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1 Introduction

The mathematical study of shape theory o�ers a relatively novel insight into the commonly
known idea of what a shape is. The �eld saw its emergence with at least three distinct
entries into what we now call shape theory [5]. One of those origins, and one of the earliest,
was in 1977 by Kendall [6]. His investigation was originally prompted by archaeological,
astronomical, geological and ornithological considerations [6]. Those are still important
applications today, however, the �eld has grown considerable in the last four decades.
Many novel applications are found in medicine [11] or computer vision [14].

In particular, Kendall's shape space provides a framework for analyzing the shapes
of objects by considering them as points in a high-dimensional topological space. A key
property of Kendall's shape space, is the Riemannian structure that it has. That is, it is
a di�erentiable manifold. This space is constructed by removing the e�ects of translation,
scaling, and rotation. By doing this we focus only on the actual shape of the object, not
any other physical properties.

One of the more important concepts within shape theory, is determining the mean of
shapes [7]. Conceptually, determining the mean of a normal data set is extremely straight
forward. However, extending the concept of a mean to the Kendall's shape space, requires
a higher level of insight. The fact of the shape space being a Riemannian manifold, helps
solve this issue. That is, we might de�ne a distance function[2], of which the minimizer,
is de�ned to be the Riemannian mean. Actually �nding the minimum of this function,
is not straight forward. The existence and uniqueness of a solution is not guaranteed.
However under some speci�c conditions, and restrictions on the spread of data points, a
solution can be guaranteed [3]. In the context of shape theory, this means that we need
the shapes that we wish to �nd the average of, to be relatively similar.

Furthermore, as one might expect, �nding an analytic solution to the problem is not
the way to go. For this reason, numerical methods need to be used, speci�cally, gradient
descent is a well known algorithm that can be utilized. However, since the Kendall's
shape space was a manifold, the gradient descent has to be generalized to be de�ned on
manifolds, in which case it is called a Riemannian gradient descent[4].

We consider the above mentioned topics in depth throughout this thesis. In the
beginning, that is section 2, we introduce the notions related to manifolds. In section
3 we consider the notions related to optimization on manifolds, which mostly consists of
generalizing the well known results from the Euclidean space. The Kendall's shape space
is properly de�ned and discussed in section 4. After that we consider in which cases the
Riemannian center of mass might exist, and discuss it in the context of Kendall's shape
space. Lastly we consider some numerical experiments to test the proceeding theory.
In that we consider �rstly the space of all two dimensional triangles, and secondly we
determine the mean of a set of outlines of chess pieces.
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2 Preliminaries on Manifolds

Because this section merely gives a basic introduction on manifolds and quotient man-
ifolds, no information here is new or speci�c to this thesis. Therefore, for this section,
unless stated otherwise, the information originates (with some paraphrasing) from [4],
mostly sections 3 and 9.

2.1 Embedded submanifolds

A manifold is a topological space that locally resembles Euclidean space near each point.
Since a manifold is a topological space, to de�ne it in most general terms requires the
context of terms such as charts, open sets, etc. However, for the purpose of this text
we need not the most general representation of a manifold. We concern ourselves with a
subclass of manifolds that are the embedded submanifolds. We de�ne those in terms of a
mapping on the space that the manifold is embedded in.

De�nition 2.1. Let E be a linear space of dimension d. A non-empty subset M of E is
a smooth embedded submanifold of E of dimension n if either:

� n = d andM is open in E (also called the open submanifold).

� n = d− k for some k ≥ 1 and, for each x ∈ M, there exists a neighbourhood U of
x in E and a smooth function h : U → Rk such that:

1. if y is in U , then h(y) = 0 if and only if y ∈M; and

2. rank Dh(x) = k.

We call h a local de�ning function ofM at x.

As mentioned, the manifold resembles the Euclidean space near each point, that linear
approximation at each point is the tangent space. Elements of this space are called tangent
vectors. It consists of all the velocities of the curves that initially pass through the given
point. The tangent vectors describe the possible directions of movement at that point on
the manifold. We can de�ne the tangent space by:

De�nition 2.2. LetMa subset ofM. For all x ∈M , de�ne the tangent space by:

TxM = {c′(0) | c : I →M is smooth, and c(0) = x}

We can also de�ne the tangent bundle, which is the collection of all the tangent spaces
of a manifold. Each element in the bundle consists of a pair, the point and the tangent
vector at that point. This is to avoid confusion, as two di�erent spaces can share a vector.

De�nition 2.3. The tangent bundle of a manifoldM is the disjoint union of the tangent
spaces ofM:

TM = {(x, v) |x ∈M, v ∈ TxM}

Having now de�ned speci�c spaces, can we introduce the theory needed for under-
standing the functions on those spaces.

De�nition 2.4. A subset U of M is open (or closed) in M if U is the intersection of
M with an open (or closed) subset of E.
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De�nition 2.5. A neighborhood of x in M is an open subset of M which contains x.
By extension, a neighborhood of a subset of M is an open set of M which contains that
subset.

De�nition 2.6. Let M and M′ be embedded submanifolds of E and E ′. A map F :
M→M′ is smooth at x ∈M if there exists a function F̄ : U → E ′ which is smooth on a
neighborhood U of x in E and such that F and F̄ coincide onM∩U , that is F (y) = F̄ (y),
for all y ∈ M ∩ U . We call F̄ a local smooth extension of F around x. The map F is
smooth if it is smooth at all x ∈M.

We can then introduce the di�erential on the manifold in terms of a curve on M
passing through the given point:

2.2 Di�erentiation and Riemannian gradient

In this subsection we discuss the di�erent notions related to di�erentiability. We begin
by stating the simple de�nition of a di�erential of a function on a manifold.

