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Abstract

We investigate curvature-induced effects in superconductors and Josephson junctions. We
give the derivation for the strain-induced spin-orbit coupling and express the curvilinear
coordinate systems for multiple geometries. A derivation of the Usadel equation, an equa-
tion of motion in the quasiclassical approximation, is given. It assumes a high density of
impurities and describes the dirty limit. We present the Usadel equation in curvilinear
coordinates to describe geometrically curved superconductor-ferromagnet-superconductor
(S-F-S) proximity systems. We derive the Eilenberger equation in curvilinear coordinates
in the low impurity limit to investigate increases in the p-wave contribution due to cur-
vature. We compare the quasiclassical results to ones obtained with the Bogoliubov-de
Gennes method, a lattice model we use to describe systems in the clean limit. We find
that 0− π transitions in Josephson junctions can be induced in both limits. In the dirty
limit, a ferromagnet and curvature are needed. A normal metal with considerable strain-
induced spin-orbit is sufficient in the clean limit. We use geometries with non-constant
curvature in one-dimensional superconductors to show that p-wave pairings can be in-
duced and localized to points of high curvature and strain-induced spin-orbit coupling. In
two-dimensional S-N-S junctions in the clean limit, we find that the strain induces a spin
magnetization in the binormal direction.
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Sammendrag

Vi undersøker krumning i superledere og Josephson-koblinger. Vi gir utledningen for
stressindusert spinn-bane kobling og uttrykker det krumlinjede koordinatsystemet for
flere ulike geometrier. En utlending for Usadel-likningen, en bevegelsesligning i den
kvasiklassiske tilnærmingen, blir gitt. Den antar en høy tetthet av urenheter i mate-
rialet og beskriver den urene grensen. Vi presenterer Usadel-likningen i krummlinjede
koordinater for å beskrive geometrisk krumme superleder-ferromagnet-superleder (S-F-S)
proksimitetssystemer. Vi utleder Eilenberger-likningen i krummlinjede koordinater i den
lave urenhet grensen for å undersøke økninger i p-bølge bidraget grunnet krumning. Vi
sammenligner de kvasiklassiske resultatene med de som er oppn̊add med Bogoljubov-de
Gennes-metoden, en gittermodell vi bruker for å beskrive systemer i den rene grensen. Vi
finner at 0−π overganger i Josephson-koblinger kan induseres i begge grensene. I den urene
grensen trengs det en ferromagnet og krumning. Et normalt metall med betydelig stressin-
dusert spinn-bane-kobling er tilstrekkelig i den rene grensen. Vi bruker geometrier med
ikke konstant krumning i en-dimensjonale superledere for å vise at p-bølge korrelasjoner in-
duseres og lokaliseres til punkter med høy krumning og stressindusert spinn-bane kobling.
I to-dimensjonale S-N-S koblinger i den rene grensen finner vi at krumningen induserer en
spinnmagnetisering i den binormale retningen.
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Notation and units

This thesis will contain a variety of matrices and dimensions. We will use the following
notation: an underlined quantity M denotes a 2× 2 matrix in spin space, M̂ a 4× 4 ma-
trix Nambu⊗spin space, and M̌ a 8× 8 matrix in Keldysh space. Adding or multiplying
matrices of different dimensions should be understood as taking the Kronecker product
between the matrix of the lowest dimension and the appropriate identity matrix. For
example the matrix ÂB̌ + C should be read as (I ⊗ Â)B̌ + (Î ⊗ C), where I is the 2× 2
identity matrix, and Î is the 4 × 4 identity matrix. The 8 × 8 identity matrix is denoted
Ǐ. This applies mainly to the quasiclassical theory since we juggle multiple matrices of
multiple dimensions. In the lattice models, we stray away from the notation above and
specify when the dimensionality of matrices is unclear.

Scalar quantities are written in italic fonts, such as a, b, c. Vectors will be written with
a bold, italic font v and may be expressed as a column vector v = (vx, vy, vz) of scalars
in Cartesian coordinates. In terms of unit vectors, the vector can be written as v =
vxêx + vyêy + vzêz. The unit vectors êj are normalized vectors with a single component
in Cartesian coordinates, not 4× 4 matrices as defined above, and that is why they have
a bold font.

Partial derivatives with respect to an arbitrary variable x will be written as ∂x ≡ ∂
∂x .

Therefore the gradient operator may be written as ∇ = (∂x, ∂y, ∂z) in Cartesian coordi-
nates. The Laplace operator in the same coordinate system is written as ∇2 ≡ ∇ · ∇ =
∂2x + ∂2y + ∂2z .

Our choice of basis for the Hilbert space of 2×2 Hermitian matrices is the Pauli matrices.
These will be used throughout the thesis for the spin space and are defined as

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The same matrices in Nambu space are denoted by τi to separate them. Hence, they act
upon a different Hilbert space but are defined equally,

τ0 =

(
1 0
0 1

)
, τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
.

The Pauli matrices in spin space are often collected into a Cartesian vector called the
Pauli vector, written as σ = (σ1, σ2, σ3), using the same notation as before. We can use
the two sets of bases to write a generalization in Nambu⊗spin space as

τ̂0 = τ0 ⊗ σ0,
τ̂1 = τ1 ⊗ σ0,
τ̂2 = τ2 ⊗ σ0,
τ̂3 = τ3 ⊗ σ0,

vii



Complex conjugation will be written with an asterisk ∗ as (a+ib)∗ = a−ib, and Hermitian
conjugation, which is the combination of transposing and complex conjugating, will be
written with a dagger †. Commutation relations will be written using the commutator
[·, ·] and anticommutator {·, ·}. For two matrices A and B, they are defined as

[A,B] = AB −BA, {A,B} = AB +BA.

If either is equal to zero, A and B are said to commute and anti-commute, respectively.

Throughout the thesis, the convention of natural units will be used. This convention
assigns unity to multiple natural constants,

c = ϵ0 = µ0 = ℏ = kB = 1.

Here, c is the speed of light, ϵ0 the vacuum permittivity, µ0 is the permeability and kB is
the Boltzmann constant.
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Chapter 1

Introduction

In this thesis, we will explore different methods to manipulate the spins and supercon-
ducting correlations in superconducting systems. We will mainly analyze the use of fer-
romagnets and geometrical curvature since these are promising ways to achieve this goal.
In this chapter, we will provide an overview of superconducting spintronics and proximity
systems and present recent research results on the use of curvature in such systems.

1.1 Superconducting spintronics

Spintronics has a broad definition, with various subjects that fall under it. It is the study
of electron spin in condensed matter physics and how to utilize this intrinsic property for
data processing and storage. In comparison, the electron’s charge and transport are the ba-
sis of modern electronics. The spintronics research field aims to provide high-density logic
and memory electronic devices with high-speed performance and low power consumption
[1]. Therefore, making devices spin-dependent could change the trajectory of numerous
global issues associated with the electrification of society [2]. One area of research concen-
trates on manipulating and controlling single localized spins at a single atomic site within
a metal [3]. This can be realized in quantum dots, which are a viable option for creating
spin qubits, ideal for quantum computing. These could potentially replace storage devices
utilized in electronics currently [4–6]. Another research area focuses on the transport of
spins. The energy efficiency of transport can be enhanced by utilizing magnetic materials
or superconductors with long spin lifetimes. The currents flowing in a superconductor have
zero electric resistance and are dissipationless. Therefore, implementing superconductors
is one of the main propositions for creating low-dissipation spintronics that could change
the outlook on the energy requirement of electronics [7–9].

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes when he cooled
down mercury below its critical temperature Tc [10]. He discovered that the electric re-
sistance dropped abruptly to zero below this critical temperature. This phenomenon is
not a unique property of mercury but of most metals with conducting electrons. H. K.
Onnes’s find was the first encounter with superconductivity the world ever had, leading to
his Nobel Prize in 1913. Since quantum mechanics was yet to be invented, a theoretical
description of this phenomenon took a long time to develop. One of the theories is known
as the BSC-theory or Bardeen–Cooper–Schrieffer theory, named after its inventors [11],
which won them the Nobel Prize in 1972. BCS theory is one of the most successful theories
for describing conventional superconductors [12]. Other classes of superconductivity are
not well described by the BCS theory.
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2 Introduction

Figure 1.1: Qualitative drawing of the orbital part of the superconducting order parameter
with s- and p-wave orbital symmetry. The two lobes (red/blue) in the p-wave orbitals have
opposite signs (±).

Before a microscopic theory was developed, there were several phenomenological theo-
ries, for instance, London theory [13] and Ginzburg–Landau theory [14]. The BCS theory
describes what is known as conventional superconductivity, where the pairing between
electrons is isotropic. However, other anisotropic attractive interactions between electrons
exist that might create superconducting correlations [15]. To capture these unconven-
tional pairings, one has to use phenomenological theories or extensions of BCS theory
[16]. Of high interest are superconductors with a p-wave orbital symmetry [17], illustrated
in fig. 1.1. These are spin triplets and are of high interest because of their edge states
[18]. The edge states are created at interfaces of unconventional superconductors where
reflections cause a sign change of the order parameter [19, 20]. It makes them a key
ingredient in the search for Majorana fermions in condensed matter systems [21–24]. In
this thesis, we will model the superconductors we are analyzing as conventional, with an
s-wave orbital symmetry. However, we will show that p-wave pairings can arise. We will
also show that we can control where these correlations appear within a wire.

Superconductivity has two main features that define it, the first being the aforementioned
resistanceless flow of electrons. The abrupt change in resistivity is illustrated in fig. 1.2a,
where the sudden drop defines the critical temperature of the superconductor. Here, the
material transitions into the superconducting state, and superconducting correlations ap-
pear. However, this is not an intrinsic property of the material but can depend on many
factors, such as the external magnetic field or the amount of impurities.

Figure 1.2: (a) Graph illustrating how the resistivity in normal and superconducting
metals change as a function of the temperature and (b) the Meissner effect. These two
attributes define a superconductor.
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The second feature defining a superconductor is the Meissner effect. It was first discovered
in 1933 by Walther Meissner and Robert Ochsenfeld [25]. They found that a supercon-
ductor acts as a perfect paramagnet when applying an external magnetic field below its
critical temperature. If a type-I superconductor is brought into an external magnetic field,
it creates a spontaneous dissipationless electric current that prevents the magnetic field
from entering. It can be thought of as analogous to Lenz’s law, but where the induced
currents do not disappear because of their resistanceless flow. A qualitative illustration is
given in fig. 1.2b. In type-I superconductors, the superconductivity vanishes for external
magnetic fields stronger than a critical strength Bc. However, there exist superconductors
that can let magnetic field lines pass through them without superconductivity breaking
down. These are known as type-II superconductors [26].

When a conventional superconductor enters the superconducting phase, Cooper pairs are
formed. These are electrons on opposite sides of the Fermi sphere with opposite spin.
Thus, they are in a singlet state where the electrons move in opposite directions. These
pairs form through an attractive interaction between the electrons, often mediated by
phonons. A qualitative picture has been given in fig. 1.3. The illustration shows a blue
electron moving through a lattice of red positively charged ions. When in proximity to the
ions, the electron attracts them slightly, creating a positively charged tail trailing behind
it. Another electron, with opposite momentum, will be attracted to the net positively
charged trail and thus form a Cooper pair with the first electron.

Figure 1.3: Illustration of how Cooper pairs might form in a positively charged ion lattice
(red). The negatively charged electron (blue) traveling to the left leaves a positively
charged trail, which attracts the electron traveling to the right.

The BCS theory builds upon the idea that the Cooper pairs form due to an attractive
potential Vkk′ . The BCS Hamiltonian can be written as

H =
∑
k,σ

(ϵk − µ) c†k,σck,σ +
∑
kk′

Vkk′ c†k↑c
†
−k↓c−k′↓ck′↑, (1.1)

which does not yet assume anything about the potential except that it is attractive in
a thin shell around the Fermi surface. The operators ck,σ and c†k,σ are annihilation and
creation operators, respectively. They annihilate or create an electron with momentum
k and spin σ. The operators c−k′↓ck′↑ may have nonzero expectation values bk′ in the
superconducting state [27]. Therefore, we express the product as

c−k′↓ck′↑ = bk′ +
(
c−k′↓ck′↑ − bk′

)
, (1.2)
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where the parathesis describes small fluctuations around the average. Inserting eq. (1.2)
and its Hermitian conjugate in eq. (1.1), lets us introduce the superconducting order
parameter, denoted ∆k, which is only nonzero when below the critical temperature Tc. It
is defined as

∆k ≡ −
∑
k′

Vkk′ bk′ = −
∑
k′

Vkk′⟨c−k′↓ck′↑⟩. (1.3)

The brackets ⟨· · · ⟩ denote a statistical average, in this expression, applied to the annihi-
lation operators. This order parameter also manifests itself in the excitation spectrum of
the system, creating an energy gap |∆k|. This contrasts normal metals, which can excite
new states with an arbitrarily small amount of energy. For an electrical conductor, this
can be a bad thing. Even at low temperatures, the thermal fluctuations might be able
to excite and thus scatter the current-carrying electrons. Conversely, a superconductor
has a minimum energy |∆k| required to create excitations. Thus, the supercurrents are
protected from experiencing resistive scattering in the superconducting state.

1.2 Ferromagnetism

A ferromagnet is a material that exhibits spontaneous alignment of internal magnetic
moments without applying an external field. Metals with this property were found long
before the invention of quantum mechanics, and the first phenomenological theory was
published in 1907 by Pierre Weiss [28]. In 1928, Werner Heisenberg, a prominent figure
in quantum mechanics, published the first comprehensive quantum mechanical approach
to ferromagnetism [29]. His model is still widely used and can be summarized by the
following Hamiltonian

H = −
∑
⟨ij⟩

JijSi · Sj . (1.4)

The bracket below the summation denotes the sum over all lattice sites i and its nearest
neighbors j. The vectors Si are the spin operators defined as Si ≡ 1

2σi. The factor Si ·Sj

is called the exchange interaction, and Jij is the exchange constant. If we assume Jij = J ,
ferromagnetism is described by J > 0. From the Hamiltonian in eq. (1.4), it is clear that
the system can minimize its energy by orienting all spins in the same direction since the
exchange interaction is positive for parallel spins. Cooper pairs have a spin structure, so
exciting phenomena can occur when a superconductor is placed in electrical contact with
a ferromagnet. As electrons from the superconductor leak into the ferromagnet, the spin
structure of the pair can change, which can be utilized in spintronic devices.

1.3 Proximity effect and Andreev reflections

This section will explore the effects of placing a superconductor in electrical contact with a
non-superconducting metal. De Gennes investigated the effects in superconductor-normal
metal (S-N) structures as early as the beginning of the 1960s [30]. It was found that the
superconducting Cooper pairs would leak into the metal, changing the properties of it.
This is known as the proximity effect. Conversely, the superconductor’s properties also
change, which is called the inverse proximity effect. Researchers discovered that the su-
perconductor’s critical temperature in an S-N system decreases as the N-layer’s thickness
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increases. This effect suggests that some Cooper pairs break down because one of the
electrons enters the normal metal, where the other electron in the pair no longer attracts
it. The study of superconductor-ferromagnet (S-F) structures displays some of the same
effects. Whereas the singlet states (↑↓ − ↑↓) decay exponentially in a normal metal, they
will oscillate into the ferromagnet, in addition to getting a triplet state (↑↓ + ↑↓) [9]. This
decay and oscillation are illustrated in fig. 1.4. This is known as spin-mixing, where the
spin axis changes, and triplet correlations are generated. The exchange field lifts the spin
degeneracy, and the Cooper pairs gain a center of mass momentum [31]. The momentum
is present as a position-dependent phase, and that is why the singlet and triplets oscillate
out of phase compared to each other. The oscillation is enveloped by an exponential decay,
and the penetration length of the Cooper pair amplitude depends on how strongly the fer-
romagnet is spin-polarized. For strong exchange fields, the superconducting correlations
decay rapidly.

Figure 1.4: Diffusion of superconducting pair amplitude into a normal metal and a weakly
spin-polarized ferromagnet. Redrawn from M. Eschrig, Physics Today (2011) [9].

Electrons may travel from the normal metal into the superconductor. What happens at
the interface between the materials is described by Andreev reflections. These provide the
conversion of electrical currents in normal metals into dissipationless supercurrents [32].
The process can be viewed as an electron traveling toward the S-N interface. If a hole is
reflected in the metal, the electron might travel into the superconductor, forming a Cooper
pair with another electron. Thus, Andreev reflections are a two electron process. It makes
them a central part of discussing interface effects in superconducting heterostructures.

The next natural step in this discussion is to ask what happens when we sandwich a nor-
mal metal between two superconductors in an S-N-S junction. In 1962, Brian Josephson
predicted that supercurrents could pass through a non-superconducting material, causing
a potential phase difference between the superconducting wavefunctions on either side of
the junction [33]. The process can be understood as the pair amplitude moving from one
side and diffusing into the metal. The electron energy levels in the N-layer have phase-
dependent Andreev-bound states that can carry a supercurrent. They are confined to
the normal metal since they have energies below the superconducting gap. To determine
the overall supercurrent, the contributions of the current-carrying states must be added
up. These states are dependent on the phase difference ϕ between the superconductors.
Therefore, if we consider a S-F-S junction, it is possible to introduce an overall phase shift
π to the superconducting wavefunction. The amplitude oscillates in magnitude, and if the
thickness of the F-layer is adjusted to match the peak of this oscillation, it can display
a 0 − π transition. The superconducting wavefunction for such a system is illustrated in
fig. 1.5.
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Figure 1.5: Qualitative illustration of superconducting pair amplitude in a 0 and π Joseph-
son junction in a weakly polarized S-F-S structure. Redrawn from M. Eschrig, Physics
Today (2011) [9].

The proximity effect, Andreev’s reflections, and Josephson’s junctions have been examined
above, but these consider only singlet superconductors. It is possible to make long-ranged
spin-polarized triplets that propagate further in a magnet than the aforementioned spin
singlets and carry a net spin. Excitations can be created through a process called spin
singlet-triplet mixing. It builds upon the rotational asymmetry of triplet pairs. Whereas
the singlet state (↑↓ − ↑↓) is invariant regardless of the quantization direction, the triplet
state (↑↓ + ↑↓) in the y-basis transforms into i(↑↑ + ↓↓) in the z-basis [9]. Changing
basis could, in practice, be done in an S-F junction if the interface magnetization is in
another direction than the bulk of the ferromagnet. It is also possible to achieve this in
materials with an intrinsic inhomogeneous magnetization. Namely, a class of materials
with conical-shaped spin polarization exists, such as the ferromagnet holmium [34].

1.4 Curved systems

Superconductors and superconducting junctions are very active research fields that hold
promise for spintronic device implementation. In the last decade, the study of geometri-
cally curved systems has gained more interest [35–41]. This includes the study of curved
superconducting wires with an intrinsic p-wave gap and superconducting sheets in ex-
ternal magnetic fields [42–47]. Z.-J. Ying et al. have analyzed how the squeezing of an
s-wave superconducting ring with intrinsic Rashba spin-orbit coupling affected the s-wave
order parameter magnitude but not the p-wave. Because of the possibilities of p-wave
superconductivity mentioned above, we will investigate if it is possible to induce p-wave
correlations by curving a superconductor with an intrinsic s-wave order parameter. Inves-
tigating how superconductors respond to curvature can also be useful in the nano-SQUID
design discussion [48]. There have been made nano-SQUIDs which were able to measure
the magnetic moment of single electron spins [49]. These were made with curved super-
conductors, namely superconductors with a circular geometry. Curved S-N-S and S-F-S
junctions have also been studied [50–56]. However, what these studies have in common,
is that the curvature is introduced in the weak link only. Thus, the second topic in this
thesis is S-N-S junctions with curvature in all three parts of the junction: curvature in the
superconductors and the normal metal.
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This thesis consists of two main parts: the derivation of the relevant theories and the
results. To analyze the systems we are interested in, we will use two different approaches:
the quasiclassical theory and the Bogoliubov-de Gennes method. Both methods have
been used to study curvature effects in superconducting systems. In the quasiclassical
framework, we derive the equations for studying curvature effects in the low impurity limit;
in section 6.4 we express the Eilenberger in curvilinear coordinates, which is novel work.
Using the Bogoliubov-de Gennes method, we analyze strain effects caused by geometric
curvature. This is new in that only intrinsic spin-orbit coupling in curved superconductors
and junctions has been studied previously, and not the effects of the strain-induced spin-
orbit interaction.
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Chapter 2

Fundamental concepts

Before presenting the derivation of the relevant equations, we review some important
concepts. The relations and intuition built in this chapter will be essential for the rest of
the thesis.

