
ECM: Improving IoT Throughput with
Energy-Aware Connection Management

Fatemeh Ghasemi, Lukas Liedtke and Magnus Jahre
Department of Computer Science, Norwegian University of Science and Technology (NTNU)

(fatemeh.ghasemi@ntnu.no, lukas.liedtke@ntnu.no, magnus.jahre@ntnu.no)

Abstract—Designing Internet of Things (IoT) devices that solely
rely on energy harvesting is the most promising approach towards
achieving a scalable and sustainable IoT. The power output of
energy harvesters can however vary significantly and maximizing
throughput hence requires adapting application behavior to match
the harvester’s current power output. In this work, we focus on the
connection policy of the IoT device and find that the on-demand
connect policy — which is used by state-of-the-art IoT runtime
systems — and the aggressive maintain connection policy both
fall short across a broad range of harvester power outputs. We
therefore propose Energy-aware Connection Management (ECM)
which tunes the connection policy and sampling frequency to
consistently achieve high throughput. ECM accomplishes this
by predicting both the average power output of the harvester
and the energy consumed by the IoT device with a lightweight
analytical model that only requires tracking six energy thresholds.
Our evaluation demonstrates that ECM can improve throughput
substantially, i.e., by up to 9.5× and 3.0× compared to the on-
demand connect and maintain connection policies, respectively.

Index Terms—Energy harvesting, IoT, connection management

I. INTRODUCTION

The number of Internet of Things (IoT) devices is expected
to grow substantially in the near future. Relying on battery-
powered IoT devices unfortunately limits scalability — because
replacing batteries is tedious and expensive at scale — and it
is not sustainable — because battery production and disposal
has a significant environmental footprint. Energy-harvesting
IoT devices address these challenges by harvesting energy
from for instance light, vibration, temperature gradients, or
wireless transmissions [10]. Energy and throughput are however
fundamentally intertwined in energy-harvesting systems [5],
and they hence need to strive to make the most out of the
harvested energy. Device power consumption should ideally
match the power output of the energy harvester, in which case
the system is energy-neutral [8], but this is challenging in
practice due to variability in energy supply and demand.

IoT applications typically consist of different tasks, for
example capturing a sample from a sensor or communicating
one or more samples to the back-end system. An important
design objective is to maximize throughput under an (implicit)
energy constraint, i.e., maximizing the number of bytes of
sample information delivered to the back-end system per unit
time given the amount of energy that the harvester supplies.
We find that IoT system throughput critically depends on how

This work is funded in part by the Research Council of Norway (Grant
#286596) and the European Union through Horizon 2020 (Grant #101034240).

the system treats management tasks such as connecting to the
back-end system or transmitting packets to keep the connection
alive. The key challenge is that management tasks must be
executed for the system to work as intended, but they do not
directly contribute to throughput. Adopting policies that require
executing too many management tasks hence yields suboptimal
throughput because management tasks consume energy that
could have been used to collect or communicate sample data.

To maximize throughput, IoT systems should therefore adopt
task scheduling policies that minimize the amount of energy
spent on management tasks. State-of-the-art Capybara [3] and
Morphy [16] use energy-greedy task scheduling in which each
task is associated with a worst-case energy cost. The energy
harvesting subsystem then notifies the application System-on-
Chip (SoC) when the system has stored sufficient energy to
fully execute each task, thereby avoiding shutdowns due to lack
of energy. Energy-greedy task schedulers treat management
tasks inefficiently because they effectively adopt an On-demand
Connect (OC) strategy, i.e., they wait until the system has
harvested sufficient energy to connect and transmit sample data
and then disconnect. OC is the most efficient policy when
energy is scarce — because it avoids wasting energy on keeping
a doomed connection alive — but yields suboptimal throughput
otherwise — because the system wastes energy on connecting
and disconnecting even if the system has sufficient energy to
maintain the connection. A straightforward alternative is to
adopt a Maintain Connection (MC) policy that always attempts
to keep the connection alive. MC can perform (slightly) worse
than OC when energy is scarce — because it may waste energy
on executing tasks that do not complete as well as on keeping
doomed connections alive — but it provides higher throughput
than OC otherwise — because it amortizes connection overhead
across multiple samples.

