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Abstract
Developing an effective modeling framework to minimize foreign exchange (FX) risk is of vital importance for hedgers and
traders in FX markets. In this study, we compare the ability of long short-term memory (LSTM) models to that of random
forest and several time series models for forecasting EURUSD implied volatility across the volatility surface. As our literature
study argues, there are only a few published papers on this subject. We find that the LSTMmodel is the best model for shorter
option maturities, while the AR-GARCH model is superior when the maturities increase. We observe that the LSTM model
is able to capture immense and immediate changes in implied volatility, which is important for hedging against significant
shifts in FX rates.

Keywords FX risk · Forecasting implied volatility · Machine learning · LSTM models · Random forest

JEL Classification G17 · G13

1 Introduction

Forecasting market volatility including implied volatility of
foreign exchange (FX) options is challenging mainly due to
incomplete information and unprecedented changes in eco-
nomic trends and conditions. Volatility forecasts are utilized
by volatility traders seeking alpha and institutional fundman-
agers such as life insurers and pension funds for hedging
purposes. Also, central banks need to have a forward-looking
view on exchange rates, because changes in exchange rates
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impact inflation in open economies. Improving volatility
forecasts is thus an important task. Traditional econometric
time series models struggle to capture nonlinearity in data,
incentivizing economic researchers to utilize more advanced
models. Machine learning methods can alleviate the com-
plexity in time series forecastingby identifying structures and
patterns of data such as nonlinearity and dependency between
predictors. Particularly, LSTM (long short-term memory)
networks have received increased focus in forecasting finan-
cial time series due to their specific attributes.

Developing an effective modeling framework tominimize
FX risk is of vital importance for hedgers and traders in FX
markets. The subject of this study is to compare the pre-
dictive power of LSTM models to random forest and time
series models for forecasting implied volatility of options on
the EUR/USD foreign exchange rate. We compare the abil-
ity of long short-term memory (LSTM) models to that of
random forest, AR-GARCH, HAR and MIDAS models for
forecasting EURUSD implied volatility across the volatility
surface. The LSTM model (or network) is a type of recur-
rent neural network (RNN). We find that the LSTM model
is the best model for shorter option maturities, while the
AR-GARCHmodel is superior when the maturities increase.
However, imposing other specifications and residual distribu-
tions for the GARCH models, we find that the AR-GARCH
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framework outperforms themore advancedmachine learning
models for all options. We observe that the LSTM network is
able to capture immense and immediate changes in implied
volatility, which is important for hedging against significant
shifts in FX rates.

Reasons for our interest in exploring forecasting capabil-
ities of LSTM models include:

• The LSTM network is designed to deal with a major prob-
lem of classical RNNs, the vanishing gradient problem
(see Sect. 4.3).

• Its long- and short-term memory property enables the
LSTM model to remember volatility clustering, making
it well suited to forecasting implied volatility.

• As our literature study below demonstrates, the LSTMnet-
work has been successfully applied to forecasting financial
time series.

We structure our analysis into two parts:

1. Statistical distribution Analyzing the univariate time
series characteristics of the implied volatility compo-
nents, including dependency structure.

2. Forecasting models Evaluating and proposing forecast-
ing models for implied volatility.

We use a comprehensive dataset of daily implied volatili-
ties for maturities from one week through one year, covering
a broad range of strike levels. The dataset spans important
global macroeconomic events such as the financial crisis, the
euro sovereign debt crisis and the COVID-19 outbreak.

We optimize an LSTMmodel on a training set of the data
and compare its forecasting capability to a RF (random for-
est) model and AR-GARCH-type models. The estimator is
the daily spot rates for the impliedvolatility for theEUR/USD
FX options. The four most popular currency pairs in terms
of trading volume are: EUR/USD (Euro Dollar), USD/JPY
(Dollar Yen), GBP/USD (Pund Dollar), USD/CHF (Dollar
Swiss Franc). These crosses are highly correlated. In this
study we decided to explore the EUR/USD because it is the
most important and liquid currency pair.

We impose RF and a Gaussian distributed AR(1)-
GARCH(1,1) as benchmark models and compare their fore-
casting performance to the more advanced LSTM model. In
addition to the benchmark AR(1)-GARCH(1,1) model, we
extend the analysis with models that include an asymmetric
GARCH term, moving average terms, along with Gaussian
distributed residuals and Student’s t-distributed residuals.
The machine learning models are optimized using different
hyperparameters, and we compare the best-fitted structures
for each option to the benchmark models.

Our findings show that the LSTM model is better than
the benchmark models for shorter option maturities, while

the AR-GARCH model is superior when the maturities
increase. However, when imposing other specifications and
residual distributions for the GARCH models, we find that
the AR-GARCH framework outperforms the more advanced
machine learning models for all options. For shorter matu-
rities the t-distributed models perform best, while ARIMA-
GARCH-type models perform better for longer maturities.

Further, this study is organized as follows: Sect. 2 dis-
cusses previous publications on implied volatility and the
models we apply in our analysis. Section 3 presents the data,
including statistical and distributional behavior. Section 4
presents the theory behind our models and further describes
the methodology and model architecture. In Sect. 5, we
present results and findings. Section 6 summarizes our find-
ings and concludes.

2 Literature review

Garman and Kohlhagen (1983) derive an implied volatility
modification to the Black–Scholes formula for option pric-
ing, introduced by Fischer Black and Myron Scholes [3].
According to Stan (1981), Latane and Rendleman (1976),
several studies have shown that implied volatility (which is
utilized in this study) is a better forecaster of future price
variability than measurements based on history [2]. In recent
years, implied volatility has become a common estimator for
forecasting purposes.