2.1 Second quantization

In the first quantization, operators represent physical properties. Take momentum, for
instance, p = −i∇, such that its eigenvalue is the physical momentum. In second quanti-
zation, operators are used to express both physical properties and particles themselves. In
the occupation number representation, a particle with quantum numbers λ = (λ1, λ2, . . .)

is expressed as the creation operator ĉ†λ acting upon the vacuum state. Thus, the state

with a particle with quantum numbers λ is written as |1λ⟩ = ĉ†λ |0λ⟩. Similarly, it is pos-
sible to remove a particle from this state with the annihilation operator, ĉλ |1λ⟩ = |0λ⟩.
A many-particle state may be written as |n0, n1, . . .⟩ = |n0⟩ |n1⟩ · · · , where ni denotes the
occupation number of a particle with quantum numbers λi. If the creation and annihila-
tion operators ĉ†λ and ĉλ are fermions, they should obey ĉ†λ |1λ⟩ = 0 and ĉλ |0λ⟩ = 0. The
fermionic anti-commutation relations can encapsulate these properties,

{ĉλi
, ĉλj
} = 0, {ĉ†λi

, ĉ†λj
} = 0, {ĉ†λi

, ĉλj
} = δλi,λj

, (2.1)

where δi,j is the Kronecker delta. Next, only considering electrons, the operators can
be expressed as field operators using the position-spin basis |r, σ⟩. The creation and
annihilation operators take the form

ψ̂σ(r) =
∑
λi

⟨r|λi⟩ ĉλi
=
∑
i

ϕi(r)ĉi, (2.2)

ψ̂†
σ(r) =

∑
λi

⟨λi|r⟩ ĉ†λi
=
∑
i

ϕ∗i (r)ĉ
†
i (2.3)

in this basis, respectively. Physically, these can be understood as destroying an electron
ψ̂σ(r) with spin σ at position r, or creating one ψ̂†

σ(r) at these coordinates. Also, these
obey the anti-commutation relations from before, namely

{ψ̂σ(r), ψ̂σ′(r′)} = 0, (2.4)

{ψ̂†
σ(r), ψ̂

†
σ′(r

′)} = 0, (2.5)

{ψ̂†
σ(r), ψ̂σ′(r′)} = δσ,σ′δ(r − r′). (2.6)

Thus the many-particle state in Fock space can be written as

|r1, σ1; r2, σ2; . . . ; rn, σn⟩ = ψ̂†
σ1
(r1)ψ̂

†
σn
(rn) · · · ψ̂†

σn
(rn) |0⟩ . (2.7)

9
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2.2 Averages

In this thesis, the average ⟨· · · ⟩ will represent a thermal and quantum average in the system
at hand. This will depend on the number of particles in the system, which in turn depends
on the temperature in the system. We denote the inverse temperature as β = 1/kBT . In
the grand canonical ensemble, the number of particles may vary. Therefore, the chemical
potential µ, which in some sense determines the particle number, is introduced. The
density matrix of the system is

ρ =
1

Z
exp [−β(H− µN)] , (2.8)

where Z is the partition function. It is defined as

Z = Tr exp [−β(H− µN)] . (2.9)

The average of an arbitrary operator in the system O may be written in terms of the two
above definitions, which gives

⟨O⟩ = Tr(ρO). (2.10)

The trace can be expanded with a basis set spanned by |ϕn⟩, which are normalized eigen-
states of the system Hamiltonian H with eigenvalues En. The average above is therefore
written as

⟨O⟩ = 1

Z

∑
n

⟨ϕn| O |ϕn⟩ exp [−β(En − µNn)] , (2.11)

where Nn is the number of particles in state |ϕn⟩.

2.3 Tensor notation

We define a coordinate system in two dimensions with basis vectors e1 and e2 to keep it
intuitive. If we want to do a basis transformation, there exists a matrix Λ with elements
λµν which allows us to write

e′1 = λ11e1 + λ12e2 , (2.12)

e′2 = λ21e1 + λ22e2 . (2.13)

The elements λµν can be interpreted as the projection of e′µ onto eν . For a vector denoted
v = v1e1 + v2e2, we can write down a similar transformation using Λ,

v′µ =
(
Λ−1

)T
µν
vν . (2.14)

Why Λ is inversed and transposed has a simple intuitive explanation. Consider that we
only scale one of the basis vectors, e′µ = eµ/a. Therefore, the vector component µ must

scale as v′
µ = avµ in the new coordinate system. The element

(
Λ−1

)T
µν

is therefore the

projection of eµ onto e′ν . In transformations between Cartesian coordinate systems de-

scribed by orthonormal basis vectors
(
Λ−1

)T
= Λ. Therefore, ordinary vectors and basis

vectors are transformed in the same way. This means that gradients of scalar fields also
transform as ordinary vectors since these transform as the basis vectors [57]. However,
this thesis focuses on transformations in which this is not true. Therefore, we will refer to
such gradients as covariant vectors for the remainder of this thesis.
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To explore how these covariant vectors behave in greater detail, we consider an n-dimensional
manifold with coordinates x1, x2, . . . , xn. We define a homogeneous linear coordinate
transformation

x′µ = Aµ
ν xν . (2.15)

We also define the gradient of the scalar function f(x1, x2, . . . , xn) as

(∇f)µ =
∂f

∂xµ
= wµ . (2.16)

If we use the chain rule for the covariant vector in the primed coordinate system, we find
that

w′
ν =

∂f

∂x′ν

=
∂x1
∂x′ν

∂f

∂x1
+
∂x2
∂x′ν

∂f

∂x2
+ · · ·+ ∂xn

∂x′ν

∂f

∂xn

=
∂xµ
∂x′ν

∂f

∂xµ

=
∂xµ
∂x′ν

wν

=
(
A−1

)ν
µ
wν . (2.17)

This is the transformation rule of a covariant vector. Note that we have used the relation
(BT )µν = B µ

ν . In addition to the covariant vector, it is useful to introduce the contravari-
ant vector. We denote this with a superscript, and it obeys the following transformation
rule,

v′µ = Aµ
ν v

ν =
∂x′µ
∂xν

vν . (2.18)

With these, we wish to define an invariant inner product. Obtaining an expression for the
magnitude of inner products independent of the coordinate system is very useful. Using
both the contravariant vector xµ and the covariant vector yµ, we write the inner product
in the primed frame as

s′ = x′µ y′µ = Aµ
α x

α(A−1)βµ yβ = δβα x
α yβ = s , (2.19)

where we used the relation ∂x′µ/∂x
′
ν = δµν . Clearly, this inner product is invariant of

the coordinate system. However, the same will not be true for the product between two
contravariant vectors. For that reason, we define a new inner product, namely

s′ = e′µ e
′
ν x

′µ y′ν

= (A−1)µα eµ (A−1)ν β eν A
α
ρ x

ρ Aβ
σ y

σ

= δµρ δ
ν
σeµ eν x

ρ yσ

= eµ eν x
µ yν

= s . (2.20)

We define a new quantity Gµν = eµ eν , which has the property of raising and lowering
indices. Therefore, we can write the invariant inner product in multiple ways

s = xµ yµ = Gµνxµ yν = Gµνxν yµ . (2.21)
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The quantity Gµν is called the metric tensor. Tensors are mathematical objects that obey
specific transformation criteria. To begin with, we introduce the rank of a tensor. It
is the number of indices needed to describe the object fully. A rank-0 tensor would be
represented by a scalar, a rank-1 tensor by a vector, and a rank-2 tensor by a matrix.
Note, however, that matrices can represent all rank-2 tensors, but not all matrices are
rank-2 tensors. Assume we have a rank-(n+m) tensor t, with n contravariant indices and
m covariant ones. It will transform as

t′α1...αn
β1...βm

= Aα1
µ1
· · ·Aαn

µn
(A−1)ν1β1

· · · (A−1)νmβm
tµ1...µn

ν1...νm . (2.22)

Now, we have a framework to deal with contravariant and covariant vectors and coordinate
transformations. However, we still need an important ingredient for analyzing dynamic
systems. The derivatives of contravariant and covariant vectors do not transform as we
wish [58]. When we consider a curved surface or manifold, the concept of a straight line
becomes less straightforward. In such cases, we need a way to generalize the notion of
differentiation to account for this curvature. Therefore, we have to introduce a new deriva-
tive that transforms correctly. Writing the ordinary coordinate derivative as ∂µ = ∂/∂xµ,
we define the covariant derivative of a contravariant vector field vµ as

Dµv
ν = ∂µv

ν + Γν
µλv

λ , (2.23)

where we have introduced a new quantity Γν
µλ called a Chrsitoffel symbol. Note that this

symbol does not transform like a tensor [57]. It contains all the information about the
curvature of the coordinate system and goes to zero in a coordinate system with straight
coordinates. In curved coordinate systems, the Christoffel symbols capture how vectors
change as we move along curves on the manifold. They represent the connection between
different tangent spaces at nearby points on the manifold. The Christoffel symbols are
also present in the definition of the covariant derivative of a covariant vector as

Dµwν = ∂µvν − Γλ
µνvν . (2.24)

Since the Christoffel symbols contain information about the curvature, it is closely related
to the metric tensor Gµν and Gµν . We can write it as

Γλ
µν =

1

2
Gλσ

(
∂Gσν
∂xµ

+
∂Gσµ
∂xν

− ∂Gµν
∂xσ

)
. (2.25)

The same Christoffel symbols are also present when considering derivatives of tensors.
Therefore, for completeness sake, we write the covariant derivative of a tensor tµν and tµν ,

Dµt
νλ = ∂µt

νλ + Γν
µσt

σλ + Γλ
µσt

νσ , (2.26)

Dµt
ν
λ = ∂µt

ν
λ + Γν

µσt
σ
λ − Γσ

µλt
ν
σ . (2.27)

We have now completed the review of tensor notation. The concepts and relationships
we have covered will be of great use later in the thesis. The metric tensor will capture
all the curvature, while the covariant and contravariant vectors and derivatives will be
indispensable when we introduce the curvilinear coordinate system. Since we will be an-
alyzing geometrically curved systems, the Christoffel symbols will play a crucial role in
maintaining the invariance of the derivatives.
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2.4 Green’s functions

The treatment of quantum many-body systems using Green’s functions was primarily de-
veloped during the 1950s and early 1960s [59]. The method was, however, first introduced
by the mathematician George Green in the 1820s [60, 61]. A general overview is given
before exploring the intricacies of this formulation in condensed matter physics. In math-
ematics, Green’s functions can be viewed as the inverse of a differential operator. It is
a tool to find the solution of a differential equation even if the source term changes. To
illustrate this, consider the differential equation with the linear operator L(r), source term
f(r), and desired solution u(r) written as

L u(r) = f(r). (2.28)

The Green’s function is defined as the impulse response to the operator L(r). In mathe-
matical terms, this can be expressed as

L G(r, s) = δ(r − s). (2.29)

From this form of the Green’s function, the solution to eq. (2.28) can be written as

u(r) =

∫
ds G(r, s)f(s). (2.30)

From the above equations, it is evident that if eq. (2.29) is solved, eq. (2.28) does not need
to be resolved for every f(r). Thus, the Green’s function provides a method for solving the
problem for any source term. The Green’s function has a different meaning in physics than
in mathematics. The function G(r, t|r′, t′) can be interpreted as the probability amplitude
for a particle located at a point r′ at time t′ to be found at r at another time t. Because
of this, it is often referred to as a propagator. The propagation can also be seen from a
short analysis of the general Schrödinger equation,

i∂tψ(r, t) = H(r)ψ(r, t). (2.31)

The Hamiltonian H has been assumed time-independent for simplicity. Now, for each set
of initital system states ψ(r, t = 0) ≡ ψ0(r), the Schrödinger equation must be resolved
to find ψ(r). Next, introducing the time evolution operator U(t − t′), any state can be
written as

|ψ(t)⟩ = exp
[
−iH(t− t′)

] ∣∣ψ(t′)〉 . (2.32)

Using the completeness relation of the position basis
∫
dr |r⟩ ⟨r| = 1 and the projection

ψ(r, t) ≡ ⟨r|ψ(t)⟩, the wavefunction may be written as

ψ(r, t) = ⟨r| exp
[
−iH(r) (t− t′)

] ∫
dr′
∣∣r′〉 〈r′∣∣ψ(t′)〉 (2.33)

=

∫
dr′G(r, t|r′, t′)ψ0(r

′, t′),

where the Green’s function has been defined as

G(r, t|r′, t′) ≡ ⟨r|U(t− t′)
∣∣r′〉 . (2.34)

As defined above, it is clear that G propagates the particle through space and time.
There are numerous Green’s functions in condensed matter physics. Although not all are
operator inverses, they describe states’ propagation and evolution. Because of this, they
are invaluable to the study of systems central to the development of spintronics.
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Chapter 3

Curvature

To discuss curvature effects in condensed matter systems, we introduce the appropriate
framework. We will develop a formulation where coordinates follow the space curve to
which the superconducting quasiparticles are constricted. To ensure that all quantities
transform correctly, we develop the general formulation, such as the metric tensor and the
Christoffel symbols. The theories regarding coordinate transformations and curvature are
well studied [35, 36, 57, 62, 63], so this chapter collects and presents the relevant ones to
this thesis. To conclude this chapter, we present the space curve parameterizations that
will be used to analyze different systems.

3.1 Curviliear coordinates

This section will build upon the tensor notation introduced in section 2.3 for curved
coordinate systems. This guarantees that physical quantities and their derivatives remain
unaffected by the choice of coordinate system used to represent them. Our choice is
curvilinear coordinates in the Frenet-Serret frame.

3.1.1 Curved two-dimensional system

We will use a new set of orthogonal unit vectors which follow the curved surface to describe
our geometries. We denote them T̂ (s) for the tangential direction, N̂ (s) for the normal,
and B̂(s) for the binormal direction. These have been illustrated in fig. 3.1. We assume
that the curvature is along the tangential axis in a 2D plane and that the system has
no torsion. Therefore, we can define a vector r(s) parametrized by the arclength s along
the tangential direction. The 3D space in the vicinity of the stress-free surface R is
parametrized as

R(s, n, b) = r(s) + bB̂(s) + nN̂ (s). (3.1)

In the Frenet-Serret frame, the three unit vectors are connected and can be summarized
by the following equation

∂

∂s

N̂ (s)

T̂ (s)
B̂(s)

 =

 0 −κ(s) 0
κ(s) 0 0
0 0 0

N̂ (s)

T̂ (s)
B̂(s)

 , (3.2)

where κ(s) is the local curvature. We can also rewrite the above equation as ∂suµ = Fµνuν ,
where Fµν is the Frenet tensor [63]. To express the metric tensor, we need to find the
basis vectors es,n,b, where s, n, b are for the tangential, normal, and binormal components,

15
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respectively. We define the basis vectors as the derivatives of R(s, n, b). Using the Frenet-
Serret frame equations, we can express them as

es = ∂sR(s, n, b) = [1− n κ(s)] T̂ (s) , (3.3)

en = ∂nR(s, n, b) = N̂ (s) , (3.4)

eb = ∂bR(s, n, b) = B̂(s), (3.5)

where we have used the relation ∂sr(s) = T̂ (s). We can use the basis vectors to define
the metric tensor and its inverse. It is defined as Gµν = eµ · eν , where µ, ν run over the
indices s, n, b. We find that

Gµν =

η(s, n)2 0 0
0 1 0
0 0 1

 , Gµν =

1 0 0
0 1/η(s, n)2 0
0 0 1/η(s, n)2

 , (3.6)

where η(s, n) = 1 − nκ(s). We can find Christoffel symbols for the covariant derivative
operator with the metric tensor in place. Since the metric tensor is diagonal, we can set
λ = σ in the definition found in eq. (2.25). We find that

Γλ
µν =

1

2
Gλλ

(
∂Gλν
∂xµ

+
∂Gλµ
∂xν

− ∂Gµν
∂xλ

)
. (3.7)

It can be shown [64] that there are only four non-zero Christoffel symbols for this system.
They are as follows

Γs
ss =

1

η(s, n)
∂sη(s, n), (3.8)

Γn
ss = −

1

η(s, n)
∂nη(s, n), (3.9)

Γs
ns = Γs

sn =
1

η(s, n)
∂nη(s, n). (3.10)

3.1.2 Including torsion

In the last subsection, we derived the Christoffel symbols for a coordinate system with
curvilinear coordinates for a curved two-dimensional plane. In this subsection, we will
also include torsion, in mathematical terms ∂sB̂(s) ̸= 0. The approach is the same as
previously, starting from the space parametrization in eq. (3.1). Here, r(s) has a shape
which induces torsion. Respectively, the tangential, normal, and binormal vectors can be
written as

T̂ (s) = ∂sr(s)

|∂sr(s)|
, (3.11)

N̂ (s) =
∂sT̂ (s)
|∂sT̂ (s)|

, (3.12)

B̂(s) = T̂ (s)× N̂ (s). (3.13)

In the Frenet-Serret frame, their relation can again be summarized in a matrix equation
∂suµ = Fµνuν . However, the Frenet tensor has a somewhat different structure. Including
torsion, it can be written as

Fµν =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 , (3.14)
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where κ(s) = |∂sT̂ (s)| and τ(s) = |∂sB̂(s)|. These describe the curvature and torsion,
respectively. Next, we introduce covariant basis vectors, which are defined as

es ≡ ∂sR(s, n, b) = η(s, n) T̂ (s)− bτ(s) N̂ (s) + nτ(s) B̂(s), (3.15)

en ≡ ∂nR(s, n, b) = N̂ (s), (3.16)

eb ≡ ∂bR(s, n, b) = B̂(s). (3.17)

Note that the above basis vectors are not necessarily normalized to one, and the normalized
unit basis vectors can be obtained by êµ = eµ/

√
Gµµ, where the metric tensor has the same

definition as before Gµν = eµ · eν . We can expect that the metric tensor is not diagonal
since the covariant basis vectors are not orthogonal. Writing out the metric tensor and its
inverse, we get

Gµν =

η(s, n)2 + ζ(s, n, b)2 −bτ(s) nτ(s)
−bτ(s) 1 0
nτ(s) 0 1

 , (3.18)

Gµν =
1

η(s, n)2

 1 bτ(s) −nτ(s)
bτ(s) η(s, n)2 + b2τ(s)2 −nbτ(s)2
−nτ(s) −nbτ(s)2 η(s, n)2 + n2τ(s)2

 , (3.19)

where ζ(s, n, b) = τ(s)
√
n2 + b2. There is an interesting point to be made here [63]: Since

Gµν is symmetric and invariant under the interchange µ↔ ν, the Christoffel symbols Γλ
µν

will be as well. We have

Γs
µν =

1

η(s, n)

∂sη(s, n) + bτ(s)κ(s) −κ(s) 0
−κ(s) 0 0

0 0 0

 , (3.20)

Γn
µν =

1

η(s, n)


[
−η(s, n)2∂nη(s, n) + b∂s (η(s, n)τ(s)) −bτ(s)κ(s) −τ(s)

+κ(s)ζ(s, n, b)2 − nτ(s)2
]

−bτ(s)κ(s) 0 0
−τ(s) 0 0

 , (3.21)

Γb
µν =

1

η(s, n)

nτ(s)∂sη(s, n)− nη(s, n)∂sτ(s)− bτ(s)2 τ(s) 0
τ(s) 0 0
0 0 0

 . (3.22)

The derivation of the first Christoffel symbol in eq. (3.20) is derived in appendix A. The
derivations of the remaining two are identical. It is clear from eqs. (3.20) to (3.22) that
all three symbols are symmetric under µ↔ ν as stated above. This concludes the section
describing the coordinate transformations that will become useful in describing curved
systems. Next, we will consider the strain effects and consequences of curving a material.

