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ABSTRACT

Inference about historical great earthquakes is a key step in understanding the
risk involved from a potential future event. In the Cascadia region, located on
the Pacific Coast of the North American continent, the most recent full margin
rupture was in 1700AD. As such the spatial distribution of the movement in the
underlying rock structure of the Cascadia Subduction Zone (CSZ) needs to be
inferred from geological estimates of surface movements taken throughout this
region. This spatial distribution is the CSZ coseismic slip distribution, and the
geological estimates used will be a coseismic subsidence data set.

Here we model the underlying coseismic slip distribution as a transformed
Gaussian Random Field (GRF), using the Stochastic Partial Differential Equations
(SPDE) approach. The main contribution of this work is in developing a Bayesian
framework which links the coseismic slip distribution to the geological subsidence
estimates via the Okada dislocation model. Existing scientific information is also
incorporated into the framework via a taper function and an anisotropic coseismic
slip distribution to align with the current literature.

The method is validated by predicting unseen subsidence estimates which
demonstrates that the best model presented can capture the geological history
of the CSZ well. The data suggests a high degree of similarity between the stud-
ied historic great earthquakes, and predicts a potential future magnitude Mw9.0
event which has a high coseismic slip concentrated in the shallower depths of the
CSZ. We conclude by reflecting on improvements to be made to the new method-
ology presented here. The main focus being on incorporating higher quality data
sources, as well as increasing the resolution of artificial modelling structures to
better capture the continuous nature of the coseismic slip distribution.
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SAMMENDRAG

Statistisk inferens rundt store historiske jordskjelv er et viktig steg for å forstå
risikoen ved fremtidige potensielle jordskjelv. I Cascadiaregionen, ved Stille-
havskysten av Nord-Amerika, ble den siste fullstendige forkastningen dannet år
1700. For å lage en statistisk fordeling av forflytningen av det underliggende
berget ved subduksjonssonen i Cascadiaregionen må en bruke geologiske estimater
av overflatebevegelsen langs Stillehavskysten ved USA og Kanada i denne regio-
nen. Fordelingen som brukes er en Cascadia subduksjonssone (CSZ) seismisk
glidefordeling (coseismic slip distribution) og de geologiske estimatene som brukes
vil være datasett med seismiske senkningsinformasjon.

I denne oppgaven modelleres den underliggende seismiske glidefordelingen (co-
seismic slip distribution) som et transformert tilfeldig Gaussian felt (GRF), ved å
bruke en tilnærming med stokastiske partielle differensiallikninger (SPDE). Hov-
edbidraget fra dette arbeidet er ved å utvikle et Bayesiansk rammeverk som kobler
sammen den seismiske glidefordelingen med det geologiske senkningsestimatet via
dislokasjonsmodellen Okada.

Metoden er kontrollert ved å beregne senkning i forhold til kjente senkningses-
timater. Dette viser at den beste modellen som er presentert kan fange opp
den geologiske historien av subduksjonssonen (CSZ) bra. Dataene antyder en
stor likhetsgrad mellom de ulike undersøkte historiske jordskjelvene og forutser
et potensielt fremtidig jordskjelv til å ha en stor seismisk glidning konsentrert i
grunnere deler av dagens subduksjonssone (CSZ). Vi konkluderer med å reflektere
over forbedringer som kan gjøres ved den nye metoden som er presentert her. Hov-
edfokuset vil være på å inkorporere datakilder med høyere kvalitet, samtidig som
en øker oppløsningen til de kunstige modellstrukturene for å bedre kunne fange
opp den kontinuerlige oppførselen i den seismiske glidefordelingen.

i
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CHAPTER

ONE

INTRODUCTION

Great earthquakes have the capacity to affect vast areas of the earth. From chang-
ing the geological makeup of whole regions through ground failure and surface dis-
placements, to the immediate damage to infrastructure and loss of life caused by
violent earth movements, surface faulting and deadly tsunamis [1] and finally the
long term socioeconomic impacts of enduring such an event [2, 3, 4, 5, 6]. These
great earthquakes, also known as megathrust events, occur in the worlds subduc-
tion zones whereby one tectonic plate is being forced under another. A recent
example of such an event in which a tsunami was also triggered is the magnitude
Mw9.0 Japan 2011 event which is estimated to have damaged 685, 000 residential
buildings, caused US$211 billion [7] in total damage and most notably triggered
the meltdown of a nuclear reactor [8]. Additionally the Mw9.3 2004 South East
Asia event, which also triggered a tsunami, transcended national boundaries caus-
ing 226, 408 deaths across the whole of the region [9].

Unlike these examples the focus region of this thesis, the Cascadia Subduction
Zone (CSZ) located on the West Coast of North America, has not experienced a
megathrust event within living memory. However, there is a plethora of geological
evidence to suggest that this subduction zone has a long history of megathrust
events [10, 11, 12, 13, 14, 15, 16]. In the last 10, 000 years there have been an
estimated 19 megathrust events with the last event hitting the CSZ in the year
1700AD. This was before official written records were kept in the Cascadia region
and as such researchers have had to turn to tsunami records in Japan, a stunning
7000 kilometers from the CSZ, and geological records in the Cascadia region to
accurately date this event [17]. Of the available geological markers, buried soils
at coastal locations along the CSZ will be of highest interest in this thesis. They
allow for both the estimation of vertical ground displacement caused by the move-
ment of the underlying tectonic plate during a coseismic event, and the dating
of the events through the organic composition of the soils [18, 19, 20]. The term
coseismic here is used to describe any geological event that is related to an earth-
quake. Vertical displacement in the downwards direction is called subsidence, a
term used throughout this thesis, and in the upwards direction it is called uplift.

It is no wonder then, that with “the most spatially and temporally complete
geological records of past megathrust events” [21] that there has been extensive
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2 CHAPTER 1. INTRODUCTION

modelling efforts with regards to the coseismic activity of the CSZ. The modelling
that is particularly of interest here is that which aims to describe the coseismic slip
distribution across the CSZ. Coseismic slip is the displacement of the underlying
rock, which will henceforth be referred to as the fault, during a coseismic event.
The extent of the CSZ fault can be seen in Figure 1.0.1 which shows that it runs
over 1100 km from the northern edge on Vancouver Island to the southern point in
Northern California. The coseismic slip distribution is not homogeneous across the
fault, instead it is more accurately represented as a varying continuous distribution
across the entire fault. Inference about this distribution is critical as it directly
affects the risk associated with locations throughout the fault region. Higher slip
will result in more aggressive ground shaking and trigger more powerful tsunamis
which could have dramatic implications for any populated areas in the vicinity of
an area with a high slip concentration. Moreover the coseismic slip distribution can
be used as the input to tsunami models [22, 23, 24]. Thus increasing understanding
about the coseismic slip distribution will enable a better understanding of the risk
to the fault region.

California

Oregon

Washington

British Columbia

Canada
USA

Vancouver Island

40°N

42°N

44°N

46°N

48°N

50°N

128°W 126°W 124°W 122°W 120°W

Figure 1.0.1: The area in grey, bounded by red, is the CSZ fault region which will
be considered throughout this study. It was created by bounding the point depths
of the Slab2 data set [25] which are less than 30 km deep.

Many stochastic point source models have been developed to describe the un-
derlying coseismic slip distribution [26, 27, 28, 29, 23]. In the most recent study
here Goda [23], generates 5000 coseismic slip distributions for earthquakes with
Mw ∈ {8.1, 8.2, 8.3, ..., 9.1} over the CSZ. These draws are used further, alongside
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the fault geometry and a kinematic rupture1, in a tsunami simulation model. To
generate their slip distributions they first simulate from an anisotropic 2D von Kár-
mán2 wavenumber spectrum which has been calibrated with, amongst other pa-
rameters, along-strike correlation and along-dip correlation numbers. Anisotropy
means that the spatial correlation between points in the coseismic slip distribu-
tion will not be the same in all directions. This is widely agreed upon as being
the case for coseismic slip, since observations show that the correlation lengths in
the strike direction and the dip direction are different [30]. The strike direction
is defined as the angle between the fault boundary and the north line. The dip
direction is defined as the angle at which the fault dips down into the earth, mea-
sured perpendicular to the strike direction from the horizontal plane. A Box-Cox
power transformation3 is then applied to achieve a desirable right-skewed feature.
Then two step taper functions are applied with respect to both depth and on the
northern and southern boundaries of the fault. Finally, a constraint is added that
requires a suitable slip concentration in the shallower depths of the CSZ. This final
constraint was informed by the geological data available and any draw that does
not meet the constraint is disregarded. The anisotropy used in this modelling is
useful as it reflects the geological reality of a megathrust event. Additionally, use
of a taper function here reflects the reality of slips tapering to zero on the down-dip
limit of the fault and is widely used in coseismic slip studies [22, 31, 32]. However,
their application of a step function here results in an almost discontinuous mean
slip distribution which is perhaps not the most accurate reflection of reality.

Melgar et al. [33] have also developed a stochastic point source modelling ap-
proach to simulating the slip distribution in CSZ megathrust events, however this
time using a K-L expansion4. They first assume an earthquake magnitude, with
100 simulations of each Mw ∈ {8.0, 8.1, 8.2, ..., 9.2} used. The fault region is di-
vided into small triangular subfaults. Then a subfault is selected at random and
a rectangular area with length and width is taken around the selected subfault
whereby said length and width are drawn from a log-normal distribution scaled
for the particular magnitude required. The slip distribution on all the subfaults
in the rectangular region (which can now be thought of as a vector of known
length) is assumed to be multivariate log-normally distributed with a mean vector
and covariance matrix. The “log” part here is to ensure that the slips remains
positive. The covariance matrix is again based on the von Kármán correlation
function. Finally the slip vector has been decomposed using the K-L expansion
(see equation (8) from the original paper for the full equation) which allows for a
numerically efficient simulation of slip vectors. However, the application of a KL
expansion to the slip vector seems complicated and unnecessary, especially since

1The kinematic rupture of an earthquake encapsulates the details about how an earthquake
propagates throughout time.

2The von Kármán function is a mathematical model that can be used to describe the spatial
variability and roughness across a field.

3The Box-Cox power transformation is used to stabilise the variance of a distribution to more
closely approximate a normal.

4The Karhunen-Loève expansion is an eigendecomposition for random processes, often used
as a low rank representation allowing for each simulations. It states that a random vector can
be decomposed into the sum of its mean and the product of eigenvalues, eigenvectors and a
standard normal variable.
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the expansion is not being truncated which would be the main justification for
using such a method. Instead one could just work directly with the multivariate
Gaussian distribution through its mean and covariance structure.

Dislocation models have also been applied to help describe the coseismic move-
ments of the CSZ. The 2013 paper of Wang et al. investigates heterogeneous
slip distributions that vary in the strike and dip direction [34, 35]. In this pa-
per the Okada model [36] was used to relate the coseismic slip distributions to
the subsidence estimates. To create their slip distributions they use a trial and
error method, aiming to distribute slip across the region in such a way that pro-
duces subsidence predictions which align with the subsidence data. The use of the
Okada model here to verify that coseismic slip distributions give predictions of
subsidence that match the known geological estimates provides a very interesting
link between the underlying distribution and the data. This would lend itself to
a Bayesian analysis, as all the components to update prior beliefs about the slip
distribution with the observed data are now given. Additionally anisotropy has
once again been added into the modelling to distinguish between strike and dip
directions.

Logic tree methods of defining the slip distribution have also been used as a
component in Probabilistic Tsunami Hazard Analysis (PTHA) [37, 38]. Park, Cox,
and Barbosa [38], modelled 72 different combinations of earthquake parameters
which came in the hierarchical decision tree of: magnitude → slip shape → peak
slip location for full fault ruptures. The resulting slip distribution was assumed to
be Gaussian with parameters based on the combination of these three earthquake
parameters and conditional probability weights for each branch informed by the
geological data. The way in which the slip distribution has been modelled here is
coarse and the resulting slip distributions are just scalar multiples of one another
for each magnitude. In order to account for the full distribution of possible out-
comes, one would need to incorporate a fully probabilistic spatial process into the
underlying slip distribution.

The goal of this work here is thus to do inference about the CSZ coseismic slip
distributions for past megathrust events and to then predict the CSZ coseismic
slip distribution of a potential future full fault rupture. This should be done in
a statistically rigorous way, by using the available data whilst also incorporating
valuable scientific knowledge to assist in modelling when the data is not infor-
mative enough. It has been shown that modelling the underlying spatial effects
which lead to the CSZ coseismic slip distribution is oftentimes done in a Gaus-
sian way, which will be followed here in this work. There are two components
which are consistent throughout previous studies and aim to incorporate scien-
tific knowledge about the CSZ coseismic slip distribution. That is the addition
of a taper function, and anisotropy in the strike and dip directions. It there-
fore seems very reasonable to include these in the work here as well. In order
to model the CSZ coseismic slip distribution in a statistically rigorous way, the
Okada model shall be used as a way in which to inform the slip distributions
through the geological estimates along the CSZ coastline. In order to incorporate
prior scientific knowledge, which will be very important in properly capturing the
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CSZ coseismic slip distribution, Bayesian hierarchical models will be investigated
as this gives a framework in which the addition of the prior scientific knowledge
into the models can be achieved. To the best of the author’s knowledge this is the
first time a spatial Bayesian model has been fitted to the geological data in the
Cascadia region and is the key contribution of this work. These modelling choices
only seem natural since, as demonstrated, there exists data which can be incorpo-
rated with pre-existing scientific knowledge about the CSZ which could result in
a more detailed and accurate understanding of the CSZ coseismic slip distribution.