Ornelas and Mauad [31] find that the slopes of currency
implied volatility term structures have predictive power for
the behavior of exchange rates from both cross-sectional and
time series perspectives. Carr et al. [8] build a volatility index
by formulating a variance prediction model using machine
learning methods such as feedforward neural networks and
random forest on the S&P 500 index options. According to
Haug et al. [17], the standard deviation of implied volatil-
ity has an evident variation over time and declines as time
to maturity increases. We observe the same phenomenon
(see Fig. 2). Time-varying properties entail a major chal-
lenge, volatility clustering. That is, small (big) changes in
the volatility tend to be followed by small (big) changes in
the volatility [26].

An attempt to account for volatility clustering is Robert
Engle’s nonlinear autoregressive conditional heteroskedas-
ticity (ARCH) model, allowing the time-varying conditional
variance to depend on the lagged values of the squared errors.
An extension to the ARCHmodel that allows the conditional
variance to depend on lags of the conditional variance is the
general ARCH model, or the GARCH model, introduced by
Bollerslev [4]. The GARCH model is more parsimonious
than the ARCH model. The GARCH model avoids overfit-
ting and is still today a much-applied modeling framework
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for financial time series data. In this study, we employ ran-
dom forest and different time series models as benchmarks
(see Sect. 4.2).

Glosten et al. [15] formulate an extension to the GARCH
model, which accounts for an asymmetric response to a
volatility shock. In this model, known as the GJR-GARCH,
“good” news and “bad” news have different impacts on the
subsequent period volatility. Lim and Sek [24] found that in
“normal” post- and pre-crisis times, the symmetric GARCH
performs well, and in times of big volatility fluctuations, i.e.,
times of crisis, the asymmetric model is preferred. Schmidt
[36] argues that the asymmetric models are better forecast-
ers for financial indexes in the aftermath of the shock caused
by the outbreak of the COVID-19 pandemic compared to
symmetric specifications. Poon and Granger [34] argue that
the simpler GARCHmodels seem to provide larger volatility
forecasts compared to themore sophisticatedmodels. In con-
trast, the GJR-GARCH seems to forecast lower values due to
its asymmetry, which helps this model to quickly revert from
a high volatility state to a low volatility state. Ramasamy
and Minusamy [35] found that the asymmetric GJR does not
improve the forecasting performance considerably compared
to symmetric GARCH models.

The literature dedicated to implementing machine learn-
ing techniques for forecasting the implied volatility of FX
options is scarce. However, some research exists studying
machine learning for predicting stock prices, returns and
volatility.

Hosker et al. [16] compare three existing financial mod-
els that forecast future market volatility using the Chicago
Board Options Exchange Volatility Index (VIX) to six
machine/deep learning supervised regression methods. They
discover that RNNs including LSTM (which is used in our
study) provide improved results over existing linear regres-
sion, principal components analysis (PCA) and ARIMA
methods. Medvedev and Wang [28] model the implied
volatility surface (IVS) using convolutional long short-term
memory (ConvLSTM) and long short-termmemory (LSTM)
neural networks to produce multivariate and multistep fore-
casts of theS&P500 IVS.They conclude that theConvLSTM
model significantly outperforms LSTM and traditional time
series models in predicting the IVS out of sample.

Galler and Kruzanowski [22] employ deep learning to
classify whether stock returns are positive or negative one-
year-ahead. More recently, Krauss et al. [23] use various
machine learning models, such as deep learning and tree-
basedmethods, tomodel S&P 500 constituents. Surprisingly,
Krauss et al. [23] reported that gradient-boosted trees and
random forest outperformed deep learning models. Interest-
ingly, Krauss et al. [23] revealed that deep learning models
perform exceptionally well in times of market turmoil. Also,
Yu and LI’s (2018) findings are consistent with the claim that
deep learning networks perform well during market turmoil.

Yu and Li (2018) forecast the volatility of the Shanghai com-
posite stock price index using LSTM and GARCH, selecting
only extreme values (highs and lows) and concluding that the
LSTM model is superior. A paper somewhat similar to ours,
which forecasts different stock indices, is Namin and Namini
[29]. They compare anArimamodel to a univariate multistep
LSTM model, employing a multi- step univariate forecast-
ing algorithm based on Brownlee [7]. They conclude that
the LSTM model outperforms the ARIMA model. Galakis
and Vrontos [38] study whether the application of machine
learning approaches can outperform traditional econometric
models in forecasting implied volatility indices, a task similar
to ours. They conclude that certain machine learning tech-
niques are strongly encouraged as they significantly improve
the accuracy of the out-of-sample forecasts. However, they
also report that the model accuracy is not consistent across
all models.

3 Data: distribution and statistical behavior

In this Section, we discuss the statistical properties and dis-
tribution of our data. Our data, retrieved from Bloomberg,
consist of daily observations of implied volatilities for eleven
options with distinct levels of moneyness and five different
times to maturity during the period 02.01.2007–31.08.2021.
The data set provides 55 distinct time series with 164.670
observations of implied volatility, enabling us to analyze our
models’ forecasting performance for different maturities and
distinct moneyness levels. Figure 1 and Table 1 summarize
descriptive statistics for ATM (at-the-money) put options
for the five distinct maturities. The variance of the volatil-
ities generally declines as time to maturity increases. The
shorter maturities have both higher peaks and lower troughs
of implied volatility. In comparison, the longer maturities
have higher average levels of implied volatility, measured in
both mean and median (50% quantile).

