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A B S T R A C T   

Small utilities often lack the required amount of data to train machine learning-based models to predict pipe 
failures, and hence are unable to harness the possibilities and predictive power of machine learning. This study 
evaluates the generalizability and transferability of a machine learning model to see if small utilities can benefit 
from the data and models of other utilities. Using nine Norwegian utilities’ datasets, we trained nine global 
models (by merging multiple datasets) and nine local models (by utilizing each utility’s dataset) using random 
survival forest. Several pre-processing techniques including addressing left-truncated break data and break data 
scarcity are also presented. The global models and three of the local models were tested to predict the pipe failure 
of the utilities which were not included in their training datasets. The results indicate that the global models can 
predict other utilities with sufficient accuracy while local models have some limitations. However, if a repre-
sentative utility with a sufficiently large (and information rich) dataset is selected, its model can predict the other 
utility’s pipe breaks as accurate as the global models. Furthermore, survival curves for defined cohorts as proxies 
for uncertainty, and variable importance show that pipes with and without previous breaks behave extremely 
different. With the understanding of models’ generalizability and transferability, small utilities can benefit from 
the data and models of other utilities.   

1. Introduction 

Aging water distribution networks, increasing break rates, and 
limited budgets are putting the utilities under increasing pressure to 
manage and, in consequence, rehabilitate their networks. In Norway 
[64], around 50,340 km of water supply pipes exist, with a new pipe 
installation rate of 1.4% in 2021 compared to a renewal rate of 0.68% 
per year. In the Netherlands, the renewal rate of water supply pipes is 
around 1%. Renewal rates in the UK were less than 0.6% annually [39], 
while in the US, they increased from 0.5% in 2015 to at least 1% (up to 
4.8% based on the utility) by 2019 [3]. By a rough estimate, a 2% 
renewal rate is deemed suitable for OECD countries [48]. Proper 
maintenance of such critical infrastructure systems is important for the 
economy, environment, and public health [5,44,50,53,54,61]. To 
facilitate proper maintenance, utilities need to assess the assets’ condi-
tion to elicit the maintenance and rehabilitation needs and consequently 
plan actions. As urban water infrastructure assets are, in contrast to 

other infrastructures such as roads, underground and difficult to access 
for inspection, the use of models to predict their conditions or their 
failure is more common than for easily accessible infrastructures. 
Therefore, deterioration models of water pipes are commonly used in 
research and also in practice to assess the reliability of pipes and hence 
to estimate the rehabilitation needs and aid in developing risk-based 
rehabilitation strategies. 

Despite the importance of proper maintenance and rehabilitation of 
water pipe networks, many utilities have barely started applying asset 
management principles and can therefore not be expected to have 
gathered sufficient failure/condition data already [80]. This issue is 
especially prevalent among small utilities, which often struggle with 
limited resources, expertise, and data availability [23,25,26,75]. This 
lack of resources can lead to difficulties in addressing the increasing 
frequency of pipe failures in aging water distribution networks, which 
can ultimately compromise the quality of the water supply. Despite the 
urgent need for solutions, there are relatively few studies available that 
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address the specific challenges that small utilities face in this regard. 
Wood and Lence [76] proposed an approach for effective asset man-
agement in small and medium utilities, which involves identifying 
critical data and selecting suitable models to predict pipe breaks. The 
study identified material, diameter, age, length, and break data as 
crucial variables. To optimize asset management, the authors recom-
mended gathering data on these variables through future data acquisi-
tion programs. Haider et al. [25] developed a performance management 
model for internal activities of small to medium sized utilities. Fran-
cisque et al. [23] proposed a life cycle cost approach to help small and 
medium utilities prioritize water pipe interventions. Winkler et al. [73] 
used low quality data, enhanced by a distance-based reconstruction al-
gorithm, to train a Random Forest (RF) model for one utility. In the 
Netherlands, multiple drinking water companies pooled their water pipe 
and failure data in a shared database called USTORE to use it for failure 
modeling. It was reported to contribute to more reliable failure analysis 
[6]. 

Chen et al. [13] utilized data from other utilities to augment the 
limited break data of a target utility, with the aim of improving the 
performance of machine learning (ML) models built using the target 
utility’s data. However, the study found that this approach did not 
consistently improve the target utility’s performance. It is worth noting 
that the study did not explore the possibility of using models built on the 
data from other utilities (either individually or in combination) to make 
predictions on the target utility’s pipe deterioration and evaluate their 
performance. Data of water distribution networks are usually classified 
as sensitive, thus restricting it from being circulated among the utilities. 
While models can be circulated among the utilities as they do not reveal 
sensitive information about the utilities from which they were trained. 
The question of whether a utility can use another utility’s (or a group of 
utilities’) model to predict its own pipe breaks remains open. To the 
authors’ knowledge, no study has evaluated whether a utility can utilize 
other utilities’ (individually or collectively trained) pipe break models 
and what accuracy could be expected of those models. This research gap 
highlights the need for further investigation into the feasibility of 
sharing failure models between utilities. 

This study aims to fill this research gap by evaluating the trans-
ferability and generalizability of models between utilities. The term 
transferability in this study is defined as “the ability of single-utility 
trained models to produce accurate predictions for utilities that were 
not part of the training and testing”. Similarly, generalizability is 
defined as “the ability of multi-utility trained models to produce accu-
rate predictions for utilities that were not part of the training and 
testing”. The former definition aligns with the definition provided in 
Wiesenfeld et al. [71] and the latter definition aligns with the one pro-
vided in Miner et al. [45]. This study specifically addresses the issue of 
inadequate data in small utilities where there may not be enough data to 
train a machine learning-based water pipe break model. To achieve this 
goal, this study evaluates the accuracy of both global (multi-utility 
trained) and local (single-utility trained) models in predicting water 
pipe break of other utilities which were not part of the training process. 
The study combines data from multiple utilities to train global models 
for generalizability and uses individual utility data to train local models 
for transferability. This approach has not been previously studied in 
literature. This work is particularly helpful for small utilities with 
limited data and expertise. By utilizing pretrained models, these small 
utilities are relieved of the burden of acquiring sufficiently large datasets 
and extensive expertise, while still achieving accurate predictions. 

This study utilizes Random Survival Forest (RSF), a ML technique 
that is not commonly used in pipe deterioration modeling, to train the 
models. The trained models predict the timespan until the occurrence of 
the next pipe failure. Moreover, separate survival curves for different 
utilities with groups of selected explanatory variables are presented to 
provide insights into the possible uncertainties in the deterioration 
modelling process. They can also highlight the differences in survival 
probabilities for different pipe groups, and the decisive factors in 

shaping them. The findings from the curves are further supported by 
analyzing the explanatory variables using permutation-based variable 
importance. The developed approach can provide important insights 
into the factors that contribute to the failure of water pipes, which can 
help utilities better allocate resources and prioritize repairs. The 
permutation-based variable importance analysis also provides an un-
derstanding of the relative importance of the explanatory variables in 
predicting water pipe failure. 