3.2 Curvature and spin-orbit interactions

This section will focus on spin-orbit coupling in condensed matter systems. We will con-
sider intrinsic spin-orbit coupling from symmetry breaking in the material. We will also
see how curvature and strain alter the crystal structure and induce an effective spin-orbit
coupling. Lastly, based on the system’s dimensionality, we derive specific expressions for
the interaction. However, these will also depend on the geometry or parametrization. The
next section will present a few geometries used in the results.
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Before seeing how curvature can induce an effective spin-orbit coupling, we give a general
description of how a moving particle in an electric field can experience this interaction.
We denote the velocity of this particle as v and the electric field as E. The coupling
becomes clear when we go to the electron’s rest frame. Here, it experiences a magnetic
field B = −v×E. For an electron, the magnetic moment µe couples to the magnetic field
B through the Zeeman interaction. The Hamiltonian of the interaction can be written as

Hsoc = −µe ·B =
eg

2m
S · (v ×E), (3.23)

where S is the spin vector, g is the g-factor, e is the electron charge, and m the electron
mass. Rewriting using the Pauli vector σ = 2S, we get

Hsoc =
eg

4m2
σ · (p×E). (3.24)

The above is a quite general expression, so next, we consider an example. If we take the
electric field to be in the z-direction E = Eêz, it creates an asymmetry at the surface
[65]. The coupling arising due to the lack of surface inversion symmetry is called Rashba
spin-orbit coupling. It can be summarized in

HRsoc =
α

m
(σxpy − σypx), (3.25)

where α = egE
4m is called the Rashba coefficient. Structures that break bulk inversion

symmetry exhibit Dresselhaus spin-orbit coupling [66], and materials might display an
intrinsic combination of the two types [67].

Figure 3.1: Cross section of a portion of the bent nanostructure with n as the coordinate
in the normal direction and s as the arc length parameter. The curvature effect leads to
regions under tensile strain for n > 0 and compressive for n < 0. The radius of curvature
is R = 1/κ, the length of the portion at n is L(n), and θ is the curvature angle. Inspired
by figure 2 in ref. [36], figure 6 in ref. [62] and figure 4.1 in ref. [63].

3.2.1 Strain-induced spin-orbit coupling

A curved wire may experience no strain and still exhibit curvature effects. However,
curvature will cause strain in systems when the curvature is high enough to alter the atomic
structure. This section will present how strain can be a source of spin-orbit coupling,
while other curvature effects will be revisited. To see where the strain-induced spin-orbit
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coupling comes from, we consider the cross-section of a curved nanostructure as shown
in fig. 3.1. The deformation due to curvature results in a variable strain of the material.
It should induce a shift in the conduction band energies, predicted by linear deformation
potential theory [68–70]. We will now see exactly how this prediction comes about by
considering the strain distribution in the material. To begin with, we say that there is
no in-plane strain, so ϵbb = 0. We assume the nanostructure has a larger characteristic
dimension along the binormal direction than the remaining coordinates, justifying the
previous condition. The strain is tensile for n > 0 and compressive for n < 0. The strain
along the bent direction is defined as

ϵss =
L(n)− L(0)

L(0)
, (3.26)

where L(n) is the length of the bent material at a distance n from the center of curvature,
and L(0) is the length of the unstrained material. Using the radius R = 1/κ(s), we can
write

ϵss =
(R+ n)θ −Rθ

Rθ
= κ(s)n. (3.27)

The deformation of the material can be assumed to create a potential that is linear in
strain. It stems from the shift in band energies, attracting the conducting electrons toward
the tensile regions of the material [36]. This approximation is valid when the thickness of
the curved material is much smaller than the radius of curvature. We write the potential
as

V (s, n) = Λκ(s)n, (3.28)

where Λ is the deformation potential constant. We can write the electric field due to the
curvature potential as

E =−∇V = − êλ√Gλλ
∂λ(Λκ(s)n) = −

Λn(∂sκ(s))√
η(s, n)2 + ζ(s, n, b)2

T̂ − Λκ(s)N̂ . (3.29)

The field produced by the strain creates an asymmetric confinement in the normal direction
of the bent surface. Integrating over n, and using the Jacobian |J | =

√
G = η(s, n), we

get an average electric field E(s)N̂ (s) whose strength is proportional to the curvature of
the nanostructure. We find that

E(s) = Λκ(s) . (3.30)

If we substitute the electric field in eq. (3.24) with the above, we get an effective strain-
induced Rashba spin-orbit interaction. The Hamiltonian now reads

HSO = −αN

m
σ · (p× N̂ (s)), (3.31)

where the coefficient αN = gΛκ(s)
4m . Please note that the strength of the spin-orbit interac-

tion, denoted by αN , is directly proportional to the curvature, represented by κ(s). This
means that the curvature of the material can control the spin-orbit interaction strength.
Hence, we associate the prefactor αN with the strain-induced interaction. However, there
may be intrinsic origins of spin-orbit coupling, where the values of αT and αB are not
equal to zero. In the following subsections, we will consider this possibility.
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3.2.2 The spin-orbit field

In addition to the strain-induced spin-orbit coupling, the material may have an additional
intrinsic coupling. In general, we may introduce a spin-orbit vector whose components
represent the spin-orbit strength due to the asymmetric confinement in different curvilinear
directions,

α = αT T̂ (s) + αN N̂ (s) + αBB̂(s). (3.32)

If we neglect potentials, the Hamiltonian describing the dynamics of particles in the pres-
ence of spin-orbit coupling can be written as

H =
p2

2m
−α · σ × p

m
, (3.33)

where as usual p = −iℏ∇. Assuming we have a curved system, we replace the derivative
operator with the covariant derivative, which is defined by eqs. (2.23) and (2.24). The
Hamiltonian takes the form

H = −ℏ2Gλµ
2m

DλDµ +
iℏ
m

ϵλµν√
G
αλσµDν , (3.34)

where ϵλµν is the Levi-Civita symbol, G is the determinant of the metric tensor Gλµ, and
λ, µ, ν are indices running over s, n, b. To simplify the expression, we define a contravariant
spin-orbit field as

Aν = ϵλµν
αλσµ√
G

= GνµAµ. (3.35)

The field Aµ is a complex 2x2 matrix-valued SU(2) vector potential [71]. Rewriting the
Hamiltonian by including the covariant spin-orbit field, we get

H = −ℏ2Gλµ
2m

DλDµ +
iℏ
m
GνµAµDν . (3.36)

In the next step, we assume that the spin-orbit coupling is weak, so we only let terms
linear in Aµ contribute. Therefore, we add an artificial GλµAλAµ term which is quadratic
O(A2

µ). It lets us write the Hamiltonian as

H = −ℏ2Gλµ
2m

(Dλ − iAλ) (Dµ − iAµ) . (3.37)

With this assumption, the Hamiltonian describes a particle minimally coupled to a vector
potential Aλ. Hence, the spin-orbit coupling becomes an effective background SU(2) field.
Expressing it as such, the Hamiltonian is gauge invariant under any local SU(2) rotation
with Û if the vector potential transforms as Aλ → ÛAλÛ−1−i(∂λÛ)Û−1 [72]. Similar to the
covariant derivatives, we can include spin-orbit coupling in the problem by transforming
the derivatives. We, therefore, introduce the space-gauge covariant derivative

D̃λvµ = ∂λvµ − Γν
λµvν − i [Aλ, vµ] . (3.38)

With the equation above, we conclude the discussion concerning derivatives. We can
use the space-gauge covariant derivative to account for changes in curved systems in the
presence of a spin-orbit field.
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3.2.3 Hamiltonian Rashba nanowire

In this subsection, we will derive the vector field expression for a nanowire with both strain-
induced and intrinsic spin-orbit coupling. We start from the Hamiltonian with covariant
derivatives given in eq. (3.34) since we are still very much interested in the curvature
effects. Writing out the derivatives with the Christoffel symbols, we have

H = −ℏ2Gλµ
2m

(
∂λ∂µ − Γν

λµ∂ν
)
+
iℏ
m

ϵλµν√
G
αλσµ∂ν , (3.39)

where
√
G = 1−nκ(s) is the determinant of the metric tensor, and where we have neglected

constant shifts to the energy. Here, σµ are the curvilinear Pauli matrices since the Greek
letters run over the indexes s, n, b. The curvilinear Pauli matrices are

σs = σT η(s, n) + σBτ(s)n− σNτ(s)b, (3.40)

σn = σN , (3.41)

σb = σB, (3.42)

where σT,N,B = σ · {T̂ , N̂ , B̂}. To obtain an effective Hamiltonian for the system, we can
do a thin-wall quantization procedure [73, 74]. Since the only coordinate we wish to keep
is s, we can expand in powers of n and b, employing an adiabatic approximation to the
zeroth power terms to separate them from s. The exact derivation can be found in ref.
[35]. This means that the derivatives ∂n,b → 0, and also effectively means setting n, b = 0,
such that η(s, n) = 1 and ζ(s, n, b) = 0. If we collect all terms for the tangential part only,
i.e., dependent on the variable s, we are left with the Hamiltonian

Hs =−
ℏ2

2m

(
∂2s +

κ(s)2

4
+
τ(s)2

2

)
− iℏ
m
αN

(
σB∂s −

τ(s)

2
σN

)
+
iℏ
m
αB

(
σN∂s −

κ(s)

2
σT +

τ(s)

2
σB

)
, (3.43)

where we have assumed non-zero curvature and torsion. We ignore all shifts in energy,
which means all terms that do not contain a derivative of s. If we compare the above
expression with eq. (3.36), we can recognize the tangential component of the SU(2) gauge
field. The entire field vector is

Aλ = (αNσB − αBσN , 0, 0), (3.44)

where αN is due to the strain-induced spin-orbit coupling, and αB is an intrinsic Rashba
spin-orbit coupling given in eq. (3.25).

3.2.4 Hamiltonian tunnel

In this subsection, we find the Hamiltonian for a curved thin film so that it forms a
tunnel. We will assume no torsion, τ(s) = 0. We assume there is an intrinsic Rashba spin-
orbit coupling in the binormal direction, such that the spin-orbit vector can be written as
α = αN N̂ + αBB̂. The Hamiltonian is written as

H = − ℏ2

2m
Gλµ

(
∂λ∂µ − Γν

λµ∂ν
)
+
αN

ℏ
σ · p× N̂ (s) +

αB

ℏ
σ · p× B̂(s). (3.45)

If we assume a geometric confinement in the binormal direction, as in fig. 3.2a, we can
write an effective Hamiltonian for the tangential and normal degrees of freedom. Because
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(a) (b)

Figure 3.2: Illustrations of curved two-dimensional surfaces. In (a), the surface is described
by the normal n and tangential s coordinates. In (b), we parametrize the tunnel using
binormal b and tangential s coordinates.

the metric tensor and Christoffel symbols contribute, we get

Hs,n =
−ℏ2
2m

(
∂2s +

1

η(s, n)2
∂2n

)
− ℏ2

2m

κ(s)

η(s, n)
∂n

− iℏ
m

1

η(s, n)
(αNσB∂s − αBσN∂s + η(s, n)αBσT∂n) . (3.46)

We get another two-dimensional system with different dynamics if we assume confinement
in the normal direction, as in fig. 3.2b. Assuming that the confinement potential is centered
at n = 0, the metric tensor reduces to the identity matrix, and the relevant Christoffel
symbols vanish. The Hamiltonian we are left with is

Hs,b = −
ℏ2

2m
(∂2s + ∂2b ) +

iℏ
m
αN

(
σB ∂s − σT ∂b

)
, (3.47)

where we have neglected geometric potentials, as they only contribute to an overall energy
shift. We also discarded the Rashba spin-orbit coupling since it will be in the normal
direction and only act as a shift in the strain-induced factor αN . For this example, we can
write the spin-orbit vector field as

Aµ = (αNσB, 0, αNσT ). (3.48)

The spin-orbit fields derived in this section will be used to analyze systems with strain-
induced and intrinsic spin-orbit coupling in different dimensions and geometries. This will
alter the curvilinear Pauli matrices, which we will consider in the next section.

3.3 Parametrizations

This section will derive the curvilinear unit vectors T̂ (s), N̂ (s) and B̂(s) for different
geometries. These depend on the curvature κ(s) and the torsion τ(s). However, not all
the geometries we consider in this thesis will have torsion. We will also write down the
curvilinear Pauli matrices σT,N,B for the different parameterizations. These will be used
when analyzing specific systems.

3.3.1 Circular curvature

To begin with, we consider a circular curvature. We choose the curve to lie in the xy-plane,
such that the binormal is in the z-direction. We parameterize it in terms of the arc length
s and have κ(s) as a variable we can tune. We choose the curve to be a line segment of
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a circle, thus assuming constant curvature, so κ(s) = κ becomes a real constant. We can
write the parametrization vector as

r(s) =
1

κ
cos(κs)êx +

1

κ
sin(κs)êy. (3.49)

From the relations presented in eqs. (3.11) to (3.13) we can calculate the curvilinear unit
vectors, which become

T̂ (s) = − sin(κs)êx + cos(κs)êy, (3.50)

N̂ (s) = − cos(κs)êx − sin(κs)êy, (3.51)

B̂(s) = êz. (3.52)

Now, we calculate the curvilinear Pauli vector σ, which the vectors above transform. We
can write the vector components as

σT =

(
0 −ie−iκs

ieiκs 0

)
, σN =

(
0 −e−iκs

−eiκs 0

)
, σB =

(
1 0
0 −1

)
. (3.53)

We can clearly see how they are dependent on the coordinate s. Note that σT and σN
rotate with the material. They are both a mix of σx and σy, and will follow the curvature
of the parametrization vector in the lab frame.

3.3.2 Helical nanowire

The parametrization of a helix is a circular curve with an out-of-plane contribution. This
corresponds to the torsion of the wire. Imagine a spring that we stretch: it increases the
length out of the plane but, in return, reduces the in-plane curvature. Thus, there must
be a constriction for the relation between the curvature and torsion. First, we begin by
writing down the vector in terms of the azimuthal angle ϕ, not the arclength. We write it
as

r(ϕ) = R cos(ϕ) êx ± R sin(ϕ) êy + c ϕ êz, (3.54)

where the upper sign in the second term is for a righthanded helix, and the lower sign is for
a lefthanded one. The variable c is the pitch, which controls the out-of-plane component
and the torsion. We will continue the parametrization for a righthanded helix. We find
that the arc length is

s(ϕ) =

∫ ϕ

0
|r′(σ)| dσ = ϕ

√
R2 + c2 . (3.55)

Thus, we can write the curve parametrization in terms of the arc length,

r(s) = R cos

(
s√

R2 + c2

)
êx +R sin

(
s√

R2 + c2

)
êy + c

s√
R2 + c2

êz . (3.56)

From the relations presented in eqs. (3.11) to (3.13) we can calculate the curvilinear unit
vectors, which become

T̂ (s) = − R√
R2 + c2

sinϕ êx +
R√

R2 + c2
cosϕ êy +

c√
R2 + c2

êz , (3.57)

N̂ (s) = − cosϕ êx − sinϕ êy , (3.58)

B̂(s) = c√
R2 + c2

sinϕ êx −
c√

R2 + c2
cosϕ êy +

R√
R2 + c2

êz . (3.59)
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Using eq. (3.69), we can identify the curvature and torsion of the helix. We write them as

κ =
R

R2 + c2
, τ =

c

R2 + c2
. (3.60)

This establishes a relation between the radius and pitch to the curvature and torsion. We
can write that

R2 + c2 =
1

κ2 + τ2
. (3.61)

Using the notation in ref. [63], we introduce a quantity α = atan(τ/κ). This allows us to
write the vectors in a much more compact form, namely

T̂ (ϕ) = − cosα sinϕ êx + cosα cosϕ êy + sinα êz , (3.62)

N̂ (ϕ) = − cosϕ êx − sinϕ êy , (3.63)

B̂(ϕ) = sinα sinϕ êx − sinα cosϕ êy + cosα êz . (3.64)

An important point concerning curvature and torsion is that they have a specific relation
if we consider a fixed-length helix. The length of a nanowire is given by L = 2πn

√
R2 + c2,

where n is the number of turns. This means that varying the torsion of a curved wire
gives

κ =

√
(2πn/L)2 − τ2 , (3.65)

where τ ≤ 2πn/L. This correspondence can be thought of as stretching a spring, which
results in a higher torsion and lower curvature since it cannot change its overall length.
Finally, the curvilinear Pauli matrices with this parametrization are

σT =

(
sinα −i cosα e−iϕ

i cosα eiϕ − sinα

)
, (3.66)

σN =

(
0 −e−iϕ

−eiϕ 0

)
, (3.67)

σB =

(
cosα i sinα e−iϕ

−i sinα eiϕ − cosα

)
. (3.68)

In the limit where τ = 0, the quantity α = 0, and we obtain the same result as for a
circular curved wire.

3.3.3 Elliptical ring

The two previous subsections have only considered constant curvature κ(s) = κ, so we
present a parametrization with nonconstant curvature in this section. To take the constant
curvature a step further, we squeeze it, making an ellipse. In this section, we parametrize
an ellipse in terms of a variable φ, where this is not the arclength again. Thus, the
Frenet-Serret formulas look somewhat different

∂

∂φ

 T̂ (φ)N̂ (φ)

B̂(φ)

 = |∂φr(φ)|

 0 κ(φ) 0
−κ(φ) 0 τ(φ)

0 −τ(φ) 0

 T̂ (φ)N̂ (φ)

B̂(φ)

 , (3.69)

where the norm of the derivative of r(φ) is picked up due to the chain rule. We do the
normalization manually to show another approach than the arclength parametrization.
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The curvilinear unit vectors are related to the parametrization through

T̂ (φ) = r′(φ)

|r′(φ)| , (3.70)

N̂ (φ) =
T̂ ′(φ)

|T̂ ′(φ)|
, (3.71)

B̂(φ) = T̂ (φ)× N̂ (φ) . (3.72)

To express an ellipse in this frame, we begin with the standard equation in Euclidean
space

(x
a

)2
+

(
y

a
√
1−E 2

)2

= 1, (3.73)

where a is the semi-major-axis, andE is the eccentricity relating the semi-major- and
minor-axis by b2 = a2(1−E 2). If we use polar coordinates x = ρ cosφ and y = ρ sinφ, we
find that the radius varies as

ρ(φ) =

√
b2

1−E 2 cos2 φ
. (3.74)

In a later chapter, we consider a closed ellipse, and therefore, the variable φ ranges from
zero to 2π/L. Using the above expression for the radius, we parametrize our curve r as

r(φ) = ρ(φ) cosφ êx + ρ(φ) sinφ êy , (3.75)

which in turn lets us write the unit vectors as

T̂ (φ) = sinφ√
sin2 φ+ (1−E 2)2 cos2 φ

êx +
(1−E 2) cosφ√

sin2 φ+ (1−E 2)2 cos2 φ
êy , (3.76)

N̂ (φ) =

√
2 (E 2 − 1) cosφ√

(E 4 − 2E 2)(cos 2φ+ 1) + 2
êx +

√
2 sinφ√

(E 4 − 2E 2)(cos 2φ+ 1) + 2
êy , (3.77)

B̂(φ) = êz . (3.78)

We can also express the local curvature as

κ(φ) =
1

2b

(
E

2 cos 2φ+E 2 − 2
) (

E
2 − 1

)√
1−E 2 cos2 φ(

sin2 φ+ (1−E 2)2 cos2 φ
)3/2 , (3.79)

where b is the semi-minor axis. Clearly, the curvature is not constant and is at its highest
at the vertex. We write a strain-induced spin-orbit factor that looks similar but has a
different physical interpretation,

αN (φ) =
aNE

2

2
(cos 2φ+ 1)

(
1−E 2

)√
1−E 2 cos2 φ(

sin2 φ+ (1−E 2)2 cos2 φ
)3/2 . (3.80)

Since it is proportional to the curvature, we have written it as αN = aNκ in the above.
In section 6.5 we will assume that we have a ring we can squeeze in situ to get an ellipse.
Assuming the the wire was manufactured as a circle it should not have strain-induced
spin-orbit coupling. In the expression above, αN → 0 asE → 0. Therefore, it only gives
finite strain effect for non-constant curvature and is highest at the ellipse vertex.
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Chapter 4

Green’s functions and
quasiclassical theory

In condensed matter physics, Green’s functions describe the behavior of particles in or
out of equilibrium. Using non-equilibrium Green’s functions, we will derive the equations
of motion. The approach is similar to the one in ref. [75], but with more weight on the
diagram technique. The parametrization and boundary conditions are taken from ref. [67].
Lastly, we present the relations between the Green’s function and physical observables.