In this study, we use put and call options with OTM delta
values of 5, 10, 18, 25, 35 and ATM put options with a delta
of 50. The level of implied volatility, measured in mean and
at different quantiles, is higher for options OTM than ATM
or close to ATM, and it is higher for puts than for calls. This
is also the case for the volatility (i.e., daily changes in the
level of implied volatility). This distribution pattern is the
same for all five distinct maturities and is referred to as the
volatility smile, which is visualized in Fig. 2. The implied
volatility is higher for OTM put options than similar call
options, consistent with a negative risk reversal that mea-
sures the volatility smile’s skewness. It is most common to
measure the risk reversal for call and put options with a delta
of 25 [27]. On average, all 25-delta risk reversals are negative
and increasingly negative as the time to maturity increases.
Further, the risk reversals become increasingly negative as the
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Fig. 1 Empirical distributions of implied volatilities across maturities and levels of moneyness. Level of implied volatility along the vertical axis
and level of moneyness along the horizontal axis

Table 1 Descriptive statistics for
ATM put options for each
maturity

1 week 1 month 3 months 6 months 1 year

Obs 2994 2994 2994 2994 2994

Mean 9.14 9.16 9.29 9.43 9.62

Min 2.74 3.77 4.14 4.42 4.97

25% 6.43 6.64 6.75 6.96 7.23

50% 8.32 8.38 8.51 8.63 8.95

75% 10.76 10.96 11.24 11.44 11.91

Max 33.58 28.88 24.65 22.29 19.91

Var 14.70 12.58 11.26 10.28 9.32

σ 3.83 3.55 3.36 3.21 3.05

options become increasingly OTM and can be interpreted as
a market-based measure of implied skewness.

Comparing historical values of the implied volatility for
one-week and one-year options (see Fig. 3), the variation in
implied volatility is immense. Since the one-week option has
a shorter time to maturity, implied volatility reacts more to
news and small shocks and ismore volatile. The cost of short-
term options is lower than that of long-term options, which
results in higher demand for short-term options. This causes
longermaturity options to trendmore, recovering less rapidly
from massive shocks than shorter maturities, implying that
time series for longer maturities are non-stationary. As time
to maturity increases, we observe a decline in how often the
option crosses its mean. The fact that the amplitude of the
daily changes in implied volatility declines will contribute to
a change in the tails of the return distribution. Since there is a

significant difference in the behavior and distribution of the
different maturities and levels of moneyness, we expect that
different models will be the best fit for different options. We
will come back to this in Sect. 4.

Several macroeconomic factors impact the EUR/USD
exchange rate, and its implied volatility.Our data set stretches
from January 2007 to August 2021 and during this time, the
financial markets worldwide endured multiple shocks and
events that impacted the EUR/USD exchange rate. Figure 3
exhibits the implied volatility for the ATM one-week and
one-year options. Shortly following the financial crisis in
2008, we observe a considerable rise in implied volatility.
Also, shocks such as the European debt crisis, the US debt
ceiling crisis, and in more recent years, the COVID-19 pan-
demic had a significant impact on implied volatility. These
different shocks captured in the data will affect the implied
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Fig. 2 Volatility smiles for the different maturities. Volatility smiles for
each distinct maturity, calculated as an average across the data sam-
ple. The top left option has one year to maturity, the top right has six
months, mid left has three months, mid right has one month and the

bottom option has one week to maturity. Level of implied volatility
is measured along the vertical axis, and level of moneyness along the
horizontal axis

volatility, the daily return of the implied volatility, and the
residual distribution of the options. Presumable, this can be a
challenge for GARCH-type models, which assume normally
distributed residuals. Outliers for the shortermaturity options
result in fatter tails than would be observed in a normal dis-
tribution. We will further address these issues in Sect. 5.5.

Different shocks to the data produce positive skewness for
all option maturities, as illustrated by the right-tailed empir-
ical distribution of the ATM options in Fig. 4. The figure
exhibits the ATM option for each maturity, and the distri-
bution widens as time to maturity increases. The empirical
distribution has a double peak for the longest maturities,
caused by more extended periods away from their respec-
tive mean value, as visualized in Fig. 3. The distribution

pattern corresponds toOTMoptions, and our findings regard-
ing EUR/USD FX derivatives’ statistical and distributional
behavior align with earlier literature (Figs. 5, 6).

4 Methodology

4.1 Forecast evaluation

To evaluate the forecasting performance of the different
models we use mean squared error (MSE), root mean
squared error (RMSE),mean absolute error (MAE) andmean
absolute percentage error (MAPE). These statistical mea-
surements are given by the formulas:
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Fig. 3 Implied volatility for ATM
put options with one week and
one year to maturity. Spot rates
of implied volatility for ATM put
options with one week and one
year to maturity from 2. January
2007 until 31. August 2021. The
red horizontal line exhibits the
options mean value for the
sample period

Fig. 4 Empirical distribution for
ATM options for each maturity,
Gaussian distribution drawn for
each maturity. Empirical
distribution of ATM options for
each of the five maturities. The
distributions implied volatility
along the horizontal axis, and
frequency measured in number
of observations along the vertical
axis. The Gaussian distribution is
marked as a curved line for each
plot. There are 200 bins and 2994
observations for each maturity
plot

MSE � 1

n

n∑

i�1

(yi − ŷi )
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n
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n
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|yi − ŷi |
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n

n∑

i�1

|yi − ŷi |/yi (3)

where yt is the implied volatility at time t, ŷi is the forecasted
value of implied volatility at time t, and n is the number of
observations. While the mean absolute error measures the
average across errors, where the errors are weighted equally,
the mean squared error penalizes higher errors.

4.2 Benchmarkmodels

We use GARCH and supervised random forest as our bench-
mark models. Common practice is to use 80% of the dataset
as a training set and 20% as an out-of-sample test set. This
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Fig. 5 80:20 data split for training and test set, option exhibited is ATM put option with six months to maturity. 80:20 data split for an ATM put
option with six months to maturity

Fig. 6 Data split for training, validation and test set for LSTM model. LSTM Data sets split into training, validation and test sets

split produces 2396 observations for the training set and 599
for the out-of-sample test set.

4.2.1 AR-GARCH

To confirm the presence of autoregressive conditional het-
eroskedasticity in the data, we perform Engle’s Lagrange
multiplier test, also known as an ARCH-LM test. The results

from the ARCH-LM test can only be interpreted as an indi-
cation of whether ARCH effects are present or not, and
according to Sjölander [37], the test is biased in finite sam-
ples. It does not consider whether the stationarity constraints
are met. Test results show that for all options, we can at
any significance level reject the null hypothesis of no ARCH
effects. We conclude that there is evidence of autoregressive
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conditional heteroskedasticity in the squared residuals for all
options.