The remainder of the paper is structured as follows: Section 2 pro-
vides a background on different deterioration models for pipes, as well 
as the various factors that influence pipe break prediction. Section 3 
describes the data and the method. Section 44 describes the results and 
discusses the prediction performances of the models in a comparative 
way. It also presents and discusses the survival curves, the uncertainties, 
and the importance of explanatory variables. Section 55 provides 
conclusions. 

2. Pipe deterioration models and the influencing factors 

The currently applied deterioration models are generally classified as 
physical, statistical, and machine learning (ML) models [20]. Among 
these model classes, physical models are closest to emulating the reality 
of different individual deterioration processes. However, collecting the 
data required for these models is usually difficult and not cost effective, 
except for critical and large-size transmission pipes [37]. The use of 
statistical models has traditionally been the most common approach for 
pipe deterioration modeling mainly due to its cost-effectiveness [5]. A 
large variety of statistical models have been developed throughout the 
years and applied for water distribution networks [15,56,58,60,69] and 
they were reviewed by several articles with different perspectives (e.g., 
by explaining the mechanisms or comparing the models) and details (e. 
g., individual or classes of models) [18,37,47,57,65,72]. Such models 
use historical failure data to recognize patterns and then extrapolate 
those patterns into the future [72]. These models, however, have a 
limited capability of identifying the complex relationships that may exist 
between explanatory and response variables. As an alternative, ML 
models can help to identify these complex relationships with relative 
ease given that enough and reliable data is provided. Several ML tech-
niques have been applied in pipe failure modeling in recent years [19]. 
Some of the most applied techniques by researchers in pipe failure 
modeling are artificial neural networks, logistic regression, genetic al-
gorithms, and decision tree-based models [9,16,28,66,73]. One advan-
tage of many ML models is their ability to rank variable importance, 
while statistical models provide more insights into the variables, hence, 
complementing each other [39]. 

The complementary relationship between statistical and machine 
learning models is one reason why RSF was selected for this study, as 
RSF was developed for fulfilling those needs. RSF, developed by Ish-
waran et al. [31], combines RF with statistical survival modeling, 
providing time-dependent survival probabilities for individual water 
pipes. The latter is key for tactical planning of water pipe rehabilitation 
programs. Additionally, pipes with similar characteristics can be clus-
tered into groups, and the probability of failure for each group can be 
presented for strategic rehabilitation planning. A further advantage of 
RSF is that it utilizes the power of ensemble ML and considers 
right-censorship (i.e., when the event of interest has not yet occurred 
[36]), whose lack of consideration is a drawback of RF models. In a study 
by Snider and McBean [63], the RSF model was shown to outperform the 
Weibull proportional hazard survival model as well as the RF model for 
water pipe failure prediction. Laakso et al. [40] applied the RSF model 
for sewer pipes’ life span prediction and found that it performs slightly 
better than the Weibull model but neither offered excellent results. 
Notwithstanding its advantages and suitability, RSF is a novel and 
scarcely applied technique in water and wastewater asset management 
[63]. However, in a study by Almheiri et al. [2] on failure modeling of 
water pipes, RSF’s performance was shown to be inferior to survival 
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support vector machine and an artificial neural network method 
(advanced meta-learning). As the literature does not consistently 
demonstrate the superiority of any method, we opted to use RSF in this 
study. It is important to note that this study uses RSF as a tool, not as the 
objective. 

Although ML techniques outperform statistical methods in most 
cases [9,21,39,40,63], their performance relies not only on quality but 
also on a considerable quantity of data – something that smaller utilities 
rarely possess. 

The same cannot be said for literature on influencing factors on the 
deterioration processes, and the models applied to mimic it. Variable 
importance analysis is conducted as part of modeling by many studies 
[39,55,63,73]. The explanatory variables derived are divided into three 
groups: operational, environmental, and pipe-intrinsic factors. These 
factors influence pipe failure occurrence, both simultaneously and in 
interaction with each other. These interactions make it difficult to value 
the individual influence of a single variable on pipe failures. Nonethe-
less, there is a need to identify the most influential factors in order to 
prioritize data collection on these factors and emphasize the data quality 
requirements. Barton et al. [4] reviewed the factors affecting pipe failure 
without discussing the degree of importance of these factors. Studies 
that have evaluated the importance of factors have got varying results. 
The most used variables in the literature are pipe-related factors such as 
diameter, length and material [59]. Winkler et al. [73] used four 
different decision tree-based models and concluded that age and mate-
rial type are the most important factors. Konstantinou and Stoianov [39] 
used several statistical and ML models and concluded that maximum 
pressure and pressure range are the two most important variables. 
Jara-Arriagada and Stoianov [32] examined the effect of pressure con-
trol on a water distribution network and quantified its impact. They 
found that lowering the mean pressure for a group of asbestos cement 
and cast-iron pipes can result in pipe breaks reduction by 18% to 30%. In 
another study [14] where pipe age was set as an output variable for an 
artificial neural network model, the number of previous breaks, length, 
material and diameter were reported the most important variables, 
respectively. Yamijala et al. [79] stressed on pipe length as a key factor 
in predicting the number of breaks, as the length is directly correlated 
with the surface area exposed to hazards. Chen and Guikema [12] used 
spatial pattern analysis to group pipe breaks into clusters and identified 
areas with unusually high break rates. Iannacone and Gardoni [29] 
quantified the impact of earthquakes on water pipelines and the need for 
repair rates using a physics-based model. In addition to modelling, Fares 
and Zayed [22] collected municipal experts’ opinion in Canada about 
the factors affecting pipe failure. The conclusion was that pipe age, 
material and failure rate were the most important factors, respectively. 

3. Material and methods 

This section describes the scenario building and modelling process 
applied in this study. It describes the used data and the (anonymized) 
utilities, network composition and size (3.1). Based on this, data pre- 
processing (3.23.2) is performed and the issues of quality and quantity 
are addressed. The applied model and its performance metrics are 
described in (3.33.3). Finally, the method of evaluation of the most 
influential factors is described in (3.43.4). As a naming convention, the 
authors chose to refer to models trained on the data of one utility as local 
models and for models trained on multiple utilities as global models. 

3.1. Data description 

Water distribution pipe data of nine utilities of Norway are used in 
this study. The network data initially consists of approximately 139,000 
pipes. After pre-preprocessing and cleaning, around 108,000 pipes with 
a total length of 7,314 km remained for modeling. Pipe break data was 
available for most utilities from the 1970s to 2015. However, in utility 7, 
pipe break data had been recorded mysteriously but systematically since 

1900 (as shown in Fig. 1a). After consulting with local experts, it was 
concluded that it was highly unlikely for Norway to have had systematic 
and reliable break records before 1970. Therefore, any break records 
prior to 1970 were deemed unreliable and excluded from further anal-
ysis. The total number of reliable breaks included in the study was 
18,511. 