De�nition 2.7. The di�erential of F :M→M′ at the point x ∈ M is the linear map
DF (x) : TxM→ TF (x)M′ de�ned by:

DF (x)[v] =
d

dt
F (c(t))

∣∣∣∣
t=0

= (F ◦ c)′(0) = 0

where c is a smooth curve onM passing through x at t = 0 with velocity v.

In the Euclidean case, the existence of the gradient is limited by the properties of the
function itself, that is, it being di�erentiable. When dealing with a manifold, the space
itself must possess the structure such that a gradient can be de�ned. That requirement
is for the manifold to be Riemannian. That is, it must be equipped with a Riemannian
inner product.

De�nition 2.8. An inner product on TxM is a bilinear, symmetric, positive de�nite
function ⟨·, ·⟩x : TxM × TxM → R. It induces a norm for tangent vectors: ∥u∥x =√
⟨u, u⟩x. A metric onM is a choice of inner product ⟨·, ·⟩x for each x ∈M.

De�nition 2.9. A metric ⟨·, ·⟩x onM is a Riemannian metric if it varies smoothly with x,
in the sense that for all smooth vector �elds V,W onM, the function x 7→ ⟨V (x),W (x)⟩x
is smooth fromM to R.

Thus, we call a manifold Riemannian if it has a Riemannian metric. Then, the gradient
of a smooth function on a Riemannian manifoldM is de�ned as follows:

De�nition 2.10. Let f :M→ R be a smooth function on a Riemannian manifold M.
The Riemannian gradient of f is the vector �eld ∇f onM uniquely de�ned by:

∀(x, v) ∈ TM, Df(x)[v] = ⟨v,∇f(x)⟩x

Introducing the Hessian would prove less straight forward than the gradient. Recall
the domain and codomain of the di�erential in its de�nition 2.7. As it turns out, there is
no guarantee that applying this de�nition to determine the Hessian of a function would
result in a tangent vector[4, p 81]. Thus, as the understanding of the Hessian is not
strictly necessary for the remainder of the text we will omit the detailed de�nition.
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2.3 Quotient Manifolds

A quotient set is a set together with an equivalence relation. Elements that are equivalent
under the equivalence relation in the original set, are one and the same element in the
quotient set.

De�nition 2.11. A binary relation ∼ on a set X is said to be an equivalence relation, if
and only if it is re�ective, symmetric, and transitive. That is, for all a, b, c ∈ X we must
have that:

� a ∼ a

� If a ∼ b we must have b ∼ a

� If a ∼ b and b ∼ c then a ∼ c

The set of all elements of a set that are equivalent to a given element a is called the
equivalence class of a, denoted by [a] = {x ∈ X : x ∼ a}. The the quotient set is the
collection of all given equivalence classes, denoted by X/ ∼= {[x] : x ∈ X}. The canonical
projection π : X → X/ ∼: x 7→ π(x) = [x] is the mapping that sends the elements of a
set to its quotient set.

Consider now the situation where the set we want to quotient is a manifold M. In
general, the resulting quotient, which we denote byM =M/ ∼ will not be a manifold.
We thus wish to determine whenM will itself be a di�erential manifold, which we call a
quotient manifold. We quantify this initially by the following de�nition.

De�nition 2.12. The quotient setM =M/ ∼ equipped with a smooth structure is a quo-
tient manifold ofM if the canonical projection projection π is smooth and its di�erential
Dπ(x) : TxM→ T[x]M has rank dimM for all x ∈M.

This de�nition, however, has little practical use in determining if the quotient of a
manifold is itself a manifold. This comes from the di�culties related to the canonical
projection. There is no guarantee that a global de�nition of it exists, and even if it
does, checking its smoothness might be di�cult or impossible. We can however limit
the the scope of quotients that we consider. That is, we only consider those in which
the equivalence relation is induced by a group action of a Lie group. Then, the quotient
manifold theorem 2.1 will prove to be enough for our applications. It however, requires
introduction of a few new concepts, we list the de�nitions below:

De�nition 2.13. Let G be both a group and a manifold. If the product map

prod : G × G → G : (g, h) 7→ prod(g, h) = gh

and the inverse map:
inv : G → G : g 7→ inv(g) = g−1

are smooth, then G is a Lie group.

De�nition 2.14. Given a Lie group G and a manifold M, a left group action is a map
θ : G ×M→M such that:

� for all x ∈M, θ(e, x) = x (Identity)

� for all g, h ∈ G and x ∈M, θ(g · h, x) = θ(g, θ(h, x)) (compatibility)
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We say that the group action is smooth if θ is smooth as a map on the product manifold
G ×M to the manifoldM.

De�nition 2.15. A group action θ is free, if for all x, acting on x with any group element
which is not the identity results in a point di�erent from x. That is, if for all x ∈ M,
θ(g, x) = x⇒ g = e

De�nition 2.16. A left group action θ is proper if:

v : G ×M→M×M : (g, x) 7→ v(g, x) = (θ(g, x), x)

Is a proper map, that is, all compact subsets ofM×M map to compact subsets of G×M
through v−1.

De�nition 2.17. The orbit of x ∈ M by the left action θ of G is the set Gx = {θ(g, x) :
g ∈ G}. This induces an equivalence relation ∼ onM:

x ∼ y ⇐⇒ y = θ(g, x) for some g ∈ G

Theorem 2.1 (Quotient Manifold Theorem). [10, p 255] Suppose G is a Lie group acting
smoothly, freely, and properly on a smooth manifold M. Then the orbit space M/G is
a topological manifold of dimension equal to dimM− dimG, and has a unique smooth
structure with the property that the canonical projection π : M → M/G is a smooth
submersion.

Note that a smooth map F : M → N is a smooth submersion if its di�erential is
surjective, or equivalently if rankF = dimN [10, p 78].

