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Abstract 
This study evaluates the effectiveness of self-assessed exposure (SAE) data collection for characterization of hydrogen sulfide 
(H2S) risks in water and wastewater management, challenging the adequacy of traditional random or campaign sampling strat-
egies. We compared 3 datasets derived from distinct strategies: expert data with activity metadata (A), SAE without metadata 
(B), and SAE with logbook metadata (C). The findings reveal that standard practices of random sampling (dataset A) fail to capture 
the sporadic nature of H2S exposure. Instead, SAE methods enhanced by logbook metadata and supported by reliable detection 
and calibration infrastructure (datasets B and C) are more effective. When assessing risk, particularly peak exposure risks, it is 
crucial to adopt measures that capture exposure variability, such as the range and standard deviations. This finer assessment is 
vital where high H2S peaks occur in confined spaces. Risk assessment should incorporate indices that account for peak exposure, 
utilizing variability measures like range and standard or geometric standard deviation to reflect the actual risk more accurately. 
For large datasets, a histogram is just as useful as statistical measures. This approach has revealed that not only wastewater 
workers but also water distribution network workers, can face unexpectedly high H2S levels when accessing confined under-
ground spaces. Our research underscores the need for continuous monitoring with personal electrochemical gas detector alarm 
systems, particularly in environments with variable and potentially hazardous exposure levels.
Key words: assessment strategies; exposure index; H2S; hydrogen sulfide; logbook; peak exposure, self-assessed data collection; 
wastewater.

What’s Important About This Paper?

This study demonstrates that highly variable exposures with acute effects, such as occur with hydrogen sulfide in the 
wastewater industry, will be poorly described using targeted or randomized shift-duration sampling. Data-logging 
electrochemical sensors used to warn workers of imminent hazard provide more robust exposure characterization.

Introduction
Different kinds of exposure assessment and sam-
pling strategies have been proposed over the years. 

Historically, exposure characterization has predom-
inantly relied on time weighted average (TWA) ex-
posure values, given the emphasis on cumulative dose 
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and long-term impacts, as well as the feasibility of 
obtaining such measurements (Borak and Brosseau 
2015; Wheeler et al. 2015). Workplace exposure meas-
urement standard NS-EN482 (Standard Norge 2021) 
was established on this premise. Furthermore, the se-
lection of representative measurement days is integral 
to this approach, acknowledging the impracticality of 
daily expert exposure measurement. Standard EN689 
(CEN 2019) is one of the standards that provide stat-
istical guidance for evaluating these assessment strat-
egies and measurements. However, it is solely—as are 
most other similar standards—intended for assessing 
the mean in relation to the 8-h occupational exposure 
limit (OEL) or the short-term exposure limit (STEL) 
(typically 15 min).

Other exposure assessment strategies have been pro-
posed. Olsen (1994) presented Logbook as a method of 
collecting metadata on process-based exposure meas-
urements. Descatha et al. (2022) present Hoar (1983) 
as the first to describe the job exposure matrix (JEM) 
as a way to assign exposure to specific jobs within a 
group of workers. Some kind of logbook method is es-
sential to collect the parameters needed to develop task 
exposure models. The method has been frequently used 
to describe exposure (Peretz et al. 2002; Dopart and 
Friesen 2017). It simplifies the underlying exposure 
profile to a set of numbers describing the exposure 
of interest, often the TWA. The range or confidence 
limits of the TWA (or other mean values), the peak 
values, or the full exposure profiles, have seldom been 
used. Usually, exposure measurements are planned 
and performed by occupational hygienists. However, 
Pettersson-Strömbäck et al. (2008) have examined the 
quality of self-assessed exposure (SAE) data, compared 
to expert collected data. They found that SAE meas-
urements give more valid estimates compared to ex-
pert measurements, but that the necessary follow-up 
requires expert advice and formal organization.