Our key observation is that OC and MC treat management
tasks suboptimally and therefore leave substantial throughput
on the table. More specifically, we find that once connected, the
IoT system should carefully weigh the potential for improving
throughput against the overhead of maintaining the connec-
tion. We hence propose Energy-aware Connection Management
(ECM) which uses a light-weight analytical model to decide if
the connection should be maintained or not, and, if it decides
to maintain the connection, ECM tunes the sampling period
to match the predicted power consumption of the SoC to
the predicted power output of the energy harvester. In this
way, ECM configures the system to adopt a near-energy-

Energy
Source

IoT Device

Energy
Harvester MPPT Energy

Storage
Voltage

Regulator System
on Chip
(SoC)

Voltage
Supervisors

RF +
Sensors

Power Signal

BLE

Fig. 1: Baseline IoT device. The voltage supervisors enable
implementing energy-greedy task scheduling in software.

neutral operating point which in turn minimizes the number
of management tasks, i.e., the number of times the IoT device
must connect to the back-end system. Our evaluation covers a
broad range of harvester configurations and demonstrates that
ECM improves throughput by up to 8.0× (3.0×), 2.0× (1.4×),
and 9.5× (3.0×) compared to OC (MC) for our benchmarks
ProtoNN, Bonsai, and Glucose, respectively.

II. BACKGROUND

Figure 1 provides an overview of our baseline IoT platform
which is in line with prior work [3], [15]. We assume a state-of-
the-art energy-greedy task scheduler inspired by Capybara [3]
which runs on the SoC and dispatches the next task when the
task’s low-power voltage supervisor detects that the platform
has stored sufficient energy to execute it successfully. The
remaining platform components collaborate to efficiently power
the SoC. The energy harvester converts ambient energy into
electrical energy which is then fed to the Maximum Power-
Point Tracker (MPPT) which optimizes harvester efficiency by
adjusting its output voltage such that it achieves the highest
possible output power under the current ambient energy con-
ditions. The device includes a voltage regulator between the
energy storage and the SoC. We model a 2.2 mF capacitor as
energy storage and a Microchip MCP1640 voltage regulator.
The MCP1640 improves energy utilization by boosting the
voltage of the capacitor to match the supply voltage of the
SoC in the (typical) situation where the capacitor voltage is
(much) lower than the SoC’s required supply voltage.

Greedy task schedulers require measuring the amount of
stored energy. One option is to directly measure the instan-
taneous power output from the harvester, e.g., by using shunt
resistors and Analog-to-Digital Converters (ADCs). Although
very low-power ADCs and current-sense amplifiers are avail-
able (e.g., TI ADS7112 and Maxim MAX9634), their power
overhead is at least in the range of several micro-watts (de-
pending on the operating mode). Prior work [3], [16] instead
use voltage supervisors to track the voltage of the energy
storage capacitor(s) at (much) lower power overhead. We model
a Renesas ISL8800x series voltage supervisor for which the
typical current consumption is 200 nA when operating at up
to 3.3 V. Our baseline energy-greedy scheduler requires four
voltage supervisors to support all tasks.

III. ENERGY-AWARE CONNECTION MANAGEMENT (ECM)

We now present ECM which improves upon state-of-the-art
energy-greedy schedulers by tuning the connection policy and
the sampling period to the current harvester power output.

ET1

ET0

0

∆t

P̄h = (ET1 − ET0) /∆t + P̄c

Compute Ts with Eq. 1

ET1 − ET0

1

2

3

4

Time

St
or

ed
E

ne
rg

y
E

st

Fig. 2: ECM example. ECM achieves near-energy-neutral oper-
ation by first predicting the average power output of the energy
harvester P̄h and then predicting a sampling period Ts that
balances energy supply and demand.