Having discussed when a quotient manifold is a manifold, we wish to determine the
tangent vectors in the quotient manifold space. By the 2.12 the intuitive way to achieve
this is by considering the di�erential of the canonical projection Dπ(x) : TxM→ T[x]M.
The problem with this is however, that the mapping is not one to one. Therefore, we
must restrict the domain to make it be one to one. This is achieved by the introduction
of the vertical and horizontal spaces.

De�nition 2.18. For a quotient manifold M =M/ ∼, the vertical space at x ∈ M is
the subspace

Vx = kerDπ(x)

IfM is Riemannian, we call the orthogonal complement of Vx the horizontal space at x:

Hx = (Vx)
⊥ = {u ∈ TxM : ⟨u, v⟩x = 0 for all v ∈ Vx}.

With this, it is easy to see that the map:

Dπ(x)
∣∣
Hx

: Hx → T[x]M (2.1)

is a bijection. The last useful concept related to quotient manifolds, is the horizontal
lift. This mapping lets us consider the tangent vectors of the quotient manifolds, which
is useful in some applications later on. The de�nition of the horizontal lift is:

De�nition 2.19. Consider a point x ∈ M and a tangent vector ξ ∈ T[x]M. The hori-
zontal lift of ξ at x is the (unique) horizontal vector u ∈ Hx such that Dπ(x)[u] = ξ. We
write:

u =
(
Dπ(x)

∣∣
Hx

)−1

[ξ] = horx(ξ)

6



It is important to note, that similarly to using the de�nition of the quotient manifold
to determine if a set is a quotient manifold, using the de�nition of the horizontal lift
to �nd an expression for it, might be di�cult. However, the speci�cs of determining it
depend strongly on the manifold being discussed, thus we delay the further discussion of
the lift until section 4.2.

2.4 Distance on a manifold

We wish to consider the mean on a manifold. For this reason we will require de�ning what
the distance function is on a manifold space, and when a manifold is a metric space. As
determining those concepts on a manifold is relatively straightforward, we mainly recount
chapter 10.1 from [4]. We recount the basic de�nition of a metric space.

De�nition 2.20. [4, p. 253] A distance on a set M is a function dist :M×M → R
such that, for all x, y, z ∈M,

1. dist(x, y) = dist(y, x);

2. dist ≥ 0 and dist(x, y) = 0 if and only if x = y;

3. dist(x, z) ≤ dist(x, y) + dist(y, z).

Equipped with a distance,M is a metric space.

In the Euclidean case the most basic distance that might come to mind, could be the
length of a straight line connecting two points in the space. However, in a manifold, we
are yet to de�ne an equivalnet notion to a straight line. As a preliminary to this we need
to de�ne a curve segment on a manifold.

De�nition 2.21. [4, p. 253] A curve segment on a manifold M is a continuos map
c : [a, b]→M, where a ≤ b are real. A curve segment c : [a, b]→M is:

1. smooth if c can be extended to a smooth map c̃ : I → M on a neighbourhood I of
[a, b], in which case c′(a) and c′(b) denote c̃′(a) and c̃′(b), respectively;

2. regular if it is smooth and c′(t) ̸= 0 for all t ∈ [a, b]

3. piecewise smooth (resp., piecewise regular) if there exists a �nite set of times a =
t0 < t1 < · · · < tk−1 < tk = b such that the restriction c|[ti−1,t−i] are smooth (resp.,
regular) curve segments for i = 1, . . . , k.

In particular, piecewise regular curves are piecewise smooth. We say a curve segment
c : [a, b]→M connects x to y if c(a) = x and c(b) = y.

De�nition 2.22. Let M be a Riemannian Manifold. Let c : [a, b] → M be a piecewise
smooth curve, we de�ne the Riemannian distance by:

dist(x, y) = inf
c

∫ b

a

∥c′(t)∥c(t)dt

The following theorem lets us determine when the manifold equipped with the Rie-
mannian distance is a metric space. For atlas topology, see [10].

7



Theorem 2.2. [4, p. 254] If M is connected (meaning each pair of points is connected
by a curve segment), Riemannian distance de�ned in de�nition 2.22 de�nes a distance.
Equipped with this distance,M is a metric space whose metric topology coincides with its
atlas topology.

If the minimum in 2.22 is attained we call c a minimizing curve. We can then note
the following theorem.

Theorem 2.3. Every minimizing curve admits a constant-speed parametrization such that
it is a geodesic, called a minimizing geodesic.

Until now we have omitted the important notion of a geodesic. Informally, we under-
stand a geodesic as a generalization of the notion of a straight line connecting two points.
The formal de�nition and discussion of a geodesic is not necessary for the content of this
text. We may understand a geodesic in the informal sense as an acceleration free curve,
and by Theorem 2.3, as the shortest curve connecting two points. For more details, see
for example, [9], [4], or [1].

3 Optimization on manifolds

Conceptually, the general idea does not change between optimization on a Euclidean
space, and a manifold. We are still discussing the problems of the form:

min
x∈M

f(x) (3.1)

In which we call f(x) the objective function. We are attempting to �nd a global solution,
also called a global minimizer, that is, a point x ∈ M such that f(x) ≤ f(y) for all
y ∈M. Of course, such a problem might be di�cult if not impossible to solve. In which
case we would instead look for a local minimizer. That is, a point x ∈ M such that
f(x) ≤ f(y) for all y in a neighbourhood ofM.

Because optimization algorithm de�ne sequences of points on a manifoldM, we must
de�ne what convergence is. We use the following de�nition.

De�nition 3.1. [4, p 52] Consider a sequence S of points x0, x1, x2, . . . on a manifold
M. Then:

1. A point x ∈M is a limit of S if, for every neighborhood U of x inM, there exists
an integer K such that xK , xK+1, xK+2, . . . are in U . If x is the limit, we write
limk→∞ xk = x or xk → x and we say the sequence converges to x.

2. A point x ∈M is an accumulation point of S if it is the limit of a subsequence of S,
that is, if every neighborhood U of x inM contains an in�nite number of elements
of S.