The use of TWA as a regulatory term is based on 
Haber’s Law (Haber 1924), which states that dose to 
effect is a constant relationship between concentration 
and time. Not all chemicals follow this, and hydrogen 
sulfide (H2S) is one of them (Guidotti 1996). Chronic 
effects may result from both long-term exposure and 
by short exceedances of a trigger level, as seen for 
H2S (Svendsen 2001; OSHA 2023). H2S exhibits both 
chronic and multiple acute effect levels, and relying 
solely on TWA evaluation could underestimate the 
associated risks (Smith 2001; Virji and Kurth 2021). 
Relying only on peak levels could overestimate or 
fail to recognize chronic effects (Flegal et al. 1991). 
Consequently, an H2S-index that incorporates elem-
ents of TWA data, ceiling value (CV) exceedance, and 
the number and magnitude of peaks was introduced 
(Austigard et al. 2018) allowing for an integrated 

representation of the exposure risks. This approach 
was developed in response to the inadequacy of low 8 h 
TWA to explain possible health effects observed from 
H2S exposure, and to provide employees and employers 
with a single term for risk evaluation rather than mul-
tiple levels (Austigard et al. 2018). Additionally, an 
algorithm has been proposed to automate this calcula-
tion process (Austigard and Smedbold 2022).

Exposure to certain gasses, such as H2S, exhibits 
high acute or chronic potential that makes continuous 
monitoring essential. Personal electrochemical gas 
detector alarms with data logging (alarm equipment) 
that register exposure levels over time, are increasingly 
utilized in water and wastewater management op-
erations, but they are not yet mandatory in Norway. 
Trondheim municipality, however, has employed such 
sensors since 2013. Recent research has demonstrated 
that the data from these devices can serve not only for 
documentation of alarms but also as exposure docu-
mentation (Austigard et al. 2023).

The need for precise exposure assessments has been 
highlighted in several papers (Kromhout 1994; Kriebel 
et al. 2007; Smith and Kriebel 2010). Prior research 
on task and group descriptions (Austigard 2023) has 
indicated that water distribution network work war-
rants further scrutiny due to previously observed un-
expected high peaks. If these peaks are attributable to 
inadequate exposure comprehension for specific tasks, 
it could imply the absence of crucial exposure infor-
mation. Additionally, this may suggest that a control 
group of water workers are not unexposed to H2S, po-
tentially affecting risk ratio findings in other groups 
within an epidemiological context (Stewart et al. 2000; 
Blair et al. 2007).

The aim of this study was to compare 3 sampling 
strategies used to characterize water distribution 
workers and wastewater workers exposed to H2S. As 
part of the comparison, a third dataset (C) is presented 
and the use of an exposure index for H2S is explored.

Method
Below are short summaries of the methods of datasets 
A (Austigard et al. 2018; Austigard and Smedbold 
2022) and B (Austigard et al. 2023), and a more de-
tailed summary of dataset C, with their distinctions, 
characteristics, and methodology for comparing the re-
sults. The studies are summarized in Fig. 1. There is no 
overlap of exposure data between the datasets.

The three datasets
For Dataset A the collection was made in the Trøndelag 
region and the Oslo area from 2013 to 2014. The as-
sessment strategy was expert collection on measure-
ment equipment OdaLog L2/LL (range 0.1 to 200 ppm, 
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Thermo Fisher Scientific, Australia), Dräger Pac 
7000, and Dräger x-am 5000 (range 0.1 to 100 ppm, 
Drägerwerk AG & Co KGaA, Germany). The dataset 
contains 93 measurements of H2S for 56 persons out 
of a total study group of 149. Measurements cover 
35 workdays, over a study duration of 19 months. 
The resulting graphs were assessed manually to count 
peaks and durations in different concentration inter-
vals to calculate the index value for H2S [further de-
tail in Austigard et al. (2018)]. Workers influenced the 
number of H2S measurements in dataset A by some-
times stating that they would not be doing anything 
H2S-related that day, while the plan was to make H2S 
measurements in parallel with the other measurements 
(endotoxins and bioaerosols) of the study (Heldal et 
al. 2019).

For both datasets B and C, the datasets were col-
lected in Trondheim, the 3rd largest municipality in 
Norway with some 212 000 inhabitants (SSB 2022). It 
is part of the Trøndelag region. All 65 employees in the 
water and wastewater department of Trondheim muni-
cipality who were provided with alarm equipment for 
measuring H2S exposure were invited to participate in 

the study. A total of 60 individuals chose to partici-
pate. They constituted 4 similar exposed groups (SEG), 
with 24 working in the wastewater network group 
(which includes the emptying of septic/cesspools), 15 
in sewage treatment plants, 6 with pumping stations, 
and 15 with the water distribution network. Personnel 
in the last group enter manholes in the water distri-
bution system. The 5 people who did not participate 
mainly performed office work.

The study was approved by the employer, and a 
consent form was developed in collaboration with 
the union representative for water and wastewater 
workers and the privacy representative of Trondheim 
municipality. The research proposal was presented to 
the workers as the consent form was disseminated. 
Participants were included in the study through an 
opt-in strategy. Six individuals opted not to participate, 
due to their main engagement in office work.