This contribution can lead to the better understanding of how a future full
margin rupture will affect communities in the Cascadia region, through further
risk modelling. These effects can range from the immediate well being of residents
of the Cascadia region, to the damage caused to infrastructure to how the region
as a whole would be effected from a long term economic standpoint. A perquisite
for understanding these effects, which align with the UN’s goals for sustainable
development [39], is informed knowledge of the CSZ coseismic slip distribution.

1.1 A Note on Readability
A high proportion of the figures used in this thesis will be spatial plots with
some value of interest overlayed on top. Therefore a colour scheme will need to
be chosen to represent the specific values and scaled such that it is consistent
across comparable plots. Importantly here is that any colour scheme used is
accessible to as many people as possible, which means taking into account common
colourblindness in the general population. This is a well researched topic and
many appropriate colour schemes have been made available for general use which
are perfectly perceptually-uniform. Here the Viridis package [40], the Scico [41]
and the CartoColor [42] package are used. In Figure 1.1.1 one can see all the
palettes used in this thesis and what each palette is used for. Most importantly
is the the Viridis colour palette which will be used to show central predictions for
the CSZ coseismic slip distribution.

1.2 A Note on the Implementation of Analysis
The vast majority of analysis done throughout this thesis has been completed
using the R programming language [43], using the R-Studio interface [44]. A link
to the code used for analysis is found in Appendix A. When a function from an
external library is used for a specific purpose which is highly relevant to the thesis
a citation is provided for said external library.
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Viridis Magma

Mako Vik

Cork Safe

Figure 1.1.1: All the colour palettes used throughout this thesis. The Viridis
palette is used to show the central predictions of the CSZ coseismic slip distribu-
tion. The Magma palette is used to show any data regarding uncertainty, standard
deviations for example. The Mako palette is used to show geometry across space,
the depth of the CSZ fault for example. The Vik palette is diverging from 0 and
as such is used to show the central prediction for subsidence distributions. The
Cork palette is also diverging and is used to show the central predictions for the
underlying Gaussian Random Fields. Finally the Safe palette is used for any dis-
crete plots. Viridis, Magma and Mako come from the Viridis [40] package. Vik
and Cork come from the Scico [41] package. The Safe palette comes from the
CartoColor [42] package.



CHAPTER

TWO

DATA

In this chapter the data sources which are used in the forthcoming modelling of
the CSZ are presented, explained and then processed. There are two key data
sets that are used. The first is a compilation of surface displacement estimates
caused by historical seismic activity, where the estimates are based on comparisons
between coastal marsh displacements and a data set of displacement predictions
from a dislocation model [18]. The second data set gives the geometry of the CSZ
and is the Cascadia subset of Slab2 [25]. Other data sets related to the geological
activity of the CSZ do exist, for example turbidite1 records [15, 16], however for
now the work will focus on the aforementioned data sets.

2.1 Country and State Boundaries
As this thesis is concerned with the spatial analysis of the CSZ, it is natural that
the majority of the data, methodology and results are best presented in terms
of their spatial position, overlaid on top of a base map of the CSZ. To create
such a base map, the state and province boundaries of America and Canada were
acquired from the Global Administrative Areas (GADM) database [45]. This was
then combined with US-Canada border data [46] and all the boundaries were then
simplified using a function from the rmapshaper R package [47] so that they appear
cleaner visually. Finally they were plotted using the ggplot2 package [48]. This
results in a base map which can be seen in the background of Figure 2.2.1 for
example. It is worth noting that the place labels and US - Canada border are
often dropped from the base map in later plots in order to increase clarity.

2.2 Coseismic Subsidence Estimates
It is well documented that there have been many megathrust events on the CSZ
throughout history, [10, 12, 13, 14, 49]. Of these the events, the ones from the past
∼ 6500yrs have left visible, and more importantly measurable geological markers
along the North American coast which can used to estimate subsidence and its
corresponding uncertainty. In this section a data set of such subsidence estimates

1Turbidites are the rapid flow of sediments/ rocks down the seafloor, which can be triggered
by and therefore indicative of seismic events.

7
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is introduced.

The vast majority of the data set used is taken from the work of Leonard et al.
[18] and therefore their notation has been adopted. The features of interest for each
data point are the spatial position, given in longitude and latitude coordinates,
the amount of subsidence, given in meters, the uncertainty in the subsidence mea-
surement, also given in meters and which megathrust event the estimate belongs
to. Each subsidence estimate from this data set has been assigned a megathrust
event, labelled as T1, T2, ..., T12, which represent the full margin ruptures2, going
chronologically back in time with T1 being the 1700AD megathrust event. This
data set also includes partial margin ruptures, labelled with an a or b appended to
the end. These data points are disregarded as this work focuses only on full margin
ruptures. To label each subsidence record with a specific coseismic event, they used
published radiocarbon dates of soils to calculate an age distribution using OxCal
[50] as well as correlating the subsidence data with turbidite records[15, 16]. For
more details on the dating of estimates please see Figure 4 from Leonard et al. [18].

The subsidence estimates are made by looking at the differences in elevation
between buried soil layers at collection sites. During a megathrust event marsh
land will sink due to coseismic subsidence and will therefore be exposed to more
tidal activity. Sediment from the increased tidal activity will then cover the sunken
land, creating a buried soil. It is assumed that this process happens fairly quickly,
i.e. on the time scale of weeks and thus the effects of gradual uplift are negligible.
Then during the time period between megathrust events, gradual uplift brings the
buried soils back up to a higher tidal zone where the development of organic-rich
soil is facilitated. The different tidal zones, classified by elevation, have a unique
collection of organic material. Finally the coseismic subsidence is estimated by
the elevation difference between each buried soil layer and the sediment layer
directly over it. The error in the measurements comes from the estimation of
the paleoelevation3, which is done by evaluating the organic content as well as
macrofossil4 and microfossil5 content in each layer. Most of the data comes from
measurements based on organic material and macro fossil analysis which usually
results in an error of ±0.5 − 0.8m. However some sites have microfossil samples
available which combined with transfer function analysis [51] can reduce the error
to ±0.2− 0.3m. Leonard et al. [18] therefore categorised the subsidence estimates
into three categories:

1. High quality - Estimates based on microfossil analysis;

2. Medium quality - Estimates based on organic content with macrofossil con-
tent on both side of the contact;

2A full margin rupture is a seismic event which effects the entirety of the tectonic plate
boundary.

3Paleoelevation is the historical elevation of land.
4A macrofossil is what most people would consider to be a normal fossil, visible to the naked

eye and above 1mm in size.
5A microfossil is one which needs to be studied with a microscope and is typically anything

under 1mm in size.



CHAPTER 2. DATA 9

3. Low quality - Estimates based mainly on organic content, with macrofossil
content on one or no sides of the contact.

The data set is then supplemented with three new, high quality, subsidence
estimates from the 2021 study by Padgett et al. [20]. These estimates are located
in the Humboldt Bay area of Northern California. In this study they analysed
samples from the region and used a Bayesian transfer function methodology to
date the soil samples with a lower uncertainty. Their subsidence estimates and
uncertainties are taken from Table 4, and the locations are given from Figure 2
in the referenced paper. This Bayesian transfer function methodology has also
been previously implemented across the whole CSZ by Kemp et al. [19] but the
summary statistics of their results are not publicly available so their estimates
have not been used in the analysis here.

The final data set compiled is compromised of 429 subsidence estimates spread
over 23 collection sites. Following the classification of Leonard et al. this final data
set consists of 13.75% high quality estimates, 8.86% medium quality estimates and
77.39% low quality estimates. Figure 2.2.1 shows that these sites run the length of
the Cascadia coastline, starting on Vancouver Island in the north at Port Alberni,
running all the way down to Northern California in the south at Eel River. It is
also evident from Figure 2.2.1 that the spatial location of the sites vary mainly
with latitude and not so much with longitude. This can provide a modelling
challenge as the area of interest does in fact extend with longitude. Furthermore
the northern and southern extremes of the CSZ could be under-represented in the
data set as there are only 2 sites on Vancouver Island and similarly there are only
2 sites in Northern California, which again needs to be considered when modelling
with this data set. It is also shown that the number of subsidence estimates made
per site varies throughout the data set from only 1 estimate at both Quinault
River and Nehalem River up to 79 estimates at Coos Bay, which again adds some
spatial skew into the underlying data.

The value of all the subsidence estimates and corresponding uncertainties can
be seen from Figure 2.2.2. This shows that the estimates range from approximately
0− 2.25m with the uncertainty ranging from roughly 0.25− 1.25m. The highest
estimates of subsidence is in the Washington region at Willapa Bay and Columbia
River. However these estimates also have some of the largest uncertainty values.
In the northern and southern extremes of the CSZ the estimated subsidence’s look
quite conservative at approximately 0.5− 1.0m with an uncertainty on the lower
end of the scale.

Since this work is mainly focused on describing the geological movement of
megathrust events it is important to be aware of how the subsidence estimates
are distributed amongst the 12 megathrust events. In Figure 2.2.3 the sites which
have subsidence estimates recorded for each megathrust can be seen. The title of
each sub plot also gives the total number of subsidence estimates that have been
collected for each megathrust event. It is clear that the 1700AD megathrust event
is the dominant event in this data set, with 45.92% of the data points relating to
this event. The 1700AD earthquake also has a good spatial spread of data points,
which is not the case for all the events. For example the T11 event only has 3
subsidence estimates spread over 3 collection sites. When modelling megathrust
event it will be important to evaluate how these varying distributions of subsidence
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Figure 2.2.1: The locations of the sites where subsidence estimates have been made
along the CSZ. Each point is coloured by the number of estimates in the data set
made at that site. The labels are placed using ggrepel [52].

estimates effect the results.

2.3 Cascadia Subduction Zone Geometry
In order to model the coseismic slip distribution of the CSZ during a megathrust
event, it is essential to obtain an accurate geometry of the CSZ. Most important
to the modelling presented in this thesis is to obtain the depths across the entirety
of the subducting plate. This is because the Okada model [36], relies on a 3D rep-
resentation of the fault geometry, will be used to predict subsidence values at the
surface, thus allowing for inference about the slip distribution from the subsidence
data set presented in Section 2.2. An accurate geometry at as high a resolution
as possible is therefore critical.

In 2018, Hayes et al. [25] published an updated geometrical model of all the
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Figure 2.2.2: All the subsidence estimates plotted against the latitude at which
they were observed. The names of the site locations are also plotted with latitude
and the estimates are coloured by their uncertainty.

subduction zones in the world which has been named “Slab2”. This presents the
detailed geometry of more than 24 million km2 of subductive zones, of which the
CSZ is included. They have included data from active-source seismic data inter-
pretations, receiver functions, local and regional seismicity catalogues (from both
regional networks and relocation studies), and seismic tomography models and
as such claim that the Slab2 model gives a better geometry than other available
subduction zone geometries, especially at shallower depths. This is particularly
important to the modelling done here, as the inference will be on a fault geometry
that is limited to the shallower depths of the CSZ.

The specific Slab2 data set used here can be found online [53]. This data set
contains different geometries with those of interest being the depth, dip and strike
files. The depth given by the Slab2 data for the CSZ can be seen in Figure 2.3.1.
This shows that the CSZ is shallowest on the western side and increases in depth
as one travels eastwards over the CSZ.
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Figure 2.2.3: The locations of the sites for which each megathrust event has sub-
sidence estimates recorded are displayed in red. The total number of subsidence
estimates for each megathrust event is given in each facet heading.

This depth data set is then used to create the subfault triangulation seen in
Figure 2.3.2. Firstly the Slab2 data is limited to depths of 30 km which is in line
with thermal studies of the CSZ [54, 34]. There has also been research into the
potential of a deeper coseismic slip distribution, down to depths of 50 km [55], but
this is left as a possible extension to the modelling. With the point depth data
limited to depths of 30 km a concave hull is created using the concaveman package
[56]. This hull is then slightly shrunk by 0.1 km using the buffer function of the
terra package [57]. This ensures that all the depths of the triangulation created
are non NA. Next the INLA package [58, 59] is used to create a triangulation over
the region whereby the function inla.mesh.2d is used with the interior boundary
hull being the one just described and an exterior hull which is created arbitrarily
bigger (in the end only the interior is of interest). There are two key parameters
in this function which control the resolution of the subfault triangulation created:
max.edge and cutoff. max.edge controls the maximum length of edges within the
interior boundary and between the interior and exterior boundary. This parameter
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Figure 2.3.1: Illustration of the point depths for the CSZ as given by the Slab2
[25] data set.

is set to [75 km, 1000 km] such that the largest triangular subfault created within
the interior will have a side length of 75 km. Then the cutoff parameter is set to
25 km which means that the smallest possible triangle will have a side length of
25 km. Getting rid of anything outside the interior hull gives the triangulation also
seen in Figure 2.3.2. Now the depths at the centroids of each triangular subfault are
calculated. This is achieved by interpolating from the Slab2 data, via the interp
function from the akima package [60] and results in the depths seen in Figure
2.3.2. It should be noted that during this whole process the data was transformed
to Easting and Northing coordinates so that using distance parameters makes
sense. This results in a triangulation of 188 subfaults. This is not as fine as
would be optimal to represent the continuous nature of the CSZ coseismic slip
distribution, however due to computational bottlenecks, this is as fine as was
reasonably possible. It results in a subfault triangulation whereby the average
distance between the subfault centroids is 25.6 km.