Further, we provide a de�nition of a �rst order necessary condition for a smooth
manifold, which can be used to identify a minimum.

De�nition 3.2. [4, p 53] A point x ∈M is critical (or stationary) for a smooth function
f :M→ R if

(f ◦ c)′(0) ≥ 0

for all smooth curves c onM such that c(0) = x.

8



Additionally, if the manifold is Riemannian, we obtain a �rst order necessary condition
that is equivalent to the functions in Euclidean optimization, that is:

Theorem 3.1. [4, p 54] Let f :M→ R be smooth on a Riemannian manifoldM. Then,
x is a critical point of f if and only if grad f(x) = 0.

Arguably, the most common class of iterative methods for solving minimization prob-
lems are line search methods, where the basic idea is to choose a direction and determine
an optimal step size along this direction, in order to reduce the objective function. Of
those, the gradient descent is one of the simplest variants. In the Euclidean case, the
iterates are given by xk+1 = xk + αk grad f(xk) with xk, αk, grad f(xk) denoting respec-
tively, the k-th iteration, step-size, and the gradient of the objective function. We wish
to generalize this idea to work on a manifold.

3.1 Moving on a manifold

In Euclidean space, we increment by addition with the current iterate to produce the
following. As vectors are not de�ned in the usual sense on a manifold, the situation
becomes more complex in this scenario. One might assume that we might iterate along
a tangent space, moving along the tangent vector's direction. However, doing just that
is not a possibility, as even an in�nitesimal movement in a tangent vectors direction will
result in a point that is not on the manifold [4, p. 33]. This issue is resolved by the
means of a retraction mapping, which allows the movement in a tangent vectors direction
without leaving the manifolds structure.

De�nition 3.3. [4, p. 39] A retraction on a manifoldM is a smooth map

R : TM→M : (x, v) 7→ Rx(v)

such that for all (x, v) ∈ TM, we have

1. Rv(0) = x,

2. DRv(0) : TxM→ TxM is the identity map: DRv(0)[v] = v.

This lets us de�ne the simplest form of a Riemannian gradient descent [4, p 55], where
the k + 1 iterate is given by:

xk+1 = Rxk
(−αk grad f(xk)) (3.2)

Note that since retractions are not unique, one might naturally try to �nd which
retraction might be "better" than others. We may note one "special" type of retraction
that is the exponential mapping. The reasons for the expoential mapping being important
depend on theory not introduced in this text, in large part the notion of geodesics. For
this reason, for a deeper insight in why the exponential mapping is essential, see, for
example, [9], [4], or [1]. We still de�ne it. First consider a maximal geodesic [4, p. 256].
Here, maximal means that the interval I is as large as possible.

γv : I →M, with γv(0) = x and γ′
v(0) = v

With this we de�ne the exponential map as:

9



De�nition 3.4. [4, p. 256]
Consider the following subset of the tangent bundle:

O = {(x, v) ∈ TM : γv is de�ned on an interval containing [0, 1]}

The exponential map exp : O →M is de�ned by

exp(x, v) = expx(v) = γv(1)

The restriction expx is de�ned on Ox = {v ∈ TxM(x, v) ∈ O}

3.2 Step-size Selection

The step-size selection does not vary conceptually between optimization on an Euclidean
space and a manifold. We have the three basic options for step-size αk selection [4, p. 55]:

1. Fixed step-size: αk = α for all k.

2. Optimal step-size: αk minimizes g(t) = f(Rxk
(−t grad f(xk))) exactly.

3. Backtracking: starting with a guess t0 > 0 , iteratively reduce it by a factor as
ti = τti−1 with τ ∈ (0, 1) until ti is deemed acceptable, and set αk = ti.

We discuss the third case, backtracking line search, further. The line-search is ran until
the Armijo-Goldstand condition is satis�ed. With some constant r (often 10−4), the
condition is:

f(x)− f(Rx(−α grad f(x))) ≥ α∥ grad f(x)∥2 (3.3)

With which, we can state the Backtracking line-line search algorithm.[4, p 59]

Algorithm 1 Backtracking line-search

Require: τ, r ∈ (0, 1); for example, τ = 1
2
and r = 10−4

Require: x ∈M, ᾱ > 0
Set α← ᾱ
while f(x)− f(Rx(−α grad f(x))) < rα∥ grad f(x)∥2 do

Set α← τα
end while

Output: α

As it turns out, the line search given by the previous algorithm, might in speci�c
conditions guarantee convergence of the gradient descent algorithm. Before stating the
theorem guaranteeing this we state two required conditions. The conditions and following
theorem given by [4]

Condition 1: There exists flow ∈ R such that f(x) ≥ flow for all x ∈M
Condition 2: For a given subset S f the tangent bundle TM, there exists a constant

L > 0, such that, for all (x, s) ∈ S

f(Rx(s)) ≤ f(x) + ⟨grad f(x), s⟩+ L

2
∥s∥2 (3.4)
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Theorem 3.2. [4, p 61] Let f be a smooth function satisfying Condition 1 on a Rieman-
nian manifold M. For a retraction R, let f ◦ R satisfy Condition 2 on a set S ⊆ TM
with constant L. Let x0, x1, x2, . . . be the iterates generated by Riemannian gradient de-
scent (equation 3.2) with backtracking line-search (Algorithm 1) using �xed parameters
τ, r ∈ (0, 1) and initial step-sizes ᾱ0, ᾱ1, ᾱ2, . . . If for every k the set {(xk,−α grad f(xk)) :
α ∈ [0, ᾱk]} is in S and if lim infk→∞ ᾱk > 0, then

lim
k→∞
∥ grad f(xk)∥ = 0.