A. ECM Runtime Behavior

The core of ECM is its analytical energy model which
predicts whether the connection should be maintained or not,
and, if ECM detects that maintaining the connection is favor-
able, it selects a sampling period that achieves near-energy-
neutral operation. Our fundamental insight is that this decision
is governed by a simple equation:

Ts =
E∗

c

P̄h − P̄ ∗
c
. (1)

Equation 1 predicts the sampling period Ts at which the energy
cost of work-proportional activities E∗

c is balanced against the
predicted average power output of the harvester P̄h minus the
average power consumed by time-proportional activities P̄ ∗

c .
We will derive Equation 1 in Section III-B, but, before attending
to this, we will describe how ECM uses Equation 1 at runtime.
For now, it is sufficient to know that E∗

c and P̄ ∗
c are fully

determined at design time and hence constants at runtime.
Example. Figure 2 exemplifies the main operation of ECM.
For the purpose of the example, we assume that (i) the IoT
device is initially not connected to the back-end system, and
(ii) the upcoming task requires communication. We focus on the
energy thresholds ET0 and ET1 which signify that the device has
stored sufficient energy to execute task set T0 and task set T1,
respectively. Different task types can share energy thresholds
if their worst-case energy consumption is sufficiently similar.

The energy harvesting subsystem interrupts the SoC when
an energy threshold is crossed. At 1 , the amount of stored
energy crosses the threshold ET0. Since the next task is a
communication task, the device does not yet have sufficient
energy to execute it. ECM however exploits that the amount of
energy storage is known at this point in time and hence starts
a timer. When the amount of stored energy later crosses the
communication task threshold ET1 (see 2), ECM inspects the
timer and thereby measures the amount of time ∆t that has
passed since crossing ET0. Since ET1 and ET0 are known, we
know how much energy the system gained (or lost) across ∆t.

ECM keeps a record of which tasks were executed during
∆t and knows the worst-case energy consumption of each
task type; this is required to perform energy-greedy scheduling.
ECM can hence predict the average power consumption of the

SoC P̄c, and with P̄c in place, we can combine it with the
thresholds (ET0 and ET1) and ∆t to predict P̄h (see 3):

P̄h = (ET1 − ET0)/∆t+ P̄c. (2)

In other words, we exploit that the change in stored energy
across ∆t is determined by the relative difference between
the average harvester power output P̄h and the average power
consumption of the SoC P̄c.

Since E∗
c and P̄ ∗

c are determined at design time, ECM has
now captured the necessary information to compute Ts with
Equation 1 4 . If P̄ ∗

c is greater than P̄h, Ts is negative which
indicates that the harvester’s power output is insufficient to
maintain the connection. In this case, ECM adopts an on-
demand connect strategy, i.e., it connects to the back-end
system, transfers the captured sample data, and then discon-
nects. Otherwise, Ts is positive, and ECM attempts to maintain
the connection with a sampling period of at most Ts. ECM
recomputes Equation 1 every time a threshold is crossed after
connecting to the back-end system and updates Ts accordingly,
thereby adapting to significant changes in harvester output
power.
Optimizations. Equation 1 returns a large Ts when the pre-
dicted power output of the energy harvester P̄h is only slightly
larger than P̄ ∗

c , i.e., the energy cost of keeping the connection
alive is lower than the cost of reconnecting over a long time
horizon. A large Ts can be inefficient because keeping the
connection alive requires transmitting a keep-alive packet every
100 ms in our setup, and energy is then predominantly spent
on keep-alive packets rather than sampling and transmission
of sample data. ECM lets the developer tune this behavior by
providing an upper bound on Ts called Ts-max. (We will explain
how to derive Ts-max at the end of Section III-B.)

When the energy storage is full, the system will lose some of
the harvested energy. This constitutes a loss of throughput if the
system could have used this energy to sample or communicate.
ECM therefore includes an additional high-energy threshold
above which it samples and communicates continuously. We set
this threshold to 58% of the device’s energy storage capacity
because this is close to the mid-point between the communica-
tion threshold and maximum storage capacity. We also found it
beneficial to include an additional energy threshold between the
sampling threshold and the communication threshold to obtain
a better estimate of harvester output power when connecting.
ECM hence requires two voltage supervisors in addition to the
four supervisors in the baseline, yielding an additional overhead
of 400 nA (see Section II). We faithfully model this overhead
in our evaluation.