As our literature study revealed, autoregressive time
series with random disturbances displaying conditional het-
eroscedastic variances have been successfully modeled with
GARCH-type processes. In this study, we employ an AR(1)-
GARCH(1,1) model as our benchmark. We extend the
analysis with a GJR-GARCH specification to capture asym-
metric behavior of shocks in the conditional variance. We
compare both in-sample goodness of fit and out-of-sample
forecast errors for all models, emphasizing the out-of-sample
forecasting performance. Further, we examine the data with
additional lags of the AR(p) and MA(q) processes, and
lastly, we perform the same regressions with a Student’s t-
distribution. Additional lags beyond an ARMA(1,1) process
do not improve the model’s forecasting accuracy and will not
be included further in this study.

Non-stationary variables can produce spurious regres-
sions, yielding a high R2 and t-statistics which appear to
be significant but without any economic meaning [11]. To
test for stationarity, we use the augmented Dickey-Fuller
test. Based on the augmented Dickey-Fuller test and the
Phillips-Perron test, we cannot, at a 5% significance level,
reject the null hypothesis that the options with time to matu-
rity of 3 months and more follow unit root processes and
are non-stationary. To avoid spurious regressions, we apply
first difference to all options with three months or more to
maturity. When applying the first difference for the options
with one week and one month to maturity, the forecast errors
measured by MSE, RMSE and MAE are reduced, along
with the in-sample goodness of fit. Therefore, the bench-
mark AR(1)-GARCH(1,1) model is not differentiated for the
shorter maturities, i.e., one week and one month to maturity.

The in-sample goodness of fit for the models are com-
pared by the information criteria Log-Likelihood, AIC and
BIC. According to these information criteria, the in-sample
model is considerably improved for all distinct options when
adding amoving average (MA) term andmore autoregressive
lagged terms. In terms of the autocorrelation and partial auto-
correlation, there are individual preferences of which lags
of AR(p) and MA(q) terms should be included, for the dif-
ferent options. Testing for asymmetries in the conditional
variance, the threshold term improves the goodness of fit,
and is statistically significant, for all options across the level
ofmoneyness andmaturities. Based on these findings,we can
claim that there is asymmetry in the volatility shocks, i.e., the
volatility reacts differently to positive and negative shocks.
In terms of out-of-sample forecasting accuracy measured
by MSE, RMSE and MAE, the simple AR(1)-GARCH(1,1)
model outperformed the better in-sample specified models
on shorter maturities. Interestingly, the better the in-sample
model specification measured in goodness of fit, the poorer

is the out-of-sample forecasting accuracy for the short matu-
rity options. Still, on account of its simplicity, we use the
AR(1)-GARCH(1,1) as a benchmark model.

4.2.2 Random forest

Random forest model architecture Developing
our model architecture, we implement the ran-
dom forest regressor from scikit learn [33]. The
sklearn.ensemble.RandomForestRegressor has several
parameters that can be tuned. Each time a split is to happen
in a decision tree, a random sample of m predictors are
chosen from a total of p predictors. In Python’s sklearn,
the default number of features m used when making splits
in a random forest regression, equals number of predictors
in the regression problem p. Breiman [6] argued that the
optimal number of features should be the square root of
p. Hastie et al. [18] argued that p / 3 is the set of features
best suited for the random forest regressor. From empirical
investigation Geurts et al. [12] concluded that the optimal
set of features is simply m � p. Running our random forest
model for different sets of m on different options, we reach
the same conclusion that m � p (see Table 2).

Next, we examine the number of trees and the length of
the window. Our initial model employed ten trees and a win-
dow size of two. Increasing the number of trees to the sklearn
default option of one hundred, did reduce the mean squared
error significantly for options with a very short time to matu-
rity. We also ran the model with window sizes from two to
forty. However, this was computationally too expensive to do
for each option. Table 3 depicts the mean squared error for an
ATM option with one year to maturity. The table indicates
that increments in window size do not improve the mean
squared error.

4.2.3 HAR

The HAR framework introduced by Corsi [10] has repeat-
edly proved its relevance for volatility forecasting, in spite
of a relatively simple structure. The original specification
proposed in Corsi [10] uses lagged values of the dependent
variable as covariates:

ŷi � μ + βDyt−1 + βW yt−5 + βM yt−22 (4)

More specifically Eq. (4) uses a daily, a weekly and a
monthly lag of implied volatility with a given moneyness
and time to expiry, along with corresponding coefficients, to
forecast implied volatility. Equation (4) is a linear model and
can be estimated using ordinary least squares.

123



International Journal of Data Science and Analytics

Table 2 Search for optimal
features in the RF model for
ATM put option with one year to
maturity

Features m � p Log2 (p) Sqrt (p) p/3

One Year ATM Put 0.0404 0.0448 0.0448 0.0444

Search for optimal features. We selected m � p for our RF model

Table 3 Search for optimal
window size RF model for ATM
put option with one year to
maturity

2 10 20 30 40

Window size

One Year ATM Put 0.0404 0.0421 0.0412 0.0426 0.0412

Search for Optimal Window Size. Increasing the window size has negligible effect on MSE

4.2.4 MIDAS

MIDAS regressions [13] are essentially tightly parameter-
ized, reduced form regressions that accommodate processes
sampled at different frequencies and with different lags. The
response to the higher-frequency explanatory variable rela-
tionship between dependent and independent variables is
modeled using highly parsimonious distributed lag polyno-
mials.

The basic MIDAS model for h-step-ahead forecasting,
with data available up to xt , is given by:

yt+h � ah + bhC(L; θh)xt + εt+h (5)

where C(L; θ) �
N∑
i�0

c(i ; θ)L and C(1; θ) � ∑N
j�0 c( j ;

θ) � 1. In our application, xt contains L � 22 lagged values
of implied values.