Furthermore, for all K ≥ 1, there exists k in 0, . . . , K − 1 such that

∥ grad f(xk)∥ ≤
√

f(x0)− flow

rmin(ᾱ0, . . . , ᾱK−1,
2τ(1−r)

L
)

1√
K

.

4 Kendall's shape space

Kendall's shape space introduces a way to mathematically de�ne what a shape is. Each
object in the shape space consists of k points in Rm, that are centred and normalized.
We describe the basic structure of the shape space as de�ned in [5]. Consider X ∈ Rm×k,
and denote the ith column by x∗

i . Recall that a centroid of a �nite set of k points in Rn

is xc = (
∑k

i=1 xi)/k. We remove the e�ects of translation by mapping each x∗
i to x∗

i − x∗
c

where x∗
c is the centroid of the k points. This results in an m× (k − 1) matrix. We then

remove the e�ects of scaling by requiring that natural quadratic measure is equal to unity;√
∥x∗

1 − x∗
c∥2 + · · ·+ ∥x∗

k − x∗
c∥2 = 1. Applying those two e�ects on the original matrix

produces the pre-shape space. We note that this is equivalent to Sm(k−1)−1(1); the unit
sphere of dimension m(k − 1) − 1, which is a known embedded submanifold of Rm(k−1).
We denote this pre-shape-space sphere by Sk

m.

4.1 The pre-shape sphere

Having introduced the pre-shape as a sphere, we turn to de�ning the appropriate spaces
and objects on it. Consider an arbitrary unit sphere Sd−1 = {x ∈ Rd : ∥x∥ = 1}. We
obtain the tangent space of Sd−1 by considering its local de�ning function h(x) = ∥x∥−1 =
xTx − 1. The di�erential and the kernel of the di�erential are respectively Dh(x) = 2x
and rankDh(x) = 1. From which we see that the tangent space of Sd−1 at x is:

TxS
d−1 = {v ∈ Rd : xTv = 0} (4.1)

The sphere becomes a Riemannian manifold by being equipped with the standard metric,
⟨u, v⟩u = uTv. With this can we consider the exponential mapping on the sphere. As
the derivation of the expression requires some theory that we have omitted, we state the
exponential mapping as de�ned in [4, Example 5.37], see the same example for the details
of the derivation.

expx(v) = cos(∥v∥)x+
sin(∥v∥)
∥v∥

v (4.2)

Note that this is smooth over the entire tangent bundle, with the extension sin(t)
t

= 1 at
t = 0. Then for the inverse of the exponential map we can follow the derivation from
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[4, Example 10.21]. Let y = expx(v), and note that xTx = 1, xTv = 0, this gives that
xTy = cos(∥v∥). Then de�ne a new vector u as:

u = y − (xTy)x = Projx(y) =
sin(∥v∥)
∥v∥

v

Normalize u and restrict its domain to tangent vectors v whose norm is less than π,
this gives that sin(∥v∥)

∥u∥ = 1. Lastly, we see that xTy = cos(∥v∥) has the unique solution

∥v∥ = arccos(xTy), where arccos : [−1, 1]→ [0, π] is the principle inverse of cos. In total
this results in the inverse of the exponential map being:

exp−1
x (y) = arccos(xTy)

y − (xTy)x

∥y − (xTy)x∥
(4.3)

Note also that the distance on the sphere is de�ned by:

dist(x, y) = arccos(xTy) (4.4)

4.2 Quotient of the pre-shape

We say that two pre-shapes have the same shape if one can be rotated into the other.
Thus, the pre-shape space under the constraint of two elements being equal if they can be
rotated into each other results in the total shape space. The shape space is then denoted
by Σk

m. Formally, the idea of two pre-shapes being equal is expressed in terms of the
equivalency induced by the special orthogonal group SO(m). This group consists of all
m×m orthogonal matrices with determinant equal to 1:

SO(m) = {Q ∈ GL(m,K) | QTQ = QQT = I, det(Q) = 1}.
Thus, for x, y ∈ Sk

m, we say that x ∼ y if there exists some Q ∈ SO(m) such that
Qx = y. Furthermore, this allows the expression of the shape space as the quotient of the
pre-shape sphere by the left group action of SO(m):

Σk
m

△
= Sk

m/SO(m)

We wish to invoke theorem 2.1 for the shape space to be a quotient manifold. SO(m) is
the open subgroup of O(m), and is therefore also an embedded Lie subgroup of dimension
m(m−1)

2
in GL(m,R). It is a compact group because it is a closed subset of O(m) [10,

p 167]. It acts smoothly because it is given by a matrix multiplication. Thus, the group
action is proper [4, p 214]. However, determining if the group action is free, requires a
more detailed examination.

We can �rst note that there are two known cases for which the group action will be
free everywhere. This stems from the fact that we can identify the shape space Σk

1 with
Sk−2(1) for k ≥ 2, and the shape space Σk

2 with CPk−2(4) for k ≥ 3. Aside from k = 2
the group action must be free since those manifolds are smooth[8].

As shown in [8], for m ≥ 3, singularities (points where the group action fails to be
free) will always exist. Furthermore, such a singularity will always be of the form

RT
m diag(Im−2R2)Rm

where R2(̸= I2) ∈ SO(2), Rm ∈ SO(m). Thus, barring the case where k = 2, and the
singularities mentioned above, the group action will be free, and the shape space will be
a quotient manifold.
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Remark 4.1. The dimension of the shape space Σk
m is dimΣk

m = −m(m−2k+1)
2

− 1

This is a direct consequence of the Theorem 2.1and the dimension of Sk
m and SO(m).