B. Sampling Period Prediction

Having explained how ECM uses Equation 1 at runtime,
we now turn our attention to explaining how we derived the
equation and precisely defining E∗

c and P̄ ∗
c . Previous work

demonstrated that the energy consumption of IoT applications
can be accurately predicted by capturing key characteristics of
the application and IoT device [5], [12], and we build upon the
insights of these works to predict Ts.

Overall energy consumption. Since ECM builds upon an
energy-greedy scheduling baseline, we know that the device has
sufficient energy to successfully connect to the back-end system
and transmit the currently captured sample data when executing
the connection task. The energy cost of these operations is
hence sunk, and the task at hand is to determine a sampling
period (if any) at which future consumed energy matches the
predicted energy output of the harvester. We find that post-
connect SoC energy consumption Ec can be modeled as the
sum of the energy consumed by four key activities:

Ec = Es + Et + Ek + Ei. (3)

More specifically, Ec is the sum of the energy consumed while
collecting and processing samples Es, transmitting sample data
to the back-end system Et, transmitting keep-alive packets to
keep the connection alive Ek, and while idle in a low-power
mode Ei. We model the energy consumption across a fixed time
window ttot which is the product of the sampling period Ts and
the total number of samples ns-tot (i.e., ttot = Ts × ns-tot).
Sampling and processing. We predict the energy consumption
during sample collection and processing as the product of the
average power consumption of the SoC while sampling P̄s, the
time it takes to collect a sample ts, and the number of samples
in the time window ns-tot:

Es = ns-tot × P̄s × ts = ns-tot × E∗
s . (4)

For the purpose of cleanly deriving Equation 1, we simplify
Equation 4 by representing P̄s × ts as E∗

s .
Data transfer. We focus on protocols where data transmission
is organized in packets, and determining the total energy cost
of data transmission hence requires computing the number
of data packets. Each sample produces a certain amount of
data ds measured in bytes. Dividing ds by the packet payload
size dp yields the number of packets required to transfer
each sample. Applications may transfer multiple samples in
a communication event, and prior work refers to this as the
communication incidence ns [5]. The total number of packets
np in a communication event is hence ⌈ns × (ds/dp)⌉, and we
are ready to predict transfer energy Et:

Et = np × P̄t × tt × (ns-tot/ns) = ns-tot × E∗
t . (5)

Equation 5 states that Et is the product of the number of
packets np, the average power consumption of the SoC during
transmission P̄t, the time it takes to transmit a single packet tt,
and the number of communication events in the time window
(ns-tot/ns). Again, we simplify the equation by combining all
terms except ns-tot in E∗

t .
Keep-alive packets. Connection-oriented protocols typically
require communication at specific intervals to keep the con-
nection alive. In Bluetooth Low Energy (BLE), the minimum
frequency fk at which packets have to be sent is determined
by the parameters connection interval and peripheral latency.
If the application communicates at a lower frequency, it must
transmit empty keep-alive packets. We model keep-alive energy
Ek as the product of the average power consumption during

transmission P̄k, the transmission time of a single packet tk,
and the number of keep-alive packets nk in the time window:

Ek = nk × P̄k × tk

=

(
ttot × fk −

ns-tot

ns
×
⌈

np

np-max

⌉)
× P̄k × tk

= ns-tot × E∗
k + ttot × P̄ ∗

k .

(6)

The number of keep-alive packets nk is the maximum number
of potential keep-alive transmissions in the time window (i.e.,
ttot × fk) minus the number of communication events in which
useful data is transmitted. The number of packets that can be
transmitted between two potential keep-alive events is limited
by np-max which is a protocol parameter. Dividing the total
number of packets np by np-max hence takes care of the situation
in which a single communication event replaces more than one
keep-alive packet. To prepare for the upcoming derivation of
Equation 1, we abstract the work-proportional energy cost and
the time-proportional power cost of the keep-alive packets into
the variables E∗

k and P̄ ∗
k , respectively.