Parsimonious parameterization of the lagged coefficients
of c(k; θ) is one of the key MIDAS features. Various specifi-
cations for C(L ; θ) exist (see Ghysels and Marcelliano [14]
for a discussion). One alternative, which we apply in this
study, are Legendre polynomials as proposed by Babii et al.
[1]:

bhc(i ; θ � [θ0, . . . , θP ]) �
P∑

p�0

θpL p(xi )

where the Legendre polynomial of order p � 3 takes the
form: L0(x) � 1, L1(x) � x , L2(x) � 3

2 x
2 − 1

2 , L3(x) �
5
2 x

3 − 3
2 x .

4.3 Recurrent neural networks

The recurrent neural network is a class of artificial neural
networks, which are software implementations of the net-
work of neurons present in the human brain. The RNN is
a network where neurons have “memory,” which can cap-
ture temporal dependencies in the data, that can be modeled

in a recurrent structure, Ni et al. [30]. When training RNNs
with gradient-based learning methods and backpropagation,
the gradient of the error function may approach zero “too”
fast terminating the training process (vanishing gradient) or
explode. Thismeans thatRNNs are unable to remember long-
term dependencies. The LSTM has been designed to relieve
the vanishing gradient problem of RNNs, thus keeping track
of long-term dependencies in the input sequences (the sam-
ple time series). The long- and short-term memory property
of the LSTM network presumably enables it to remember
volatility clustering patterns in the distant and near past,mak-
ing this model particularly well fit to forecasting implied
volatility.

Below we derive the architecture for our LSTM model.

4.3.1 LSTM data split

First, we split our dataset into training, validation and test
sets. This is important as the model will be near perfect if
we feed the model with the test data. We settle on a 60:20:20
split, where 60% is used as the training set, 20% is used
as the validation set and 20% is used as a test set. In other
words, the first 1797 of the first observations in the dataset are
used to train the model, the next 599 observations are used
to improve the model and fine-tune hyperparameters and the
last 599 observations are used for out-of-sample forecasts.

The date intervals are as follows:

• Training set: January 2007–October 2015
• Validation set: October 2015–September 2018
• Test set: September 2018–August 2021

4.3.2 LSTMmodel architecture and hyperparameter search

Neural network algorithms are stochastic, i.e., they make use
of randomness, such as initializing random weights, which
will yield different results for a network that is trained on the
same data. To improve the LSTM model, we use a random
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seed, which generates a long sequence of numbers, which
will function as weights in the stochastic algorithm, and
ensure that the same result occurs when we run the same
model twice.

Several parameters require tuning to optimize the LSTM
model. The common practice is to evaluate every possi-
ble combination of parameters on the validation set and
choose the varieties that minimize the evaluation metrics.
However, this approach becomes computationally expensive,
especially with an increasedwindow size. For this reason, we
develop an architecture that starts by combining smaller sets
of hyperparameters, and for each iteration, the hyperparam-
eters increase by 10.

We implement an LSTMmodel from the Keras functional
API [9] with two hidden layers searching for hyperparame-
ters. We tried using different stacks of LSTM layers, which
was computationally expensive and did not improve the
model. The ReLU activation function is popular because of
its computability efficiency [20], but we employ the Keras
LSTM built-in activation function tanh, since this function
seems to work better for our datasets. We use the sigmoid as
the recurrent activation function, and Adam as our optimizer.
Adam is a variant of the mini-batch gradient descent algo-
rithm that adjusts the learning rate at each iteration for each
model parameter [9]. Our model is specified to minimize the
mean squared error. Initially, we construct our model archi-
tecture with 300 epochs, a batch size of 64, a window size
of 50 and 50 hidden neurons. Another issue with LSTM is
overfitting. With excessive training, the model will learn the
statistical noise in the training set, predicting the next value
based onmemory. To avoid overfittingwe use early stopping,
which terminates training as the learning rate stops improv-
ing.1

The remaining hyperparameters that need tuning are:
batch size, hidden neurons and window size.

4.3.3 Batch size

We use the previously stated model architecture to speed up
the hyperparameter search to locate the optimal batch size.
Our goal is to find a batch size that minimizes the mean
squared error, and the common practice is to increase the
batch size by the power of two because of computational
efficiencies [21]. Figure 7 shows the results for the batch
sizes and indicates an optimal batch size of 16.

1 In addition to early stopping, we tried implementing Keras dropout
[9] and Keras Gaussian noise [9], both techniques aimed at preventing
overfitting. However, both features either increased—or unaffected the
error statistics.

4.3.4 Combinations of window sizes and neurons

Further, we investigate the combinations ofwindow sizes and
hidden neurons, which are the parameters that largely affect
the model’s ability to learn. We implement the optimal batch
size of 16 in our initial model and develop an architecture
that combines the different neurons and window sizes from
two to fifty. Table 4 reports the mean squared errors for each
combination for an ATM option with six months to maturity.
The hyperparameter search indicates that a simple model of
two lags and twenty hidden neurons minimizes the mean
squared error for this specific option.

5 Forecasting results

For the out-of-sample forecast, forecasting accuracy gener-
ally increaseswithmoneyness and time tomaturity. Fromone
week to maturity to one year to maturity, the average RMSE
decreases from 0.7357 to 0.2417 for the GARCH model,
from 0.7303 to 0.2521 for the LSTM and from 0.8224 to
0.2473 for the Random Forest. This is a decline of, respec-
tively, 67.16%, 65.47% and 69.92%. The daily change in
implied volatility, computed as the absolute value of the aver-
age daily change for eachmaturity, declines by 76.21%when
the maturity increases from one week to one year. The reduc-
tion in RMSE is therefore declining with longer maturities
as expected a priori. The daily change in implied volatility is
also lower for options ATM and options close to ATM than
for OTM options. It is also lower for call options than put
options with the same option delta (negative risk reversal).