Measurements consisted of SAE-collected alarm 
registrations and measurement logs from BW 
MicroClipX3 (Honeywell International Inc., USA) per-
sonal electrochemical gas detector alarms with data 
logging (alarm equipment) with a measurement range 

Fig. 1. Illustration of the specifications, differences, and connections among the 3 datasets and publications. The boxes overlapping 
datasets B and C illustrate that the same people and equipment are involved. “Days” refers to days with measurements, and “months” 
refer to study duration. H2S measurements in dataset A are from a larger dataset which includes endotoxin and bioaerosol exposure 
measurements in a total study group of 149 persons. No measurement was duplicated between dataset B and dataset C. One person 
was in 2 groups in dataset A.
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of 1.6 to 100 ppm H2S. The interval between data 
points was 15 s. Storage capacity at this rate was 16 h 
of wraparound (Honeywell 2020). Alarm registration 
was stored in a separate wraparound slot, so that the 
maximum at alarms could happen to be extracted 
without the corresponding measurement log, giving a 
single datapoint. The storage unit could skip transfers 
of all zero data intervals at transfer to a spreadsheet. 
Distributed docking stations were available, and en-
sured bump check and data transfer, as well as calibra-
tion if due (180 days). Instruments were mostly placed 
in the breathing zone, but some were worn at the waist.

Specific to dataset B: the routine of docking said at 
least once a week and after alarms. The dataset covers 
1559 days over a study duration of 5.5 yr from 2016 
to 2021. It contains nearly 7100 days with registra-
tion for 59 persons out of 60 enrolled in the study. The 
SARS-COV-19 pandemic negatively affected the collec-
tion of data. Further detail in Austigard et al. (2023).

Specific to dataset C: the exposure assessment 
strategy was to measure every day for 3 × 2 wk 
(February/March, June, and September) and maintain 
a register of activity information. During collection of 
dataset C the workers should dock their equipment 
every day. Data was divided into SEGs. The dataset 
covers 60 days over a study duration of 7 mo in 2019. 
It contains 872 days with measurements for 58 persons 
out of 60 enrolled. Temperature, wind, and precipita-
tion data were collected.

A logbook form (Translated version in Supplementary 
I) was discussed with the workers, and adjusted with 
work categories accordingly. In the first 2-wk period, 
the logbook was given in paper form. For the next 2 
periods the logbook was distributed electronically as 
a Google form. Workers were encouraged to answer 
throughout the day as work progressed. Days with no 
information from sensor or logbook were controlled 
against the work log system and divided into “real zero 
exposure” (caused by for example sick leave, holidays, 
education days, union work, and scheduled compen-
sation days for on-call work), and “missing data”. For 
more details see Supplementary II.

The logbook activity information was converted to 
variables of real zero exposure, workplace, flushing 
activity, and number of exposed tasks. These were 
combined with the aggregated workday exposure in-
formation from the alarm equipment. The logbooks 
had to be manually assessed, as it was obvious from 
the data that “duration” was often registered as “end 
time” and therefore affected task time. Measurement 
days at weekends and holidays with only zero ex-
posure were removed from the data unless there was 
also activity registration for the person. Entries with 
information for multiple days were separated to their 
correct dates. A few people had marked that they had 

used other alarm equipment. Data from these measure-
ments were added to the dataset if they had provided 
sufficient information to find the correct data.

The data were aggregated to one log per person and 
day by a previously published algorithm (Austigard 
2023). A visual presentation of the data with 3 risk 
measures of H2S in the same graph (index value, TWA, 
and exceedance of CV) is provided. The index was cal-
culated as:

Index =H2S01 ∗ 0.1+H2SDuration01 ∗ 0.1+H2S1+

H2S5∗5+H2SDuration5∗5+H2S10∗10+H2Smax

where
H2S01 is number of peaks in the interval 0.1 to 

1.0 ppm,
H2S1 is number of peaks in the interval 1.1 to 

5.0 ppm,
H2S5 is number of peaks in the interval 5.1 to 

10.0 ppm,
H2S10 is number of peaks in the above 10.0 ppm,
H2SDuration01 is duration in minutes between 0.1 and 

5.0 ppm,
H2SDuration5 is duration in minutes above 5.0 ppm,
H2Smax is the maximum H2S level detected.