The construction periods of the pipes are representative of the con-
struction practices of their time. Pipes from the period before World War 
II are produced generally in better quality than pipes constructed in the 
post-World War II era (until the 1960s). This is because pipelines were 
mostly constructed by hand before the war, and with machines after the 
war. The first decades with machine-constructed pipelines were char-
acterized by rapid urban expansion, which translated to rapid con-
struction of pipelines. Pipes from this period perform the worst in terms 
of failure rates that we experience today. After that period, and espe-
cially after 1980, the quality of the construction work was highly 
improved. Pipe material use over time is similar to most of the other 
networks in developed nations, with some local variations. It started 
with cast iron in 1850s until the second half of 20th century, then ductile 
iron became popular (from the 1960s) followed then by PVC and PE 
pipes (from the 1970s). Exceptions were found mainly in utility 4 and to 
a lesser extent in utility 8, where a rapid transition from cast iron to PVC, 
without the use of much ductile iron pipes in between (Fig. 1b), can be 
observed. There is a trend for many Norwegian utilities that they have 
been, and are still, focusing on using predominantly ductile iron, or 
predominantly using PE/PVC. This is due to professional preference and 
local conditions. Historical and current failure rates in the utilities are 
correlated to historical pipe production standards [8]. There was for 
example a change in the production standard for ductile iron pipes 
around 1980s, when most producers started to add internal corrosion 
protection in their pipes to reduce internal corrosion pitting problems. 
This had a positive effect on the failure rates of ductile iron pipes. A 
similar effect for PE/PVC pipes was observed when a change in the 
production standard occurred around 1980s. 

3.2. Data pre-processing 

As for every modelling endeavor, quality control of the used data is of 
the utmost importance. As the data for the global model is the combi-
nation of multiple utilities’ datasets, explanatory variables for this 
model must be shared among all the utilities. If one utility misses the 
recording of a variable, e.g., interior protection type, then the interior 
protection type of all the other utilities is dropped. Otherwise, the global 
dataset will have missing data and the treatment of missing data for the 
RSF model will increase the uncertainties to a level that dropping the 
variable can make it less uncertain. As a result, fewer explanatory var-
iables for training the global model are available than what can be used 
for each local model individually (a complete list of available variable 
data in each utility is shown in Appendix). The variables shared among 
all the utilities in our datasets are material type, length, diameter, 
number of previous breaks, and number of other pipes connected to the 
target pipe’s manholes at the start and at the end (these last two vari-
ables are derived by GIS analysis). Pipes with less than one meter in 
length are not considered in this study and removed from further anal-
ysis. More explanatory variables’ data were available for some local 
models. For improved comparability between global and local models, 
the local models are also trained with the same explanatory variables as 
used in the training of the global models. The consequence of this is that 
the performance of local models is in general a bit underestimated in this 
study, although internal tests showed that the effect was minimal. 

After selecting the explanatory variables, they were checked for 
anomalies. Visualization of the data (e.g., Fig. 1a and b) is helpful and an 
effective way of identifying anomalies such as missing data, outliers and 
implausible values [55]. The anomalous values of material type were 
grouped into a single category labeled as “unknown”. Missing or 
anomalies of diameters were replaced with the median diameter of the 
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network, and pipe length was taken from the GIS mapping of the net-
works. One should note that there are advanced techniques for imputing 
missing data, which can outperform the simpler methods we used here 
for diameter and material type [34]. However, we chose not to focus on 
data imputation in this study. Instead, we aimed to look at the gener-
alizability and transferability of models since many utilities struggle 
with limited data availability and lack of expertise. Thus, we decided to 
work with the available data, which is representative of the situation 
that many utilities face. It is important to note that filling in the missing 
values of the most important variables, such as age, with estimations can 
induce more uncertainties and lower the prediction performance of the 
models. Therefore, in the case of anomalies in age, the sample was 
excluded from the study due to its significance as a response variable in 
RSF model. Approximately 3000 pipes were removed during this stage, 
primarily due to the exclusion of short pipes (those of only a few cen-
timeters in length) and pipes with anomalous age (construction year) 
data. More than just missing values and outliers in the dataset, there are 
other quality issues in a typical water pipe dataset that need to be 
addressed in order to increase the performance. The following para-
graphs identify and address these issues. 

3.2.1. Replaced pipes 
Unlike most other typical datasets, which seldom include informa-

tion on replaced pipes [58], the used Norwegian water network datasets 
have records of replaced pipes with the time of replacement starting in 
the 1980s. However, the reason for replacing the pipes is usually not 
recorded (e.g., if the replacement was due to a break or because of 
adaptation to changes in demand or environment). For our deterioration 
modeling, only a binary state (fail or not fail) at the time of replacement 
is sufficient. As the state of the replaced pipes at the time of replacement 
was not known, we evaluated three scenarios to see which scenario gives 
the highest model performance: (1) the replaced pipes did not fail at the 
time of replacement; (2) the replaced pipes did fail at the time of 
replacement; and (3) remove these pipes from modeling. None of the 
three scenarios showed significant improvement or decline in model 
performance. Hence, we continued with the first scenario for the rest of 
the analysis as it was the convenient choice. 

3.2.2. Dealing with left truncated break data 
Left-truncated break data refers to the unknown break history of 

those pipes which were installed before the start of break records. The 
datasets of the utilities show that the earliest break records started in the 
1970s. So, the break records for the pipes installed before 1970s are left- 
truncated. The time and number of previous breaks of those pipes are 

unknown. As a result, the first recorded breaks in pipes installed before 
1970s might not be the real first break which eventually can lead to 
incorrect results [78]. Instead of discarding all the pipes installed before 
1970, which comprises 48% of all the data by count, the following 
workaround has been applied: 

Pipes installed from 1945 and after are considered for modeling 
because break records for pipes installed before 1945 are not reliable 
given the start of break records in 1970s. The first recorded breaks for 
the pipes installed before 1970s are assumed to be their first break in the 
raw dataset. A simple descriptive statistical analysis on pipes installed 
after the 1970s shows that on average it takes 30 to 40 years for the first 
breaks to occur. Thus, the first pipe breaks for pipes installed after 1940s 
are captured since 1970s and after. The majority of pipes installed before 
the 1940s have most probably already had some breaks before the 
recording period. Thus, break records of pipes installed before 1940s 
contain more unreliable break records than reliable break records. 1945 
was taken as a starting point, as not much infrastructure construction 
work was undertaken before 1945. In utility 4, break records started in 
1994. Hence, instead of 1945, 1960 was taken as the cutoff year. By 
excluding the pipes installed before 1945 (1960 for utility 4), approxi-
mately 27,000 (19% of the total) were discarded, of which 25,000 were 
mainly composed of grey cast iron (GCI) pipes. This corresponds to 
approximately 42% of all GCI pipes being excluded from the combined 
datasets. 

In the results section, the performance of the models is presented 
under two scenarios: all pipes and pipes installed from 1945 and on-
wards. The analysis indicated that the models performed better in the 
second scenario, which included pipes installed from 1945 onwards. 

In our study, we utilized a simple yet effective method to handle left- 
truncated break data. Although advanced techniques have been devel-
oped, such as machine learning imputation techniques [77] and the Yule 
process extension used in Le Gat [41] that incorporated the 
left-truncation issue, we chose to adopt a simpler approach that was 
sufficient for our purpose. Our focus was to compare local and global 
models and examine the generalizability and transferability of break 
models between utilities. It was not our aim to create the perfect model, 
but rather to use a pragmatic and feasible approach that is accessible to 
many utilities. 

