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Abstract: Reconstructing the pressure from given flow velocities is a task arising in various applications, and
the standard approach uses the Navier–Stokes equations to derive a Poisson problem for the pressure p. That
method, however, artificially increases the regularity requirements onboth solution anddata. In this context,we
propose and analyze two alternative techniques to determine p ∈ L�(�). The first is an ultra-weak variational
formulation applying integration by parts to shift all derivatives to the test functions. We present conforming
finite element discretizations and prove optimal convergence of the resulting Galerkin–Petrov method. The
second approach is a least-squares method for the original gradient equation, reformulated and solved as an
artificial Stokes system. To simplify the incorporation of the given velocitywithin the right-hand side,we assume
in the derivations that the velocity field is solenoidal. Yet this assumption is not restrictive, as we can use non-
divergence-free approximations and even compressible velocities. Numerical experiments confirm the optimal
a priori error estimates for both methods considered.
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� Introduction

In fluid systems, using the velocity field to compute the pressure is a task with established relevance for both
theory and applications. For example, this can be used in fractional-step solvers to update the pressure from
a previously computed velocity [11], or in clinical practice to estimate arterial pressure from imaging-based
velocity measurements [15]. The most popular approach to solve this inverse problem is the so-called pressure
Poisson equation (PPE) obtained from the divergence of the Navier–Stokes momentum equation. Of course,
applying the divergence increases the regularity requirements on both the unknown pressure p and the given
velocity u, imposing numerical challenges. In fact, standard (weak) variational formulations for the PPE require
continuous pressure and smooth velocities for conformity, which poses practical limitations [4, 13]. In this con-
text, we introduce here an ultra-weak (often called very weak [3, 6]) variational formulation for the PPE, and
conforming finite element methods for its discretization. The first and perhaps only time an ultra-weak for-
mulation has been mentioned – yet not analyzed nor discretized – for the PPE was in an article on pressure
boundary conditions [17]. Apart from that, ultra-weak formulations are normally either used for merely first-
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order boundary value problems [8] (where standard Lagrangian finite element spaces can be used), or handled
as a mixed system to circumvent smoothness requirements on the test space [3]. Our idea, on the other hand,
is to work with more regular test functions, which allows us to stay with a standard L� requirement for the
pressure. A rare example of such a type of discretization is a recent work on hyperbolic problems [10].

Alternatively to the ultra-weak framework, we also discuss a least-squares approach to find p ∈ L�(�)with-
out deriving a Poisson problem, i.e., considering the original gradient equation for the pressure. The idea is to
construct an operator equation that is realized by solving an artificial Stokes problem. Both approaches consid-
ered here require the same regularity on the pressure, but are analyzed and realized in very di�erent ways.

On a domain � ⊂ �n , n = � or �, with Lipschitz boundary Γ = ∂�, themodel problem considers themomen-
tum equation ∇p = f + ν�u in �, (1.1)

where u is a given velocity field, ν is the fluid viscosity, and f is a given vector. This can be seen as a general
flow setting, since f can include not only external forces, but also velocity-dependent terms stemming from the
flow equations (e.g., convection or acceleration terms). Moreover, most applications consider an incompressible
flow, that is,

div u = � in �. (1.2)

Here we will use (1.2) to simplify the evaluation of the vector Laplacian in (1.1). Afterwards we can use non-
divergence-free (finite element) approximations of the velocity, or even consider compressible velocities from
the beginning (with an appropriate form of the viscous term).

The pressure recovery problem considers u as given, sowe do not seek to solve the system composed of (1.1)
and (1.2); instead, we wish to use those equations to find the pressure p. Yet, since (1.1) is vector-valued and p
is a scalar, we get an overdetermined system when applying standard discretization schemes. This motivates
using least-squares approaches.