5.1 ATM and OTM options summary

The results for an ATM put and an OTM put and call for
each of the five specific maturities are presented in Table 5.
The first column indicates the options level of moneyness
and time tomaturity, then forecasting accuracy results for the
AR(1)-GARCH(1,1), LSTM, RF, HAR, andMIDASmodels
follow.

In line with Galakis and Vrontos [38], we find that cer-
tain machine learning techniques significantly improve the
accuracy of the out-of-sample forecasts, but the results are
somewhatmixed. The benchmarkAR-GARCHmodel is per-
forming superior for both put and call options compared to
the machine learning methods for options with longer matu-
rities. For all optionswithmaturities of threemonths ormore,
the AR-GARCHmodel outperforms both the machine learn-
ing models and other time series models. The random forest
model has the lowest forecast performance of the three mod-
els for all options across the different maturities. On shorter
maturities, i.e., for options with one week and one month to
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Fig. 7 Optimal batch size for LSTM network on ATM six months of option. Optimal batch size for a Delta 50 put option with six months to maturity

Table 4 Mean squared error
estimates for a delta 50 put option
with six months to maturity

Neurons 2 10 20 30 40 50

Window size

2 0.2471 0.0566 0.0831 0.0604 0.0880 0.0597

10 0.0933 0.1121 0.1127 0.2031 0.0609 0.0769

20 0.0550 0.1008 0.0800 0.5671 0.0721 0.0589

30 0.1035 0.0824 0.0637 0.0556 0.0611 0.0565

40 0.0801 0.0740 0.0652 0.0579 0.0625 0.0565

50 0.0765 0.0682 0.0639 0.0555 0.0594 0.0555

Reported error estimates for different choices of neurons and window size. The number of neurons along the
vertical axis and window size along the horizontal axis. Optimal combination of neurons and window size
are highlighted, and for this particular option the best combination of window size and neurons is 20 neurons
and a window size of 2

maturity, the LSTM and AR-GARCH models are the best-
fitted models. For an OTM put option with one week to
maturity, the GARCHmodel is the best fitted with an RMSE
of 0.7913 while the LSTM model has an RMSE of 0.7976.
The random forest model performs significantly poorer with
an RMSE of 0.9098, an increase of 14.97% compared to the
GARCH model.

It is somewhat surprising that the GARCH outperforms
the LSTM model for this particular option, considering that
this is the most volatile of the fifty-five options. The LSTM
performs better in terms of MAE, meaning it is not as robust
to outliers in the test set as is the GARCH model. When
we perform a Diebold-Mariano (DM) test for this option we

see that there are no significant differences between LSTM
and GARCH or LSTM and RF. However, the AR-GARCH
is significantly better than the RF. According to the DM test,
AR-GARCH is significantly better than RF for one-week
options. AR-GARCH is significantly better than LSTM for
the ATM option, but not for OTM options expiring in one
week.

Although the HAR and MIDAS models in certain
instances have the highest accuracy, these models are gen-
erally not able to improve predictions beyond GARCH and
LSTM.
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Table 5 Forecasting performance
for OTM put/call options and
ATM put options

GARCH LSTM RF HAR MIDAS

MSE

1 week put 5 0.6262 0.6362 0.8277 0.6374 0.6654

1 week put 50 0.4895 0.4763 0.6944 0.4944 0.4951

1 week call 5 0.5947 0.5917 0.7820 0.5946 0.6192

1 month put 5 0.2561 0.2645 0.2670 0.2599 0.2605

1 month put 50 0.1500 0.1537 0.1842 0.1524 0.1508

1 month call 5 0.2519 0.2519 0.2806 0.2487 0.2480

3 months put 5 0.1706 0.1792 0.1777 0.1782 0.1795

3 months put 50 0.0773 0.0850 0.0888 0.0788 0.0797

3 months call 5 0.1387 0.1413 0.1642 0.1385 0.1410

6 months put 5 0.1324 0.1392 0.1443 0.1419 0.1416

6 months put 50 0.0506 0.0550 0.0634 0.0519 0.0522

6 months call 5 0.0975 0.1022 0.1137 0.0978 0.0987

1 year put 5 0.1135 0.1215 0.1399 0.1228 0.1226

1 year put 50 0.0367 0.0398 0.0404 0.0380 0.0377

1 year call 5 0.0770 0.0815 0.0841 0.0776 0.0779

RMSE

1 week put 5 0.7913 0.7976 0.9098 0.7984 0.8157

1 week put 50 0.6997 0.6901 0.8333 0.7032 0.7036

1 week call 5 0.7712 0.7692 0.8843 0.7711 0.7869

1 month put 5 0.5061 0.5143 0.5167 0.5098 0.5100

1 month put 50 0.3873 0.3920 0.4292 0.3904 0.3883

1 month call 5 0.5019 0.5019 0.5297 0.4987 0.4980

3 months put 5 0.4131 0.4233 0.4215 0.4221 0.4237

3 months put 50 0.2781 0.2915 0.2980 0.2807 0.2824

3 months call 5 0.3725 0.3759 0.4052 0.3722 0.3755

6 months put 5 0.3639 0.3731 0.3799 0.3767 0.3763

6 months put 50 0.2248 0.2345 0.2518 0.2278 0.2284

6 months call 5 0.3123 0.3197 0.3372 0.3128 0.3142

1 year put 5 0.3369 0.3486 0.3740 0.3504 0.3501

1 year put 50 0.1916 0.1995 0.2010 0.1950 0.1943

1 year call 5 0.2776 0.2855 0.2900 0.2786 0.2791

MAE

1 week put 5 0.5056 0.4974 0.5973 0.5208 0.5108

1 week put 50 0.4632 0.4475 0.5492 0.4692 0.4582

1 week call 5 0.4813 0.2833 0.5583 0.4836 0.4834

1 month put 5 0.2729 0.2767 0.3055 0.2853 0.2821

1 month put 50 0.2709 0.2308 0.2640 0.2351 0.2308

1 month call 5 0.2518 0.2513 0.2782 0.2542 0.2598

3 months put 5 0.2002 0.2056 0.2346 0.2121 0.2123

3 months put 50 0.1540 0.1610 0.1757 0.1621 0.1605

3 months call 5 0.1772 0.2278 0.1999 0.1824 0.1822

6 months put 5 0.1641 0.1679 0.1963 0.1789 0.1774

6 months put 50 0.1191 0.1269 0.1445 0.1197 0.1250

6 months call 5 0.1433 0.1449 0.1649 0.1484 0.1467
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Table 5 (continued)
GARCH LSTM RF HAR MIDAS