4.1 Non-equilibrium Keldysh Green’s functions

Intuitively, the single-particle Green’s function, or propagator, discussed in the previous
section, should be an expectation value of a creation and an annihilation operator. An-
nihilating a particle at (r1, t1) and creating it at (r2, t2) means it must have propagated
between the positions in a time t1 − t2. This assumption is almost correct. We define the
non-equilibrium Green’s function as the time-ordered field operators [76], namely

iGσ1σ2(r1, t1; r2, t2) = ⟨T ψ̂σ1(r1, t1)ψ̂
†
σ2
(r2, t2)⟩. (4.1)

In contrast to the equilibrium case where the averaging is taken over the stationary state
|0⟩, the Green’s function as defined in eq. (4.1) is averaged over any quantum state |n⟩ in
the system. The T appearing in the average is the time ordering operator, which commutes
operators such that they are sorted chronologically by the times t1 and t2. The Green’s
function can thus be written explicitly as

iGσ1σ2(r1, t1; r2, t2) =

{
⟨ψ̂σ1(r1, t1)ψ̂

†
σ2(r2, t2)⟩, t1 > t2

−⟨ψ̂†
σ2(r2, t2)ψ̂σ1(r1, t1)⟩, t1 < t2.

(4.2)

Note that σ1 and σ2 appearing in the propagators are spin indices, either ↑ or ↓, and
should not be confused with the Pauli matrices σi. Next, partially following the notation
of Chandrasekhar [75], defining the following Green’s functions will be of use later,

Gαα
σ1σ2

(r1, t1; r2, t2) = −i⟨T ψ̂σ1(r1, t1)ψ̂
†
σ2
(r2, t2)⟩, (4.3)

Gββ
σ1σ2

(r1, t1; r2, t2) = i⟨T̃ ψ̂σ1(r1, t1)ψ̂
†
σ2
(r2, t2)⟩, (4.4)

Gαβ
σ1σ2

(r1, t1; r2, t2) = −i⟨ψ̂σ1(r1, t1)ψ̂
†
σ2
(r2, t2)⟩, (4.5)

Gβα
σ1σ2

(r1, t1; r2, t2) = i⟨ψ̂†
σ2
(r2, t2)ψ̂σ1(r1, t1)⟩. (4.6)

In eq. (4.3), we have the standard non-equilibrium Green’s function from before. For
t1 > t2 it describes the probability amplitude of a hole at r2 with spin σ2 moving to r1,
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arriving with spin σ1 after a time t1−t2. This propagation happens in the non-equilibrium
state |n⟩. If, however, t1 < t2, the fields are commuted, and a hole is created rather than
an electron. The elecrtron propagates from r1 with σ1 at t1, and ends up in r2 with σ2 at
t2. Whereas in eq. (4.4), the operator T̃ employs a reverse chronological order to arrange
the fields based on their respective times. Thus, for t1 > t2, the first field removes an
electron at r1 with spin σ1, which propagates to at r2 with spin σ2. Exactly the same is
true if t1 < t2, for which a hole propagates from r1 to r2. The propagator in eq. (4.5)
has a somewhat different physical meaning since it contains no time ordering operator.
It always describes the propagation of a hole from r2 with σ2 to r1 with σ1. In the case
that t1 > t2, the hole moves forward in time. If t1 < t2, the Green’s function describes
propagation backward in time. Another way to interpret this expression is that it counts
the density of holes. There is no time ordering in eq. (4.6), which means that the fields
remove an electron at r1 with σ1 which moves to r2 with σ2, either backwards or forward
in time depending on sgn(t1 − t2). It can also be understood as the electron density in
the system. The Green’s function in eq. (4.5) and eq. (4.6) are often referred to as the
greater G> and lesser G< Green’s functions, respectively. Generally, the single particle
propagator Gαα can incorporate the interaction with an external potential U , so we denote
the non-interacting free electron propagator as G(0). The inverse operator we denote

G−1
(0)(ri, ti) = i

∂

∂ti
+
∇2

ri

2m
+ µ . (4.7)

Acting with this operator on the ideal gas propogator G(0)αα, we get a discontinuity at
t1 = t2. The same applies to G(0)ββ . Therefore, we can write the following relations

G−1
(0)(r1, t1)G

(0)αα
σ1σ2

(r1, t1; r2, t2) = δ(t1 − t2)δ(r1 − r2) , (4.8)

G−1
(0)(r1, t1)G

(0)ββ
σ1σ2

(r1, t1; r2, t2) = −δ(t1 − t2)δ(r1 − r2) , (4.9)

G−1
(0)(r1, t1)G

(0)αβ
σ1σ2

(r1, t1; r2, t2) = 0 , (4.10)

G−1
(0)(r1, t1)G

(0)βα
σ1σ2

(r1, t1; r2, t2) = 0 . (4.11)

Similar to the Feynman technique in field theory, we can use a diagrammatic approach to
Keldysh Green’s functions [77]. The dressed and non-interacting Green’s functions will be
drawn as

.

Each line and vertex has a mathematical equivalent: We represent each vertex as a con-
volution of the diagram elements it connects. Without specifying its form, we introduce
an external potential U . Intuitively, we can argue that the total propagator Gαα can be
written as a sum of ideal gas solutions G(0) interacting an arbitrary amount with U during
the propagation as long as the particle has the correct state at the beginning and end.
Thus, the following two first-order interactions should contribute to the total propagation

Σαα

.

The convolutions
(
G(0)αα •G(0)αα

)
and

(
G(0)αβ •G(0)βα

)
are sums over all possible times

and positions the ideal gas in state α can interact once with U in an arbitrary state, and
end in state α again. We have also introduced the self-energy Σαβ, which is related to
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the interaction with U . We now employ a trick that lets us draw the Green’s function
as a sum of all orders of interactions the electron may experience during the propaga-
tion. Factorizing the higher-order interactions, we obtain a recursive equation for Gαα.
Diagrammatically, we can draw it as

We can write similar equations for the other propagators as well. Therefore, it is useful to
collect all of them into a matrix, where the superscripts denote the index, such that the
matrix reads

Gσ1σ2
(r1, t1; r2, t2) =

(
Gαα

σ1σ2
(r1, t1; r2, t2) Gαβ

σ1σ2(r1, t1; r2, t2)

Gβα
σ1σ2(r1, t1; r2, t2) Gββ

σ1σ2(r1, t1; r2, t2)

)
. (4.12)

We have only found the equation for the upper left element. However, finding the rest is
trivial. Writing the equation in the diagram for all of the propagators simultaneously, we
express it as

G(x1, x2) = G(0)(x1, x2) +G(0)(x1, x4) • Σ(x4, x3) •G(x3, x2), (4.13)

where we introduced the self-energy matrix

Σσ1σ2
(r1, t1; r2, t2) =

(
Σαα
σ1σ2

(r1, t1; r2, t2) Σαβ
σ1σ2(r1, t1; r2, t2)

Σβα
σ1σ2(r1, t1; r2, t2) Σββ

σ1σ2(r1, t1; r2, t2)

)
. (4.14)

The bullet product is a convolution over internal variables and a matrix product in Keldysh
space. The formal definition is given in eq. (B.1). Equation (4.13) is called the Dyson
equation and relates the non-interacting propagator with the interacting one. The inter-
action is encoded in the self-energy. Note that the four Green’s functions in eq. (4.12) are
not linearly independent. Therefore, they are related by linear equations of the form

Gαα +Gββ = Gαβ +Gβα. (4.15)

Using the definitions of the Green’s functions in eq. (4.3)-(4.6) the non-equilibrium re-
tarded and advanced Green’s functions are defined as

GA = Gαα −Gαβ = Gβα −Gββ , (4.16)

GR = Gαα −Gβα = Gαβ −Gββ . (4.17)

Exactly how they act and what they describe in terms of electron or hole propagation
becomes evident when writing them as averages. They can be expressed as

GA
σ1σ2

(r1, t1; r2, t2) =

{
0, t1 > t2

i⟨{ψ̂σ1(r1, t1), ψ̂
†
σ2(r2, t2)}⟩, t1 < t2

(4.18)

GR
σ1σ2

(r1, t1; r2, t2) =

{
−i⟨{ψ̂σ1(r1, t1), ψ̂

†
σ2(r2, t2)}⟩, t1 > t2

0, t1 < t2,
(4.19)

where the anti-commutator has been inserted. These relate to the electron and hole
densities for particles propagating forwards in time for GR and backward for GA. Since
the elements in eq. (4.12) are not linearly independent, expressing it such that one of
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the entries is zero can be advantageous. We perform the rotation G → σ3 G, and then
G→ QGQ† where

Q =
1√
2
(σ0 − iσ2) . (4.20)

The resulting matrix has the form

G =

(
GA GK

0 GR

)
, (4.21)

where the retarded and advanced Green’s functions have been defined in eq. (4.18) and
(4.19), and where GK is the Keldysh Green’s function, which is defined as

GK
σ1σ2

(r1, t1; r2, t2) = −i
〈[
ψ̂σ1(r1, t1), ψ̂

†
σ2
(r2, t2)

]〉
. (4.22)

Whereas the advanced and retarded Green’s functions are related to the electron densities,
the Keldysh component describes properties of the system out of equilibrium. We note
that all the above propagators describe single-particle behavior. Superconductivity is
mediated by an interaction between pairs of particles. Thus, we introduce Nambu⊗spin
space. We will use it throughout this thesis to organize interactions and dynamics for
electrons and holes. In Nambu⊗spin space, the hole-spin field operators are defined as

Ψ̂1 =


ψ̂↑(r1, t1)

ψ̂↓(r1, t1)

ψ̂†
↑(r1, t1)

ψ̂†
↓(r1, t1)

 , Ψ̂
†
2 =

(
ψ̂†
↑(r2, t2) ψ̂†

↓(r2, t2) ψ̂↑(r2, t2) ψ̂↓(r2, t2)
)
. (4.23)

The Green’s functions used in eq. (4.21) are defined very similarly in this formalism. We
must transpose the product twice to ensure the commutation is correct. The propagators
can be written as

ĜA(r1, t1; r2, t2) =

{
0, t1 > t2

+iτ̂3
〈
Ψ̂1Ψ̂

†
2 +

(
Ψ̂

†T
2 Ψ̂

T
1

)T 〉
, t1 < t2

(4.24)

ĜR(r1, t1; r2, t2) =

{
−iτ̂3

〈
Ψ̂1Ψ̂

†
2 +

(
Ψ̂

†T
2 Ψ̂

T
1

)T 〉
, t1 > t2

0, t1 < t2
(4.25)

ĜK(r1, t1; r2, t2) = −i
〈
Ψ̂1Ψ̂

†
2 −

(
Ψ̂

†T
2 Ψ̂

T
1

)T 〉
. (4.26)

We can write out the advanced Green’s function. Doing so should also help make the next
steps in the derivation clearer. In matrix form, with the Heaviside step function θ, it is
written as

ĜA(x1, x2) = iθ(t2 − t1)


〈{
ψ̂1↑, ψ̂

†
2↑
}〉 〈{

ψ̂1↑, ψ̂
†
2↓
}〉 〈{

ψ̂1↑, ψ̂2↑
}〉 〈{

ψ̂1↑, ψ̂2↓
}〉〈{

ψ̂1↓, ψ̂
†
2↑
}〉 〈{

ψ̂1↓, ψ̂
†
2↓
}〉 〈{

ψ̂1↓, ψ̂2↑
}〉 〈{

ψ̂1↓, ψ̂2↓
}〉

−
〈{
ψ̂†
1↑, ψ̂

†
2↑
}〉
−
〈{
ψ̂†
1↑, ψ̂

†
2↓
}〉
−
〈{
ψ̂†
1↑, ψ̂2↑

}〉
−
〈{
ψ̂†
1↑, ψ̂2↓

}〉
−
〈{
ψ̂†
1↓, ψ̂

†
2↑
}〉
−
〈{
ψ̂†
1↓, ψ̂

†
2↓
}〉
−
〈{
ψ̂†
1↓, ψ̂2↑

}〉
−
〈{
ψ̂†
1↓, ψ̂2↓

}〉
 .

(4.27)

Note that the above matrix’s bottom half essentially is the upper half’s complex conjugate.
This is because there is a symmetry between the electron and hole part of the propagator.
In this thesis, we will concern ourselves with equilibrium systems. In that case, the
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advanced, retarded, and Keldysh Green’s functions are closely related. We can write the
following relations [78]

ĜA = −τ̂3
(
ĜR
)†
τ̂3 , ĜK =

(
ĜA − ĜR

)
tanh

(
βE
2

)
. (4.28)

Next, we introduce the anomalous Green’s functions, which are quite similar to eqs. (4.18)
and (4.19), but differ in the operators, only containing ψ̂σ(r, t) and none of the Hermitian

conjugate counterparts ψ̂†
σ(r, t). They are written as

FA
σ1σ2

(r1, t1; r2, t2) =

{
0, t1 > t2

+i
〈
{ψ̂σ1(r1, t1), ψ̂σ2(r2, t2)}

〉
, t1 < t2

(4.29)

FR
σ1σ2

(r1, t1; r2, t2) =

{
−i
〈
{ψ̂σ1(r1, t1), ψ̂σ2(r2, t2)}

〉
, t1 > t2

0, t1 < t2
(4.30)

FK
σ1σ2

(r1, t1; r2, t2) = −i
〈
{ψ̂σ1(r1, t1), ψ̂σ2(r2, t2)}

〉
. (4.31)

We can write the Green’s functions in Nambu⊗spin space by applying the above definitions
and the observations about the matrix structure. They are

ĜA,R(x1, x2) =

(
GA,R(x1, x2) FA,R(x1, x2)

FA,R(x1, x2)
∗ GA,R(x1, x2)

∗

)
, (4.32)

ĜK(x1, x2) =

(
GK(x1, x2) FK(x1, x2)

−FK(x1, x2)
∗ −GK(x1, x2)

∗

)
, (4.33)

where the components are 2x2 matrices in spin space that can be summarized as

GA,R,K(x1, x2) =

(
GA,R,K

↑↑ (x1, x2) GA,R,K
↑↓ (x1, x2)

GA,R,K
↓↑ (x1, x2) GA,R,K

↓↓ (x1, x2)

)
, (4.34)

FA,R,K(x1, x2) =

(
FA,R,K
↑↑ (x1, x2) FA,R,K

↑↓ (x1, x2)

FA,R,K
↓↑ (x1, x2) FA,R,K

↓↓ (x1, x2)

)
. (4.35)

These components are the Green’s functions defined in eqs. (4.18), (4.19), (4.22) and (4.29)
to (4.31). Similarily to eq. (4.21), we can define a Green’s function to collect all these parts,
as well as the self-energy

Ǧ(x1, x2) =

(
ĜA(x1, x2) ĜK(x1, x2)

0 ĜR(x1, x2)

)
, (4.36)

Σ̌(x1, x2) =

(
Σ̂A(x1, x2) Σ̂K(x1, x2)

0 Σ̂R(x1, x2)

)
. (4.37)

With these definitions, we can again write the Dyson equation using the integral bullet
product notation as

Ǧ(x1, x2) = Ǧ0(x1, x2) + Ǧ0(x1, x4) • Σ̌(x4, x3) • Ǧ(x3, x2), (4.38)

where Ǧ0 is the non-interacting Green’s function in Nambu⊗spin space. The free electron
propagator in spin-space is denoted Ĝ(0). Its inverse defines it

Ĝ−1
(0)(ri, ti) = iτ̂3 ∂ti +

∇2
ri

2m
+ µ. (4.39)
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Acting on the non-interacting Green’s function in Nambu⊗Spin space, we get a Dirac-delta
spike,

Ĝ−1
(0)(x1)Ǧ

(0)(x1, x2) = δ4(x1 − x2). (4.40)

Next, we will act with the inverse free electron Green’s function on the Dyson equation to
write it in a simpler form. Acting with it from the left on both sides, we get

Ĝ−1
(0)(x1)Ǧ(x1, x2) = δ4(x1 − x2) + Σ̌(x1, x3) • Ǧ(x3, x2). (4.41)

To find an equation with terms that cancel, we take the complex conjugate of the above
equation, which gives

Ǧ(x1, xs)
←−̂
G−1

(0)(x2) = δ4(x1 − x2) + Ǧ(x1, x3) • Σ̌(x3, x2), (4.42)

where the arrow indicates that Ĝ−1
(0)(x2) acts to the left, as opposed to ordinary operators.

It can be understood as taking the hermitian conjugate and operating with it from the
left. Now, subtracting these from each other, we get the Gor’kov equation[

Ĝ−1
(0)(x1, x2)− Σ̌(x1, x2), Ǧ(x1, x2)

]•
= 0, (4.43)

where the bullet commutator [A,B]• ≡ A • B − B • A was inserted. Also, the operator
Ĝ−1

(0)(x1, x2) should be interepeted as acting on x1 from the left and x2 from the right.
This will be the starting point for finding the equation of motion for the system. In
order to simplify the calculations, we need to make certain assumptions and restrictions
in the Green’s function and derive self-energies. This will allow us to express the Gor’kov
equation in a more manageable way. Although eq. (4.38) provides a complete description of
the system, it is not straightforward to work with since the interactions and self-energies
have not been specified yet. We will work on these aspects in the next subsections to
simplify calculations.

4.2 Mixed representation and quasiclassical approximation

This section will present the quasiclassical approximation, which puts certain constraints
on the propagator of the system. The Green’s function describing the system oscillates as
a function of the relative coordinate with a length on the scale of the Fermi wavelength,
which is much smaller than the characteristic lengths in the problems we are studying, for
instance, the superconducting coherence length. Thus, the two-electron wavefunctions we
study mainly depend on the center-of-mass coordinate. Eilenberger [79] and Larkin [80]
realized that for most problems, it is sufficient to integrate out the relative coordinate. In
doing so, we are only studying the envelope of the quantum mechanical wave function.
This approximation assumes that only particles with energies close to the Fermi surface
contribute to physical processes. Therefore, we often only keep the direction of the mo-
mentum but set the magnitude to the Fermi momentum kF . Note that this assumption
restricts all physical predictions this theory gives to the Fermi surface.

In the quasiclassical approximation, we make a change of variables to a relative coordinate
and a center-of-mass coordinate. To obtain the quasiclassical Green’s function, we first
define new variables

R =
1

2
(r1 + r2) , r = r1 − r2, T =

1

2
(t1 + t2) , t = t1 − t2. (4.44)
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As we have argued, integrating out the relative coordinates is often sufficient. Therefore,
we introduce a new Green’s function in which we Fourier transform of relative space and
time coordinates,

Ǧ(R, T,p, E) =
∫
dt eiEt

∫
d3r e−ip·r Ǧ(R, T, r, t). (4.45)

We can use this Fourier-transformed Green’s function to introduce the quasiclassical one.
For this, we use the approximation discussed at the beginning of this section; we restrict
the momentum p to be on the Fermi surface pF , only keeping its direction. Expressing
this in terms of the Dirac-delta, we can write it as

Ǧ(R, T,p, E) = −iπδ(ξp) ǧ(R, T, p̂F , E). (4.46)

The delta function helps pick the correct momentum from all kinetic energy possibilities.

The quantity ξp is the kinetic energy relative to the chemical potential ξp = p2

2m − µ,
and p̂F = pF

|pF | . Integrating eq. (4.46) on both sides gives an expression for the envelope
function we are interested in

ǧ(R, T, p̂F , E) =
i

π

∫
dξp Ǧ(R, T,p, E). (4.47)

This is the quasiclassical Green’s function, which will be important later in this thesis. It
is not well-behaved at high energies, so it is common in the literature to introduce a cutoff
energy or replace the integral with a semicircle in the upper and lower plane [81]. The
resulting quasiclassical Green’s function is ordered similarly as before, namely

ǧ(R, T, p̂F , E) =
(
ĝA(R, T, p̂F , E) ĝK(R, T, p̂F , E)

0 ĝR(R, T, p̂F , E)

)
. (4.48)

The components of the above matrix can be expressed as 4x4 matrices with 2x2 quasiclas-
sical Green’s functions as components. These are

ĝA,R(R, T, p̂F , E) =
(
gA,R(R, T, p̂F , E) fA,R(R, T, p̂F , E)
−f̃A,R

(R, T, p̂F , E) −g̃A,R(R, T, p̂F , E)

)
, (4.49)

ĝK(R, T, p̂F , E) =
(
gK(R, T, p̂F , E) fK(R, T, p̂F , E)
f̃
K
(R, T, p̂F , E) g̃K(R, T, p̂F , E)

)
, (4.50)

where ·̃ is an operation of complex conjugation ·∗ as well as transforming the energy as
E → −E . The signs are different from the ordinary Green’s functions due to the tilde
conjugation because of the Fourier transform. If we consider the transformation of the
entire matrix, we can write it as

ǧ(R, T, p̂F , E) =
i

π

∫
dξp

∫
dt eiEt

∫
d3r e−ip·r Ǧ(R+ r/2, T + t/2;R− r/2, T − t/2).

