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Abstract

In this thesis, we examine the performance of individual stocks from the Oslo stock

exchange (OSEBX) in comparison to the risk-free interest rate (NIBOR). The timeframe

is from January 1980 to March 2024, covering 976 unique stocks.

We find that the majority of stocks listed on the Oslo stock exchange generate lifetime

buy-and-hold returns lower than the lifetime return of risk-free investments. Further-

more, less than half of stocks listed generate lifetime buy-and-hold returns greater than

zero. The smaller companies generate the highest mean return and have the highest

positive skew of distribution, supporting the concept of a small-firm effect. We also find

that the net wealth creation is mainly consolidated to a few companies. The top 2%

wealth creating companies deliver the net gain equal to the entire Oslo stock market

since 1980, meaning the bottom 98% collectively generate wealth equal to the risk-free

interest rates.

As we increase the number of stocks and time horizon, in a value-weighted portfolio, we

find that their performance improves compared to the risk-free interest rate. Portfolios

consisting of forty randomly picked stocks (each month), with a lifetime (44 years)

buy-and-hold strategy, outperform the risk-free interest rate three out of four times.

Comparatively, single stock portfolios with the same time horizon, outperform the risk-

free rate only one out of five times.

The high performance of the stock market as a whole, compared to the relatively poor

performance of individual stocks, underline the importance of skewness and compound-

ing returns.
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Sammendrag

I denne avhandlingen undersøker vi utviklingen til enkeltaksjer fra Oslo Børs (OSEBX),

sammenlignet med den risikofrie renten (NIBOR). Tidsrammen er fra januar 1980 til

mars 2024, og dekker 976 unike aksjer.

Vi finner at majoriteten av aksjene som er notert p̊a Oslo Børs, genererer en levetids-

avkastning som er lavere enn avkastningen p̊a risikofrie investeringer. Videre er det

mindre enn halvparten av de børsnoterte aksjene som genererer en levetidsavkastning

større enn null. De mindre selskapene genererer den høyeste gjennomsnittlige avkast-

ningen og har den største positive skjevheten i fordelingen, noe som støtter konseptet

om en “small-firm effect”. Vi finner ogs̊a at netto verdiskaping i hovedsak er konsolid-

ert til et f̊atall selskaper. Topp 2% av selskapene som skaper mest formue, leverer en

nettogevinst som tilsvarer hele gevinsten til Oslo Børs siden 1980, noe som betyr at de

resterende 98% av selskapene, samlet sett genererer en formue tilsvarende den risikofrie

renten.

N̊ar vi øker antall aksjer og tidshorisonten i en verdivektet portefølje, finner vi at antall

avkastninger som sl̊ar den risikofrie renten øker. Porteføljer best̊aende av førti tilfeldig

valgte aksjer (hver m̊aned), med en livslang (44 år) kjøp-og-hold-strategi, gjør det

bedre enn den risikofrie renten tre av fire ganger. Til sammenligning oppn̊ar porteføljer,

best̊aende av enkeltaksjer med samme tidshorisont, høyere avkastning enn den risikofrie

renten kun én av fem ganger.

Den sterke utviklingen i aksjemarkedet som helhet, sammenlignet med den relativt

svake utviklingen i enkeltaksjer, understreker betydningen av skjevhet og sammensatt

avkastning.
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1 1.1 Background and Research Question

1 Introduction

1.1 Background and Research Question

Over the last decade, the proportion of private households investing in stocks and

funds has had an upwards trend (Brynestad et al. 2021). While an increasing number

of private individuals participate in the stock market, those investing into individual

common stocks often find themselves underperforming relative to the market (Wold

2022). The financial newspaper Dagens Næringsliv also reports that in 2023, only four

out of 62 actively managed mutual funds managed to perform above the Oslo stock

market index (Winther and Tallaksen 2024). Given these insights, it is important to

uncover which parameters actually affect the Norwegian stock market. Moreover, could

diversification possibly affect the opportunities for excess returns compared to the risk-

free interest rate and indices?

Comparisons to the risk-free interest rate may seem unnecessary, since data from 1980

to today shows that the Norwegian stock market as a whole has outperformed the risk-

free interest rate. Furthermore, it has been documented that well-diversified portfolios

also outperform the risk-free rate on an annual basis. (Ødegaard 2021) However, by

examining investments in individual stocks, the results may be completely different.

Bessembinder (2018) conducted a study in the US stock market, and found that the

majority of individual stocks actually underperform compared to the risk-free interest

rate (US 1-month Treasury bill). In his conclusion, Bessembinder states that the rea-

son why the market can beat the risk-free rate, while the majority of common stocks

underperform, is due to a large positive skewness in the distribution of stock returns.

In other words, a relatively small group of stocks contribute to the majority of the

excess return in the US stock market. We have chosen to base our thesis mainly on

Bessembinder’s study, examining whether these results are applicable for the Norwegian

stock market as well. We have therefore chosen the following research question for this

master’s thesis:

“Do Norwegian stocks outperform the risk-free rate?”
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2 Theory and Literature Review

In this chapter we introduce the theoretical framework for our thesis, with formulas

for stock returns, volatility, skewness and wealth creation. It also presents theory

regarding time interval, diversification, small-firm effect, changes in the stock market

and bootstrapping.

2.1 Stock Returns

Stock returns can be described as the gain or loss achieved by investing in a company

over a period of time. This return is often expressed as a percentage change, but can

also be shown as a change in monetary value or in logarithmic form. According to

Siddikee (2018), two methods are usually used to calculate equity returns; arithmetic

and logarithmic. As we do not need the additive effect of logarithmic returns, we will

mainly use arithmetic returns in this thesis. Disregarding any transaction costs, the

formula for arithmetic return is defined by

si
t = P i

t − P i
t−1

P i
t

= P i
t

P i
t−1

− 1, (2.1)

where si
t is the return of stock i in the time interval (t − 1, t), P i

t is the price of stock i

at time t, and P i
t−1 is the price of stock i at the previous time t − 1.

In this study, we use the last price of the month, adjusted for dividends, splits, and

other corporate actions, in order to calculate the stock returns. This adjusted price is

calculated by multiplying the multiplication factors for dividends and corporate actions

with the closing price, expressed as

Ai
t−1 = P i

t−1 ·
K∏

k=1
Ci

k ·
U∏

u=1
Li

u, (2.2)

where Ai
t−1 is the adjusted price for stock i at previous time t − 1, Ci

k is the adjustment

factor for corporate actions for stock i in the period between adjustments k, Li
u is the
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adjustment factor for dividends actions for stock i in the period between adjustments.1

Dividends are adjusted for as this is a payment to the investor and is therefore included

in the actual return an investor receives. Corporate actions such as splits are adjusted

for as they reduce the stock price by the split ratio and can therefore give a false

impression of the price development. For example, consider a case where the price

of one share was NOK 20 one month, but they increase the number of shares the

next month by a ratio of 2:1. The price would then be NOK 10 the next month,

assuming no growth. Using formula (2.1), the stock split would result in a return of

-50%, when in fact there has been no return at all. These adjustments are done for all

previous stages, which means that adjustments for dividends and corporate actions have

a retroactive effect. The adjusted price is therefore very different from the “actual” price

at the time of purchase and functions as a theoretical price better suited for calculating

historical returns. We see this suitability clearly in the case of Seabird, which had an

extraordinary high adjusted price of NOK 57.1 million at Initial Price Offering (IPO),

while the closing price at the same time was NOK 28.3. If we use the price and not

the adjusted price, Seabird’s lifetime return would have been -85.2%, while in reality -

adjusted for dividends, splits and other corporate actions - it has actually had a lifetime

return of -99.9%. As we are primarily basing our results on arithmetic returns, formula

(2.1) is therefore extended to include the adjustment factors for dividends and corporate

actions in formula (2.2), and is expressed as

ri
t = Ai

t

Ai
t−1

− 1, (2.3)

where ri
t is the arithmetic adjusted return for stock i in the time interval (t − 1, t).

2.2 Volatility

In order to calculate the skewness in the distribution of returns we first find the standard

deviation of the returns, also known as volatility. Volatility is defined by Daly (2008) as

1See “End of Day US Stock Prices” at https://data.nasdaq.com/databases/EOD#anchor-adjus
tment-overview and “Corporate Action Methodology” at https://www.lseg.com/content/dam
/ftse-russell/en_us/documents/methodology/corporate-actions-methodology.pdf for the
calculation of dividend and corporate adjusted multiplication factors.

https://data.nasdaq.com/databases/EOD#anchor-adjustment-overview
https://data.nasdaq.com/databases/EOD#anchor-adjustment-overview
https://www.lseg.com/content/dam/ftse-russell/en_us/documents/methodology/corporate-actions-methodology.pdf
https://www.lseg.com/content/dam/ftse-russell/en_us/documents/methodology/corporate-actions-methodology.pdf
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“the changeableness of the variable under consideration; the more the variable fluctuates

over a period of time, the more volatile the variable is said to be”. The volatility is

important to consider when analyzing returns in relation to risk. Daly further presents

the common measure of stock return volatility - abbreviated as the standard deviation

of returns -, shown as

σ =

√√√√ T∑
1

(Rt − R̄)2/(T − 1), (2.4)

where σ is the standard deviation of the sample returns Rt, R̄ is the sample mean

return, and T is the number of observations.

2.3 Skewness

In statistical and empirical analysis, the assumption of normal distribution is often

necessary in order to perform traditional parametric tests. Through large numbers of

observations, it is assumed that the median equals both the mode and the average of

given observations. When this is not the case, the distribution of the observations is

skewed, i.e. non-normal. Through their research on the behaviour of stock returns,

Yan and Han (2019) conclude that “...normal distribution is not suitable for modelling

distribution of stock returns”. When observations differ from normal distribution, we

can estimate the level of difference through a skewness test.

Skewness is described by D’Agostino and Belanger (1990) as nonnormality, and “non-

normality of a population can be described by values of its central moments differing

from the normal values”. Skewness can graphically be presented as in Figure 2.3.1:
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Figure 2.3.1: Sketch showing general position of mean, median and mode in a population,
from D’Agostino and Belanger (1990), pp. 317. Illustration of distribution with skewness√

β1: A,
√

β1 > 0; B,
√

β1 = 0; C,
√

β1 < 0.

Furthermore, D’Agostino and Belanger (1990) present the formula for skewness coeffi-

cient, expressed as

Skew =
√

β1 = E(X − µ)3

σ3 , (2.5)

where σ is the standard deviation - solved in formula (2.3) - µ is the mean, E is the

expected value operator. For normal distribution: Skew =
√

β1 = 0. When the total

observations hold a relatively small group of observations with high values, we find

a skewness similar to curve A in Figure (2.3.1) with a distribution tail towards the

high value observations. In these cases, the mean will be higher than the median.

When choosing single stock portfolios with high positive skewness in the stock return

observations, the mean returns may not be a good representation of expected returns.

2.4 Time Interval

A common phrase in financial investment is “Time in the market beats timing the mar-

ket - almost always.” (Fisher 2018). By simply increasing the time horizon of any

given portfolio, the expected volatility of stock returns in said portfolio are assumed to

be reduced and thereby a risk reduction is established. With a reduced level of risk,

the expected returns are assumed to increase. This concept of risk reduction is called

time diversification. However, according to Olsen and Khaki (1998): “Supporters of the

concept argue that risk decreases as investment horizon increases; detractors suggest
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that the concept is false on the face of it.” They state that the debate “stems from

the profession’s failure to accept a common definition of risk”, but argue that “time

diversification is consistent both theoretically and empirically with current conceptions

of risk and rationality.” Comparing investment horizons on U.S. stocks and U.S. T-bills,

Hansson and Persson (2000) argue that their results show gains from time diversifica-

tion: “The weights for stocks in an efficient portfolio were significantly larger for long

investment horizons than a one-year horizon”.

In the present thesis, we will therefore analyze the possible effects from time diversi-

fication through the same time intervals performed by Bessembinder (2018), which is

yearly, decade and lifetime.

2.5 Diversification

Lee, Lee, and Lee (2010) state that companies are risk aligned to their own sector, but

less so to other sectors. By increasing the number of stocks from different sectors in

a given portfolio, as long as cashflows are not perfectly correlated, a “smoothing or

diversification will take place”. Through the belief that companies generate expected

stock returns based on systematic (market) and unsystematic (firm-specific) factors,

the total security risk can be presented as

Total security risk = Systematic risk + Unsystematic risk. (2.6)

By that reasoning, as the number of stocks in a given portfolio increases, “the un-

systematic components tend to cancel each other as they are all residuals from the

relationship of security returns with the overall market return” (Lee, Lee, and Lee

2010). Graphically, we can then view the assumed process as shown in Figure 2.5.1:
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Figure 2.5.1: Connection between number of securities/stocks in an equal-weighted
portfolio and the risk/standard deviation of portfolio return, Figure provided by Lee, Lee,
and Lee (2010)

Statman (1987) presents, through the works of Elton and Gruber (1977), the reduction

in expected standard deviation (SD) of annual portfolio returns, when increasing the

number of stocks in an equal-weighted portfolio. In portfolios with only one stock, the

expected SD is at 49.236, whilst portfolios with one hundred stocks have much lower

levels of expected SD, at 19.686. Statman concludes that in order to consider the port-

folio well diversified with insignificant unsystematic risk, the portfolio should include

at least 30 stocks. This conclusion, Statman acknowledges, differs greatly from earlier

results arguing that the “benefits of diversification for stock portfolios are exhausted

when the number of stocks reaches 10 or 15” (Statman 1987). Even though expected

SD is reduced upon an increase in the number of stocks in a portfolio, it does not

necessarily imply a reduction in skewness as well. However, according to the findings of

Simkowitz and Beedles (2010), “raw portfolio skew decreases as the number of assets in

the portfolio increases”, which shows a tendency of reduced skewness following a stock

diversification.

In our thesis, we therefore include portfolios of Norwegian stocks in order to analyze

more than single stock performance. We will estimate portfolios comprising of one, five,

ten, twenty and forty stocks.
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2.6 Wealth Creation

Wealth creation is defined by Lepak, Smith, and Taylor (2007), expanding upon the

work of Bowman and Ambrosini (2000), as “the monetary amount realized at a certain

point in time, when then exchange of the new task, good, service or product takes place”.

Wealth creation will in our findings be assessed as the creation of wealth as the market

capitalization of a given company changes from its listing date on the Norwegian stock

exchange. In reality, if all stocks were to be sold simultaneously, a significant portion

of the perceived value would disappear, assuming a lack of potential buyers. Such a

scenario is considered unlikely and our thesis will therefore defer from any judgments

as to whether or not the stated market capitalization of a company represents its true

worth.

Finally, given the opportunity that any investment can be put into risk-free interest rate

with a guaranteed given return, the real wealth creation is considered as the change in

market capitalization beyond what would be achieved with an investment into risk-free

rate, shown as

W j
t,T = M j

T − (M j
t · Rft,T ), (2.8)

where W j
t,T is the net wealth creation for company j in the period (t, T ), M j

T is the

market capitalization for company j at final time T , M j
t is market capitalization for

company j at first time t, and Rft,T is the risk-free interest rate obtained in the period

(t, T ). It should be noted that in the present thesis, formula (2.8) will not include any

accumulated market wealth prior to our first time period, i.e. January 1980.

2.7 Small-Firm Effect

A commonly used estimation tool of a company’s value is the capital asset pricing model

(CAPM). Developing upon the model, Fama and French (2013) introduced the impor-

tance of firm size through the Five-Factor Asset Pricing Model (FFAPM). However,

this model carries one significant flaw. Banz (1981) found through his analysis of the
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American stock market, from 1936 to 1980, significantly higher risk-adjusted returns in

smaller firms compared to larger firms. These findings challenge the standard FFAPM

estimations, and has later been coined as the small-firm-effect (SFE). Banz concludes

the possible reason for high risk-adjusted returns in small capitalization firms could be

related to the lower level of detailed company information published. To a risk-averse

investor, the lack of information about a company might increase the perceived risk.

Booth and Smith (1987) tested the relation between the small-firm effect and skewness

preference in investors. Their findings indicate that the “small-firm effect cannot be

fully attributed to tax effects, benchmark error, or incorrect assumptions of the CAPM

about investor risk aversion”, somewhat supporting Banz’ theory.

2.8 Changes in the Stock Market

Fama and French (2004) observed the development of characteristics in new listings at

the American stock market from 1980 to 2001. They observed an upwards trend in the

number newly listed stocks each year towards 2001. Furthermore, they also observed

that among the newly listed stocks in the period 1980-2001, the “profitability becomes

progressively more left skewed, and growth becomes more right skewed.” (Fama and

French 2004). According to Fama and French, the changes of priority from profitability

to growth for companies at the beginning of their listing significantly reduces the sur-

vival rates of new listings. As growth increasingly becomes the focus, they also found

that a larger portion of new listings were smaller companies.

Building upon Fama and French, Fink et al. (2010) studied the volatility in the average

public firm during the Internet boom, and note that “the spike in firm-specific risk in

the late 1990s can be explained by the interaction of 2 reinforcing factors: a dramatic

increase in the number of new listings, and a simultaneous decline in the age of the firm

at initial public offering (IPO)”.
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2.9 Bootstrapping

Bessembinder (2018) utilized bootstrapping in his analysis of expected stock perfor-

mance in the American stock market. Mooney and Duval (1993) defined bootstrapping

as a “computationally intensive, nonparametric technique for making probability-based

inferences”. The inferences are made about a population characteristic, θ, based on

an estimator, θ̂, using a sample drawn from that population. The difference between

bootstrapping and traditional parametric approaches is that bootstrapping “... employs

large numbers of repetitive computations to estimate the shape of a statistics’ sampling

distribution ... This allows the researcher to make inferences in cases where such ana-

lytic solutions are unavailable, and where such assumptions are untenable.” (Mooney

and Duval 1993).

In the present thesis, given Bessembinder (2018)’s findings, we expect to not be able

to utilize the normal distribution assumption which is necessary to proceed with tradi-

tional parametric approaches. However, by using bootstrapping, we can make certain

inferences given the sampling distribution estimated through repetitive computation,

in this case 20,000 simulations. The practical process of bootstrapping will be further

discussed in section 3.3.
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3 Methodology

In this chapter we introduce the quantitative methodology applied to investigate if

Norwegian individual common stocks outperform the risk-free interest rate. In addition

to extending the formulas from Chapter 2 to annual, decade and lifetime horizons, we

also present a stochastic process to create portfolios of various sizes.

3.1 Buy-and-Hold Strategy

The returns on which this thesis is based are derived from monthly adjusted stock

prices. In this respect, monthly returns will be the buy-and-hold return if one examines

the dataset with a monthly time horizon. For periods longer than one month, these

returns must be linked together so that they are representative of the time period. The

linking is done by extending formula (2.3) to a geometric formula that multiplies 1 +

the returns, and is expressed as

Ri
t,T = (1 + ri

t) · (1 + ri
t+1) · ... · (1 + ri

T ) − 1, (3.1)

where Ri
t,T is the buy-and-hold return for stock i in the time interval (t, T ), and ri

t

is the monthly return for stock i at time t. This form of composition includes the

compounding effect that would be achieved by passively investing in a share over a

longer period. In essence, the buy-and-hold return simulates an investor who buys a

share at the start of a period and - given that the stockbroker reinvests the dividends

received by the investor, - remains completely passive. As the investor is forced to hold

the stock for the agreed upon time period, any attempts to time the market within the

period is therefore not possible.