1 year put 5 0.1421 0.1436 0.1714 0.1562 0.1544

1 year put 50 0.0972 0.0992 0.1124 0.1930 0.1012

1 year call 5 0.1195 0.1232 0.1359 0.1246 0.1219

MAPE

1 week put 5 0.0685 0.0702 0.0868 0.0762 0.0731

1 week put 50 0.0697 0.0715 0.0886 0.0764 0.0731

1 week call 5 0.0648 0.0662 0.0789 0.0691 0.0677

1 month put 5 0.0359 0.0357 0.6055 0.0383 0.0376

1 month put 50 0.0348 0.0355 0.2640 0.0369 0.0360

1 month call 5 0.0332 0.0244 0.0376 0.0344 0.0339

3 months put 5 0.0247 0.0244 0.2346 0.0264 0.0262

3 months put 50 0.0233 0.0233 0.1757 0.0248 0.0243

3 months call 5 0.0225 0.0120 0.2000 0.0233 0.0231

6 months put 5 0.0193 0.0192 0.1963 0.0209 0.0205

6 months put 50 0.0177 0.0200 0.1445 0.0191 0.0186

6 months call 5 0.0172 0.0156 0.1649 0.0179 0.0176

1 year put 5 0.0153 0.0144 0.1715 0.0168 0.0164

1 year put 50 0.0139 0.0140 0.1124 0.0152 0.0145

1 year call 5 0.0134 0.0382 0.1360 0.0140 0.0136

First column indicates the level of moneyness measured in delta for the different maturities. Delta 50 is the
ATM option, and delta 5 is the OTM put and call option. The highlighted value indicates the best-fitted value
for that particular option for MSE, RMSE, MAE and MAPE, respectively

5.2 One week tomaturity

For all other options with a maturity of one week, the LSTM
model outperforms the benchmark models on RMSE and
MAE. Exceptions are a put option with a delta of 35, where
the benchmark GARCH model has an MAE 1.96% lower
than the LSTM, and a put option with a delta of 10, for which
both models have an RMSE of 0.7635, a forecast accuracy
which is 7.85%better than the random forest model. On aver-
age, for all options with one week to maturity, the LSTM
outperforms the GARCH model with 0.75% in RMSE and
2.77%measured byMAE.Also, the LSTMperforms 11.07%
and 14.99% better than the random forest in terms of RMSE
and MAE, respectively. These findings show that the bench-
mark AR-GARCHmodel is not significantly poorer than the
LSTM model at shorter maturities, while the LSTM clearly
outperforms the random forest model. For the one-week
maturity, there is no significant difference between LSTM
and RF, according to the DM test.

In Figs. 8, 9 and 10, the forecasted values for the ATM
put option with one week to maturity are plotted against the
actual spot of implied volatility for the forecasting period for
LSTM, RF and benchmark GARCH, respectively.

5.3 Onemonth tomaturity

When time to maturity increases to one month, the results
fluctuate more. For the OTM and ATM put and call options
depicted in Table 5, the benchmark AR-GARCH model
seems to deliver the best forecasting accuracy of the three
models measured by RMSE. The LSTM performs equally
well for the OTM call option and beats the benchmark AR-
GARCH in terms of MAE for the OTM put option. In terms
of RMSE for all levels of moneyness, the benchmark AR-
GARCH model performs on average 0.78% better than the
LSTM model. However, the LSTM is, on average, 1.56%
more accurate measured by MAE. The benchmark AR-
GARCH model captures the outliers, i.e., significant sudden
changes in volatility, better than the LSTM model. Being
well equipped to capture volatility clustering and fat-tailed
returns, the AR-GARCH is a tough benchmark to beat, even
for the LSTM model. We note that the LSTM model outper-
forms both benchmark models in terms of RMSE and MAE
for OTM call options, i.e., options with a delta of 25 and
lower. Further, the RMSE and MAE are 4.97% and 10.82%
lower for the LSTMmodel than for the random forest model.
TheLSTMmodel outperforms the random forestmodelmore
often for call options than for put options.
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Fig. 8 Forecast results for LSTM model on ATM one-week to maturity option. Forecast results for LSTM model on ATM one-week to maturity
option plotted against the actual spot rate for the implied volatility

Fig. 9 Forecast results for RF model on ATM one-week to maturity option. Forecast results for random forest model on ATM one-week to maturity
option plotted against the actual spot rate for the implied volatility

According to the DM test, LSTM is significantly bet-
ter than the RF for OTM call options, but not significantly
better for ATM and OTM put options. The same results
apply comparing LSTM to the AR-GARCH model. LSTM
is significantly better for OTM call options, but there is no
significant difference for ATM and OTM put options. AR-
GARCH delivers significantly poorer forecasting accuracy

for ATM and OTM put options than RF, but there are no
significant differences in forecasting accuracy between these
models for OTM call options.