14 CHAPTER 2. DATA

40°N

42°N

44°N

46°N

48°N

50°N

128°W 127°W 126°W 125°W 124°W 123°W

(a)

40°N

42°N

44°N

46°N

48°N

50°N

128°W 127°W 126°W 125°W 124°W 123°W

Depth (km)

10

15

20

25

(b)

Figure 2.3.2: In (a) the triangular subfault geometry created using INLA func-
tions and the Slab2 data set is shown. In (b) the same geometry but with each
subfault coloured by the depth at its center is shown. This depth was calculated
by interpolating the Slab2 point depth dataset.
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MODELLING

In this chapter four new spatial models used to describe the coseismic behaviour of
the CSZ are introduced. Before this however, two pre-existing methods need to be
introduced which are then subsequently used as building blocks in the modelling
of the CSZ. The first of these is a surface deformation model, the Okada model
[36], which is used to map a slip distribution over a subfault geometry to surface
displacements. The second of these is the SPDE method [61], which enables
computationally efficient modelling of GRFs. Using these, the spatial models
of the CSZ can be introduced. Finally, Template Model Builder (TMB) [62], a
software package for R, implemented with C++, which allows for the fitting of
statistical latent variable models with random effects to data, is introduced.

3.1 Okada Model

A key step in the modelling of the CSZ is to link the coseismic slip distribution to
the coseismic subsidence. This step enables the spatial model of the underlying
slip distribution to be fitted to the subsidence data set (Section 2.2) and is achieved
through the application of the Okada model [36].

This model requires an underlying fault geometry, which is described here as
a triangular mesh of subfaults, whereby each subfault is defined by its geometric
parameters, most notable the locations of the corners of the subfaults and the
depths of the centroids. It is assumed that the entire fault is embedded in an
elastic1, homogeneous2 and isotropic3 half-space4.

A slip distribution is then assumed over the fault, with each individual subfault
having a given value of slip representing the average slip over that subfault. The
Okada model then uses Green’s functions to describe the response of the half-
space to the coseismic slip on each subfault. This will give the contribution of
each individual subfault to the vertical and horizontal movement at a set of points

1An elastic space is one which returns to its original state once external forces are removed.
2In a homogeneous space, all the properties of the material are assumed to be uniform

throughout.
3Isotropic means that the response to any external forces will be the same in any direction.
4A half-space is one in which only a certain section of the space is considered for analysis.

For example R3 can be divided into two by the x-y plane. The half whereby z is positive is called
a half space.

15
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on the earths surface. Finally, the Okada model is linear, so the total movement
at each point on the surface can be calculated by summing up the contributions
of each subfault.

For this work the Okada model has been implemented in R by translating and
modifying the Python code found in Clawpack [24]. Specifically, what is known as
the “Okada matrix”, G, is of interest here. This matrix can be thought of as the
Okada mapping from the space of average slips on each of the S subfaults to the
N surface deformations at the locations of the subsidence data. It is therefore of
dimension G ∈ RN×S, and is found by assuming a unit slip over the S subfaults.
Thus, in general, taking the product of G and a vector of slips, s ∈ RS, one can
predict a vector of subsidences, ŷ ∈ RN , which are the result of the given slips:

ŷ = Gs. (3.1)

3.2 SPDE Method

Throughout the following spatial modelling an underlying, continuously indexed,
stationary, Random Field (RF), X(l), will be assumed. Here l ∈ R2 is a location
within the domain D, whereby D is taken to be the domain of the subfault trian-
gulation. Furthermore, the RF will be assumed to be a Gaussian Random Field
which means that any finite collection of points taken from X, say x ∈ RB, are
jointly Gaussian distributed. In other words x is multivariate normal, with mean
µ and covariance matrix Σ. In order to use the SPDE method and in keeping
with standard spatial modelling practises, the covariance structure will be defined
via the Matérn [63] covariance function. For a Euclidean distance of h between
two points in D, the covariance function is:

C0(h|σ, ν, κ) = σ2 1

2ν−1Γ(ν)
(κh)νKν(κh), (3.2)

where σ2 is the marginal variance, ν relates to the smoothness of the field, and
κ controls the range of the field. Throughout the following modelling ν = 1 is
chosen because the SPDE is solved for this value. In order to maximise the like-
lihood that the models created capture the movement of the plate tectonics, the
fault geometry, created in Section 2.3, is made with as high a resolution as was
computationally possible: S = 188 triangles, representing subfaults. This means
that any direct modelling approach for X would involve a covariance matrix with
dimensions of at least 188×188. And it would be dense. This would pose a signif-
icant problem when trying to fit the model as many, expensive matrix operations
will be needed. This has been a universal problem in spatial statistics, however
Lindgren, Rue, and Lindström [61] proposed a rather abstract, yet powerful and
most importantly computationally efficient solution in their 2011 paper which will
henceforth be referred to as the SPDE method.

Essentially their idea is to approximate the GRF with a Gaussian Markov Ran-
dom Field (GMRF), which is defined via a sparse precision matrix, and to do the
computations using the pre-existing efficient algorithms for sparse matrices. The
approximation of X to a GMRF is derived by first recognising that a GRF with
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Matérn covariance structure is the solution of the Stochastic Partial Differential
Equation (SPDE) given by:

(κ2 −∆)
α
2X(s) = τW(s), (3.3)

where ∆ is the Laplacian operator, and W is spatial Gaussian white nose with
unit variance. They then show that a certain GMRF (seen in their Equation
(6)) is also an approximate solution to (3.3), with different values of ν equating
to convolutions of the coefficients in the GMRF precision matrix. Finally and
perhaps most usefully, they then derive the precision matrix for the GMRF over
an irregular triangulation of the domain D, and explicitly give it in terms of the
parameters of the original Matérn GRF. The full details of the derivation can be
seen in the original paper [61].

The practical outcome of the SPDE method is that a triangulation of the
domain of interest D is needed, whereby the corners of the triangles are points of
interest in the GRF. In the case of modelling the CSZ these points of interest will
be the centroids of the triangular subfaults defined as the average latitude and
longitude of the corners of the subfaults. This triangulation will henceforth be
referred to as the “SPDE mesh” and is calculated using inla.mesh.2d in a similar
manner as the subfault triangulation. Since the SPDE method is an approximation
a projection matrix from the SPDE mesh to the points of interest is required. This
projection matrix is named A ∈ RS×B and takes the evaluation of the GMRF on
the SPDE mesh to an evaluation of X. Thus to create the SPDE mesh the initial
locations are given as the centers of the subfaults, the inner and outer lengths
are 75 km and 1000 km respectively and the cutoff is set to 15 km. Note 15 km is
smaller than when creating the subfault triangulation which ensures that every
subfault centroid will have a node in the SPDE mesh. This will improve the
accuracy of the SPDE approximation to subfault slips. The resulting SPDE mesh
is shown in Figure 3.2.1.

This mesh contains B = 483 vertices, which are also referred to as basis func-
tions, 844 triangles and extends beyond the area of interest. This is the boundary
zone and is added to mitigate the boundary effects in the area of interest, which
is inside the purple boundary and where the triangulation is finest. Figure 3.2.1
also shows a zoomed in section of the domain D with both the SPDE mesh, the
subfaults and the centroids of the subfaults being plotted. This demonstrates how
the centers of the subfaults have been used as the vertices in the SPDE mesh.

3.3 Independent Megathrust Events

The first spatial model presented is the most simple, and aims to describe the
coseismic history of the CSZ as was introduced in Section 2.2. This model will
often be referred to as the “isotropic model without a shared spatial component”,
or for ease of readability “model 1”. In the history of the CSZ section, it was shown
that there is M = 12 megathrust events which data has been collected for. Let
megathrust events be indexed m ∈ (1, 2, ...,M). Each event has Nm data points
describing it, and thus this gives M = 12 subsidence data vectors, ym ∈ RNm

and M = 12 standard deviation vectors, vm ∈ RNm . As described in Section 3.1,
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Figure 3.2.1: In (a) the mesh used during the SPDE method is seen. The area
inside the inner red boundary is the domain, D, of interest. The SPDE mesh, the
subfault geometry and the centroids of the subfaults are plotted together in (b).

subsidence can be predicted when the coseismic slip is known via the Okada model.
In this setting coseismic slip is given for each of the S = 188 subfaults created in
Section 2.3. Therefore let sm ∈ RS be the M = 12 random slip vectors. To take
the subsidence values calculated by the Okada model to the observed subsidence
estimates, ym, an additive error, ϵm ∈ RNm , based on the observed uncertainty
data can be added. Thus it is possible to write the equation for the observed
subsidence data as:

ym|sm, ϵm = Gmsm + ϵm (3.4)

whereby terms of ϵm are assumed to be independently normally distributed with
a mean of 0 and variance given by the corresponding value in vm squared. This
means that ϵm is multivariate normal with a zero mean vector, 0m ∈ RNm , and
diagonal covariance matrix, Σm, with the diagonal given by the squared values of
vm. That is:

ϵm|vm ∼ MVN (0m,Σm) . (3.5)

The elements of the covariance matrix are explicitly given as:

{Σm}i,j =

{
{vm}2i i = j

0 i ̸= j.
(3.6)

where {·}i,j is the element in row i and column j of a matrix. Similarly {·}i is the
element in row i of a column vector.
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The Okada matrix Gm ∈ RNm×S is the matrix calculated from the Okada
model with a uniform slip over the entire fault, giving the surface deformation at
the locations of the Nm data points for the m-th megathrust event.
The slip vector’s are now appropriately modelled as the transformation of inde-
pendent underlying GRFs, labelled Xm. Given that Xm = xm the slips are given
by:

sm|λ, µ,xm = Teµ1+Axm . (3.7)

T ∈ RS×S is the taper matrix which is added to gradually decreases the spatial slip
values near down-dip edge of the fault (the deeper, eastern edge) to provide a more
realistic representation of how the the slip diminishes with depth as previously
discussed. The matrix T is diagonal with elements explicitly given as:

{T}f,j =

{
t(df |λ) f = j

0 f ̸= j
(3.8)

where df is the depth of the central point of the f -th sub fault and t is a taper
function. The taper function used is

t(d|λ) = e−λd (3.9)

where λ is a model parameter. Setting λ = 0.123 gives the taper shown in Figure
3.3.1. It is seen that this is 1 at the shallowest part of the CSZ and tapers to
nearly 0 by 30 km.
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Figure 3.3.1: An example of the taper function with the free parameter fixed as
λ = 0.123.

In (3.7) µ represents the mean untapered slip and A ∈ RS×B is the previously
introduced projection matrix from the SPDE mesh to the GRF Xm.
As it has already been alluded to, the spatial fields, Xm, are assumed to be inde-
pendently Gaussian with a Matérn covariance structure. Thus:

Xm = xm|σ2, κ, τ ∼ MVN
(
0, σ2Q−1

spde(κ, τ)
)
. (3.10)



20 CHAPTER 3. MODELLING

where Q−1
spde is the precision matrix of the GMRF representation of the underlying

GRFs Xm, calculated via the SPDE method with κ and τ . When the matrix Q−1
spde

is actually calculated is accounts for the marginal variance, and thus σ2 does not
get fitted with the model. Instead Lindgren, Rue, and Lindström [61] showed that
marginal variance can be calculated once the model has been fitted from τ and κ
as:

σ2 =
1

4πκ2τ 2
. (3.11)

A final, empirically derived, parameter which is useful in understanding the range
of the spatial field is the effective range ρ. This is also taken from Lindgren, Rue,
and Lindström [61]. This is defined to be the distance at which the correlation
has dropped to 0.1 and is calculated as:

ρ =

√
8ν

κ
. (3.12)

3.4 A Shared Spatial Component Between Events
The first model could capture the behaviour of all the megathrust events indepen-
dently, and has an implicit link between events via the shared spatial parameters
κ and τ . However the random fields Xm are still independent of one another and
can thus take completely different values. It has been recorded in events that the
rupture patterns can be similar in subsequent events [64], thus indicating that
the slip distribution could be similar throughout the history of CSZ megathrust
events. To account for this a shared spatial component is added to the model.
This model will thus be later refereed to as the “isotropic model with a shared
spatial component”, or just “model 2”. This shared spatial random field will be
denoted by W , and will be modelled with the SPDE method in the same way as
the X fields. To account for W , some new notation is required. Specifically the
parameters σ, κ and τ will now be related to either the X fields or the W field
which will be denoted using subscript. That is σx, κx and τx are the parameters
which control the X fields. Similarly σw, κw and τw will control the shared spatial
field W .

Each slip vector will again be the transformation of its corresponding under-
lying spatial random field Xm which are all independent for each event. However
now they will also be the transformation of the shared random field W . Given a
realisation of the random fields, X = xm and W = w, the slip vector for each
event can be written as:

sm|λ, µ,x,w = Teµ1+A(w+xm) (3.13)

where µ and T are the same mean untapered slip and the taper matrix as before.
Similarly A is the same projection matrix previously described. It is worth noting
that A is the same for both the shared spatial field and the independent fields,
since W is modelled via the same SPDE mesh as Xm is. Once again it is assumed
that all the underlying spatial random fields are Gaussian with 0 mean and a
Matérn covariance structure, which allows the use of the SPDE method.

X1, ..., XM |σ2
x, κx, τx ∼ MVN

(
0, σ2

xQ
−1
spde(κx, τx)

)
; (3.14)

W |σ2
w, κw, τw ∼ MVN

(
0, σ2

wQ
−1
spde(κw, τw)

)
. (3.15)
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The rest of the model is the same as before, that is (3.4) (3.5), (3.6), (3.7), (3.8)
and (3.9) still hold. The marginal variances (σ2

x and σ2
w) are calculated as expected

once the model has been fitted, that is:

σ2
x =

1

4πκ2xτ
2
x

, σ2
w =

1

4πκ2wτ
2
w

. (3.16)

Finally since there are two spatial fields, there will also be two effective spatial
ranges, ρx and ρw. These are again the distance at which the correlation between
points drops to 0.1 and are given by the empirically derived formulas in Lindgren,
Rue, and Lindström [61]:

ρx =

√
8ν

κx
, ρw =

√
8ν

κw
. (3.17)

3.5 Anisotropy of the Coseismic Slip Distribution
It has been shown that the correlation range of coseismic slip is different along
the dip and strike directions [30] and as previously discussed it is common in CSZ
coseismic slip modelling to account for their varying correlation ranges. This gives
reason to add an anisotropic factor into the underlying spatial random fields. This
model will as such be refereed to as the “anisotropic model with/without a shared
spatial component” or for simplicity “model 3/4”. Over the considered section of
the CSZ (up to depths of 30 km) the strike angle varies from −44.65◦ to 23.09◦,
as seen in (a) of Figure 3.5.1.

