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A B S T R A C T

Energy communities based on joint investments of energy assets might enable the democratisation of the power
system by enabling all individuals to become active participants. Adopting this investment strategy requires
ensuring fair economic value distribution among investors. Some studies propose using the Shapley value,
given its uniqueness in fairly allocating value. However, this method suffers from scalability issues due to
its computational demands. This paper introduces the Nested Shapley value as a new sharing mechanism to
allocate profits to members of large coalitions fairly, thereby addressing the fairness-scalability dilemma. In
conjunction with a cooperative investment model for communities with multi-dwelling buildings, the method
is applied to assess individual preferences toward investment strategies in a real-world case study. The Nested
Shapley value is demonstrated to encourage residents to opt for joint investments over individual strategies.
Also, if combined with adequate governance structures, this payoff allocation could lead to the selection of
resource-efficient investment strategies within residential communities. Furthermore, the Nested Shapley value
is proven to satisfy two of the four fairness axioms defined for the Shapley value. A third one is also satisfied,
albeit under specific conditions.
1. Background and motivation

Energy communities (ECs) play a crucial role in promoting the
adoption of distributed energy resources and fostering active involve-
ment of residential end users in the power system. These initiatives
are built on the voluntary participation of consumers in energy-related
activities, offering a range of social, economic, and environmental
benefits [1]. Examples of these activities include providing flexibil-
ity services to stakeholders (e.g., distribution system operators) and
facilitating peer-to-peer electricity exchanges.

Adopting ECs demands attention to design considerations, notably
[2]: (i) financing mechanisms for energy assets, such as PV panels,
storage technologies, and smart meters; and (ii) strategies for sharing
local resources and economic outcomes among community members.

ECs can fund their energy assets from diverse sources, ranging from
community members to local actors, retailers, and system operators.
When community members cannot bear the initial capital expenditure,
third-party financing becomes an option [3]. Alternatively, end users
might opt for self-investing, either individually or collectively [4].

Furthermore, ECs must establish a resource and value allocation
framework that guarantees the return on investment. In partnerships
with third-party investors, contracts may be required to set specific

∗ Corresponding author.
E-mail address: raquel.a.pedrero@ntnu.no (R. Alonso Pedrero).

terms, such as rates per unit of electricity delivered to the community.
Alternatively, in scenarios where members individually own small-scale
assets, adopting a local energy market could be a viable option, as it
allows community members to trade energy products and define prices
using market mechanisms.

However, defining how to allocate economic benefits or local re-
sources in ECs with joint investments may not be straightforward.
Collective investing consists of community members pooling funds for
the assets, leading to a division of asset ownership. This leads to
questions such as: How should local energy resources be distributed among
members with joint asset ownership? How does this allocation translate into
the electricity bill of each member? Essentially, members contributing to
the community should receive economic rewards, whereas those who
utilise local resources should be billed accordingly [5].

Differences in treatment among asset owners might lead to the
division of the community into smaller communities. Members may be
less willing to cooperate if they perceive unfair division of benefits and
costs. Therefore, ensuring that participants are charged or rewarded
fairly is vital for the overall efficiency and sustainability of the EC. In
addition to fostering cooperation, choosing an effective cost/benefit al-
location method brings several advantages [6]: it prevents free-rider be-
haviour, provides economic signals for more cost-efficient behaviours,
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can guarantee economic efficiency, and strengthens the social accep-
tance of ECs.

Cooperative game theory delves into the dynamics among rational
agents collaborating to optimise their utilities. A primary aim of this
mathematical framework is to develop methods to distribute the coali-
tion’s returns among members in a manner that satisfies certain criteria.
Typically, these methods ensure efficiency and individual rationality.
The former indicates that the value is fully allocated among members,
while the latter means that members benefit more from joining the
coalition than from operating alone. Nevertheless, these two features
do not guarantee the full satisfaction of members. One reason can
be when members could achieve higher payoffs by forming smaller
subcoalitions. Payoffs that avoid this situation are said to be in the
core of the game and to stabilise the coalition. The other reason is that
agents are not treated fairly; for instance, if two agents contribute the
same to the coalition but do not get the same payoff.

The Shapley value is a cost allocation technique that stands out
for its unique ability to guarantee fair treatment in coalitions [7].
Therefore, adopting Shapley values in ECs could mitigate governance
issues derived from the unfair distribution of resources. Nevertheless, a
notable drawback of the method is its computational intensity, which
grows exponentially as the number of agents in the coalition increases,
restricting its use in large-scale communities.

The aim of this paper is to tackle the issue of fairness in large-scale
coalitions where applying the traditional Shapley value is impractical.
The paper introduces the Nested Shapley value, a method designed based
on the Shapley value that reduces the computational overhead and
fairly distributes value in large-scale coalitions. To demonstrate its
practical application, the method is applied to a real case involving a
multi-dwelling building neighbourhood consisting of 250 apartments.
In this case study, the Nested Shapley value is utilised together with an
investment optimisation model to compare the final payoffs of residents
across three potential investment strategies in energy assets: (i) individ-
ual investments, (ii) collective investments on a building-by-building
basis, and (iii) a unified investment by the entire neighbourhood.
By computing the division of payoffs, it is possible to compare the
willingness to adopt the three strategies. The paper also dives into
the importance of governance structures in establishing investment
strategies in ECs.

The remaining sections are structured as follows. First, the paper
presents existing literature on value allocation methods in ECs, with
a particular focus on the application of cooperative game theory and
the Shapley value. Thereafter, the foundational theories behind the
Shapley value are elaborated in Section 3. Then, the definition of the
Nested Shapley value is detailed in Section 4. The specifics and results
of applying the method to the real-world case study are presented in
Sections 6 and 7, respectively. The paper concludes with final remarks
in Section 8.

2. Literature review

Self-investment in ECs typically occurs in two forms: individual
self-investments where community members individually invest in re-
sources [8], and joint self-investments where instead members collec-
tively invest in shared assets [9]. Individual self-investment can lead to
adopting local energy markets, where participants trade energy products
to optimise their utilities individually [10]. In such a setup, local re-
sources are priced following a market structure, which can be classified
into decentralised markets, where participants directly interact with
each other, and centralised markets, which require a mediator that
enables the interactions [11].

Conversely, ECs that opt for joint self-investments cannot rely on
marketplaces to price the resources since members own the shared as-
sets collectively. Here, the challenge lies in determining a fair allocation
of costs and revenues among members. Chan et al. [2] highlight the
importance of rate design for adopting energy communities and explain
2

heuristic methods to divide the value generated, for instance, based on
ownership shares. A comprehensive review of traditional tariff designs
is presented in [6] to identify their applicability at the local level.
Introducing heuristic tariff structures has the advantage of providing
a transparent and stable procedure to understand their involvement in
the community. Nevertheless, they cannot guarantee desired properties.
For instance, they may fail to ensure that participants’ payoffs cover the
cooperative value (efficiency property) since these are often established
before operations. Another example is that they might not adequately
reflect each participant’s contribution, potentially leading some partic-
ipants to perceive certain tariffs as unfair. This differs from allocation
methods proposed in cooperative game theory that are systematically
designed to optimise specific objectives.

2.1. Cooperative game theory for value allocation in energy communities

Cooperative game theory is a mathematical framework that studies
the strategies and willingness to collaborate of agents who engage in
cooperation. In the energy sector, cooperative game theory has been
applied to activities such as cooperation between actors in the gas
sector [12], allocation of firm energy rights in hydro plants [13], and
allocation of transmission grid costs to grid users [14].

Coalitional game theory is expected to be a key analytical frame-
work for designing future smart grids, where there is a need to co-
ordinate many autonomous and smart-control assets [15]. For ex-
ample, Saad et al. [16] proposes an energy trading algorithm that
autonomously forms coalitions of microgrids to minimise the power
losses in the distribution grid.

One main application of cooperative game theory is to determine
solution methods for allocating the payoff of coalitions among agents.
Among all the methodologies, the Shapley value [7] stands out for cap-
turing the unique number reflecting the marginal contribution of each
agent in a coalition considering all possible sub-coalitions. Essentially,
the value is the only value in the payoff space that ensures axiomatic
fairness. As such, it is a popular method to apply, also among energy
community studies. For instance, Tveita et al. [17] performs a sensitiv-
ity analysis on the energy storage capacity in a community to evaluate
if different storage capacities may affect participants’ preferences on
Shapley values over another allocation method. Also, the Shapley value
was deployed by Han et al. [18] to divide the benefits obtained by
a group of prosumers owning storage technologies. The cooperative
game proposed by the authors reflects one of the characteristics of this
method: the Shapley value is not necessarily in the core. In other words,
it does not guarantee the formation of stable coalitions.

The study by Abada et al. [19] explores the stability of EC under
different technical conditions. Interestingly, they show the Shapley
value lies within the core when the community has a concave in-
vestment cost function of solar panels. This occurs because the game
becomes convex under this condition. However, Fleischhacker et al.
[20] demonstrates that the Shapley value may not be at the game’s
core when the community has a limited area suitable for PV panels. The
authors show how two managerial strategies can help to guarantee the
long-term durability of ECs in this case: expanding solar resources and
adopting renting payments. Alternatively, Cheng et al. [21] presents a
method that modifies the Shapley Value to ensure a stable coalition
even under non-convex games.

Table 1 compares several studies according to their focus on stabil-
ity and fairness concerns, the techniques employed and the number of
agents assessed. Note that the table only includes papers that utilise
the Shapley value or approximation methods, excluding studies that
examine other methodologies associated with stability concerns, such
as the nucleolus. While these studies make significant contributions
to our understanding of the Shapley value’s application in energy
communities, most research (i) predominantly concentrates on issues
related to stability, and (ii) operates under the assumption of relatively

small coalitions, often comprising a limited number of participants.
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Table 1
Review of some papers applying the Shapley value to energy communities.

Paper Stability Fairness Techniques used No. agents

Fioriti et al. x x Shapley-Core, Shapley-Nucleolus, MinVar-Nucleolus 10
Gjorgievski et al. x x Virtual net-metering, MinVar, Shapley and heuristic rules 15 agents (600 ECs)
Fleischhacker et al. x Nash bargaining and Shapley 4
Chis & Koivunen Shapley 2 groups
Han et al. x Shapley and Nucleolus Up to 14
He et al. Shapley and two-factor method* (proposed) 3
Cremers et al. x Stratified expected value (proposed), adaptative sampling and last marginal contribution 200
Lee et al. x Asymptotic Shapley value (proposed) 2
Norbu et al. x Last marginal contribution 200
Tveita et al. x Shapley and Nucleolus 4
Abada et al. x Shapley, MinVar and heuristic rules 6
Cheng et al. x Shapley and Fine-tuned value* (proposed) 3
Regarding their focus, none of the reviewed studies offer a com-
rehensive formal mathematical analysis of the fairness axioms of
he proposed methods. Gjorgievski et al. [22] delve into various so-
ial interpretations of ‘fairness’ and categorise methods according to
heir alignment with the concept of marginal contribution. However,
his study does not examine the relationship between the allocation
ethods explored and the fairness axioms satisfied by the Shapley

alue.
Regarding the size of the coalition, computing the Shapley val-

es for large coalitions implies a high computational burden that
akes the problem intractable. Consequently, the applicability of tra-
itional Shapley values methodologies in ECs is limited in real-life
ommunities [23]. To overcome the computational challenge, different
uthors have considered approximated versions of the Shapley Value.
possible method is to derive the last marginal contribution, where it

only requires computing players’ marginal contribution to the entire
coalition. This is calculated as the difference between the total value
of the EC and the value of the community without that player. This
method was, for instance, applied by Norbu et al. [24] to distribute
value in a community of two hundred players. This allocation method
significantly reduces the computational time and burden compared to
the traditional Shapley value, but simplifies the value by considering
only the contribution to the grand coalition. Thus, not guaranteeing
fairness properties.