Comparison of datasets
In the meta-analysis of the 3 studies, the outcome was 
compared descriptively by frequencies in exposure inter-
vals, and by comparing results from ANOVA mixed 
model analysis. Whether a parameter improves the 
model or not is evaluated by comparing the models’ 
−2-logLikelihood values. If the value decreases, the model 
gives a better fit to the data. The model assumes vari-
ance components, meaning estimating the contribution 
of each random effect to the variance of the dependent 
variable (IBM 2021). For comparison of results across 
the 3 datasets, the ANOVA analysis was based on SEG 
and season, as all datasets contained these parameters. 
Wastewater network workers and cesspool emptiers 
were 2 different groups in dataset A, but combined in 
dataset C. In dataset A, no water distribution network 
workers had H2S measurements, as they were assumed 
to have zero exposure. For the comparison, results were 
calculated based on values below LOD being imputed 
in the same way as the original presentation (Austigard 
2018), with “lowest index value”/sqrt(2). In dataset A 
this gave 0.283, in datasets B and C it gave 1.927.

To evaluate the robustness of dataset C, positive 
measurements with activity data were divided into 2 by 
iterating random draws of datapoints, until approxi-
mately 50% (±2.5 %) of data points were present in 
each part and at the same time 50% (±3.5 %) in each 
SEG. The ANOVA mixed model analysis was run on 
the 2 parts separately, and the models were compared 
to each other and to the full dataset.
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Results
Dataset C and the results from the comparison of the 3 
datasets is presented below.

Dataset C
In total, 1807 workdays were involved, including 7 
days identified as on-call work on weekends and a 
public holiday. H2S was detected on 522 (29 %) of the 
workdays, equaling 60% of the workdays with meas-
urement. Peak values exceeding CV were found on 118 
workdays (7% of total, 14% of measured). Real zero 
days were rarely covered by the measurements, even 
though the participants were asked to use the equip-
ment every workday. Real zero days account for 23% 
of the total number of workdays. Context informa-
tion was present for 81% of the workdays. Data was 
missing for 11% of workdays. Further details are given 
in Supplementary Material.

All calculated TWA values were below the minimum 
TWA level at 0.1 ppm which can be shown on the 
instrument itself. One measurement had the highest 
value on all 3 parameters: TWA (0.07 ppm), peak 
(29 ppm), and index value (59), and belonged to a 
water distribution network worker. A selection con-
taining the highest 20 values on each parameter are 

shown in the Supplementary Material. Figure 2 visu-
alizes the results by plotting the index value against 
TWA, and by distinguishing between values exceeding 
CV (red circles) or not (blue circles). The figure shows 
that when evaluated only by TWA value, risk is con-
sidered satisfactory, but CV evaluation shows multiple 
exceedances, indicating that the risk related to this type 
of work is still significant.

The histograms shown in Fig. 3 of maximum H2S 
level on workdays give a log-normal impression, with 
a mode between 5 and 8 ppm. Most workday meas-
urements have only one positive recorded value, those 
with most have 15, corresponding to 4 min a day. 
There was no correspondence between the number of 
positive values in a measurement and exceeding the 
CV.

Water distribution network workers had many inci-
dents of measured exposure that could not be explained 
by their categorization of work tasks, dominated by 
“driving” and “unexposed water network tasks”. This 
also accounts for the registrations exceeding the CV. 
Activity data showed that they reported entering man-
holes 11 times more often than wastewater collec-
tion system workers (34 versus 3 during these 6 wk). 
Corrected for group sizes, the entering of manholes 
happened 18 times more often for water distribution 
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Fig. 2. Index to TWA for H2S, separated into workdays with [N = 118 (squares)] and without [N = 404 (circles)] peaks exceeding 10 ppm. 
The bar at index value 21.4 symbolizes the lowest possible index value of measurement when exceeding 10 ppm during a workday. 
The 3 arches forming the bottom of the figure are due to the index algorithm multiplication at different levels of H2S. This is most visible 
when formed by measurements with a single data point above LOD. Regression values (coefficient of determination) for linear fit lines 
are R2

total = 0.819, R2
No = 0.758, R2

yes, exceeding CV = 0.813. The axes are in logarithmic scale. The “Y” axis is in decimal scale in scientific 
notation. “1.E−1” equals 0.1 ppm. This is 1/20 of the OEL at 5 ppm.
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network workers, than for wastewater collection net-
work workers. For the water distribution network, 
4 of the manhole entries were not covered by meas-
urements, 7 had measurements where all registrations 
were below LOD, 22 had measurements with registra-
tions between LOD and CV, and one above the CV. 
Wastewater collection network workers have one ob-
servation in each interval. The other 2 SEGs do not 
report any entering of manholes.