The strike angle varies over the entire CSZ, which would imply that introduc-
ing non-stationary anisotropy[65] [66] into the spatial field would be the absolute
best solution. However for simplicity the anisotropy is chosen to be geometric and
stationary across the CSZ. This means that instead of assuming that the correla-
tion function is the same in all directions as in the isotropic case, it is now allowed
to vary with direction as well as distance. To achieve this a transformation ma-
trix, H, is added into the underlying random field. This is implemented with the
anisotropic version of the SPDE method[61], which is defined now via the SPDE:

(κ2 −∇ ·H∇)
α
2Z(s) = τW(s). (3.18)

The transformation matrix, H, needs to be parameterised with at most two new
parameters to account for the strike and the dip and to not over-parameterise
the model. It also needs to “preserve volume” so that correlation isn’t artificially
added into the modelling.

The interpretation of H can be found through its eigenvalues and eigenvectors
(see supplementary material from Thorson et al. [67]). The direction of anisotropy
is given by the eigenvectors and the stretch of the spatial field in that direction
is given by the corresponding eigenvalue. Therefore H is parameterised with its
eigendecomposition:

H = [h1,h2]Λ[h1,h2]
T , (3.19)

where h1, h2 are the two eigenvectors of H and Λ is the diagonal matrix with ϕ1

and ϕ2, the two eigenvalues on the diagonal. Since the strike angle is known across
the CSZ, the direction of anisotropy is chosen to be fixed and in the direction of
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Figure 3.5.1: In (a) the strike angle as given by the Slab2 data set is shown over
the CSZ. In (b) the dip angle, again given by the Slab2 data set, is shown over
the CSZ.

the average strike angle. This is θs = −12.14◦ and means that h1 should make an
angle of θs, as measured clockwise from the lines of longitude (the vertical). h1 is
also a normalized eigenvector and thus it can be explicitly written as:

h1 =

−√
tan (−θs)

2

tan (−θs)
2+1√

1
tan (−θs)

2+1

 ≈
[
−0.210
0.978

]
(3.20)

h2 is orthogonal to h1 and should also be normalised giving the explicit formula
for h2 as:

h2 =

√ tan (90+θs)
2

tan (90+θs)
2+1√

1
tan (90+θs)

2+1

 ≈
[
0.978
0.210

]
. (3.21)

Now the fact that the determinant of H needs to be 1 to preserve volume
means that the product of the two eigenvalues also needs to be 1. This means
that ϕ1 =

1
ϕ2

and vice versa. Therefore the matrix Λ can be simplified to:[
ϕ 0
0 1

ϕ

]
(3.22)

where now the parameter ϕ > 0 represents the stretch of the underlying spatial
field in the direction of h1 and 1

ϕ
is the stretch in the direction of h2.
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The independent megathrust model defined in Section 3.3, is exactly the same
in the anisotropic setting except that the independent underlying X random fields
now depend on ϕ as well. Explicitly that is:

X1, ..., XM |σ2, κ, τ, ϕ ∼ MVN
(
0, σ2Q−1

spde(κ, τ, ϕ)
)
. (3.23)

Evidently the effective range, ρ (3.12), of the spatial field will now be different
in all directions. Therefore, as alluded to, the effective range in the direction of h1

(the strike direction) and its orthogonal (the dip direction) are given. These are
calculated by multiplying ρ (3.12) by the previously introduced scaling parameter5:

ρ(strike) = ϕ ·
√
8ν

κ
(3.24)

ρ(dip) =
1

ϕ
·
√
8ν

κ
, (3.25)

where ν = 1 as before. Here the two values ρ(strike) and ρ(dip) will give the maximal
and minimal effective ranges (with which one is which depending on the value of
ϕ). In the shared component model, introduced in Section 3.4, the anisotropic
parameters will be the same between the individual random fields, Xm and the
shared random field W . The anisotropy is modelled in this way because it is
assumed that the anisotropy is being introduced by the geometry of the CSZ
(strike and dip angles), and not by specific earthquake rupture patterns. Thus
having the same anisotropy over the individual X fields and the shared W field is
required. Explicitly:

X1, ..., XM |σ2
x, κx, τx, ϕ ∼ MVN

(
0, σ2

xQ
−1
spde(κx, τx, ϕ)

)
(3.26)

W |σ2
w, κw, τw, ϕ ∼ MVN

(
0, σ2

wQ
−1
spde(κw, τw, ϕ)

)
. (3.27)

The maximum and minimum effective ranges for the individual earthquakes
and the shared random field are then given exactly as one would expect:

ρ(strike)x = ϕ ·
√
8ν

κx
, ρ(dip)x =

1

ϕ
·
√
8ν

κx
, (3.28)

ρ(strike)w = ϕ ·
√
8ν

κw
, ρ(dip)w =

1

ϕ
·
√
8ν

κw
. (3.29)

3.6 Priors
In this section the prior distributions which are placed on the model parameters
are explained. The priors are consistent throughout all the models, which allows
for the comparison of the affects of the specific model changes. Informative priors
have been used where possible in order to guide the model towards the physical
reality of the CSZ. This is important because the data set used is relatively small
(429 data points), and so the prior distributions will have a noticeable impact on
determining the posterior distribution. In cases where the use of an informative
prior is not possible, priors which agree with previous studies and common practise
are used.

5There was some lack of clarity over whether these the ranges should be multiplied by the
eigenvalue or the square root of the eigenvalue. It was chosen to follow the work of [67] and just
multiply by the eigenvalue.
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3.6.1 SPDE Parameters

The parameters that control the basic use case of the SPDE method are κ and
τ . Both the parameter sets which control the X spatial fields and the shared W
field will have the same prior distribution. Thus p(κx, τx) and p(κw, τw) will here
be referred to as p(κ, τ). Just remember that the priors will not be the same in
reality as the parameters are different!

It is chosen to use the penalised complexity (PC) prior for κ and τ , which was
introduced by Fuglstad et al. [68]. The idea of the penalised prior framework is
to shrink the model to a base model to avoid overly complex models. In this case
the range of the field ρ is “shrunk” towards infinity and the standard deviation σ
is shrunk towards zero. This leads to four new hyper-parameters defined by:

P(ρ < ρ0) = α1

P(σ > σ0) = α2.

This says that the joint prior placed on τ and κ should be created such that
the probability the range is less than ρ0 is equal to α1. Similarly the probability
that the marginal standard deviation is greater than σ0 should be equal to α2.
α2 = 0.01 is chosen. It is chosen to set σ0 = 1 which means that the prior sets
with probability 0.99 the marginal variance under 1. α1 is chosen to be 0.5 and
as such, ρ0 is interpreted as the prior median effective range. The range hyper-
parameter is chosen as ρ0 = 100 which is in between the estimated correlations
lengths in the strike and dip direction for a magnitude 9.0 event [30].

To implement the PC prior, Altay [69] was modified slightly and used.

3.6.2 Mean Untapered Slip Parameter

The parameter µ represents the mean untapered slip in the model, where eµ is
the value of the untapered slips when there is no contribution from the spatial
fields. This is left as a flat prior as this is an intercept term which should be
well-identifiable.

3.6.3 Taper Parameter

The taper parameter λ determines how aggressively the slips will be tapered to-
wards zero on the down dip edge of the CSZ. Letting λ be gamma distributed
with shape k and scale ζ, these hyper parameters can be chosen such that the
probability the taper is 0.05 at depths greater than 20 km but less than 30 km is
0.95. This can be mathematically expressed as:

P [t(d|λ, 20 km ≤ d ≤ 30 km) = 0.05] = 0.95

P
[
t−1(0.05|d = 30 km) ≤ λ ≤ t−1(0.05|d = 20 km)

]
= 0.95.

It is assumed that equally weighted tails are wanted, then this can be formu-
lated as a system of two equations and two variables, from which the roots can be
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found. The two equations are:

1− P
[
λ ≤ − log(0.05)

30

]
= 0.025

P
[
λ ≤ − log(0.05)

20

]
= 0.975,

which can be expressed as the CDF of λ under the Gamma distribution as-
sumption:

1− Fλ

(
− log(0.05)

30

)
= 0.025

Fλ

(
− log(0.05)

20

)
= 0.975.

Solving this system of equations for the two hyper-parameters gives k = 93.8
and ζ = 0.00132 such that lambda is distributed as:

λ ∼ Γ(93.8, 0.00132), (3.30)

and the taper function for when λ = k · ζ = 0.123 (the mean of this distribution)
is shown in Figure 3.3.1.

3.6.4 Anisotropic Scaling Parameter

The parameter ϕ > 0 gives the stretching of the underlying spatial fields, whereby
ϕ = 1 gives no anisotropic behaviour. It is also noted that ϕ is strictly positive.
It is therefore chosen that the log of ϕ should be normally distributed (and thus
ϕ is log-normally distributed) with a mean of 0 and a standard deviation chosen
such that:

P(0.5 < ϕ < 2) = 0.95.

This is read as the probability that the stretch is between 0.5 and 2 is 0.95.
The standard deviation which gives this condition is 0.38 and thus:

log ϕ ∼ N(0, 0.382). (3.31)

3.7 Posterior Density

Now that four models have been specified, the posterior density is required in
each case to fit the parameters to the data. The observations ym and vm are
given. The latent variable’s xm and w give the underlying spatial distributions.
Finally the parameters, which will be some subset of θ = {κx, τx, κw, τw, µ, λ, ϕ}
define the model. The negative log likelihood is given as −ℓ = −log(L), where
L is the likelihood. In every case the likelihood required is simply the posterior
distribution.
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3.7.1 Isotropic Independent Events Model

Starting with the simplest model that was defined in Section 3.3, the likelihood
required will be given by the posterior p(x1, ...,xM ,θ|y1, ...,yM). In this case the
parameter vector is,

θ = {κx, τx, µ, λ}. (3.32)

Using the standard Bayesian approach, it is possible to write the posterior
density as:

p(x1, ...,xM ,θ|y1, ...,yM) ∝ p(y1, ...,yM |x1, ...,xM ,θ)p(x1, ...,xM |θ)p(θ)
(3.33)

where p(y1, ...,yM |x1, ...,xM ,θ) is the observational density, p(x1, ...,xM |θ) is
the density given to the latent variables, and p(θ) is the joint prior density of the
parameters. To begin to find p(y1, ...,yM |x1, ...,xM ,θ), one must look towards
(3.4). It is seen that each element of ym is a linear combination of a constant and a
normally distributed variable with mean 0 and variance given by the corresponding
values in vm squared. Each element of ym is therefore conditionally independent
on the corresponding xm and θ, with mean vector of ym given by:

E [ym|xm,θ] = um = GmTe
µ1m+Axm , (3.34)

and the covariance matrix given by Σm as defined in (3.6). This gives the
density p(ym|xm,θ) as that of a multivariate normal variable with mean um and
covariance matrix Σm:

p(ym|xm,θ) = (2π)−
Nm
2 |Σm|−

1
2 exp

(
−1

2
(ym − um)

TΣ−1
m (ym − um)

)
. (3.35)

It is noted that in practise this density will be calculated as the product of
Nm normal densities, whereby the mean and standard deviations are given by the
elements of um and the diagonal elements of Σm. This arises from the fact that
each element of ym is assumed to be independent and thus Σm is a diagonal matrix.
To find the joint density p(y1, ...,yM |x1, ...,xM ,θ) it is noted that y1, ...,yM are
conditionally independent of each other, depending on the corresponding xm and
θ. Thus:

p(y1, ...,yM |x1, ...,xM ,θ) =
M∏

m=1

p(ym|xm,θ). (3.36)

The second part of (3.33), p(x1, ...,xM |θ), is the joint density function of the
spatial fields Xm. Again these were assumed to be independent so the joint density
can be split into the product of the individual field densities as:

p(x1, ...,xM |θ) =
M∏

m=1

p(xm|θ). (3.37)

The individual random field densities, p(xm|θ), were assumed to be multivari-
ate normally distributed, calculated via the SPDE approximation via a GMRF.

The prior density for the parameters p(θ) is decomposed into the product of
the densities for each parameter:

p(θ) = p(κx, τx) · p(µ) · p(λ) (3.38)
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where the priors placed on each individual parameter were discussed in Section
3.6. Note this assumes that the parameters are independent of one another.