Alternatively, Lee et al. [25] derives the asymptotic Shapley Value for
a cooperative game formed by prosumers, for which its computation
only requires knowledge of the number of participants and statistical
information of agents and resources. Nevertheless, the method is not
applicable to communities with flexible assets like storage technologies.
Furthermore, Cremers et al. [26] provide a comprehensive review
of approximation methods for the Shapley Value and proposes the
stratified expected value. The stratified expected value is based on the
concept of stratum, which is a group of subcoalitions with the same
cardinality. This value can be defined as the expected average contri-
bution of an agent 𝑖 within all the possible strata, assuming that the
demands of the rest of the agents are equal. The study demonstrates
the effectiveness of solving allocation problems in communities with
shared assets. Nonetheless, the method’s formulation, examples and
empirical validation are all situated within the specific setting of energy
communities without extending the discussion to its applicability in
other games or energy community settings.

2.2. Contributions of the paper

There is a general agreement that adopting appropriate value dis-
tribution methods within ECs is a fundamental design feature for their
real-life implementation. As such, there has been a progressive devel-
opment in examining value allocation methods that can be applied in
this context, particularly focusing on stabilising communities. However,
fairness in the context of communities might also need attention, as end
users perceiving unfair treatment may also be willing to separate from
3

the coalition.
Focusing on the property of fairness is particularly relevant in
scenarios where participants cannot divide into subcoalitions or leave
the grand coalition. This is the case in contexts of common property
regimes, where the resources are indivisible, and all participants have
no other option but to collaborate. In such setups, agreements among
subcoalitions are all ineffective as resource management is linked to
the decisions of the grand coalition [27]. Since there is forced stability
and agents are better off in the coalition than without engaging in
any activity, the main potential disagreement between members may
arise from fairness issues. This scenario applies to energy communities
with multi-dwelling buildings, where communal areas – essential for
installing energy assets – are under a communal property regime. The
unique nature of these shared spaces, which are neither divisible nor
exclusively owned, necessitates that all decisions regarding their use
for asset installation are made jointly, emphasising the need for fair
allocation of payoffs.

Consequently, this paper focuses on determining a fair allocation
mechanism that tackles the scalability-fairness dilemma of the Shapley
value: while fairness is crucial for the long-term viability of ECs, the
computational burden of the Shapley value has limited its applicability
in large coalitions.

Some studies have already developed promising tools to approxi-
mate the Shapley value. Nonetheless, most of these techniques were
developed assuming specific designs of ECs (e.g., without storage tech-
nologies), limiting its applicability. This is the case, for example, of the
asymptotic Shapley Value. Additionally, out of the examined literature
on approximation methods for the Shapley value, no contribution in-
cludes a discussion on whether their methods uphold any of the fairness
axioms associated with the Shapley value.

Regarding the specific literature about ECs, most studies assume the
existence of single-family houses and neglect the possibility of adopting
ECs in neighbourhoods with multi-dwelling buildings [3]. Interestingly,
this particular type of building is conducive to adopting joint invest-
ments, given that the available area for installing assets is shared
among residents. Research on investments and distribution of benefits
among residents from apartment buildings is a topic overlooked in the
literature.

This study contributes to the past literature by:

• Proposing the novel method of Nested Shapley value for approx-
imating Shapley values. This method is proven to satisfy three of
the four fairness axioms. Also, the method is versatile enough to
be applied to games of any nature, not only ECs.

• Formulating an investment optimisation model adapted to ECs
with multi-dwelling buildings, including operations and peer-
to-peer interactions. This formulation is designed to guaran-
tee proper value distribution among residents of buildings with
shared ownership of the installing areas.

• Using the Nested Shapley value to analyse four investment strate-
gies based on their value proposition to individual participants
in a large-scale neighbourhood. A numerical case study uses a

real-life case from a multi-dwelling neighbourhood in Austria.
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• The study addresses democratic governance structures to guar-
antee the acceptance and legitimacy of investment strategies in
multi-dwelling neighbourhoods.

. Theoretical background

The upcoming section provides an introduction to two methodolo-
ies that are closely related to the development of the Nested Shapley
alue. Initially, the mathematical description and fairness axioms of the
hapley value will be presented. Secondly, the allocation method of
he Owen value will be introduced. Presenting the Owen value in this
ection is because the proposed Nested Shapley value is based on the
ame principle: clustering agents.

.1. The shapley value

In cooperative game theory, a coalitional game formally consists
f a set of players  , named the grand coalition, along with a char-
cteristic function 𝑣, which assigns a value to each subset of agents
∈  . According to the definition of the Shapley value, the payoff

hat a player 𝑖 receives in a coalitional game is computed as

𝛷𝑖 =
∑

𝑆⊆⧵{𝑖}

∣ 𝑆 ∣!(∣  ∣ − ∣ 𝑆 ∣ −1)!
∣  ∣!

(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)) (1)

where 𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆) describes the marginal contribution of 𝑖 in
subcoalition 𝑆. Therefore, the Shapley value is usually defined as the
weighted marginal contribution of a player for possible permutations of
sub-coalitions. The nomenclature used throughout the paper is included
in Appendix A.

The Shapley value’s uniqueness is that it is the only payoff allocation
that satisfies the following fairness axioms:

1. (Efficiency) ∑

𝑖∈ 𝛷𝑖 = 𝑣( ). It guarantees cost recovery as the
sum of all players’ Shapley value equals the total value of the
grand coalition.

2. (Symmetry) For every 𝑆 ⊂  , if 𝑣(𝑆 ∪ {𝑖}) = 𝑣(𝑆 ∪ {𝑗}) then
𝛷𝑖 = 𝛷𝑗 . This ensures that two players contributing equally to
any coalition receive the same payoff.

3. (Linearity) 𝛷𝑖(𝑣 +𝑤) = 𝛷𝑖(𝑣) +𝛷𝑖(𝑤). If the game played by the
coalition is the combination of multiple games, the payoff of any
agent is the sum of the payoffs for each game.

4. (Null Player) If a player 𝑖 ∈  is such that 𝑣(𝑆 ∪ {𝑖}) = 𝑣(𝑆) for
each 𝑆 ⊆ ⧵ {𝑖} then 𝛷𝑖 = 0. Therefore, agents that do not add
value to any of the possible coalitions receive a zero payoff.

Despite satisfying these properties, computing the Shapley values
for all agents in a coalitional game necessitates evaluating the cost
value function of 2∣ ∣ instances. Therefore, the computational burden
grows exponentially with the number of agents. This gives rise to the
fairness-scalability dilemma of the Shapley value: while it guarantees
fair allocations, it is not scalable for large coalitions. To illustrate, a
coalition of 100 agents would require computing 1.26 ⋅1030 instances of
the characteristic function.

3.2. The Owen value

Another cost allocation method in cooperative game theory is the
Owen value [28]. This solution concept extends the original Shapley
value by assuming cooperative games with pre-existing coalitional
structures of agents. This methodology is sometimes conceived as the
coalitional value of the Shapley value [29].

A coalitional structure, denoted as 𝑃 = {𝑃1, 𝑃2,… , 𝑃𝑝}, represents
a partition of the set of players  . Each element of the coalitional
structure is referred to as a union. A coalition structure satisfies two
conditions: first, the union of all unions forms the grand coalition
∪𝑝𝑎=1𝑃𝑎 =  ; and second, each agent is associated with only one union
of the coalitional structure, i.e., 𝑃 ∩ 𝑃 = ∅ for 𝑎 ≠ 𝑏.
4

𝑎 𝑏
Computing the Owen value involves a two-step process. Initially,
the Shapley values of each union 𝑃𝑎 ∈ 𝑃 are computed based on the
game played amongst them. Then, the payoff each coalition receives
is split among its members, once again using the Shapley value. In
this latter stage, the payoff of an agent is computed considering its
contribution to all possible subsets within its union and with external
unions. The Owen value of player 𝑖 which belongs to the union 𝑃𝑎 ∈ 𝑃 ,
i.e., 𝑖 ∈ 𝑃𝑎 ∈ 𝑃 is

𝜙𝑂𝑖 =
∑

𝑄⊂𝑃⧵{𝑃𝑎}

∑

𝑆⊂𝑃 𝑎⧵{𝑖}

∣ 𝑄 ∣!(∣ 𝑃 ∣ − ∣ 𝑄 ∣ −1)! ∣ 𝑆 ∣!(∣ 𝑃 𝑎 ∣ − ∣ 𝑆 ∣ −1)!
∣ 𝑃 ∣! ∣ 𝑃 𝑎 ∣!

× 𝑀𝑖(𝑄,𝑆) (2)

where 𝑀𝑖(𝑄,𝑆) = 𝑐(𝑄 ∪ 𝑆 ∪ {𝑖}) − 𝑐(𝑄 ∪ 𝑆).
This method has been axiomatically characterised and satisfies the

properties of efficiency, additivity, the dummy player, and symmetry
-both within individual unions and between different unions. Addi-
tionally, it is less computationally expensive than the Shapley value,
as it does not consider games played between subsets of agents from
different unions. Nonetheless, the Owen value still has a computational
challenge related to the number of unions considered. If this number
is large enough, computing the Shapley value of each union might still
be intractable. The following section presents the Nested Shapley value.
Although inspired by the concept in the Owen value of forming clusters
of agents, the proposed methodology tackles the limitation of the first
step.

4. The Nested Shapley value

The Nested Shapley value is introduced here as an allocation
method that approximates the Shapley Value by applying a clustering
algorithm to group agents into predefined clusters. Specifically, the
agents, 𝑖 ∈  , are organised into nested coalitions that form an ordered
nodal tree with 𝑞 layers and 𝑀 nodes. All the nodes of the tree are
contained in set 𝐹 = {1,… ,𝑀}. The structure of the ordered tree is
defined as follows:

1. Each node 𝑛 is associated with a coalition of agents 𝐶𝑛,
2. The coalition of agents for the root node corresponds to the

grand coalition, 𝐶1 =  .
3. The coalitions of agents associated with the nodes in the last

layer (i.e., the leaf nodes), 𝑛 ∈ 𝐹 𝑞 , contain a single agent 𝑖, such
that |𝐶𝑛| = 1 for all 𝑛 ∈ 𝐹 𝑞 .