(4.51)

Next, we consider only one of the elements. From the above transform, we see that the
anomalous quasiclassical retarded Green’s function is

fR(R, T, p̂F , E) =
i

π

∫
dξp

∫
d3r

∫
dt eiEt−ip·rFR(R, T, r, t). (4.52)
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Taking the complex conjugate of the integral leaves us with

fR(R, T, p̂F , E)∗ = −
i

π

∫
dξp

∫
d3r

∫
dt e−iEt−ip·rFR(R, T, r, t)∗. (4.53)

If we now, however, change the sign in front of the integral, as well as the sign of the
energy E → −E , we get the desired form, namely a Fourier transform

−f̃R(R, T, p̂F , E) =
i

π

∫
dξp

∫
d3r

∫
dt eiEt−ip·rFR(R, T, r, t)∗. (4.54)

This Green’s function is normalized such that the product with itself is unity.

ǧǧ =

(
ĝAĝA ĝAĝK + ĝK ĝR

0 ĝRĝR

)
= σ0 ⊗ τ̂0, (4.55)

which can also be summarized by the conditions

ĝAĝK = −ĝK ĝR, ĝAĝA = ĝRĝR = τ̂0. (4.56)

4.3 Self-energies

Until now, the self-energy Σ̌ has been left unspecified. The structure of the self-energy
depends on the system and the kind of interactions that cause it. Therefore, there is not a
general equation describing all kinds of self-energies. Presented here are the self-energies
relevant to the physical systems we study. The first self-energy we can write down is that
of a superconductor, which is defined by the superconducting order parameter,

Σ̌SC = ∆̂ =

(
0 ∆
∆∗ 0

)
, (4.57)

where ∆ = antidiag(∆,−∆) and ∆ = g⟨ψ̂1↓ψ̂2↑⟩ with g being a coupling strength coeffi-
cient. Since it describes the interaction between pairs of particles, it is on the antidiagonal.
Generally, the order parameter is complex, and its magnitude describes the gap size in
the superconducting state. It is an important quantity, as only energies above this gap
can excite superconducting states. Since we will consider superconductors in proximity
to ferromagnets, we need their self-energy as well. For weak ferromagnets, the self-energy
can be written as

Σ̌FM = h · σ̂, (4.58)

where h is the exchange field, and σ̂ = diag(σ,σ∗). The two self-energies presented are
intrinsic to the materials. That means that they will be present regardless of impurities
or other interactions.

Next, we will add the extrinsic contributions to the total self-energy Σ̌. First, we consider
how particles scatter on impurities. We write the potential arising from non-magnetic
impurities as

Vimp(r) =
∑
i

U(r − ri), (4.59)
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where U(r − ri) is the potential of an impurity located at ri. If we assume that the
potential only is a small perturbation of the non-interacting Green’s function, we can
rewrite eq. (4.40) as [

Ĝ−1
(0)(r1)− τ̌0Vimp(r1)

]
Ǧ(r1, r2) = δ3(r1 − r2), (4.60)

where we have suppressed the Fourier transform of the relative time coordinate to the
quasiparticle energy E , such that we write Ǧ(r1, r2; E) ≡ Ǧ(r1, r2) [82]. We can write this
equation similarly to the Dyson equation. Therefore, we write it as

Ǧ(r1, r2) = Ǧ(0)(r1, r2) +

∫
d3r3 Ǧ

(0)(r1, r3) Vimp(r3) Ǧ(r3, r2), (4.61)

which can be confirmed by inserting eq. (4.60) into eq. (4.61) [83]. The self-energies
will act in the same space as our quasiclassical Green’s function. Therefore, for later
convenience, we perform a Fourier transformation to momentum space. We can write the
Dyson equation as

Ǧ(p1,p2) = Ǧ(0)(p1)δ
3(p1 − p2) + Ǧ(0)(p1)

∫
d3p3
(2π)3

Vimp(p1 − p3) Ǧ(p3,p2), (4.62)

where we have transformed the impurity potential as Vimp(q) =
∑

i U(q)e−iq·ri . We
note that the Fourier transformed Green’s function Ǧ is on either side of the equation.
Therefore, one trick is to solve it iteratively. That means inserting the entire left-hand
side into Ǧ(p3,p2) furthest to the right. This will, however, add another Green’s function
we need to insert. We denote these terms

Ǧ(p1,p2) = Ǧ(0)(p1)δ
3(p1 − p2) + Ǧ(0)(p1)Vimp(p1 − p2) Ǧ(0)(p2)

+ Ǧ(0)(p1)

∫
d3p3
(2π)3

Vimp(p1 − p3)Ǧ(0)(p3)Vimp(p3 − p2)Ǧ(0)(p2) + . . .

= Ǧ(0)(p1,p2) + Ǧ(1)(p1,p2) + Ǧ(2)(p1,p2) + . . . (4.63)

This contains an infinite number of terms with no simple solution. However, we can
assume that the density of impurities is large, so we average over them [82–84]. This will
simplify the next steps. The impurity averaged Green’s function is defined as

⟨Ǧ(p1,p2)⟩imp =
∏
i

(
1

V

∫
d3ri

)
Ǧ(p1,p2), (4.64)

which effectively changes the impurity potentials with the averaged ones,

⟨Vimp(q)⟩imp =

〈∑
i

U(q)e−iq·ri

〉
imp

= (2π)3 nimp U(q)δ3(q). (4.65)

There are products of impurity potentials in the higher order terms in eq. (4.63). The
number of factors of impurity potentials n is proportional to the order we denoted in Ǧ(n).
We will truncate the self-energy in the second order. Thus, we only consider the product
between two impurity potentials,

⟨Vimp(p1)Vimp(p2)⟩imp = U(p1)U(p2)

〈∑
i

e−i(p1+p2)·ri

〉
imp

+

〈∑
i ̸=j

e−ip1·ri−ip2·rj

〉
imp


≈ U(p1)U(p2)

[
(2π)3nimpδ

3(p1 − p2) + (2π)6n2impδ
3(p1)δ(p2)

]
,

(4.66)
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where the approximation nimp(nimp + 1) ≈ n2imp was made. This is consistent with the
assumption of a high density of impurities.

For the next step, we will use the Feynman diagrammatic approach. Each diagram is
associated with a mathematical translation as before. However, since the propagators are
in momentum space, we have additional rules: 1) at each vertex the total momentum
is conserved 2) with every propagator Ǧ(0)(p1) there is a momentum integral 3) there is
a factor (2π)3δ3(p1 − p2) for every diagram. Following these rules, the Dyson equation
(4.38) written with Feynman diagrams is

.

The self-energy takes the form

,

where we have only explicitly drawn contributions to the second order. The first term is
a constant and can be discarded [83]. Thus, the self-energy to second order can be drawn
as

From this diagram, we can write the self-energy in momentum space as

Σ̌imp(p1,p2) = nimp

∫
d3q

(2π)3
U(p1 − q)Ǧ(q, q − (p1 − p2))U(q − p1)

= nimp

∫
d3q

(2π)3
|U(p− q)|2 Ǧ (q + δp/2, q − δp/2) , (4.67)

where p = (p1 + p2)/2 and δp = p1 − p2. In the mixed representation, we get that

Σ̌imp(R, T,p, E) = nimp

∫
d3q

(2π)3
|U(p− q)|2 Ǧ(R, T, q, E). (4.68)

Next, we rewrite the momentum integration measure in terms of the kinetic energy. As
before, we write it as ξq = q2/2m. We get

d3q = q2 dq dΩq

= q m dξq dΩq

= π2 N(ξq)dξq dΩq , (4.69)

where we have used the density of states for a three-dimensional electron gas, which is

N(E) = 1

2π2
(2m)3/2

√
E . (4.70)

In the quasiclassical approximation, we set the density of states to its value on the Fermi
surface, that is, N(ξq)→ NF . We also can assume that scattering potential in momentum
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space is independent of the magnitude of p, so we can write U(p − q) → U(p̂ · q̂). We,
therefore, place it outside of the kinetic energy integral. The integral now looks like

Σ̌imp(R, T,p, E) =
nimpNF

2

∫
dΩq

4π

∫
dξq |U(p− q)|2 Ǧ(R, T, q, E)

=
nimpNF

2

∫
dΩq

4π
|U(p̂ · q̂F )|2

∫
dξq Ǧ(R, T, q, E)

= − iπ nimpNF

2

∫
dΩq

4π
|U(p̂ · q̂F )|2 ǧ(R, T, q̂F , E). (4.71)

The only thing that remains is a spherical average of the quasiclassical Green’s function.
Since we have assumed that only energies at the Fermi level contribute to physical effects,
the integral is taken here.

Lastly, we present the self-energy of spin-flip-scattering. We begin with a potential similar
to the impurity scattering. However, we assume that this potential interacts with the
spins. We write it as

Vsf(r) =
∑
i

V (r − ri). (4.72)

For this type of scattering, we only present the result. It is quite similar to the impurity
self-energy but needs to account for spin-flip-events. Also, here, we take the average ⟨. . . ⟩sf
over spin-flip impurities. It is also assumed that the impurities are randomly distributed
[85]. Thus, we can write the average magnitude of spins ⟨SiSj⟩sf = S(S+1)δij/3 [64]. We
write the self-energy as

Σ̌sf(R, T,p, E) =
nsfNFS(S + 1)

12π

∫
dξq

∫
dΩq |V (p̂ · q̂)|2

3∑
i

α̂i Ǧ(R, T, q, E) α̂i

=
−insfNFS(S + 1)

12

∫
dΩq |V (p̂ · q̂F )|2

3∑
i

α̂i ǧ(R, T, q̂F , E) α̂i , (4.73)

where α̂i = diag(τ i, τ
T
i ) and nsf is the impurity density. The total self-energy, including

both intrinsic and extrinsic contributions, is therefore

Σ̌ = Σ̌SC + Σ̌FM + Σ̌imp + Σ̌sf . (4.74)

This concludes the derivation of the necessary tools to develop the equations of motion.
With the quasiclassical Green’s functions and self-energies, we can derive the Eilenberger
equation.

4.4 The Eilenberger equation

In this section, we will develop an equation of motion. In order to do so, we will change
variables to those in eq. (4.44). This will let us write the Gor’kov equation in terms of the
quasiclassical Green’s function presented in section 4.2. We rewrite the Gor’kov equation
in eq. (4.43) as [

Ĝ−1
(0)(x1, x2), Ǧ(x1, x2)

]•
=
[
Σ̌(x1, x2), Ǧ(x1, x2)

]•
, (4.75)

and the inverse non-interacting Green’s function is

Ĝ−1
(0)(x1, x2) = iτ̂3 ∂ti +

∇2
ri

2m
+ µ. (4.76)
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The index in the derivatives is i = 1 when acting to the right and i = 2 when acting to
the left. Expanding the equation above using the non-interacting Green’s function and
suppressing the internal variables (x1, x2), it can be written as

iτ̂3
(
∂t1Ǧ

)
+ i
(
∂t2Ǧ

)
τ̂3 +

1

2m

(
∇2

r1Ǧ−∇2
r2Ǧ

)
=
[
Σ̌, Ǧ

]•
. (4.77)

Note the sign change of the second term in the commutator between the non-interacting
inverse- and ordinary Green’s function. Acting with the operator from the left is equivalent
to taking the Hermitian conjugate of the operation from the right; therefore, the sign
changed. At the next step of the derivation, we insert the center of mass and relative
coordinate from the mixed representation. The spatial derivatives will change as follows

∇2
r1
−∇2

r2
=

(
1

4
∇2

R +∇R · ∇r +∇2
r

)
−
(
1

4
∇2

R −∇R · ∇r +∇2
r

)
= 2∇R · ∇r. (4.78)

The time derivatives are similar in the mixed representation. The first time coordinate
derivative is ∂t1 = 1

2∂T + ∂t, and the second is ∂t2 = 1
2∂T − ∂t. The temporal derivatives

can be approximated as the derivative of the relative coordinate since it changes more
rapidly compared to the center of mass one. Thus, inserting ∂T ≈ 0, we get

iτ̂3
(
∂tǦ

)
− i
(
∂tǦ

)
τ̂3 +

1

m
∇R · ∇rǦ =

[
Σ̌, Ǧ

]•
. (4.79)

Next, we will do a Fourier transformation to obtain a Green’s function like in eq. (4.45).
Evaluating the left-hand side, it transforms as∫
dt eiEt

∫
d3r e−ip·r

(
i
[
τ̂3, ∂tǦ(R, T, r, t)

]•
+

1

m
∇R · ∇rǦ(R, T, r, t)

)
=

∫
dt eiEt

∫
d3r e−ip·r

([
E τ̂3, Ǧ(R, T, r, t)

]•
+

i

m
p · ∇RǦ(R, T, r, t)

)
,

(4.80)

where we used the method of partial integration and dropped the surface terms. Since
the self-energies were found in the mixed representation, the Fourier transformation of the
right-hand side is trivial. Replacing the Green’s function Ǧ(X,x) with Ǧ(X,P ), so that
we can write the equation of motion as[

E τ̂3, Ǧ(R, T,p, E)
]•

+
i

m
p · ∇RǦ(R, T,p, E) =

[
Σ̌, Ǧ

]•
(R, T,p, E). (4.81)

It can be further simplified if we employ the approximation in eq. (B.15). Since we
already have assumed that the center-of-mass coordinate T varies slowly compared to the
relative one, we apply ∂T ≈ 0 again. Thus, the bullet commutator reduces to the ordinary
commutator. The details of this approximation can be found in appendix B. We also
assume that all interesting phenomena are happening at the Fermi surface, thus fixing
the magnitude of the momentum. Therefore, we can insert the quasiclassical Green’s
function from eq. (4.47). What we are left with is an equation capturing the behavior of
the quasiclassical Green’s function[

E τ̂3 − Σ̌, ǧ
]
+ ivF p̂F · ∇ ǧ = 0. (4.82)

After simplifying the equation, we are left with what is known as the Eilenberger equation.
Note that the only derivative in the equation is acting on the center of mass coordinate R.
Therefore, the Green’s function might vary in space. However, since no time derivative
exists, we are describing a stationary problem. In this thesis, we will focus on equilibrium
systems, and therefore, the approximation ∂T ≈ 0 is appropriate.
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4.5 The diffusive limit

In the previous section, we derived the Eilenberger equation. It describes the behavior
of electrons and holes in a material. However, we have not specified any interactions or
self-energies in its derivation. This section presents the diffusive limit, in which we de-
rive an equation for dirty materials. Therefore, we will use the self-energies derived in
section 4.3. In the dirty limit, we assume that the impurity self-energy Σ̌imp is dominant
apart from the Fermi energy. It might seem contradictory to the derivation, where we
implicitly assumed that the potential Vimp was weak and truncated at the second order.
It is not contradictory to have a strong self-energy despite a weak scattering potential,
provided that the impurity density, nimp, is high.

Assuming a high impurity density, we can assume they randomize the relative momentum
direction. Therefore, the Green’s function should be nearly isotropic. Thus, we can split
the Green’s function into a s- and p-wave part

ǧ = ǧs + p̂F · ǧp, (4.83)

where we assume ǧs >> ǧp. Since the Green’s function still has to obey the normalization
from eq. (4.55), we have that

(ǧs + p̂F · ǧp)(ǧs + p̂F · ǧp) ≈ ǧsǧs + p̂F · (ǧsǧp + ǧpǧs) = σ0 ⊗ τ̂0, (4.84)

which means we can write

ǧsǧs = σ0 ⊗ τ̂0, ǧsǧp = −ǧpǧs. (4.85)

These expressions give a normalization condition for the s-wave contribution and a com-
mutation relation {ǧs, ǧp} = 0 between the contributions. Next, we assume that the total
quasiclassical Green’s function does not contribute to the angular integrals of eqs. (4.71)
and (4.73) [64]. Therefore, we relate those integrals to the scattering times τimp and τsf.
Next, we take an average over the momentum direction. The self-energies can therefore
be approximated as

Σ̌imp = − 1

2τimp
⟨ǧ⟩p̂F

≈ − 1

2τimp
ǧs, (4.86)

Σ̌sf = −
i

8τsf

3∑
i

α̂i ⟨ǧ⟩p̂F
α̂i ≈ −

i

8τsf

3∑
i

α̂i ǧs α̂i. (4.87)

In the next step, we insert these self-energies into the Eilenberger equation from eq. (4.82).
We separate the intrinsic and extrinsic self-energies and insert the quasiclassical Green’s
function from eq. (4.83). The Eilenberger equation can, therefore, be expressed as[
E τ̂3 − ∆̂− h · σ̂, ǧs

]
+ p̂F ·

[
E τ̂3 − ∆̂− h · σ̂, ǧp

]
+ ivF p̂F · ∇(ǧs + p̂F · ǧp)

−
[
Σ̌imp, ǧs

]
− p̂F ·

[
Σ̌imp, ǧp

]
−
[
Σ̌sf, ǧs

]
− p̂F ·

[
Σ̌sf, ǧp

]
= 0, (4.88)

where the commutator
[
Σ̌imp, ǧs

]
is zero. Please note that the next step involves two

different actions; the first is collecting all the odd terms in p̂F . The second is assumming
that the impurity scattering is the dominant energy term, other than the Fermi energy.
Therefore, we discard all terms except

[
Σ̌imp, ǧp

]
and the that containing the Fermi velocity

vF . We can write these two actions as

0 =
[
E τ̂3 − ∆̂− h · σ̂, ǧp

]
+ ivF ∇ǧs −

[
Σ̌sf, ǧp

]
−
[
Σ̌imp, ǧp

]
≈ ivF ∇ǧs −

[
Σ̌imp, ǧp

]
. (4.89)



40 Green’s functions and quasiclassical theory

The above equation gives us a direct relationship between the s- and p-wave parts of the
Green’s function. To see this, we use the relation in eq. (4.85) to write out the commutator.
This can be written as

ivF ∇ǧs = −
i

2τimp
[ǧs, ǧp] = −

i

τimp
ǧsǧp. (4.90)

Acting on the above equation with ǧs from the left, we can deploy the normalization
condition of the s-wave contribution ǧsǧs = 1. This gives us the following expression for
the p-wave contribution

ǧp = −τimpvF ǧs∇ǧs. (4.91)

Since we have collected all odd terms in p̂F , the next step is to collect the even con-
tributions. One can, in principle, relax the approximation that the spin-flip term if the
term

[
Σ̌sf, ǧs

]
is kept [75, 86]. In this thesis, we will not consider spin-flip scattering, and

therefore we will neglect that term. Collecting all terms that are even in p̂F , we have the
equation [

E τ̂3 − ∆̂− h · σ̂, ǧs
]
+ ivF p̂F · ∇(p̂F · ǧp) = 0. (4.92)

We perform an average over the Fermi surface, which in practice means averaging over
the momentum direction, which is randomized in the diffusive limit. The average of the
even contribution yields [

E τ̂3 − ∆̂− h · σ̂, ǧs
]
+
ivF
3
∇ ǧp = 0. (4.93)

We can now insert ǧp from eq. (4.91) to obtain the Usadel equation. We express it as

iD∇ (ǧs∇ǧs) =
[
E τ̂3 − ∆̂− h · σ̂, ǧs

]
, (4.94)

where D =
v2F τimp

3 is the diffusion constant. Note that this equation only contains the
s-wave part of the Green’s function. Therefore, it is isotropic and can be preferable over
the Eilenberger equation, which contains the full quasiclassical Green’s function. It is,
however, important to remember our approximations: We assumed that the impurity
scattering self-energy dominated the commutator containing the quasiparticle energy, the
superconducting gap, and the ferromagnetic self-energy. Therefore, the equation is un-
suited for ferromagnets with a strong exchange-field h.