3.7.2 Isotropic Shared Spatial Component Model

In this model, defined in Section 3.4, the latent variable w is included. This
introduced two new parameters, κw and τw, and such the new parameter vector
of interest is:

θ = {κx, τx, κw, τw, µ, λ}. (3.39)

Accounting for the new latent variable the posterior required is now of the
form:

p(x1, ...,xM ,w,θ|y1, ...,yM) ∝ p(y1, ...,yM |x1, ...,xM ,w,θ)p(x1, ...,xM ,w|θ)p(θ).
(3.40)

The observation density, p(y1, ...,yM |x1, ...,xM ,w,θ) can again be written
as the product of individual megathrust event densities, whereby each observed
subsidence vector is conditionally independent ym, depending on xm, w and θ:

p(y1, ...,yM |x1, ...,xM ,w,θ) =
M∏

m=1

p(ym|xm,w,θ). (3.41)

Following the same logic as in the previous section, conditional on xm,w,θ
the random vector ym is the linear combination of a constant and a multivariate
normal random vector with mean vector 0 and covariance matrix Σm and is there-
fore itself multivariate normal. The conditional mean vector of ym is thus just the
value of the constant:

E[ym|xm,w,θ] = um = GmTe
µ1m+A(xm+w), (3.42)

and has the covariance matrix Σm as before. The density, p(ym|xm,w,θ), will
take exactly the same form as (3.35), except that now um is defined differently
to incorporate w. The latent density, p(x1, ...,xM ,w|θ) will be decomposed into
a product of the densities of each individual random field, owing to the fact that
they are all conditionally independent on θ. That is:

p(x1, ...,xM ,w|θ) = p(w|θ) ·
M∏

m=1

p(xm|θ). (3.43)

These individual densities are again calculated via the SPDE method. It is
important to note that the precision matrix calculated will be the same for all the
X fields, but will be different for the shared field W as it has different defining
parameters: κw and τw. Once again the prior density p(θ) will be the product of
the densities of the parameters:

p(θ) = p(κx, τx) · p(κw, τx) · p(µ) · p(λ), (3.44)

where the individual parameter priors are defined in Section 3.6.
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3.7.3 Anisotropic Models

The two anisotropic models (with and without a shared spatial component) will
have a very similar posterior density as their isotropic counterparts. In the model
without a shared component the parameter set is:

θ = {κx, τx, µ, λ, ϕ}. (3.45)

The decomposition of the posterior (3.33) still holds, and the observational
equation (3.36) also holds. Furthermore the form of the latent variable equation
(3.37) holds, but now the density of each individual spatial field p(xm|θ) is now
calculated via the anisotropic version of the SPDE method[61]. The joint prior
density is again the product of the individual parameter densities and takes the
form:

p(θ) = p(κx, τx) · p(µ) · p(λ) · p(ϕ), (3.46)

where these individual densities are defined in Section 3.6. The final model
which incorporates anisotropy and a shared spatial component, uses the full pa-
rameter set:

θ = {κx, τx, κw, τw, µ, λ, ϕ}. (3.47)

The posterior has exactly the same expression as its isotropic counterpart, that
is it is defined via (3.40), (3.41), (3.43). The difference being that p(xm|θ) and
p(w|θ) are now calculated via the anisotropic version of the SPDE method[61]
using the parameter ϕ. Finally the joint prior density is, as expected, the product
of the independent parameter densities:

p(θ) = p(κx, τx) · p(κw, τw) · p(µ) · p(λ) · p(ϕ). (3.48)

3.8 Template Model Builder
In order to fit the model, i.e. find the parameters which maximise the joint
likelihood, the R package TMB [62] is used. This package allows for the fitting
of models such as the ones described here by letting the user specify the joint
likelihood of the data and the random effects as a C++ file. When evaluating the
joint likelihood for maximisation the random effects are automatically integrated
out and the Laplace approximation is used to calculate the remaining marginal
likelihood. The use of C++ allows for the fast computation of derivatives which
will significantly speed up the model fitting procedure, important when working
with a model that includes many random effects such as the ones just described.
In addition to the model fitting TMB is used to calculate an estimate of the joint
precision matrix of all the model parameters which is then used to simulate the
parameters and random effects of the fitted models.
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INFERENCE ABOUT HISTORICAL FULL FAULT
RUPTURES

In this chapter the results of model fitting are presented and discussed. As men-
tioned previously, TMB is used to create the objective function for the posterior
distribution and then a standard R optimiser is used to fit the model. Most use-
fully, TMB can be used to find an estimate of the joint precision matrix for all
the model parameters and latent random effects. This joint precision matrix, Qθ,
can then be used to simulate from the GMRF which describes the latent random
effects, conditional on the fixed model parameters. Thus nsims simulations for each
of the fixed parameters and each of the random effects can be drawn and used
to calculate statistics for these variables of interest. This is mainly the coseismic
slip distribution of each earthquake and model and the subsidence estimate which
follows naturally from the slips distribution.

4.1 Inference about Model Parameters

The fixed parameters of each model are discussed in turn here. The mean, me-
dian, standard deviation, lower 2.5% quantile and upper 97.5% quantile of the
each parameter calculated from the nsims = 1000 simulations of the posterior is
given in tabular format. A histogram of the more interpretable parameters for
each model is also given, with vertical lines showing the 95% empirical confidence
interval and the mean of the distribution. For ease of reading the mean and me-
dian are given again in each histogram. Furthermore, parameters of interest are
investigated further and presented in a relevant way, for example the tapers which
the draws of λ give will be shown.

The fixed parameter vector for model 1 is θ1 = {λ, µ, τ, κ} where τ and κ, which
are SPDE parameters, are used to calculate the understandable parameters of ρ,
the spatial range, and σ2, the spatial marginal variance. The statistics from the
posterior for the first model can be seen in Table 4.1.1. When looking at the second
model, the fixed parameter vector now includes two lots of SPDE parameters to
account for the new shared spatial field, whereby X is the independent field for
each megathrust event and W is the field shared across all megathrust events.
The parameter vector is thus θ2 = {λ, µ, τX , κX , τW , κW}. Estimates from the

29
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Parameter Mean Median SD Lower 2.5% Upper 97.5%
λ 0.116 0.115 0.00872 0.0999 0.135
µ 3.63 3.62 0.148 3.33 3.92
κ 0.0119 0.0115 0.00292 0.00732 0.0185
τ 48.1 47.0 11.3 30.4 72.9
ρ 252 246 62.5 153 386
σ2 0.282 0.271 0.0815 0.158 0.462

Table 4.1.1: Distributional results for the parameters of the isotropic model with-
out a shared spatial component. Values are calculated from 1000 simulations of
the posterior.

Parameter Mean Median SD Lower 2.5% Upper 97.5%
λ 0.122 0.121 0.0118 0.103 0.142
µ 3.58 3.59 0.313 3.08 4.09
κX 0.0845 0.0367 0.171 0.00386 0.310
τX 462 187 1090 20.9 1830
κW 0.0176 0.0158 0.00873 0.00729 0.0349
τW 35.7 32.2 17.4 14.6 68.6
ρX 201 77.2 382 9.14 734
σ2
X 0.00522 0.00193 0.0110 0.000173 0.0208
ρW 201 180 101 81.0 388
σ2
W 0.348 0.316 0.169 0.148 0.646

Table 4.1.2: The distributional results of 1000 draws from the posterior distribu-
tion of the isotropic model with a shared spatial component.

posterior distribution for these parameters for the second model are seen in Table
4.1.2.

With the addition of geometric anisotropy into the modelling, came the ad-
dition of two new parameters: θs and ϕ. The angle of rotation, θs, was fixed
to −12.14◦, and therefore is naturally not included in these results. Instead
only ϕ is reported, alongside the other defining variables and their useful re-
parameterisations. The defining parameter vector for the third model is thus
θ3 = {λ, µ, τ, κ, ϕ}. Useful re-parameterisations are the marginal variance, σ2

(3.11), as before, but now the effective range, ρ, needs to be calculated in the two
anisotropic directions. These have been called the “strike” and “dip” directions as
they aim to capture these geological geometries. The calculation is given in (3.25).
The posterior estimates for these parameters relating to the third model can be
seen in Table 4.1.3.

The final model and the one with the most parameters is the anisotropic model
with a shared spatial component. The defining parameters for this model are
θ4 = {λ, µ, τX , κX , τW , κW , ψ} and as previously the marginal variance can be
calculated for each of the spatial fields. Moreover the spatial range, ρ, will be
calculated four times, twice for each spatial field to account for the strike and dip
directions of anisotropy in each one. The estimates from the posterior distribution
for this model are seen in Table 4.1.4.
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Parameter Mean Median SD Lower 2.5% Upper 97.5%
λ 0.115 0.115 0.00811 0.102 0.128
µ 3.61 3.61 0.145 3.37 3.85
κ 0.0130 0.0126 0.00346 0.00797 0.0196
τ 44.0 41.8 11.9 27.1 66.3
ϕ 0.844 0.773 0.326 0.437 1.45

ρ(strike) 206 174 125 76.2 437

ρ(dip) 304 288 108 159 503
σ2 0.293 0.286 0.0824 0.177 0.447

Table 4.1.3: The distributional results for the parameters and their understand-
able re-parameterisations for the anisotropic model without a shared spatial com-
ponent. Calculated from 1000 draws of the posterior distribution.

Parameter Mean Median SD Lower 2.5% Upper 97.5%
λ 0.121 0.121 0.0116 0.0999 0.144
µ 3.58 3.58 0.290 3.04 4.14
κX 0.0768 0.0358 0.122 0.00302 0.437
τX 383 160 714 11.5 2040
κW 0.0187 0.0169 0.00902 0.00662 0.0423
τW 33.0 28.9 16.8 11.9 76.8
ϕ 0.803 0.761 0.305 0.342 1.50

ρ
(strike)
X 145 60.5 338 4.80 724

ρ
(dip)
X 259 101 485 7.56 1720

ρ
(strike)
W 157 125 119 33.9 450

ρ
(dip)
W 256 221 140 80.9 619
σ2
X 0.00721 0.00254 0.0144 0.000122 0.0469
σ2
W 0.365 0.324 0.185 0.134 0.800

Table 4.1.4: Distributional results for the parameters and their useful re-
parameterisations for the anisotropic model with a shared spatial component.
Values are calculated from 1000 draws from the posterior.
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Figure 4.1.1: Histograms for the parameters in isotropic model without a random
shared spatial component. The vertical red dashed lines are the lower 2.5% and
upper 97.5% quantiles respectively. The vertical yellow dashed line is the mean of
the empirical distribution.

The histograms for more interpretable parameters in all the models are now
shown. In the first model λ, µ, ρ and σ2 are the parameters shown, and can be seen
in Figure 4.1.1. In the second model the parameters that give most interpretability,
namely the taper parameter λ, the mean untapered slip, µ, the range parameters
for both fields ρX , ρW and the marginal variances for both spatial fields, σ2

X ,
σ2
W , are shown in Figure 4.1.2. Next the empirical distribution for the useful

parameters for the third model are shown in Figure 4.1.3. These parameters are
the taper parameter λ, the mean untapered slip µ, the effective range ρ in both
the strike and dip directions, the marginal variance, σ2 and finally the anisotropic
stretch factor. Finally the empirical distribution of the interpretable parameters
for the fourth model are given in Figure 4.1.4. This is includes 9 parameters. The
usual parameters, λ for the taper and µ for the mean untapered slip and then all
the required permutations of the effective range, ρ, and marginal variance, σ2 to
account for two spatial field and two main directions of anisotropy.

In the isotropic model without a shared component there does not seem to be
much skew in any of the parameters and that the optimisation process has found
a stable maximum. This is similar for all the parameters of the anisotropic model
without a shared component, except that the anisotropic stretch factor and the
effective range in the strike direction seem to have a slight right skew. On the other
hand the two models with a shared component display very heavy tails for some of
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Figure 4.1.2: Histograms for the parameters in the isotropic model with a shared
spatial component. The vertical red dashed lines are the lower 2.5% and upper
97.5% quantiles respectively. The vertical yellow dashed line is the mean of the
empirical distribution.
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Figure 4.1.3: Histograms for the parameters in the anisotropic model without a
shared spatial component. The vertical red dashed lines are the lower 2.5% and
upper 97.5% quantiles respectively. The vertical yellow dashed line is the mean of
the empirical distribution.
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Figure 4.1.4: Histograms for the parameters in the anisotropic model with a shared
spatial component. The vertical red dashed lines are the lower 2.5% and upper
97.5% quantiles respectively. The vertical yellow dashed line is the mean of the
empirical distribution.
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the parameters, most notably in the parameters related to the independent spatial
fields, X. This could perhaps be a result of using a prior on the SPDE parameters
which has heavy tails. Another very interesting observation about the models with
a shared component is that the shared marginal variance is approximately 100
times bigger than that of the independent components. This suggests that these
models have converged upon a coseismic slip distribution which is essentially the
same for all the megathrust events. This is interesting as it suggests that full fault
ruptures have been very similar for the all historic events, and that one coseismic
slip distribution can fit the subsidence estimates well. The mean untapered slip
has been estimated as roughly 3.6m for all the models, and is the parameter
which changes the least between models. The median effective range for the first
model is 246 km, 180 km for the shared component of the second model, 174 km
in the strike direction for the third model (this is the smaller of the two effective
ranges) and 125 km in the strike direction of the shared component in the fourth
model. This also means that the subfault geometery, whereby the average distance
between between adjacent subfaults is 25.6 km, is just over 1/6-th the size of the
smaller effective range in the modelling. This average distance between subfault
centroids represents the average side length in the SPDE mesh. In her masters
thesis, Røste [70] concluded that a maximum side length of 1/12-th the spatial
range is sufficient for the Gaussian usage of the SPDE approach. The subfault
geometry that has been created is therefore twice as coarse as it should optimally
be but is the finest possible with the computational restraints.

4.1.1 Prior vs Posterior Taper Function

The taper function over the CSZ depths for each model is shown in Figure 4.1.5.
The median taper and equi-tailed 95% empirical confidence interval are shown
as well as the prior which was placed on the λ parameter. This shows that the
taper parameter is well defined in the optimisation process of all the models as the
confidence interval for each one lines up with the prior placed on lambda. This also
suggests that the prior was very important here, and that the data has not affected
the fitting of the taper much (if at all). This gives more evidence that the taper
encodes important scientific information which cannot be seen through the data
set alone. The only difference between the models is that the shared component
models give a slightly wider confidence interval which aligns more with the prior
than in the non-shared component models.