4. Every node 𝑛 containing only one element belongs to the set of
nodes 𝐹 𝑠.

5. Every node in 𝐹 𝑠 belongs to the set of nodes in the last layer 𝐹 𝑞 .
6. Every node 𝑛 is linked to a parent node 𝑚 ∈ 𝐹 𝑃𝑛 , except the root

node; and a set of children nodes 𝑠 ∈ 𝐹𝐶𝑛 , except for the leaf
nodes.

7. The coalition of agents associated with node 𝑛 is the union of
the coalitions of agents associated with its child nodes 𝑠 ∈ 𝐹𝐶𝑛 ,
such that ⋃

𝑠∈𝐹𝐶𝑛
𝐶𝑠 = 𝐶𝑛 and 𝐶𝑚 ∩ 𝐶𝑠 = ∅ where 𝑚 and 𝑠 share

the same parent node 𝑛,

Fig. 1 illustrates an example of ordered tree with 𝑞 = 3 and 𝑀 = 6
or a coalition of four agents  = {1, 2, 3, 4}.

In the methodology to calculate the Nested Shapley value, three
nterconnected elements play essential roles:

1. Nodal Shapley value (𝜙∗
𝑛): Calculated for each node 𝑛 in the

tree structure, this value is computed as a standard Shapley
value considering the coalition of nodes 𝐹𝐶𝑚 , where 𝑚 is the
parent node of 𝑛. Therefore, it considers only the characteristic
functions of coalitions of nodes belonging to the parent set.

2. Corrected Shapley value (𝜓∗
𝑛 ): This value adjusts the Nodal

Shapley values to ensure that the sum of the Corrected Shapley
values for all leaf nodes associated with each agent equals the
total value of the grand coalition 𝑣( ) = 𝑣(𝐶1). Essentially, it
guarantees meeting the efficiency property.
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Fig. 1. Example of an ordered tree.

3. Nested Shapley value (𝜓𝑖): This is the final payoff assigned to
each agent 𝑖. It equals the Corrected Shapley value assigned to
the leaf node to which the agent 𝑖 belongs.

The following equations capture the formal relationship between
these three elements:

𝜙∗
𝑛 =

∑

𝑆⊆𝐹𝐶𝑚 ⧵{𝑛}
𝑚∈𝐹𝑃𝑛

∣ 𝑆 ∣!(∣ 𝐹𝐶𝑚 ∣ − ∣ 𝑆 ∣ −1)!
∣ 𝐹𝐶𝑚 ∣!

(𝑣(
⋃

𝑠∈𝑆
𝐶𝑠 ∪ {𝐶𝑛}) − 𝑣(

⋃

𝑠∈𝑆
𝐶𝑠)) (3)

𝜓∗
𝑛 =

𝜙∗
𝑛

𝑣(𝐶𝑚)
𝜓∗
𝑚, ∀ 𝑛 ⧵ {1},∀ 𝑚 ∈ 𝐹 𝑃𝑛 (4)

𝜓𝑖 = 𝜓∗
𝑛 , 𝑛 ∈ 𝐹 𝑞 ∩ 𝐹𝑖 (5)

where 𝐹𝑖 corresponds to the set of all nodes associated with agent 𝑖.
In Eq. (4), the adjustment applied to the Nodal Shapley value

ensures that the sum of the Corrected Shapley values of each child node
in 𝐹𝐶𝑚 equals that of their parent node 𝑚. This recursive adjustment
throughout the tree confirms that the Nested Shapley value satisfies
the efficiency property, as detailed in Appendix D.1. Furthermore,
given that the Corrected Shapley value of a node 𝜓∗

𝑛 is tied to that
of its parent node 𝜓∗

𝑚, obtaining the Corrected and Nodal Shapley
values necessitates a top-down computational approach. This process
begins with the root node and extends downward to the leaf nodes,
calculating the Corrected Shapley values at each level. Algorithm 1
outlines the procedure for calculating the Nested Shapley values for
agents organised in an ordered tree.

Algorithm 1 Nested Shapley Value Algorithm

1: compute 𝑣( )
2: for 𝑛 = 1, ...,𝑀 do for each 𝑆 ⊂ 𝐹𝐶𝑛 compute 𝑣(∪𝑚∈𝑆𝐶𝑚)
3: end for
4: for 𝑛 = 1, ...,𝑀 do compute 𝜙∗

𝑛
5: end for
6: 𝜓∗

1 = 𝑣(𝐶1) = 𝑣( )
7: for 𝑛 = 2, ...,𝑀 do
8: for 𝑚 ∈ 𝐹 𝑃𝑛 do compute 𝜓∗

𝑛 = 𝜙∗𝑛
𝑣(𝐶𝑚)

𝜓∗
𝑚

9: end for
10: end for
11: for 𝑖 = 1, ..., 𝑁 do
12: for 𝑛 ∈ 𝐹 𝑞 ∩ 𝐹𝑖 do 𝜓𝑖 = 𝜓∗

𝑛
13: end for
14: end for

Unlike the Owen value, the Nodal Shapley value of a node is com-
puted for nodes sharing the same parent, such that coalitions between
5

members of different clusters are not included. This reduces the number
of coalitions considered, thereby enhancing the computational burden.
Also, to the authors’ knowledge, no existing literature presents the
Owen value in a way that involves nesting clusters of agents within
an ordered tree.

Furthermore, the Nested Shapley value method reduces the number
of instances of the characteristic function compared to applying the
Shapley value method from 2 − 1 to ∑

𝑛∈𝐹⧵𝐹 𝑠 (2
∣𝐹𝐶𝑛 ∣ − 1). In particular,

the number of computations, 𝑧, can be expressed in a closed-form
formulation as Eq. (6) (refer to Appendix B for the derivation of this
equation). This formulation is derived considering symmetrical ordered
trees, where each node has the same number of child nodes 𝑐.

𝑧 = 𝑐𝑞−1 − 1
𝑐 − 1

(2𝑐 − 1) (6)

The computational burden of the Nested Shapley value with sym-
metric trees depends on the number of layers, 𝑞, and players, 𝑁 , consid-
ered. Fig. 2 compares the computational burden of the Nested Shapley
value with that for the Shapley value and the stratified expected value
from Cremers et al. [26].

The Nested Shapley value presents computational advantages com-
pared to the other two methods. For example, in a coalition of 125
agents, the Nested Shapley value requires 916 instances, assuming an
ordered tree structure with 𝑞 = 4 and 𝑛 = 5. In contrast, calculating
the traditional Shapley value for the same coalition demands 4.25 ⋅1037
instances, and the stratified expected value needs 31,125 (calculated as
2𝑁2 −𝑁).

Additionally to reducing the number of computations and the ef-
ficiency property, the Nested Shapley value satisfies the null player
and symmetry properties. The proofs are included in Appendices D.2
and D.3, respectively. In particular, the symmetry property holds if
agents that equally contribute to every possible sub-coalition share
the same parent node in the last layer. Note the extreme case where
the number of leaf nodes of the agents equally contributing to the
coalition (associated with the same parent node) is large enough to
compromise the computation of the Nodal Shapley value. Two solutions
can be adopted in this case: (i) continue generating children nodes
symmetrically such that the additional nodes in each layer have the
same Corrected Shapley value, this only holds for an even number of
agents, or (ii) divide the Corrected Shapley value of the parent node
among them equally.

Furthermore, ensuring holding the symmetry property leads to a
paradox: determining which agents contribute equally would necessi-
tate calculating the Shapley value. In essence, to ensure that the Nested
Shapley value guarantees the symmetry property, one would need to
compute the Shapley values that the Nested Shapley method aims
to approximate. Nevertheless, the symmetry property indicates how
the agents should be clustered together. Namely, agents with similar
properties are likely to contribute similarly to coalitions and should
thus be grouped into the same nodes along the tree. The following
section explores using the k-means algorithm to construct the ordered
trees, obtaining clusters that are internally homogeneous and mutually
different, thereby approximating the symmetry property.

4.1. Ordered tree using the k-means algorithm

The k-means algorithm [30] divides the agents into coalitions based
on shared attributes. If these attributes influence the coalition’s value,
constructing the ordered tree via the k-means algorithm can aid in
satisfying the symmetry property. Thus, this clustering method can
provide a systematic process to determine the coalitions of agents 𝐶𝑛
associated with each node in the ordered tree.

Formally, the k-means algorithm divides agents into a set of 𝑝 par-
titions, 𝑃 = {𝑃1, 𝑃2,… , 𝑃𝑝}, based on a set of predefined characteristics
𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑁}.

Typically, the criterion in the k-means algorithm is to allocate the
data points 𝑥 of all agents into 𝑝 different clusters in such a way
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Fig. 2. Computational comparison between the Nested Shapley value, the stratified expected value, and the true Shapley value as a function of the number of players 𝑁 . The
computation for the Nested Shapley value is calculated for symmetric trees with different numbers of layers 𝑞. Note that the 𝑥-axis is logarithmic.
that the total sum of the squared Euclidean distances between each
feature vector 𝑥 in 𝑋 and the centroid 𝜇𝑎 (i.e., the cluster centre) of
its respective cluster 𝑃𝑎 is minimised. Here, 𝜇𝑎 is the average of all
points 𝑥 in a partition 𝑎. Mathematically, the algorithm aims to find
the partition 𝑃 that minimises this total:

argmin
𝑃

𝑝
∑

𝑎=1

∑

𝑥∈𝑃𝑎

∣∣ 𝑥 − 𝜇𝑎 ∣∣2 (7)

In the ordered tree, each partition corresponds to a node. The
children nodes of a particular node are generated by applying the k-
means to the set of agents associated with that node. Following the
example from Fig. 1, node one is divided into three partitions/nodes
using the k-means algorithm.

Moreover, the k-means algorithm requires defining the number of
partitions 𝑝 beforehand. In the context of the Nested Shapley value
method, this number 𝑝 should not exceed a maximum 𝑝. This con-
straint arises because increasing the number of partitions exponentially
increases the computational burden of calculating the Nodal Shapley
values 𝜙∗

𝑛. Therefore, 𝑝 should be chosen to balance the trade-off
between computational efficiency and the best granularity of the par-
titioning. This can be done by setting a maximum number of clusters
𝑝.

To determine which granularity of partitions 𝑝∗ could perform
better, the silhouette method is implemented. This is a well-known
technique that evaluates the quality of clusters by analysing how
similar the properties of agents are to the points of their clusters.
A high value of the silhouette coefficient indicates that the agent is
well-matched to the assigned cluster. Specifically, it is set such that
𝑝∗ = min{𝑝 ∈ {1,… , 𝑝} ∶ 𝜌𝑖𝑝 ≥ 0 ∀𝑖 ∈ 𝑃𝑝 and 𝜎𝑝 ≥ 0.5}. Here, 𝜌𝑖𝑝
refers to the silhouette coefficient of an agent, and 𝜎𝑝 is the average
silhouette coefficient for all the agents.

