Base Case without DLC programs.
imilarly, Case IV(P0) reduces the average price per MWh for all
nvestment periods except for the fourth period.

.6. DLC activation cost

In the case studies presented thus far, the cost of payment to the
lexible loads has not been factored in. However, based on the insights
ained from the set of case studies with a small DLC activation cost
P1), our current objective is to investigate the average present value
f DLC activation in the European electricity system, considering resi-
ential DLC programs. By combining the saving with the total activated
LC in each case study, we can calculate the average present value of
LC as follows:

𝑣𝑒𝑟𝑎𝑔𝑒𝑃 𝑟𝑒𝑠𝑒𝑛𝑡𝑉 𝑎𝑙𝑢𝑒𝑂𝑓𝐷𝐿𝐶 [EUR/MWh] = 𝑁𝑒𝑡𝑃 𝑟𝑒𝑠𝑒𝑛𝑡𝑆𝑎𝑣𝑖𝑛𝑔 [EUR]
𝑇 𝑜𝑡𝑎𝑙𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝐷𝐿𝐶 [MWh] ,

(12)

Considering a small activation cost (P1), the 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃 𝑟𝑒𝑠𝑒𝑛𝑡𝑉 𝑎𝑙𝑢𝑒
𝑓𝐷𝐿𝐶 values for Case I-IV(P1) are 4.7, 4.4, 4.6, and 5.5 [EUR/MWh],

espectively. Assuming an overall average of 5 [EUR/MWh], the impact
f the payment cost on residential DLC programs is being investigated
y conducting three additional sets of case studies: at 50%, 100%,
nd 400% of this value. Overall, the following sets of case studies are
nalyzed in this section:

• (P0): DLC activation cost = 0 [EUR/MWh]
• (P1): DLC activation cost = 0.004 [EUR/MWh]
• (P2): DLC activation cost = 2.5 [EUR/MWh]
• (P3): DLC activation cost = 5 [EUR/MWh]
• (P4): DLC activation cost = 20 [EUR/MWh]

The outcomes for the average present value of DLC and the DLC to
oad ratio across all case studies are depicted in Fig. 12. It is evident
hat an increase in the activation cost of the DLC in the model leads
o a decrease in the total amount of activated DLC, as the decision to
ctivate DLC is determined by its cost-effectiveness. The reduction in
he total activated DLC is reflected in the DLC to load ratios depicted
n Fig. 12. This decline is noticeable across all storylines. For instance,
n Case III, when the activation cost is 0.004 EUR/MWh, the DLC
o load ratio is approximately 2.1%. However, this ratio decreases
ignificantly to only 0.26% when the DLC activation cost is elevated
o 20 EUR/MWh.

Conversely, as seen in this figure, the average present value of DLC,
alculated through (12), increases with higher DLC activation costs.
his trend is attributed to load shifting, which occurs when it offers
higher value due to the associated increased cost. Additionally, other
bservations can be drawn from the presented data. Firstly, the average
resent value of DLC is quite consistent across case studies that have
imilar activation costs. Secondly, when comparing Case IV to Case III
hile considering DLC activation costs, the DLC to load ratios in Case

V exceed those in Case III, despite the higher participation rate of
esponsive loads in Case III, which highlights the significance of shift
imes.

The percentages of total cost reductions in all case studies are
hown in figure Fig. 13. Note that the set of case studies with no
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Fig. 11. Impact of residential DLC programs on discounted marginal prices: (a) Average price per MWh and (b) Hourly Peak price during each investment period.
Fig. 12. Comparison of the average present value of DLC and the DLC to Load ratio across all case studies.
activation cost yields nearly the same level of cost reduction as the one
with an activation cost of 0.004 [EUR/MWh]. The outcomes reveal a
large decrease in overall savings as the DLC activation costs increase
across all storylines. In the most optimistic storyline, which involved
an ambitious participation rate for responsive loads, the exclusion
of DLC activation costs, and the assumption of doubled shift times
compared to the original DLC dataset, a reduction of 0.97% in the total
system cost was observed. However, it is crucial to note that achieving
this level of savings through the implementation of a residential DLC
program in the European electricity system appears unattainable due
to the assumptions made in this case. This underscores the modest
impact, which is below one percent, that can be achieved through the
implementation of a residential DLC program.