� The Pressure Poisson Equation

�.� Weak Formulation

The classical technique to find p is the pressure Poisson equation. Although it can be set up by deriving a Poisson
equation for p, an equivalent formulation is to minimize the quadratic functional

J(p) = �
�
�∇p − f − ν�u��L�(�) . (2.1)

Its minimizer is found as the solution p ∈ H�(�) of the variational formulation�
�

∇p ⋅ ∇q dx = �
�

(f + ν�u) ⋅ ∇q dx for all q ∈ H�(�). (2.2)

The pressure p is only unique up to an additive constant, hence we use the scaling condition p ∈ L��(�), that is,
p ∈ L�(�) satisfying �

�

p dx = �. (2.3)

While standard variational formulations for flow problems consider (u, p) ∈ H�(�) × L�(�), formulation (2.2)
requires more regularity, i.e., (u, p) ∈ H�(�) × H�(�). This restricts the possibilities for discretizing the solu-
tion p and the data u. In biomedical applications, for example, the velocity u is often a first-order interpolation
of imaging data, in which case the vector Laplacian in (2.2) cannot be approximated [4]. Even if we had only
first-order terms, e.g., (∇u)u as in an Euler flow, the fact that u is a piecewise linear interpolation limits the
pressure convergence to linear, regardless of the polynomial order used for ph (see [1]). Motivated by these lim- Note 1:

Red parts indicate
major changes.
Please check them
carefully.

itations of the weak PPE, we propose an ultra-weak formulation that allows piecewise constant approximations
for the pressure and less regular data.
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�.� Ultra-Weak Variational Formulation

The idea is to replace q ∈ H�(�) in (2.2) with more regular test functions φ. This allows applying integration by
parts, giving us �

Γ

p∂nφ dsx + �
�

p[−�φ] dx = �
�

(f + ν�u) ⋅ ∇φ dx.
Requesting ∂nφ = � on Γ yields �

�

p[−�φ] dx = �
�

(f + ν�u) ⋅ ∇φ dx. (2.4)

For the velocity term, we use (1.2) and integration by parts to write�
�

�u ⋅ ∇φ dx = �
�

[∇(div u) − curl(curl u)] ⋅ ∇φ dx
= −�

�

[curl(curl u)] ⋅ ∇φ dx
= �

Γ

[curl u] ⋅ (nx × ∇φ) dsx − �
�

[curl u] ⋅ [curl(∇q)] dx
= �

Γ

(curl u) ⋅ (nx × ∇φ) dsx ,
which holds for both n = � and n = �, with the appropriate definitions of the curl and the cross product. Note
that in the above derivation we consider the exact solenoidal velocity, which later on can be replaced by a non-
divergence-free approximation. Finally, we include the zero mean pressure condition and obtain an extended
variational formulation: find p ∈ X := L�(�) such that�

�

p[−�φ] dx + �|�| �
�

p dx�
�

φ dx = �
�

f ⋅ ∇φ dx + �
Γ

(ν curl u) ⋅ (nx × ∇φ) dsx (2.5)

is satisfied for all φ ∈ Y := {φ ∈ H�
�(�) : ∂nφ = � on Γ}, where

H�
�(�) := {φ ∈ H�(�) : �φ ∈ L�(�)}, |�| := �

�

dx.

Unique solvability of the ultra-weak variational formulation (2.5) is based on an inf-sup stability condition for
the bilinear form

a(p, φ) := �
�

p[−�φ] dx + �|�| �
�

p dx�
�

φ dx, p ∈ X, φ ∈ Y.
While the norm for p ∈ X = L�(�) is obvious, for φ ∈ H�(�) an equivalent norm is�φ��H�(�),� := �∇φ��L�(�) + �|�|��

�

φ dx�� .
For φ ∈ H�

�(�) we therefore define the norm�φ��H�
�(�) := �∇φ��L�(�) + �|�|��

�

φ dx�� + ��φ��L�(�) .
At this time we recall Poincaré’s inequality: for all u ∈ H�(�), there holds�

�

[u − u�]� dx ≤ cP �
�

|∇u|� dx, u� = �|�| �
�

u dx, (2.6)

which is equivalent to �
�

u� dx ≤ �|�|��
�

u dx�� + cP �
�

|∇u|� dx. (2.7)
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Now we are in a position to state an equivalent norm in Y ⊂ H�
�(�), namely,�φ��Y := ��φ��L�(�) + �|�|��

�

φ(x) dx�� .
Lemma 2.1. The norm �φ�Y defines an equivalent norm in Y ⊂ H�

� , i.e., there hold the norm equivalence inequal-
ities

�
max{� + cP , � + cP−�} �φ��H�

�(�) ≤ �φ��Y ≤ �φ��H�
�(�) for all φ ∈ Y.