The k-means method is recursively applied to nodes whose size of
the coalition |𝐶𝑛| exceeds 𝑝. This process continues until generating
child nodes no longer meet this constraint. Then, for the child nodes
with |𝐶𝑛| < 𝑝, leaf nodes are created for each agent in 𝐶𝑛. Using the
example in Fig. 1 and assuming a 𝑝 = 3, node two meets this constraint
such that the leaf nodes five and six are generated for each agent in
𝐶2. The detailed algorithm outlining the construction of the ordered
tree based on the k-means can be found in Appendix E.

Notably, if one aims to approximate the symmetry property, the
feature vectors in 𝑋 must be selected, considering which agents’ char-
acteristics influence their contribution to coalitions.

4.2. Numerical example of the Nested Shapley value

To demonstrate the applicability of the algorithm, consider a coop-
erative game with  = {A, B, C, D, E}, where agents can be clustered
6

Table 2
Characteristic function values. Each column indicate an ordered tree.
𝑆 1 2 3 4 𝑆 1 2 3 4

(A, B) 23 23 (A, E) 17
(A, B, C) 26 26 26 (A,) 7 7 7 7
(A, B, C, D) 43 43 43 (B, C) 18 18 18
(A, B, C, D, E) 45 45 45 45 (B, D) 28
(A, B, C, E) 26 26 26 (B, D, E) 33
(A, B, D, E) 40 (B, E) 12
(A, C) 16 16 16 (B,) 8 8 8 8
(A, C, D) 36 (C,) 6 6 6 6
(A, C, D, E) 42 42 (D, E) 26 26 26 26
(A, C, E) 19 (D,) 19 19 19 19
(A, D) 30 (E,) 2 2 2 2
(A, D, E) 36

Table 3
Nodal Shapley values.

Node, 𝑛 1 2 3 4

1 45.00 45.00 45.00 45.00
2 23.00 23.00 32.33 15.08
3 19.50 2.50 6.33 6.92
4 2.50 19.50 6.33 19.92
5 9.17 10.67 10.00 3.08
6 10.67 6.17 20.50 8.50
7 6.17 9.17 5.50 7.50

in different ordered trees. In this example, four different ordered trees
are considered, as shown in Fig. 3.

First, the values of the characteristic function for the subcoalitions
𝑆 ⊂ 𝐹𝐶𝑛 for each node 𝑛 = 1,… ,𝑀 are calculated together with
the value of the grand coalition to compute the Nodal Shapley value.
The resulting characteristic function values computed in each tree are
presented in Table 2.

Any coalition of five agents necessitates 25 −1 = 32 instances of the
characteristic function to compute the true Shapley values. However,
applying the Nested Shapley Value, this number is reduced to 𝑧 = 14
for trees 1, 2 and 3 and 𝑧 = 18 for tree 4.

Then, the algorithm proceeds by calculating first the Nodal (Eq. (3))
and Corrected (Eq. (4)) Shapley values. The results obtained for the
numerical example are included in Tables 3 and 4, respectively.

The Corrected Shapley value of the leaf nodes equals the Nested
Shapley value of its associated agent as stated in Eq. (5). The resulting
Nested Shapley values of the agents in this game are shown in Table 5.

The results of the numerical example demonstrate the importance of
selecting the ordered tree appropriately. In this case, tree 3 presents the
largest relative difference to the true Shapley value for agent E (45%),
while the lowest tree with the lowest maximum relative difference is
number 4 with only 14% for agent B. A larger example for evaluating
the computational accuracy of the Nested Shapley value is presented in
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Fig. 3. Trees used for the numerical example.
Table 4
Corrected Shapley values.

Node, 𝑛 1 2 3 4

1 45 45 45 45
2 23 23 32.33 15.08
3 19.5 2.5 6.33 6.92
4 2.5 19.5 6.33 19.92
5 8.11 9.44 8.99 3.08
6 9.44 5.46 18.41 8.01
7 5.46 8.11 4.94 7.07

Table 5
True Shapley value for the game and Nested Shapley values obtained applying different
ordered trees.

Shapley Nested Shapley

1 2 3 4

A 7.83 8.11 8.11 8.98 8.01
B 8.08 9.44 9.44 6.33 6.92
C 7.92 5.46 5.46 6.33 7.07
D 19.75 19.50 19.50 18.41 19.92
E 3.42 2.50 2.50 4.94 3.08

Appendix C. The method is compared not only with the true Shapley
value but with the stratified expected value presented in [26].

The code for computing the Nested Shapley value and these exam-
ples can be found in the GitHub repository.1

5. Joint-investment model for communities with multi-dwelling
buildings

This section presents the joint-investment model for communities
with multi-dwelling buildings. The Nested Shapley value would be em-
ployed to divide the costs from this model among community members.

1 https://github.com/raquelal94/NestedShapley.
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Assuming a coalition of dwellings, ℎ ∈ , with a cardinality 𝐻 ,
interested in reducing the total annual electricity costs by installing
energy assets in the shared areas, such as rooftops and garages. The
objective of the neighbourhood is to minimise its investment and
operational costs as follows:

min
𝑥,𝑦,𝑏

𝑐() = AIC + AOC (8)

where

AIC =

Generation investment costs
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑

𝑔∈𝐺
𝑎𝑔(𝑐𝑃𝑔 + 𝑐𝐼𝑔 ) 𝑥

𝑃𝐺
𝑔 +

ESS investment costs
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑

𝑠∈
𝑎𝑠∈ (𝑐𝑃𝑠 𝑥

𝑃𝑆
𝑠 + 𝑐𝐶𝑠 𝑥

𝐶
𝑠 ) (9)

AOC =

ESS Maintenance
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑐𝑀𝑃
𝑠 𝑥𝑃𝑆𝑠 + 𝑐𝑀𝐶

𝑠 𝑥𝐶𝑠 +
Individual electricity bill

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑

𝑖∈𝐼
𝛼𝑖
∑

𝑡∈𝑇

∑

ℎ∈

[

(𝑐𝐺 + 𝑐𝑆𝑝𝑜𝑡𝑖𝑡 + 𝑐𝑇 𝑎𝑥) 𝑦𝐺𝑖𝑡ℎ
]

+

Shared-areas electricity bill
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑

𝑖∈𝐼
𝛼𝑖
∑

𝑡∈𝑇
(𝑐𝐺 + 𝑐𝑆𝑝𝑜𝑡𝑖𝑡 + 𝑐𝑇 𝑎𝑥) 𝑦𝐺𝐴𝑖𝑡 (10)

The annualised investment costs (AIC) for the generation technolo-
gies, 𝑔 ∈ 𝐺 and energy storage systems (ESSs), 𝑠 ∈ , are captured in
Eq. (9). To consider the operational level in the investment decisions,
the model includes the annualised operational cost (AOC). These cost
includes the maintenance costs for ESSs, 𝑐𝑀𝑃 and 𝑐𝑀𝐶 , based on their
power rates and capacity, 𝑥𝑃𝑆𝑠 and 𝑥𝐶𝑠 , the sum of individual electricity
bills and the electricity costs incurred in shared areas (Eq. (10)). The
individual electricity bills of each households is proportional to their
consumption from external sources, 𝑦𝐺, and the sum of grid costs, 𝑐𝐺,

https://github.com/raquelal94/NestedShapley
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spot price, 𝑐𝑆𝑝𝑜𝑡, and tax costs, 𝑐𝑇 𝑎𝑥. Additional retailing costs are not
ncluded, as they might differ depending on the contracted retailer.
mported electricity for meeting the demand of the shared areas, 𝑦𝐺𝐴

are assumed to be subject to the same cost structures as the residents of
the coalition. The demand of these areas will occur only for charging
the batteries, thus no additional loads are considered (e.g., lightning of
corridors, elevators).

To reduce the model complexity, the model assumes specific repre-
sentative times of the year, 𝐼 . As such, the operations are scaled with
the seasonal scaling factor 𝛼𝑖, based on the representative time periods
selected (e.g., week per month, week per season, day per month). For
simplicity, the model does not include the option of selling excess
power to the main grid and additional operational costs related to smart
controlling the assets (e.g., energy management systems). The detailed
nomenclature of the model can be found in Appendix A.2.

Furthermore, the capacity for installing generation technologies,
𝑥𝑃𝐺 is restricted by Eq. (11) to consider the physical limits of the
buildings, 𝐺, in the coalition, such as the rooftop area. Typically,
investment models for ECs allocate specific areas for installing assets to
individual agents. In such models, if an agent is not part of the coalition,
its available areas cannot be used by others. However, this approach
does not apply to multi-dwelling buildings, where common areas such
as rooftops are collectively owned. To address this, the model assumes
a fixed, shared space for installing the generation assets available for
the entire coalition considered.

𝑥𝑃𝐺𝑔 ≤ 𝐺𝑔 , ∀𝑔 (11)

𝑥𝐶𝑠 ≤ 𝐻𝑆𝑠, ∀𝑠 (12)

𝑥𝑃𝑆𝑠 = 𝜆𝑥𝐶𝑠 , ∀𝑠 (13)

This feature is crucial when evaluating the contributions of in-
ividual members. In apartment buildings, the value derived from
he capacity to install assets in common areas must be collectively
ttributed to all residents. In contrast, for single-family houses, the
alue of such capacity is considered an individual contribution. This
istinction is crucial for assessing the contributions of individual com-
unity members, as the value delivered by available installation areas

hould be accounted for differently depending on the housing type.
Furthermore, Eq. (12) ensures the maximum installed capacity of

torage systems, 𝑆, is proportional to the number of dwellings in the
oalition. Here, differently from generation assets, the size of the coali-
ion will determine the available area. This is based on the assumption
hat batteries are installed in the parking places owned by coalition
embers. Also, the installed capacity of a battery, 𝑥𝐶𝑠 , is proportional

to how much power it can inject, 𝑥𝑃𝑆𝑠 . Eq. (13) shows this relationship,
sing 𝜆 as the constant of proportionality.

At the operational level in shared areas, the grid imports from
he main grid, 𝑦𝐺𝐴, discharges from storage technologies, 𝑦𝐷, and the

electricity production must cover the needs for charging the ESSs, 𝑦𝐶 ,
and exports to the residents in the community, 𝑦𝐸𝐴. This balance is
captured in Eq. (14). In this equation, the electricity production is
calculated as the product of a normalised generation profile, 𝐺, with
the total capacity installed, 𝑥𝑃𝑆𝑔 . Moreover, Eq. (15) states that the
electricity imported by all dwellings equals the power exported from
the shared areas. The 𝜓 factor is included to account for any losses
in exporting this power. Then, for each resident, its demand can be
met with electricity from common areas, 𝑦𝐴, and the main grid, 𝑦𝐺, as
shown in Eq. (16).