In addition to calculating total buy-and-hold returns for the stocks, we have also - in

accordance with Bessembinder (2018) - calculate the simple summed returns for its

indicative qualities. The simple sum of returns works as an indicator of whether or not
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the mean buy-and-hold return is positive, and is expressed as

Si
t,T =

T∑
t=1

ri
t, (3.2)

where Si
t,T is the simple summed return for stock i in the time interval (t, T ).

Next, we calculate the geometric mean of monthly returns, which works as an indicator

for the centralization of our buy-and-hold returns. Skewness is a major part of the

estimations in the present thesis, and it is therefore crucial to have an indicator which

more accurately displays the centralization when skewness is high. The mean geometric

return works better for centralization compared to the mean buy-and-hold return since

it is not affected by extreme values to the same extent. This sturdiness comes from

the fact that the T -th root of the buy-and-hold return is used, which compacts the

exponential effect that compounding returns possess. The formula for geometric mean

is expressed as

Gi
t,T = T

√
(1 + ri

t) · (1 + ri
t+1) · ... · (1 + ri

T ) − 1 = T

√
1 + Ri

t,T − 1, (3.3)

where Gi
t,T is the geometric mean monthly return for stock i in the time interval (t, T ).

As well as providing us with a measurement for centralization, the formula serves a

second purpose. As we will later discuss in section 4.1, obtaining the geometric mean

monthly return for stocks that delist for a shorter period of time - instead of the total

return for the delisting period -, is crucial for the construction of market indices, as

well as the bootstrap simulations we perform.

Finally, we calculate the annualized return of each stock. The annualized return rep-

resents what the annual average return of a stock is over a specific period, which in

terms of our scope of interest will be applied to the lifetime buy-and-hold returns. This

calculation is performed because the stocks in the dataset have varying lifetimes, and

when comparing stock performances we need a return that makes the basis of compar-

ison fair. Since our returns are listed in monthly intervals, the formula for annualized
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return can - for our purposes - be expressed as

Y i
t,T = (1 + Ri

t,T ) 12
T − 1, (3.4)

where Y i
t,T is the annualized return for stock i in the time interval (t, T ).

3.2 Equal-Weighted and Value-Weighted Market Indices

An index measures the return of a certain number of stocks using standardized met-

rics and methodology. They often involve all the stocks of certain categories, such as

the S&P 500, which is a value-weighted index measuring the performance of the 500

highest capitalized American companies. In our thesis, we measure the Oslo stock mar-

ket through both equal-weighted (EW) and value-weighted (VW) indices, calculated

through the formulas

EWt =
I∑

i=1
( ri

t

Nt−1
), (3.6)

and

V Wt =
I∑

i=1
(ri

t ·
M i

t−1
TMt−1

), (3.7)

where EWt is the equal-weighted index at time t, ri
t is the monthly return of stock i at

time t, Nt−1 is the total number of stocks listed at time t−1, V Wt is the value-weighted

index at time t, M i
t is the market capitalization of stock i at time t − 1, and TMt−1 is

the total market capitalization of all the stocks listed at time t − 1. In essence, these

formulas construct market indices where the weighting is rebalanced as soon as current

months number of listed stocks and their respective market capitalization is known. In

order to link these market indices over the same period as the stocks’ buy-and-hold

returns, we use formula (3.1).
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3.3 Bootstrapping

Bessembinder (2018) describes the method by which his results have been obtained,

which we present through a simplified example in Table 3.3.1. As stated in the theory

section, a bootstrap simulation infers results from a given sample by repeating stochas-

tic simulations/tests, with replacement. In more practical terms, each month we draw

x number of random stock returns, weigh them based on their corresponding market

capitalization, and store the value-weighted portfolio return. In our example, we have

five simulations. We also have the risk-free interest rate, Rf , and the value-weighted

index, V W , which both hold returns equal to the ones calculated outside of the sim-

ulations. Furthermore, in the example we have four time periods, where to each time

period in the simulation there is a corresponding portfolio return.

Table 3.3.1: Example of bootstrap results where Sim.1 is the first simulation, Rf is the
risk-free interest rate and V W is the value-weighted index.

Sim.1 Sim.2 Sim.3 Sim.4 Sim.5 Rf VW
Period 1 0.2 0.3 0.5 0.7 0.9 0.2 0.3
Period 2 -0.4 0.5 0.4 0.6 0.4 0.4 0.5
Period 3 0.6 -0.7 0.1 0.9 -0.4 0.2 0.9
Period 4 0.8 0.9 0.2 0 -0.5 0.4 0.8
Total return 1.2 1.0 1.2 2.2 0.4 1.2 2.5
Mean return 0.3 0.25 0.3 0.55 0.1 0.3 0.625

3.3.1 Returns

At the crosspoint of simulation 1 and period 1, we find in this example, a return of

0.2, i.e. 20%. This represents the portfolio return for period 1 in simulation 1. The

portfolio is weighted to the stocks’ market capitalization from the previous period. All

stocks have their market capitalization divided by the total market capitalization of all

the stocks in the portfolio. The return is calculated as presented in formula (2.3). Each

simulation then sums up its respective returns, such as simulation 1 which has a return

of 1.2, i.e. 120%. That total return is then divided by the number of periods, in our

example four, which gives an average period return to simulation 1, as 0.3, i.e. 30%.
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We then report the average return for all 20,000 simulations by calculating the mean

of all the simulated mean returns, in our case: (0.3 + 0.25 + 0.3 + 0.55 + 0.1)/5 = 0.3 →

30%.

3.3.2 Median and skewness

Similarly to the final stage of calculating returns, we obtain median and skewness

through the mean return row. In our example, this gives us a median of 0.1, 0.25, 0.3, 0.3, 0.55 →

30%, and a skewness - through formula (2.5) - of: 0.4929. This means we would see a

positively skewed distribution as its larger than zero, similar to curve A in Figure 2.3.1.

3.3.3 Positive returns, risk-free interest and value weighted index

In the analysis section, we will present the percentage of portfolios that have returns

above zero, the risk-free rate, and the value-weighted index. Let us assume each period

in Table 3.3.1 is yearly and the total number of years in the dataset are included. The

total number of observations are therefore 20 (four periods times five simulations). The

calculation of the percentage of returns that outperform the benchmarks is therefore

performed as follows:

1. For each period (rows), the five observations, one for each simulation, are individ-

ually compared to zero, risk-free rate and value-weighted index. We compare for each

period, as the stocks returns, risk-free rate, and the value-weighted index have their own

periodically unique return. In our example, period 1 therefore gives us a % > 0 equal

to 100%, % > rf equal to 80%, and % > VW equal to 60% (equal to the benchmark

does not count). We then proceed to compare the returns for the next periods.

2. We average the ratios found in step 1, across all the simulations. In our example

this will result in a % > 0 equal to (1 + 0.8 + 0.6 + 0.8)/4 = 80%, % > rf equal to

(0.8 + 0.4 + 0.4 + 0.4)/4 = 50%, and % > VW equal to (0.6 + 0.2 + 0 + 0.2)/4 = 25%,

across all the simulations.
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3.3.4 Yearly, decade, lifetime

As argued by Olsen and Khaki (1998), time diversification is an important aspect to

reduce risk and acquiring higher average returns. We therefore collapse the monthly

stock returns, risk-free rate, and value-weighted index into yearly, decade and lifetime

buy-and-hold returns using formula (3.1). Looking at Table 3.3.1, assuming each period

is one decade, we find the average portfolio decade return in the same procedure as in

section 3.3.1. Likewise, the calculations comparing % > 0, % > Rf , and % > VW are

calculated as in section 3.3.3.

3.3.5 1, 5, 10, 20, 40 stock portfolios

As argued by Lee, Lee, and Lee (2010), the number of stocks in a given portfolio reduce

the level of unsystematic risk through diversification. In order too see if the same

results apply to our dataset, we performa bootstrap of 20,000 simulations for each level

of portfolio size, 1, 5, 10, 20, and 40 stocks. As described in section 3.3.1, we weigh

the returns based on the corresponding market capitalization in the period prior to the

return has been received. We then proceed to sum the weighted returns within the

period, in order to obtain the value-weighted return for the portfolio, in that period.

Once the value-weighted portfolio return is obtain, we follow the steps in sections 3.3.1

and 3.3.3, in order to observe the effects of diversification.

3.4 Composition of the Dataset

In the following tables, we illustrate the composition of data regarding a single stock;

RGI Antilles. Table 3.4.1 shows the monthly matching of returns with the risk-free

interest rate, value-weighted and equal-weighted indices. Using formula (3.1), we link

the monthly returns and the corresponding benchmarks to annual, decade and lifetime

horizons, as shown in Table 3.4.2. As the time horizon of RGI Antilles extends over

two calendar years, the table shows two annual buy-and-hold returns; one for 1996 and

one for 1997. Furthermore, since the lifespan of RGI Antilles does not extend over
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two whole decades, the decade buy-and-hold return is equal to the lifetime one. As

the benchmarks are linked using the same formula, the annual, decade and lifetime

benchmarks only have observations in the same period as the buy-and-hold return.

Table 3.4.1: The table shows the composition of the monthly data for RGI (Antilles),
matched with the risk-free rate, value-weighted and equal-weighted index at the same period.

RGI
(ANTILLES)
Date Adjusted

price
Monthly
return

Marketcapitalization Monthly
interest

Monthly
VW index

Monthly
EW index

1996-07-31 67 4,520*
1996-08-30 63 -0.0597 4,250* 0.0042 0.0328 0.0315
1996-09-30 66 0.0476 4,452* 0.0043 0.0199 0.0075
1996-10-31 61.5 -0.0682 4,149* 0.0042 0.0358 0.0604
1996-11-29 66 0.0732 4,452* 0.0037 0.0717 0.0856
1996-12-30 65 -0.0152 4,456* 0.0035 0.0446 0.0326
1997-01-27 75.5 0.1615 5,175* 0.0029 0.0967 0.1347

* represents number in millions

Table 3.4.2: The table shows the composition of monthly data for RGI (Antilles), linked to
annual, decade and lifetime horizons.

RGI
(ANTILLES)
Variable 1996-08-30 1996-09-30 1996-10-31 1996-11-29 1996-12-30 1997-01-27
Cumulativereturn -0.0597 -0.0149 -0.0821 -0.0149 -0.0299 0.1269
Annual
return

-0.0299 0.1615
Decade
return

0.1269
Lifetime
return

0.1269
Cumulative
interest

0.0042 0.0085 0.0128 0.0165 0.0201 0.0231
Annual
interest

0.0201 0.0029
Decade
interest

0.0231
Lifetime
interest

0.0231
Cumulative
VW index

0.0328 0.0528 0.0905 0.1688 0.2209 0.3391

Annual
VW index

0.2209 0.0967

Decade
VW index

0.3391

Lifetime
VW index

0.3391

Cumulative
EW index

0.0315 0.0393 0.1020 0.1964 0.2355 0.4018

Annual
EW index

0.2355 0.1347

Decade
EW index

0.4018

Lifetime
EW index

0.4018
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4 Data

The data for this thesis is obtained from the TITLON database. The database is

a charity project run primarily by Professor Espen Sirnes, through the University of

Tromsø, and contains many different types of assets listed on the Norwegian stock

market. When we first started the project, the database was limited to the time period

1980-2020, as OSEBX was acquired by Euronext in 2020, and access to data was limited.

Fortunately, TITLON entered into a partnership with Euronext at the turn of 2023-

2024, making data available right up to the time of writing. TITLON was chosen as our

source of data as it is the database - we have access to - with the longest observational

period, as well as a broad range of variables.

4.1 Filtering Process

With the implementation of four years of data, collected from the very beginning, it is

natural that it contains some errors in certain variables. For this reason, we have filtered

the dataset to the best of our knowledge in order to ensure that it is representative of

the Norwegian stock market.

Initially, we started with a dataset consisting of daily observations of 1,053 stocks. In

order to match the reporting to the risk-free interest rate as closely as possible, the

dataset was converted to show the last recorded price of the month. Furthermore, we

removed the stocks that either had no market capitalization, or market capitalization

that was set to 0. This was done since market capitalization is a requirement for some of

the analyses that will be performed later in the thesis. The lack of market value was due

to the fact that the number of outstanding shares was not stated, and this applied to 56

stocks. Furthermore, we excluded eight stocks that only had one monthly observation.

This was done because, according to formula (2.1), at least two observations of adjusted

price is required to calculate a monthly return. Furthermore, we excluded seven assets

that were classified as ETFs. ETFs are Exchange Traded Funds and are portfolios

consisting of more than one single stock, which is not what we wish to analyze in this

thesis.
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When sorting the dataset by monthly return, we found some abnormally high returns,

i.e. Gambit with an apparent monthly return of 66.64 or 6,664%. We then discovered

that some shares were delisted from the stock exchange and relisted a period later with

the same International Securities Identification Number (ISIN). To adjust for this, we

used formula (3.3) for stocks that were delisted for less than or equal to six months in

order to obtain the geometric mean monthly return for the period they were delisted.

We then added observations in the delisting period containing the geometric mean

monthly return, as well as the average development in market capitalization. Adding

these observations ensured that the weighting of market indices were rebalanced cor-

rectly in accordance with our monthly intervals. In addition to correcting the weighting

of market indices, this approach also ensured that the bootstrap simulations exclusively

picked monthly returns. Picking a buy-and-hold return for the whole delisting period

would simulate an investor who held the same stock for more than one month, when

the purpose of bootstrapping is to pick a random stock each month. For stocks that

were delisted for longer than six months before relisting, we set the monthly return

equal to missing for the first observation after relisting.2 This approach for dealing

with periodic delisting corrected the majority of the abnormally high returns we found,

but there were still some we considered very high. We set a limit of 600% monthly

return, where all stocks with higher returns than this were thoroughly checked against

other databases, such as Eikon Datastream, Yahoo Finance, Google Finance and Nord-

net. When crossreferencing with these other databases, we found nine stocks that had

significantly different returns from our dataset. After a conversation with Professor

Espen Sirnes, we found that five of these returns were the result of a comma error in

the adjusted price towards the end of the stocks’ life, and were thus corrected. The

remaining four; “Crew Gold Corporation”, “Crew Gold Corporation New Shares”, “Ny-

dalens Compagnie B” and “Wentworth Resources” were excluded from the dataset, as

their high returns could not be verified in other databases.

Finally, we found that most of the stocks imported from Euronext (2020-2024) had a
2We set the limit at six months as it may be realistic that missing observations could be due to an
error on the part of the database. For stocks with a delisting period longer than six months, it is
considered that the stock was completely delisted, the shareholders received the delisting price and
lost their shares in the company. In other words, no return is achieved during the period the share is
delisted for longer than six months.
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missing company-id. Fortunately, TITLON provided an internal code for these compa-

nies that referred to the correct company at an earlier date, where a company-id was

present. By using the code in the Appendix, we were able to link company-id together

for all companies that had observations before 2020. The remaining companies that

were listed for the first time in the period 2020-2024 and lacked company-id, we set the

company-id equal to the internal code so that they were identified by a unique id.

Filtering the data as explained above, provided us with a final dataset consisting of 976

stocks, which is the data basis for this present thesis. Figure 4.1.1 shows the historical

development of the number of stocks in our dataset from January 1980 to March 2024.

The lowest amount was in August 1980 with 36 unique stocks. Interestingly, during

the Covid-19 pandemic, the number of stocks listed was actually growing, and in fact

skyrocketed at the beginning of 2021. The growth reached an all-time peak in April

2022 with 350 unique stocks listed in the same month. Throughout the lifespan of our

dataset, we have an average of 213 stocks listed every month.

Figure 4.1.1: The graph shows the historical development of total number of unique stocks
in our filtered dataset from January 1980 to March 2024.
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4.2 Descriptive Statistics

Table 4.2.1 shows the monthly descriptive statistics on which our thesis is based. All

numbers are so-called “nominal”, as they are not adjusted for inflation or transaction

costs. Adjusted price, which is our basis for monthly returns, include some extreme

values, as mentioned in section 2.1, as the price is adjusted for dividends and other

corporate actions, most noteworthy; stock splits. The largest value of NOK 57.9 million

comes from Seabird Exploration in June 2007. This is because the company carried

out reverse splits many times through its lifetime, which has kept the closing price

somewhat more stable, while the market value declined, due to a lower number of

outstanding shares. Seabird is also the biggest contributor to why the mean adjusted

price is so high, as by removing the stock, the average adjusted price goes from NOK

18,341 to 6,110, while the median remains approximately the same.

Furthermore, as shown in Table 4.2.1, the number of observations of risk-free rate,

value-weighted, and equal-weighted indices are reduced to the number of observations

of the monthly return. In other words, we have removed the observations of the risk-

free interest rate, value-weighted, and equal-weighted market indices if it is the first

observation of a stock, as it has not yet had the opportunity to earn a monthly return.

As mentioned in section 4.1, this also applies to stocks that are delisted, and then

relisted with the same ISIN more than six months later. Matching the number of

observations in this way prevents the comparison of a non-existent return with the

benchmarks, as even though it only applies to 0.96% of our dataset, it may corrupt our

results.
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Table 4.2.1: The table shows the descriptive statistics for the stocks used in this thesis.
All numbers are reported as monthly observations. rf is the risk-free rate, EW is the
equal-weighted market index and VW is the value-weighted market index. Certain variables
are rounded to four decimals for visual clarity. Price and adjusted price are in NOK.

Variable N Mean SD Min Median Max
Price 99,152 110.14 409.91 0.0005 45 25,000
Adjusted price 101,453 18,341.82 682,070.2 0.0005 26.44 57.90*
Market capitalization 101,453 5,820* 29,200* 23.43 747* 1,220,000*
Monthly return 100,477 0.0106 0.1785 -0.9937 0 8.2000
Monthly rf 100,477 0.0041 0.0033 0.0002 0.0032 0.0143
Monthly VW index 100,477 0.0082 0.0577 -0.2387 0.0135 0.2383
Monthly EW index 100,477 0.0103 0.0584 -0.2178 0.0109 0.1937

* represents number in millions

4.3 Risk-Free Interest Rate

Risk-free interest generally refers to the interest rate that can be achieved by tying

up capital in an asset without exposure to risk factors. We know from the financial

crisis in the US in 2008 that even the banks’ interest rates are not always risk-free in

practice. However, the general notion in economic theory is that interest rates obtained

from certain government bonds, treasury bills, or bank products can - for theoretical

purposes - be regarded as risk-free. In line with Ødegaard (2021), we choose to use

NIBOR 3-month as our risk-free interest rate. This is because we have a dataset with

monthly observations, and NIBOR is the closest we come to matching our observation

horizon. The alternative - government bonds - are only issued with a maturity of at least

one year. NIBOR is an acronym for Norwegian Interbank Offered Rate and is essentially

an indication of the money market rate at which banks are willing to lend Norwegian

kroner to other reliable banks without providing any form of collateral. NIBOR was

first introduced at the beginning of 1986, and finding a risk-free rate before this time

can be somewhat tricky. We choose to use the Interbank Overnight (O/N) rate from

1980 to 1986, obtained from Norges Bank (Norges Bank 2019). Data from Norges Bank

on Interbank O/N and NIBOR 3-month extends to 2013, and the remaining data on

NIBOR 3-month is obtained from Statistics Norway (SSB 2024).