Comparison of the 3 studies
Table 1 provides descriptive numbers for the 3 datasets 
and complements the information in Fig. 1.

In dataset C, the partition into 3 periods during the 
study covered 4 seasons according to the partition in 
dataset A. A very small improvement was seen in the 

−2-loglikelihood value when divided into 4 seasons 
rather than 3 test durations. When looking at meas-
urements with activity data, the variables SEG and 
season contribute significantly to improving the model. 
Flushing was used as a category by only 2 SEGs. Eighty 
three percent of workday measurements were not re-
gistered with any flushing. Flushing was not significant 
for dataset C.

Table 2 shows a comparison of calculated AM of 
index values with 95 % confidence intervals for some 
situations based on the parameters from the ANOVA 
mixed models. The two models based on random draw 
of data, have some parameters outside the confidence 
limits when including all data. The resulting calcula-
tions of AM are affected, but rest upon more than one 
parameter, and therefore become within limits.

Fig. 3. Distribution of maximum H2S level in measurements for a workday with recording every 15 s, illustrating how common it was to 
reach different maximum levels of H2S in the water distribution network and wastewater-related work, and to exceed the ceiling value of 
10 ppm. Total N = 522. Upper row: all measurements above LOD (mean 7.5 ppm, SD 3.9 ppm). Upper left: logarithmic “Y” axis. Upper 
right: stacked total on linear “Y” axis. Middle and bottom row separate for the SEGs. Linear axis in the same scale. Not corrected for 
group size.
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The distribution of peak values from the 3 
studies is shown for values above 1.6 ppm in Fig. 4. 
Concentration levels are binned by evaluating “bin min 
< × <= bin max.” Values from 1.7 to 2.0 are the first bin 
shown, as LOD for B and C sampling was 1.6. All 3 
methods reach 90% of accumulated positive measure-
ments just before 20 ppm. Values above 100 ppm are 
shown as one bin.

Discussions
The different strategies give different results. How this 
affects the ability to characterize the exposure and as-
sess and handle the related risk is discussed.

Comparison of the 3 studies
Three different assessment and sampling strategies 
are compared. The data shows that the strategy for 
dataset B gives the best picture of the exposure profile. 
However, the strategy for dataset C provides the op-
portunity to find earlier unrecognized exposed tasks 
because of the metadata on activity. Notwithstanding, 
due to the random nature of the exposure it cannot 

be expected to get the highest peaks, as extraordinary 
tasks can easily be missed. This also accounts for 
dataset A, but A provides more opportunity to choose 
days with exposure. The strategies behind datasets A 
and C demand extra effort from both workers and ex-
perts, making the strategies time consuming.

The difference in sampling strategy contributes to 
the differences in detected exposure levels, as shown 
in Fig. 4. Low TWA levels are expected, as exposure 
largely consists of peaks. Fractions of days with a 
maximum level between 3 and 10 ppm are lower in 
dataset A than in datasets B and C, as measurements 
in A focus on highly exposed tasks, while those in B 
also have routine collection, and those in C focus on 
full coverage of the period without any task preference. 
This also results in higher proportions of values above 
20 ppm in A, than in the other 2 studies.

The median level of H2S in dataset A was below 
LOD in datasets B and C, which is an effect of the 
measurement equipment in dataset A having a lower 
LOD than in datasets B and C. The effect on the index 
values is, however, smaller. This is due to the calcu-
lation method of the index, as levels below 1 ppm 

Table 1. The number of H2S observations in the 3 datasets; expert collection (A), self-assessed exposure (SAE) collection by routine 
once per week + alarms (B), and SAE collection every day in the campaign period (C). The total number of “study workdays” in each 
study was calculated as the “days” (with measurement) multiplied by the number of persons in the study, while “study duration 
workdays” was calculated from the number of months and 220 workdays a year per person. N is the number of workdays with 
measurement. The ceiling value (CV) is 10 parts per million (ppm).