Proof. While the upper estimate is trivial, it remains to prove the lower bound. For φ ∈ Y we have, when
applying Green’s first formula and using ∂nφ = � on Γ,�∇φ��L�(�) = �

�

∇φ ⋅ ∇φ dx = �
Γ

φ∂nφ dsx + �
�

[−�φ]φ dx
= �

�

[−�φ]φ dx ≤ ��φ�L�(�)�φ�L�(�) .
Now, using Young’s inequality for some γ > � and the Poincaré inequality (2.7), this gives�∇φ��L�(�) ≤ ��φ�L�(�)�φ�L�(�) ≤ �� γ��φ��L�(�) + �

�γ
�φ��L�(�)≤ �

�
γ��φ��L�(�) + �

�γ
� �|�|��

�

φ dx�� + cP �
�

|∇φ|� dx�.
In particular, taking γ = cP results in�∇φ��L�(�) ≤ cP��φ��L�(�) + �

cP|�|��
�

φ dx�� ,
and hence �φ��H�

�(�) = �∇φ��L�(�) + �|�|��
�

φ dx�� + ��φ��L�(�)
≤ �� + �

cP
� �|�|��

�

φ dx�� + �� + cP���φ��L�(�)
≤ max�� + cP , � + �

cP
�� �|�|��

�

φ dx�� + ��φ��L�(�)�
follows.

For (p, φ) ∈ X × Y we now have, using Hölder’s inequality,

a(p, φ) = �
�

p[−�φ]dx + �|�| �
�

p dx�
�

φ dx

≤ �p�L�(�)��φ�L�(�) + �|�| �
�

p dx�
�

φ dx

≤ ��p��L�(�) + �|�|��
�

p dx��� �� ���φ��L�(�) + �|�|��
�

φ dx��� ��
≤ ���p�L�(�)�φ�Y , (2.8)

that is, boundedness. We can now state unique solvability of the variational problem (2.5).



D. R. O. Pacheco and O. Steinbach, Optimal Pressure Recovery � 5

Theorem 2.2. Let (u, p) ∈ H�(�) × L��(�) satisfy (1.1) and (1.2). Then the pressure p ∈ L�(�) is given as the unique
solution of the extended variational formulation (2.5), which satisfies the scaling condition (2.3), that is, p ∈ L��(�).
Proof. For p ∈ L�(�) we consider the splitting

p(x) = p�(x) + �, � = �|�| �
�

p dx, �
�

p� dx = �,
where we have �p��L�(�) = �

�

p� dx = �
�

[p�(x) + �]� dx = �
�

[p�(x)]� dx + ���
�

p� dx + |�|�� ,
that is, �p��L�(�) = �p���L�(�) + �|�|��

�

p dx�� .
Let φ ∈ H�(�) be the unique weak solution of the Neumann boundary value problem−�φ = p� in �, ∂nφ = � on Γ, �

�

φ dx = �
�

p dx.

Then
a(p, φ) = �

�

p[−�φ] dx + �|�| �
�

p dx�
�

φ dx

= �
�

[p� + �]p� dx + �|�|��
�

p dx��
= �

�

[p�]� dx + �|�|��
�

p dx�� = �p��L�(�)
= �

�

[−�φ]� dx + �|�|��
�

φ dx�� = �φ��Y
implies

a(p, φ) = �p�L�(�)�φ�Y ,
and therefore the inf-sup condition�p�L�(�) ≤ sup

� �=φ∈Y a(p, φ)�φ�Y for all p ∈ L�(�) (2.9)

follows. On the other hand, for � �= φ ∈ Y ⊂ H�
�(�) we first compute
α = �|�| �

�

φ dx,

then define p = −�φ + α ∈ L�(�). For this particular choice we obtain
a(p, φ) = �

�

p[−�φ] dx + �|�| �
�

p dx�
�

φ dx

= �
�

[−�φ + α][−�φ] dx + �|�| �
�

[−�φ + α] dx�
�

φ dx

= �
�

[�φ]� dx + �|�|��
�

φdx��= �φ��Y > �,
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where we have used �
�

�φ dx = �
Γ

∂nφx dsx = � for φ ∈ Y.
Hence, we have that all assumptions of the Babuška–Brezzi theorem are satisfied, see, e.g., [7], and therefore
unique solvability of (2.5) follows. In particular, for φ ≡ � we finally conclude the scaling condition (2.3).
�.� Ultra-Weak Finite Element Methods