4.1.2 Prior vs Posterior Anisotropic Stretch

It is interesting and relevant to investigate the stretch parameter in the two
anisotropic models a bit further. Specifically what does the median and 95%
empirical confidence interval look like. To do this the correlation ellipse’s are
plotted for the median value of ϕ, the lower 2.5% quantile and the upper 97.5%
quantile. Additionally the prior is illustrated by two dashed orange ellipses. Re-
member that the prior was set such that the stretch factor is between 0.5 and 2
with 95% probability which is not a very constrictive prior at all. The plots for
both anisotropic models can be seen in Figure 4.1.6. It is seen that the median
stretch in both models makes the dip directions have a longer effective range. This
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is odd as the literature quite clearly suggests that the correlation along the strike
direction is greater than in the dip direction [30]. It is probably the result of
combining the geometric anisotropy with the taper function which already affects
the coseismic slip distribution mainly in the dip direction. It is also seen that in
both models the inferred confidence interval gives more stretch in the dip direction
than the prior gives, but less in the strike direction.

4.2 CSZ Coseismic Slip Distributions

In this section the inferred coseismic slip distributions for each of the megathrust
events and models are displayed. The slip distribution is given over the fault
geometry which was introduced in Section 2.3. This means that in the illustra-
tions the slip distribution is given as the mean across each triangular subfault.
The slips were created from the nsims = 1000 draws from the model posterior
distributions using the appropriate formulas as given in Section 3. The draws of
the fixed parameters were just given in Section 4.1, and a summary of the draws
for the spatial random effects can be seen in Appendix B.1. Then the mean and
standard deviation for each triangular sub fault are calculated. Firstly the mean
slip distribution for all the models is given. The mean slip for the isotropic models
can be seen in Figure 4.2.1 and for the anisotropic models in Figure 4.2.2.

It is seen that the coseismic slip distributions for the models without a shared
spatial component vary with each megathrust event quite a lot. The distributions
seem to depend on how much subsidence was estimates for each event in the central
latitudinal region. These models have inferred the highest amounts of slip, with
the anisotropic model giving over 30m of mean slip for event T10. As expected the
models with a shared spatial component do not show must variation in coseismic
slip distribution between the megathrust events. They are also more conservative
with their maximal mean slip values: 20m of slip was inferred in the central
latitudinal regions. This region seems to accumulate the highest concentration of
slip, which occurs potentially from the high subsidence estimates from this region
(Figure 2.2.2). It is worth mentioning that to account for the most southern
subsidence estimates, all the models shown here have placed slip values of roughly
10m on the south western tip of the CSZ fault. However the southern end of the
CSZ fault is actually made up of several faults and is hard to analyse in a way which
agree with the geology of the region [71], and as such no hard conclusions should
be drawn here. Next the standard deviation is given for the slip distributions.
The SD for the isotropic models can be seen in Figure 4.2.3. Then the SD of the
slip distribution for the anisotropic models can be seen in Figure 4.2.4.

Here the expected pattern occurs, the SD tracks with the mean slip. The
maximal SD is approximately 17m, which means that the distribution of cosesimic
slip can vary quite a lot between realisation for all these models.

4.3 Subsidence Prediction

With the slip distribution calculated for each model it is now possible to predict
surface subsidences for all the models through the use of the Okada model, as intro-
duced in Section 3.1. This is firstly done for the locations of collected subsidence
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estimates, which will give an indication of how well the model captures reality.
The subsidence prediction at each location can be calculated for the nsims = 1000
draws from the posterior slip distribution and then a mean subsidence prediction
found. These are plotted against latitude, with the real subsidence estimates also
shown. These plots for the isotropic models can be seen in Figure 4.3.1 and in
Figure 4.3.2 for the anisotropic models.

It is seen that all the models predict the subsidence at collection locations quite
well. there is no real stand out bad models or megathrust events, which suggests
that this type of modelling can explain the geological evidence well. The slip dis-
tribution can also be used to predict the subsidence over the entire CSZ region.
To calculate subsidence across the entire fault, a new okada matrix is required.
This is calculated such that it gives the surface deformation at a grid of points on
the surface. This grid has 25 equally spaced locations in the longitude direction
from −128◦ to −123◦ and then 50 equally spaced locations in the latitudinal direc-
tion ranging from 40◦ to 50◦. Computing the Okada matrix was a compuational
bottleneck here and is the limiting factor in choosing the resolution of this grid.
Ideally this would be as fine as possible. An illustration of this grid can be seen
in Figure 4.3.3. Then 1000 subsidence estimates can be created for each point,
and as such the mean and standard deviation in subsidence predictions can be
calculated. Firstly the mean subsidence for the isotropic models can be seen in
Figure 4.3.4 and in Figure 4.3.5 for the anisotropic models. Note that in all of
these full fault subsidence prediction plots the colour scales have been fixed for all
the models to allow for easier comparisons.

The relationships of subsidence predictions across the region between models is
the same as it was for the coseismic slip distribution: the shared spatial component
models are more conservative in their predictions. The really interesting thing here
is the band of uplift predicted by all models on and slightly to the west of the
shallower edge of the CSZ fault. This is the same across all the events, and would
indicate the potential for a tsunami to have been triggered in all the events. In the
most extreme case, an uplift of approximately 10m would cause a highly powerful
tsunami. Secondly the standard deviation of the subsidence predictions across
the entire fault is calculated and shown in Figure B.2.1 in the Appendix for the
isotropic models and in Figure B.2.2 of the Appendix for the anisotropic models.

4.4 Inference about Event Magnitude Distributions
Another interesting quantity to calculate from the slip distribution is the moment
magnitude of the megathrust events that draws from the coseismic slip distribu-
tions would produce. This is done with the known equations [72]:

M0 = r
S∑

i=1

Aisi

Mw =
2

3
(log10(M0)− 9.1), (4.1)

where r is the rigidity of the rock and set to 3 × 1010 here. Ai is the area of
each subfault and si is the mean slip across that subfault. Mw will be magnitude
of the megathrust event as we are familiar with, and M0 gives the earthquake
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moment. Since 1000 realisations of the slip distribution have been calculated for
each megathrust event, it is then possible to calculate 1000 magnitudes for each
megathrust event. From this the empirical distribution can be found for each event
and presented as a histogram. This illustration is seen in Figure 4.4.1 for the first
model. For the second model these histograms are seen in Figure 4.4.2. For the
anisotropic model without a shared spatial component the empirical distributions
of megathrust magnitudes can be seen in Figure 4.4.3. Finally the empirical
distribution of megathrust magnitudes for the anisotropic model with a shared
spatial component is shown in Figure 4.4.4.

As expected the distributions in the shared component models are very similar,
and give a mean and median magnitude of just of Mw9.0 for all the events. There
is a bit more variation in the other models, however they too also have central
estimates of around 9.0 for all the events. In the models without the shared spatial
components the 95% empirical confidence interval varies considerably across the
events. In general it can be said that the events with more subsidence predictions,
T1, T4 and T5 for example, have a much narrower confidence interval width than
those events which have poor subsidence estimate coverage, T12, for example. The
1700AD event is predicted to have a magnitude of Mw9.0 by all the models which
agrees with the current literature [73, 35].
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Figure 4.1.5: These plots show the statistics of the taper function calculated from
draws from the λ function for each of the four models. The black line is the taper
given by the median λ value. The blue band is created by filling in the region
between the taper given by the lower 2.5% quantile of λ and the upper 97.5%
quantile of λ, thus showing an equi-tailed, empirical 95% confidence interval. The
orange dashed lines give the equi-tailed 95% confidence interval from the prior
placed on λ.
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Figure 4.1.6: These plots illustrate the statistics on the anisotropic stretch factor.
the black line gives the anisotropic ellipse for the median value of ϕ. The two
blue ellipses represent the 2.5% and 97.5% quantiles for ϕ and thus any stretch in
between these can be thought of as within the empirical 95% confidence interval.
Further the orange dashed lines show the correlation ellipses for the prior placed
on ϕ, which gives P(0.5 < ϕ < 2) = 0.95.
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Figure 4.2.1: Above is the mean of the slip distribution for the first model and
below is the mean of the slip distribution for the second model. The red points
represent the locations of observed subsidence estimates.
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Figure 4.2.2: Above is the mean of the slip distribution for the third model and
below is the mean of the slip distribution for the fourth model. The red points
represent the locations of observed subsidence estimates.
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Figure 4.2.3: Above is the standard deviation of the slip distribution for the first
model and below is the standard deviation of the slip distribution for the second
model. The red points represent the locations of observed subsidence estimates.
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Figure 4.2.4: Above is the standard deviation of the slip distribution for the third
model and below is the mean of the slip distribution for the fourth model. The
red points represent the locations of observed subsidence estimates.
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Figure 4.3.1: Above is the subsidence prediction at the locations of the data
points for the first model and below is the same but for the second model. The
triangles represent the model predictions and the hollow green circles are the
original subsidence estimates.
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Figure 4.3.2: Above is the subsidence prediction at the locations of the data
points for the third model and below is the same but for the fourth model. The
triangles represent the model predictions and the hollow green circles are the
original subsidence estimates.
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models.
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Figure 4.3.4: The mean subsidence across the whole fault calculated for the first
model is shown above, and below is the same information but for the second
model. The red points give the locations of subsidence estimates. The illustration
was created by linearly interpreting the subsidence predictions made on the grid
shown in Figure 4.3.3.
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Figure 4.3.5: The mean subsidence across the whole fault calculated for the third
model is shown above, and below is the same information but for the fourth model.
The red points give the locations of subsidence estimates. The illustration was
created by linearly interpreting the subsidence predictions made on the grid shown
in Figure 4.3.3.
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Figure 4.4.1: The empirical distributions of the magnitudes for all the megathrust
events calculated from the slip realisations from the isotropic model without a
shared spatial component. The red dashed lines give the lower 2.5% and upper
97.5% quantiles, and so the are in between these lines is the 95% empirical pre-
diction interval for the event magnitude. The yellow dashed lines are the mean of
the magnitudes for each event.
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Figure 4.4.2: The empirical distributions of the magnitudes for all the megathrust
events calculated from the slip realisations from the isotropic model with a shared
spatial component. The red dashed lines give the lower 2.5% and upper 97.5%
quantiles, and so the are in between these lines is the 95% empirical prediction
interval for the event magnitude. The yellow dashed lines are the mean of the
magnitudes for each event.
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Figure 4.4.3: The empirical distributions of the magnitudes for all the megathrust
events calculated from the slip realisations from the anisotropic model without a
shared spatial component. The red dashed lines give the lower 2.5% and upper
97.5% quantiles, and so the are in between these lines is the 95% empirical pre-
diction interval for the event magnitude. The yellow dashed lines are the mean of
the magnitudes for each event.



CHAPTER 4. INFERENCE ABOUT HISTORICAL FULL FAULT
RUPTURES 53

T11
 Mean=9.029, Median=9.026

T12
 Mean=9.029, Median=9.027

T9
 Mean=9.028, Median=9.026

T10
 Mean=9.029, Median=9.026

T7
 Mean=9.028, Median=9.027

T8
 Mean=9.029, Median=9.026

T5
 Mean=9.029, Median=9.026

T6
 Mean=9.029, Median=9.026

T3
 Mean=9.028, Median=9.026

T4
 Mean=9.029, Median=9.026

T1
 Mean=9.03, Median=9.027

T2
 Mean=9.028, Median=9.026

8.9 9.0 9.1 9.2 8.9 9.0 9.1 9.2

0

40

80

120

0

40

80

120

0

40

80

120

0

40

80

120

0

40

80

120

0

40

80

120

Earthquake Magnitude

C
ou

nt

Figure 4.4.4: The empirical distributions of the magnitudes for all the megath-
rust events calculated from the slip realisations from the anisotropic model with
a shared spatial component. The red dashed lines give the lower 2.5% and upper
97.5% quantiles, and so the are in between these lines is the 95% empirical pre-
diction interval for the event magnitude. The yellow dashed lines are the mean of
the magnitudes for each event.



54
CHAPTER 4. INFERENCE ABOUT HISTORICAL FULL FAULT

RUPTURES



CHAPTER

FIVE

PREDICTION OF A POTENTIAL FUTURE FULL
FAULT RUPTURE

In this chapter the outcome of predicting a future megathrust event is explored for
each model. Although a future full fault rupture may not occur, it is considered
likely enough that predicting its properties is a worthwhile endeavour. Firstly the
median parameters from the posterior distribution for each fully fitted model are
used in predicting the resulting future coseismic slip distribution. Predictions are
made many times for the coseismic slip distribution, and then these are used to
predict the subsidence across the entire CSZ region. Finally the distribution of
the magnitude resulting from the prediction of a future coseismic slip distribution
is given for each model.