3.2.3. Previous pipe breaks 
For each recorded break in a pipe, we give new IDs to the pipe (and 

hence, virtually new samples) for two reasons. One, the number of 
broken pipes is usually by far fewer than the number of unbroken pipes, 
and even in some cases the number of broken pipes is not sufficient to be 

Fig. 1. (a) Cumulative% of pipe length over the years for each utility and the start of break recordings; (b) Pipe material distribution and count of pipes in 
each utility. 
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used for modelling. Two, we want to use the number of previous breaks 
as an explanatory variable for the model as it is bound to have an impact 
on decreasing the time to next break [67]. Each real pipe having an n 
number of previous breaks is transformed into n + 1 virtual pipes. As 
illustrated in Fig. 2, a pipe with 3 previous breaks is transformed into 4 
virtual pipes, starting from 0 previous breaks up to 3 previous breaks. 
Their time to the next break event is also changed accordingly. In this 
way the number of break records is expanded without compromising the 
quality or reliability of data. This technique has been successfully 
applied in the work of Winkler et al. [73]. 

Available break records do not distinguish between the breaks that 
happened due to external events such as earthquakes, floods, digging 
and construction errors, etc., and the breaks due to gradual deteriora-
tion. This is a typical problem in break records of datasets for water 
pipes [57]. Had the break records been differentiated between the 
gradual deterioration and external events, only gradually deteriorated 
pipes would have been selected for deterioration modeling, while the 
ones for external events could be used for (inter-) dependency assess-
ments [17]. Pipes breaking due to external events cannot be considered 
as gradually deteriorated pipes. They are probably one of the sources of 
noise in the results. The share of pipes breaking due to external fac-
tor/third party is 1 out of 6 in the Netherlands’ USTORE database. 

Table 1 shows the variables and their ranges after data pre- 
processing. These variables were used as explanatory and response 
variables of the models used in this study. The RSF model requires two 
types of response variables, age, and status (1=fail, 0=no fail) at this 
age. We have provided the pipe age at the time of break, and status=1 if 
the pipe has failed at this age. Otherwise, the pipe age at the time of 
censoring was provided with its status=0, meaning that the break of 
interest has not occurred at this age. 

3.3. Model description 

RSF [31] is an ensemble machine learning method and an extension 
of the RF method [7] specifically tailored for survival modeling. In other 
words, RSF is a combination of RF and survival models, such as the 
Kaplan-Meier estimator [35] or the Nelson-Aalen estimator [1,46]. This 
combination allows RSF to harness the strengths of both approaches and 
create a powerful tool for survival modeling. It has the capability to 
handle censored data and predict survival outcomes. Compared to other 
survival analysis techniques, the RSF algorithm has several advantages. 
It is a non-parametric method and can handle high-dimensional data, 
making it a powerful tool for analyzing complex datasets. Additionally, 
the RSF algorithm provides measures of variable importance, which can 

help identify the most influential predictors of survival. This feature is 
especially useful when the goal is to understand the underlying mech-
anisms driving the survival outcomes. RSF was applied in water pipe 
deterioration modeling by Snider and McBean [62,63] Snider and 
McBean [62] describe the RSF in simpler terms. The RSF algorithm 
consists of survival trees, which are similar to decision trees used in RF. 
However, instead of using impurity measures like the Gini index or in-
formation gain as the criteria for splitting nodes, the maximum survival 
difference is used as the split criterion. This ensures that the nodes are 
split in a way that maximizes the difference in survival probabilities 
between the two child nodes. The log-rank test statistic is utilized to 
assess and optimize the differences between survival curves. The 
log-rank test statistic [43] is formulated as: 

G(s) =
∑n

i=1
I
{

Xij ≤ y
}
(δi − S(ti)) (Eq. 1)  

where X is the input variable j for individual i; y is the split criterion for 
input variable j; I is the indicator function (1 if X is less than y and 0 if 
not); δi is the censor indicator; and S(ti) is the survival curve. 

Moreover, the RSF algorithm estimates the survival function at the 
terminal nodes of each tree using the Kaplan-Meier estimator (Eq. (2)) 
for survival probability or the Nelson-Aalen estimator (Eq. (3)) for the 
cumulative hazard function (CHF), both of which utilize time-to-event 
data. 

Ŝ(t) =
∏

ti≤t

(

1 −
di

ni

)

(Eq. 2)  

Ĥ(t) =
∑

ti≤t

di

ni
(Eq. 3)  

where ti is the time when at least one event occurred, di is the number of 
events that occured at time ti, and ni is the pipes known to have survived 
up to time ti. 

Finally, to obtain the CHF of each individual pipe, the RSF algorithm 
averages the CHFs of all the trees in the ensemble. The CHF, denoted by 
Ĥ(t), represents the accumulated risk of experiencing an event up to 
time t. It can be converted to the survival probability, Ŝ(t), which is the 
probability of surviving beyond time t, as follows: 

Ĥ(t) = − ln(Ŝ(t)) (Eq. 4) 

To better present the survival probabilities for groups of pipes with 
similar characteristics, we utilized the model’s ability to provide 

Fig. 2. Illustration of transforming a real pipe into virtual pipes to increase the number of break records for modeling purposes.  
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survival probabilities for individual pipes and grouped them based on 
their material and the number of previous failures. This allowed us to 
present the survival probabilities for cohorts of pipes, which provides 
valuable information about the expected lifespan of pipes with similar 
characteristics. 

To provide a comprehensive picture of the average and the un-
certainties involved in cohort survival probabilities, several measures, 
including the median, 75th percentile, and 95th percentile were used. 
The 75th and 95th percentile survival probabilities provide information 
on the upper limits of the cohort’s survival distribution and can help 
assess the range of potential outcomes. 

By presenting survival probabilities for cohorts of pipes with similar 
characteristics, one can gain insights into the factors that influence the 
lifespan of pipes and make informed decisions about maintenance and 
replacement schedules. Moreover, by using multiple measures to 
describe cohort survival probabilities, we can better account for the 
uncertainties involved and make more accurate predictions about the 
lifespan of the pipes. 

The concordance index (C-index), introduced by Harrell et al. [27], is 
the standard performance metric used to evaluate the predictive accu-
racy of survival analysis [42] such as RSF. The C-index compares pairs of 
pipes between each other. It rewards the model if the pipe that failed 
first had a higher predicted risk of failure. Risk of failure in RSF 
modeling is the area under the CHF curve. It is important to note that not 
all possible pairs are comparable. The following steps illustrate which 
pairs are comparable and how the C-index algorithm rewards the model:  

• Generate all possible pairs of pipes using the test data.  
• Exclude pairs where both pipes have a censored failure event. 

Exclude pairs where the pipe with shorter survival time is censored 
and exclude pairs with identical survival times unless at least one of 
the pipes has failed. The remaining pairs are comparable and are 
evaluated.  