There is an important difference between the Usadel and the Eilenberger equation. They
can be used on opposite limits of the impurity density. This has direct consequences for
what symmetries the superconducting order parameter can have. We began this section by
assuming that nimp ≫ 1, which effectively made the pairing symmetry of the gap isotropic.
In the Eilenberger equation, we did not specify the self-energies and can take nimp ≈ 0.
Therefore, the Eilenberger equation can capture both s- and p-wave orbital symmetries,
illustrated in fig. 1.1, while the Usadel equation is restricted to describing s-wave pairings.
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4.6 Spin-orbit coupling

We are concerned with spin-orbit coupling since it can contribute to generating spin-
polarized triplets in proximity systems. They can, for instance, be produced by having a
varying SU(2) field, like the ferromagnet holmium, which has an intrinsic conical magne-
tization [9]. The rotating exchange field effectively creates a spin-orbit interaction for the
electrons. A ferromagnet with geometric curvature can exhibit the same type of behavior
[50, 51]. Another possibility is to have a misalignment of two different background SU(2)
fields. Therefore, another possibility for generating long-range triplets in a ferromagnetic
proximity system is to include spin-orbit coupling. If we require the Hamiltonian of the
system to be SU(2) gauge invariant up to some arbitrary constant, we can transform the
momentum as in classical mechanics, p → p − Â. If the spin-orbit coupling is present
in the form of a SU(2) gauge field, we need to replace all derivatives by their covariant
counterpart [71], as we did in eq. (3.38). Thus, the Usadel equation becomes

iDD̃(ǧD̃ǧ) =
[
E τ̂3 − ∆̂− h · σ̂, ǧ

]
. (4.95)

Note that the spin-orbit field has a 4x4 matrix form in Nambu⊗Spin space and a vector
structure in geometrical space. It can be written as Â = diag(A,−A∗), where A =
(Ax, Ay, Az) in a cartesian coordinates system [67]. The spin-orbit field may be different
depending on the system and on the symmetry breaking from which it originates. First,
we consider a form practical for studying thin films in proximity systems. The spin-orbit
field is confined to the xy-plane and describes intrinsic Rashba–Dresselhaus couplings. We
write the field as

A = (βσ1 − ασ2, ασ1 − βσ2, 0), (4.96)

where α is the Rashba coefficient, and β is the Dresselhaus coefficient [67]. If we introduce
the spin-orbit strength a and angle χ, we can in polar notation define α ≡ −a sinχ and
β ≡ a cosχ, which means the total vector can be rewritten as

A = a(σ1 cosχ+ σ2 sinχ)êx − a(σx sinχ+ σ2 cosχ)êy. (4.97)

A Rashba spin-orbit coupling in the z-direction can be a suitable choice for nanowires.
The spin-orbit vector can be written as [87]

A = (0, 0, ασ1 − ασ2). (4.98)

The two examples presented here describe kinds of intrinsic symmetry breaking. If the sys-
tem also has geometrical curvature, we need to add the strain-induced spin-orbit coupling.
As discussed in section 3.2, the strain-induced field will depend on the geometry.

4.7 Boundary conditions

There are numerous boundary conditions to choose from in the quasiclassical framework.
In the ballistic case, the first description of the boundary conditions was formulated by
Shelankov and by Zaitsev [88, 89] for spin-inactive interfaces. Later came formulations in
both equilibrium [90, 91] and non-equilibrium [92] situations. Further generalizations in-
cluded spin-active interfaces, formulated for equilibrium [93] and for non-equilibrium [94],
and interfaces with diffusive scattering characteristics [95]. In the dirty limit, Kupriyanov
and Lukichev derived a formulation appropriate for the tunneling limit [96]. This was gen-
eralized to arbitrary transmission by Nazarov [97]. A general formulation can be found in
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ref. [98] which allows for complex interface spin textures in and out of equilibrium. This
thesis will use the Kupriyanov and Lukichev boundary conditions, as they take a simple
form. Including the SO-couping, they can be expressed as

ĝRj D̃ĝRj =
1

2Ljζj

[
ĝR1 , ĝ

R
2

]
. (4.99)

where Lj is the length of material j and ĝRj is the retarded Green’s function in material j.

The quantity ζj = RB
RJ

is the barrier restance RB divided by the bulk resistance Rj . For
vacuum, the boundary condition is given by

∇̃ĝRj = 0. (4.100)

We note that we have only expressed the boundary conditions in terms of ĝR. In this
thesis, we will consider only equilibrium systems. To fully describe these systems, we only
need the retarded Green’s function.

4.8 Parametrization

To treat the Usadel equation numerically, we wish to parameterize it. There are several
ways to do it, where the most commonly used are the θ- and Riccati parametrization [81].
In the θ-parametrization, gR = cosh(θ)σ0 and fR = sinh(θ)eiϕ iσ2, where θ, ϕ are position
and energy dependent [85]. However, since the values are not bound, the solutions can
be unstable. Therefore, we will use the Riccati parametrization. The retarded Green’s
function is

ĝR =

(
gR fR

−f̃R −g̃R

)
, (4.101)

where the tilde-conjugation is g̃(R, T, p̂F , E) = g∗(R, T, p̂F ,−E). We also had the nor-
malization condition ĝRĝR = τ̂0. If we find another matrix that satisfies all the necessary
requirements of ĝR, the two should describe the same system. Therefore, we employ the
Riccati parametrization defined by

ĝR =

(
N 0

0 −Ñ

)(
1 + γγ̃ 2γ
2γ̃ 1 + γ̃γ

)
, (4.102)

where N = N and γ = γ are energy and position dependent. This reduces the problem
from an equation with 4x4 matrices to 2x2 ones. The normalization matrices are defined
as

N = (1− γγ̃)−1, Ñ = (1− γ̃γ)−1. (4.103)

We can express the Usadel equation using γ with the above parametrization. The deriva-
tion, including spin-orbit coupling, is tedious, and we present only the result. A detailed
derivation can be found in ref. [67]. We can write the Usadel equation for γ and γ̃ sep-
arately for a superconductor-ferromagnet proximity system. In the superconductor, the
equation becomes

D
[
(∇2γ) + 2(∇γ)Ñ γ̃(∇γ)

]
= −2iEγ − i(∆− γ∆∗γ), (4.104)

D
[
(∇2γ̃) + 2(∇γ̃)Nγ(∇γ̃)

]
= −2iE γ̃ + i(∆∗ − γ̃∆γ̃), (4.105)
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where ∇(·) is with respect to the center-of-mass coordinate. The Usadel equation in the
ferromagnetic region takes the form

D
[
(∇2γ) + 2(∇γ)Ñ γ̃(∇γ)

]
=− ih · (γσ∗ − σγ)− 2iEγ + 2iD(A+ γA∗γ̃)N(∇γ)

+ 2iD(∇γ)Ñ(A∗ + γ̃Aγ) +D(A2γ − γ(A∗)2)

+ 2D(Aγ + γA∗)Ñ(A∗ + γ̃Aγ), (4.106)

D
[
(∇2γ̃) + 2(∇γ̃)Nγ(∇γ̃)

]
=ih · (γ̃σ − σ∗γ̃)− 2iE γ̃ − 2iD(A∗ + γ̃Aγ)Ñ(∇γ̃)
− 2iD(∇γ̃)N(A+ γA∗γ̃) +D((A∗)2γ̃ − γ̃A2)

+ 2D(A∗γ̃ + γ̃A)N(A+ γA∗γ̃) . (4.107)

The four equations above describe what is happening within the materials. Using the
Riccati parametrization, we can also write the boundary conditions. When defining Ωj =
1/Ljζj , the Kupriyanov-Lukichev boundary conditions can be summarized as

(∇γ1)− i(Aγ1 + γ1A
∗) = Ω1(1− γ1γ̃2)N2(γ2 − γ1), (4.108)

(∇γ2)− i(γ2A∗ +Aγ2) = Ω2(1− γ2γ̃1)N1(γ2 − γ1). (4.109)

When against vacuum, the right-hand side goes to zero as Ωj → 0. The indexes i in γi
refer to the materials on either side of the interface. Thus, to solve the Usadel equation in
one material, we need to know the solution on the other side of the interface. One could
solve the two sides iteratively, but we are mainly interested in the solution in the material
next to the superconductor. Thus, we assume a bulk solution in the superconductor and
only find the Green’s function in the other material. The bulk solution can be found
analytically by realizing that the derivatives on the left-hand side in eq. (4.104) vanish
since they are with respect to the center-of-mass coordinate. The equation becomes

2E
(
γαα γαβ
γβα γββ

)
=

(
∆∗(γααγβα − γααγαβ) ∆∗(γααγββ − γ2αβ)−∆

∆∗(γ2βα − γααγββ) + ∆ ∆∗(γβαγββ − γαβγββ)

)
. (4.110)

It can be shown that γαα = γββ = 0 from the relations of the matrices above. Hence, the
solutions to the quadratic equations for γαβ and γβα gives

γαβ =
−E +

√
E2 − |∆|2
∆∗ = −γβα. (4.111)

The elements of the normalization matrix N−1 = 1 − γγ̃ are equal and can be expressed
in terms of the quadratic equations above. We find that

1− γαβ γ̃βα =
−2E2 + 2E

√
E2 − |∆|2 + 2|∆|2
|∆|2 = 1− γ̃αβγβα. (4.112)

Now we can express the first element of the total retarded ordinary and anomalous BCS
Green’s functions as

gR
BCS

=
E√

E2 − |∆|2
, fR

BCS
=

∆√
E2 − |∆|2

. (4.113)

If we write the gap ∆ = |∆|eiϕiσ2, and introduce θ = arctanh(|∆|/E), we can write the γ
matrices in terms of hyperbolic functions [99]. They become

γBCS =
sinh θ

cosh θ + 1
eiϕiσ2, γ̃BCS = − sinh θ

cosh θ + 1
e−iϕiσ2 . (4.114)

With this, we have a theory to describe proximity systems in the diffusive limit. We have
also developed a suitable expression for the Usadel equation for numerical implementation
and found the bulk superconductor solution, which will be used in the boundary conditions.
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4.9 Physical observables

To make experimental predictions, we need to relate the Green’s function to physical
observables. We will present the density of states, which can directly be related to triplet
correlations. We also present the expression for the charge current.

4.9.1 Density of states

As we have discussed, the retarded Green’s function is directly related to the density of
states. It can be seen from the fact that the elements on the diagonal are related to
⟨ψ†

σ(R, E)ψσ(R, E)⟩. We express the normalized density of states as

D(R, E) = 1

2
Re{Tr

[
gR(R, E)

]
} . (4.115)

The value at zero energy, D(R, 0) is directly related to the relation between singlets and
triplets. The singlets reduce the available states, while the triplets increase it. This can
be illustrated in the weak proximity limit. Before going to this limit, we introduce the d
vector. From this vector, we may extract the short- and long-ranged triplet components
of the Green’s function as well. It can be defined by rewriting the anomalous Green’s
function as

fR = (f0 + d · σ) iσ2, (4.116)

where d = (dx, dy, dz). In a ferromagnet with an exchange-field h, this decomposition

makes the short-ranged triplet component d|| = d · ĥ and the long-ranged d⊥ = |d × ĥ|.
This notation may be confusing because the d-vector projection parallel to h describes
short-ranged triplets. However, when the spins are parallel to h we have long-ranged
triplets, described by the projection of d perpendicular to the exchange field h. Generally,
the d-vector describes triplet correlations with spin-polarization perpendicular to itself.

Getting back to the zero energy density of states, we use the Riccati parametrization.
In the weak proximity limit, we assume that |γαβ| ≪ 1 [52]. Therefore, we may neglect
terms of order O(γ2) and take N ≈ 1. We can write the zero energy density in the weak
proximity limit [64] as

D(R, 0) = 1− |fs(R, 0)|
2

2
+
|d(R, 0)|2

2
. (4.117)

If we have a normal metal, both the singlet and triplet contributions are zero. This yields
the normal metal density of states, one everywhere. If we have a bulk superconductor,
the singlet contribution cancels the 1, such that we get a gap in the density of states. If
D(R, 0) > 1 the triplet correlations dominate.

4.9.2 Charge current density

The charge current density is related to the change of the Keldysh component of the
Green’s function [75]. Using the density of states at the Fermi surface and the diffusion
constant, we can write the charge current density as

j(R, T ) =
eNFD

4

∫
dE Tr

[
τ̂3(ĝD̃ĝ)K

]
, (4.118)

where we trace the component in the Keldysh index (ĝD̃ĝ)K = (ĝRD̃ĝK) + (ĝKD̃ĝA).
In equilibrium, the retarded and advanced Green’s functions are related to the Keldysh
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component and each other. Since we are interested in equilibrium situations only, we can
employ the relations in eq. (4.28) to write

j(R, T ) =
eNFD

4

∫
dE tanh

(
βE
2

)
Tr
[
τ̂3
(
ĝRD̃ĝR + (τ̂3ĝ

RD̃ĝRτ̂3)†
)]
. (4.119)

This concludes the chapter about Green’s functions, where we have developed the relevant
equations of motion and expressions for physical observables.
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Chapter 5

Lattice models

This chapter will explore the framework which discretizes a problem onto a specific lattice.
The advantage of this method, in contrast to the quasiclassical theory presented previously
in this thesis, is that the length scales and self-energy magnitudes are not limiting [100].
The method presented here is often referred to as the Bogoliubov-de Gennes after the
book ”Superconductivity of metals and alloys” written by de Gennes [101]. Our method
is based on the approach described in Chapter 2 of ref. [102], and similar methods can be
found in refs. [100, 103, 104]. We will derive a tight-binding Hamiltonian, to which we
then introduce a lattice.

5.1 Derivation of the tight-binding model

We begin with a general continuum Hamiltonian and derive the discretized counterpart,
as well as other useful relations and equations for numerical calculations within the tight-
binding formulation. Since this thesis is focused on superconductivity, we begin with a
Hamiltonian consisting of a single-particle term and a two-particle interaction term

H =
∑
σσ′

∫
dr ψ†

σ(r)hσσ′(r)ψσ′(r)

+
∑
σσ′

∫ ∫
dr dr′ ψ†

σ(r)ψ
†
σ′(r

′)Vσσ′(r, r′)ψσ′(r′)ψσ(r) , (5.1)

where the spin-indices in hσσ′ allow for spin-flip effects and ferromagnetism for instance. It
also allows for spin-orbit interactions, which we have shown is an integral part of discussing
curvature effects. Next, we introduce Wannier orbitals w(r−Ri), which describe electrons
that are localized around ionic lattice sites located at Ri. A qualitative picture of the
spatial part of w(r − Ri) can be seen in fig. 5.1. These form a complete orthonormal
basis. That means ∫

dr w∗(r −Ri) w(r −Rj) = δij , (5.2)

and that the field operators can be written as

ψσ(r) =
∑
i

w(r −Ri) ciσ, ψ†
σ′(r

′) =
∑
j

w∗(r′ −Rj) c
†
jσ . (5.3)

The operators c†iσ and ciσ create and annihilate a particle at lattice site i respectively
and obey the usual fermionic anti-commutation relations in eq. (2.1). Next, we use these

47
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orbitals to map the continuous Hamiltonian to a lattice by considering one term at a time.
Beginning with the non-interacting part, we can write

H0 =
∑
σσ′

∫
dr ψ†

σ(r)

(
− ℏ2

2m
∇2 − µ(r)

)
δσσ′ ψσ′(r)

=
∑
ij

c†iσcjσ

∫
dr w∗(r −Ri)

(
− ℏ2

2m
∇2 − µ(r)

)
w(r −Rj) . (5.4)

To simplify this expression, we assume that the spatial part of the Wannier orbitals decays
rapidly away from each lattice site, as illustrated in fig. 5.1. Thus, we see that the orbitals
evaluate to zero far away. Doing integration by parts in eq. (5.4), we get

H0 = −
∑
iσ

µic
†
iσciσ −

∑
ijσ

c†iσcjσ
ℏ2

2m

{
w∗(r −Ri)∇w(r −Rj)

∣∣∣
r→±∞

−
∫
dr [∇w(r −Ri)]

∗ ∇w(r −Rj)

}
= −

∑
iσ

µic
†
iσciσ −

∑
⟨ij⟩σ

tijc
†
iσcjσ , (5.5)

where we have used the idea that the orbitals are vanishing infinitely far away. We have
also inserted tij as the hopping integral as the orbitals may overlap, which gives rise to a
finite tunneling amplitude for electrons to neighboring ions. However, we assume that only
nearest neighbors have a substantial contribution, and thus tij is only finite for j = i± 1.
We will later rewrite the Hamiltonian and return to Nambu⊗Spin space, and therefore
already note that t∗ij = tji, which can be seen directly from the integral.

Figure 5.1: A qualitative picture of the spatial part of the electron wavefunction described
by the Wannier orbitals. The overlapping regions give tunneling amplitudes between sites.
In the nearest neighbor approximation, we assume tij is non-negligible for j = i± 1.
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Next, we consider how the spin-orbit interaction is mapped. We consider spin-orbit an
effective background SU(2) field [71]. Thus, we write the spin-orbit part of the Hamiltonian
as

Hsoc =
∑
σσ′

∫
dr ψ†

σ(r)
i

m
Aσσ′ · ∇ψσ′(r)

=
∑
ijσσ′

c†iσcjσ′
i

m
Aσσ′ ·

∫
drw∗(r −Ri)∇w(r −Rj)

=
∑

⟨ij⟩σσ′

ασσ′
ij c†iσcjσ′ , (5.6)

where the integral ασσ′
ij can be interpreted as a spin-dependent hopping term between

neighboring ions. This term can be added to the hopping, rewriting it as tσσ
′

ij = tij +α
σσ′
ij ,

which is not uncommon. However, we will keep it as a separate term. Considering the
conjugate again, we start by noting that the spin-orbit field is Hermitian, which means
A∗

σσ′ = Aσ′σ. We relate the integral over the Wannier orbitals to the nearest neighbor
vector dij which changes sign for hopping in opposite directions, dij = −dji. Therefore,
we write the spin-orbit term as ασσ′

ij = iα n · (σ × dij)
σσ′

, where the vector n is the
direction of symmetry breaking. For later use, we define a vector a associated with the
spin-orbit

ασσ′
ij = aσσ′

ij · dij . (5.7)

It also lets us write down

ασσ′
ij =

(
ασ′σ
ji

)∗
, aσσ′

ij = −
(
aσ′σ
ji

)∗
= −

(
aσ′σ
ij

)∗
, (5.8)

which will be used later in the derivation. For more details about the relationship between
the Wannier orbitals and the nearest neighbor vectors, see appendix C.1.

Lastly, we consider the superconducting interaction part of the Hamiltonian. This inter-
action is realized through a two-particle attractive potential and can be written as

Hs = −
∫
dr U(r)ψ†

↓(r)ψ
†
↑(r

′)ψ↑(r
′)ψ↓(r)

= −
∫
dr
{
∆(r)ψ†

↓(r)ψ
†
↑ +∆∗(r)ψ↑(r)ψ↓ + U(r)⟨ψ†

↓(r)ψ
†
↑(r)⟩⟨ψ↑(r)ψ↓(r)⟩

}
, (5.9)

where we have inserted the mean-field ansatz ∆(r) = U(r)⟨ψ↑(r)ψ↓(r)⟩. Commutating
the field operators and inserting the Wannier orbitals as before, we obtain

Hs =
∑
ij

{
c†i↑c

†
j↓

∫
dr∆(r)w∗(r −Ri)w

∗(r −Rj)

+ ci↓cj↑

∫
dr∆∗(r)w(r −Ri)w(r −Rj)

}
=
∑
i

(
∆ic

†
i↑c

†
i↓ +∆∗

i ci↓ci↑

)
, (5.10)

where we have used that ∆ij ≈ ∆iδij . This implies that we assume ∆(r) varies slowly
compared to the strongly localized Wannier orbitals. Therefore, the integral above only
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gives a non-negligible contribution when i = j. We have not considered the last term in
eq. (5.9). Mapping it to a lattice, the integral gives

E0 = −
∫
dr U(r)⟨ψ†

↓(r)ψ
†
↑(r)⟩⟨ψ↑(r)ψ↓(r)⟩

= −
∫
dr U(r)

∆(r)

U(r)

∆∗(r)

U(r)

=
∑
i

|∆i|2
Ui

. (5.11)

Collecting all terms, we have a Hamiltonian that describes free electrons, possible spin-
dependent hopping between sites, and superconducting pairwise interactions on a dis-
cretized lattice. It can be written as

H = E0 −
∑
iσ

µic
†
iσciσ −

∑
⟨ij⟩σσ′

(
tijδσσ′ + ασσ′

ij

)
c†iσcjσ′

+
∑
i

(
∆ic

†
i↑c

†
i↓ +∆∗

i ci↓ci↑

)
. (5.12)

As in the quasiclassical theory, we introduce a basis such that our Hamiltonian is written
in Nambu⊗Spin space. We choose the same basis as previously, namely

ĉ†i =
(
c†i↑, c†i↓, ci↑, ci↓

)
. (5.13)

We do a trick to reconcile the Hamiltonian we already have with the newly chosen ba-
sis. We will rewrite the Hamiltonian using the fermionic anti-commutation relations in
eq. (2.1), and then collect all constant terms, not involving creation or annihilation op-
erators, into the constant E . We will discard this constant when introducing the lattice
space, as it does not change the system’s dynamics. We can write the total Hamiltonian
as

H = E − 1

2

∑
iσ

µi

(
c†iσciσ − ciσc

†
iσ

)
− 1

2

∑
⟨ij⟩σ

(
tijc

†
iσcjσ − tjiciσc

†
jσ

)
− 1

2

∑
⟨ij⟩σσ′

(
ασσ′
ij c†iσcjσ′ − ασ′σ

ji ciσc
†
jσ′

)
+

1

2

∑
i

(
∆i(c

†
i↑c

†
i↓ − c

†
i↓c

†
i↑) + ∆∗

i (ci↓ci↑ − ci↑ci↓)
)
. (5.14)

Using the Nambu spinor, we can write it much more compactly, which will be the starting
point when introducing the actual lattice

H = E − 1

2

∑
ij

ĉ†i Ĥij ĉj , (5.15)

Ĥij =


µiδij + tij + α↑↑

ij α↑↓
ij 0 ∆iδij

α↓↑
ij µiδij + tij + α↓↓

ij −∆iδij 0

0 −∆∗
i δij −µiδij − tji − α↑↑

ji −α↓↑
ji

∆∗
i δij 0 −α↑↓

ji −µiδij − tji − α↑↑
ji

 .