Let Xh = span{ψk}Nk=� ⊂ X = L�(�) be the space of piecewise constant basis functions ψk defined with respect
to some admissible decomposition of � into finite elements τk of local mesh size hk , and with global mesh
size h = maxk=�,...,N hk . For simplicity we assume that the mesh is globally quasi-uniform, that is, hk ∼ h for all
k = �, . . . , N . Then the finite element variational formulation of (2.5) is to find ph ∈ Xh such that�

�

ph[−�φh] dx + �|�| �
�

ph dx�
�

φh dx = �
�

f ⋅ ∇φh dx + �
Γ

(ν curl u) ⋅ (nx × ∇φh) dsx (2.10)

is satisfied for all φh ∈ Yh , where the finite element space Yh ⊂ Y remains to be specified. At this timewe assume
dim Yh = dim Xh and the discrete inf-sup or Babuška–Brezzi–Ladyshenskaya condition

cS�ph�L�(�) ≤ sup
� �=φh∈Yh a(ph , φh)�φh�Y for all ph ∈ Xh . (2.11)

Using standard arguments, see, e.g., [7], we conclude unique solvability of the Galerkin–Petrov scheme (2.10), as
well as Cea’s lemma �p − ph�L�(�) ≤ c inf

qh∈Xh �p − qh�L�(�) , (2.12)

and hence the a priori error estimate �p − ph�L�(�) ≤ chs|p|Hs(�) (2.13)

when assuming p ∈ Hs(�) for some s ∈ [�, �]. In particular, for p ∈ H�(�) we obtain linear convergence for
a piecewise constant approximation ph .

It remains to define a suitable test space Yh = span{φk}Nk=� ⊂ Y such that the discrete stability condition
(2.11) is satisfied. For a given φh ∈ Yh we define ph = Qh[−�φh] ∈ Xh as the piecewise constant L� projection
satisfying �

�

phqh dx = �
�

[−�φh]qh dx for all qh ∈ Xh . (2.14)

In particular, for qh ≡ � ∈ Xh this gives�
�

ph dx = �
�

[−�φh] dx = −�
Γ

∂nφh dsx = �.
From (2.14) we immediately conclude the stability estimate�ph�L�(�) ≤ ��φh�L�(�) ,
which holds for any choice of the finite element test space Yh . We now assume that Yh is chosen in such a way
that also the reverse inequality �ph�L�(�) ≥ cYh��φh�L�(�) (2.15)

is satisfied for a positive constant cYh ≤ �. Possible choices will be discussed at the end of this section.
We now define

ph(x) = ph(x) + α ∈ Xh , α = �|�| �
�

φh dx,

which also implies
α = �|�| �

�

ph dx, �
�

ph dx = �
�

φh dx.
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With this we compute, using (2.15),

a(ph , φh) = �
�

ph[−�φh] dx + �|�| �
�

ph dx�
�

φh dx

= �
�

ph[−�φh] dx + �|�| �
�

ph dx�
�

φh dx

= �
�

[ph]� dx + �|�|��
�

ph dx��
= ��ph��L�(�) + �|�|��

�

ph dx��� �� ��ph��L�(�) + �|�|��
�

ph dx��� ��
≥ cYh���φh��L�(�) + �|�|��

�

φh dx��� �� ��ph��L�(�) + �|�|��
�

ph dx��� ��
= cYh�φh�Y�ph�L�(�) ,

which implies the stability condition

cYh�φh�Y ≤ sup
� �=qh∈Xh a(qh , φh)�qh�L�(�) for all φh ∈ Yh . (2.16)

For φ ∈ Y we can therefore define Πhφ ∈ Yh as the unique solution of the variational problem
a(qh , Πhφ) = a(qh , φ) for all qh ∈ Xh , (2.17)

where unique solvability follows from dim Xh = dim Yh and (2.16). The latter also implies, together with (2.8),�Πhφ�Y ≤ ��cYh �φ�Y . (2.18)

With this we can prove the discrete stability condition (2.11) via the criteria of Fortin [9], with cS = cYh�� .
It remains to define the finite element test space Yh ⊂ Y such that (2.15) is satisfied with a positive con-

stant cYh independent of the discretization parameter h.