• For each comparable pair, determine if the pipe with shorter survival 
time has a worse predicted outcome. If the predicted outcomes are 
tied, count 0.5 for that pair. For pairs with identical survival times 
and both have failed, count 1 if the predicted outcomes are tied, 
otherwise count 0.5. For pairs with identical survival times where 
one pipe failed and the other is censored, count 1 if the failed pipe 
has a worse predicted outcome, otherwise count 0.5.  

• Calculate the sum of these counts over all comparable pairs and call 
this sum Concordance.  

• Calculate the C-index by dividing the sum Concordance by the total 
number of comparable pairs. The resulting C-index represents the 
probability that the model correctly predicts which case has a worse 
outcome. 

The C-index depends on the censoring distribution and is shown to be 
not a sufficiently descriptive performance index for data that comprises 
highly right-censored events [68]. As right-censorship dominates in 
water distribution pipe networks (i.e., majority of pipes do not have any 
breaks recorded), it is recommendable to use a more suitable perfor-
mance metric than the C-index alone. Uno et al. [68] presented a 
modified version of C-index, called C-index-inverse probability of 

Fig. 3. Distribution of the common variables, all utilities’ data combined.  
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censoring weights (C-index-ipcw) to address this shortcoming. In 
essence, the C-index-ipcw weighs the contribution of each observation 
based on the probability of it being censored, thereby adjusting for the 
bias introduced by the censoring mechanism. This approach allows for 
more accurate evaluation of the model’s ability to predict the 
time-to-event outcome, especially in situations where there are a large 
proportion of censored observations. As literature for water and sewer 
systems asset management used the C-index [40,63], we did not only 
evaluate our models’ results with the C-index-ipcw but also evaluated 
with the C-index to enable comparison of our results with literature. 
However, our final evaluation and emphasis is on the C-index-ipcw. 

The C-index and C-index IPCW both have a range of 0 to 1, with 
higher values indicating better model performance. A score of 1 in-
dicates perfect model performance, while a score of 0.5 suggests that the 
model is no better than random guessing. A score below 0.5 indicates 
that the model performs worse than random guessing. 

Using the RSF algorithms written in Scikit-survival Python package 
[51], we developed a total of 18 models, including nine global models 
and nine local models, in a Python platform. To ensure reliable and 
robust results, using Scikit-learn [49], we utilized a train-test split of 
80–20 percent for the local models, and each local model was trained 15 
times, with each run predicting its respective utility’s test dataset, with a 
randomly selected train-test dataset. For the global models, each model 
was trained with data from eight utilities excluding the ninth utility, 
which was then predicted 15 times, each time with 80% of its randomly 
selected pipes. 

We chose these percentages to balance the need for a sufficient 
amount of data for training while ensuring that there was enough data 
for testing to provide a reliable estimate of model performance. The 
train-test split shuffles the data randomly and splits it into two sets based 

on the specified ratio. This approach assumes that the data points are 
independent and identically distributed (i.i.d.), and there is no inherent 
structure or pattern in the data (temporally or spatially) that needs to be 
preserved in the split. Additionally, we conducted 15 model simulations 
and predictions, as additional simulations did not yield significantly 
different results. 

Moreover, we investigated the transferability of the local models by 
selecting the three largest utilities as reference utilities. These reference 
utilities were then used to predict the failure of pipes in the remaining 
utilities, allowing us to compare the transferability of local models with 
the generalizability of global models. The prediction process for refer-
ence utilities was the same as for global models, where 80% of the pipes 
were randomly selected for 15 iterations. 

We used the default hyperparameters provided by Scikit-survival and 
did not perform hyperparameter tuning. Given that our main objective 
was to compare the results between the different models, we believe that 
the default hyperparameters provide a fair basis for comparison. How-
ever, a sensitivity analysis showed that the following hyperparameters 
could be tuned to improve the performance of the models: number of 
trees in the forest (n_estimators), number of features for the best split 
(max_features), and minimum number of samples at a leaf node (min_-
samples_leaf). Although hyperparameter tuning could potentially 
improve the performance of the models, it is not the objective of this 
study to try and get an optimal numerical fit, but rather to provide a 
proof of concept for generalizability and transferability. 

3.4. Assessment of variable importance 

Permutation based variable importance analysis using the algo-
rithms in Scikit-survival [51] was carried out to pinpoint which vari-
ables contribute the most to the model prediction and if there is a 
common predictive variable among all the utilities. The method is 
theoretically based on removing individual explanatory variables and 
retraining the model to see how much the performance is reduced in the 
absence of that variable. Then the importance of the variable is calcu-
lated from the difference in the C-index (as the built-in function of RSF is 
based only on C-index) with and without that variable. This way can be 
computationally expensive for such a large amount of data due to 
retraining of the model for each variable, and hence, impractical. 
Practically, the values of the variable of interest in the test dataset are 
replaced by random values and the model is then tested. This way the 
random values of the variable of interest are assumed to have not 
contributed to the C-index. The importance of the variable of interest is 
then calculated from the difference in the C-index with actual and with 
random values of the variable. Sometimes the random values can acci-
dentally be similar to the original values. To avoid such cases, each 
random filling of each target variable is iterated 15 times and the 
average change in performance is recorded. 

4. Results and discussion 

The results show the applicability of the selected models. In the 
following sections we will discuss the prediction performance as a 
measure of model generalizability and transferability, the importance of 
the different variables and the insights that the usage of the RSF model 
and its survival curves can give us into the uncertainty of deterioration 
models, that is otherwise seldom addressed. 

4.1. Prediction performance of the local, global and the reference models 

The model results are presented in boxplots to show the spread and 
average performance (in terms of C-index and C-index-ipcw) of the 15 
iterations. Fig. 4 shows the performance of nine global models (in green) 
in predicting the local utilities, as well as the performance of nine local 
models (in black) in predicting parts of their own network, in terms of C- 
index and C-index-ipcw. Fig. 4a and b show the models’ performances 

Table 1 
Explanatory and response variables for the random survival forest models.  

Explanatory- 
variables 

Variable 
type 

Variable range Description 

Material type Categorical DI, GCI, PVC, PE, 
PEL, PEH, PE50, 
PE80, PE100, UCI, 
GST, ST, Cu, C, 
Unknown, 

DI=ductile iron, 
GCI=grey cast iron, 
PVC=polyvinyl chloride, 
PE=Polyethylene, (PEL, 
PEH, PE50, PE80, PE100, 
PE100K are PE’s sub- 
variants based on density 
and/or production 
standard), 
UCI=unspecified cast 
iron, GS=galvanized steel, 
ST=steel, Cu=copper, 
C––Concrete 

Length Numerical 1–3627 Length of pipe segments 
[m] 

Diameter Numerical 20–2000 Pipe diameter [mm] 
Number of 

previous 
breaks 

Numerical 0–20 Count of breaks recorded 
on individual pipes 

Number of pipes 
connected at 
starting 
manhole 

Numerical 0–10 Count of other pipes 
connected to the manhole 
at the start of the pipe of 
concern 

Number of pipes 
connected at 
ending 
manhole 

Numerical 0–10 Count of other pipes 
connected to the manhole 
at the end of the pipe of 
concern 

Response- 
variables    

Survival/break 
age 

Numerical 0–70 (years)* 
0–165 (years)** 

Age of pipe at the time of 
break/ censoring 

Status Binary 0,1 0=not failed, 1=failed  

* For pipes installed between 1945 and 2015,. 
** For all pipes (1850-50] 

The distribution of the common variables for all utilities’ data combined 
between 1850 and 2015 is illustrated in Fig. 3. 
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with input data including all the years of pipe installations, while Fig. 4c 
and d show the models’ performances with input data including pipes 
installed only from 1945 and after. The figures show that excluding 
pipes installed before 1945 generally improved the performance. 
Thereby strengthening the assumptions made earlier. The results shown 
from this point onwards are based on the data of pipes installed from 
1945 and after. 