(5.16)
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5.2 Periodic boundary condictions

The Hamiltonian derived in the previous subsection is valid for systems of any dimension.
In this thesis, we will only consider the case of one- and two-dimensional lattices. In the
first case, we only apply periodic boundary conditions when investigating a closed ring
or ellipse, which will be specified in the results. In that case, the only ingredient needed
is a hopping between the first and the last lattice site. When investigating systems in
two dimensions, we can apply periodic boundary conditions in the direction without any
material change, which we label y. The equations needed for that are derived in this
section. This allows us to model a large system using only a few lattice points. Therefore,
we can write the fermionic operators as the following Fourier transforms

ci,σ =
1√
Ny

∑
ky

cix,ky ,σe
ikyiy , (5.17)

c†i,σ =
1√
Ny

∑
ky

c†ix,ky ,σe
−ikyiy . (5.18)

The sum over ky is restricted to the first Brillouin zone, which is ky ∈ (−π, π]. The values
that ky can take are also restricted by the periodic boundary conditions and the number
of lattice points in the y- direction. The momentum can only take values ky = 2πn/Ny,
where n is an integer [105]. We also want to note the relation

1

Ny

∑
iy

ei(ky−k′y)iy = δky ,k′y , (5.19)

which will be important when changing the fermionic operators. To begin with, we which
to rewrite the Hamiltonian in eq. (5.14) using the operators cix,ky ,σ and c†ix,ky ,σ. We will go
through the calculation of each term explicitly. Beginning with the first sum, containing
the chemical potential, we get∑

iσ

µi

(
c†iσciσ − ciσc

†
iσ

)
=

1

Ny

∑
ix,iy ,σ

∑
ky ,k′y

µix,ky

(
c†ix,ky ,σcix,k′y ,σe

i(k′y−ky)iy − cix,ky ,σc†ix,k′y ,σe
i(ky−k′y)iy

)
=
∑

ix,ky ,σ

(
µix,ky c

†
ix,ky ,σ

cix,ky ,σ − µix,−ky cix,−ky ,σc
†
ix,−ky ,σ

)
. (5.20)

In the second term, we have the nearest neighbor hopping. We will split the sum into
hopping in the x- and y-direction for reasons that will become clear shortly. Starting with
hopping in the x-direction, we get∑

⟨ij⟩x,σ

(
tijc

†
iσcjσ − tjiciσc

†
jσ

)
=

1

Ny

∑
⟨ixjx⟩,iy ,σ

∑
ky ,k′y

(
tix,jx,kyc

†
ix,ky ,σ

cjx,k′y ,σe
i(k′y−ky)iy − tjx,ix,kycix,ky ,σc†jx,k′y ,σe

i(ky−k′y)iy
)

=
∑

⟨ixjx⟩,ky ,σ

(
tix,jx,kyc

†
ix,ky ,σ

cjx,ky ,σ − tjx,ix,−kycix,−ky ,σc
†
jx,−ky ,σ

)
, (5.21)

which has the same form as the previous hopping term. However, in the y-direction, we
will get a hopping described by an onsite formulation modulated by ky. In this direction,
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we need to write out both directions of hopping. We get∑
⟨ij⟩y ,σ

(
tijc

†
iσcjσ − tjiciσc

†
jσ

)
=

1

Ny

∑
ix,iy ,σ

∑
ky ,k′y

∑
±

(
tix,ix,kyc

†
ix,ky ,σ

cix,k′y ,σe
−ikyiy+ik′y(iy±1)

− tix,ix,kycix,ky ,σc†ix,k′y ,σe
ikyiy−ik′y(iy±1)

)
=

1

Ny

∑
ix,iy ,σ

∑
ky ,k′y

∑
±

(
tix,ix,kye

±ik′yc†ix,ky ,σcix,k′y ,σe
i(k′y−ky)iy

− tix,ix,kye∓ik′ycix,ky ,σc
†
ix,k′y ,σ

ei(ky−k′y)iy

)
=
∑

ix,ky ,σ

∑
±

(
tix,ix,kye

±ikyc†ix,ky ,σcix,ky ,σ − tix,ix,kye
∓ikycix,ky ,σc

†
ix,ky ,σ

)
=
∑

ix,ky ,σ

2 cos ky

(
tix,ix,ky c

†
ix,ky ,σ

cix,ky ,σ − tix,ix,−ky cix,−ky ,σc
†
ix,−ky ,σ

)
, (5.22)

where tix,ix,ky is the hopping integral for neighboring sites in the y-direction. Next, we
see how the spin-orbit hopping term transforms. Again, we consider separately hopping
in the x- and y-direction. We begin with∑

⟨ij⟩x,σ,σ′

(
ασσ′
ij c†iσcjσ′ − ασ′σ

ji ciσc
†
jσ′

)
=

1

Ny

∑
ix,jx,iy

∑
σ,σ′

∑
ky ,k′y

(
ασσ′
ix,jxc

†
ix,ky ,σ

cjx,k′y ,σ′ei(k
′
y−ky)iy

− ασ′σ
jx,ixcix,ky ,σc

†
jx,k′y ,σ

′e
i(ky−k′y)iy

)
=

∑
ix,jx,ky ,σ,σ′

(
ασσ′
ix,jxc

†
ix,ky ,σ

cjx,ky ,σ′ − ασ′σ
jx,ixcix,ky ,σc

†
jx,ky ,σ′

)
. (5.23)

Following the same procedure as in eq. (5.22), we get∑
⟨ij⟩y ,σ,σ′

(
ασσ′
ij c†iσcjσ′ − ασ′σ

ji ciσc
†
jσ′

)
=

1

Ny

∑
ix,iy

∑
σ,σ′

∑
ky ,k′y

∑
±
±
(
aσσ

′
ix,ixc

†
ix,ky ,σ

cix,k′y ,σ′e−ikyiy+ik′y(iy±1)

− aσ′σ
ix,ixcix,ky ,σc

†
ix,k′y ,σ

′e
ikyiy−ik′y(iy±1)

)
=

1

Ny

∑
ix,iy

∑
σ,σ′

∑
ky ,k′y

∑
±
±
(
aσσ

′
ix,ixe

±ik′yc†ix,ky ,σcix,k′y ,σ′ei(k
′
y−ky)iy

− aσ′σ
ix,ixe

∓ik′ycix,ky ,σc
†
ix,k′y ,σ

′e
i(ky−k′y)iy

)
=
∑
ix,ky

∑
σ,σ′

∑
±
±
(
aσσ

′
ix,ixe

±ikyc†ix,ky ,σcix,ky ,σ′ − aσ′σ
ix,ixe

∓ikycix,ky ,σc
†
ix,ky ,σ′

)
=
∑
ix,ky

∑
σ,σ′

2i sin ky

(
aσσ

′
ix,ixc

†
ix,ky ,σ

cix,ky ,σ′ + aσ
′σ

ix,ixcix,−ky ,σc
†
ix,−ky ,σ′

)
, (5.24)
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where aix,ix is the spin-dependent hopping in the y-direction. Also, note that a ± was
added to account for the hopping in the two opposite directions along the y-axis. It comes
directly from the component dyij of the nearest neighbor vector. Finally, the supercon-
ducting term transforms as

∑
i,σ

(
σ∆ic

†
i,σc

†
i,−σ − σ∆∗

i ci,σci,−σ

)
=

1

Ny

∑
ix,iy ,σ

∑
ky ,k′y

(
σ∆ix,kyc

†
ix,ky ,σ

c†ix,k′y ,−σe
−i(ky+k′y)iy

− σ∆∗
ix,kycix,ky ,σcix,k′y ,−σe

i(ky+k′y)iy

)
=
∑
ix,ky

(
σ∆ix,kyc

†
ix,ky ,σ

c†ix,−ky ,−σ − σ∆∗
ix,kycix,ky ,σcix,−ky ,−σ

)
. (5.25)

Collecting all the terms above, we can rewrite the Hamiltonian in eq. (5.14) to have
periodic boundary conditions. We write it as

H = E − 1

2

∑
ix,ky ,σ

(
µix,ky c

†
ix,ky ,σ

cix,ky ,σ − µix,−ky cix,−ky ,σc
†
ix,−ky ,σ

)
− 1

2

∑
⟨ixjx⟩,ky ,σ

(
tix,jx,kyc

†
ix,ky ,σ

cjx,ky ,σ − tjx,ix,−kycix,−ky ,σc
†
jx,−ky ,σ

)
− 1

2

∑
ix,ky ,σ

2 cos ky

(
tix,ix,ky c

†
ix,ky ,σ

cix,ky ,σ − tix,ix,−ky cix,−ky ,σc
†
ix,−ky ,σ

)
− 1

2

∑
⟨ixjx⟩,ky ,σ,σ′

(
ασσ′
ix,jxc

†
ix,ky ,σ

cjx,ky ,σ′ − ασ′σ
jx,ixcix,−ky ,σc

†
jx,−ky ,σ′

)
− 1

2

∑
ix,ky

∑
σ,σ′

2i sin ky

(
aσσ

′
ix,ixc

†
ix,ky ,σ

cix,ky ,σ′ + aσ
′σ

ix,ixcix,−ky ,σc
†
ix,−ky ,σ′

)
+

1

2

∑
ix,ky ,σ

(
σ∆ix,kyc

†
ix,ky ,σ

c†ix,−ky ,−σ − σ∆∗
ix,kycix,ky ,σcix,−ky ,−σ

)
. (5.26)

Note that, with this form, we allow there to be a momentum dependence in either direction
in the spin-orbit coupling. Thus, the matrix αix,ix is not equal to αix,jx with ix = jx, since
these are related to a momentum dependence in the y- and x-direction, respectively. If we
choose a new basis, the above equation can be rewritten to the same form as eq. (5.15).
If we choose the new basis

B̂†
ix,ky

=
(
c†ix,ky ,↑ c†ix,ky ,↓ cix,−ky ,↑ cix,−ky ,↓

)
. (5.27)

With this basis, we can again write the Hamiltonian compactly as

H = E − 1

2

∑
ix,jx,ky

B̂†
ix,ky

Ĥix,jx,kyB̂jx,ky , (5.28)
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where

Ĥix,jx,ky =
ϵix,jx,ky + λ↑↑ix,jx,ky λ↑↓ix,jx,ky 0 ∆ix,kyδix,jx

λ↓↑ix,jx,ky ϵix,jx,ky + λ↓↓ix,jx,ky −∆ix,kyδix,jx 0

0 −∆∗
ix,−ky

δix,jx −ϵjx,ix,−ky − λ↑↑jx,ix,−ky
−λ↓↑jx,ix,−ky

∆∗
ix,−ky

δix,jx 0 −λ↑↓jx,ix,−ky
−ϵjx,ix,−ky − λ↓↓jx,ix,−ky

 ,

(5.29)

and

ϵix,jx,ky =

(
2 cos ky tix,ix,ky + µix,ky

)
δix,jx + tix,jx,kyδix,jx±1 , (5.30)

λσσ
′

ix,jx,ky = 2 sin ky a
σσ′
ix,ixδix,jx + aσσ

′
ix,jx(δix,jx+1 − δix,jx−1) . (5.31)

To conclude, we have derived a tight-binding Hamiltonian for a square lattice with periodic
boundary conditions in the y-direction. Next, we will express the Hamiltonian as a single
matrix in lattice space.

5.3 Matrix equations in lattice space

To make predictions about observables, we formulate the theory so that it can be solved
numerically. To write the problem even more compactly, we introduce an operator Wky

[104], a column vector where each element is a Nambu spinor at a different lattice site.
The vector and its hermitian conjugate can be written as

Wky =


B̂1,ky

B̂2,ky

B̂3,ky
...

B̂Nx,ky

 , W †
ky

=
(
B̂†

1,ky
B̂†

2,ky
B̂†

3,ky
. . . B̂†

Nx,ky

)
, (5.32)

where Nx is the number of lattice sites in the x-direction. This means that these are of
length 4Nx, since each Nambu spinor B̂ix,ky contains four elements, as seen in eq. (5.27).

Similiarily, we can sort all Hamiltonians Ĥix,jx,ky into a 4Nx × 4Nx matrix Hky . This
matrix will have the following structure

Hky =


Ĥ1,1,ky Ĥ1,2,ky Ĥ1,3,ky . . . Ĥ1,Nx,ky

Ĥ2,1,ky Ĥ2,2,ky Ĥ2,3,ky . . . Ĥ2,Nx,ky

Ĥ3,1,ky Ĥ3,2,ky Ĥ3,3,ky . . . Ĥ3,Nx,ky
...

...
...

. . .
...

ĤNx,1,ky ĤNx,2,ky ĤNx,3,ky . . . ĤNx,Nx,ky

 . (5.33)

As before, the indices describe hopping between lattice site ix and jx in Ĥix,jx,ky . This
means the diagonal are onsite terms, while the off-diagonals describe hopping. The first
off-diagonal elements are nearest neighbors, and the second off-diagonal elements are next-
nearest neighbors. Discarding the constant energy term E , the Hamiltonian describing
system can be written as

H = −1

2

∑
ky

W †
ky
HkyWky . (5.34)
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5.3.1 Particle-hole symmetry

The end goal is to diagonalize our Hamiltonian and make predictions using the eigenen-
ergies and new quasiparticle operators. There is, however, a point to be made about the
signs of the eigenenergies, which relates to a particle-hole symmetry [103]. We define our
eigenenergies by the eigenvalue problem

HkyΦn,ky = En,kyΦn,ky , (5.35)

where Φn,ky is a 4Nx-element eigenvector given by Φ†
n,ky

=
(
ϕ̂†1,n,ky ϕ̂†2,n,ky . . . ϕ̂†Nx,n,ky

)
.

This means that the problem can be rewritten for each lattice site ix and momentum index
ky, namely

∑
jx

Ĥix,jx,ky ϕ̂jx,n,ky = En,ky ϕ̂ix,n,ky . (5.36)

The eigenvectors can be written in terms of their elements. It has four entries, where the
first two effectively correspond to a particle spinor and the last two a hole spinor. We
denote these elements

ϕ̂†ix,n,ky =
(
u∗ix,n,ky v∗ix,n,ky w∗

ix,n,ky
x∗ix,n,ky

)
. (5.37)

If we explicitly write out the matrix equation in eq. (5.35), we see the particle-hole sym-
metry in the Hamiltonian, where the top rows are related to the bottom ones through
complex conjugation. We will show that this also results in a similar symmetry in the
eigenenergies. We begin by writing out the four equations for each element separately,
which gives

∆ix,kyxix,n,ky +
∑
jx

[(
ϵix,jx,ky + λ↑↑ix,jx,ky

)
ujx,n,ky + λ↑↓ix,jx,kyvjx,n,ky

]
= En,kyuix,n,ky ,

(5.38)

−∆ix,kywix,n,ky +
∑
jx

[(
ϵix,jx,ky + λ↓↓ix,jx,ky

)
vjx,n,ky + λ↓↑ix,jx,kyujx,n,ky

]
= En,kyvix,n,ky ,

(5.39)

−∆∗
ix,−kyvix,n,ky −

∑
jx

[(
ϵjx,ix,−ky + λ↑↑jx,ix,−ky

)
wjx,n,ky + λ↓↑jx,ix,−ky

xjx,n,ky

]
= En,kywix,n,ky ,

(5.40)

∆∗
ix,−kyuix,n,ky −

∑
jx

[(
ϵjx,ix,−ky + λ↓↓jx,ix,−ky

)
xjx,n,ky + λ↑↓jx,ix,−ky

wjx,n,ky

]
= En,kyxix,n,ky .

(5.41)
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To gain insight into the particle-hole symmetry, we complex conjugate the equations for
the last two elements and let ky → −ky. This gives

∆ix,kyxix,n,ky +
∑
jx

[(
ϵix,jx,ky + λ↑↑ix,jx,ky

)
ujx,n,ky + λ↑↓ix,jx,kyvjx,n,ky

]
= En,kyuix,n,ky ,

(5.42)

−∆ix,kywix,n,ky +
∑
jx

[(
ϵix,jx,ky + λ↓↓ix,jx,ky

)
vjx,n,ky + λ↓↑ix,jx,kyujx,n,ky

]
= En,kyvix,n,ky ,

(5.43)

∆ix,kyv
∗
ix,n,−ky +

∑
jx

[(
ϵix,jx,ky + λ↑↑ix,jx,ky

)
w∗
jx,n,−ky + λ↑↓ix,jx,kyx

∗
jx,n,−ky

]
= −En,−kyw

∗
ix,n,−ky ,

(5.44)

−∆ix,kyu
∗
ix,n,−ky +

∑
jx

[(
ϵix,jx,ky + λ↓↓ix,jx,ky

)
x∗jx,n,−ky + λ↓↑ix,jx,kyw

∗
jx,n,−ky

]
= −En,−kyx

∗
ix,n,−ky .

(5.45)

From the above equations, we can identify the eigenvector

Φn,ky =
(
u1,n,ky v1,n,ky w1,n,ky x1,n,ky u2,n,ky v2,n,ky , . . .

)T
, (5.46)

which corresponds to the the positive eigenvalues +En,ky . In addition to this vector, there
must be another eigenvector

Ψn,−ky =
(
w∗
1,n,−ky

x∗1,n,−ky
u∗1,n,−ky

v∗1,n,−ky
w∗
2,n,−ky

x∗2,n,−ky
, . . .

)T
, (5.47)

associated with the negative eigenvalues −En,−ky . All the eigenvalues of eq. (5.35) can
thus be written as E1,ky , . . . , E2Nx,ky ,−E1,−ky , . . . ,−E2Nx,−ky . The eigenvalues always come
in pairs since there are two linearly independent eigenvectors. For the ky = 0 case we can
write En,0 = −En+2Nx,0. The eigenvector components for the zero momentum are related
through

uix,n,0 = v∗ix,n+2Nx,0, wix,n,0 = x∗ix,n+2Nx,0 ,

vix,n,0 = u∗ix,n+2Nx,0, xix,n,0 = w∗
ix,n+2Nx,0 . (5.48)

This observation will be important when we use the eigenvectors to express expectation
values since we should only use linearly independent operators. To do this, we will use
the zero momentum relations above and the relationship between eqs. (5.46) and (5.47).

5.3.2 Diagonalization

Next, we attack the actual problem at hand, diagonalizing our Hamiltonian. First, we
make a note that Hky is Hermitian since Ĥix,jx,ky is. Thus, we can diagonalize the matrix
by using the eigenvectors we previously found. The diagonalization looks like

Hky = PkyDkyP
−1
ky

= PkyDkyP
†
ky
, (5.49)

where Pky =
[
Φ1,ky Φ2,ky . . . Φ4Nx,ky

]
is a block matrix andDky = diag

(
E1,ky , E2,ky , . . . , E4Nx,ky

)
is a diagonal matrix. Inserting this diagonalization into eq. (5.34) we get

H = −1

2

∑
n,ky

En,kyγ†n,kyγn,ky , (5.50)
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where γn,ky is the nth element of the new quasiparticle operators we define by γ†ky =W †
ky
Pky

and γky = P−1
ky
Wky . We note that the new quasiparticle operators do obey the usual

fermionic anti-commutation relations in eq. (2.1). To see how the new operators are
related to the old ones, we explicitly write out the relation

 γ1,ky
...