Dataset A 
(N = 93)

Dataset B 
(N = 7083)

Dataset C  
(N = 872)

Number of measured workdays with recordings above 1.6 ppm (% of N) 25 (27%) 1295 (18%) 522 (60%)

Number of workdays with recordings exceeding CV (% of N) 8 (9%) 424 (6%) 118 (14%)

Workdays exceeding CV in % of above 1.6 ppm 32% 33 % 23%

Number of workdays with recordings above 100 ppm 1 3 0

Number of study duration workdays (% measured) 51 902 (0.2 %) 72 600 (10 %) 7700 (11 %)

Number of study workdays (% measured) 5215 (2 %) 93 540 (8 %) 1807 (48 %)

Table 2. Comparable calculations of arithmetic mean (AM) of H2S index value from ANOVA mixed model based on datasets A, B, and 
C with values imputed below LOD as “lowest index value/sqrt2.” Values are given with a 95% confidence interval in brackets. Index 
values are without units. The values 23 confirmed real zero are not imputed in dataset C. Index values have no unit.

Dataset A (N = 93) Dataset B (N = 7083) Dataset C (N = 849)

Pumping stations in autumn 6 (1 to 56) 4 (3 to 5) 8 (5 to 11)

Plant in summer 16 (0 to 361) 4 (3 to 5) 8 (4 to 19)

Sewage network and cesspools in winter 23 (8 to 68) 4 (4 to 4) 7 (6 to 9)

Plant in spring 1 (0 to 45) 4 (3 to 5) 11 (5 to 24)

Plant in winter 8 (0 to 64) 4 (3 to 5) 11 (6 to 21)

Plant in autumn 2 (0 to 53) 4 (3 to 5) 11 (5 to 26)

Pumping stations in summer 47 (6 to 382) 4 (3 to 5) 6 (4 to 8)

Water network in autumn 4 (0 to 119) 4 (3 to 5) 13 (7 to 29)
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8 Austigard et al.

have minor influence on the calculation (Austigard 
et al. 2018).

With a daily sampling strategy (dataset C) a much 
higher proportion of exposed workdays was found 
than in earlier published data (A and B). Fractions of 
days measured that are above LOD at 1.6 ppm have 
tripled from dataset B to dataset C, from 18% to 60%, 
and doubled from the 27% in dataset A. The fraction 
of exceedances of CV in total measurements has not in-
creased as much (from 9% and 6%, to 14%), as shown 
in Table 1. The fraction of days above LOD that ex-
ceeds CV has declined from 33% in dataset B to 23% 
in dataset C. These 3 comparisons suggest more ex-
posed days are found with a daily sampling strategy as 
in C, but relatively more below CV than above. This 
does not give more covered work time during the ob-
servation period (months) than routine collection, like 
in B, but it gives a more complete picture of the ex-
posure on the measured days. This difference in the  
fraction of days with detected exposure between the 
datasets is an indication that workers overestimate 
their skill to predict when exposure to H2S occurs, 
and is also a reminder to occupational hygiene pro-
fessionals of the same. This is in agreement with the 
findings of Logan et al. (2009), that qualitative judg-
ment (i.e. without any measurement data) has an ac-
curacy around that of random chance. With some 
measurement data and statistical training, accuracy 
was increased from 43% to 63% (Logan et al. 2009). 

This underestimation of exposure also accounts for ex-
ceeding CV, which makes alarm equipment important 
for health and safety. Numbers are found in Table 1 
and in the Supplementary Material.

The detection limit suppresses the number of de-
tected values per day. This increases the number of 
workdays with only “nondetects”. However, the data 
contains a large number of real zero days. Lavoue and 
Burstyn (2021) presented a method for calculating the 
proportion between real zero and LOD when this is 
not known. They showed that if real zero is not ac-
knowledged, a large proportion of censored data 
where a substantial part is true zeros, can bias the risk 
assessment toward noncompliance. In occupational 
hygiene statistics, when comparing the results to a 
TWA, this could be a problem. It has been argued that 
the 8-h TWA and its 95th percentile do not reflect the 
risk in wastewater work (Austigard et al. 2018, 2023). 
Even so, the true zero analysis is of interest when cal-
culating potential occupational health effects. The plan 
was to also evaluate the measurement results through 
ANOVA mixed model results, as originally made in 
dataset A, but the fraction of measurements below 
LOD is 30% to 80% of the datasets. This makes im-
putation with a fixed value, not a valid method to use. 
Excluding values below LOD is also inappropriate for 
calculating the parameters. Neither will a calculated 
mean of the index represent the health risk well, as it is 
the high-end levels that oppress the risk, not the mean. 