The main advantage the Theorem 2.1 provides, beyond assuring that the shape space
is a quotient manifold, is the assurance that the canonical projection will be a Riemannian
submersion. This will be essential in determining the exponential map and its inverse on
the shape space. However, as a further preliminary to this, we need to determine what
the horizontal and vertical spaces are on the pre shape space. We de�ne the vertical and
horizontal spaces to the shape space, as discussed in [5, p 109]:

Verx = {Ax|A ∈ Skew(m)}

Here, x ∈ Sk
m and Skew(m) is the space of skew-symmetric matrices of size m. Then the

horizontal space at x is:

Horx = {w ∈ TxS
k
m | Tr(AxwT ) = 0 ∀A ∈ Skew(m)}

= {w ∈ TxS
k
m | xwT ∈ Sym(m)}

We may then use the result provided by [11], to determine the vertical, and thus horizontal
component of any tangent vectors.

Lemma 4.1. Fix x ∈ Sk
m and w ∈ TxSk

m. Let verx, resp. horx denote the restriction of
vertical resp. horizontal projection to TxSk

m.
(a) verx(w) = Ax if and only if A solves the Sylvester equation

Axxt + xxtA = wxt − xwt.

Moreover, the above equation has a unique skew-symmetric solution if rank(x) ≥ m− 1.

With this, the horizontal component is given simply by:

horx(w) = w − verx(w) (4.5)

With this can we use an important theorem given by [13].

Theorem 4.1. [13] Let π :M→ B be a Riemannian submersion. If γ is a geodesic in
M such that γ̇(0) is a horizontal vector, then γ̇ is horizontal everywhere and π ◦ γ is a
geodesic of B of the same length as γ.

The last concept required to de�ne the desired mappings on the shape space, is the
notion of the optimal alignment. The optimal rotation R between any pre-shape x, y is
unique in a subset U of Sk

m×Sk
m. This allows the de�nition of the align map ω : U → Sk

m.
This notion comes from [12].

To summarize, we obtain the following mappings for the shape space, where the ex-
ponential mapping and its inverse are a direct consequence of Theorem 4.1. For any
x, y ∈ Sk

m and v ∈ TxSk
m, as stated in [12]:

expΣ,[x] (dxπv) = π (expx (horx(v))) , (4.6)

exp−1
Σ,[x] ([y]) = dxπ exp−1

x (ω(x, y)) , (4.7)

dΣ ([x], [y]) = d(x, ω(x, y)). (4.8)
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5 Riemannian centre of mass

In this section we introduce the theory behind the Riemannian centre of mass. Prior to
considering the properties of the Riemannian L2 center of mass we have to de�ne the
function itself.

De�nition 5.1. [3]
The (global) Riemannian L2 center of mass or mean of the data set {xi}Ni=1 ⊂M with

respect to weights 0 ≤ wi ≤ 1
(∑N

i=1wi = 1
)
is de�ned as the minimizer(s) of

f(x) =
1

2

N∑
i=1

wid
2(x, xi)

inM. We denote the center by x̄p.

Note that often, the weights are assumed to be uniformly distributed, in which case
we obtain the following expression for the Riemannian mean. Unless stated otherwise,
this is the expression that we will consdier for the remainder of the text.

f(x) =
1

2n

N∑
i=1

d2(x, xi) (5.1)

5.1 Convexity, existence, and uniqueness

When considering an optimization problem, the �rst question that arises might be about
the convexity of the set and the function. The de�nitions of convex functions and sets are
conceptually similar to those in the Euclidean case. The de�nitons for a convex function
and set are respectively:

De�nition 5.2. [3] Let A be an open subset of M such that every two points in A can
be connected by at least one geodesic of M such that this geodesic lies entirely in A.
Assume that f : A→ R is a continuous function. Then f is called (strictly) convex if the
composition f ◦ γ : [0, 1]→ R is (strictly) convex for any geodesic γ : [0, 1]→ A. We say
that f is globally (strictly) convex if it is (strictly) convex inM.

De�nition 5.3. [3] A set A ⊂M is called strongly convex if any two points in A can be
connected by a unique minimizing geodesic inM and the geodesic segment lies entirely in
A.

The question of the global convexity of 5.1 is answered by the result proved by [16]; that
is, the only globally convex function on a compact Riemannian manifold is the constant
function. Thus, as long as we are dealing with a compact manifold, there is no hope of
having 5.1 be convex. We therefore turn to determining a subset of the manifold that is
strongly convex.

Consider an arbitrary open ball on the manifold. Let o ∈ M be some point on the
manifold, and r be the radius; then the open ball is denoted by B(o, r). We wish to
determine when this ball is strongly convex. The theorem by [15] provides the necessary
condition. It however, relies on two concepts yet to be introduced in this text: the
injectivity radius, and the upper bound of the sectional curvature of the manifold.

Note that a di�eomorphism is a bijective map F : U → V , where U, V are open sets
and such that both F and F−1 are smooth [4, p 26].
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De�nition 5.4. [4, p 257] The injectivity radius of a Riemannian manifoldM at a point
x, denoted by inj(x), is the supremum over radii r > 0 such that expx is de�ned and is a
di�eomorphism on the open ball

B(x, r) = {v ∈ TxM : ∥v∥x < r}.

The notion of curvature is too great to be de�ned in the scope of this text. Thus, we
will omit the precise de�nition. Instead we only state strictly informally that it is, like
the name suggests, in a measure of how much a surface bends in di�erent directions. For
the purpose of this text we will assume that the upper bound of curvature is denoted by
∆ and the lower bound by δ.

We can then state the theorem by [15]:

Theorem 5.1. [15]
Suppose r satis�es

1. r ≤ 1
2
inj(x), x ∈ B(o, r),

2. r ≤ 1
2

π√
∆
,

Then r(x) = d(x, o) is smooth and convex on B(o, r), and any two points in B(o, r) are
joined by a unique segment that lies in B(o, r).

The last statement of the theorem is equivalent to the de�nition of strict convexity.
Thus, we obtain the constraint that if

ρ < rcx
△
=

1

2
min

{
injM,

π√
∆

}
, (5.2)

then the open ball B(o, ρ) is strictly convex. For the remainder of the text we will refer
to rcx as convexity radius.