Idle. When the SoC is neither sampling nor transmitting data
or keep-alive packets, it is idle in a low-power sleep mode. Idle
energy consumption Ei is therefore total time ttot minus active
time multiplied by the average idle power consumption P̄i:

Ei =

[
ttot −

(
ns-tot × ts +

ns-tot

ns
× np × tt + nk × tk

)]
× P̄i

= ns-tot × E∗
i + ttot × P̄ ∗

i .
(7)

We combine the work-proportional energy costs of being idle
into the variable E∗

i and represent the time-proportional power
costs of idle time by the variable P̄ ∗

i .
Solving for the sampling period. We can now substitute the
simplified forms of Equations 4, 5, 6, and 7 into Equation 3
and simplify by combining the work-proportional energy costs
into E∗

c and time-proportional power costs into P̄ ∗
c :

Ec = ns-tot × (E∗
s + E∗

t + E∗
k + E∗

i) + ttot × (P̄ ∗
k + P̄ ∗

i)

= ns-tot × E∗
c + ttot × P̄ ∗

c .
(8)

The system is energy-neutral when all harvested energy is
consumed (i.e., P̄h × ttot = Ec), and, by definition, ns-tot equals
ttot/Ts. Substituting these relations into Equation 8 results in
ttot cancelling, and by reorganizing we arrive at Equation 1:

P̄h × ttot = (ttot/Ts)× E∗
c + ttot × P̄ ∗

c

Ts =
E∗

c

P̄h − P̄ ∗
c

(9)

Bounding keep-alive overhead. To bound the overhead of
keep-alive packets, the developer computes the ratio r of non-
idle energy used on sampling and sample transmission to total
non-idle energy for integer numbers of keep-alive packets nk:

r =
Es + Et

nk × P̄k × tk + Es + Et
(10)

The ratio r is a number between zero and one where zero means
that all energy is spent on keep-alive packets, whereas r is equal
to one when nk equals zero. The developer can hence set a limit

on r that is appropriate for the application and deployment.
The maximum sampling period Ts-max is then nk divided by
the minimum frequency fk at which packets must be sent to
keep the connection alive (i.e., Ts-max = nk/fk). In this work,
we require r to be above 0.7 for all benchmarks, yielding Ts-max
of 200 ms for ProtoNN and Glucose and 900 ms for Bonsai.

IV. EXPERIMENTAL SETUP

Our application SoC is the Nordic Semiconductor nRF52832
which features a single ARM Cortex M4 processor, an in-
tegrated BLE radio subsystem, 512 kB of non-volatile Flash
memory, and 64 kB of volatile SRAM memory. The system
operates at a clock frequency of 64 MHz. We use Nordic
Semiconductor’s S132 BLE protocol stack, and our back-end
system is an Android mobile phone running nRF Connect. We
disable all unused SoC components to save power.

We model the energy harvesting subsystem within ESS [4]
and configure ESS to take the outdoor solar energy traces
provided by Kraemer et al. [9] as input. Outdoor solar energy
harvesters follow a diurnal pattern because their power output
is proportional to solar irradiance which peaks at mid-day (in
the absence of weather-induced variation) and is zero between
sunset and sunrise. We scale the power output of the energy
traces to model a range of solar panels with varying sizes and
efficiencies while retaining variability due to time of day and
weather, ultimately yielding six harvester configurations with
average power outputs of 16, 117, 164, 273, 410, and 448 µW;
our trace covers three consecutive days in August 2018.

We compress the time scale of the energy trace by 600× to
make evaluation tractable, i.e., 24 hours of energy trace data
is represented by 2.4 minutes of evaluation time. This is not
to the benefit of ECM because it is more sensitive to short-
term variation in harvester power output than OC and MC.
We evaluate all configurations for 10 minutes out of which
7.2 minutes represents 72 hours from the energy trace. We
keep harvester output at zero during the final 2.8 minutes to
ensure that all configurations consume as much as possible of
the harvested energy. All experiments are initialized with zero
stored energy.