𝑦𝐺𝐴𝑡ℎ +
∑

𝑠∈
𝑦𝐷𝑠𝑖𝑡 +

∑

𝑔∈𝐺
𝐺𝑔𝑖𝑡 𝑥

𝑃𝐺
𝑔 ≥

∑

𝑠∈
𝑦𝐶𝑠𝑖𝑡 + 𝑦

𝐸𝐴
𝑖𝑡 , ∀𝑖,∀𝑡 (14)

∑

ℎ∈
𝑦𝐴𝑖𝑡ℎ = 𝜓 𝑦𝐸𝐴𝑖𝑡 , ∀𝑖,∀𝑡 (15)

𝑦𝐺𝑖𝑡ℎ + 𝑦
𝐴
𝑖𝑡ℎ = 𝐿𝑖𝑡ℎ, ∀𝑖,∀𝑡,∀ℎ (16)
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In regards to the ESS, their state-of-charge, 𝑦𝑆𝑂𝐶 must always be
lower than the capacity invested, 𝑥𝐶𝑠 (Eq. (17)), and there must be inter-
temporal balance. In the balance Eqs. (18) and (19), the state-of-charge
of a battery depends on the state in the previous time, and the charge
and discharge at that time. Losses from charging and discharging are
captured by the efficiency factors 𝜂𝐶 and 𝜂𝐷, respectively. In Eq. (20),
the conversion factor 𝛽 transforms the charging and discharging rate to
energy.

𝑦𝑆𝑂𝐶𝑠𝑖𝑡 ≤ 𝑥𝐶𝑠 , ∀𝑠,∀𝑖,∀𝑡 (17)

𝑦𝑆𝑂𝐶𝑠𝑖1 = 𝑆𝑂𝐶𝑠𝑖 + 𝜂𝐶𝑦𝐶𝑠𝑖1 − 1∕𝜂𝐷𝑦𝐷𝑠𝑖1, ∀𝑠,∀𝑖 (18)

𝑦𝑆𝑂𝐶𝑠𝑖𝑡 = 𝑦𝑆𝑂𝐶𝑠𝑖(𝑡−1) + 𝜂
𝐶𝑦𝐶𝑠𝑖𝑡 − 1∕𝜂𝐷𝑦𝐷𝑠𝑖𝑡, ∀𝑠,∀𝑖,∀𝑡 ⧵ 1 (19)

𝑦𝐶𝑠𝑖𝑡, 𝑦
𝐷
𝑠𝑖𝑡 ≤ 𝑥𝑃𝑆𝑠 𝛽, ∀𝑠,∀𝑖,∀𝑡 (20)

Finally, the model includes Eq. (21) where the binary variable
𝑏 avoids charging and discharging simultaneously in the same time
period. This equation makes the problem nonlinear.

0 = 𝑏𝑠𝑖𝑡 𝑦
𝐶
𝑠𝑖𝑡 + (1 − 𝑏𝑠𝑖𝑡)𝑦𝐷𝑠𝑖𝑡, ∀𝑠,∀𝑖,∀𝑡 (21)

To linearise the model, Eq. (21) was transformed using the big
M method as in Eqs. (22) and (23), where M is sufficiently large to
ensure it does not constraint the original constraints on charging and
discharging capacities (Eq. (20)).

𝑦𝐶𝑠𝑖𝑡 ≤𝑀 ⋅ 𝑏𝑠𝑖𝑡, ∀𝑠,∀𝑖,∀𝑡 (22)

𝑦𝐷𝑠𝑖𝑡 ≤𝑀 ⋅ (1 − 𝑏𝑠𝑖𝑡), ∀𝑠,∀𝑖,∀𝑡 (23)

6. Case study and investment strategies

The case study for applying the Nested Shapley value and the
joint-investment model is a demo site from the EU Horizon 2020
project ‘‘Sustainable Plus Energy Neighbourhoods’’ Sy.nikia2 located in
Salzburg, Austria. This neighbourhood comprises 11 closely situated
buildings, which add up to 250 dwellings. For a detailed overview
of the neighbourhood’s technical infrastructure, such as building en-
velopes and heating/cooling systems, refer to Andresen et al. [32].

Joint investments in solar PV and batteries were assumed to be
installed in shared spaces such as rooftops and garages. According
to the project’s technical assessment by Andresen et al. [32], the
neighbourhood’s maximum photovoltaic capacity is 667 KWp, utilis-
ing south-facing PV panels. Additionally, for each dwelling within a
building, a small-scale battery of 4 kWh can be integrated.

For the PV panels, hourly generation profiles were simulated on
the renewables.ninja platform3 [33,34] assuming 10% system loss and
a tilt of 35 degrees. The simulation used historical irradiation and
temperature data from 2019. Concurrently, day-ahead prices for 2019
were retrieved from the ENTSO-E Transparency platform [35].

Since the demo project is still in the development phase, actual
electricity consumption data is unavailable. To address this, the Load-
ProfileGenerator software4 [36] was used to generate load profiles for
251 households. These profiles were based on demographic details
(e.g., number of family members, occupation) and geographical factors
(e.g., irradiation, temperature). The total electricity demand of the
neighbourhood resulted in 1238 MWh, averaging around 5000 kWh/y
per household. For a detailed breakdown of other investment and
operational costs, please refer to Table 6. Finally, the annuity factors
for each technology were calculated using an interest rate of 6%.

The load, prices and solar profiles used for this case study are in the
GitHub repository.5

2 https://www.synikia.eu/.
3 https://www.renewables.ninja/.
4 https://www.loadprofilegenerator.de/references/.
5
 https://github.com/raquelal94/NestedShapley.

https://www.synikia.eu/
https://www.renewables.ninja/
https://www.loadprofilegenerator.de/references/
https://github.com/raquelal94/NestedShapley
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Table 6
Investments and operational parameters assumed in the case study.

Investment costs Operational costs

Capital cost Maintenance costs Lifetime Source Price (e/kWh) Source

PV 1 038 e/kWp
103 e/kWpa

25 years Fleischhacker et al. [9] Grid tariff 0.072 Eurostat [31]

ESS 10 e/kW
1 200 e/kWh

0.5 e/kW/a
0.5e/kWh/a

15 years Fleischhacker et al. [9] Taxes 0.0645 Eurostat [31]

a Installation costs.
6.1. Case definition based on possible business models

Four investment strategies are proposed as available to communities
formed by multi-dwelling buildings. These strategies are different from
each other based on two primary criteria: the nature of asset owner-
ship, either individual or joint, and the size of the coalitions ranging
from individual buildings to groups of buildings. For simplicity and to
facilitate a clearer interpretation of the results, feed-in tariffs are not
considered in any of the cases. The four models of investment strategies
are:

• Business-as-usual (BAU): In this strategy, there are no invest-
ments in renewables or energy storage. Each apartment covers its
electricity demand by purchasing directly from the grid.

• Individual Dwellings (ID): Here, each household determines
its optimal investment to meet its electricity demand. Any ex-
cess energy produced is not shared with others and is instead
curtailed.

• Energy Communities in Buildings (EC-B): In this approach,
energy communities are established on a building-by-building
basis. All residents within a building share a common smart meter
and a unified electricity bill. These ECs decide on the optimal
generation and storage capacities to install in shared areas. Any
surplus electricity is not traded with the neighbouring buildings.

• Energy Community in Neighbourhood (EC+): Under this strat-
egy, all buildings come together to form a single EC. Shared
areas across all buildings are utilised collectively, and there is a
unified electricity bill for the entire neighbourhood. Importantly,
peer-to-peer energy exchanges between buildings are permitted.

. Results

The results for the joint investment and the application of the Nested
hapley value are presented in the following section. First, the overall
osts and the operational decisions at the community level for the
ifferent cases are presented and discussed. The section continues by
xamining the individual electricity bills of agents which initiates the
tability issues addressed through the adoption of democratic gover-
ance structures. The section concludes by specifying the details on the
ested Shapley method used in the case study.

.1. Costs and investments in the neighbourhood

Table 7 presents the capacities of the energy assets and the annual
osts borne by the entire neighbourhood for each investment strategy.
n the EC-B and EC+ strategies, no batteries were installed. This differs
rom the ID, as individual households needed to exploit the flexibility
rom batteries to save their excess production, as peer-to-peer was
ot an option. Moreover, there was an evident reduction in solar
hotovoltaic capacity in the EC-B and EC+ cases compared to the ID
ase, implying that peer-to-peer transactions promoted a more efficient
se of local resources.

The resource efficiency achieved through peer-to-peer reduces the
nvironmental footprint, as it allows avoiding overusing material and
nergy resources to cover energy needs. Another benefit of resource
9

fficiency is reduced total costs for the community. The EC-B strategy
Table 7
Technology and costs results for the investment strategies considered.

BAU ID EC-B EC+

Solar (kW) – 408 337 332
Batteries (kWh) – 55 0 0
Total costs (e) 220 288 166 240 149 307 148 352
Investment costs (e) – 30 322 21 438 21 150
Operational costs (e) 220 288 135 917 127 869 127 202

Table 8
Summary of the neighbourhood’s operational results for the four cases.

BAU ID EC-B EC+

PV electricity consumption (MWh) – 442 524 528
Discharge consumption (MWh) – 41 – –
Imports from the grid (MWh) 1 238 754 714 710
Curtailment (MWh) – 829 556 538

realised cost savings of 32.2% and 10.2% compared to the BAU and ID
strategies, respectively. Interestingly, these reductions are comparable
to those achieved with the EC+ strategy. This suggests that collabora-
tion within the same building was the primary driver of capacity and
cost reductions while trading between buildings yielded only marginal
benefits.

Several factors determine the benefit of collaboration among build-
ings over only per-building sharing. First, collaboration among build-
ings has the potential to provide sufficient rooftop space for increased
solar production. This offers the possibility to meet the energy de-
mands of buildings with inadequate space and subsequently reduce
their operational costs. Second, the community can lower the total
investment costs by sharing surplus electricity from production or
storage technologies.

In the EC-B scenario, every building maximised its solar installation
without utilising its entire rooftop space. Given that all buildings
have similar solar production profiles due to geographical closeness,
expanding solar production is not advantageous. Essentially, installing
more panels on unused spaces in other buildings would be analogous
to simply expanding production on each individual building’s rooftop.

Thus, the primary cause of benefiting from adopting the EC+ strat-
egy arises from sharing surplus electricity to reduce investment needs.
Yet, this becomes a marginal gain due to a strong positive correla-
tion between energy surplus and deficits among the buildings. Fig. 4
illustrates how buildings generally exhibit similar patterns of surplus
and deficit electricity generation. This implies a positive correlation be-
tween buildings, which in turn limits the opportunities for peer-to-peer
trading among them.

7.2. Operational decisions

Table 8 details the various electricity sources utilised to satisfy the
neighbourhood’s annual electricity demand. These include electricity
produced by solar panels, power discharged from batteries, and grid
imports. The table also presents the amount of curtailed power from
solar panels.

In the BAU scenario, as anticipated, the demand was met by im-

porting directly from the grid due to the absence of alternative energy
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Fig. 4. Net electricity of each building in the EC-B case for a representative day in May. Positive value indicates surplus and negative deficits.
sources. The ID scenario showcased the highest electricity generation
from solar panels, attributed to its larger capacity installed. However, a
significant 65% of this energy was curtailed, even though the dwellings
invested in storage solutions. The curtailment rates were reduced in the
EC-B and EC+ scenarios, dropping to 51% and 50%, respectively. These
results underline that the flexibility delivered by peer-to-peer trading
is considerably more efficient for the neighbourhood than individually
installing storage devices.