Comparing the performance of local and global models, Fig. 4c and 
d shows that locally and globally trained models have an overall average 
C-index of 0.82 and 0.8, and C-index-ipcw of 0.74 and 0.72, respectively. 
The global models’ performances are close to local models and well 
beyond 0.5 (which is the threshold for a model to be not performing 
better than a random guess). The results clearly show the generaliz-
ability of a globally trained model for predicting local utilities. It would 
be interesting to check the performance of the global models for utilities 
in other countries with similar and different climate, geography, and 
historical network evolution to test the limits of such a transferability. 

It is also interesting to assess if the local models are transferrable 
between themselves and if they deliver comparable results to the global 
models, i.e., if a local utility’s model can predict another local utility’s 
pipe breaks. To evaluate this, the three largest utilities (1, 6, and 9) were 
chosen as reference utilities. Models were trained for each reference 
utility using their own datasets and predictions on the other 8 utilities 
were made. Fig. 5 shows the prediction performance of the reference 
utilities in terms of the C-index-ipcw. Blue boxes show the performance 
of reference utilities when they predict parts of their own pipes. Their C- 
index-ipcw values on average are 0.83, 0.72, and 0.78 for the utilities 1, 
6, and 9, respectively. Locally trained models stayed exactly the same (as 
nothing is changed here) with an overall average C-index-ipcw value of 
0.74 while the respective index for predicting local utilities from the 
reference utilities (1, 6, and 9) are 0.69, 0.72, and 0.69, respectively. 
These results indicate that the performance of our 3 reference utilities in 
predicting the other utilities is way better than a random guess (i.e., 0.5). 

Among the reference utilities, utility 1 and 9 are among the best 

Fig. 4. In (a) and (b), prediction performance of global models compared to the local utilities (no filtration of pipes by installation year). In (c) and (d), prediction 
performance of global models compared to the local utilities (for pipes installed from 1945. 
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performances when predicting parts of their own networks, while their 
average performance to predict other utilities is weaker than for utility 
6. On the contrary, utility 6 has the weakest performance for its own 
pipes but strongest performance for predicting other utilities. The reason 
is most likely that utility 6 is the largest among the 9 utilities (includes 
30% of all pipes by total count). Utility 6 is also in a relative 
geographical vicinity location to most of the other utilities, sharing 
similar climate, demographics, and construction practices to some 
extent, while utility 1 and 9 are more remote from most of the other 
utilities. The weaker model performance of utilities 1 and 9 are even 
more noticeable when looking into the prediction of individual utilities 
(see predicted result of utility 9 by reference utility 1 in Fig. 5a and 
predicted results of utilities 1, 2, 3, and 7 by reference utility 9 in 

Fig. 5c). These results indicate that to achieve better transferability it is 
more important for the reference utilities to possess a large enough 
database with a good representativity for the other utilities than to be 
better performing for themselves. 

Comparing the performances of the global models (Fig. 4d) with 
reference utilities’ models (Fig. 5), utility 6′s performance (in Fig. 5b) is 
as high as the global models (both have an average C-index-ipcw of 
0.72). However, utility 1 and 9 perform weaker than the global models. 
In practice if a utility manager is not sure which utility can better 
represent that utility, it is safer to use a global model than to use the 
model of a randomly selected utility. As shown in Fig. 4d, the global 
models predict each utility satisfactorily, while predictions from refer-
ence utilities (Fig. 5) depend on their size and representativeness. 

Fig. 5. Model performance in terms of C-index-ipcw of three reference utilities predicting other utilities compared to the other local utilities predicting their own 
pipes (for pipes installed from 1945 and after). 

Fig. 6. Predicted survival curves for each utility using the global models, distinguished by utility, number of breaks and materials.  
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4.2. Survival curves 

Based on the high performance of global models in predicting local 
utilities, survival curves for local utilities were predicted using global 
models shown in Fig. 6. Each survival curve represents the median 
survival curve of a utility for a cohort of pipes with the same material 
and same number of previous breaks (0,1, or 2). The three most common 
material types (grey cast iron, ductile iron, and polyvinyl chloride) were 
chosen for the analysis. The figure indicates that there is no clear sur-
vival (or time to next break) difference among the utilities for the same 
material type and previous breaks. However, survival times are signifi-
cantly shorter for pipes with previous breaks compared to those without, 
which is consistent with Scheidegger et al. [57] argument that repairing 
pipes after a break reduces their structural strength permanently. The 
figure also shows that there is a small difference between survival 
probabilities of pipes with 1 and 2 previous breaks. This supports the 
findings of Tscheikner-Gratl et al. [67], that the difference in time to 
next failure decreases after the first break. Pipes with 2 previous breaks 
are a bit more prone to failure than the pipes with 1 previous break. 
Survival difference in different material types do exist (see the differ-
ences in Fig. 6 from a to c), however, their differences do not make the 

curves as diverse as the previous breaks do. Moreover, the differences in 
survival curves for different material types indicate that survival has 
improved from GCI to DI and to PVC, showing the evolution in the 
reliability of materials throughout time. 

It is important to note that relying on the survival curves has limits. 
Once the survival curves start changing its slope towards horizontal 
direction it means less and less break data is available and that is the 
point where the curve starts being less reliable. Once the slope is 
completely horizontal no more break data is available, and no reliable 
conclusions can be drawn anymore. In Fig. 6a, for instance, the 
threshold of becoming less reliable on curves starts from around 55 years 
for the pipes with zero previous breaks and 20 years for the pipes with 1 
or 2 previous breaks. The survival curves in Carrión et al. [10] grey cast 
iron pipes also start getting flat after around 50 to 55 years. The study 
did not further distinguish the pipes by the number of previous breaks. 
The flatting effect was also seen in Laakso et al. [40] model where they 
used RSF for lifespan prediction of sewer pipes. 