5.1 Potential Future Coseismic Slip Distribution
for a Full Fault Rupture

To calculate a coseismic slip distribution one needs the parameters of the model
and a draw from the underlying spatial fields. The chosen parameters are the
median of the posterior distribution which are shown in the “Posterior Median”
column of the tables in Section 4.1. The parameters which control the SPDE
method are τ and κ and are used to calculate the precision matrices of the GMRF
representations of the underlying spatial fields. These precision matrices are cal-
culated via TMB in such a way as to be consistent with the optimisation process.
Once a precision matrix has been calculated one can simulate from the underlying
GMRF using the standard algorithm (that is Algorithm 2.3 from Rue and Held
[74]). To make implementation easier, and likely much faster, these draws were
taken by using INLA’s [59] inbuilt qsample function. This draw from the under-
lying spatial distribution can then be combined with the selected parameters via
the equations outlines in Section 3 to give a realisation from a future coseismic slip
distribution. This is then repeated nsims = 1000 times to give a good representa-
tion of the future coseismic slip distribution. As in the historical case, the mean
and standard deviation is given for the coseismic slip distribution of each model.
The mean can be seen in Figure 5.1.1 and the standard deviations in Figure 5.1.2.
Both the models without a shared component display a uniform coseismic slip
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distribution. They are essentially relying on the taper function to taper the slips
on the down dip edge. This is expected since the random effects of these models
when they predict a new megathurst event are not conditioned on any data, it is
only the model parameters that have been informed by the data. On the other
hand, the prediction of the future coseismic slip distribution for both the shared
spatial component models used a shared random effect which is conditioned on the
data. This results in a concentration of slip in the central latitudinal region. The
largest concentration of slip is given by model 4. This occurs on the shallower,
western edge of the fault region between 46◦N and 47◦N . However this model
also places slip values in the range of 10m to 15m near to coastal areas which is
larger than previously given in work such as Goda [23] and Wang et al. [35]. In
Goda [23], their simulation of a full fault rupture for a Mw9.0−9.1 event indicates
coseismic slip of up to 20m, but with this concentration of slip all the way from
49◦N to 44◦N . This is interesting, as our results indicate that the slip distribu-
tion is concentrated in smaller spatial region, but with higher values predicted.
This probably comes from the fact that the largest subsidence estimates occur
in the latitudinal region where these models gives the highest value of slip. The
distribution of SD once again tracks the mean.

5.2 Predicting Future Subsidence Across the Whole
Region

Now that 1000 realisations from the future slip distributions have been taken,
they can be used to calculate 1000 subsidence realisation across the whole of the
CSZ. The same Okada matrix is used here as was used in Section 4.3 and thus
future subsidences will be predicted across the grid of points seen in Figure 4.3.3.
From these, the mean and standard deviation of the subsidence predictions can
be calculated. The mean that each model gives in illustrated in Figure 5.2.1 and
the standard deviation of each model is shown in Figure B.2.3 in the Appendix.

As was inferred about the historical megathrust events, these potential future
events have a band of uplift running alongside the western edge of the CSZ fault
region. This demonstrates that in all modelling situations, it is highly likely that
any future megathrust event would result in a tsunami. This agrees with research
already done [75, 38].

5.3 Potential Future Megathrust Magnitude Dis-
tribution

The final quantity of interest that is presented for a future megathrust event is
the distribution of the magnitude of the event predicted. The magnitude can be
calculated for each of the slip realisations from the future slip distribution following
(4.1) as before. The distribution of magnitudes is then presented in Figure 5.3.1
via a histogram for each model.

It is clear that all these models predict any future megathrust event to have a
magnitude of 8.9− 9.15 which is a very large and potentially destructive event.
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Figure 5.1.1: These plots show the mean of 1000 realisations of slip from the
distribution given by the best fitted models.
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Figure 5.1.2: These plots show the standard deviation of 1000 realisations of slip
from the distribution given by the best fitted models.
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Figure 5.2.1: These plots show the mean of 1000 predictions of future subsidences
across the entire CSZ for all the model.
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Figure 5.3.1: These figures show the distributions of magnitudes for predicted
future megathrust event. The magnitudes were calculated from 1000 realisations
of the slip distribution given by each model. The vertical red dashed lines give
the lower 2.5% and upper 97.5% quantiles and thus the region in between them
is the 95% confidence interval. The vertical yellow dashed line gives the mean of
the distribution.



CHAPTER

SIX

MODEL VALIDATION

In this chapter the ability of the models to successfully determine the coseismic
slip distribution of megathrust events is evaluated. The main modelling interest
throughout this thesis is how well the information about future events can be
captured and thus giving information about potential risk. Therefore a cross
validation scheme, alongside appropriate scoring rules are used to explicitly reveal
how well the different models can predict unseen megathrust events.

6.1 Details of the Validation Scheme

Here the validation scheme used is presented. This starts by assuming a score
function s and as previously let the megathrust events be indexed m ∈ (1, ..,M).
For each megathrust event there are Nm subsidence estimates which are given as
yi,m for i ∈ (1, ..., Nm). The exact numbers for Nm and the spatial distribution
of estimates for each megathrust event was seen previously in Figure 2.2.3. A
validation fold is then given by leaving out all of the subsidence estimates linked
to one of the megathrust events from the data set thus leaving subsidence estimates
for M − 1 megathrust event with which to fit the fold model. After fitting, this
fold model can then be used to predict the left out subsidence estimates. This
is done by drawing nsims = 1000 realisations of the fixed parameters via the
joint precision matrix of the fold model. In the case of the models with a shared
spatial component, 1000 draws are also taken from this shared spatial component.
Predicting the left out megathrust event is thought of as predicting a future unseen
event, as discussed in Chapter 5. Note however that instead of choosing a “best”
parameter set, the precision matrix method is used to generate 1000 draws of the
fixed model parameters. This results in 1000 predictions for each of the left out
subsidence estimates, which will be thought of as an empirical distribution for
these estimates. The given score can then be calculated for each of the subsidence
estimates given the predicted subsidence distribution. Mathematically this score
is denoted as s(yi,m|P−m) whereby P−m refers to the empirical distribution of
predictions for the subsidence estimates when the model is fitted without (−m)
the estimated from megathrust event m. With the score for each of the subsidence
estimates from the left out event, it is possible to calculate the average event score
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em as:

em =
1

Nm

Nm∑
i=1

s(yi,m|P−m). (6.1)

Finally the total model score, e, can be calculated by taking the average over all
the left out event scores:

e =
1

M

M∑
m=1

eM . (6.2)

6.2 Scoring Rules Considered

Now that the validation scheme is in place, the next step is to choose the scores
which will be used to evaluate the predictive ability of the model. To get a good
overview of how well the models perform a selection of scores will be chosen. It is
also useful to introduce proper scoring rules and strictly proper scoring rules here.
A proper scoring rule is one whereby the expected score is minimised when the
predictive distribution is equal to the distribution of the observations. A strictly
proper scoring rule is one whereby the expected score is minimised ONLY when
the predictive distribution is equal to the distribution of the observations. This
means that a strictly proper score will be minimised only by the correct model,
whereas a proper score can have other minimums. It is important to use proper
and strictly proper scoring rules as it enables an honest assessment of how the
predictive model is performing. One can read more about proper scoring rules in
Gneiting and Raftery [76].

The selections of scores starts with the classical error scores of the Squared
Error (SE) (6.3) and the Absolute Error (AE) (6.4). These scores are included
to provide a more general overview of the models performance that can easily
be interpreted by academics from a wide range of disciplines, thus potentially
enabling the transfer of learning’s to other studies. They are both also proper
scoring rules. The squared error is more sensitive to outliers than the absolute
error. With both these scores a lower value is considered better.

SE(yi,m|P−m) = (yi,m − ŷi,m)
2 (6.3)

AE(yi,m|P−m) = |yi,m − ŷi,m| (6.4)

In addition the 95% prediction interval width will be reported which indicates the
spread of predictions for one subsidence estimate. Alongside this the coverage at
the 95% level will be reported. This is defined as the percentage of subsidence
estimates which lie within the 95% empirical prediction interval. It is intuitively
expected that this value is close to 95%. In general a smaller prediction interval
width indicates that the model is more confident in it’s prediction of subsidence.
However this is not always a good thing, because if the validation gives a small
prediction interval width, but also a small coverage percentage then this would
suggest that the model is very confident in it’s subsidence prediction when in
fact the real estimate does not lie within the interval. To help resolve this the
Interval Score (IS), a proper scoring rule, is used. The interval score set at a
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(1− α) · 100% level, with a lower quantile for the subsidence predictions at l and
an upper quantile at u is defined as:

IS(yi,j|P−j) = (u− l) +
2

α
(l − yi,j)1(yi,j < l) +

2

α
(yi,j − u)1(yi,j > u). (6.5)

Here, α is set to 0.05 which corresponds to a 95% empirical prediction interval (so
l is the lower 2.5% quantile and u is the upper 97.5% quantile). Notice that the
interval score is just the width of the prediction interval with a penalty term added
when the actual subsidence estimate doesn’t fall within the interval range. That
way the score rewards smaller intervals but penalizes when the predictive interval
doesn’t cover the real value. Therefore a smaller interval score is better. Next, the
Continuous Rank Probability Score (CRPS) is introduced. CRPS is used because
it is strictly proper and can be evaluated when the predictive density is not of
a known form, in this case when it is represented by draws from the posterior
distribution. It is defined as:

CRPS(yi,m|P−m) = −
∫ ∞

∞
(Fp(x)− 1(x ≥ yi,m))dx (6.6)

where Fp(x) is the cumulative distribution function for the distribution of subsi-
dence predictions. With CRPS, a lower score indicates a better predictive model.
The CRPS was implemented in this work using the crps_sample function from
the ScoringRules R package [77]. Finally the time taken to optimise the full model
plus the time taken to find the joint precision matrix for all the model parame-
ters is recorded. This does not give information about the predictive ability of
the model but rather gives an indication of the computational requirements to
build the model and thus the model complexity. This gives 7 scores with which to
judge the models by. CRPS will be favoured for deciding upon a best model, but
considerations of the other scores and their attributes will also be accounted for.

6.3 Validation Results

This section gives the results of the validation process. Firstly it is insightful to
see the actual subsidence prediction for each validation fold for each model. This
will help explain the validation scores seen. These predictions are shown for the
isotropic models in Figure 6.3.1, plotted with the actual estimates. The same for
the anisotropic models can be seen in Figure 6.3.2.

There is no noticeable difference between the isotropic and anisotropic variants
of the models. What is evident however is that the models with a shared spatial
component predict much better on unseen subsidence data than the models with-
out a shared component. This is because the shared component can be used when
making predictions, whereas the models without this component rely solely on
the fixed model parameters to give information about the subsidence data. Re-
membering that the shared component makes up the vast majority of marginal
variance, these results are not surprising and one would expect these two models
to predict unseen data with an accuracy comparable with the full model. To see
how the performance of the models changes between the full and fold models for
the CRPS score, please see Appendix B.3. It is seen that the models without a
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shared component predict quite a flat subsidence distribution with latitude, and
even predict some uplift in the southern extent of the CSZ. The next step is to
look at information about the CRPS score for each model and each event. This is
illustrated via boxplots in Figure 6.3.3. It is important to keep in mind how many
subsidence estimates went into the CRPS distribution shown by each box, for ex-
ample event T12 has only 2 subsidence estimates related to it. Similar boxplots
of the other scores aggregated by event can be seen in Appendix B.4.

Figure 6.3.3 confirms that the models with a shared spatial component predict
better than those without. This is shown by the boxes in the plot having a lower
CRPS for models 2 and 4. Event T12 looks to be an anomaly in the results,
but this event, as mentioned, has only 2 subsidence estimates attached to it, so
inferring distributional results here is not really appropriate. Finally the total
validation scores are calculated following (6.2) and presented in Table 6.3.1.

Score Model 1 Model 2 Model 3 Model 4
MSE 0.683 0.186 0.665 0.166
MAE 0.571 0.297 0.560 0.295

95% PI Width 2.21 0.677 2.11 0.679
Coverage (%) 90.2 68.2 88.8 70.7

CRPS 0.276 0.204 0.275 0.204
Interval Score 0.0741 0.0686 0.0754 0.0681
Time (mins) 20.2 35.4 26.1 40.7

Table 6.3.1: The overall model validation scores.

The validation process shows that the models with a shared component perform
better in all the scores than the models without a shared component. This is apart
from the coverage %, whereby the shared component models are a long way under
the expected 95% coverage. It is suggested that this comes from the fact that these
models rely heavily on the shared component to give the prediction and thus there
will not be much variation between the megathrust events which could result in
a narrower PI width. What is interesting is that despite the poorer coverage, the
interval score is still lower for the shared component models, suggesting a better
prediction interval. There is only a very slight difference between the isotropic
and anisotropic models, with the anisotropic models performing slightly, but not
significantly better overall. This gives reason to believe that anisotropy is an
important component in modelling for CSZ coseismic slip distributions but that
the anisotropy implemented here could not capture the information well enough
to make a big difference in model outcomes. The models with a shared component
do however take almost double the amount of time to fit, which is indicative of
their complexity. This comes from having to optimise a shared component across
all the models, as well as having to account for individual spatial effects as well.
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Figure 6.3.1: The above illustration relates to the first model, and below the second
model. The illustration shows the mean subsidence prediction for each fold of the
validation process plotted against latitude. The coloured triangles represent the
predictions, whereas the hollow green points are the actual subsidence estimates.
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Figure 6.3.2: The above illustration relates to the third model, and below the
fourth model. The illustration shows the mean subsidence prediction for each fold
of the validation process plotted against latitude. The coloured triangles repre-
sent the predictions, whereas the hollow green points are the actual subsidence
estimates.
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Figure 6.3.3: This illustrates the distribution of the CRPS from the validation
process for each event. The distributions are split up by model and the mean is
given as a point inline with the boxplot.
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CHAPTER

SEVEN

CONCLUSIONS

In this final chapter, the work throughout this thesis is summarised. The outcomes
of the modelling efforts are firstly highlighted. Then the shortcomings of these
models are described, consequently leading to recommendations for any future
research directions.