�.� Tensor-Product Meshes

Since Xh is defined as the space of piecewise constant basis functions, we find the coe�cients pk = ph|τk of
ph ∈ Xh as

pk = �|τk| �τk [−�φh(x)] dx for k = �, . . . , N.
We first consider the one-dimensional case where the computational domain � = (�, �) is decomposed into
N finite elements τk = (xk−� , xk) of mesh size h = �

N , i.e., xk = kh for k = �, �, . . . , N . For a finite element
τk = (xk−� , xk), k = �, . . . , N , the piecewise constant basis function ψk is defined as

ψk(x) = ���� for x ∈ (xk−� , xk),
� else.

For the definition of a conforming test space Yh ⊂ Y weuse piecewise quadratic B-splines, i.e., for k = �, . . . , N −�,
φk(x) =

�����������������������

�
�
�
h�
(x − xk−�)� for x ∈ [xk−� , xk−�],

�
�
�
h�
[�h� − (�x − xk−� − xk)�] for x ∈ [xk−� , xk],

�
�
�
h�
(x − xk+�)� for x ∈ [xk , xk+�],

� else,

(2.19)
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Figure 1: Illustration of the smooth, piecewise quadratic functions used as basis for the one-dimensional test space.

while for k = � and k = N we use the modified splines

φ�(x) = ���������������
� − �

�
�
h�
(x − x�)� for x ∈ [x� , x�],

�
�
�
h�
(x − x�)� for x ∈ [x� , x�],

� else,

(2.20)

and

φN(x) = ���������������
�
�
�
h�
(x − xN−�)� for x ∈ [xN−� , xN−�],

� − �
�
�
h�
(x − xN)� for x ∈ [xN−� , xN],

� else,

(2.21)

to ensure conformity Yh ⊂ Y (see Figure 1). For a given φh ∈ Yh we then conclude ph = −φ��h ∈ Xh , and hence
(2.15) follows with cYh = �.

In the multi-dimensional case (n > �), we can define Yh as the tensor product of the one-dimensional test
space. However, in this case it follows that −�φh �∈ Xh is not piecewise constant, i.e., we need to use the L� pro-
jection ph = Qh[−�φh] ∈ Xh , see (2.14).
Example 2.1. For a givenmesh size hwe consider the computational domain � = (�, �h)� which is decomposed
into four finite elements τk . When using the one-dimensional basis functions

φ�(x) = �������
� − �

�
x�

h�
for x ∈ (�, h),

�
�
�
h�
(x − �h)� for x ∈ (h, �h),

φ�(x) = �������
�
�
x�

h�
for x ∈ (�, h),

� − �
�
�
h�
(x − �h)� for x ∈ (h, �h),

we can write φh ∈ Yh as
φh(x) = a��φ�(x�)φ�(x�) + a��φ�(x�)φ�(x�) + a��φ�(x�)φ�(x�) + a��φ�(x�)φ�(x�),

for which we compute

��φh��L�(�) = �
��

�
h�
����� −�� −�� −�−�� ��� −� −��−�� −� ��� −��−� −�� −�� ���

��a��
a��
a��
a��

� ,�a��
a��
a��
a��

�� .

For the piecewise constant L� projection ph = Qh[−�φh] ∈ Xh as defined in (2.14) we obtain
�ph��L�(�) = �� �

h�
�� �� −�� −�� −�−�� �� −� −��−�� −� �� −��−� −�� −�� ��

��a��
a��
a��
a��

� ,�a��
a��
a��
a��

�� .
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It is easy to check that the eigenvectors of both matrices coincide, i.e.,

v� =��
�
�
�

� , v� =� �−�−�
�

� , v� =�−��
�
�

� , v� =� �−�
�
�

� ,

and for all a ∈ �� we can write
a = ��

k=� αkvk .
With this we compute ��φh�� = �

��
�
h�
[����α�� + ���α�� + ���α��]

as well as �ph��L�(�) = �� �
h�
[���α�� + ��α�� + ��α��].

Hence we conclude �ph��L�(�) ≥ ���� ��φh��L�(�) ,
which is (2.15) with cYh = ��

�� .