We evaluate three IoT benchmarks. ProtoNN and Bonsai [6]
are machine learning classifiers optimized for IoT devices,
and Glucose is a health-monitoring application taken from the
Nordic SDK. Our throughput metric is bytes per second (B/s),
i.e., the number of bytes of sample data that the IoT device
delivers to the back-end system per unit time.

V. RESULTS

Throughput. Figure 3 reports throughput with OC, MC, and
ECM for ProtoNN, Bonsai, and Glucose across our solar panel
configurations. Since throughput increases with energy, we
augment Figure 3 with Figure 4 which reports throughput
normalized to MC with each solar panel to make it easier to
compare the connection managers to each other. The throughput
difference between benchmarks is due to each benchmark
requiring a different amount of energy to capture and transmit
each sample. Glucose uses the least amount of energy and

0 100 200 300 400
Average Harvester Power (W)

0
2
4
6
8

10
12
14
16
18

Th
ro

ug
hp

ut
 (B

/s
)

OC
MC
ECM

(a) ProtoNN

0 100 200 300 400
Average Harvester Power (W)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 (B

/s
)

OC
MC
ECM

(b) Bonsai

0 100 200 300 400
Average Harvester Power (W)

0

50

100

150

200

Th
ro

ug
hp

ut
 (B

/s
)

OC
MC
ECM

(c) Glucose

Fig. 3: Throughput versus energy. ECM improves throughput compared to OC and MC across a broad range of harvesters.

16 117 164 273 410 448
Average Harvester Power (W)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

OC
MC
ECM

(a) ProtoNN

16 117 164 273 410 448
Average Harvester Power (W)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

No
rm

al
ize

d
Th

ro
ug

hp
ut

OC
MC
ECM

(b) Bonsai

16 117 164 273 410 448
Average Harvester Power (W)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

OC
MC
ECM

(c) Glucose

Fig. 4: OC, MC, and ECM throughput normalized to MC. ECM improves throughput substantially compared to OC and MC.

hence achieves the highest throughput, whereas sampling is
costly for Bonsai which in turn yields (much) lower throughput.

When the average harvester power output is low compared
to the energy required to capture and transmit samples, OC,
MC, and ECM yield similar throughput. This is the case for
Bonsai with the 16 µW solar panel (see Figure 4b). The reason
is that OC connects on demand and therefore does not waste
energy on trying to maintain the connection, while ECM detects
that the connection cannot be sustained and hence adopts the
on-demand connect strategy. MC on the other hand tries to
maintain the connection but quickly runs out of energy. We
observe the same result with 16 µW Glucose, but in this case
ECM was able to amortize the connection overhead over two
samples whereas OC and MC were not. ECM was however not
able to capitalize on this advantage within the evaluation time
window, resulting in it completing the evaluation with more
stored energy than OC and MC.

Figures 3 and 4 shows that OC and MC fall short for solar
panels with moderate output power. OC yields low throughput
because it is too conservative, i.e., it disconnects from the back-
end system even if the system has sufficient energy to transmit
more samples. MC on the other hand is too aggressive and
causes the system to run out of energy because it samples and
transmits too frequently to be sustainable. ECM achieves the
best of both worlds by using its analytical model to select a
favorable connection strategy and sampling period. Figure 4
demonstrates that ECM substantially improves throughput over
OC and MC. For OC, ECM achieves its maximal throughput
improvement with the 448 µW solar panel configuration, yield-
ing speed-ups of 8.0×, 2.0×, and 9.5× for ProtoNN, Bonsai,
and Glucose, respectively. Compared to MC, ECM improves

throughput by 3.0×, 1.4×, and 3.0× for ProtoNN, Bonsai, and
Glucose, respectively. ECM achieves its maximum speed-up
over MC with the 117 µW panel for ProtoNN and Glucose and
the 164 µW panel for Bonsai.