7.1 Model Outcomes

In Chapter 3, four new spatial to describe the CSZ coseismic slip were introduced.
All of them have used a Bayesian hierarchy to link the coseismic subsidence data
introduced in Chapter 2, to a resulting coseismic slip distribution. The first and
second models are isotropic variants, with model 3 and model 4 introducing geo-
metric anisotropy to help describe the rupture patterns seen in the strike and dip
directions. Another important difference in the modelling is the introduction of
a shared spatial component to model 2 and model 4. The validation in Chapter
6 leads to several conclusions regarding these models. Firstly the models with
a shared component perform significantly better in megathrust subsidence pre-
diction than the models without a shared spatial component. This is explained
by the shared spatial component allowing for the transfer of information between
megathrust events, and thus allowing for better prediction of unseen subsidence
data. Secondly the models with an anisotropic component are shown to slightly,
but not significantly outperform the isotropic models. This gives marginal evi-
dence for the inclusion of anisotropy into the modelling but it is noted that the
geometric, and fixed angle assumptions of the implemented anisotropy are too
rigid to fully account for the underlying variations caused by the differing strike
and dip angles. It is concluded that, out of the models presented here, model 4,
that which incorporates a shared spatial component and geometric anisotropy is
the one favoured for doing inference about historical megathrust event in the CSZ
and when predicting potential future megathrust events.

The coseismic slip distributions which have been inferred and predicted from
this modelling effort align with previous research in some respects but also differ
slightly. The concentration of slip on the shallower edge of the CSZ is consistent
with previous research [23, 35], and is mainly due to the effects of the taper
functions, which is highlighted as incorporating key scientific information into
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the modelling. The concentration of slip in the central latitudinal region of the
CSZ, most evident in the inferred and predicted coseismic slip distributions of the
shared spatial component models (Figure 4.2.1, Figure 4.2.2 and Figure 5.1.1), is
also consistent with the simulated rupture patterns seen in Goda [23]. This result
is most likely a direct consequence of inference from the subsidence estimates,
which are highest in this region. Contrasting this is the extent to which the
concentration of coseismic slip distribution is spread throughout region. In Goda
[23], the maximum of mean slip was 20m and spread over a relatively large central
area of the CSZ, whereas we have seen the mean values of simulations reaching
upwards of 30m, but only in a relatively small region of the CSZ. Our results
actually align with the preferred multi-modal coseismic slip distribution modelling
described in Wang et al. [35]. Overall the Bayesian methodology presented seems
to infer CSZ coseismic slip distributions which align with previous research, but
currently the methodology given does not well enough account for key geological
processes, mainly the strike-dip anisotropy.

7.2 Recommendations for Future Work

From the shortcomings mentioned, there are several logical next steps in any future
research. Firstly some “easier” fixes. It would be ideal to incorporate the updated
subsidence estimate data set of Kemp et al. [19] which would potentially involve
personal correspondence to gain access to the summary statistics from their work.
Since they used an improved Bayesian transfer function methodology in making
their subsidence estimates, the associated uncertainties are smaller, which will fur-
ther inform the models presented here and guide them to converge to a suitable
coseismic slip distribution. Next would be to increase the resolution of both the
subfault triangulation (seen in Figure 2.3.2) and the SPDE mesh (seen in Figure
3.2.1). Optimisation of models using high resolution meshes will take up a lot
of RAM and computation time, however any results will closer approximate the
reality of the CSZ. They will also help reduce uncertainty surrounding artifacts
seen in the spatial plots, as discussed in Appendix B.2.

The next suggestions for future work are with regards to extensions to the
models presented in this work. The Slab2 data set [25] is the first place to look.
This dataset gives the point depths across the CSZ region, but it also gives an
attached uncertainty with this measurement which has not been incorporated in
this methodology. The depth is used explicitly in two places: the taper function
3.9 and the Okada model 3.1. There is potential to add some kind of error terms
to both of these, but any modelling choices would have to be carefully consid-
ered and be grounded in both their physical interpretation and the theoretical
implications involved. Another, and potentially better researched, area for model
improvement would be to add in non-stationary anisotropy to the models. This
would follows the work of Fuglstad et al. [65] and would mean that the underly-
ing Random Fields could vary with the varying strike and dip angles as shown in
Figure 3.5.1. There is also potential for different priors to be placed on the model
parameters. It is advised to keep the prior on the taper function as this encodes a
lot of scientific information about how cosesimic slip distributions tend to taper.



CHAPTER 7. CONCLUSIONS 71

Alternatively the prior on the SPDE parameters could be investigated as both the
τ and κ parameters seemed to be quite ill-defined during the optimisation process,
leading to heavy tailed posterior distributions for these parameters. Making the
conditions on the prior, especially in the shared component models, more constric-
tive would be a place to start. Alternatively one could investigate a completely
new form of prior that is more appropriate to the CSZ. The final suggestion is to
add an Auto-Regressive (AR) component into the modelling. This make intuitive
sense since the megathrust events occur chronologically, and so could potentially
exhibit a temporal component. One potential issue here is that partial margin
ruptures can (and have [18]) happened which would disturb the temporal relation
between full-fault ruptures.

7.3 Final Words
During this research, a new Bayesian methodology for inferring the coseismic slip
distribution of past megathrust events has been developed, validated and criticised.
It has resulted in an anisotropic model with a shared spatial component performing
the best in CRPS when predicting unseen coseismic subsidence estimates. This
indicates that it will also give the most accurate prediction of the coseismic slip
distribution for a potential future megathrust event in the Cascadia region, and
is the model which is advised to be developed further for usage in tsunami hazard
modelling. The new methodology here has the potential to lead to greater accuracy
in tsunami modelling and as such have the potential to inform the construction
of safer infrastructure and most importantly warn communities in the Cascadia
region of the risk that a future great earthquake poses.
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APPENDIX

A

GITHUB REPOSITORY

All code used in this document are included in the Github repository linked below.
Further explanations are given in the readme-file.

Github repository link

• https://github.com/alastair-thomas/Cascadia
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APPENDIX

B

EXTENSIVE MODELLING RESULTS

B.1 Underlying GRF Illustrations

In this section the spatial random effects are shown for each model. The mean
and standard deviation over the CSZ are given which are calculated from the
nsims = 1000 draws from the joint precision matrix for all the model parameters.
In all the models the individual spatial fields (X) are shown for each mega thrust
event, and then in the models which include a shared spatial field (W ) these are
also given. Firstly comes the isotropic model without a shared spatial component.
The mean and standard deviation for the X spatial field for the first model can
be seen in Figure B.1.1.

Next, the isotropic model with a shared component has two spatial random
fields: X and W . The mean and standard deviation for the independent fields for
all the mega thrust events can be seen in Figure B.1.2. The mean and standard
deviation for the shared spatial field, W , can be seen in Figure B.1.3.

The mean and standard deviation for the X spatial field for the anisotropic
model without a shared component can be seen in Figure B.1.4.

Much like its isotropic counterpart the anisotropic model with a shared spatial
component also has two spatial random fields: the independent fields, X, and the
shared spatial field W . The mean and standard deviation for the independent
fields for all the mega thrust events can be seen in Figure B.1.5. Finally the mean
and standard deviation for the shared spatial field in the fourth model can be seen
in Figure B.1.6.

All of the models display the expected pattern for a GRF: the uncertainty
is lowest around the data locations. This is perhaps most evident from the X
fields in the non-shared component models. Since the shared spatial component is
responsible for the vast majority of the marginal variance in model two and four,
the mean of the random effect draws is only significantly different from 0 in the
shared fields, X is essentially 0 over the entire region, and only visible in the plots
because they do not share the same colour scale as the W fields. Additionally the
W fields display lowest variance at data locations, whereas this pattern is not seen
from the individual random effects fields in the shared component models.
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B.2 Standard Deviation of Whole Region Subsi-
dence Predictions

In this section the standard deviation of subsidence predictions across the entire
CSZ region is shown for all the applied models. This is shown for isotropic models
in Figure B.2.1, for anisotropic models in Figure B.2.2 and for future megathrust
events in Figure B.2.3. This standard deviation is calculated from 1000 draws of
the CSZ coseismic slip distribution. The Okada model was then used to predict
the surface subsidence at a grid of points, shown in Figure 4.3.3, for all the slip
draws. The SD was found from the 1000 subsidence predictions, and plotted via
interpolation. The reason this is in the appendix and not the main text is because
the plot looks “patchy” and it is unclear whether these are actual features of the
predicted subsidence or come from the implementation. The features could come
from the interpolation between points however the actual value at each point has
been checked and these would indicate that this is an actual feature of the model
and not the implementation. The choice of the Magma colour scale here was also
not ideal as the plot becomes mainly black and unreadable. To try reduce this
plotting affect the opacity was also scaled by the standard deviation which slightly
helps.

B.3 Full vs Validation Model Scores
In this section the difference in the distribution of CRPS for subsidence predictions
across each mega thrust event is explored. This comparison is made between when
the full model is used to predict an event (a model fitted to the data for that event)
and when the validation model is used to predict the subsidence in the left out
event (a model which hasn’t been fitted to the data from the event). The CRPS
distribution for each event is shown as a boxplot, which is coloured by whether
the CRPS is from the full model, or validation model. This information is shown
for the isotropic models in Figure B.3.1 and for the anisotropic models in Figure
B.3.2.

As is expected the full model performs better in all models, as shown by having
a lower CRPS in the majority of cases. The distribution of CRPS for each event
is also narrower for the full model indicating that they predict better a higher
percentage of the time. These results are not groundbreaking work: if the model
has been given access to data it has seen then it is much more likely to predict
better. This just confirms that the modelling does in fact work. It is interesting
to see that the models with a shared spatial component managed to be almost as
good without access to the data being predicted as in the full model case. This
again demonstrates a that these models have been able to use the data from other
megathrust events effectively in predicting unseen megathrust events.

B.4 Score Distribution by Mega Thrust Event
This final appendix shows the distribution of model scores for each megathrust
event. The CRPS was shown already in the main text as this score is highlighted
as the one which is used for determining the “best” model. The absolute errors are
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seen in Figure B.4.1, the squared errors are seen in Figure B.4.2 and the interval
scores are seen in Figure B.4.3.

The absolute error confirms that the models with a spatial component predict
the unseen subsidence better than those without a shared component. The squared
error also confirms this, as well as highlighting some outliers in prediction for events
T10 and T11. This will come from the simulation of the underlying spatial field
via draws from the fixed parameters. Finally is the interval score which highlights
some problems with the shared spatial component models. For most events, the
interval score is low and tightly distributed which indicates a small PI, and good
coverage of predictions. However for some events such as T2, T8 and T9 the
interval score has a very wide distribution. Since it is know that the PI is always
relatively narrow for these models, this shows that the actual observed subsidences
lie outside the PI which is not what is wanted.
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Figure B.1.1: The mean and standard deviation of X for the isotropic model
without a shared component. The mean and standard deviation at the nodes in
the SPDE mesh are interpolated onto the CSZ using linear interpolation. The red
points are locations of observed subsidence estimates.
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Figure B.1.2: The mean and standard deviation of X for the isotropic model with
a shared component. The mean and standard deviation at the nodes in the SPDE
mesh are interpolated onto the CSZ using linear interpolation. The red points are
locations of observed subsidence estimates.
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Figure B.1.3: The mean and standard deviation of W for the isotropic model with
a shared component. The mean and standard deviation at the nodes in the SPDE
mesh are interpolated onto the CSZ using linear interpolation. The red points are
locations of observed subsidence estimates.
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Figure B.1.4: The mean and standard deviation of X for the anisotropic model
without a shared component. The mean and standard deviation at the nodes in
the SPDE mesh are interpolated onto the CSZ using linear interpolation. The red
points are locations of observed subsidence estimates.
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Figure B.1.5: The mean and standard deviation of X for the anisotropic model
with a shared component. The mean and standard deviation at the nodes in the
SPDE mesh are interpolated onto the CSZ using linear interpolation. The red
points are locations of observed subsidence estimates.
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Figure B.1.6: The mean and standard deviation of W for the anisotropic model
with a shared component. The mean and standard deviation at the nodes in the
SPDE mesh are interpolated onto the CSZ using linear interpolation. The red
points are locations of observed subsidence estimates.
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Figure B.2.1: The standard deviation of subsidence across the whole fault calcu-
lated for the first model is shown above, and below is the same information but
for the second model. The red points give the locations of subsidence estimates.
The illustration was created by linearly interpolating the standard deviations on
the grid shown in Figure 4.3.3.
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Figure B.2.2: The standard deviation of subsidence across the whole fault calcu-
lated for the third model is shown above, and below is the same information but
for the fourth model. The red points give the locations of subsidence estimates.
The illustration was created by linearly interpreting the standard deviations on
the grid shown in Figure 4.3.3.

91



40°N

42°N

44°N

46°N

48°N

50°N

128°W 127°W 126°W 125°W 124°W 123°W

Subsidence
SD (m)

0

1

2

3

4

5

(a) Model 1

40°N

42°N

44°N

46°N

48°N

50°N

128°W 127°W 126°W 125°W 124°W 123°W

Subsidence
SD (m)

0

1

2

3

4

5

(b) Model 2
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(c) Model 3
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(d) Model 4

Figure B.2.3: These plots show the standard deviations of 1000 predictions of
future subsidences across the entire CSZ for all the model.
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Figure B.3.1: The CRPS score for the full model subsidence predictions and the
validation models predictions are shown for the isotropic models.
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Figure B.3.2: The CRPS score for the full model subsidence predictions and the
validation models predictions are shown for the anisotropic models.
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Figure B.4.1: This figure shows the distribution of absolute errors for each megath-
rust event and model. The scores are calculated during the validation process.
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Figure B.4.2: This figure shows the distribution of squared errors for each megath-
rust event and model. The scores are calculated during the validation process.
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Figure B.4.3: This figure shows the distribution of the interval scores for each
megathrust event and model. The scores are calculated during the validation
process.
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