While the approach as given in the previous example can be generalized to any tensor product decomposition
of �, a rigorous proof of (2.15) remains open. Yet our numerical results indicate that (2.15) is satisfied also in
more general situations.

�.� Simplicial Meshes

As we have just seen, considering tensor-product spaces leads to �φh �∈ Xh , which requires showing the reverse
inequality (2.15). Moreover, tensor-product meshes impose an obviously strong restriction on the geometries
that can be discretized. Also notice that the tensor products of one-dimensional H� functions are also in H�(�),
which is in some sense more than we need for stability, since H�(�) ⊆ H�

�(�). In this context, we can alterna-
tively construct an appropriate test space by taking functions φh ∈ H�

�(�) so that �φh = div ψh , where ψh are
basis functions from the lowest-order Raviart–Thomas space RT�. On simplicial meshes (triangles for n = �,
tetrahedra for n = �), this space contains piecewise linear, vector-valued functions ψh ∈ H(div, �). Then, by
selecting only the basis functions satisfying the boundary condition ψh ⋅ nx = � on ∂�, we will have

�φh = div ψh ∈ Xh ⊂ L�(�),
so that stability follows immediately from (2.15) with cYh = �. Note that, since the degrees of freedom of the
Raviart–Thomas element are the normal components ψh ⋅ nx on the element edges (n = �) or faces (n = �), it is
straightforward to select only those with zero value on ∂�. Formally, for each element τk we define the actual
scalar test function φk ∈ Yh ⊂ Y as the unique solution of the Neumann boundary value problem−�φk = − div ψk in �, ∂nφk = � on Γ, �

�

φk dx = αk > �, (2.22)

which gives us, using (2.4), �
�

ph[− div ψk] dx + αk|�| �
�

ph dx = �
�

(f + ν�u) ⋅ ∇φk dx. (2.23)

While we can evaluate the left-hand side in (2.23) using only the Raviart–Thomas functions ψk , computing the
right-hand side can be more involved. From (2.22) we conclude the representation∇φk = ψk + curlA



10 � D. R. O. Pacheco and O. Steinbach, Optimal Pressure Recovery

for arbitrary vector fields A satisfying nx ⋅ curlA = � on Γ. Then�
�

(f + ν�u) ⋅ ∇φk dx = �
�

(f + ν�u) ⋅ [ψk + curlA] dx = �
�

(f + ν�u) ⋅ ψk dx,

provided that �
�

(f + ν�u) ⋅ [curlA] dx = �
for all A with nx ⋅ curlA = � on Γ. Indeed, if f + ν�u = ∇� is a gradient field, we have�

�

(f + ν�u) ⋅ [curlA] dx = �
�

∇� ⋅ [curlA] dx
= �

Γ

�nx ⋅ [curlA] dsx − �
�

� div[curlA] dx = �.
This is exactly the case we have here – as a matter of fact, with � = p. Therefore, we can work directly with the
Raviart–Thomas functions ψk , without having to actually solve (2.22) for φk , which is thus implicitly defined.
We finally get �

�

ph[− div ψk] dx + αk|�| �
�

ph dx = �
�

(f + ν�u) ⋅ ψk dx. (2.24)

The scaling factor αk can be chosen either mesh dependent, or simply equal to 1, for example. However, since
these test functions do not necessarily form a partition of unity, the scaling ph ∈ L��(�) is no longer exactly
satisfied. This does not matter in practice, since one can solve for ph and then simply compute�ph = ph − �|�| �

�

ph dx,

which will then have zero mean, by construction.
For an element τk , the support of ψk will cover no more than n + � elements: τk itself and all adjacent

elements with a common face (n = �) or edge (n = �). We then select ψk ∈ RT� such that ψk ⋅ nx = � on ∂τk \ Γ,
ψk ⋅ nx = −� on the common faces (n = �) or edges (n = �) of neighboring elements, and ψk ⋅ nx = � elsewhere.
Figure 2 illustrates the setup in two dimensions, and details on the properties and the implementation of
Raviart–Thomas functions can be found in [2].
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Figure 2: Support of the vector–valued test function ψk ∈ RT� and its normal values ψk ⋅ nx , for an internal element τk in two
dimensions. The negative values in adjacent elements account for the change in the local definition (direction) of nx .
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A limitation of this approach is the need to consider the full second-order term �u, since the Raviart–
Thomas functionsψk are not regular enough to allow further integration by parts. Therefore,when u is replaced
by a piecewise linear interpolation uh , the Laplacian will have to be reconstructed using some appropriate
technique (see, e.g., [13] for a simple approach). Alternatively, instead of the pressure Poisson equation we can
consider a least-squares approach to compute the pressure.