MC is the highest performer when energy is abundant, see
ProtoNN with the 448 µW solar panel and Glucose with the
410 µW and 448 µW panels; this trend also holds for configura-
tions with higher power output. MC outperforms ECM because
we start our evaluation at midnight with zero stored energy, and,
since outdoor solar energy follows a diurnal pattern, the power
output of the harvester increases rapidly in the morning. This
results in ECM initially underestimating harvester power output
and selecting a higher-than-ideal sampling period — which in
turn causes it to spend energy on keep-alive packets rather than
sampling and data transfer — and explains why ECM yields
lower throughput than MC in this case. Selecting (relatively)
high-power harvesters do however incur overheads such as
physical size and cost and are hence unattractive in many
deployments. Moreover, the throughput difference between MC
and ECM is small, e.g., ProtoNN with ECM provides only 5.5%
lower throughput than MC with the 448 µW panel.
Energy consumption analysis. To demonstrate why ECM
outperforms OC and MC, Figure 5 reports a break down of
the SoC energy consumption for ProtoNN with the 117 µW
solar panel. Since we supply the same amount of energy to
all configurations, the total energy consumption under OC and
MC is identical, whereas ECM’s total energy consumption is
1.1% lower because this energy was consumed in ECM’s two
additional voltage supervisors and hence did not reach the
SoC. The Idle Sleep category is energy spent in a low-power
sleep mode in which interrupts and timers are enabled whereas

0
10
20
30
40
50

En
er

gy
 (m

J)

OC MC ECM

Idle Sleep
Deep Sleep
Checkpointing

Sampling
Keep-Alive
Transfer

Connecting
Unused

Fig. 5: ProtoNN energy breakdown with the 117 µW solar
panel configuration. ECM outperforms MC and OC because
it minimizes the amount of energy spent on management tasks.

only the wake-on-interrupt circuitry is enabled in the Deep
Sleep mode. Checkpointing covers energy spent on backing
up application state to non-volatile memory when the amount
of stored energy reaches the backup energy threshold as well
as restoring state once sufficient energy has been harvested.
Sampling is energy spent on capturing samples and Keep-Alive,
Transfer, and Connecting captures the energy spent on keep-
alive packets, data packets, and connecting to the back-end
system, respectively. Finally, Unused is energy that cannot be
used because it is insufficient to execute the next task.

Figure 5 demonstrates that ECM outperforms OC and MC
because it spends more of the available energy on collecting
samples and transferring samples to the back-end system, i.e.,
the Sampling and Transfer categories are significantly larger
for ECM than they are for OC and MC. Moreover, ECM
successfully keeps the connection alive and hence spends much
less energy in the Connecting category compared to OC and
MC. This comes at the cost of ECM spending more energy in
the Keep-Alive category, but this is a favorable trade-off because
keep-alive packets overall require (much) less energy than
reconnecting. OC interestingly has a non-negligible amount
of Unused energy. This is the amount of energy left at the
end of the evaluation where OC’s next task is communication
but it cannot be carried out because the amount of energy is
insufficient to establish the connection. All configurations spend
limited energy in the sleep modes and on checkpointing.

VI. RELATED WORK

A large body of prior work focuses on adapting application
behavior to the current energy conditions; Bakar et al. [1]
provides an excellent overview. While early approaches simply
execute when energy is available (e.g., Clank [7] and Hi-
bernatus++ [2]), more recent approaches (e.g., CatNap [11],
Camaroptera [14], and ePerceptive [13]) adapt application
behavior to current energy conditions. REHASH [1] gener-
alizes this approach by enabling developers to evaluate and
deploy heuristic-based application adaptation strategies. These
approaches are orthogonal to ECM, i.e., a developer can apply
application-specific optimizations in conjunction with ECM’s
application-independent connection management optimizations.

VII. CONCLUSION

We have presented Energy-aware Connection Management
(ECM) which adapts the connection policy and sampling period
to achieve near-energy-neutral operation in energy-harvesting
IoT systems. ECM uses an analytical energy model to predict
a sampling period that balances the power consumption of the
application SoC with the power output of the energy harvester
or adopts an on-demand connect strategy if such a period cannot
be found. Our evaluation demonstrates that ECM can improve
throughput by up to 9.5× compared to the on-demand connect
strategy used in state-of-the-art energy-greedy task schedulers.