Concluding this section, the impact of DLC activation costs on
the investment decisions for ESSs is investigated. Fig. 14 shows the
14
installed energy capacity of lithium-ion battery storage devices under
case studies with DLC activation costs of 2.5 and 20 [EUR/MWh]. It
can be observed that, as the DLC activation cost increases, a greater
portion of the investment is directed towards lithium-ion battery stor-
age systems. With a 20 [EUR/MWh] activation cost, the system, even
in Case IV, is required to start investing in li-ion batteries as early as
2035. However, a reduction in the overall deployment of li-ion batteries
remains a noteworthy aspect in all cases.

5. Conclusion

This study examined the impact of residential DLC programs on
long-term investment strategies within the European electricity system
from 2023 to 2060. This analysis considers several critical aspects,
including the long-term investment perspective, short-term operational
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Fig. 13. Net present cost reduction through residential DLC program implementation across all case studies.
Fig. 14. Installed energy capacity of lithium-ion battery storage systems considering the impact of DLC activation costs.
actors, and endogenous uncertainty. For this purpose, we utilize a
omprehensive residential DLC dataset, estimating the DLC potential
or ten appliances across European countries until 2050. This dataset
orms the foundation for constructing four storylines related to the
ncorporation of these programs into the European electricity system.
o bring these storylines to life, we utilized the open-source EMPIRE
odeling tool and further developed the DLC module within this tool,
roviding a robust framework for exploring the potential outcomes
nd implications of incorporating residential DLC programs within the
uropean context.

The examination of diverse case studies showed a limited impact
esulting from the implementation of DLC programs, particularly con-
erning generation capacity expansions and cost savings. The best-case
cenario, involving an ambitious participation of responsive loads in
LC programs without compensation and a doubling of the shift times
ompared to the original values in the DLC dataset, resulted a reduction
f 0.97% in the total cost of the system. However, it is important
15
to acknowledge that achieving this improvement may not be attain-
able due to the assumptions made in this specific scenario. The cost
savings for a scenario featuring the original participation rates and
shift times in the DLC dataset, along with a DLC activation cost of
20 [EUR/MWh], amounted to only 0.11%. Concerning the expansion
of generation resources, the adoption of DLC programs facilitated a
greater penetration of PV units; nonetheless, the overall impact was
fairly minor, accounting for less than 0.5%. On the other hand, the
results indicated that implementing DLC programs could decrease the
need for Li-Ion batteries. The reduction in the total installed energy
capacity of li-ion storage devices about 28% in the worst case scenario
with a DLC activation cost of 20 [EUR/MWh].

However, there is still room for improvement in this study. Specif-
ically, we need to pursue further research in four areas. Firstly, the
method we used to model the shift windows has a limitation, as it can-
not account for flexible DLC activation. With the modeling framework
presented in this paper, responsive loads can only shift during specific,
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Fig. 15. Short-term activity of responsive loads in Germany during a winter week in investment period ‘2050–2055’ for Case I(P0).
fixed time windows. This approach may underestimate the potential
impact of responsive loads. To address this, we increased the t.shift of
ll RLGs in one of our case studies, which showed that shift windows
ave a major impact on the results. Therefore, it is crucial to revise the
LC module to incorporate flexible shift windows and fully exploit the
otential of these programs. We are working towards addressing this
oint in our future work.

Secondly, as the results showed, the amount of activated DLC
elative to the total load in the system was low even for ambitious
cenarios. Therefore, it would be interesting to explore other load
ectors, such as commercial and industrial sectors, in future studies.

Lastly, the characteristics of DLC programs both in terms of load
hift duration and frequency of events will vary given local built en-
ironments, climates, and thermal comfort preferences. Future, efforts
ill focus on capturing this heterogeneity and building more robust es-

imates of pan-European residential DLC contribution to decarbonizing
he energy system.
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Appendix

A.1. Analysis of short-term operation

As the final point regarding the result derived by the EMPIRE
modeling framework, the short-term operation of the system is inves-
tigated through two sample weeks. Fig. 15 shows the DLC activity and
the hourly marginal prices of a winter week in Germany during the
investment period ‘2050–2055’ for Case I(P0). As can be seen in this
figure, the activity of responsive loads follows the marginal prices of the
system for most of the hours. Therefore, the activation of DLC could
flatten the marginal prices to some degree. In this sample week, the
mean of the hourly marginal prices decreases by 1.2%.