The survival curves, like every modelling effort, come with un-
certainties which are seldom recognized and addressed in literature. In 
Fig. 6 each curve was the median of a group of pipes, as is often done for 
cohort survival models that group by materials. To have a glimpse of the 

Fig. 7. The variation of survival curves as a proxy for uncertainties and pipe grouping based on the important variables.  
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uncertainties involved in the survival curves, Fig. 7 is drawn with 75% 
and 95% interval of survival curves in addition to the median curves. 
This figure further illustrates how uncertainties can be reduced by 
creating smaller and more homogeneous groups. In Fig. 7a, b, and c the 
pipes are distinguished by material alone, while in Fig. 7d, e, and f, they 
are further subdivided by the presence or absence of previous breaks. 
This way, uncertainties are significantly reduced, however the common 
practice of constructing cohorts based solely on material groups is not 
sufficient for our cases. Uncertainties can be further reduced by sub-
dividing groups even more by length (e.g., length≤5 and length>5), 
material production standards, diameter and so on. However, in small 
utilities enough data might not be available to subdivide groups. In fact, 
groups should be as homogeneous as possible to minimize uncertainties, 
while still being large enough to maintain the statistical significance of 
findings [38]. In the case of limited data, pipe grouping should start with 
the variables that make groups as distinct as possible. Those variables 
are the most important variables that need to be identified through 
variable importance analysis. 

The survival curves provide utilities with valuable information for 
both tactical and strategic planning as the results can be used both on a 
pipe and network level. Tactical planning involves short to medium- 
term planning, typically ranging up to 5 years, and focuses on identi-
fying the most critical pipes that require rehabilitation or replacement. 
The survival curves provide utilities with a way to predict which pipes 
are likely to fail in the near future, allowing them to prioritize 

rehabilitation efforts based on the severity of each pipe’s condition. One 
can combine the probability of failure with the consequences of failure 
to take risk-based decisions. 

Strategic planning, on the other hand, is a long-term planning pro-
cess that takes into account the overall condition of the network and 
budget constraints. The group survival probability predictions can be 
used for strategic rehabilitation planning by giving an overview of the 
time it takes for certain pipe groups to deteriorate and hence need to be 
replaced. Summing rehabilitation needs over the long term can provide 
an overview of the future of the water network condition and budget 
needs. 

4.3. Analysis of variable importance 

The results of permutation-based variable importance are depicted in 
Fig. 8. As also supported by the survival curves (Fig. 6 and Fig. 7), the 
number of previous breaks is the most influential variable among all the 
utilities followed by length and material type (i.e., GCI, DI, and PVC). A 
Pearson correlation analysis of the combined datasets (Appendix) also 
shows relatively high correlation of the number of previous breaks, 
material type (mainly grey cast iron) and length with the response 
variables (survival/break age, and status). These findings are aligned 
with the findings in Christodoulou et al. [14]. Findings in other litera-
ture can be different than the findings in this study. For instance, in 
Konstantinou and Stoianov [39], where they did not consider previous 

Fig. 8. Permutation-based variable importance.  
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breaks as a variable, the most influential variables were maximum 
pressure and pressure range, followed by material, diameter and length. 
A previous break probably weakens the structural strength of pipes that 
they cannot withstand higher loads anymore. Length is correlated with 
more exposed surface area. The more exposure to hazards the more risk 
of failure is expected. Length is reported by many literature as one of the 
most influential variables in pipe break predictions [39,55,79]. Pipe 
material represents different characteristics of pipes (e.g., structural 
strength, corrosion resistance) and many literatures trained separate 
models for each material type (e.g., [63]). In our study we trained one 
model for all material types and then their importance was highlighted 
in variable importance analysis. It should be noted that some material 
types (e.g., Galvanized Steel and some PE variations) have an insignif-
icant number of samples in the dataset and hence do not contribute to 
the predictions. Furthermore, one might notice the absence of the age of 
pipe as a variable. In RSF, age is part of the structure of the model and is 
provided as a response variable. As the model uses Kaplan-Meier esti-
mator to predict survival curves, without age RSF cannot be run. Hence, 
age is not only an important variable in RSF but also the required var-
iable of the model. Age is reported by many literature [11,30,33,39,73] 
as the most or one of the most important variables. 

We also trained a model based on utility 9′s full dataset (without 
dropping variables) which had gathered the widest range of variables (e. 
g., maximum pressure, annual average daily traffic, existence of quick 
clay, pipe depth, interior and exterior protection) and conducted a 
variable importance analysis to verify if the significance of the number 
of previous breaks still holds. The results (in Appendix) indicate that the 
performance of this model did not significantly improve, and the num-
ber of previous breaks still remains by far the most influential variable. 
However, the analysis was inconclusive in determining the second 
important variable. In fact, the importance of pipe length, number of 
pipes connected at ending manhole and material type, especially with 
respect to ductile iron pipes, was found to be relatively equal and were 
consistently competing for the second rank each time the model was run. 

As the results show that the number of previous breaks is the most 
important variable, we considered removing it from the model to see 
how the models performs without the previous break information to test 
the applicability of the models without this information. Fig. 9 shows the 
performance of local and global models without previous break infor-
mation. Comparing Fig. 9 with Fig. 4, the average values of C-index and 

C-index-ipcw dropped by around 0.15 and 0.06, respectively (it should 
be noted that the built-in function for the weights shown in Fig. 8 is 
based on the drop of C-index only). Hence, removing previous break 
information impacts the model performance considerably. This result 
further solidifies the importance of historical break data. 

Historical break record data is defined and considered in different 
ways in literature. Snider and McBean [63] and Snider and McBean [62] 
included the number of previous breaks and also the age at the last, 
second last and third last breaks in their model. However, due to the 
high correlation between the number of previous breaks and the age at 
last break, we decided to drop the latter from our models. Fan et al. [20] 
included the number of previous breaks and the interval time to last 
break and found that the latter was the most important variable and the 
importance of the former was mediocre. However, they did not evaluate 
how the model performs without the interval time to last break as an 
explanatory variable. In our study, due to a high correlation between the 
number of previous breaks and the time to last break, it is difficult to 
determine which variable is more important. Including both variables in 
the analysis may be considered overfitting. The Pearson correlation 
coefficient between the two was 0.65. Additional statistical analysis 
revealed that pipes with no previous breaks typically break on average 
in 33 years. However, pipes with one, two, or three previous breaks are 
expected to break again within 13, 9, and 6 years, respectively. 

There are other variables which are not considered in this study but 
are deemed important in literature. Specifically, this study lacks the 
environmental factors such as soil type (especially corrosive soils), 
weather-related variables (e.g., temperature, soil moisture, seasonality) 
[24,52,70,74] which are deemed to be important [4]. The existing 
literature lacks a holistic understanding of all the variables, along with 
their respective rankings, that influence the failure probability of pipes. 
Therefore, further research is merited in this area. The objective of this 
study is to investigate whether small municipalities, despite lacking 
many of the factors considered important in the literature, could still 
benefit from utility models and data available to them. Therefore, we 
have chosen to use only variables that are available to all datasets in the 
study. 