REFERENCES

[1] Abu Bakar, Alexander G Ross, Kasim Sinan Yildirim, and Josiah Hester.
Rehash: A flexible, developer focused, heuristic adaptation platform
for intermittently powered computing. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(3), 2021.

[2] Domenico Balsamo, Alex S. Weddell, Anup Das, Alberto Rodriguez
Arreola, Davide Brunelli, Bashir M. Al-Hashimi, Geoff V. Merrett, and
Luca Benini. Hibernus++: A self-calibrating and adaptive system for
transiently-powered embedded devices. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 35(12), 2016.

[3] Alexei Colin, Emily Ruppel, and Brandon Lucia. A reconfigurable energy
storage architecture for energy-harvesting devices. In Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2018.

[4] Fatemeh Ghasemi, Lukas Liedtke, and Magnus Jahre. ESS: Repeatable
evaluation of energy harvesting subsystems for industry-grade IoT plat-
forms. In IEEE Int. Symp. on Workload Characterization (IISWC), 2023.

[5] Fatemeh Ghasemi, Lukas Liedtke, and Magnus Jahre. PES: An energy
and throughput model for energy harvesting IoT systems. In Int. Symp.
on Performance Analysis of Systems and Software (ISPASS), 2023.

[6] Sridhar Gopinath, Nikhil Ghanathe, Vivek Seshadri, and Rahul Sharma.
Compiling KB-sized machine learning models to tiny IoT devices. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2019.

[7] M. Hicks. Clank: Architectural support for intermittent computation. In
Proc. of the Int. Symp. on Computer Architecture (ISCA), 2017.

[8] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Srivastava. Power
management in energy harvesting sensor networks. ACM Transactions
on Embedded Computing Systems, 6(4), 2007.

[9] Frank Alexander Kraemer, David Palma, Anders Eivind Braten, and
Doreid Ammar. Operationalizing solar energy predictions for sustainable,
autonomous IoT device management. IEEE IoT Journal, 7(12), 2020.

[10] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson,
Y. Xie, and V. Narayanan. Architecture exploration for ambient energy
harvesting nonvolatile processors. In International Symposium on High
Performance Computer Architecture (HPCA), 2015.

[11] Kiwan Maeng and Brandon Lucia. Adaptive low-overhead scheduling for
periodic and reactive intermittent execution. In Proc. of the Int. Conf. on
Programming Language Design and Implementation (PLDI), 2020.

[12] J. San Miguel, K. Ganesan, M. Badr, C. Xia, R. Li, H. Hsiao, and
N. Enright Jerger. The EH model: Early design space exploration of
intermittent processor architectures. In Proceedings of the International
Symposium on Microarchitecture (MICRO), 2018.

[13] Alessandro Montanari, Manuja Sharma, Dainius Jenkus, Mohammed
Alloulah, Lorena Qendro, and Fahim Kawsar. ePerceptive: Energy
reactive embedded intelligence for batteryless sensors. In Proceedings of
the Conference on Embedded Networked Sensor Systems (SenSys), 2020.

[14] Matteo Nardello, Harsh Desai, Davide Brunelli, and Brandon Lucia.
Camaroptera: A batteryless long-range remote visual sensing system.
In Proceedings of the International Workshop on Energy Harvesting &
Energy-Neutral Sensing Systems (ENSsys), 2019.

[15] Emily Ruppel, Milijana Surbatovich, Harsh Desai, Kiwan Maeng, and
Brandon Lucia. An architectural charge management interface for energy-
harvesting systems. In Proceedings of the International Symposium on
Microarchitecture (MICRO), 2022.

[16] Fan Yang, Ashok Samraj Thangarajan, Sam Michiels, Wouter Joosen, and
Danny Hughes. Morphy: Software defined charge storage for the IoT. In
Proc. of the Conf. on Embedded Networked Sensor Sys. (SenSys), 2021.