Also, peer-to-peer bolstered the community’s autarky, which is ev-
ident from the lower volumes of grid imports and higher amounts of
local electricity consumed in the EC-B and EC+ scenarios. It is worth
noting that the operational results between these two scenarios were
nearly identical, explained by their similar investment decisions.

7.3. Individual electricity bills

The individual electricity bills of households in the EC-B and EC+
strategies were determined using the Nested Shapley Value. However,
such computation was unnecessary for the BAU and ID scenarios since
they lacked collaboration between participants.

Fig. 5a depicts the distribution of savings of the household per
investment strategy compared to the BAU case. The EC+ strategy deliv-
ered the largest median (286 e/y), minimum (100 e/y) and maximum
(567 e/y) absolute savings. However, these were almost equivalent to
those obtained in the EC-B strategy, with a median electricity bill of
only 3 e/y lower. Hence, expanding peer-to-peer transactions between
buildings did not bring a substantial average reduction of costs to each
dwelling. This is expected given their similar strategic and operational
results.

Expanding on this analysis, Fig. 5b presents the division of sav-
ings between high- and low-demand electricity consumers, expressed
as a percentage of their respective electricity bills. Interestingly, the
EC+ strategy results in more evenly distributed bill reductions be-
tween these two groups than the EC-B strategy. This suggests that the
neighbourhood-wide community fosters a more equitable distribution
of savings than the per-building approach.

Within each consumer group, however, there is significant variabil-
ity in savings. Interestingly, the similar range of savings across these
consumer groups indicates that total energy consumption is not the
primary factor affecting the relative benefits a household can gain from
joining an EC. Instead, the key variable appears to be the alignment
between solar production at the community level and the consumption
patterns. This is demonstrated in Fig. 6, which displays the hour-by-
hour correlation between the solar generation and load profiles for four
10
specific dwellings. These selected dwellings represent the extreme cases
of bill reduction (maximum and minimum) within each consumption
group in the EC+ scenario. A negative correlation signifies that periods
of high solar production coincide with low energy consumption, while
a positive indicates that both are high or low simultaneously. Notably,
dwellings with greater bill reductions (dwellings 119 and 85) generally
exhibit more positive correlations throughout the day than those with
smaller reductions (dwellings 208 and 66). Therefore, it is primarily
the households’ load patterns that determine the relative savings, while
their total consumption only influences its absolute value.

Moreover, a comparison between the annual cost attributed to each
household in the EC+ strategy with those obtained applying the BAU
(in blue), ID (in yellow) and EC-B (in red) strategies is depicted in
Fig. 7. Points situated below the 45-degree dashed line signify house-
holds that got a lower electricity bill in the EC+ than in the alternative
strategies. Conversely, points above this line indicate higher costs in
the EC+ scenario.

When applying the EC+ strategy, all households had lower electric-
ity bills than in the BAU and ID strategies. In contrast, this unanimous
result is not observed when comparing the EC+ and EC-B strategies.
Despite most households lowering their cost by expanding the commu-
nity to all buildings, 111 dwellings got better electricity bills when the
ECs were adopted per building.

7.4. Decision-making: economic and governance aspects

The previous section compared the costs incurred by individual
residents under each strategy, providing insights into their willingness
to support one strategy over the other. However, the varied economic
preferences among households and governance structures within the
neighbourhood would both determine the decision on which strategy
to adopt. A governance structure encompasses the processes and prac-
tices adopted for decision-making. As such, it ensures a decision is
legitimate.

To illustrate the connection between governance structures and
individual preferences in decision-making processes, Fig. 8 illustrates
a simple example. In Building 1 (B1), residents unanimously prefer
forming their own EC as it yields higher benefits to all members. If
there is a decision-making framework where each building can decide
its preferred strategy, building 1 will opt for the EC-B. On the contrary,
if the governance structure is designed such that the decision needs
to be made at the community level, the majority of residents within
the neighbourhood (B1, B2, and B3) would vote for the EC+ strategy.
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Fig. 5. Distribution of savings achieved in the ID, EC-B and EC+ strategies compared to the BAU strategy.

Fig. 6. Hourly average correlation between solar production and load demand of four selected households based on yearly observations.
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Fig. 7. Scatter plot of the annual electricity bills for the 251 households. The 𝑥-axis captures the bill for the BAU, ID and EC-B scenarios, while the 𝑦-axis shows those for the
EC+ scenario.
Fig. 8. Example of a neighbourhood with three buildings, each with three residents. Here, 𝜓𝐸𝐶+
𝑖 and 𝜓𝐸𝐶−𝐵

𝑖 indicate the Nested Shapley value associated to resident 𝑖 in the EC+
and EC-B strategies, respectively.
Then, Building 1 would need to accept, independently of their own
preferences.

As presented in the example, an optional governance structure that
can rule the decision-making process within multi-dwelling neighbour-
hoods is neighbourhood-wide democratic voting. In this approach, all
households in the community have one voting right to decide whether
to adopt the EC-B or EC+ strategy. Hence, each dwelling will vote for
the strategy that delivers the highest cost reduction following Eq. (24).

𝐒𝐭𝐫𝐚𝐭𝐞𝐠𝐲( ) =

⎧

⎪

⎨

⎪

⎩

EC+ if ∑

𝑖∈ 1{𝜓EC+
𝑖 ≤ 𝜓EC-B

𝑖 }
≥
∑

𝑖∈ 1{𝜓EC+
𝑖 > 𝜓EC-B

𝑖 }
EC-B otherwise

(24)

with 𝜓𝐸𝐶+𝑖 and 𝜓𝐸𝐶−𝐵𝑖 indicating the electricity bill of agent 𝑖 under
the EC+ and EC-B strategy.

Another alternative is a per-building democratic voting where each
building decides its strategy as follows:

𝐒𝐭𝐫𝐚𝐭𝐞𝐠𝐲(𝐁) =
⎧

⎪

⎨

⎪

⎩

EC+ if ∑

𝑖∈𝐵 1{𝜓
EC+
𝑖 ≤ 𝜓EC-B

𝑖 }
≥
∑

𝑖∈𝐵 1{𝜓
EC+
𝑖 > 𝜓EC-B

𝑖 }
EC-B otherwise

In the case study, the neighbourhood-wide democratic voting would
ensure the adoption of the EC+ strategy, given its broad support
among most dwellings (see Fig. 5). Nonetheless, when adopting the
per-building democratic voting, buildings 6, 9 and 10 would choose
the EC-B strategy, yielding a different investment strategy selection
12

compared to neighbourhood-wide voting.
Therefore, both the economic aspect of individual preferences and
the governance structure are pivotal factors in the decision-making
process regarding the investment strategy to adopt.

While this analysis may resonate with the concept of stability in
cooperative game theory – traditionally applied to assess the formation
of subcoalitions within a single game – the focus here is different.
Instead, this section compares the decision-making processes under two
distinct investment strategies, the EC-B and EC+, by analysing how
different governance structures and economic outcomes influence indi-
vidual preferences. This analysis does not delve into the stability of the
coalition due to the payoff but rather investigates the preferences across
two strategic scenarios, highlighting the critical role of governance and
economic factors.

7.5. Computational details of the case study

The Nested Shapley Value method was applied to compute the
electricity bills of the 251 agents in the EC+ case. The ordered tree was
constructed following the k-means algorithm considering the attributes
of total annual electricity consumption and mean average peak load.
The resulting ordered tree had 67 nodes and 4 layers (see Fig. 9). The
parent nodes preceding the leaf nodes were associated with a maximum
of 𝑝 = 10 households in order to ease the computation of the Nodal
Shapley Value.

The method was also applied in some buildings in the EC-B case, as
some contain more than 10 apartments. The BAU and ID cases did not
require computing the Nested Shapley value since they do not consider

coalitions within the neighbourhood.
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Fig. 9. Resulting ordered tree for the EC+ case. Nodes are indicated in blue, and instead of displaying individual leaf nodes, the number of leaf nodes connected to each parent
is shown in yellow.
The Nested Shapley value algorithm, the k-means method and the
joint investment model were developed in Python 3.10. The Pyomo
package [37,38] and Gurobi Solver v9.5.2 were selected to implement
and solve the optimisation model. All computations were performed on
a computer cluster with CPU 2x 2.3 GHz Intel E5-2670v3 (12 core) and
64 Gb RAM.

To perform the EC+ and the EC-B cases, 5453 and 5074 instances
of the model were solved, respectively. These are significantly lower
numbers than the 2251 and 1.46 ⋅ 1020 instances required for computing
the true Shapley value in both cases. The reduction in the number
of instances was accompanied by parallel computing to speed up the
computation of the characteristic value of each sub-coalition.

8. Conclusions

This paper proposes the Nested Shapley value as an approximation
method of the Shapley value, designed to deal with coalitions with
a large number of players. The method was applied to analyse the
decision-making process of multi-dwelling ECs with four potential joint
investment strategies. To do so, an investment optimisation model
tailored to multi-dwelling buildings was formulated. The paper also
explores the integration of the Nested Shapley value with governance
structures to better understand joint investment decision-making in
ECs.

By clustering agents, the Nested Shapley value method significantly
reduces the computational complexity, making it feasible for value dis-
tribution in large-scale coalitions. Mathematically, the Nested Shapley
Value satisfies three fairness axioms: efficiency, null player axioms, and
symmetry (when properly formulated clusters). The only axiom it does
not meet is linearity.

The results obtained for the symmetry axiom and the linearity
axiom give clear instructions on utilising the proposed tool. Namely,
the symmetry property prescribes that the clusters need to be defined to
be internally homogeneous, whereas the lack of the linearity property
prescribes that, when considering multiple projects, they must be eval-
uated on a one-by-one basis rather than considering them all together.
The method is applicable to all large-scale cooperative games and is
not confined to value allocation in ECs. However, the weaker version of
the symmetry property presents the challenge of identifying the specific
attributes of agents that influence their contributions to the community.
This task may not be straightforward across different types of games.

Moreover, the study applies the Nested Shapley value to allocate
costs in ECs with joint investments, given that they often comprise
a large number of residents, and fair value distribution is crucial for
their long-term stability. By computing the Nested Shapley value, the
paper explores how individual payoffs might affect the acceptance and
legitimacy of investment strategies within ECs. It was demonstrated
that quantifying individual payoffs, along with considering the gover-
nance structure of the community, can be used to assess the likelihood
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of adopting different investment strategies. For the case study, it was
shown that adopting neighbourhood-wide democratic voting was es-
sential for ensuring the implementation of a joint investment strategy
that leads to the most resource-efficient community with the lowest
variability of benefits for residents.