5. Conclusion 

To aid water utilities in their asset management approaches, this 

Fig. 9. Models’ performance without the number of previous breaks.  
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study evaluated whether global and local deterioration models for water 
distribution pipes are generalizable and transferable between utilities, 
and their ability to predict pipe break probabilities for other utilities. 
Prior to training the models, several data pre-processing techniques 
were introduced to boost the performance of the models. The techniques 
introduced include addressing the problems of left-truncation and break 
data scarcity. We used a few explanatory variables (length, diameter, 
material type, previous break, number of connected pipes at the starting 
manhole and at the end) and age with break status as response variables. 
Our goal was to examine whether small municipalities with access to 
other utility models could benefit from them, despite the lack of many 
variables which are deemed important in the literature. Using RSF, nine 
local and nine global models were trained in a way that each global 
model excludes one utility’s dataset from its training and then predicts 
the excluded utility’s pipe breaks (time to next break). Moreover, the 
three largest utilities among the nine utilities were chosen as reference 
utilities to predict the pipe failures of the other utilities. The perfor-
mance of the global models, local models and reference models were 
presented comparatively. Furthermore, survival curves for certain 
groups of pipes were drawn to see how survival probabilities change 
from one group to another and identify homogeneous groups of pipes. 
Finally, an analysis of variable importance was carried out to identify 
the most important variables so that utilities focus on the reliability of 
the most important variables while collecting data for them. From this 
study the following conclusions can be drawn:  

1) The global models predict the pipe failures of other utilities with 
almost as good performance as individual models of the local utilities 
predicting their own pipe failures. However, the global models have 
not been checked with other countries’ datasets (in cases where the 
material composition, history and local/climatic conditions differ) to 
test the full boundaries of usability. If the aforementioned conditions 
are similar, it can be a good idea to use a globally trained model and 
predict the pipe failures of small utilities where they do not have 
enough data to make a model on their own.  

2) We can also use local reference models to predict other utilities, but 
their transferability between the utilities depends heavily on their 
size and degree of representativeness. The results of this study imply 
that the reference models perform better in predicting other utilities 
when they possess the largest database and are geographically close 
to the predicted utility. The use of the global model is safer in terms 
of performance and the geographical distance becomes less relevant. 
It is therefore a good idea for utilities to pool their data resources to 
establish global models for smaller utilities.  

3) Pipes with and without previous breaks behave extremely different. 
Especially the first break is a turning point for the reliability of pipes. 
Material type (GCI, DI and PVC) has little influence on the next break 
after the first break happens. In general, the results show that the 
occurrence of previous breaks is a very important predictor. This 
means that the accuracy of survival curves can be improved 
considerably by considering previous breaks in addition to just the 

pipe material. From a practical point of view, the influence of pre-
vious breaks can also be used as a motivation for smaller utilities to 
collect data on failures and digitize old failure records – when they 
are aware that the previous breaks have such a big influence, and 
that data about this will help them being much more efficient in 
targeted rehabilitation of their systems, they should be inclined to 
invest resource in getting that data.  

4) Ensuring the reliability of datasets before modeling is crucial. Most of 
the big errors in the datasets are identifiable with reasonable efforts. 
Modelers need to check the quality and reliability of data with 
different methods and look at it with different perspectives. Special 
care of the data of the most important variables (i.e., break data, age, 
length, and material) should be taken. They should be cleaned of 
errors and mistakes as much as possible. 
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Appendices 

Available data on variables in each utility 

S. Daulat et al.                                                                                                                                                                                                                                  



Reliability Engineering and System Safety 241 (2024) 109611

15

Notes: (1) Any variable with more than 50% missing values are considered as unavailable in this table. (2) Categorical variables with 100% identical 
values are considered as unavailable, as the reliability of those values is questionable. 
Utility 9′s model performance predicting parts of its own network, trained on all available variables in that utility 

Permutation-based variable importance analysis of utility 9′s model  

Rank Explanatory variable Weight 

1 Number of previous breaks 0.115 
2 No. of conn. pipes at end 0.033 
3 Length 0.024 
4 Max. pressure 0.018 
5 Ductile iron 0.013 
6 Interior protection 0.011 
7 Traffic (AADT) 0.007 
8 Quick clay 0.006 
9 GSM=LE 0.006 
10 Diameter 0.004 
11 PVC 0.004 
12 Exterior mass=unknown 0.003 
13 Grey cast iron 0.003 
14 Exterior protection 0.002 
15 Pipe depth 0.002 
16 No. of build in the vicinity 0.002 
17 No. of conn. pipes at start 0.001 
18 Joint type=SP 0.001 
19 SONE 0.001 
20 Joint type=Unknown Joint 0.000 
21 Joint type =IM 0.000 
22 Material=Others 0.000 
23 Joint type =SE 0.000 
24 GSM=FJ 0.000 
25 GSM =unknown 0.000 
26 Joint type =SV 0.000 
27 Exterior mass =PM 0.000 
28 PEH 0.000 
29 PE50 0.000 
30 Exterior mass =PF 0.000 
31 Joint type =SS 0.000 
32 Network type=S 0.000 
33 Joint type =MUF 0.000 
34 Joint type =MM 0.000 
35 Joint type =IMU 0.000 
36 Joint type =GJ 0.000 
37 Joint type =FS 0.000 
38 Joint type =ST 0.000 
39 Material=Unknown 0.000 
40 Joint type =TD 0.000 
41 Joint type =TY 0.000 
42 PEL 0.000 
43 PE80 0.000 
44 PE 0.000 
45 Exterior mass =` 0.000 
46 Exterior mass =TM 0.000 
47 Exterior mass =SU 0.000 

(continued on next page) 
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(continued ) 

Rank Explanatory variable Weight 

48 Exterior mass =SA 0.000 
49 Exterior mass =PU 0.000 
50 Exterior mass =PG 0.000 
51 Exterior mass =NN 0.000 
52 GSM =L 0.000 
53 Exterior mass =L 0.000 
54 GSM =VA 0.000 
55 GSM =TO 0.000 
56 GSM =TM 0.000 
57 GSM =SG 0.000 
58 GSM =S 0.000 
59 GSM =NN 0.000 
60 GSM =MO 0.000 
61 GSM =FS 0.000 
62 PE100 0.000 
63 GSM =OM 0.000 
64 Galvanized Steel 0.000 
65 Joint type =SM 0.000 
66 Network type =H − 0.001 

Abbreviations of the table. 
AADT=Annual average daily traffic. 
GSM=Ground surface material:. 
TM=Peat/Swamp, VA=water, FA=Mountain, FJ=Mountain, FS=Fine Sand/ 
Silt, LE=Clay, NN=Unknown, OM=Filled Mass, SG=Sand/Gravel, SJ=Sea. 
Joint type:. 
ST=Tensile joint, BL= Lead sleeve, BM=Bolt sleeve, FK=Fiber putty joint, 
FS=Flange joint, FA=False, GJ=The gang, IM=Push-in sleeve, LI=Glue joint, 
MM=Metal clamp sleeve, MØ=Mortar, MUF=Sleeve unspecified, SA=Cast 
asphalt, SM=Screw-in sleeve, SS=Cement packed, SV=Welding connection, 
SE=Welding Electrosocket, SP=Weld Mirror, TY=Tobacco joint, ÅP=Open. 
Exterior mass:. 
AV=Waste, GM=Gravel masses, GR=Gravel/single, NN=Unknown, PF= Fine 
gravel, PG=Coarse gravel, PM= Medium gravel, PU=Gravel, SA= Sandy, 
TM= Local masses. 
Network type:. 
F=Common pipes, H=Main pipes, O=Transmission pipes, S=connection 
pipes. 
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Pearson correlation between each two mutual variables for the combined dataset 
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