Figures 11, 12 and 13 plot the forecasted values of implied
volatility for ATM put options expiring in one month for the
LSTM, RF and AR-GARCH model. The plot shows that
the RF model has problems with the extensive shocks in
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Fig. 10 Forecast results for benchmark AR-GARCH model on ATM one-week to maturity option. Forecast results for the benchmark AR-GARCH
model on ATM one-week to maturity option plotted against the actual spot rate for the implied volatility

Fig. 11 Forecasting results for LSTM model on ATM one-month option. Forecast results for LSTM model on ATM one-month to maturity option
plotted against the actual spot rate for the implied volatility
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Fig. 12 Forecasting results for random forest model. Forecast results for random forest model on ATM one month to maturity option plotted against
the actual spot rate for the implied volatility

Fig. 13 Forecasting results for benchmark AR-GARCH model. Forecast results for AR-GARCH model on ATM one month to maturity option
plotted against the actual spot rate for the implied volatility
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implied volatility, especially around March 2020, when the
COVID-19 pandemic had its outbreak worldwide. The RF
overestimates the peaks from theCOVID-19 shocks,whereas
the LSTM model underestimates these shocks. All through
the test period, which stretches from the end of September
2018 to august 2021, the AR-GARCH fits the rapid changes
in implied volatility better than the machine learning mod-
els, especially around the extensive shocks, when implied
volatility rises significantly.

5.4 Longer maturities

For all options maturing in three months and beyond, the
simple benchmark AR(1)-GARCH(1,1) model proved supe-
rior to the more complicated machine learningmodels across
all moneyness levels. Due to non-stationarity at a 5% sig-
nificance level, first difference is applied to the time series
of all options maturing beyond three months. The bench-
mark AR(1)-GARCH(1,1) model performs better in terms
of forecasting accuracy than the LSTM model with increas-
ing maturity. At the same time, the Random Forest comes
closer to the LSTM with increasing maturity, measured in
average RMSE. However, LSTM still outperforms the ran-
dom forest for all moneyness levels except for a three-month
put option with a delta of five and a call option with a delta
of 35. On average, the difference in RMSE between the ran-
dom forest and LSTM declines from 11.07% for one-week
options to 2.80% for a one-year option. Measured in MAE,
the difference between these models is larger, varying from
the lowest for the three-month option at 8.24–14.99% for the
one-week option. Interestingly, the MSE increases between
the two models from 10.08% for the option maturing in
six months to 11.25% for the option maturing in one year,
while the difference in RMSE decreases. The DM test for
the longer maturities indicates no statistically significant dif-
ference between the forecasts. This result is expected as the
day-to-day changes in implied volatility decrease as maturity
increases.

5.5 Other findings

The distribution for the changes in implied volatility has
high peaks, fat tails and changes with time to maturity.
Regressing the benchmark AR(1)-GARCH(1,1) model in
sample, we assume that the residuals follow a normal distri-
bution. Performing the same regressions assuming Student’s
t-distributed errors, the averageRMSEdeclined by 1.36% for
one-week to maturity options. For options maturing in one
month, theStudent’s t-distributedmodel performs0.24%bet-
ter than the benchmark AR-GARCH model with normally
distributed errors. Apparently, the Student’s t-distribution
fits data with mean clustering and fat tails better than the

normal distribution. Our findings further indicate that the t-
distributed models fit the data better for shorter maturities.
The benchmark AR(1)-GARCH(1,1) model with normally
distributed errors is better than the t-distribution for the
first-order integrated options maturing in three months and
beyond. We further note that the in-sample goodness of fit
decreaseswithmaturity for theStudent’s t-distributedAR(1)-
GARCH(1,1) model compared to the normally distributed
AR(1)-GARCH(1,1) benchmark model.

In empirical forecasting applications the choice of fore-
cast evaluation metrics is an important consideration. As
extensively discussed by Hewamalage et al. [19], it is not
always clear what the appropriate evaluation metric is, as
this depends on the application. To accommodate this, we
compute both MSE, RMSE, MAE and MAPE, as presented
in Sect. 5. Overall, the main results are broadly consistent
across these metrics. In this study, we believe MSE is the
most appropriate evaluation metric since the machine learn-
ing models are trained using this loss function. We note
that scaling absolute forecast errors, as expressed by MAPE,
slightly shifts model preferences in favor of LSTM, while
retaining the main result that the AR-GARCHmodel is fully
up to par with this more complex machine learning model.

6 Conclusions and future research

The main objective of this study is to compare the predic-
tive power of LSTMmodels with that of Random Forest and
well-established time series models, for forecasting implied
volatility of currency options. All regressions are conducted
on daily observations of the spot rate of implied volatil-
ity for EUR/USD FX options. Volatility forecasts are of
interest to market participants for hedging and trading pur-
poses. Also, central banks need to have a view on exchange
rates, because changes in exchange rates impact inflation
in open economies. This is particularly true for small open
economies. To our knowledge, there are only a few prior
studies applying machine learning models to forecasting the
implied volatility of currency options (ref. Sect. 2 above).

We find that the AR-GARCH model outperforms the
LSTMmodel for longer maturities, and that the RF model is
the poorest overall forecaster. LSTM is the better model for
shorter maturities. Shorter maturity options are more volatile
than options with longer maturities. The LSTM seems to
capture rapid changes in implied volatility better than the
benchmark models, which is consistent with the findings in
the existing literature. The LSTM model is able to capture
immense and immediate changes in implied volatility, which
is important for hedging against significant shifts in FX rates.

Overall, the Random Forest model is a poorer forecaster
of implied volatility than the LSTM and AR-GARCHmodel
for all moneyness levels and time to maturity.
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Several multivariate empirical models have been explored
in the literature, such as VARs and VECMs. An extension to
this study could include examining Bayesian VARs, which
can be compared with machine learning approaches like
BNNs (Bayesian neural network), using implied volatility
of options with different maturity profiles and moneyness as
explanatory variables. The BNN had the best performance of
the ML methods examined in the so called M3 forecasting
competition conducted by Makridakis [25].

One might also take a deep learning approach to identify-
ing exogenous variables in prediction models for long-term
forecasts, similar to the PCA analysis of Papailias et al. [32].
The idea here is basing the deep learning algorithms on the
value-adding conditions of exogenous variables presented by
Bojer and Meldgaard [5], Makridakis [25].
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