However, there are challenges to adopting the Nested Shapley value
method in ECs: first, its mathematical complexity can hinder under-
standability, potentially affecting residents’ trust in the method; second,
the distribution of costs post-operations may limit end users’ abil-
ity to adapt to more favourable economic outcomes on time; and
finally, regulatory constraints may inhibit the formation of collective
metering and billing systems required for ECs. Furthermore, although
outside the scope of this paper, the practical application of large energy
communities is likely to imply additional coordination burdens such
as administrative and transaction costs which may require careful
assessment.

Future studies should qualitatively examine the real-world appli-
cability of allocation methods like the Nested Shapley value to dive
into the current status and possible solutions to the barriers mentioned.
Additionally, exploring the use of the Nested Shapley Value in contexts
beyond ECs could provide valuable insights, particularly concerning the
construction of ordered trees that maintain the symmetry property.
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Appendix A. Nomenclature

A.1. Theory and Nested Shapley value

See Table A.9.

A.2. Joint-investment model

See Table A.10.

Appendix B. Closed-formulation of number of computations for a
symmetric tree

From the definition of the Nested Shapley value, the number of
computations is

computations =
∑

𝑛∈𝐹⧵𝐹 𝑠
(2|𝐹

𝐶
𝑛 | − 1) (B.1)

Assuming a symmetric tree where all the nodes have an identical
number of children nodes 𝑐 such that 𝑐 = |𝐹𝐶𝑛 | for all 𝑛 ∈ 𝐹 ⧵ 𝐹 𝑠, the
omputational load simplifies to:

omputations = 𝐴(2𝑐 − 1) (B.2)

The constant 𝐴 is defined as the geometric series ∑𝑞−1
𝑙=1 𝑛

𝑙−1 which
an be expressed in a closed-form. The derivation is as follows:

𝐴 = 𝑛0 + 𝑛1 + 𝑛2 +⋯ + 𝑛𝑞−2 (B.3)

𝐴 ⋅ 𝑛 = 𝑛 + 𝑛2 + 𝑛3 +⋯ + 𝑛𝑞−1 (B.4)

Table A.9
Mathematical notation for the indices, sets and parameters in the cost allocation
methods.

Indices and sets

𝑖, 𝑗 ∈  Agents
𝑎, 𝑏 Partitions
𝑛, 𝑚, 𝑠 Nodes
𝑙 Layers in the tree from 1 to q
𝑃 Set of partitions of 
𝐹 Set of nodes
𝐶𝑛 Coalition of agents associated to node n
𝐹 𝐶
𝑛 Set of children nodes of node n
𝐹 𝑃
𝑛 Set (singleton) of parent nodes to node n
𝐹𝑖 Set of nodes associated with agent 𝑖
𝐹 𝑠 Set of nodes with a single agent
𝐹 𝑙 Set of nodes in layer l
𝐵 Set of agents in building B

Parameters

p Number of partitions
N Number of players
M Number of nodes
q Number of layers in the nodal tree
𝜙𝑖 Shapley value for agent 𝑖
𝜙𝑂𝑖 Owen value for agent 𝑖

𝜙∗
𝑛 Nodal Shapley Value computed using the value function 𝑣(𝐶𝑚) with

𝑛 ∈ 𝐹 𝐶
𝑚

𝜓∗
𝑛 Corrected Shapley value

𝜓𝑖 Nested Shapley value of agent 𝑖
𝜌𝑖 Silhouette coefficient for agent 𝑖
𝜎𝑝 Average silhouette coefficient for partition 𝑝
𝑒𝐵 Preference between strategies at building B
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𝐴 ⋅ 𝑛 − 𝐴 = 𝑛𝑞−1 − 1 (B.5)

𝐴(𝑛 − 1) = 𝑛𝑞−1 − 1 (B.6)

𝐴 = 𝑛𝑞−1 − 1
𝑛 − 1

(B.7)

Upon substituting Eq. (B.7) into Eq. (B.2), the computations require-
ment for computing the Nested Shapley values of agents allocated in a
symmetric tree is obtained:

computations = 𝑛𝑞−1 − 1
𝑛 − 1

(2𝑐 − 1) (B.8)

Appendix C. Accuracy comparison

To examine the computational accuracy of the Nested Shapley
value, the following section presents two numerical examples compar-
ing the proposed method with the true Shapley value and the stratified
expected value from Cremers et al. [26].

In the first example, every agent contributes the same in generation
and storage technologies, while the second assumes that agents are
not identical in the resources they contribute. The optimisation model
for computing the characteristic functions is the one presented in this
paper without the investment decisions, which are assumed to be fixed.
Hence, only the operational part is considered. Both examples are
applied to a community of 12 agents with a time horizon of one day.

The results of the Nested Shapley value are presented for different
ordered tree structures with 𝑞 = 3. Table C.11 shows the characteristics
of the ordered trees used in these two examples. The results for both
examples are presented in Table C.12 and Table C.13.

In scenarios with centralised resources, the stratified expected value
method provides a closer approximation to the true Shapley value than
the Nested Shapley approach does. To quantify this, the maximum
relative difference from the true Shapley value is 16% for the stratified
expected value, compared to a significantly higher 98% for the Nested
Shapley. Conversely, in communities with decentralised resources, the
Nested Shapley value outperforms when utilising a tree with 8 nodes
in the second layer. Not only does it yield more accurate results, but it
also reduces the computational effort required.

The stratified expected value, as described in the work by Cre-
mers et al. [26], is particularly effective for communities where each
agent’s contribution to generation and storage capacity is identical. This
method selects a ‘‘representative’’ subcoalition for each Shapley value
stratum based on average demands. In such cases, the representative
subcoalition accurately reflects the collective benefits of the agents
within each stratum.

However, the situation becomes more complex when agents con-
tribute differently in generation and storage capacities. In the second
example, the representative coalition was generated, allocating the
generation and storage capacities based on the community’s average,
which parallels the demand handling of the stratified expected value
method. It should be noted that this approach of handling the capacity
of assets is not discussed in [26], as the authors do not provide guidance
on how to apply the method for scenarios where agent contributions
vary.

Appendix D. Properties of the Nested Shapley value

The Shapley Value is the only payment rule to satisfy four impor-
tant properties: Efficiency, Symmetry, Linearity and Null player. The
Nested Shapley Value introduced in this paper fully satisfies Efficiency
and the Null player properties, while it does not satisfy the Linearity
property. The Symmetry property only holds if clustering is performed
by gathering equivalent actors in the same clusters in every child node
of the nesting tree beside the leaf node. In the following appendix, the

considered properties are formally presented.
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Table A.10
Mathematical notation for the indices, sets and parameters in the cost allocation methods.

Indices and sets

ℎ ∈  Dwellings in the coalition
𝑔 ∈ 𝐺 Generation technologies
𝑠 ∈  Storage technologies
𝑖 ∈ 𝐼 Season
𝑡 ∈ 𝑇 Timestep (e.g., hour, half-hour)

Parameters

𝐻 Number of dwellings in the coalition
𝑎𝑔 and 𝑎𝑠 Annuities for generation and storage technologies
𝛼𝑖 Seasonal scaling factor
𝜆 Constant of proportionality in ESS (kW/kWh)
𝛽 Conversion factor from power to energy (kW/kWh). It would be calculated based on the time period over which the power is applied
𝜓 Grid losses factor (kWh/kWh)
𝐿𝑖𝑡ℎ Electricity demand (kWh)
𝐺𝑔𝑖𝑡 Generation profile (kWh/kW per timestep)
𝑐𝑃𝑔 and 𝑐𝑃𝑠 Investment cost, power related (e/kW)
𝑐𝐼𝑔 Instalment cost (e/kW)
𝑐𝐶𝑠 Investment cost, capacity related (e/kWh)
𝑐𝑀𝐶
𝑠 Maintenance costs, capacity related (e/kWh)
𝑐𝑀𝑃
𝑠 Maintenance costs, power related (e/kW)
𝑐𝐺 Volumetric grid tariff (e/kWh)
𝑐𝑆𝑝𝑜𝑡𝑖𝑡 Spot price (e/kWh)
𝑐𝑇 𝑎𝑥 Tax cost (e/kWh)
𝐺𝑔 Maximum capacity for generation technologies based on shared areas (kW)
𝑆𝑠 Maximum capacity of ESS (kWh/dwelling)
𝑆𝑂𝐶𝑠𝑖 Initial state of charge in season i (kWh)
𝜂𝐶 and 𝜂𝐷 Charging and discharging efficiency factors

Variables

𝑥𝑃𝐺𝑔 and 𝑥𝑃𝐺𝑠 Generation capacity and storage technologies power rates, respectively (kW)
𝑥𝐶𝑠 Capacity of storage technologies (kWh)
𝑦𝐺𝑖𝑡ℎ Electricity withdrawal of each dwelling from the main grid (kWh)
𝑦𝐺𝐴𝑖𝑡 Electricity withdrawal of common areas from the main grid (kWh)
𝑦𝐺𝑔𝑖𝑡 Electricity delivered from shared areas to all the coalition (kWh)
𝑦𝐴𝑖𝑡ℎ Electricity withdrawal of each dwelling from common areas (kWh)
𝑦𝐸𝐴𝑖𝑡 Electricity withdrawal of the entire community from common areas (kWh)
𝑦𝐶𝑠𝑖𝑡 and 𝑦𝐷𝑠𝑖𝑡 Electricity charge and discharge of ESS (kWh)
𝑦𝑆𝑂𝐶𝑠𝑖𝑡 State of charge of the batteries (kWh)
𝑏𝑠𝑖𝑡 Binary variable for controlling the charge and discharge of ESS
w

Table C.11
Features of the ordered trees considered for the two examples.

Tree # nodes 2nd layer # nodes 3rd layer Computations

2-X 2 12 161
3-X 3 12 72
4-X 4 12 59
6-X 6 10 83
8-X 8 8 268

Proposition 1. The Nested Shapley Value satisfies the efficiency property:

∑

𝑖∈
𝜓𝑖 = 𝑣( )

Proof. By definition,

𝑖
𝜓𝑖 =

𝑁
∑

𝑖=1

∑

𝑛∈𝐹 𝑞∩𝐹𝑖

𝜓∗
𝑛 =

𝑁
∑

𝑖=1

∑

𝑛∈𝐹 𝑞∩𝐹𝑖

∑

𝑚∈𝐹𝑃𝑛

𝜙∗
𝑛

𝑣(𝐶𝑚)
𝜓∗
𝑚

also it should be considered that 𝜙∗
𝑛 with 𝑛 ∈ 𝐹𝐶𝑚 is the plain Shapley

Value for the children nodes 𝑛 to node 𝑚. The last expression can be
15

i

Table C.12
Results for community with centralised resources.