Figure 4.3.1 shows the historical development of our risk-free interest rate from January

1980 to March 2024. The graph shows a declining trend until the Covid-19 pandemic,
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with some large spikes in the 80s, and one in 1992 that was due to a fixed exchange rate

policy from 1986 that “cracked” in 1992 and led to a currency crisis (Gjedrem 1999).

In the wake of the Covid-19 pandemic, we see that interest rates are rising at a drastic

rate, as a result of the level of inflation brought about by the low “pandemic interest

rate”.

Figure 4.3.1: The graph shows the historical development of the monthly risk-free rate
from January 1980 to March 2024.

4.4 Market Indices

In addition to comparing individual stock returns with the risk-free interest rate, we

also compare with market indices also known as market portfolios, consisting of all

the stocks in the dataset. As mentioned in section 2.5, well-diversified portfolios, i.e.

portfolios consisting of many stocks, will reduce the unsystematic risk. As these are

indices that consists of the entire dataset, the total risk will be approximately equal to

the systematic risk. Even though - unlike risk-free interest rates - they carry some risk,

the lack of unsystematic risk makes them natural assets to compare with.

When calculating the value-weighted market index, the previous months market value

of a stock is used, and compared with the total market value of all the stocks in the

same period, in order to obtain the weighting. The weighting determines how much
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of the portfolio should be invested in a specific stock. For example, throughout its

lifetime, Equinor has had a market value that corresponds to approximately 20% of

the entire market at any given time. This means that approximately 20% of the return

of the value-weighted market index consists of Equinor’s return each month. For the

equal-weighted market index, all stocks - regardless of size - receive an equal weighting

based on previous months total number of stocks.

Figure 4.4.1: The graph shows the historical development of buy-and-hold returns of
equal-weighted and value-weighted indices from January 1980 to March 2024.

Figure 4.4.1 shows the development of the equal-weighted and value-weighted market

indices from January 1980 to March 2024. The figure shows that the equal-weighted

index rapidly overtook the value-weighted one, and from that point on, the spread

in performance has holistically grown larger. A possible explanation for these widely

different developments could be the small-firm effect as explained in section 2.7. When

comparing our market indices with the ones Swade et al. (2023) utilized using CRSP

for the American stock market, we find that our results, both in descriptive statistics

as well as the graphed developments, correspond well. However, it should be noted

that when comparing with Ødegaard (2021) and Kristiansen (2019), we see that our

market indices are quite different. These differences may be due to a different approach



25 4.4 Market Indices

in data filtering, frequency of rebalancing, as well as a different data basis, as we know

Ødegaard retrieved his data directly from Oslo Børs Information when this was still

possible.
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5 Analysis

5.1 Distribution of Buy-and-Hold Returns

In this section, we analyze the actual buy-and-hold returns from our dataset with

different time horizons. If a stock is delisted prematurely, the returns are calculated

to the last appearance. Moreover, the risk-free interest rate, value-weighted and equal-

weighted indices are also only calculated to the stock’s last appearance. This ensures

that the basis for comparison is the same; for example, it would be wrong to compare

the return of a stock that only lives for seven months, with a risk-free rate over an entire

calendar year. For each time horizon greater than one month, the buy-and-hold returns

are linked using formula (3.1). This simulates an investor who remains completely

passive after the initial purchase (assumes dividends is reinvested by the broker). We

thus do not take into account speculative positions where the investor makes changes to

the investment based on news or similar factors. Furthermore, as explained in section

3.1, summed and geometric returns are also calculated, using formulas (3.2) and (3.3)

respectively.
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Table 5.1.1: The entire dataset, all stocks from January 1980 to March 2024 are included.
Annual refers to calendar year. Decade refers to non-overlapping whole decades. Lifetime
refers to the stocks first to last appearance. If the stock is delisted prematurely to the
horizon, the return is calculated to the stocks delisting date. The risk-free rate, equal
weighted and value weighted index is matched to each stocks return, for all time periods. rf
is the risk-free rate. SD is the standard deviation. EW is the equal weighted index. VW is
the value weighted index. Certain variables are rounded to four decimals for visual clarity.

Panel A: Individual stocks, monthly horizon (N=100,477):

Variable Mean Median SD Skewness %>0
Buy-and-hold return, rf: 0.0041 0.0032 0,0033 0.9941 100.0%
Buy-and-hold return, stocks: 0.0106 0.0000 0.1785 5.3451 47.3%

%>rf %>VW index %>EW index
Buy-and-hold return, stocks: 46.6% 46.3% 45.7%

Panel B: Individual stocks, annual horizon (N=9,526):

Variable Mean Median SD Skewness %>0
Sum return: 0.1072 0.0837 0.6457 0.9586 59.4%
Buy-and-hold return, rf: 0.0453 0.0294 0.0398 1.1864 100.0%
Buy-and-hold return, stocks: 0.1554 0.0292 0.8265 7.0165 53.6%
Geometric return, stocks: -0.0021 0.0032 0.0677 -0.5895 53.7%

%>rf %>VW index %>EW index
Buy-and-hold return, stocks: 48.9% 44.8% 42.4%

Panel C: Individual stocks, decade horizon (N=1,793):

Variable Mean Median SD Skewness %>0
Sum return: 0.5695 0.4779 1.4833 0.2424 70.6%
Buy-and-hold return, rf: 0.3148 0.1357 0.4626 2.8252 100.0%
Buy-and-hold return, stocks: 1.1813 0.0717 5.5153 11.7434 53.7%
Geometric return, stocks: -0.0062 0.0019 0.0471 -1.8142 53.7%

%>rf %>VW index %>EW index
Buy-and-hold return, stocks: 46.8% 40.5% 35.9%

Panel D: Individual stocks, lifetime horizon (N=976):

Variable Mean Median SD Skewness %>0
Sum return: 1.0441 0.6942 2.2582 0.6617 70.8%
Buy-and-hold return, rf: 0.8803 0.2155 1.8675 4.0977 100.0%
Buy-and-hold return, stocks: 7.8011 -0.0009 65.01261 15.7175 49.8%
Geometric return, stocks: -0.0091 -0.0001 0.0435 -0.5645 49.8%

%>rf %>VW index %>EW index
Buy-and-hold return, stocks: 43.0% 34.7% 29.4%
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5.1.1 Monthly Returns

Panel A of Table 5.1.1 shows the summary of monthly observations across our dataset.

The results show the overall distribution of returns, thus taking both time series and

cross-section into account simultaneously. We see that the average return is 1.06%,

while the average risk-free rate is 0.41% on a monthly basis. This means that, overall,

an average excess monthly return of 0.65% is achieved by investing in the stock market

compared to the risk-free rate. As mentioned in section 2.2, volatility is a term for risk,

and is often expressed as the standard deviation, i.e. the variation from the average.

In the panel, it we see that individual stocks carry a far greater variation with 17.85%

in standard deviation, compared to 0.32% for the risk-free interest rate. From Table

4.2.1 we also see that the monthly equal-weighted and value-weighted market indices

have 5.84% and 5.77% standard deviation, respectively.

Furthermore, panel A shows that with a monthly time horizon, individual stocks out-

perform the risk-free interest rate only 46.6% of the time, the value-weighted index

46.3% of the time, and finally the equal-weighted market index 45.7% of the time. This

is firstly supported by the median, which for the returns is equal to 0, while they are

all positive for the risk-free rate, value-weighted and equal-weighted market indices.

However, it should be noted that looking at the median of the equal-weighted and

value-weighted market indices is not as important, as these indices - unlike risk-free

interest rates - can, and have produced negative returns. Furthermore, the explanation

for why individual stocks underperform compared to risk-free interest rates is partially

found when looking at the number of returns that produce positive results. Monthly

individual stocks have a greater tendency to produce negative returns, as only 47.3%

of all returns are positive. This essentially means that of the returns that are actually

positive, only 0.7% are lower than the risk-free rate.

So, with individual monthly returns that are predominantly negative and underper-

forming compared to the risk-free rate, how can the average return be outperforming?

As shown in Figure 2.3.1, skewness denotes the symmetry of distribution in a dataset.

With a normal distribution, the mean will be equal or close to the median. What is

considered a high skewness varies depending on the type of dataset, but also among
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different researchers. Nevertheless, according to Byrne (2013) and Hair et al. (2010), a

very liberal interval for skewness coefficients in a normally distributed univariate analy-

ses is between -2 and +2. Since the average monthly return is far above the median, we

assume a high positive skewness, which is verified as we calculate a skewness coefficient

of 5.35 for the monthly returns. This high positive skewness suggests that the majority

of monthly returns are below and around the median, while it has a long tail, which

indicates that there is a minority of stocks producing “extreme returns”. This supports

Bessembinder (2018)’s claim that a minority of stocks is what ensures that the market

as a whole outperforms the risk-free interest rate.

5.1.2 Annual Returns

Panel B in Table 5.1.1 displays the summary of annual buy-and-hold returns across

our dataset. For each stock, we have calculated the sum return, geometric return and

buy-and-hold return. All returns, including risk-free interest rate, value-weighted and

equal-weighted indices, are all calculated for whole calendar years, i.e. January 31st

to December 31st, or to the last observation date if a stock is prematurely delisted.

By looking at the panel we see that annual buy-and-hold returns for stocks have an

average of 15.54%. In comparison, the risk-free rate has an average buy-and-hold return

of 4.53%, which corresponds to an average excess return of 11.01% when investing in

stocks. Although a high excess return is achieved on average, only 48.9% of individual

annual returns actually outperform the risk-free interest rate. This is reflected in the

high standard deviation of 82.65%, as well as the skewness with a coefficient of 7.02.

Compared to the value-weighted and equal-weighted indices, the results are even worse,

as only 44.8% outperform the value-weighted index and 42.4% outperform the equal-

weighted index.

In contrast to the monthly horizon, the majority of annual buy-and-hold returns are

positive, specifically 53.6% are. As explained in section 3.1, geometric mean return act

as a measure of centrality, and in this case with a coefficient of -0.0021, indicates that

the majority of returns are centered slightly below zero. This centrality is also verified

in the graphical representation of the distribution in Figure 5.1.1. In the figure, we also
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observe the long tail that a high positive skewness coefficient refers to. The graph is

set up in such a way that it has a pillar for returns within the interval -100% to 500%,

where each pillar represents a return interval of 2%. Annual returns above 500% are

excluded in this graph due to issues with visual clarity, and this affects 34 observed

returns. The highest achieved annual buy-and-hold return in our dataset is 2,328% by

Opticom ASA in the period 1999-2000. If we include Opticom ASA, the x-axis of the

graph would extend to 24, thus reducing the visualization of what we wish to portray,

namely the distribution and centralization of the majority of the returns. The data

basis for this graph is therefore 9,492 annual buy-and-hold returns.

Figure 5.1.1: The histogram shows the frequency distribution of annual buy-and-hold
returns rounded to 0.02 (or 2%). The graph represents all observations (9,492) with returns
in the interval -1.0 to 5.0 (or -100% to 500%). Observations with higher return than 5.0 (34)
are not included in the histogram. If a stock lists or delists within the calendar year, the
returns are calculated for the period in which it is available.

5.1.3 Decade Returns

Panel C in Table 5.1.1 summarizes the statistical properties of our decade buy-and-

hold returns. As with annual returns, sum return, geometric and buy-and-hold return

is calculated for each stock. All returns refer to whole decades i.e. January 31st 1980 to
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December 31st 1989, or the last observation within the decade, if the stock is delisted

prematurely. For the latest decade, i.e. the one commencing in 2020, our data falls short

of covering an entire decade, as we are at the time of writing in March 2024. As with

stocks delisted prematurely, the period 2020-2024 is treated similarly. We find in panel

C, that the average decade buy-and-hold return is 118.13%, while in comparison the

average risk-free rate is 31.48%. These returns equates to an average excess return of

86.65% when investing in the market compared to the risk-free rate. While these figures

may seem tempting to an investor, it turns out that only 46.8% of individual stocks

outperform the risk-free rate over a ten-year horizon. Compared to the value-weighted

and equal-weighted indices, the number of buy-and-hold returns that outperform also

decrease, to 40.5% and 35.9% respectively.

With a median of 7.17% and the number of positive returns increased from the annual

buy-and-hold returns, it is easy to think that the centering is in the positive range. The

geometric return, however, shows otherwise. With a coefficient of -0.0062, somewhat

lower than that of the annual returns, the centralization has actually moved downwards.

These results are also verified graphically in Figure 5.1.2, where we see that far more

returns are towards -1 (-100%) compared to the annual distribution. Extending the

time horizon from annual to decade, both the standard deviation and the skewness

has increased. This is somewhat more difficult to decipher from the graph, as the

interval is from -100% to 500%, and returns beyond this interval are thus not included.

Omitting returns above 500%, affects a total of 97 returns, and the data basis for the

graph is thus 1,696. The data basis is naturally lower than for the annual histogram,

as the decade histogram consists of a maximum of five buy-and-hold returns per stock,

compared to 45 for annual one. In addition to less buy-and-hold returns, the interval

remains the same, while returns have been given ten years to compound. An example

of this compounding effect is the holding company Ganger Rolf, which achieved the

highest decade buy-and-hold return of 8,614% in the period 1980-1990, over 6,000%

higher than the biggest achiever in annual buy-and-hold returns. Worth noting, as

with many stocks in our dataset, the stock was delisted in 2016 which may be due to a

series of years with poor performance towards the end. In fact, in the period 2010-2016

the stock lost 58.4% of its value.
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Figure 5.1.2: The histogram shows the frequency distribution of decade buy-and-hold
returns rounded to 0.05 (or 5%). The graph represents all observations (1,696) with returns
in the interval -1.0 to 5.0 (or -100% to 500%). Observations with higher return than 5.0 (97)
are not included in the histogram. If a stock is lists or delists within the whole decade, the
returns are calculated for the period in which it is available.

5.1.4 Lifetime Returns

Panel D in Table 5.1.1 shows the summary of lifetime buy-and-hold returns across our

dataset. All returns are computed for the whole lifetime of our dataset, i.e. January 31st

1980 to March 31st 2024. As the majority of our stocks delist during this period, the

stock returns and their corresponding risk-free rate, value-weighted and equal-weighted

market indices will in most cases refer to a shorter period. The average lifetime of the

stocks in our dataset is eight years and five months as of March 2024. If the stocks that

are still listed, and likely to achieve a longer lifespan are removed, the average lifespan of

the stocks is seven years and one month. This decrease in average lifetime is due to the

fact that many of the larger companies - based on market capitalization - have generally

had a long lifetime, and some are still active today. It is also worth mentioning that the

Norwegian government is a major shareholder in some of these large companies, which

may be one reason for the long lifespan of some of the companies. As of December
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2023, the government had direct ownership in 69 companies in Norway (Regjeringen

2023). These are usually companies that are critical to the Norwegian infrastructure,

such as Telenor, Equinor, Bane NOR etc. Not all companies owned by the state are

listed in our dataset, as many of them are private limited companies, in which the state

has 100 percent ownership. An example of a company that owes its longevity to the

state is DNB. In the 1990s, the Norwegian government took over the shares in DNB,

as in other financial institutions, after a finance crisis that led to major losses at most

banks. In this takeover, the Norwegian government invested large sums of money to

ensure the company’s continued performance, which in turn has led to the Norwegian

government still having a significant stake of 34 percent of the shares in DNB today.

From the panel, we see a confirmation of the trend that time horizon has a clear effect

on buy-and-hold returns. Increasing the time horizon reduces the number of individual

stocks that outperform the risk-free rate, value-weighted and equal-weighted indices.

We note however, that there is one exception to this trend. The number of returns

that outperform the risk-free rate increases in the transition from monthly to annual

time horizon. From panel D, we also find that the difference between the average buy-

and-hold return of stocks and the risk-free rate is increasing. For lifetime horizons,

the average buy-and-hold return for stocks is 780.11%, while for the risk-free interest

rate it is 88.03%. In addition to previous results, the results from panel D, indicate

that Bessembinder (2018)’s assertion that a few stocks drive the entire market, also

applies to the Norwegian stock market. An interesting finding from Table 5.1.1 is the

development in the number of stocks that generate positive returns. There is a clear

trend from monthly to annual to decade, which may indicate that Hansson and Persson

(2000)’s claim that time diversification leads to a lower risk of losses is true. However,

in the transition from decade to lifetime, we see a contradictory result. The proportion

of returns that are positive goes from 53.7% to 49.8%. In addition, the median buy-

and-hold return reaches an all-time high with decade horizon, and an all-time low with

lifetime horizon. Therefore, given time horizons of monthly, annual, decade or lifetime,

it is possible that the greatest effect of time diversification in the Norwegian stock

market occurs by using a decade time horizon.
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With a mean geometric return of -0.0091 we demonstrate the drastic exaggeration the

arithmetic average buy-and-hold return can cause if used as an indicator of centraliza-

tion. This exaggeration is also shown visually in Figure 5.1.3, which shows the frequency

distribution of lifetime buy-and-hold returns. As with decade horizon, the numbers are

rounded to the nearest 0.05, or 5%, but as the compounding effect is so large on stocks

over 44 years, the interval for this graph has been increased to -1 to 10.0 or -100% to

1,000%. Thus, the graph shows data after an exclusion of 82 stocks, and the data basis

is therefore 894 stocks. The stock with the highest lifetime return in our dataset is

Orkla ASA, which achieved a lifetime buy-and-hold return of 101,365% (yes, you read

that right), in the period January 31st 1980 to March 31st 2024. With a high average

buy-and-hold return and a low centering point, there are signs that the skewness will

be high. This is confirmed in the panel with a skewness coefficient of 15.72, and is

due to the large compounding effect of longer time horizons. The centering point is

somewhat lower than previous time horizons, while stocks with lifetime returns such as

Orkla causes the distribution tail to be very long.

Figure 5.1.3: The histogram shows the frequency distribution of lifetime buy-and-hold
returns rounded to 0.05 (or 5%). The graph represents all observations (894) with returns in
the interval -1.0 to 10.0 (or -100% to 1,000%). Observations with higher return than 10.0
(82) are not included in the histogram. If a stock lists or delists within the dataset’s
lifetime, the returns are calculated for the period in which it is available.
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5.2 Distribution of Lifetime Returns by Listing Status

As two thirds (66.26%) of the stocks in our dataset delists during the period January

1980 through March 2024, it is important to analyze which effect listing status has

on our results. The database does not categorize the stocks by listing status, nor the

reason for delisting, which the CRSP database does for the US market. We therefore

categorize the dataset into two panels based only on listing status, i.e. whether the

stock is still active as of March 2024 or not, as shown in Table 5.2.1.

Table 5.2.1: The table shows lifetime buy-and-hold returns split into two panels; A listed
and B delisted stocks. The risk-free rate, equal weighted and value weighted index is
matched to each stocks’ return, for all time periods. rf is the risk-free rate. SD is the
standard deviation. EW is the equal weighted index. VW is the value weighted index.
Certain variables are rounded to four decimals for visual clarity.