Fig. 4. Distribution of maximum H2S value per workday in ppm in measurement above 1.6 ppm, which was the mutual measurement 
area for the datasets. Differences in equipment and collection strategy affects the fractions. Values are binned as “<x<=”. Bin size is 
made by 1/10 of upper 10-integer, so that in the interval 2.1 to 10.0, the bin size is 1. From 10.1 to 100 it is 10. The bin endpoint 10.0, 
was chosen as this is the CV that should not be exceeded. Values between 1.7 and 2.0 are the first bin shown, as LOD for B and C 
sampling was 1.6 ppm. Values above 100 ppm are in one bin. In datasets B and C this equals overload of alarm equipment. Lines are 
broken when no fraction is present in the bin.
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No statistical distribution method bases will represent 
the high-end exposure of datasets with so large propor-
tion of zero values. These challenges are illustrated by 
the results in Table 2. For some example calculations 
see the Supplementary Material.

The expert strategy of collecting dataset A means 
measuring on a few individuals and on a few days over 
a period of time under the assumption that the exposure 
does not vary too much, and results are valid for the 
other days and other workers. Using alarm equipment 
and routinely collecting the data might demand an ef-
fort from the worker to remember to download data. 
By automated dumping of data when running bump 
checks, there is less effort for the worker, but activity 
data are not collected. This is the situation in dataset 
B. In total 8% of study workdays are covered. This is 
4 times more than the expert collection for dataset A, 
but 14% of the intensified collection in dataset C. Both 
datasets with an SAE strategy cover approximately 
10% of the total number of workdays during the study 
period, but their distribution is different: dataset B in-
volves a few persons and almost each day. Dataset C 
involves a few days (full selected weeks) with almost 
every person. The strategy of dataset A covered 0.2% 
of study duration workdays.

Cross-sensitivity is not likely to explain the meas-
ured values of H2S among water distribution network 
workers. Documentation from Honeywell (2017, 
2019) states the cross-sensitivity of the H2S sensor in 
the equipment to CO is <0.6%, giving an additional 
reading of 0.1 ppm H2S at 15 ppm CO. If linear, this 
means that CO level at 200 ppm (high-level alarm, 
IDLH) will not result in a reading of H2S above LOD. 
This complies with findings of low correlation be-
tween sensors, presented in a poster at the 10th Air 
Monitoring Conference (AIRMON10) (Austigard et 
Al. 2022b).

The use of alarm equipment requires addressing 
logging intervals. Alarms should come as quickly as 
possible when passing relevant levels. The T90 time of 
alarm instrumentation, whether personal or not, should 
therefore be short. When logging the data, the logging 
interval should be just above the T90. These instru-
ments seem to use instant value at storage time, rather 
than a mean over the logging interval. Such choices in 
equipment make them easier and cheaper to produce. 
The 15-s logging intervals give a good representation 
of the exposure of H2S, and T90 at this level gives a 
quick alarm response when needed. It was shown that 
autocorrelation in the equipment used is low and that 
it is dominated by the correlation between zero values 
(Austigard et al. 2023).

Tasks that are rarely done, but have extremely high 
exposure, need to be planned into a measurement re-
gime to secure the exposure data. This was not done 

for datasets A and C. Workers tend to promote the 
measuring of work they think of as highly exposed. 
Dataset B collects all such high exposure as long as data 
is transferred according to the routine. The strategy for 
dataset C will give a better representation of the most 
common exposure situations below the 10 ppm CV. 
These will be underrepresented in dataset A as workers 
influence which situations are measured and in dataset 
B as the focus is on alarms. Figure 4 illustrates this. The 
unpredictability of H2S exposure should be expected to 
amplify this effect.

Collecting alarm data adds value to the use of per-
sonal protective equipment (PPE). It gives oppor-
tunities for prevention by finding highly exposed 
situations, and documents such exposure. Quality of 
data declines if there is no feedback from the workers 
on the data collected. Systematic collection of alarm 
data also reduces misclassification of work situations 
as unexposed. Exposure assessment is an art where it 
is necessary to know the workplace in question. Even 
then, there might be surprise exposures. The effects of 
the exposure in question provide implications for as-
sessment strategy. For chronic effects, it is common to 
assume TWA as a relevant measure, while acute effects 
need peak measures as shown.

Work on the water distribution network was not 
measured for H2S during collection of dataset A, 
as both experts and workers assumed it to be unex-
posed to H2S. Due to the collection strategy of meas-
urements and activity data in dataset C, it was seen 
that some of the work categorized as “waternet work 
without sewage present” must nevertheless be exposed 
work. One explanation could be that manholes in the 
water distribution network are connected to the sewer 
through drainage. If so, H2S and methane are bound to 
be present to some degree.