Agent 2-X 3-X 4-X 6-X 8-X Stratified Shapley

1 −0.3 −2.0 −2.0 0.1 −0.1 −3.9 −4.0
2 −0.4 −6.7 −8.0 −9.2 −9.1 −6.7 −6.8
3 2.5 10.3 10.0 12.4 13.4 13.4 13.3
4 1.1 7.2 7.0 12.1 11.2 11.9 11.1
5 −0.1 −2.6 −2.5 −0.2 −5.3 −5.3 −5.3
6 −5.6 −5.5 −4.3 −4.5 −4.5 −3.6 −3.7
7 −0.9 −6.7 −8.0 −9.2 −9.1 −11.8 −12.0
8 2.9 6.5 6.3 −3.2 1.5 4.4 5.2
9 7.9 7.7 7.9 8.2 8.2 6.8 6.5
10 30.0 29.6 28.7 31.3 31.5 31.3 31.5
11 18.2 18.0 17.7 18.2 18.3 20.6 20.5
12 40.2 39.6 42.6 39.2 39.2 38.3 39.0

rewritten as

𝑁
∑

𝑖=1

∑

𝑛∈𝐹 𝑞

∑

𝑚∈𝐹𝑃

𝜙∗
𝑛

𝑣(𝐶𝑚)
𝜓∗
𝑚1{𝐹

𝑞 ∩ 𝐹𝑖}1{𝐹 𝑃𝑛 }

here the product of the indicator functions assumes value 1 if a node
n the last layer (i.e. a node not having children nodes) and its parent
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Table C.13
Results for community with decentralised resources.

Agent 2-X 3-X 4-X 6-X 8-X Stratified Shapley

1 3.9 −5.5 −5.5 −3.0 4.2 12.4 7.9
2 −1.5 7.9 7.9 7.2 6.4 8.4 3.4
3 29.1 23.2 23.2 24.0 31.3 32.4 30.6
4 55.4 58.6 58.6 55.5 51.1 45.1 51.1
5 26.6 28.6 28.6 26.9 24.0 20.8 23.7
6 13.1 13.0 38.9 15.8 15.1 13.6 11.8
7 13.1 10.6 10.6 9.7 8.6 10.7 12.0
8 10.8 15.6 15.6 19.0 16.9 13.7 15.6
9 7.3 7.2 43.3 3.0 2.8 5.8 5.1
10 32.0 31.6 13.0 32.8 32.6 31.2 31.3
11 39.4 38.9 31.6 37.9 36.3 41.1 37.5
12 43.8 43.3 7.2 44.0 43.6 37.8 42.7

node are selected. The expression can be easily rewritten as

∑

𝑚∈𝐹𝑃

∑

𝑛∈𝐹 𝑞

𝑁
∑

𝑖=1

𝜙∗
𝑛

𝑣(𝐶𝑚)
𝜓∗
𝑚1{𝐹

𝑞 ∩ 𝐹𝑖}1{𝐹 𝑃𝑛 }

et us break down the analysis between the nodes belonging to the last
ayer and nodes belonging to previous layers. Assuming that there are

layers for the nesting of the formula, every node in the last layer
s associated with exactly one player, while in previous layers, a node
ould contain several players. By definition of the indicator function,
he expression for the last layer can be rewritten as
∑

∈𝐹 𝑞−1

∑

𝑛∈𝐹𝐶𝑚

𝜙∗
𝑛

𝑣(𝐶𝑚)
𝜓∗
𝑚

ith ∑

𝑛∈𝐹𝐶𝑚
𝜙∗
𝑛 = 𝑣(𝐶𝑚) by definition of 𝜙∗

𝑛 as the Shapley value of the
odes children to node 𝑚, whose value function is 𝑣(𝐶𝑚). This leads to

the new expression
𝑁
∑

𝑖=1
𝜓𝑖 =

∑

𝑚∈𝐹 𝑞−1
𝜓∗
𝑚 (D.1)

where 𝑚 belongs to layer 𝑞 − 1. This expression can be restated as
𝑁
∑

𝑖=1
𝜓𝑖 =

∑

𝑚∈𝐹 𝑞−1
𝜓∗
𝑚 =

∑

𝑚∈𝐹 𝑞−1

∑

𝑚∈𝐹𝑃𝑚

𝜙∗
𝑚

𝑣(𝐶𝑚)
𝜓∗
𝑚 =

∑

𝑚∈𝐹 𝑞−2

∑

𝑚∈𝐹𝐶
𝑚

𝜙∗
𝑚

𝑣(𝐶𝑚)
𝜓∗
𝑚

hich, by the same argument used above, leads to
𝑁

𝑖=1
𝜓𝑖 =

∑

𝑚∈𝐹 𝑞−2
𝜓∗
𝑚 (D.2)

hich is a recursive update to (D.1). By recursion, the expression leads
ack to the first node, and the expression becomes
𝑁
∑

𝑖=1
𝜓𝑖 =

∑

𝑚∈𝐹 1

𝜓∗
𝑚 = 𝜓∗

1 = 𝑣( ) (D.3)

Proposition 2. The Nested Shapley Value satisfies the symmetry property
within nests. Namely, if 𝑣(𝑆 ∪ {𝑖}) = 𝑣(𝑆 ∪ {𝑗}) for every 𝑆 ⊂  ⧵ {𝑖, 𝑗}
and 𝑖 and 𝑗 are assigned to the same cluster in every layer of the nesting
tree, then

𝜓𝑖 = 𝜓𝑗

Proof. Let us assume that the last parent node in the nesting tree
contains coalition 𝑆 and 𝑖, 𝑗 ∈ 𝑆. Then for every subcoalition of 𝑆 (let
us say 𝑆1) it is obtained that 𝑣(𝑆1 ∪ {𝑖}) = 𝑣(𝑆1 ∪ {𝑗}). This implies that
the Nodal Shapley Value for 𝑙𝑖 and 𝑙𝑗 satisfies the property 𝜙∗

𝑙𝑖
= 𝜙∗

𝑙𝑗
,

with 𝑙𝑖 and 𝑙𝑗 corresponding to the leaf nodes mapped to agents 𝑖 and 𝑗.
The reason is that 𝜙∗

𝑙𝑖
and 𝜙∗

𝑙𝑗
are simply the Shapley Values assigned to

𝐶
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the children nodes to node 𝑛 such that 𝑙𝑖, 𝑙𝑗 ∈ 𝐹𝑛 . The Nested Shapley
Table D.14
Characteristic function values for the example following Algorithm 1.

Parent node Nodes Agents 𝑣 𝑤 𝑧

– {1} {1, 2, 3, 4} 2000 1400 3400
1 {2} {2, 3} 1000 700 1700
1 {3} {1} 200 100 300
1 {4} {4} 800 500 1300
1 {2, 3} {1, 2, 3} 1200 800 2000
1 {2, 4} {2, 3, 4} 1800 1200 3000
1 {3, 4} {1, 4} 1000 600 1600
2 {5} {2} 400 300 700
2 {6} {3} 600 400 1000

Table D.15
Nested Shapley Values for the three games considered in the example and the sum of
games 𝑣 and 𝑤.

𝑣 𝑤 𝑧 𝑣 +𝑤

𝜓1 200 133.33 333.33 333.33
𝜓2 400 314.29 713.73 714.29
𝜓3 600 419.05 1019.61 1019.05
𝜓4 800 533.33 1333.33 1333.33

Value is obtained for agent 𝑖 and 𝑗 is obtained respectively by the
formulas

𝜓𝑖 = 𝜓∗
𝑙𝑖
=

𝜙∗
𝑙𝑖

𝑣(𝐶𝑛)
𝜓∗
𝑛 (D.4)

nd

𝑗 = 𝜓∗
𝑙𝑗
=

𝜙∗
𝑙𝑗

𝑣(𝐶𝑛)
𝜓∗
𝑛 (D.5)

with 𝜙∗
𝑙𝑖
= 𝜙∗

𝑙𝑗
. This completes the proof.

Proposition 3. The Nested Shapley Value satisfies the null player property.
Namely, if a player 𝑖 ∈  is such that 𝑣(𝑆∪{𝑖}) = 𝑣(𝑆) for each 𝑆 ⊆ ⧵{𝑖}
hen 𝜓𝑖 = 0

roof. In the last layer of the nesting tree, the uncorrected Shapley
alue assigned to the leaf node 𝑙𝑖, mapped to player 𝑖, is 𝜙∗

𝑙𝑖
= 0 because

is a Null player and 𝜙∗
𝑙𝑖

is computed as an ordinary Shapley Value.
ince the Nested Shapley Value for player 𝑖 is given by

𝑖 = 𝜓∗
𝑙𝑖
=

𝜙∗
𝑙𝑖

𝑣(𝐶𝑛)
𝜓∗
𝑛 (D.6)

here 𝑛 is the parent node of 𝑙𝑖. Therefore, the property is satisfied.

emark 1. The Nested Shapley Value does not satisfy the Linearity
roperty, which states

𝑖(𝑣 +𝑤) = 𝜓𝑖(𝑣) + 𝜓𝑖(𝑤) (D.7)

This non-compliance can be demonstrated through an example.
Assume the coalition of agents 𝑖 = 1, 2, 3, 4 organised in an ordered tree
as illustrated in Fig. 1 (Section 4).

Table D.14 shows the parent node, the coalition of nodes and agents
and their respective values for games 𝑣,𝑤 and 𝑧 = 𝑣 +𝑤.

The results of calculating the Nested Shapley values for each agent
under the three different games are presented in Table D.15. It can be
observed that the linearity property is not met given that the sum of the
Nested Shapley values of games 𝑣 and 𝑤 are not equal to the values in
game 𝑧.

Appendix E. Algorithm k-means for the ordered tree

The algorithm should be initialised with 𝑙 = 1 and 𝐹 1 =  (see
Algorithm 2).
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Algorithm 2 RecurssiveNodes
1: Inputs:

𝑙, 𝑝, 𝐹 𝑙

2: Assume 𝐹 𝑙 is an ordered set of nodes with last node 𝑚
3: for 𝑛 ∈ 𝐹 𝑙 do
4: Initialize:

𝐹 𝐶
𝑛 = ∅, 𝐹 𝑙+1 = ∅

5: if ∣ 𝐶𝑛 ∣> 𝑝 then
6: compute 𝑝∗ using the silhouette method
7: compute 𝑃 using the k-means with 𝑝 = 𝑝∗

8: for 𝑝 = 1, ..., 𝑝∗ do
9: 𝑚 = 𝑚 + 1

10: 𝐶𝑚 = 𝑃𝑝
11: 𝐹 𝐶

𝑛 = 𝐹 𝐶
𝑛 ∪ {𝑚}

12: 𝐹 𝑙+1 = 𝐹 𝑙+1 ∪ {𝑚}
13: 𝐹 𝑃

𝑚 = {𝑛}
14: end for
15: else
16: for 𝑖 ∈ 𝐶𝑛 do
17: 𝑚 = 𝑚 + 1
18: 𝐶𝑚 = {𝑖}
19: 𝐹 𝐶

𝑛 = 𝐹 𝐶
𝑛 ∪ {𝑚}

20: 𝐹 𝑙+1 = 𝐹 𝑙+1 ∪ {𝑚}
21: 𝐹 𝑃

𝑚 = {𝑛}
22: end for
23: end if
24: end for
25: if ∃ 𝑛 ∈ 𝐹 𝑙+1 such that |𝐶𝑛| > 1 then
26: RecurssiveNodes(𝑙 + 1, 𝑝, 𝐹 𝑙+1)
27: end if
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