Panel A: Individual stocks, listed lifetime horizon (N=330):

Variable Mean Median SD Skewness %>0
Sum return: 1.4698 0.8982 2.5137 0.7753 72.4%
Buy-and-hold return, rf: 0.8576 0.0948 2.2626 4.1746 100.0%
Buy-and-hold return, stocks: 15.9115 0.0663 107.0862 10.0329 51.2%
Geometric return, stocks: -0.0097 0.0012 0.0324 -1.0468 51.2%

%>rf %>VW index %>EW index
Buy-and-hold return, stocks: 47.3% 31.5% 30.3%

Panel B: Individual stocks, delisted lifetime horizon (N=646):

Variable Mean Median SD Skewness %>0
Sum return: 0.8273 0.5782 2.0852 0.4353 69.9%
Buy-and-hold return, rf: 0.8918 0.2893 1.6317 3.6422 100.0%
Buy-and-hold return, stocks: 3.6708 -0.0137 22.3735 11.3538 49.1%
Geometric return, stocks: -0.0088 -0.0004 0.0482 -0.4746 49.1%

%>rf %>VW index %>EW index
Buy-and-hold return, stocks: 40.9% 36.3% 29.0%

Panel A shows the summary of lifetime buy-and-hold returns for stocks that are still

active on the stock exchange today. In total, there are 330 stocks that are still active,

and these have together achieved an average lifetime buy-and-hold return of 1,592%.

Compared to the lifetime returns in Table 5.1.1, these 330 stocks provide an average

excess return of 812% - almost double - compared to the market as a whole. The

skewness in panel A is somewhat lower than for the overall dataset, and this may be
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due to a significantly higher median. This in turn may indicate that the center point of

the distribution is generally slightly higher for the stocks in panel A, while the spread

in buy-and-hold returns remain approximately the same.

An interesting finding here is our observation that the proportion of returns that out-

perform the risk-free interest rate and the equal-weighted index has increased compared

to the overall dataset, while the proportion that outperform value-weighted index has

decreased. One reason for this could be that the overall dataset includes companies who

do not survive, and thus has more returns that cannot be compared with the remarkably

low interest rates we have experienced in recent years. We also present evidence of this

in panel B, where the proportion of returns outperforming the risk-free rate goes down,

compared to panel A. The fact that fewer stocks outperform the value-weighted index

compared to the overall dataset may - like with the risk-free rate - be due to the time

horizons. As shown in Figure 4.3.1, the compounding effect on the market indices has

led to a extraordinary development in recent years, especially for the equal-weighted

index. However, even though the equal-weighted index has performed exceptionally

well overall, its performance since 2021 has stagnated. The indices are matched to

the stocks’ buy-and-hold returns, which leads to stocks that were listed after the ex-

ponential growth until 2021, being compared to a reasonably stagnant equal-weighted

market index. In addition, the value-weighted one has performed slightly better in

recent years, which might explain the decrease in proportion of returns outperforming

the value-weighted index. When comparing the proportion of returns greater than the

risk-free rate in panel B, the argument stays the same as with panel A, only in reverse.

Since many of the stocks are delisted before the low interest rates we experienced during

the Covid-19 pandemic, between 2020 and 2022, there are fewer returns compared to

this low interest rate. As for the proportion of returns greater than the value-weighted

and equal-weighted index, the explanation follows the same logic as with the risk-free

rate. More lifetime buy-and-hold returns are compared to the exponential growth of

the equal-weighted index, while the value-weighted index - in the same period - did not

perform as well.

Panel B in Table 5.2.1 summarizes the statistics for lifetime buy-and-hold returns for
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stocks that delists in the period January 1980 through March 2024. At the time of

writing, a total of 646 stocks have been delisted in this period, and together they have

an average lifetime buy-and-hold return of 325%. At first glance, one would think that

this is natural, as delisted stocks include more stocks with almost -100%, or bankruptcy.

However, this is wrong, as 16.66% of delisted stocks deliver a lifetime return of less than

90%, while in comparison, 14.8% of the listed stocks deliver a lifetime return of less than

90%. Furthermore, when looking at the proportion of returns greater than zero, there is

only a 2.1 percentage point difference between listed and delisted stocks. These results

shows that there are reasons other than bankruptcy that cause delisted stocks to deliver

a lifetime return that is approximately 1,200% lower than for listed stocks. There are

a number of reasons why a company is no longer present on the stock exchange (Oslo

Børs 2021). If one believes in a relatively efficient market and that the majority of

companies on the Oslo Stock Exchange are not delisted due to legal issues with the

Financial Supervisory Authority, it is reasonable to assume that a large proportion of

companies that are delisted, delists due to mergers, acquisitions, privatizations or simply

a choice to change the stock exchange they are listed. One example is Sbanken, who

was delisted in March 2022 due to a merger with DNB, and achieved a lifetime return

of 174.69% from November 2015 to delisting. Since the merger with Sbanken, DNB has

experienced a return of 20.8%. Considering the price development of both stocks before

(positive for Sbanken and negative for DNB) and after the Sbanken merger, it can be

assumed that Sbanken accounted for a substantial amount of the return achieved by

DNB. In other words, if Sbanken had not merged with DNB and was still listed, the

lifetime return could have been greater than what it achieved up to the delisting date,

given that we believe the price development for Sbanken would have remained the same

prior to the merger. Such delisting reasons - other than financial weakness and legal

problems - could thus “cut” off the lifetime return, potentially transferring the return

to a company that is still listed. This argument would be consistent with both ours

and Bessembinder (2018)’s table of lifetime returns based on listing status.
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5.3 Distribution of Returns by Market Capitalization

The relationship between market capitalization and return has been extensively re-

searched since it was first introduced by Rolf W. Banz (1981). As explained in section

2.7, the “small-firm effect” is significant and well documented over the years. In essence,

it means that smaller companies tend to have a higher risk-adjusted return compared to

larger companies. In our analysis, smaller companies will deliver an even higher aver-

age return, as our returns are not risk-adjusted according to CAPM or similar models.

Although smaller companies deliver an average return that is higher than that of larger

companies, it is not necessarily the case that they deliver better results than larger

companies when compared with risk-free interest rates and market indices. In addition,

it is interesting to see whether this small-firm effect, compared to the benchmarks,

has the same development depending on the time horizon used. The following sec-

tion is therefore dedicated to analyzing the performance of companies based on market

capitalization compared to various benchmarks, over various horizons.

Table 5.3.1 summarizes our findings of buy-and-hold returns based on market capital-

ization at monthly, annual and decade horizon. The returns are grouped into deciles

according to their respective market value in the period before the return was achieved.

The deciles are ranked from smallest (1) to largest (10) based on market value. The

ranking is therefore performed on the basis of the market capitalization at the same

time as the starting price is drawn, i.e. in t − 1. Additionally, this grouping process

also means that if a stock is to qualify for inclusion in the table, it must have survived

from one period to the next. However, this does not mean that the stock must have

survived an entire decade, but that it has survived the transition from one decade to

the next. The benchmarks are matched to the returns so that the basis for comparison

is correct, as shown in Table 5.1.1. Lifetime returns, however, are not included, since

over a period of just over 44 years the original market value will have little impact on

the lifetime return. Omitting lifetime returns also excludes any problems with grouping

that may arise with companies that are listed towards the very end of the dataset.
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Table 5.3.1: The table shows monthly, annual and decade buy-and-hold returns grouped
by firm size. Stocks are divided into deciles based on market capitalization from previous
period. 1 is the 10% smallest firms, and 10 is the 10% largest. The risk-free rate, equal
weighted and value weighted index is matched to each stocks return, for all time periods. rf
is the risk-free rate. EW is the equal weighted index. VW is the value weighted index.
Certain variables are rounded to four decimals for visual clarity.

Panel A: Individual stocks by market capitalization, monthly horizon:

Group (mkt. cap) Mean Median Skewness %>0 %>rf %>VW index %>EW index
1 (N=10,281) 0.0273 0.0000 6.6827 43.7% 43.2% 44.9% 44.5%
2 (N=10,029) 0.0098 0.0000 3.3468 43.5% 42.9% 43.8% 43.4%
3 (N=10,058) 0.0075 0.0000 5.5156 44.7% 44.4% 44.7% 44.4%
4 (N=10,050) 0.0075 0.0000 1.3359 45.9% 45.1% 45.2% 44.1%
5 (N=9,951) 0.0082 0.0000 2.1297 47.2% 46.4% 46.1% 45.6%
6 (N=10,119) 0.0072 0.0000 1.0776 47.5% 46.9% 46.6% 45.4%
7 (N=10,089) 0.0086 0.0000 0.7791 49.5% 48.7% 47.3% 46.3%
8 (N=10,015) 0.0080 0.0024 0.5770 50.5% 49.7% 47.7% 47.5%
9 (N=10,070) 0.0088 0.0063 0.4481 52.0% 51.1% 48.6% 47.9%
10 (N=9,813) 0.0083 0.0082 1.1892 53.5% 52.2% 49.8% 48.6%

Panel B: Individual stocks by market capitalization, annual horizon:

Group (mkt. cap) Mean Median Skewness %>0 %>rf %>VW index %>EW index
1 (N=871) 0.2849 0.0298 6.5802 52.7% 49.0% 45.5% 43.5%
2 (N=852) 0.2197 0.0349 4.7644 54.1% 48.5% 44.2% 42.3%
3 (N=851) 0.1999 0.0209 4.2033 52.4% 48.4% 43.0% 42.4%
4 (N=854) 0.1441 0.0417 2.3797 53.9% 49.2% 44.0% 41.7%
5 (N=844) 0.1695 0.0278 2.8449 53.4% 48.7% 44.9% 42.4%
6 (N=858) 0.1495 0.0647 1.9431 54.5% 50.6% 44.9% 41.8%
7 (N=858) 0.1646 0.0437 13.7203 53.5% 49.7% 45.1% 42.8%
8 (N=847) 0.1343 0.0429 1.4008 57.9% 51.4% 47.9% 42.7%
9 (N=856) 0.1462 0.0673 1.3398 57.2% 52.5% 47.5% 44.6%
10 (N=834) 0.0921 0.0679 0.5085 59.6% 54.1% 46.9% 44.7%

Panel C: Individual stocks by market capitalization, decade horizon:

Group (mkt. cap) Mean Median Skewness %>0 %>rf %>VW index %>EW index
1 (N=83) 2.3873 0.2688 7.6187 55.4% 49.4% 38.6% 37.3%
2 (N=82) 1.1460 0.2793 2.8743 57.3% 47.6% 46.3% 45.1%
3 (N=82) 0.9722 0.2855 6.6711 58.5% 51.2% 41.5% 37.8%
4 (N=81) 0.6431 0.1618 2.7893 58.0% 49.4% 41.9% 35.8%
5 (N=80) 1.0447 0.3301 5.3143 63.8% 55.0% 50.0% 45.0%
6 (N=83) 0.6939 0.1552 4.1084 53.0% 50.6% 43.4% 34.9%
7 (N=81) 0.6715 0.1853 1.6122 59.3% 48.1% 50.6% 45.7%
8 (N=82) 1.0606 0.1854 2.4654 63.4% 46.3% 48.8% 41.5%
9 (N=82) 1.1083 0.3805 3.0235 65.9% 56.1% 43.9% 42.7%
10 (N=79) 0.6138 0.2403 2.8462 63.3% 51.9% 41.8% 32.9%
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Panel A verifies Banz (1981)’s theory and NBIM (2012)’s survey that smaller firms

deliver higher mean buy-and-hold returns. However, the trend is not linear since all

groups outperform group 6. Moreover, there are fluctuations in the highest returns

among them. On the other hand, there is a clear trend in the proportion of returns

that are greater than zero, and those that are greater than the risk-free interest rate.

We observe that companies with a lower market capitalization - apart from group 1

outperforming group 2 - deliver fewer returns greater than zero, and the same applies

to the proportion greater than the risk-free interest rate and value-weighted market

index. A comparison with the equal-weighted index reveals some interesting findings.

The proportion of returns that outperforms the equal-weighted index seems to fluctuate

a lot more when we iterate through the groups. Although the proportion fluctuates, we

see the same trend as when comparing the returns to the other benchmarks. Thus, there

is an interesting trend in which the companies with the 10% lowest market capitalization

outperform the neighboring groups of companies - in terms of market capitalization -

when compared with all of the benchmarks. We also see that the skewness is generally

higher among the smaller companies. The difference in skewness may be due to the

difference between the median and the mean is greater among the smaller companies,

while the standard deviation experiences a proportionally weaker development than the

difference in median and the mean.

Panel B expands the horizon and summarizes the statistics of annual buy-and-hold re-

turns grouped by market capitalization. Apart from a few small fluctuations in average

buy-and-hold returns among the middle groups, we see that the small-firm effect also

applies to our dataset on an annual basis. The distribution of skewness is somewhat

surprising, as group 7 has some comparatively extreme values, while beyond this group

we see that market capitalization affects skewness very clearly. In contrast to panel A,

all groups deliver a majority of returns greater than zero. It is difficult to draw a firm

conclusion on the role of market capitalization as a result of these observations, since

the proportion greater than zero seems to jump up and down for each group we iterate

downwards. In fact, when examining the proportion of returns greater than the risk-free

interest rate and the equal-weighted market index, we see the same development and

fluctuations as with the proportion greater than zero. However, these fluctuations are
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not present when observing the proportion of returns greater than the value-weighted

index. Comparing with the value-weighted benchmark we see that - apart from group

1 and 2 - the trend is clear and linear, where higher market capitalization increases

the proportion of returns greater than value-weighted index. Interestingly, the 10%

smallest companies outperform the neighboring six groups in returns larger than the

value-weighted index. This development is surprising, as we would expect smaller

companies’ returns to be more volatile, given that the proportion of returns greater

than zero is lower compared to almost every other group, while the mean return being

highest. Overall, expanding the time horizon from monthly to annual increases the

proportion of returns greater than zero and the risk-free rate, while the proportion

of returns greater than the market indices is approximately the same for the smaller

companies, and lower for the medium and bigger companies. With all the fluctuations

in the benchmarks, it is difficult to draw a linear conclusion based on the relationship

between market capitalization and our benchmark on an annual horizon, although the

general trend remains clear.

If we extend the time horizon all the way to decade, we obtain some interesting results.

Panel C summarizes our market capitalization-grouped data at a decade level, and

we see here that - with a decade horizon - we can still to some extent, conclude that

Banz (1981)’s theory of the small-firm effect is valid. Our conclusion is based on the

phenomenon that Banz described, that the small-firm effect is non-linear, and that this

effect was only observable at absolute smallest companies. The rest - average sized and

large companies - displayed the equal return. In our panel C we observe that the 10%

smallest clearly deliver the highest returns, and the 10% largest deliver the lowest, but

in the groups between them there is no clear trend or development direction. We see -

as with monthly and annual horizon - similar fluctuations throughout all the statistical

properties as well as the benchmark for risk-free rate and greater than zero. When

examining the proportion of returns greater than the market indices, the results for

decade horizon differs quite a lot from previous horizons. Returns greater than value-

weighted index is lowest for the smallest companies, and the biggest companies are not

far behind. When we iterate through the groups, the fluctuations are more apparent,

as we see the highest proportion of returns larger than the value-weighted index in
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group 7 at 50.6%, while the lowest is in group 1 at 38.6%. The proportion of returns

greater than the equal-weighted index share similar traits - as with the comparison to

value-weighted index -, however, the largest 10% of companies are the ones performing

worst compared to the equal-weighted index. Most interesting of results is that group

7 - which had the highest skewness on annual horizon - now for some reason, has the

lowest. This remarkable development may be due to the fact that some companies in

this group have been particularly sensitive to macro-economic conditions that have led

to some extreme buy-and-hold returns with an annual time horizon. When the time

horizon increases to decades, these same stocks may not have survived the transition

from one decade to the next, and are therefore not included in panel C. Not surviving

the transition, could explain the sharp reduction in skewness coefficients, going from

13.7203 at annual horizon, to 1.6122 at the decade horizon.

Based on the results presented in Table 5.3.1, we can see a clear small-firm effect in

both the average return, but also in the comparison with the various benchmarks at the

monthly horizon. In the extension to the annual horizon, we will still see a small-firm

effect in average returns, but it is difficult to draw a firm conclusion from these data on

the market capitalization’s effect when comparing the buy-and-hold returns with our

benchmarks. Finally, when the horizon is extended to ten years, it is clear that market

capitalization has no apparent effect on our benchmarks. Although the approximate

linear trend shown in monthly and annual horizons do not appear in the decade horizon,

we still - in accordance with Banz’ argument of non-linearity - conclude that there is a

small-firm effect on the mean buy-and-hold returns based on the visual representation

of the table.

5.4 Distribution of Lifetime Returns by Decade of Initial Ap-

pearance

As with all capitalist economies, the Norwegian stock market is sensitive to macroeco-

nomic factors, and is therefore always changing. Because the market is always changing,

certain factors or characteristics that defined a company at its IPO might persist to
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this day. It is therefore important to analyze companies by IPO decade to see whether

certain macroeconomic factors which defined the stock market at that time has lead to

better or worse results in the long run. Table 5.4.1 summarizes lifetime buy-and-hold

returns for our dataset, based on which decade the stocks are first introduced to the

market. Stocks that were listed before 1980 are treated as if they were introduced in

the period January 1980 to December 1989, since the dataset does not extend further

back in time.

Table 5.4.1: The table shows all lifetime buy-and-hold returns based on the decade the
stocks were first introduced. Entire dataset is used, and stretches from January 1980 to
March 2024. The risk-free rate, equal weighted and value weighted index is matched to each
stocks return, for all time periods. The annualized return is the mean annualized return for
all the stocks within the grouping. rf is the risk-free rate. EW is the equal weighted index.
VW is the value weighted index. Certain variables are rounded to four decimals for visual
clarity.

Lifetime buy-and-hold returns by decade of initial appearance

Initial
decade

N Mean Median Skewness %>0 %>rf %>VW %>EW Months
lived

Annualized
return

1980-1989 160 36.4599 1.5273 6.5039 65.0% 46.9% 50.0% 25.6% 200 0.0407
1990-1999 259 5.4361 0.2422 6.5799 58.5% 49.6% 39.2% 32.7% 119 0.0375
2000-2009 235 1.2382 -0.2798 5.1847 43.2% 40.3% 33.1% 33.1% 99 0.0157
2010-2019 124 0.9376 0.0364 4.0851 51.6% 48.4% 29.8% 30.6% 83 -0.0386
2020-2024 198 -0.1313 -0.3787 3.3781 32.8% 31.3% 21.2% 23.2% 30 -0.1511

From Table 5.4.1, we see that the mean lifetime buy-and-hold return is highest among

stocks that were introduced in the 1980s. In fact, we see a clear trend that the longer it’s

been since the stocks were first introduced to the stock market, the higher the average

lifetime buy-and-hold return they have. The fact that older stocks have a higher mean

lifetime return is a natural result because of the exponential effect that compounding

has. Thus, even though 87.5% of the stocks introduced in the 80s are delisted today,

they have on average the longest lifespan of 200 months lived on the stock exchange.

Given the difference in average lifespan, we examine the mean annualized return in

order to make the basis of comparison fair. From the table we see similarities between

the mean lifetime buy-and-hold and the mean annualized return, where the stocks who

were introduced prior and during the 1980s, on average provides the highest annual

return. Furthermore, we see a declining trend in the mean annualized return when

iterating from oldest to newest decade of initial appearance. A particularly interesting
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finding is that stocks that listed during and soon after the Covid-19 pandemic, hold a

remarkably low average annualized return of -15.11%. The declining trend in annualized

return confirms Fama and French (2004)’s findings, which they argue is due to the fact

that newer listed stocks’ cross-sectional profitability is less compared to older listings’,

and that the asset growth rate is stronger. These characteristics result in a sharp

decline in average lifespan, which Fink et al. (2010) also found in their studies on the

idiosyncratic volatility during the internet boom. Fink et al. (2010) argue that most of

the increase in unsystematic risk during the boom can be explained by newer listings

having a tendency to be younger, and therefore less economically established - compared

to older listings - at the date of listing.