� A Least-Squares Recovery Method

Instead of (2.1) we now consider the functional

J(p) = �
�
�∇p − f − ν�u��H−�(�)= �

�
�A−�(∇p − f − ν�u), ∇p − f − ν�u�� (3.1)

to be minimized, where the vector Laplacian A : H�
�(�)→ H−�(�) is defined as�Aw, v�� = �

�

∇w : ∇v dx for all w, v ∈ H�
�(�).

The minimizer of (3.1) is then given as the unique solution p ∈ L��(�) of the gradient equation�A−�(∇p − f − ν�u), ∇q�� = � for all q ∈ L��(�). (3.2)

By introducing w = A−�(∇p − f − ν�u), this is equivalent to a variational formulation to find w ∈ H�
�(�) and

p ∈ L�(�) such that �
�

∇w : ∇v dx + �
�

p div v dx = ν�
�

∇u : ∇v dx − �
�

f ⋅ v dx (3.3)

and −�
�

q divw dx + �
�

p dx�
�

q dx = � (3.4)

is satisfied for all v ∈ H�
�(�) and q ∈ L�(�). Note that system (3.3) and (3.4) is also knownas Stokes estimator [1, 4].

By construction, we have that w = �. For the numerical solution of the Stokes system (3.3) and (3.4) we can use
any stable finite element scheme. One possible approach is to consider first the finite element discretization of
the gradient equation (3.2) in its stabilized form to find p ∈ L�(�) such that�A−�(∇p − f − ν�u), ∇q�� + �

�

p dx�
�

q dx = � for all q ∈ L�(�). (3.5)

Note that (3.5) is the Schur complement equation of the modified Stokes system (3.3) and (3.4). Since the related
bilinear form �A−�∇p, ∇q�� + �

�

p dx�
�

q dx (3.6)

is bounded for all p, q ∈ L�(�), and elliptic in L�(�), unique solvability of (3.5) follows. As before, let Xh ⊂ L�(�)
be the space of piecewise constant basis functions. Then, we consider the Galerkin formulation to find ph ∈ Xh
such that �A−�(∇ph − f − ν�u), ∇qh�� + �

�

ph dx�
�

qh dx = � for all qh ∈ Xh . (3.7)

Using standard arguments we then conclude Cea’s lemma (2.12), and the error estimate (2.13). However, since
the bilinear form (3.6) does not allow a direct evaluation, we need to introduce an approximation of

w = A−�(∇p − f − ν�u)
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by somewh ∈ Yh ⊂ H�
�(�). Hencewe consider thefinite element approximation of (3.3) and (3.4) to findwh ∈ Yh

and �ph ∈ Xh such that �
�

∇wh : ∇vh dx + �
�

�ph div vh dx = ν�
�

∇u : ∇vh dx − �
�

f ⋅ vh dx (3.8)

and −�
�

qh divwh dx + �
�

�ph dx�
�

qh dx = � (3.9)

is satisfied for all vh ∈ Yh and qh ∈ Xh . The discrete Schur complement system of (3.8) and (3.9) then defines
an approximation of the continuous Schur complement equation (3.7), which can be analyzed via the Strang
lemma [5, 18]. To ensure discrete ellipticity of the approximated Schur complement operator, wemust define the
finite element space Yh appropriately. An example of velocity discretization that is stable when combined with
piecewise constant pressure are continuous, Lagrangian spaces of polynomial degree n (the spatial dimension).
Another possible choice is to consider piecewise linear, continuous basis functions defined on a fine enough
meshwhen compared to themesh size of Xh . Eitherway, the order of convergence given in (2.13) will not change.

While we have w = � for the solution of (3.3) and (3.4), this is not true for the discrete counterpart wh .
Instead, wemay usewh to define an error indicator to control the finite element error �p − �ph�L�(�). This follows
the general approach as analyzed in [12], and will be discussed in more detail in an upcoming work [14].