Having de�ned a strictly convex subset of the manifold, we can assure the existence
and uniqueness of the solution to 5.1, provided that all data points lie within this convex
ball. This fact comes from the following theorem, proven in [2]:

Theorem 5.2. Consider {xi}Ni=1 ⊂ B(o, ρ) and assume 0 ≤ wi ≤ 1 with
∑N

i=1wi = 1. If
ρ ≤ rcx, then the Riemannian L2 center of mass x̄ is unique, is inside B(o, ρ), and is the
unique zero of the gradient vector �eld ∇f in B̄(o, ρ).

5.2 Riemannian center of mass for Kendall's shape space

As a preliminary to the discussion of the numerical solutions for 5.1, we begin by stating
the actual gradient of the function. By [3], the gradient of 5.1 is:

grad f(x) = − 1

2n

N∑
i=1

exp−1
x xi (5.3)

Having now derived an area of the manifold in which the solution is guaranteed to
exist, we may consider the discussion about actually determining it. In the previous
section, the only assumption that we made was for the manifold to be complete, and
Riemannian. As it turns out, determining conditions under which an algorithm can be
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constructed such that the centre of mass can actually be determined, requires a further
restriction on the radius of the ball in which the points must reside.

The possible conditions one can achieve vary greatly between the type of manifold
being considered, see [3]. Therefore, we restrict our discussion to the Kendall's shape
space. Even then, considering all the shape spaces might prove di�cult. The reason
for this lies �rst and foremost, in the sectional curvature of the shape spaces in speci�c
dimensions, that is m. As previously mentioned, Σk

1 and Σk
2 can be identi�ed with some

familiar spaces for k ≥ 3. For an arbitrary shape space Σk
m, the curvature might be

unbounded [5, p 207], making the rcx in�nitesimal, in which case the center of mass might
not exist. Determining the curvature for an arbitrary space might be possible, as discussed
in [8]. However, this would require understanding of the curvature beyond the content of
this thesis. For this reason, we will limit ourselves to the discussion concerning Σk

2, which
is also the shape space with a more signi�cantly developed theory (see for example [5], or
[7]).

We begin by noting that the space is a compact and connected, and that the sectional
curvature is bounded below by 1, and above by 4, so it is not constant. Furthermore, we
note that because of the domain we choose for the exponential map, the injectivity radius
is π/2 [7]. From this we obtain the convexity radius rcx = π/4.

The theory behind which convexity radius guarantees convergence has been developed
by [3]. As it is based on an estimate of the Hessian, we repeat the the required expression
for the estimate cκ(l), given by [3].

cκ(l) =

{
1, κ ≥ 0,√
|κ|l coth(

√
|κ|l), κ < 0.

(5.4)

We additionally state the basic gradient descent algorithm, as it is required for the
formulation of the required theorem.

Algorithm 2 Gradient descent for �nding the Riemannian L2 center of mass.

[3]

Require: {xi}Ni=1 ⊂ B(o, ρ) ⊂ M and weights {wi}Ni=1 (0 ≤ wi ≤ 1,
∑N

i=1wi = 1).
Choose x0 ∈M.

1: if grad fp(x
k) = 0 then stop; else set

xk+1 = expxk(−tk grad fp(xk)),

where tk > 0 is an �appropriate� step-size and grad fp(·) is de�ned in 5.1.
2: goto step 2.

Theorem 5.3. [3] Assume that x̄2 is the L2 center of mass of {xi}Ni=1 ⊂ B(o, ρ) ⊂ M,
where ρ ≤ 1

3
rcx. De�ne tδ,ρ = 1

HB(o,3ρ)
, where HB(o,3ρ) = cδ(4ρ) and cκ is de�ned in 5.4.

In Algorithm 2 assume that x0 ∈ B(o, ρ) and for every k ≥ 0 choose tk = t, where
t ∈ (0, 2tδ,ρ). Then we have the following: The algorithm is well de�ned for all k ≥ 0,
and each iterate of the algorithm continuously stays in B(o, 3ρ), f2(x

k+1) ≤ f2(x
k) for

k ≥ 0 (with equality only if xk = x̄2), and xk → x̄2 as k →∞. Moreover, if x0 coincides
with o, then ρ ≤ 1

2
rcx is enough to guarantee the convergence, in which case each iterate

of the algorithm continuously stays in B(o, 2ρ) and we can take tδ,ρ = 1
HB(o,2ρ)

, where

HB(o,2ρ) = cδ(3ρ).
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We may additionally note the following theorem, as it might apply to some speci�c
shape spaces.

Theorem 5.4. [3] Assume thatM is either a manifold of constant nonnegative curvature
∆ ≥ 0 or a 2-dimensional manifold with nonnegative curvature upper bounded by ∆ ≥ 0.
Let p = 2 and {xi}Ni=1 ⊂ B(o, ρ), where ρ ≤ rcx. In Algorithm 2, choose an initial
point x0 ∈ B(o, ρ) and a constant step-size tk = t, where t ∈ (0, 1]. Then we have that
the algorithm is well de�ned for every k ≥ 0, each iterate continuously stays in B(o, ρ),
f2(x

k+1) ≤ f2(x
k) with equality only if xk = x̄2, and xk → x̄2 as k →∞.

6 Numerical Experiments

In this section we present a series of numerical experiments. The purpose of this is
to illustrate the e�ciency and reliability of the previously discussed theory. We �rstly
consider the space of triangles in a two dimensional space, that is Σ3

2. Then we will
consider some speci�c data that outlines a set of chess �gures. There, by the nature of
the how we sample our data, it is possible to investigate how di�erent sampling frequencies
might a�ect the result.

6.1 The Space of Triangles

We consider the space of space of shapes of three points in two dimensions, Σ3
2, which

clearly is the space of triangles. Recall that by remark 4.1, we have that dimΣ3
2 = 2.