When we compare the lifetime buy-and-hold returns with the benchmarks, we observe

varying results. The proportion of returns greater than zero tend to be higher with older

listings, with a spike among stocks that listed in the decade 2010-2019. In three of the

five decades reported, over half of the lifetime buy-and-hold returns exceed zero, while

the stocks listed in the decades 2000-2009 and 2020-2024, generated lifetime returns

where only 43.2% and 32.8% exceeded zero respectively. In comparison with the risk-

free rate, all of the groups - by decade of initial appearance - report proportions of

returns where less than half exceed the risk-free rate. Stocks listed in 1990s perform

the best compared to the risk-free rate, while the ones listed in 2020-2024 perform the

poorest. The fact that the stocks listed in 1990s perform best - compared to the risk-

free rate - is mainly due to the fact that they generate a relatively large proportion of

high returns, and the especially high risk-free rate we experienced in the 80s, declined

during this period. Even though the stocks listed in 2020-2024 are generally compared

with a low risk-free rate, they generate a large proportion of fairly low lifetime buy-

and-hold returns, which results in only 31.3% outperforming of the risk-free rate. An

interesting finding is that the stocks listed in 2010-2019 perform second best compared

to the risk-free rate, while the mean annualized return is negative. This result could

suggest that either - compared to the other groups - the majority of returns that are

greater than zero (51.6%) are closer to zero, or that the returns that are below zero are

more negative, or more plausibly, a combination of the two conditions.



45 5.5 Bootstrapped Portfolios

The proportion of lifetime buy-and-hold returns greater than the value-weighted index

show a rapid decline for the stocks listed after the 1980s, whereas comparing the returns

with the equal-weighted index shows an interesting fluctuation between the groups. In

fact, at the turn of the millennium we see a shift in where the proportion of returns

that outperform the equal-weighted index is higher than the proportion outperforming

the value-weighted one. A possible explanation for this shift could be the combination

of equal-weighted index being more volatile - as shown in 4.4 -, and the fact that newer

stocks on average have a lower lifespan. This will in turn yield more lifetime returns

compared to an equal-weighted index in decline.

5.5 Bootstrapped Portfolios

As previously mentioned, the average lifespan of the stocks in our dataset is eight

years and five months. Of the 976 stocks included in this thesis, only two stocks;

“Orkla” and “Norsk Hydro” have a lifespan equivalent to the length of our dataset. In

addition, only 87 of the stocks live longer than half of the period 1980-2024. These

short lifespans suggests that the long-term buy-and-hold returns calculated, are limited

to the lifespan of the stocks, and therefore does not necessarily reflect whole periods. In

order to observe the buy-and-hold returns for whole long-term periods we make use of

bootstrap simulations. Bootstrapping is a stochastic process we utilize in order to draw

a random stock each month for the entirety of of out dataset. In essence, this process

simulates and investor who at all times holds a random stock, and its buy-and-hold

return is therefore not limited by the lifespan of a company.

In accordance with Bessembinder (2018), we repeat the process of selecting a random

stock for each month in our dataset 20,000 times to ensure that potential random

spikes in the distribution of returns are equalized. The monthly returns obtained from

bootstrapping are then linked to annual, decade and lifetime buy-and-hold returns.

Lastly, the linked buy-and-hold returns are then compared to zero, as well as the risk-

free rate and the value-weighted index obtained by holding the assets in the same period.

In addition to examining the effects of bootstrapping a single-stock portfolio, we also

create value-weighted portfolios of 5, 10, 20, and 40 stocks in order to see the effects of
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diversification.

Table 5.5.1: The table shows annual, decade and lifetime returns for bootstrapped
portfolios of various sizes. Each portfolio is a result of 20,000 simulations, in which monthly
returns, risk-free rate and VW index are calculated to the respective horizon. The risk-free
rate and value weighted index is matched to each portfolios return, for all time periods. rf is
the risk-free rate. VW is the value weighted index. Certain variables are rounded to four
decimals for visual clarity.

Panel A: Bootstrapped 1-stock portfolio

Annual Decade Lifetime
Mean Median Skewness Mean Median Skewness Mean Median Skewness

Holding return 0.1943 0.1833 1.3150 3.2639 1.6255 12.2430 251.1803 -0.1241 104.4948
%>0 52.41% 49.37% 48.54%
%>rf 47.65% 36.77% 20.45%
%>VW index 44.61% 34.25% 14.48%

Panel B: Bootstrapped 5-stock value weighted portfolio

Mean Median Skewness Mean Median Skewness Mean Median Skewness
Holding return 0.1470 0.1452 0.2052 1.8133 1.4283 2.9078 81.7689 16.5418 15.2209
%>0 60.01% 73.22% 94.21%
%>rf 53.96% 51.89% 53.54%
%>VW index 48.42% 41.50% 36.35%

Panel C: Bootstrapped 10-stock value weighted portfolio

Mean Median Skewness Mean Median Skewness Mean Median Skewness
Holding return 0.1379 0.1368 0.1609 1.5107 1.2883 2.4155 65.4504 22.7241 10.9188
%>0 62.06% 81.92% 98.46%
%>rf 55.79% 56.98% 62.64%
%>VW index 49.18% 43.34% 41.25%

Panel D: Bootstrapped 20-stock value weighted portfolio

Mean Median Skewness Mean Median Skewness Mean Median Skewness
Holding return 0.1294 0.1290 0.0770 1.2961 1.1844 1.3699 50.1210 26.1346 5.7192
%>0 63.59% 88.29% 99.72%
%>rf 57.14% 60.49% 69.25%
%>VW index 49.43% 44.58% 43.41%

Panel E: Bootstrapped 40-stock value weighted portfolio

Mean Median Skewness Mean Median Skewness Mean Median Skewness
Holding return 0.1232 0.1227 0.0959 1.1749 1.1168 0.9721 41.6849 27.9286 3.4365
%>0 65.13% 93.45% 99.99%
%>rf 58.56% 63.79% 76.77%
%>VW index 49.57% 45.44% 44.23%

Panel A in Table 5.5.1 shows the results of bootstrapping a single-stock portfolio. The

mean buy-and-hold returns are significantly higher than to those reported in 5.1.1,

which is caused by the fact that buy-and-hold returns are extended to whole periods.
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By randomly selecting a stock each month, the mean buy-and-hold return in the period

1980-2024 is 251.2, or 25,180%, compared to 780% by holding one random stock for

its lifespan. Interestingly, the proportion of returns that outperform the benchmarks

is lower. The fact that fewer returns outperform the benchmark supports the previous

argument that the reduction in the buy-and-hold periods lead to a higher chance that

more returns are compared to a period where the risk-free rate and the value-weighted

index is in decline, or stagnant. While we see differences between the two tables, they

also share similarities in that the proportion of returns outperforming the benchmarks

is reduced when extending the buy-and-hold period. By expanding the period in which

we are able to compound returns, we expect in accordance with Bessembinder (2018)’s

findings, that the skewness increases. In our findings, however, these results are only

true for the decade and lifetime buy-and-hold returns, while the skewness in annual

returns is lower than the one reported earlier, in 5.1.1.

Panel B to E in Table 5.5.1 presents the results from bootstrapping varying sized value-

weighted portfolios. Looking at the development in skewness as we increase the portfolio

size, we see that the findings from Simkowitz and Beedles (2010) about diversification

reducing skewness, also applies here. From a single-stock portfolio to a 40-stock portfo-

lio, the skewness goes from 1.3150 to 0.0959 with an annual horizon. In fact, the same

pattern applies to all time horizons, and the skewness of lifetime buy-and-hold returns

is reduced mostly due to diversification, going from 104.5 with a single-stock portfolio,

to 3.4 with a 40-stock portfolio. The returns and median are also greatly affected by

diversification. For annual and decade horizons, the mean return and median share

the same declining trend as portfolio size increases, while in contrast, the lifetime me-

dian buy-and-hold return increases with portfolio size. This is quite a puzzling result

since following Bessembinder (2018), we expect to see the median increase for all time

horizons as we increase the portfolio size.

When comparing the buy-and-hold returns with our benchmarks, the value of diver-

sification becomes even more apparent. Going from one to five stocks in a portfolio,

increases the proportion of returns outperforming the benchmarks significantly, with

the highest effect seen in lifetime buy-and-hold returns. In fact, at any given time hori-
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zon, all portfolios consisting of more than one asset, provides a proportion of returns

outperforming the risk-free rate greater than 50%. Furthermore, when comparing the

returns with zero, we see that a significant majority is greater for all time horizons, with

as many as 99.99% of lifetime buy-and-hold returns in a 40-stock portfolio being greater

than zero. This can, however, not be said in comparison with the value-weighted index.

Although there is a significant increase in the proportion of returns that outperform

the value-weighted index going from one to five stocks, less than half of the portfolio

returns at any given time horizon outperform the value-weighted index. As number of

stocks in the portfolio increases, so does the proportion of returns outperforming the

value-weighted index. However, as with the other benchmarks, the growth in percent-

age of portfolios outperforming the value-weighted index becomes smaller and smaller,

supporting Lee, Lee, and Lee (2010)’s claim of nullification of unsystematic risk through

diversification.

5.6 Wealth Creation

So far in this thesis, we have seen repeated evidence that the majority of single-stock re-

turns underperform compared to the risk-free interest rate. As a final segment, we shift

our focus from the distribution of stock returns to the distribution of wealth creation

on the Oslo Stock Exchange in the period 1980-2024. As explained in section 2.6, we

calculate the wealth creation as the lifetime monetary change in market capitalization

in excess of the risk-free interest rate achieved over the same period. For companies

with several share classes, such as “Hafslund Ser. A” and “Hafslund Ser. B”, we add

the market values together to create a total market capitalization for the company each

month. By combining the share classes, we obtain a total data basis for wealth creation

of 845 companies. Totalling the wealth creation of all the companies in the database,

we find that the total wealth creation in the market is NOK 1,996 billion in the period

1980-2024. The average lifespan of the companies in our dataset is 9.8 years, where

seven of these companies have a lifetime equal to our time period 1980-2024.3

3Company lifespan must not be confused with stock lifespan. A few stocks in our dataset - not
necessarily due to having multiple share classes - change their ISIN throughout the period 1980-2024
while retaining the same company-id.
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Table 5.6.1: The table shows total lifetime wealth creation for the top 50 firms on the
OSEBX. Wealth created is the excess (compared to the risk-free rate) difference in market
capitalization from first to last appearance. Wealth created is displayed in NOK millions.
Name displayed is the most recent name linked to the company-id. For companies with
multiple share classes, the market capitalization is summed up into one total market
capitalization per company-id. Annualized return is calculated using the ISIN (or stock)
with the longest life span in months, per company-id.

Wealth creation
Company-id Name Wealth created

(NOK millions)
% of
total

Cumulative
% of total

ISIN Annualreturn Start End Months lived

1309 EQUINOR 557000 27.9% 27.9% NO0010096985 11.4% 2001-06 2024-03 274
1772 DNB BANK 313000 15.7% 43.6% NO0010031479 15.9% 1980-01 2024-03 531
8376 AKER BP 166000 8.3% 51.9% NO0010345853 13.5% 2007-12 2024-03 196
2202 ADEVINTA 131000 6.6% 58.5% NO0003031809 7.2% 1992-12 2024-03 376
2331 KONGSBERG GRUPPEN 113000 5.6% 64.2% NO0003043309 19.6% 1993-12 2024-03 364
5063 MOWI 101000 5.1% 69.2% NO0003054108 -5.9% 1997-07 2024-03 321
6046 ROYAL CARIBBEAN CRUISES 91900 4.6% 73.8% LR0008862868 8.0% 1997-08 2016-03 224
8288 SALMAR 86100 4.3% 78.2% NO0010310956 23.2% 2007-05 2024-03 203
1107 ORKLA F 72200 3.6% 81.8% NO0003733800 16.9% 1980-01 2024-03 531
2354 SCHIBSTED SER. B 67400 3.4% 85.2% NO0003028904 13.8% 1992-07 2024-03 381
7760 YARA INTERNATIONAL 59800 3.0% 88.2% NO0010208051 14.6% 2004-03 2024-03 241
6039 FRONTLINE 47100 2.4% 90.5% BMG3682E1921 6.0% 1997-07 2024-03 321
7187 SUBSEA 7 47000 2.4% 92.9% LU0075646355 5.2% 1997-06 2024-03 322
11217 GJENSIDIGE FORSIKR 47000 2.4% 95.2% NO0010582521 15.4% 2010-12 2024-03 160
1955 UNI STOREBRAND PRF 42100 2.1% 97.3% NO0003053605 7.7% 1980-01 2024-03 531
6047 AKER 38500 1.9% 99.3% NO0010234552 19.3% 2004-09 2024-03 235
8620 BAKKAFROST 36200 1.8% 101.1% FO0000000179 25.8% 2010-03 2024-03 169
11186 WALLENIUS WILHELMS 33500 1.7% 102.8% NO0010571680 19.9% 2010-06 2024-03 166
1797 SPAREBANK 1 SR-BK 33500 1.7% 104.4% NO0006000009 15.7% 1994-05 2024-03 359
12741 HAFNIA LIMITED 29100 1.5% 105.9% BMG4233B1090 38.4% 2019-11 2024-03 53
6233 TELENOR 27700 1.4% 107.3% NO0010063308 9.0% 2000-12 2024-03 280
7148 LERØY SEAFOOD GP 26800 1.3% 108.6% NO0003096208 18.4% 2002-06 2024-03 262
2392 TOMRA SYSTEMS 26000 1.3% 109.9% NO0005668905 8.7% 1985-01 2024-03 471
12424 GOLDEN OCEAN GROUP 25800 1.3% 111.2% BMG4032A1045 4.1% 2004-12 2024-03 232
6068 AMERSHAM 24000 1.2% 112.4% GB0002747532 11.8% 1997-10 2004-03 78
7968 SEADRILL 23500 1.2% 113.6% BMG7945E1057 -21.0% 2005-11 2024-03 221
1103 CHR. BANK OG KREDITKASSE 23300 1.2% 114.8% NO0003003501 -9.4% 1980-01 2001-01 253
1695 SPAREBANK 1 SMN 19500 1.0% 115.8% NO0006390301 15.8% 1994-05 2024-03 359
2345 PROTECTOR FORSIKRG 17700 0.9% 116.6% NO0010209331 22.6% 1993-03 2024-03 373
5122 NETCOM 17500 0.9% 117.5% NO0003057507 48.2% 1996-05 2000-10 54
1937 HAFSLUND NYCOMED F 17200 0.9% 118.4% NO0004306408 17.0% 1980-01 2017-08 452
5117 NORDIC SEMICONDUC 16200 0.8% 119.2% NO0003055501 19.1% 1996-04 2024-03 336
11306 BORREGAARD 16000 0.8% 120.0% NO0010657505 24.4% 2012-10 2024-03 138
5097 STOLT-NIELSEN B 15900 0.8% 120.8% BMG850801025 6.0% 1996-02 2024-03 338
7628 NORWEGIAN AIR SHUT 15400 0.8% 121.6% NO0010196140 -16.9% 2003-12 2024-03 244
8252 ALGETA 14900 0.7% 122.3% NO0010239437 34.5% 2007-03 2014-03 85
2455465 HÖEGH AUTOLINERS 14600 0.7% 123.0% NO0011082075 122.6% 2021-11 2024-03 29
5103 BLUENORD 14200 0.7% 123.7% NO0010379266 -28.6% 1987-05 2024-03 443
8594 FLEX LNG 13900 0.7% 124.4% BMG359472021 14.2% 2009-10 2024-03 174
6051 AF GRUPPEN B 13700 0.7% 125.1% NO0003078107 18.7% 1997-09 2024-03 319
2400 VEIDEKKE 13700 0.7% 125.8% NO0005806802 15.8% 1986-06 2024-03 454
2079575 CADELER 13400 0.7% 126.5% DK0061412772 22.1% 2020-11 2024-03 41
1642 SPAREBANKEN VEST 12700 0.6% 127.1% NO0006000900 11.1% 1995-01 2024-03 351
6802 GOLAR LNG 12700 0.6% 127.8% BMG9456A1009 13.8% 2001-07 2012-08 134
8004 PETROBANK ENERGY AND RESOURCES 12700 0.6% 128.4% CA71645P1062 56.5% 2006-06 2008-07 26
6070 TGS 11600 0.6% 129.0% NO0003078800 8.3% 1997-10 2024-03 318
2305 ATEA 11500 0.6% 129.6% NO0004822503 4.0% 1985-03 2024-03 469
6053259 DOF GROUP 10900 0.5% 130.1% NO0012851874 136.8% 2023-06 2024-03 10
1827 SPAREBANKEN NOR N 10700 0.5% 130.6% NO0006390103 24.1% 1991-06 2002-09 136
12241 BW LPG 9800 0.5% 131.1% BMG173841013 17.1% 2013-11 2024-03 125

Table 5.6.1 shows the top 50 companies sorted by wealth creation in descending order.

The reported start and end dates, as well as number of months lived pertains to the

company, not any particular stock linked to the company. Furthermore, we assign

the annualized return to the longest-lived stock for each company. Certain companies

are reported with a negative annualized return, while the wealth creation is positive.

This may occur as a result of using the stock that lives the longest, while in reality
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there may be another stock - which lives shorter - that accounts for a positive return.

Furthermore, some companies in Table 5.6.1 - such as Norwegian Air Shuttle - have

undergone complex financial crises where they have been required to raise capital.4

When raising capital, it is possible that the market capitalization increases even if the

adjusted share price decreases. This is due to the fact that new shares issued can lead

to a price loss that is disproportionate to the number of shares issued, e.g. a price

loss of -20%, while the number of shares is increased by 50%. The highest ranked

company in our dataset is Equinor with a wealth creation of NOK 557 billion, which

corresponds to 27.5% of the total wealth creation in the market. By adding up the

top three performing companies; Equinor, DNB Bank and Aker BP, we find that they

collectively account for over half of the wealth creation in the Norwegian stock market.

In fact, if we add up the top 17 largest contributors to wealth creation, we pass 100%

of the net wealth creation. Essentially, this means that the top 2% of companies -

ranked by wealth creation - collectively account for all of the net wealth creation in

the Norwegian stock market. The remaining 98% of companies in our dataset, thereby

collectively generate lifetime monetary gains that equals the risk-free interest rate.

As we have seen earlier in the analysis, time horizon is a major contributor to increased

skewness in the distribution of buy-and-hold returns. Combining the time horizon with

large initial market capitalization appears to increase the spread in the distribution

of wealth creation. The top and bottom 2% have an average lifespan of 26.3 and

17.2 years respectively, while the remaining 96% have an average lifespan of 9.3 years.

Furthermore, the average market capitalization at IPO for the top and bottom 2% are

NOK 14.2 billion and NOK 24.0 billion respectively, while the middle 96% have an

average market capitalization at IPO of NOK 1.6 billion. Our findings are thus that a

company with a high market capitalization at IPO and a long lifetime will on average

either generate the largest gains or the largest losses in monetary value, depending on

positive or negative excess return respectively.

4See “Litt om Norwegian emisjonen” at https://aksjenorge.no/aktuelt/2020/05/11/nas_mai20
20/ for the story of how new share issues affected shareholders in Norwegian Air Shuttle.

https://aksjenorge.no/aktuelt/2020/05/11/nas_mai2020/
https://aksjenorge.no/aktuelt/2020/05/11/nas_mai2020/
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Figure 5.6.1: The graph shows the total cumulative net wealth creation of companies
listed on the OSEBX from January 1980 to March 2024. Companies are sorted from largest
to smallest wealth creation.