� Numerical Results

This section presents numerical results supporting our a priori estimates. The discrete pressure is piecewise con-
stant, which in the least-squares (LS) case is paired with a piecewise quadratic artificial velocity wh , for inf-sup
stability. As done in applications, we will replace u by a first-order interpolation uh , on the same triangulation
used for ph . This allows a simple evaluation of the velocity term ∫Γ(curl uh) ⋅ (nx × ∇φ) dsx . For the approach
using Raviart–Thomas functions, however, a piecewise linear uh cannot be used, as discussed in Section 2.5.
Therefore, in this case we consider a piecewise constant approximation of the Laplacian �u.

Consider the computational domain � = (�, �)�, zero right-hand side (f = �), ν = �, and the exact solution
given by

u(x, y) = ��y� − y
�x� − x� , p(x, y) = ��xy − �.

We use two families of meshes with the same resolution: one with square elements (for the PPE with spline test
functions), and one with triangles (for both the LS and the PPE with Raviart–Thomas functions). The coarsest
level is shown in Figure 3, after which several uniform refinements are applied. The relative L�(�) pressure
errors are shown in Table 1, confirming linear convergence for all recovery techniques.

Figure 3:Meshes used as starting point for the refinement study.
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Tensor-product PPE Simplicial PPE Simplicial LS

Refinement level L�-error eoc L�-error eoc L�-error eoc

� �.��e-� �.��e-� �.��e-�
� �.��e-� �.�� �.��e-� �.�� �.��e-� �.��
� �.��e-� �.�� �.��e-� �.�� �.��e-� �.��
� �.��e-� �.�� �.��e-� �.�� �.��e-� �.��
� �.��e-� �.�� �.��e-� �.�� �.��e-� �.��
� �.��e-� �.�� �.��e-� �.�� �.��e-� �.��
� �.��e-� �.�� �.��e-� �.�� �.��e-� �.��
� �.��e-� �.�� �.��e-� �.�� �.��e-� �.��

Table 1: Numerical test case confirming the linear convergence of both PPE and LS approaches, using a piecewise constant pressure
approximation.

� Conclusions

In this work, we have presented, analyzed and discretized two distinct pressure recovery methods. The first
is an ultra-weak variational formulation for the pressure Poisson equation (PPE). Di�erently from common
approaches, we do not rely on a discontinuous Galerkin framework, nor do we recast the Poisson problem
into a mixed first-order system, but rather consider a scalar Galerkin–Petrov formulation. To that end, we use
integration by parts to get rid of all derivatives on the trial functions p, which allows us to consider p ∈ L�(�) as
in the Navier–Stokes system. As a trade-o�, we must have H� test functions with square-integrable Laplacian,
hence the Galerkin–Petrov nature of our framework. When considering these di�erent trial and test spaces,
unique solvability of the continuous problem is guaranteed by an inf-sup stability condition. We have then also
proved discrete stability and a priori error estimates for a conforming, yet abstract choice of spaces fulfilling
certain conditions. When considering piecewise constant trial functions, we have presented a realization of the
test space using modified second-order B-splines. In that case, the discrete inf-sup condition is proven in one
dimension, while an extension to higher dimensions is sketched. For simplicial meshes, we have also presented
an approach using test functions whose divergence is in the lowest-order Raviart–Thomas space.

As an alternative framework requiring only standard Lagrangian finite element spaces, we have also con-
sidered a least-squares method that is solved as a Stokes system with artificial velocity. The method results
in considerably more degrees of freedom than the PPE, but can be discretized in a much simpler way. Both
approaches require the same regularity on the unknown pressure and the velocity data, and also converge
with the same order. Although we have considered incompressible velocities here, compressible ones can also
be used, since both the ultra-weak PPE and the least-squares approach use test functions with enough regularity
to handle the additional terms that appear in the compressible form of the Navier–Stokes equations.

An open problem is extending the ultra-weak discretization to higher-order trial spaces. In fact, first numer-
ical experiments combining piecewise (bi-)linear ansatz with Hermite or Argyris polynomials as test functions

Note 2:
The bibliography
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updated with
MathSciNet. Since
entries may be
mismatched
and replaced by
a wrong entry
(especially:
preprints, theses,
and translations),
please carefully
double-check each
entry.

indicate promising results [16].
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