Previously it was indicated that water distribution net-
work workers might also be exposed to high levels of 
H2S (Austigard et al. 2023). This is also seen in dataset 
C. This time, the exposure stood out in frequency and 
level because all the other SEGs were lower in maximum 
exposure than in the other datasets (Table 1 and Fig. 3). 
It appears that water distribution network workers are 
much more likely to be exposed to H2S than expected 
based on their own description of the work.

Index evaluation
Notation of exceeding the CV does not distinguish 
between peaks of different heights, just between ex-
ceeding or not. Like the use of TWA when dominated 
by peaks, this is problematic when there are many dif-
ferent effect levels. Even at levels when the worker does 
not recognize an acute effect from H2S, an impact on 
the body can be present (Bhambhani and Singh 1991; 
Bates et al. 2002). The index facilitates a measure for 
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parts of this problem by including the maximum level 
present and different weights to time at different inter-
vals of exposure. A further division in intervals of peak 
level in the high-end could be useful. This particularly 
applies if the profile shows higher proportions in the 
high-end exposure interval than found in these studies, 
and if the IDLH level is exceeded.

The use of data in a mixed model analysis depends 
on metadata that in some way is connected to the 
measurement of exposure level. All strategies in the  
presented datasets can be used for this purpose if  
the worker category (and not task) are used as meta-
data. This will give more crude estimates as all the 
workers do a variety of tasks. If the B strategy can be 
combined with activity data from other sources, for 
example, work logs or maintenance logs, collection of 
activity data might be available without much effort.

The low number of measurements in dataset A that 
have been labeled “some flushing” can explain that the 
difference in baseline of “much” flushing is not sig-
nificant in the mixed model analysis. Other work not 
categorized as flushing is also exposed, and it seems 
like “some flushing” is less exposed than those not 
flushing. This can be caused by different work in dif-
ferent groups. For example, “flushing” is not used as a 
category among plant workers in dataset C, although 
they do flush during daily cleaning operations. This il-
lustrates that categories can be given different mean-
ings by the workers.

The estimated variance from the mixed model 
matrix on index values is dominated by the within 
worker variance. This supports the description of H2S 
as an exposure with unpredictable potential. In dataset 
C approximately 71% of the total variance was within 
worker, while in dataset A approximately 100%. The 
main part of the variance is due to the large number of 
different tasks.

Sampling strategy A has found both low and very 
high levels, showing the high variability in exposure. 
A higher variability will increase the estimate of the 
95th percentile of exposure. Routine collection as 
in B seems to give some of the same variability, but 
because of the large number of measurements, the 
opportunity to use the data histogram directly to 
evaluate the percentiles are present, instead of calcu-
lating them statistically. The strategy in C will also 
give the same histogram opportunities, but depend 
on “luck” to get the highest exposures, as the meas-
urements are made over selected periods of time and 
will not always contain the highest exposures. The 
95th percentile estimate might nevertheless be the 
same in B and C, but the histogram in B is expected 
to show higher values within the values above the 
95th percentile due to the collection being also based 
on alarms.

Conclusions
Assessment strategies based on campaign measure-
ments are not suitable for unpredictable exposures of 
agents with life-threatening potential, like H2S. For 
such exposure, the use of an index that includes peak 
exposure measures, gives a better foundation of risk 
perception than TWA.

To rely on experience of H2S exposure is not suf-
ficient for workers protection, as the underlying risk 
of sudden high exposure is always present. Low TWA 
levels are not enough to document low-risk levels for 
exposure with acute potential. The presented data 
shows that TWA values of measurements with infre-
quent high peaks easily camouflage dangerous acute 
exposure levels. The use of continuous surveillance for 
risk warning should be standard procedure in work 
with exposure to chemical agents with immediate 
danger to life and health. Exposures with a ceiling limit 
should also be monitored this way.

Datasets B and C are systematically collected from 
personal electrochemical gas detector alarms with data 
logging used for risk warning. The study shows that 
such data can also be used and presented for exposure 
characterization. If possible, it should be combined 
with the collection of activity data. Occupational hy-
gienists and occupational medicine personnel should 
take this method into account when evaluating collec-
tion methods and effects of exposure on workers.

Water distribution network seems to also have inci-
dents of high exposure. This may be due to connections 
between water manholes and wastewater networks. 
No other explanation is indicated in the data.
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