Figure 5.6.1 shows the cumulative net wealth creation for all the companies in our

dataset. As the companies are sorted from largest to smallest wealth creation, the graph

is ascending until the companies with zero or negative wealth creation are included. By

design, the curve naturally asymptotes at 100%, as this is the net wealth created in the

market. Of the 845 companies in our dataset, only 48.9% of them generate a positive

wealth creation, which is why we see a declining development in the graph, past the

top 414 companies. The curve reaches a maximum of 161.1% by including the 414

companies that generate positive wealth, which in turn means that the gross wealth

creation in the Norwegian stock market is 61.1% larger than the net wealth creation. In

monetary value, this gross wealth creation equates to NOK 3,213 billion, compared to

NOK 1,996 billion in net wealth creation. While the top 2% of companies collectively

account for all the net wealth creation in the stock market, the bottom 2% collectively

account for 34.4% of the net wealth destruction in the Norwegian stock market. The

bottom 2% of companies thereby offset all of the collective wealth created by the middle

96% of companies.
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Figure 5.6.2: The graph shows the cumulative net wealth creation of the top 50 (by wealth
creation) companies listed on the OSEBX from January 1980 to March 2024. Companies are
sorted from largest to smallest wealth creation.

Figure 5.6.2 shows the cumulative percentage of wealth creation for the top 50 com-

panies in our dataset. Similar to Figure 5.6.1, the companies are sorted from largest

to smallest in wealth creation. All the companies included generate positive wealth in

the period 1980-2024, and the curve therefore reaches its peak at 50 companies. These

companies collectively provide a gross wealth creation of 131.1%. In other words, the

top 5.9% of companies in our dataset generate a monetary wealth equivalent to NOK

2,620 billion.
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6 Conclusion

In this thesis, we have studied the performance of Norwegian stocks in comparison to

the risk-free interest rate. In the period 1980-2024, the Norwegian stock market as

a whole, both in value-weighted and equal-weighted indices, outperform the risk-free

interest rate. However, only 43% of individual Norwegian stocks generate lifetime buy-

and-hold return which outperform the risk-free interest rate. Furthermore, less than

half of Norwegian stocks generate a lifetime buy-and-hold return greater than zero. The

excess return generated by the market as a whole, is due to high returns generated by

a small group of stocks, which emphasises the importance of positive skewness in the

distribution of individual returns.

We find that the performance of the smallest stocks (in terms of market capitalization),

generate the highest mean returns in monthly, annual and decade horizon. These

returns support the signs of a small-firm effect. Furthermore, as we progress through

the timeline, we find that newly listed stocks tend to generate lower annualized returns.

The wealth creation in the Norwegian stock market is, to a considerable extent, carried

by a few companies. 2% of the top value creating companies, represent the net gain

for the entire Norwegian stock market. The remaining 98% generate wealth equal to

the risk-free rate. The top three Norwegian stocks; Equinor, DNB Bank and Aker BP

represents half of net cumulative wealth creation throughout our timeline, i.e. January

1980 to March 2024.

Through bootstrapping, we demonstrate the effect of diversification by increasing the

number of stocks in a portfolio, and the time horizon. The time horizon positively

affects mean buy-and-hold returns and skewness, while the number of stocks positively

affects the portfolio performance, compared to the risk-free interest rate. Single-stock

portfolios, with a lifetime horizon, only outperforms the risk-free interest rate 20.45%

of the time, whilst portfolios with forty randomly chosen stocks each month, with the

same time horizon, outperforms the risk-free interest rate 76.77% of the time.
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Appendix

Appendix - Step-by-step programming

This appendix shows the step-by-step coding we have used in order to fill the tables

and figures in our thesis. We are by no means efficient programmers, - as seen by the

code provided - but following these steps will replicate the necessary statistics in order

to repeat this study with a different lifespan.

Tools: TITLON, STATA, Excel and Python

1. Download all equity data from TITLON.uit.no from 1980 to current date. Download

data on NIBOR 3-month from Norges Bank (1986-2013) and from SSB (2013-2024).

Download the data on Interbank Overnight rate (1980-1986) from Norges Bank.

2. (STATA) Transform data from daily to monthly:
r e p l a c e name = upper (name)

gen date2 = date ( date , ’YMD’ )

format date2 %td

s o r t i s i n date2

gen yearmonth = ym( year ( date2 ) , month( date2 ) )

bys i s i n yearmonth ( date2 ) : keep i f n== N

drop date2

3. (STATA) Remove observations with a market capitalization equal to zero or missing:
drop i f miss ing ( mktcap )

drop i f mktcap==0

4. (STATA) Remove stocks that only appear once:
by i s i n , s o r t : gen no\ mnth=\ N

s o r t no\ mnth

drop i f no\ mnth==1

5. (STATA) Remove all observations marked as ’ETF’:
drop i f s e c t o r ==’ETF’

6. Find stocks with abnormal returns above 600% in one month. Compare returns to
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other databases. If not verified, remove the stocks.

7. (Python) Calcualte the return, and add observations with geometric mean return

for stocks that delist for less than six months. Set return to zero for stocks that delist

longer than six months:
import pandas as pd

import numpy as np

df = pd . r ead c sv ( ’ merged . csv ’ , sep=’ ; ’ )

df = df . s o r t v a l u e s ( [ ’ i s i n ’ , ’ yearmonth ’ ] )

df [ ’ date ’ ] = pd . to date t ime ( df [ ’ date ’ ] , format=’%Y−%m−%d ’ )

df [ ’ date ’ ] = df [ ’ date ’ ] . dt . s t r f t i m e ( ’%d.%m.%Y ’ )

last yearmonth = {}

def d i f f e r e n c e ( row ) :

i s i n = row [ ’ i s i n ’ ]

yearmonth = row [ ’ yearmonth ’ ]

i f i s i n not in l a s t yearmonth :

r e s u l t = 0

else :

r e s u l t = yearmonth − l a s t yearmonth [ i s i n ]

last yearmonth [ i s i n ] = yearmonth

return r e s u l t

df [ ’ d i f f e r e n c e ’ ] = df . apply ( d i f f e r e n c e , a x i s =1)

df [ ’ r e turn ’ ]= df . groupby ( ’ i s i n ’ ) [ ’ a d j u s t e d p r i c e ’ ] . pct change ( )

def f i l l m i s s i n g r e t u r n s ( df ) :

d f = df . s o r t v a l u e s ( by=[ ’ i s i n ’ , ’ yearmonth ’ ] )

def f i l l i s i n m i s s i n g ( group ) :

rows to add = [ ]

for i in range (1 , len ( group ) ) :

c u r r e n t d i f f e r e n c e = group . i l o c [ i ] [ ’ d i f f e r e n c e ’ ]

i f 1 < c u r r e n t d i f f e r e n c e <= 6 :

previous yearmonth = group . i l o c [ i − 1 ] [ ’ yearmonth ’ ]

p r ev i ou s da t e = pd . to date t ime ( group . i l o c [ i − 1 ] [ ’ date ’ ] , format=’%d ←↩

.%m.%Y ’ )

nex t r e tu rn = group . i l o c [ i ] [ ’ r e turn ’ ]

i n t e r p o l a t e d r e t u r n = (1 + next r e tu rn ) ∗∗ (1 / c u r r e n t d i f f e r e n c e ) ←↩

− 1

last mktcap = group . i l o c [ i − 1 ] [ ’ mktcap ’ ]

f i r s t m k t c a p = group . i l o c [ i ] [ ’ mktcap ’ ]

for j in range (1 , c u r r e n t d i f f e r e n c e ) :

in te rpo la ted yearmonth = previous yearmonth + j

inte rpo la ted mktcap = last mktcap + ( f i r s t m k t c a p − l a s t mktcap ) ←↩

/ c u r r e n t d i f f e r e n c e ∗ j

i n t e r p o l a t e d d a t e = prev i ou s da t e + pd . DateOf f set ( months=j )

rows to add . append ({

’ i s i n ’ : group . i l o c [ i ] [ ’ i s i n ’ ] ,

’ yearmonth ’ : interpo lated yearmonth ,
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’ r e turn ’ : i n t e r p o l a t e d r e t u r n ,

’ mktcap ’ : interpo lated mktcap ,

’ d i f f e r e n c e ’ : 1 ,

’ companyid ’ : group . i l o c [ i ] [ ’ companyid ’ ] ,

’ i n t e r n a l c o d e ’ : group . i l o c [ i ] [ ’ i n t e r n a l c o d e ’ ] ,

’ symbol ’ : group . i l o c [ i ] [ ’ symbol ’ ] ,

’name ’ : group . i l o c [ i ] [ ’name ’ ] ,

’ date ’ : i n t e r p o l a t e d d a t e . s t r f t i m e ( ’%d.%m.%Y ’ )

})

group . at [ group . index [ i ] , ’ r e turn ’ ] = i n t e r p o l a t e d r e t u r n

group . at [ group . index [ i ] , ’ d i f f e r e n c e ’ ] = 1

i f rows to add :

new rows = pd . DataFrame ( rows to add )

group = pd . concat ( [ group , new rows ] ) . s o r t v a l u e s ( by=’ yearmonth ’ ) . ←↩

r e s e t i n d e x ( drop=True )

return group

df = df . groupby ( ’ i s i n ’ ) . apply ( f i l l i s i n m i s s i n g ) . r e s e t i n d e x ( drop=True )

return df

df = f i l l m i s s i n g r e t u r n s ( df )

df . l o c [ ( df [ ’ d i f f e r e n c e ’ ] > 6) | ( df [ ’ d i f f e r e n c e ’ ] == 0) , ’ r e turn ’ ] = 0

df . t o c s v ( ’ t i t l o n d a t a . csv ’ , index=False , sep=’ ; ’ )

8. (Excel and Python) Manually add the ’yearmonth’ variable to the files containing

risk-free interest rate. Merge the files with risk-free interest rate with the dataset

containing stock information:
import pandas as pd

import numpy as np

from f u n c t o o l s import reduce

s t o c k r e t u r n d f = pd . r ead c sv ( ’ t i t l o n d a t a . csv ’ , sep=’ ; ’ )

n ibo r86 d f = pd . r ead c sv ( ’ n ibor86 . csv ’ , sep=’ ; ’ )

n ibo r13 d f = pd . r ead c sv ( ’ n ibor13 . csv ’ , sep=’ ; ’ )

ON80 df = pd . r ead c sv ( ’ON80 . csv ’ , sep=’ ; ’ )

dataframes = [ s t o ck r e tu rn d f , n ibor86 d f , n ibor13 d f , ON80 df ]

merged df = reduce (lambda l e f t , r i g h t : pd . merge ( l e f t , r i ght , on=’ yearmonth ’ ) , ←↩

dataframes )

merged df . t o c s v ( ’ merged . csv ’ , index=False , sep=’ ; ’ )

9. (Python) Calculate necessary statistics in order to be able to group the data in

deciles based on market capitalization:
import pandas as pd

import numpy as np

import datet ime as dt

df = pd . r ead c sv ( ’ merged . csv ’ , sep=’ ; ’ )

df [ ’ date ’ ] = pd . to date t ime ( df [ ’ date ’ ] , format=’%Y−%m−%d ’ )
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df [ ’ date ’ ] = df [ ’ date ’ ] . dt . s t r f t i m e ( ’%d.%m.%Y ’ )

df [ ’ date ’ ] = pd . to date t ime ( df [ ’ date ’ ] , format=’%d.%m.%Y ’ )

df = df . s o r t v a l u e s ( [ ’ i s i n ’ , ’ yearmonth ’ ] )

df [ ’ year ’ ] = df [ ’ date ’ ] . dt . year

df [ ’ decade ’ ] = ( df [ ’ year ’ ] // 10) ∗ 10

df [ ’ l a s t mktcap year ’ ] = df . groupby ( [ ’ i s i n ’ , ’ year ’ ] ) [ ’ mktcap ’ ] . t rans form ( ’ l a s t ’ )

df [ ’ l a s t mktcap decade ’ ] = df . groupby ( [ ’ i s i n ’ , ’ decade ’ ] ) [ ’ mktcap ’ ] . t rans form ( ’ l a s t ’ ←↩

)

l a s t i n d i c e s y e a r = df . groupby ( [ ’ i s i n ’ , ’ year ’ ] ) [ ’ date ’ ] . idxmax ( )

l a s t i n d i c e s d e c a d e = df . groupby ( [ ’ i s i n ’ , ’ decade ’ ] ) [ ’ date ’ ] . idxmax ( )

df [ ’ prevyr ’ ] = pd .NA

df [ ’ prevdec ’ ] = pd .NA

for idx in l a s t i n d i c e s y e a r :

next year row = df [ ( df [ ’ i s i n ’ ] == df . l o c [ idx , ’ i s i n ’ ] ) & ( df [ ’ year ’ ] == df . l o c [ ←↩

idx , ’ year ’ ] + 1) & ( df [ ’ date ’ ] == df [ ( df [ ’ i s i n ’ ] == df . l o c [ idx , ’ i s i n ’ ] ) & ←↩

( df [ ’ year ’ ] == df . l o c [ idx , ’ year ’ ] + 1) ] [ ’ date ’ ] .max( ) ) ]

i f not next year row . empty :

df . l o c [ next year row . index , ’ prevyr ’ ] = df . l o c [ idx , ’ l a s t mktcap year ’ ]

for idx in l a s t i n d i c e s d e c a d e :

next decade row = df [ ( df [ ’ i s i n ’ ] == df . l o c [ idx , ’ i s i n ’ ] ) & ( df [ ’ decade ’ ] == df . ←↩

l o c [ idx , ’ decade ’ ] + 10) & ( df [ ’ date ’ ] == df [ ( df [ ’ i s i n ’ ] == df . l o c [ idx , ’ ←↩

i s i n ’ ] ) & ( df [ ’ decade ’ ] == df . l o c [ idx , ’ decade ’ ] + 10) ] [ ’ date ’ ] .max( ) ) ]

i f not next decade row . empty :

df . l o c [ next decade row . index , ’ prevdec ’ ] = df . l o c [ idx , ’ l a s t mktcap decade ’ ]

d f . drop ( [ ’ l a s t mktcap year ’ , ’ l a s t mktcap decade ’ ] , a x i s =1, i n p l a c e=True )

df . t o c s v ( ’ p r e d e c i l e . csv ’ , index=False , sep=’ ; ’ )

10. (STATA) Create a column which groups the dataset in deciles based on market

capitalization (Also possible in Python, however we were not able to get the correct

grouping):
s s c i n s t a l l egenmore

gen prevmnth=.

r e p l a c e prevmnth=mktcap [ n −1] i f yearmonth>yearmonth [ n −1] & i s i n==i s i n [ n −1]

egen month lydec i l e=x t i l e =(prevmnth ) , by ( yearmonth ) nq (10)

egen y e a r l y d e c i l e=x t i l e =(prevyr ) , by ( year ) nq (10)

egen d e c a d e d e c i l e=x t i l e =(prevdec ) , by ( decade ) nq (10)

11. (Python) Calculate necessary statistics in order to fill Tables 5.1.1, 5.2.1, 5.3.1, and

5.4.1.
import pandas as pd

import numpy as np

import datet ime as dt

df = pd . r ead c sv ( ’ merged . csv ’ , sep=’ ; ’ )

df [ ’ date ’ ] = pd . to date t ime ( df [ ’ date ’ ] , format=’%Y−%m−%d ’ )
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df [ ’ date ’ ] = df [ ’ date ’ ] . dt . s t r f t i m e ( ’%d.%m.%Y ’ )

df [ ’ date ’ ] = pd . to date t ime ( df [ ’ date ’ ] , format=’%d.%m.%Y ’ )

df = df . s o r t v a l u e s ( [ ’ i s i n ’ , ’ yearmonth ’ ] )

f i r s t y e a r m o n t h p e r i s i n = df . groupby ( ’ i s i n ’ ) [ ’ yearmonth ’ ] . f i r s t ( )

l a s t y e a r m o n t h p e r i s i n = df . groupby ( ’ i s i n ’ ) [ ’ yearmonth ’ ] . l a s t ( )

m o n t h s a l i v e p e r i s i n = ( l a s t y e a r m o n t h p e r i s i n − f i r s t y e a r m o n t h p e r i s i n ) + 1

df [ ’ no mnth ’ ] = df [ ’ i s i n ’ ] .map( m o n t h s a l i v e p e r i s i n )

df [ ’ totmktcap ’ ] = df . groupby ( ’ yearmonth ’ ) [ ’ mktcap ’ ] . t rans form ( ’sum ’ )

df [ ’ va lueweight ’ ] = df [ ’ mktcap ’ ] / df [ ’ totmktcap ’ ]

d f [ ’ vw return ’ ] = df [ ’ r e turn ’ ] ∗ df [ ’ va lueweight ’ ]

d f [ ’ unik ’ ] = df . groupby ( ’ yearmonth ’ ) [ ’ yearmonth ’ ] . t rans form ( ’ count ’ )

df [ ’ n u l l ’ ] = ( df [ ’ d i f f e r e n c e ’ ] != 0) & ( df [ ’ d i f f e r e n c e ’ ] <= 6)

df [ ’ n u l l ’ ] = df . groupby ( df [ ’ yearmonth ’ ] ) [ ’ n u l l ’ ] . t rans form ( ’sum ’ )

df [ ’ l v r e t u r n ’ ] = df [ ’ r e turn ’ ] / ( df [ ’ n u l l ’ ] )

df [ ’ ew ’ ] = df . groupby ( ’ yearmonth ’ ) [ ’ l v r e t u r n ’ ] . t rans form ( ’sum ’ )

df [ ’vw ’ ] = df . groupby ( ’ yearmonth ’ ) [ ’ vw return ’ ] . t rans form ( ’sum ’ )

df [ ’ p o s i t i v e ’ ]=( df [ ’ r e turn ’ ] >0) . astype ( int )

df [ ’ biggervw ’ ]=( df [ ’ r e turn ’ ]> df [ ’vw ’ ] ) . astype ( int )

df [ ’ b i g g e r i n t ’ ]=( df [ ’ r e turn ’ ]> df [ ’ i n t e r e s t ’ ] ) . astype ( int )

def c a l c u l a t e c u m u l a t i v e r e t u r n s ( df , column name , g r o u p i n g c o l s ) :

d f [ f ’ cumulat ive {column name} ’ ] = (1 + df [ column name ] ) . groupby ( df [ g r o u p i n g c o l s ←↩