This reduction in the mean of the hourly marginal prices is not
always the case. The marginal prices in each node (representing a coun-
try or region) also depend on other nodes. In addition, the marginal
prices may increase during the hours that the load increases due to
load shifts. Therefore, some sample weeks in some nodes and scenarios
may experience even an increase in the mean of the hourly marginal
prices when DLC programs are included. As an example, Fig. 16 shows
another sample week belonging to a summer week in Spain during
the investment period ‘2025–2030’. During this week, the mean of
the hourly marginal prices increased by 0.85% when the residential
DLC program was included (Case IV(P0)). Further, since no cost was
assigned to the activation of responsive loads, the responsive loads may
be activated without any benefit. This can be seen in Fig. 17, which
shows the short-term activity of the same week for Case IV(P1).

A.2. Installed capacity of all available technologies in Case IV(P0)
See Fig. 18.

https://github.com/ntnuiotenergy/OpenEMPIRE
https://github.com/ntnuiotenergy/OpenEMPIRE
https://github.com/ntnuiotenergy/OpenEMPIRE
https://github.com/ntnuiotenergy/OpenEMPIRE
https://github.com/ntnuiotenergy/OpenEMPIRE
https://github.com/ntnuiotenergy/OpenEMPIRE
https://github.com/ntnuiotenergy/OpenEMPIRE
https://github.com/ntnuiotenergy/OpenEMPIRE
https://github.com/ntnuiotenergy/OpenEMPIRE
https://github.com/ntnuiotenergy/OpenEMPIRE
https://github.com/ntnuiotenergy/OpenEMPIRE
https://github.com/ntnuiotenergy/OpenEMPIRE
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Fig. 16. Short-term activity of responsive loads in Spain during a summer week in investment period ‘2025–2030’ for Case IV(P0).

Fig. 17. Short-term activity of responsive loads in Spain during a summer week in investment period ‘2025–2030’ for Case IV(P1).
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Fig. 18. European energy transition: Installed capacity of various resources from 2020 to 2050 with residential DLC programs (Case IV(P0)).

Fig. 19. Annual Expected Generation of various resource in the Base Case.
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Fig. 20. Percentage of interrupted loads for all case studies – (P0).
Table 5
Participation Rates of DLC program by household device and result type.

Publication Study type Wash Ref AC WH Heat EV Other

AEG [31] Hypothetical 22% 23% 4% 6%
Broberg and Persson [42] Hypothetical 44% 44%
Spence et al. [43] Hypothetical 49% 30% 52%
Mert and Tritthart [44] Hypothetical 93% 96%
ETSA Utilities [45] Real 14%
Eto et al. [46] Real 3%
Bode et al. [47] Real 7%
Sullivan et al. [48] Real 8%
Kofod [49] Real 10%
Sullivan et al. [48] Real 18%
Sullivan et al. [48] Real 38%
VTT [50] Real 50%
Xu et al. [51] Hypothetical 67%
Buckley et al. [52] Real 10%
Yilmaz et al. [53] Hypothetical 26% 58% 57% 27%
Stenner et al. [54] Hypothetical 13%
Annala et al. [55] Hypothetical 80% 80% 80%
Annala et al. [55] Hypothetical 74%
Tarroja and Hittinger [56] Hypothetical 64%
Tarroja and Hittinger [56] Hypothetical 48%
Yilmaz et al. [53] Hypothetical 62% 60%

Average DR Participation - Adjusted 26% 28% 18% 25% 17% 22% 15%
A.3. Annual expected generation of all available technologies in the base
case

See Fig. 19.

A.4. Percentage of interrupted loads for all case studies in EMPIRE

See Fig. 20.

A.5. DLC participation rates

Table 5 below shows the estimated participation rate for the studies
and pilots identified in our literature review.
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