Because of this, and the previously mentioned values for the curvature of Σk
2 being non-

negative, it is clear that theorem 5.4 applies in this case.
We use the space of triangles to test with a large number of data points, how di�erent

values of step size might a�ect convergence. Random shapes of triangles were used for
all of the tests. Note the simple fact that if every two elements in a set have a distance
of less than 2r apart, then they must all lie inside the open ball of radius r. As such we
constructed a set of random triangles that are all inside of the convexity radius rcx, by
generating random 2× 3 matrices, that are centered and normalized, and rejecting those
that were more than 2rcx apart from every other triangle in the set.

The data used for the numerical experiment was a random sample of 4 shapes inside
of the convexity radius of π/4. The test was performed 50 times, after which the average
of the data was taken. By the Theorem 5.4 the possible constant step sizes that guarantee
convergence were the values between 0 and 1. However, we perform the test on the step-
sizes up to 4. The reason for this is to obtain some insight into what happens to the
center of mass beyond the convexity radius that assures convergence. As the small step-
sizes rapidly approach a very high number of iterations, we limit the maximum number
of iterations to a 1000. The results are presented in 1. The red line depicts the rate
of convergence for the gradient descent with backtracking line search, as mentioned in
Section 3.2.

There are two main things that can be observed by the Figure 1. We see that if we
only consider the step-sizes that do guarantee convergence, then 1 would be the optimal
choice, in terms of rate of convergence. However, one can see from the graph that the
algorithm converges relatively quickly, for values up to about a step-size of 2. We can
note that this is the maximal step-size range given by 5.3, but only if the convexity radius
were to be π/12. For this reason we cannot guarantee that the quick convergence means
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that a global solution is being reached, but it could be an indication of that happening.
This could indicate that at least in this speci�c case, the restriction given by the spread
of the data-points, is not as strict in practice as it is in theory. The random nature of our
data prevents us from checking if the same center is reached with a step-size of 1 and 2.

Figure 1: Relation between stepsize and the number of iterations

6.2 Chess Pieces

(a) Pawn (b) Knight (c) Bishop (d) Rook (e) Queen (f) King

Figure 2: Shapes outlining the chess �gures

We now consider a data set consisting of the outlines of the six chess pieces1. When
sampled with a thousand datapoints (k = 1000), the outlines can be seen in Figure 2.
Note that despite the appearance of some �gures being larger than others, mathematically,

1The �gures were sampled by the Bézier curves provided in this Github repository
https://github.com/estennw/srvpy
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all of the �gures have been scaled and normalized to be of equal size. We wish to apply
Theorem 5.3 to the set of shapes. For this, we have two possibilities of a convexity radius
guaranteeing the convergence. The case when the convex ball is centered at any point
on the manifold, in which we obtain the convexity radius of π/12, or the case where the
center of the convex ball is the initial iterate, in which the radius would be π/8. The small
number of shapes allows us to manually check whether the �gures are in an "appropriate"
distance from each other. For this purpose we note that π

12
≈ 0.2618 and π

6
≈ 0.5236.

Thus, the uniqueness of the center of mass, is guaranteed, if the shapes are less than 0.5236
apart. Table 1 shows the numerical distances between the six chess �gures, rounded to
four decimal places.

Table 1: Distances Between Chess Figures

Pawn Knight Bishop Rook Queen King
Pawn 0 0.2600 0.8310 0.9499 0.1377 0.1819
Knight 0.2600 0 0.8843 0.9950 0.2813 0.3016
Bishop 0.8310 0.8843 0 0.2125 0.7260 0.6944
Rook 0.9499 0.9950 0.2125 0 0.8378 0.8039
Queen 0.1377 0.2813 0.7260 0.8378 0 0.0858
King 0.1819 0.3016 0.6944 0.8039 0.0858 0

From the table it is easy to see that we can observe two distinct groups of chess �gures
based on their proximities. The �rst group consists of the Pawn, Knight, Queen, and King.
The second group consists of the Bishop and the Rook. Thus, it is not possible to obtain a
unique global mean of all of the shapes together. If we however, only consider the shapes
that are in the same group as de�ned previously, then the global mean can be attained.
Figure 3 and 4 shows the mean shape of the respectively, second, and �rst group, the third
image shows the resulting mean if all the images are taken into consideration. One might
notice that the �gures are crooked, note that because of the nature of Kendall's shape
space, the rotation of a shape does not matter. Despite the �gures appearing similar to

Figure 3: Mean
of the Bishop and
Rook

Figure 4: Mean
of the Pawn,
Knight, King,
and, Queen

Figure 5: Mean of
all six chess pieces

the human eye, they were relatively far apart from each other as shapes. The reason for
this could lie in the way we sample our data. The data is generated by evenly sampling
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a Bézier curve to generate an array of points. In the discrete Kendall's shape space, we
require the points of individual shapes to be "approximately" near each other. In the
shape of the bishop, there is a "slit" at the top of it. As the slit is only on one side,
all the data points might be shifted, relative to other shapes. This could be a possible
explanation for why this shape is so far apart from the other shapes. This also shows the
limitation of the Kendall's shape space, at leat in the discrete case, the data points might
appear very similar to the human eye, while being mathematically completely di�erent.

7 Summary

Throughout this text we have given an introduction into the theory of manifolds. The
given theory was de�ned in the context of optimization on manifolds. The function that
we optimized was the function de�ning the Riemannian center of mass. In our case we
speci�cally considered how this functioned on Kendall's shape space, which consists of the
shapes modulo, translation, scaling, and rotation. This allowed us to de�ned a speci�c
range, in which the center of mass does exist, and is a unique minimum to the objective
function that we considered. In the end we performed successfully numerical experiments
on the Kendall's shape space, which gave us a mean shape of a set of data points.
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