[ 0 ] ] ) . cumprod ( ) − 1

df [ f ’ y ea r l y cumu la t i v e {column name} ’ ] = (1 + df [ column name ] ) . groupby ( [ df [ ←↩

g r o u p i n g c o l s [ 0 ] ] , d f [ ’ year ’ ] ] ) . cumprod ( ) − 1

l a s t r o w y e a r = df . groupby ( g r o u p i n g c o l s + [ ’ year ’ ] ) . t a i l ( 1 ) . index

df . l o c [ l a s t r ow yea r , f ’ y e a r l y l a s t c u m u l a t i v e {column name} ’ ] = df . groupby ( ←↩

g r o u p i n g c o l s + [ ’ year ’ ] ) [ f ’ y ea r l y cumu la t i v e {column name} ’ ] . t rans form ( ’ ←↩

l a s t ’ )

df [ f ’ decade cumulat ive {column name} ’ ] = (1 + df [ column name ] ) . groupby ( [ df [ ←↩

g r o u p i n g c o l s [ 0 ] ] , d f [ ’ decade ’ ] ] ) . cumprod ( ) − 1

l a s t r ow decade = df . groupby ( g r o u p i n g c o l s + [ ’ decade ’ ] ) . t a i l ( 1 ) . index

df . l o c [ l a s t row decade , f ’ d e c a d e l a s t c u m u l a t i v e {column name} ’ ] = df . groupby ( ←↩

g r o u p i n g c o l s + [ ’ decade ’ ] ) [ f ’ decade cumulat ive {column name} ’ ] . t rans form ( ’ ←↩

l a s t ’ )

l a s t r o w = df . groupby ( g r o u p i n g c o l s [ 0 ] ) . t a i l ( 1 ) . index

df . l o c [ l a s t row , f ’ l i f e t i m e l a s t c u m u l a t i v e {column name} ’ ] = df . groupby ( ←↩

g r o u p i n g c o l s [ 0 ] ) [ f ’ cumulat ive {column name} ’ ] . t rans form ( ’ l a s t ’ )

c a l c u l a t e c u m u l a t i v e r e t u r n s ( df , ’ r e turn ’ , [ ’ i s i n ’ ] )

c a l c u l a t e c u m u l a t i v e r e t u r n s ( df , ’vw ’ , [ ’ i s i n ’ ] )

c a l c u l a t e c u m u l a t i v e r e t u r n s ( df , ’ ew ’ , [ ’ i s i n ’ ] )

c a l c u l a t e c u m u l a t i v e r e t u r n s ( df , ’ i n t e r e s t ’ , [ ’ i s i n ’ ] )

df [ ’ l a s t o b s ’ ] = df . groupby ( ’ i s i n ’ ) [ ’ yearmonth ’ ] . t rans form ( ’ l a s t ’ )

df [ ’ l i s t i n g s t a t u s ’ ] = ’ d e l i s t e d ’

df . l o c [ df [ ’ l a s t o b s ’ ] == df [ ’ yearmonth ’ ] .max( ) , ’ l i s t i n g s t a t u s ’ ] = ’ l i s t e d ’

cur rent compounded inte re s t = 0

for yearmonth , group in df . groupby ( ’ yearmonth ’ ) :

f i r s t m o n t h l y i n t e r e s t = group [ ’ i n t e r e s t ’ ] . i l o c [0 ]+1
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i f cur rent compounded inte re s t == 0 :

cur rent compounded inte re s t = f i r s t m o n t h l y i n t e r e s t

else :

cur rent compounded inte re s t ∗= f i r s t m o n t h l y i n t e r e s t

df . l o c [ group . index , ’ t o t a l c omp month ly in t e r e s t ’ ] = current compounded inte re s t ←↩

− 1

current compounded ew = 0

for yearmonth , group in df . groupby ( ’ yearmonth ’ ) :

f i r s t month ly ew = group [ ’ ew ’ ] . i l o c [0 ]+1

i f current compounded ew == 0 :

current compounded ew = f i r s t month ly ew

else :

current compounded ew ∗= f i r s t month ly ew

df . l o c [ group . index , ’ total comp monthly ewmarket ’ ] = current compounded ew − 1

current compounded vw = 0

for yearmonth , group in df . groupby ( ’ yearmonth ’ ) :

f i r s t month ly vw = group [ ’vw ’ ] . i l o c [0 ]+1

i f current compounded vw == 0 :

current compounded vw = f i r s t month ly vw

else :

current compounded vw ∗= f i r s t month ly vw

df . l o c [ group . index , ’ total comp monthly vwmarket ’ ] = current compounded vw − 1

def create compar i son co lumn ( df , co l1 , co l2 , new column name ) :

mask = df [ co l 1 ] . notna ( ) & df [ c o l 2 ] . notna ( )

df [ new column name ] = ( df . l o c [ mask , co l 1 ] > df . l o c [ mask , co l 2 ] ) . mean ( )

create compar i son co lumn ( df , ’ r e turn ’ , ’ ew ’ , ’ monthly vs ew ’ )

create compar i son co lumn ( df , ’ r e turn ’ , ’vw ’ , ’ monthly vs vw ’ )

create compar i son co lumn ( df , ’ r e turn ’ , ’ i n t e r e s t ’ , ’ m o n t h l y v s i n t e r e s t ’ )

create compar i son co lumn ( df , ’ y e a r l y l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

y e a r l y l a s t c u m u l a t i v e e w ’ , ’ y ea r l y v s ew ’ )

create compar i son co lumn ( df , ’ y e a r l y l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

y e a r l y l a s t c u m u l a t i v e v w ’ , ’ year ly vs vw ’ )

create compar i son co lumn ( df , ’ y e a r l y l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

y e a r l y l a s t c u m u l a t i v e i n t e r e s t ’ , ’ y e a r l y v s i n t e r e s t ’ )

create compar i son co lumn ( df , ’ d e c a d e l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

decade l a s t cumula t ive ew ’ , ’ decade vs ew ’ )

create compar i son co lumn ( df , ’ d e c a d e l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

decade la s t cumula t ive vw ’ , ’ decade vs vw ’ )

create compar i son co lumn ( df , ’ d e c a d e l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

d e c a d e l a s t c u m u l a t i v e i n t e r e s t ’ , ’ d e c a d e v s i n t e r e s t ’ )

create compar i son co lumn ( df , ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

l i f e t i m e l a s t c u m u l a t i v e e w ’ , ’ l i f e v s e w ’ )

create compar i son co lumn ( df , ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

l i f e t i m e l a s t c u m u l a t i v e v w ’ , ’ l i f e v s v w ’ )

create compar i son co lumn ( df , ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

l i f e t i m e l a s t c u m u l a t i v e i n t e r e s t ’ , ’ l i f e v s i n t e r e s t ’ )

def ca l cu la t e cumula t ive sum ( df , column name , g r o u p i n g c o l s ) :
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df [ f ’ sum {column name} ’ ] = df . groupby ( g r o u p i n g c o l s [ 0 ] ) [ column name ] . cumsum( )

df [ f ’ year ly sum {column name} ’ ] = df . groupby ( [ g r o u p i n g c o l s [ 0 ] , d f [ ’ year ’ ] ] ) [ ←↩

column name ] . cumsum( )

l a s t r o w y e a r = df . groupby ( g r o u p i n g c o l s + [ ’ year ’ ] ) . t a i l ( 1 ) . index

df . l o c [ l a s t r ow yea r , f ’ y e a r l y l a s t s u m {column name} ’ ] = df . groupby ( ←↩

g r o u p i n g c o l s + [ ’ year ’ ] ) [ f ’ year ly sum {column name} ’ ] . t rans form ( ’ l a s t ’ )

df [ f ’ decade sum {column name} ’ ] = df . groupby ( [ g r o u p i n g c o l s [ 0 ] , d f [ ’ decade ’ ] ] ) [ ←↩

column name ] . cumsum( )

l a s t r ow decade = df . groupby ( g r o u p i n g c o l s + [ ’ decade ’ ] ) . t a i l ( 1 ) . index

df . l o c [ l a s t row decade , f ’ decade la s t sum {column name} ’ ] = df . groupby ( ←↩

g r o u p i n g c o l s + [ ’ decade ’ ] ) [ f ’ decade sum {column name} ’ ] . t rans form ( ’ l a s t ’ )

l a s t r o w = df . groupby ( g r o u p i n g c o l s [ 0 ] ) . t a i l ( 1 ) . index

df . l o c [ l a s t row , f ’ l i f e t i m e l a s t s u m {column name} ’ ] = df . groupby ( g r o u p i n g c o l s ←↩

[ 0 ] ) [ f ’ sum {column name} ’ ] . t rans form ( ’ l a s t ’ )

months in year = df . groupby ( [ ’ i s i n ’ , ’ year ’ ] ) [ ’ yearmonth ’ ] . t rans form (lambda x : x .max ←↩

( ) − x .min( ) + 1)

months in decade = df . groupby ( [ ’ i s i n ’ , ’ decade ’ ] ) [ ’ yearmonth ’ ] . t rans form (lambda x : x ←↩

.max( ) − x .min( ) + 1)

m o n t h s i n l i f e=df . groupby ( [ ’ i s i n ’ ] ) [ ’ yearmonth ’ ] . t rans form (lambda x : x .max( ) − x .min ←↩

( ) + 1)

l a s t r o w y e a r = df . groupby ( [ ’ i s i n ’ , ’ year ’ ] ) . t a i l ( 1 ) . index

l a s t r ow decade = df . groupby ( [ ’ i s i n ’ , ’ decade ’ ] ) . t a i l ( 1 ) . index

l a s t r o w l i f e = df . groupby ( [ ’ i s i n ’ ] ) . t a i l ( 1 ) . index

df . l o c [ l a s t r ow yea r , ’ y ea r l y g eomet r i c ’ ] = ( (1 + df . groupby ( [ ’ i s i n ’ , ’ year ’ ] ) [ ’ ←↩

y e a r l y l a s t c u m u l a t i v e r e t u r n ’ ] . t rans form ( ’ l a s t ’ ) ) ∗∗ (1 / months in year ) ) − 1

df . l o c [ l a s t row decade , ’ decade geometr i c ’ ] = ( (1 + df . groupby ( [ ’ i s i n ’ , ’ decade ’ ] ) [ ’ ←↩

d e c a d e l a s t c u m u l a t i v e r e t u r n ’ ] . t rans form ( ’ l a s t ’ ) ) ∗∗ (1 / months in decade ) ) − ←↩

1

df . l o c [ l a s t r o w l i f e , ’ l i f e g e o m e t r i c ’ ] = ( (1 + df . groupby ( [ ’ i s i n ’ ] ) [ ’ ←↩

l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ ] . t rans form ( ’ l a s t ’ ) ) ∗∗ (1 / m o n t h s i n l i f e ) ) − ←↩

1

ca l cu la t e cumula t ive sum ( df , ’ r e turn ’ , [ ’ i s i n ’ ] )

def c r ea t e po s i t i v i t y me an co lumn s ( df , co l , new column name ) :

mask = df [ c o l ] . notna ( )

df [ new column name ] = ( df . l o c [ mask , c o l ] > 0) . mean ( )

c r ea t e po s i t i v i t y me an co lumn s ( df , ’ r e turn ’ , ’ no pos mnth return ’ )

c r ea t e po s i t i v i t y me an co lumn s ( df , ’ y e a r l y l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

no po s yea r r e tu rn ’ )

c r ea t e po s i t i v i t y me an co lumn s ( df , ’ d e c a d e l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

no pos decade re turn ’ )

c r ea t e po s i t i v i t y me an co lumn s ( df , ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

n o p o s l i f e r e t u r n ’ )

c r ea t e po s i t i v i t y me an co lumn s ( df , ’ i n t e r e s t ’ , ’ no pos mnth in t e r e s t ’ )

c r e a t e po s i t i v i t y me an co lumn s ( df , ’ y e a r l y l a s t c u m u l a t i v e i n t e r e s t ’ , ’ ←↩

n o p o s y e a r i n t e r e s t ’ )

c r e a t e po s i t i v i t y me an co lumn s ( df , ’ d e c a d e l a s t c u m u l a t i v e i n t e r e s t ’ , ’ ←↩

n o p o s d e c a d e i n t e r e s t ’ )
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c r ea t e po s i t i v i t y me an co lumn s ( df , ’ l i f e t i m e l a s t c u m u l a t i v e i n t e r e s t ’ , ’ ←↩

n o p o s l i f e i n t e r e s t ’ )

c r e a t e po s i t i v i t y me an co lumn s ( df , ’ y e a r l y l a s t s u m r e t u r n ’ , ’ no pos year sum ’ )

c r ea t e po s i t i v i t y me an co lumn s ( df , ’ d e cade l a s t sum re tu rn ’ , ’ no pos decade sum ’ )

c r ea t e po s i t i v i t y me an co lumn s ( df , ’ l i f e t i m e l a s t s u m r e t u r n ’ , ’ n o p o s l i f e s u m ’ )

c r ea t e po s i t i v i t y me an co lumn s ( df , ’ y ea r l y g eomet r i c ’ , ’ no pos yea r geo ’ )

c r ea t e po s i t i v i t y me an co lumn s ( df , ’ decade geometr i c ’ , ’ no pos decade geo ’ )

c r ea t e po s i t i v i t y me an co lumn s ( df , ’ l i f e g e o m e t r i c ’ , ’ n o p o s l i f e g e o ’ )

def f romstatus ( df , co l , new column name , s t a t u s ) :

status mask = df [ ’ l i s t i n g s t a t u s ’ ] == s t a t u s

mask = df [ c o l ] . notna ( ) & status mask

df [ new column name ] = ( df . l o c [ mask , c o l ] > 0) . mean ( )

f romstatus ( df , ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ , ’ n o p o s l i f e r e t u r n d e l i s t e d ’ , ’ ←↩

d e l i s t e d ’ )

f romstatus ( df , ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ , ’ n o p o s l i f e r e t u r n l i s t e d ’ , ’ ←↩

l i s t e d ’ )

f romstatus ( df , ’ l i f e t i m e l a s t c u m u l a t i v e i n t e r e s t ’ , ’ n o p o s l i f e i n t e r e s t d e l i s t e d ’ , ←↩

’ d e l i s t e d ’ )

f romstatus ( df , ’ l i f e t i m e l a s t c u m u l a t i v e i n t e r e s t ’ , ’ n o p o s l i f e i n t e r e s t l i s t e d ’ , ’ ←↩

l i s t e d ’ )

f romstatus ( df , ’ l i f e t i m e l a s t s u m r e t u r n ’ , ’ n o p o s l i f e s u m d e l i s t e d ’ , ’ d e l i s t e d ’ )

f romstatus ( df , ’ l i f e t i m e l a s t s u m r e t u r n ’ , ’ n o p o s l i f e s u m l i s t e d ’ , ’ l i s t e d ’ )

f romstatus ( df , ’ l i f e g e o m e t r i c ’ , ’ n o p o s l i f e g e o d e l i s t e d ’ , ’ d e l i s t e d ’ )

f romstatus ( df , ’ l i f e g e o m e t r i c ’ , ’ n o p o s l i f e g e o l i s t e d ’ , ’ l i s t e d ’ )

def comparestatus ( df , co l1 , co l2 , new column name , s t a t u s ) :

status mask = df [ ’ l i s t i n g s t a t u s ’ ] == s t a t u s

mask = df [ co l 1 ] . notna ( ) & df [ c o l 2 ] . notna ( ) & status mask

df [ new column name ] = ( df . l o c [ mask , co l 1 ] > df . l o c [ mask , co l 2 ] ) . mean ( )

comparestatus ( df , ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ , ’ l i f e t i m e l a s t c u m u l a t i v e e w ’ , ←↩

’ l i f e v s e w l i s t e d ’ , ’ l i s t e d ’ )

comparestatus ( df , ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ , ’ l i f e t i m e l a s t c u m u l a t i v e v w ’ , ←↩

’ l i f e v s v w l i s t e d ’ , ’ l i s t e d ’ )

comparestatus ( df , ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

l i f e t i m e l a s t c u m u l a t i v e i n t e r e s t ’ , ’ l i f e v s i n t e r e s t l i s t e d ’ , ’ l i s t e d ’ )

comparestatus ( df , ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ , ’ l i f e t i m e l a s t c u m u l a t i v e e w ’ , ←↩

’ l i f e v s e w d e l i s t e d ’ , ’ d e l i s t e d ’ )

comparestatus ( df , ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ , ’ l i f e t i m e l a s t c u m u l a t i v e v w ’ , ←↩

’ l i f e v s v w d e l i s t e d ’ , ’ d e l i s t e d ’ )

comparestatus ( df , ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ , ’ ←↩

l i f e t i m e l a s t c u m u l a t i v e i n t e r e s t ’ , ’ l i f e v s i n t e r e s t d e l i s t e d ’ , ’ d e l i s t e d ’ )

df [ ’ month lydec i l e pos ’ ] = df . groupby ( ’ month lydec i l e ’ ) [ ’ r e turn ’ ] . t rans form (lambda x : ←↩

( x > 0) . mean ( ) )

df [ ’ y e a r l y d e c i l e p o s ’ ] = df . groupby ( ’ y e a r l y d e c i l e ’ ) [ ’ y e a r l y l a s t c u m u l a t i v e r e t u r n ’ ←↩

] . t rans form (lambda x : ( x > 0) . mean ( ) )

df [ ’ d e c a d e d e c i l e p o s ’ ] = df . groupby ( ’ d e c a d e d e c i l e ’ ) [ ’ d e c a d e l a s t c u m u l a t i v e r e t u r n ’ ←↩

] . t rans form (lambda x : ( x > 0) . mean ( ) )

df [ ’ monthlydec i le vw ’ ] = df [ ’ r e turn ’ ] > df [ ’vw ’ ]
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df [ ’ monthlydec i le vw ’ ] = df . groupby ( ’ month lydec i l e ’ ) [ ’ monthlydec i le vw ’ ] . t rans form ( ’ ←↩

mean ’ )

df [ ’ m o n t h l y d e c i l e i n t ’ ] = df [ ’ r e turn ’ ] > df [ ’ i n t e r e s t ’ ]

d f [ ’ m o n t h l y d e c i l e i n t ’ ] = df . groupby ( ’ month lydec i l e ’ ) [ ’ m o n t h l y d e c i l e i n t ’ ] . t rans form ←↩

( ’mean ’ )

df [ ’ monthlydec i l e ew ’ ] = df [ ’ r e turn ’ ] > df [ ’ ew ’ ]

df [ ’ monthlydec i l e ew ’ ] = df . groupby ( ’ month lydec i l e ’ ) [ ’ monthlydec i l e ew ’ ] . t rans form ( ’ ←↩

mean ’ )

df [ ’ y e a r l y d e c i l e v w ’ ] = df [ ’ y e a r l y l a s t c u m u l a t i v e r e t u r n ’ ] > df [ ’ ←↩

y e a r l y l a s t c u m u l a t i v e v w ’ ]

df [ ’ y e a r l y d e c i l e v w ’ ] = df . groupby ( ’ y e a r l y d e c i l e ’ ) [ ’ y e a r l y d e c i l e v w ’ ] . t rans form ( ’ ←↩

mean ’ )

df [ ’ y e a r l y d e c i l e i n t ’ ] = df [ ’ y e a r l y l a s t c u m u l a t i v e r e t u r n ’ ] > df [ ’ ←↩

y e a r l y l a s t c u m u l a t i v e i n t e r e s t ’ ]

d f [ ’ y e a r l y d e c i l e i n t ’ ] = df . groupby ( ’ y e a r l y d e c i l e ’ ) [ ’ y e a r l y d e c i l e i n t ’ ] . t rans form ( ’ ←↩

mean ’ )

df [ ’ y e a r l y d e c i l e e w ’ ] = df [ ’ y e a r l y l a s t c u m u l a t i v e r e t u r n ’ ] > df [ ’ ←↩

y e a r l y l a s t c u m u l a t i v e e w ’ ]

df [ ’ y e a r l y d e c i l e e w ’ ] = df . groupby ( ’ y e a r l y d e c i l e ’ ) [ ’ y e a r l y d e c i l e e w ’ ] . t rans form ( ’ ←↩

mean ’ )

df [ ’ decadedec i l e vw ’ ] = df [ ’ d e c a d e l a s t c u m u l a t i v e r e t u r n ’ ] > df [ ’ ←↩

decade la s t cumula t ive vw ’ ]

df [ ’ decadedec i l e vw ’ ] = df . groupby ( ’ d e c a d e d e c i l e ’ ) [ ’ decadedec i l e vw ’ ] . t rans form ( ’ ←↩

mean ’ )

df [ ’ d e c a d e d e c i l e i n t ’ ] = df [ ’ d e c a d e l a s t c u m u l a t i v e r e t u r n ’ ] > df [ ’ ←↩

d e c a d e l a s t c u m u l a t i v e i n t e r e s t ’ ]

d f [ ’ d e c a d e d e c i l e i n t ’ ] = df . groupby ( ’ d e c a d e d e c i l e ’ ) [ ’ d e c a d e d e c i l e i n t ’ ] . t rans form ( ’ ←↩

mean ’ )

df [ ’ decadedec i l e ew ’ ] = df [ ’ d e c a d e l a s t c u m u l a t i v e r e t u r n ’ ] > df [ ’ ←↩

decade l a s t cumula t ive ew ’ ]

df [ ’ decadedec i l e ew ’ ] = df . groupby ( ’ d e c a d e d e c i l e ’ ) [ ’ decadedec i l e ew ’ ] . t rans form ( ’ ←↩

mean ’ )

df . t o c s v ( ’ withoutwealth . csv ’ , index=False , sep=’ ; ’ )

12. (Python) Bootstrap 20,000 different value-weighted portfolio returns per ’year-

month’ in the dataset (set ’n=1’ to the desired portfolio size):
import pandas as pd

import numpy as np

from datet ime import datet ime

df = pd . r ead c sv ( ’ withoutwealth . csv ’ , sep=’ ; ’ )

df = df . s o r t v a l u e s ( by=’ yearmonth ’ )

num simulat ions = 20000

s im u la t e d r e t u rn s = [ ]

unique months = df [ ’ yearmonth ’ ] . unique ( )

for sim num in range (1 , num simulat ions + 1) :

s e l e c t e d s t o c k s = df . groupby ( ’ yearmonth ’ ) . sample (n=1, r e p l a c e=True )
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t o t a l ma rke t va lu e = s e l e c t e d s t o c k s . groupby ( ’ yearmonth ’ ) [ ’ mktcap ’ ] . t rans form ( ’ ←↩

sum ’ )

s e l e c t e d s t o c k s [ ’ weight ’ ] = s e l e c t e d s t o c k s [ ’ mktcap ’ ] / t o t a l ma rke t va lu e

s e l e c t e d s t o c k s [ ’ we ighted re turn ’ ] = s e l e c t e d s t o c k s [ ’ r e turn ’ ] ∗ s e l e c t e d s t o c k s ←↩

[ ’ weight ’ ]

monthly returns = s e l e c t e d s t o c k s . groupby ( ’ yearmonth ’ ) [ ’ we ighted re turn ’ ] . sum( ) . ←↩

t o l i s t ( )

s im u la t e d r e t u rn s . append ( monthly returns )

i f sim num % 10 == 0 :

print ( f ’ S imulat ion  {sim num}  done  at  {datet ime . now ( ) } . ’ )

s im u l a t e d r e t u rn s = np . array ( s im u la t e d r e t u rn s ) . reshape (−1 , len ( unique months ) ) .T

s i m u l a t e d r e t u r n s d f = pd . DataFrame ( s im u la t e d r e t u rn s )

s i m u l a t e d r e t u r n s d f . columns = [ f ’ sim{sim num} ’ for sim num in range (1 , ←↩

num simulat ions + 1) ]

s i m u l a t e d r e t u r n s d f . t o c s v ( ’ 1 s t o c k b o o t s t r a p . csv ’ , index=False , sep=’ ; ’ )

13. (Python) Link the bootstrap returns to annual, decade and lifetime buy-and-hold

returns and compare them to the benchmarks in order to fill Table 5.5.1:

Annual:
import pandas as pd

import numpy as np

df = pd . r ead c sv ( ’1 s t o c k b o o t s t r a p . csv ’ , sep = ’ ; ’ )

return co lumns = [ c o l f o r c o l in df . columns i f c o l . s t a r t s w i t h ( ’ vwmean ’ ) ]

f o r c o l in return co lumns :

df [ c o l ] = df . groupby ( ’ year ’ ) [ c o l ] . t rans form ( lambda x : (1 + x ) . cumprod ( ) − 1)

df [ ’ i n t e r e s t ’ ] = df . groupby ( ’ year ’ ) [ ’ i n t e r e s t ’ ] . t rans form ( lambda x : (1 + x ) . cumprod ←↩

( ) − 1)

df [ ’ vw ’ ] = df . groupby ( ’ year ’ ) [ ’ vw ’ ] . t rans form ( lambda x : (1 + x ) . cumprod ( ) − 1)

df = df . groupby ( ’ year ’ ) . t a i l ( 1 )

de f compare in t e r e s t ( row ) :

vwmean cols = [ row [ c o l ] f o r c o l in return co lumns ]

i n t e r e s t v a l = row [ ’ i n t e r e s t ’ ]

p r o p o r t i o n g r e a t e r = sum ( [ 1 f o r va l in vwmean cols i f va l > i n t e r e s t v a l ] ) / l en ←↩

( vwmean cols )

r e turn p r o p o r t i o n g r e a t e r

de f compare vw ( row ) :

vwmean cols = [ row [ c o l ] f o r c o l in return co lumns ]

vw val = row [ ’ vw ’ ]

p r o p o r t i o n g r e a t e r = sum ( [ 1 f o r va l in vwmean cols i f va l > vw val ] ) / l en ( ←↩

vwmean cols )

r e turn p r o p o r t i o n g r e a t e r

de f compare zero ( row ) :

vwmean cols = [ row [ c o l ] f o r c o l in return co lumns ]

z e r o v a l = 0

p r o p o r t i o n g r e a t e r = sum ( [ 1 f o r va l in vwmean cols i f va l > z e r o v a l ] ) / l en ( ←↩
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vwmean cols )

r e turn p r o p o r t i o n g r e a t e r

df [ ’ r e t v s i n t ’ ] = df . apply ( compare inte re s t , a x i s =1)

df [ ’ retvs vw ’ ] = df . apply ( compare vw , a x i s =1)

df [ ’ r e tv s 0 ’ ] = df . apply ( compare zero , a x i s =1)

df [ ’ r e t v s i n t ’ ]= df [ ’ r e t v s i n t ’ ] . mean ( )

df [ ’ retvs vw ’ ]= df [ ’ retvs vw ’ ] . mean ( )

df [ ’ r e tv s 0 ’ ]= df [ ’ r e tv s 0 ’ ] . mean ( )

f o r c o l in return co lumns :

df [ c o l ]= df [ c o l ] . mean ( )

df=df . t a i l ( 1 )

df [ ’ avgret ’ ]= df [ return co lumns ] . mean( a x i s =1)

df=df . t ranspose ( )

df . t o c s v ( ’1 s t o c k b o o t s t r a p y r . csv ’ , index=False , sep = ’ ; ’ )

Decade:

import pandas as pd

import numpy as np

df = pd . r ead c sv ( ’ 1 aks j eboot . csv ’ , sep=’ ; ’ )

return co lumns = [ c o l for c o l in df . columns i f c o l . s t a r t s w i t h ( ’vwmean ’ ) ]

for c o l in return co lumns :

df [ c o l ] = df . groupby ( ’ decade ’ ) [ c o l ] . t rans form (lambda x : (1 + x ) . cumprod ( ) − 1)

df [ ’ i n t e r e s t ’ ] = df . groupby ( ’ decade ’ ) [ ’ i n t e r e s t ’ ] . t rans form (lambda x : (1 + x ) . ←↩

cumprod ( ) − 1)

df [ ’vw ’ ] = df . groupby ( ’ decade ’ ) [ ’vw ’ ] . t rans form (lambda x : (1 + x ) . cumprod ( ) − 1)

df = df . groupby ( ’ decade ’ ) . t a i l ( 1 )

def compare in t e r e s t ( row ) :

vwmean cols = [ row [ c o l ] for c o l in return co lumns ]

i n t e r e s t v a l = row [ ’ i n t e r e s t ’ ]

p r o p o r t i o n g r e a t e r = sum( [ 1 for va l in vwmean cols i f va l > i n t e r e s t v a l ] ) / len ←↩

( vwmean cols )

return p r o p o r t i o n g r e a t e r

def compare vw ( row ) :

vwmean cols = [ row [ c o l ] for c o l in return co lumns ]

vw val = row [ ’vw ’ ]

p r o p o r t i o n g r e a t e r = sum( [ 1 for va l in vwmean cols i f va l > vw val ] ) / len ( ←↩

vwmean cols )

return p r o p o r t i o n g r e a t e r

def compare zero ( row ) :

vwmean cols = [ row [ c o l ] for c o l in return co lumns ]

z e r o v a l = 0

p r o p o r t i o n g r e a t e r = sum( [ 1 for va l in vwmean cols i f va l > z e r o v a l ] ) / len ( ←↩

vwmean cols )

return p r o p o r t i o n g r e a t e r

df [ ’ r e t v s i n t ’ ] = df . apply ( compare inte re s t , a x i s =1)

df [ ’ retvs vw ’ ] = df . apply ( compare vw , a x i s =1)
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df [ ’ r e t v s 0 ’ ] = df . apply ( compare zero , a x i s =1)

df [ ’ r e t v s i n t ’ ]= df [ ’ r e t v s i n t ’ ] . mean ( )

df [ ’ retvs vw ’ ]= df [ ’ retvs vw ’ ] . mean ( )

df [ ’ r e t v s 0 ’ ]= df [ ’ r e t v s 0 ’ ] . mean ( )

for c o l in return co lumns :

df [ c o l ]= df [ c o l ] . mean ( )

df=df . t a i l ( 1 )

df [ ’ avgret ’ ]= df [ return co lumns ] . mean( a x i s =1)

df=df . t ranspose ( )

df . t o c s v ( ’ 1 s t o c k b o o t s t r a p d e c . csv ’ , index=False , sep=’ ; ’ )

Lifetime:

import pandas as pd

import numpy as np

df = pd . r ead c sv ( ’ 1 aks j eboot . csv ’ , sep=’ ; ’ )

return co lumns = [ c o l for c o l in df . columns i f c o l . s t a r t s w i t h ( ’vwmean ’ ) ]

for c o l in return co lumns :

df [ c o l ] = df [ c o l ] . t rans form (lambda x : (1 + x ) . cumprod ( ) − 1)

df [ ’ i n t e r e s t ’ ] = df [ ’ i n t e r e s t ’ ] . t rans form (lambda x : (1 + x ) . cumprod ( ) − 1)

df [ ’vw ’ ] = df [ ’vw ’ ] . t rans form (lambda x : (1 + x ) . cumprod ( ) − 1)

df=df . t a i l ( 1 )

def compare in t e r e s t ( row ) :

vwmean cols = [ row [ c o l ] for c o l in return co lumns ]

i n t e r e s t v a l = row [ ’ i n t e r e s t ’ ]

p r o p o r t i o n g r e a t e r = sum( [ 1 for va l in vwmean cols i f va l > i n t e r e s t v a l ] ) / len ←↩

( vwmean cols )

return p r o p o r t i o n g r e a t e r

def compare vw ( row ) :

vwmean cols = [ row [ c o l ] for c o l in return co lumns ]

vw val = row [ ’vw ’ ]

p r o p o r t i o n g r e a t e r = sum( [ 1 for va l in vwmean cols i f va l > vw val ] ) / len ( ←↩

vwmean cols )

return p r o p o r t i o n g r e a t e r

def compare zero ( row ) :

vwmean cols = [ row [ c o l ] for c o l in return co lumns ]

z e r o v a l = 0

p r o p o r t i o n g r e a t e r = sum( [ 1 for va l in vwmean cols i f va l > z e r o v a l ] ) / len ( ←↩

vwmean cols )

return p r o p o r t i o n g r e a t e r

df [ ’ r e t v s i n t ’ ] = df . apply ( compare inte re s t , a x i s =1)

df [ ’ retvs vw ’ ] = df . apply ( compare vw , a x i s =1)

df [ ’ r e t v s 0 ’ ] = df . apply ( compare zero , a x i s =1)

df [ ’ r e t v s i n t ’ ]= df [ ’ r e t v s i n t ’ ] . mean ( )

df [ ’ retvs vw ’ ]= df [ ’ retvs vw ’ ] . mean ( )

df [ ’ r e t v s 0 ’ ]= df [ ’ r e t v s 0 ’ ] . mean ( )

df [ ’ avgret ’ ]= df [ return co lumns ] . mean( a x i s =1)
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df=df . t ranspose ( )

df . t o c s v ( ’ 1 s t o c k b o o t s t r a p l i f e . csv ’ , index=False , sep=’ ; ’ )

14. (Python) Link the company-id so that each company has its own unique id (not

the same as ISIN). Calculate the wealth creation based on the company-id, and the

annualized return based on the company-id’s ISIN with the longest lifespan:
import pandas as pd

import numpy as np

import datet ime as dt

df = pd . r ead c sv ( ’ withoutwealth . csv ’ , sep=’ ; ’ )

df [ ’ date ’ ] = pd . to date t ime ( df [ ’ date ’ ] , format=’%Y−%m−%d ’ )

df [ ’ date ’ ] = df [ ’ date ’ ] . dt . s t r f t i m e ( ’%d.%m.%Y ’ )

df [ ’ date ’ ] = pd . to date t ime ( df [ ’ date ’ ] , format=’%d.%m.%Y ’ )

df = df . s o r t v a l u e s ( [ ’ i s i n ’ , ’ yearmonth ’ ] )

df [ ’ companyid ’ ]= df [ ’ companyid ’ ] . f i l l n a (0 )

df . l o c [ df [ ’ i n t e r n a l c o d e ’ ] != 0 , ’ companyid ’ ] = df [ df [ ’ i n t e r n a l c o d e ’ ] != 0 ] . groupby ( ’ ←↩

i n t e r n a l c o d e ’ ) [ ’ companyid ’ ] . t rans form (lambda x : next ( ( va l for va l in x i f va l != ←↩

0) , 0) )

df [ ’ companyid ’ ] = df . groupby ( ’ symbol ’ ) [ ’ companyid ’ ] . t rans form (lambda x : next ( ( va l ←↩

for va l in x i f pd . no tnu l l ( va l ) ) , 0) )

df [ ’ companyid ’ ] = df . groupby ( ’ i s i n ’ ) [ ’ companyid ’ ] . t rans form (lambda x : next ( ( va l for ←↩

va l in x i f pd . no tnu l l ( va l ) ) , 0) )

df [ ’ companyid ’ ] = df . groupby ( ’name ’ ) [ ’ companyid ’ ] . t rans form (lambda x : next ( ( va l for ←↩

va l in x i f pd . no tnu l l ( va l ) ) , 0) )

df . l o c [ df [ ’ companyid ’ ]==0, ’ companyid ’ ]= df [ ’ i n t e r n a l c o d e ’ ]

d f [ ’ new mktcap ’ ] = df . groupby ( [ ’ companyid ’ , ’ yearmonth ’ ] ) [ ’ mktcap ’ ] . t rans form ( ’sum ’ )

df [ ’ decadenr ’ ]= df . groupby ( ’ i s i n ’ ) [ ’ decade ’ ] . t rans form ( ’ f i r s t ’ )

df [ ’ max is in by companyid ’ ] = df . groupby ( ’ companyid ’ ) [ ’ i s i n ’ ] . t rans form (lambda x : x [ ←↩

df . l o c [ x . index , ’ no mnth ’ ] . idxmax ( ) ] )

mask = df [ ’ i s i n ’ ] == df [ ’ max is in by companyid ’ ]

d f [ ’ c h o s e n l i f e t i m e r e t u r n ’ ] = df [ ’ l i f e t i m e l a s t c u m u l a t i v e r e t u r n ’ ] . where (mask )

df [ ’ c h o s e n l i f e t i m e r e t u r n ’ ] = df . groupby ( ’ companyid ’ ) [ ’ c h o s e n l i f e t i m e r e t u r n ’ ] . ←↩

trans form ( ’max ’ )

df [ ’ chosen no mnth ’ ]= df [ ’ no mnth ’ ] . where (mask )

df [ ’ chosen no mnth ’ ] = df . groupby ( ’ companyid ’ ) [ ’ chosen no mnth ’ ] . t rans form ( ’max ’ )

df [ ’ annua l i z ed cho s en r e tu rn ’ ] = (1+ df [ ’ c h o s e n l i f e t i m e r e t u r n ’ ] ) ∗∗ (12 / ( df [ ’ ←↩

chosen no mnth ’ ] ) ) − 1

i s l a s t = df . groupby ( [ ’ companyid ’ , ’ yearmonth ’ ] ) [ ’ mktcap ’ ] . cumcount ( ) == df . groupby ←↩

( [ ’ companyid ’ , ’ yearmonth ’ ] ) [ ’ mktcap ’ ] . t rans form ( ’ count ’ ) − 1

df = df [ i s l a s t ]

last row comp=df . groupby ( [ ’ companyid ’ ] ) . t a i l ( 1 ) . index

df=df . s o r t v a l u e s ( [ ’ companyid ’ , ’ yearmonth ’ ] )

df [ ’ cumcompint ’ ] = (1 + df [ ’ i n t e r e s t ’ ] ) . groupby ( df [ ’ companyid ’ ] ) . cumprod ( ) − 1

df . l o c [ last row comp , ’ wealth ’ ]=( df . groupby ( [ ’ companyid ’ ] ) [ ’ new mktcap ’ ] . t rans form ( ’ ←↩

l a s t ’ ) ) −(( df . groupby ( [ ’ companyid ’ ] ) [ ’ new mktcap ’ ] . t rans form ( ’ f i r s t ’ ) ) ∗(1+ df . ←↩
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groupby ( [ ’ companyid ’ ] ) [ ’ cumcompint ’ ] . t rans form ( ’ l a s t ’ ) ) )

df=df . s o r t v a l u e s ( ’ yearmonth ’ )

df [ ’ t o t a lwea l th ’ ]= df [ ’ wealth ’ ] . sum( )

df [ ’ p e r c t o t a l ’ ]= df [ ’ wealth ’ ] / df [ ’ t o t a lwea l th ’ ]

d f=df . s o r t v a l u e s ( ’ wealth ’ , ascending=False )

df [ ’ cumwealth ’ ]= df [ ’ p e r c t o t a l ’ ] . cumsum( )

df [ ’ f i r s t month ’ ] = df . groupby ( ’ max is in by companyid ’ ) [ ’ date ’ ] . t rans form ( ’ min ’ ) . dt . ←↩

t o p e r i o d ( ’M’ ) . dt . s t r f t i m e ( ’%Y−%m’ )

df [ ’ last month ’ ] = df . groupby ( ’ max is in by companyid ’ ) [ ’ date ’ ] . t rans form ( ’max ’ ) . dt . ←↩

t o p e r i o d ( ’M’ ) . dt . s t r f t i m e ( ’%Y−%m’ )

df . t o c s v ( ’ withwealth . csv ’ , index=False , sep=’ ; ’ )

15. (STATA) Lastly, summarize all the different returns based on desired conditions for

example ’decadenr’ which provides the statistics based on initial decade of appearance.
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