γ4Nx,ky

 =



u1,1,ky . . . u1,4Nx,ky

v1,1,ky . . . v1,4Nx,ky

w1,1,ky . . . w1,4Nx,ky

x1,1,ky . . . x1,4Nx,ky
...

. . .
...

uNx,1,ky . . . uNx,4Nx,ky

vNx,1,ky . . . vNx,4Nx,ky

wNx,1,ky . . . wNx,4Nx,ky

xNx,1,ky . . . xNx,4Nx,ky



†


c1,ky ,↑
c1,ky ,↓
c†1,−ky ,↑
c†1,−ky ,↓

...
cNx,ky ,↑
cNx,ky ,↓
c†Nx,−ky ,↑
c†Nx,−ky ,↓


, (5.51)

which can be written more concisely as

γn,ky =
∑
ix

(
u∗ix,n,kycix,ky ,↑ + v∗ix,n,kycix,ky ,↓ + w∗

ix,n,kyc
†
ix,−ky ,↑ + x∗ix,n,kyc

†
ix,−ky ,↓

)
. (5.52)

Because of the symmetry arguments from before, there must be another eigenvector
Ψn,−ky with eigenvalues −En,−ky . Doing the same calculation with the block matrix
P =

[
Ψ1,−ky Ψ2,−ky . . . Ψ4Nx,−ky

]
gives the new quasiparticle

γm,ky =
∑
jx

(
wjx,m,−kycjx,ky ,↑ + xjx,m,−kycjx,ky ,↓ + ujx,m,−kyc

†
jx,−ky ,↑ + vjx,m,−kyc

†
jx,−ky ,↓

)
,

(5.53)

which is not independent of those from the first eigenvector Φn,ky . If we take the hermitian
conjugate and transform ky → −ky, we see they are related

γ†m,−ky
=
∑
jx

(
w∗
jx,m,kyc

†
jx,−ky ,↑ + x∗jx,m,kyc

†
jx,−ky ,↓ + u∗jx,m,kycjx,ky ,↑ + v∗jx,m,kycjx,ky ,↓

)
= γm,ky .

(5.54)

This means that the quasiparticle operators stemming from the two eigenvectors Φn,ky and

Ψn,−ky with opposite signed energy spectrums are related through γn,ky = γ†n,−ky
. This

also means that they are not independent. It can be understood from the interpretation
that removing a Bogoliubov quasiparticle γn,ky with energy En,ky is the same as creating a

Bogoliubov hole γ†n,−ky
with energy −En,−ky [103]. Conversely, we may also write the old

operators in terms of the new ones. They are related through

cix,ky ,↑ =
∑
n

uix,n,kyγn,ky , cix,ky ,↓ =
∑
n

vix,n,kyγn,ky , (5.55)

c†ix,−ky ,↑ =
∑
n

wix,n,kyγn,ky , c†ix,−ky ,↓ =
∑
n

xix,n,kyγn,ky . (5.56)

We are, however, not quite finished with the diagonalization. In eq. (5.50) we have written
the diagonalized Hamiltonian in terms of linear dependent eigenvectors γn,ky and γn,−ky

since the momentum sum covers the entire Brillouin zone. Therefore, we want to express
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it in terms of linearly independent vectors. To do so we split the sum into its positive,
negative, and zero momentum contributions. Therefore, we can write

H =− 1

2

∑
n,ky

En,kyγ†n,kyγn,ky

=− 1

2

∑
n,ky>0

En,kyγ†n,kyγn,ky −
1

2

∑
n,ky<0

En,kyγ†n,kyγn,ky

− 1

2

2Nx∑
n=1

En,0γ†n,0γn,0 −
1

2

4Nx∑
n=2Nx+1

En,0γ†n,0γn,0

=− 1

2

∑
n,ky>0

En,kyγ†n,kyγn,ky −
1

2

∑
n,ky>0

En,−kyγ
†
n,−ky

γn,−ky

− 1

2

2Nx∑
n=1

En,0γ†n,0γn,0 −
1

2

2Nx∑
n=1

(−En,0)γn,0γ†n,0

=−
∑

n,ky>0

En,kyγ†n,kyγn,ky −
∑
En≥0

En,0γ†n,0γn,0 . (5.57)

In this derivation, we used the relations between pairs of eigenvalues En,ky = −En,−ky

and En,0 = −En+2Nx,0. We also used the anti-commutation relations for the quasiparticle
operators and discarded the constant term from the commutation. As it turns out, the
above splitting of the sum will be done multiple times in the next section. Therefore, it is
natural to define a new sum to keep everything tidy,

′∑
n,ky

=
∑

n,ky>0

+
∑

En≥0,ky=0

. (5.58)

It is important to note that we have not considered the end of the Brillouin zone, ky = π.
As we have stated, the momentum index will be in ky ∈ (−π, π]. The values are also
restricted by ky = 2πn/Ny, where n is an integer. This means that there is an extra value
in the positive momentum sum for an even Ny that needs to be taken care of. For the
sake of simplicity, we will only consider odd Ny systems.

5.4 Observables and expectation values

This section will give expressions for different physical observables and expectation values.
These expressions will be based on the Bogoliubov quasiparticles and their eigenenergies.
Thus, in the following subsections, we assume the Hamiltonian can be diagonalized and
that all eigenvalues and eigenvectors are known. In this section, we outline how the
derivation is performed and simply state the results. The total derivations can be found
in appendix D.

5.4.1 Superconducting gap

For the numerical implementation, we need to find an expression for the superconducting
gap to solve the system self-consistently. We use the above relations between electron
creation and annihilation operators c†ix,±ky ,σ

, cix,±ky ,σ and the quasiparticle operators γn,ky .
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If we take the mean gap in the y-direction, we can write

∆ix =
1

Ny

∑
iy

Ui

2
[⟨ci,↑ci,↓⟩ − ⟨ci,↓ci,↑⟩]

=
Uix

2Ny

′∑
n,ky

[
x∗ix,n,kyuix,n,ky − w∗

ix,n,kyvix,n,ky

]
tanh

(
βEn,ky

)
, (5.59)

where we have used that ⟨γ†n,kyγm,ky⟩ = f(2En,ky)δn,m [100]. Conversely, for the hermitian

conjugated operators ⟨γn,kyγ†m,ky
⟩ = f(−2En,ky)δn,m =

[
1− f(2En,ky)

]
δn,m. The function

f(2En,ky) is the Fermi-Dirac distribution function given by γ†m,ky

[
1− f(2En,ky)

]
f(2En,ky) =

1

e2βEn,ky + 1
, (5.60)

with the inverse temperature β = 1/kBT . Using the distribution and the eigenvalues
found from diagonalizing the Hamiltonian lets us write physical quantities and expecta-
tion values, which we will use in the following subsections.

We wish to make a comment about the choice of prefactors for the eigenvalues. In more
recent publications [106–108], one might find that f(En,ky) has been used. We choose
to ignore the common prefactor in the Hamiltonian we diagonalize. Therefore, we get
an expectation value of f(2En,ky). If we ignore the factor (−1/2) in eq. (5.34), we can
summarize the diagonalization procedure as

H =
∑
ky

W †
ky
HkyWky =

′∑
n,ky

2En,kyγ†n,kyγn,ky . (5.61)

5.4.2 Singlet and triplet amplitudes

In proximity systems and curved geometries, the Cooper pairs may be converted to other
pairing symmetries, such as spin-triplet Cooper pairs. However, there are certain con-
straints these conversions must obey. If we write a general pairing amplitude as a two-
fermion correlation function

∆σσ′,ab(r, t) = ⟨T cσa(r, t)cσ′b(0, 0)⟩ , (5.62)

where T is the time ordering operator and where we have allowed for pairings at different
times [109]. The indices σ, σ′ are spin indices and a, b denote the orbital and band degree
of freedom. Since the superconductivity is related to the fermion correlation function, it
cannot violate Fermi statistics. The symmetry constraints from permuting the operators
can be summarized as follows: If we consider the permutations of the spin S, the relative
coordinate P ∗, the orbital index O, and the relative time T ∗, they are constrained by

S∆σσ′,ab(r, t)S
−1 = ∆σ′σ,ab(r, t) , P ∗∆σσ′,ab(r, t)P

∗−1 = ∆σσ′,ab(−r, t) , (5.63)

O∆σσ′,ab(r, t)O
−1 = ∆σσ′,ba(r, t) , T ∗∆σσ′,ab(r, t)T

∗−1 = ∆σσ′,ab(r,−t) . (5.64)

Vadim L. Berezinskii showed that combining these four permutations should result in an
overall sign change of the order parameter [110]. We can write it as

SP ∗OT ∗ ∆σσ′,ab(r, t) = −∆σσ′,ab(r, t) . (5.65)
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We note that T ∗ is not the entire time reversal operator, as it only permutes the relative
time coordinate [109]. The same is true for the coordinate permutation P ∗ since it only
permutes the relative coordinate between the two particles and does not invert the full
space. Still, the product must be SP ∗OT ∗ = −1, as well as S2 = P ∗2 = O2 = T ∗2 = 1.
For example, take the singlet even-frequency Cooper pair ↑↓ − ↓↑, which changes sign
under the spin permutation S. The same is not true for the triplets ↑↓ + ↓↑, ↑↑, and ↓↓,
so one of the other permutations must be negative. They can, for instance, be odd in their
spatial part and, therefore, have a p-wave orbital symmetry.

The different types of order parameters take different forms. We will investigate s- and
p-wave pairings in later chapters. Thus, we need an expression for those amplitudes. We
begin with the s-wave singlet, again taking the mean in the y-direction we get

Six,0 =
1

2Ny

′∑
n,ky

[
x∗ix,n,kyuix,n,ky − w∗

ix,n,kyvix,n,ky

]
tanh

(
βEn,ky

)
. (5.66)

This is an onsite pairing amplitude and, as discussed, is odd under permutation in the
spin index. Next, we consider the p-wave triplets, which are odd in the spatial part. Thus,
we have six different p-wave amplitudes, the threefold degeneracy of the spin in both the
x- and y-direction. We begin with the px-wave amplitudes, which are

Px
ix,0 =

1

2Ny

′∑
n,ky

∑
±
±
[(
x∗ix±1,n,kyuix,n,ky + w∗

ix±1,n,kyvix,n,ky

)
f(−2En,ky)

+
(
x∗ix,n,kyuix±1,n,ky + w∗

ix,n,kyvix±1,n,ky

)
f(2En,ky)

]
, (5.67)

Px
ix,↑ =

1

2Ny

′∑
n,ky

∑
±
±
[
w∗
ix,n,kyuix±1,n,kyf(2En,ky) + w∗

ix±1,n,kyuix,n,kyf(−2En,ky)
]
, (5.68)

Px
ix,↓ =

1

2Ny

′∑
n,ky

∑
±
±
[
x∗ix,n,kyvix±1,n,kyf(2En,ky) + x∗ix±1,n,kyvix,n,kyf(−2En,ky)

]
. (5.69)

The ± in the expression above was added since the lobes of the p-wave orbital have
opposite signs. Thus, without it, they cancel, and we are left with zero. For the remaining
amplitudes, we add the ± as well. The py-wave amplitudes take a somewhat different
form because of the periodic boundary conditions. They are

Py
ix,0

=
−i
Ny

′∑
n,ky

sin(ky)

[
x∗ix,n,kyuix,n,ky + w∗

ix,n,kyvix,n,ky

]
tanh

(
βEn,ky

)
, (5.70)

Py
ix,↑ =

−2i
Ny

′∑
n,ky

sin(ky)w
∗
ix,n,kyuix,n,ky tanh

(
βEn,ky

)
, (5.71)

Py
ix,↓ =

−2i
Ny

′∑
n,ky

sin(ky)x
∗
ix,n,kyvix,n,ky tanh

(
βEn,ky

)
. (5.72)

5.4.3 Charge current

In this subsection we will give a general expression for the charge current. The specific
form changes based on the spin-orbit interaction. To obtain an expression for the current,
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we begin with the charge continuity equation [104], which is

∂tρi = −∇ · ji , (5.73)

where ρi is the charge density, and ji is the current density at site i. It can be rewritten
using Heisenberg’s equation of motion. This relates the charge Qi =

∑
σ c

†
i,σci,σ to the

Hamiltonian of the system by ∑
m

Ii,m = −i [H, Qi] , (5.74)

where H is the Hamiltonian given in eq. (5.12) not assuming periodic boundary conditions,
and Ii,m is the is the current flowing out of surface m. The full derivation of the charge
current is given in appendix D.3. We find that a general expression for the charge current
in the x-direction is given by

⟨Ixix⟩ =
−2t
Ny

∑
±

′∑
n,ky

±
[
Im{u∗ix±1,n,kyuix,n,ky + v∗ix±1,n,kyvix,n,ky}f(2En,ky)

− Im{w∗
ix±1,n,kywix,n,ky + x∗ix±1,n,kyxix n,ky}f(−2En,ky)

]
+

2

Ny

∑
±

′∑
n,ky

[
Im{a↑↑ix±1,ix

u∗ix±1,n,kyuix,n,ky + a↑↓ix±1,ix
u∗ix±1,n,kyvix,n,ky

+ a↓↑ix±1,ix
v∗ix±1,n,kyuix,n,ky + a↓↓ix±1,ix

v∗ix±1,n,kyvix,n,ky}f(2En,ky)
[

+ Im{a↑↑ix±1,ix
w∗
ix,n,kywix±1,n,ky + a↑↓ix±1,ix

x∗ix,n,kywix±1,n,ky

[
+ a↓↑ix±1,ix

w∗
ix,n,kyxix±1,n,ky + a↓↓ix±1,ix

x∗ix,n,kyxix±1,n,ky}f(−2En,ky)
]
.

(5.75)

5.4.4 Spin current

The spin current can be found the same way as the charge current, starting from the
continuity equation. The details of the derivation are given in appendix D.4. There, we
find that the z-component of a spin-current in the x-direction is

⟨Ix,zS,ix
⟩ =−2t

Ny

∑
±

′∑
n,ky

±
[
Im{u∗ix±1,n,kyuix,n,ky − v∗ix±1,n,kyvix,n,ky}f(2En,ky)

− Im{w∗
ix±1,n,kywix,n,ky − x∗ix±1,n,kyxix,n,ky}f(−2En,ky)

]
+

2

Ny

∑
±

′∑
n,ky

[
Im{a↑↑ix±1,ix

u∗ix±1,n,kyuix,n,ky − a
↑↓
ix±1,ix

u∗ix±1,n,kyvix,n,ky

+ a↓↑ix±1,ix
v∗ix±1,n,kyuix,n,ky − a

↓↓
ix±1,ix

v∗ix±1,n,kyvix,n,ky}f(2En,ky)
[

+ Im{a↑↑ix±1,ix
w∗
ix,n,kywix±1,n,ky − a↑↓ix±1,ix

x∗ix,n,kywix±1,n,ky

[
+ a↓↑ix±1,ix

w∗
ix,n,kyxix±1,n,ky − a↓↓ix±1,ix

x∗ix,n,kyxix±1,n,ky}f(−2En,ky)
]
.

(5.76)
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5.4.5 Spin magnetization

In this subsection, we present the expressions for the amplitude of the spin magnetiza-
tion. We can generally write it as Si = ⟨c†i,ασαβci,β⟩, where we have neglected constant
prefactors. Taking the mean in the y-direction as before, the amplitudes become

Sx
ix =

2

Ny

′∑
n,ky

[
Re{u∗ix,n,kyvix,n,ky} f(2En,ky) +Re{x∗ix,n,kywix,n,ky} f(−2En,ky)

]
, (5.77)

Sy
ix

=
2

Ny

′∑
n,ky

[
Im{u∗ix,n,kyvix,n,ky} f(2En,ky) + Im{x∗ix,n,kywix,n,ky} f(−2En,ky)

]
, (5.78)

Sz
ix =

2

Ny

′∑
n,ky

[(
|uix,n,ky |2 − |vix,n,ky |2

)
f(2En,ky) +

(
|wix,n,ky |2 − |xix,n,ky |2

)
f(−2En,ky)

]
.

(5.79)

It is also possible to express the spin magnetization in curvilinear coordinates, not the lab
frame since these might be more intuitive. It can be done in two ways: We take the ele-
ments of Si in the lab frame and change the basis using the parametrization. Alternatively,
the Pauli-vector can be replaced by the curvilinear one, such that ST,N,B

i = ⟨c†i,ασ
αβ
T,N,Bci,β⟩.

In a circular geometry, we can write them as

ST
is =

−2
Nb

′∑
m,kb

[
Im{v∗is,m,kb

uis,m,kbe
iκis} f(2Em,kb) + Im{w∗

is,m,kb
xis,m,kbe

iκis} f(−2Em,kb)

]
,

(5.80)

SN
is =

−2
Nb

′∑
m,kb

[
Re{u∗is,m,kb

vis,m,kbe
−iκis} f(2Em,kb) + Im{x∗is,m,kb

wis,m,kbe
−iκis} f(−2Em,kb)

]
,

(5.81)

SB
is =

2

Nb

′∑
m,kb

[(
|uis,m,kb |2 − |vis,m,kb |2

)
f(2Em,kb) +

(
|wis,m,kb |2 − |xis,m,kb |2

)
f(−2Em,kb)

]
.

(5.82)

Note that here, is in the exponents should be interpreted as the arc length coordinate
associated with the lattice index. That means that the left-most lattice point is = 1
should be interpreted as zero, and the right-most is = Ns should be interpreted as one.

5.4.6 Local density of states

From the derivation of the magnetization in the z-direction, we know that the densities of
spin-up and spin-down particles is

⟨nix,↑⟩ =
1

Ny

′∑
n,ky

[
|uix,n,ky |2f(2En,ky) + |wix,n,ky |2f(−2En,ky)

]
, (5.83)

⟨nix,↓⟩ =
1

Ny

′∑
n,ky

[
|vix,n,ky |2f(2En,ky) + |xix,n,ky |2f(−2En,ky)

]
. (5.84)
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We can use these to express the local density of states [102, 107] as

Dix(E) =
1

Ny

′∑
n,ky

[ (
|uix,n,ky |2 + |vix,n,ky |2

)
δ(E − En,ky)

+
(
|wix,n,ky |2 + |xix,n,ky |2

)
δ(E + En,ky)

]
. (5.85)

Note that the above expression assumes T = 0, such that the derivative of the Fermi-
Dirac distribution becomes a Dirac-delta. However, for the numerical simulations, we
approximate the Dirac-delta function as

δ(E) ≈ 1

π

Γ

Γ2 + E2 , (5.86)

where we choose a sensible value for Γ, such that the local density of states gives a
reasonable smooth curve. It should at least be an order of magnitude less than the scale
of the difference of energy eigenenergies.
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Chapter 6

One-dimensional systems

This chapter will investigate one-dimensional systems using both the quasiclassical theory
and Bogoliubov-de-Gennes framework. These are rarely compared since they are mainly
used to describe systems in the dirty and clean limit, respectively. However, one can
make predictions using both, and they have their strengths and weaknesses. While the
quasiclassical theory predicts continuous functions in real space, lattice models only give
expectation values on lattice sites. It can be viewed as both a strength and a weakness
of the quasiclassical theory; while the continuous functions are easy to work with, they
are limited by the length scales and self-energies of the system. Effects that take place
at interatomic distances may be washed out. In that case, it can be helpful to use lattice
models like the Bogoliubov-de-Gennes method.

6.1 Straight ferromagnet proximity systems

To build an intuition for the interplay of ferromagnetism and spin-orbit coupling in prox-
imity systems, we solve the Usadel equation numerically for superconductor-ferromagnet
bilayers and for Josephson junctions without curvature. We present the density of states
as a physical observable. The systems we consider are similar to those in ref. [67], and
the analysis can reproduce their results. We use the parametrization given in section 4.8
to solve the problem numerically. Details concerning the implementation can be found in
appendix E.1. The results are obtained with LF /ξS = 0.5, and we normalize energies to
the gap magnitude ∆. For the spin-orbit field, we take the expression given in eq. (4.96),
a combination of Rashba and Dresselhaus. The factors α, β are normalized to the inverse
of the length of the ferromagnet, and we use the shorthand α = 1 for αLF = 1. We start
by considering an S-F bilayer, and we use the Kupriyanov-Lukichev boundary conditions
with the bulk superconductor solution on one side of the ferromagnetic and vacuum on
the other. We illustrate the density of states at the center of the ferromagnet. In fig. 6.1,
we can see that the triplet pairings dominate. It can be seen from the zero energy peak,
which, according to eq. (4.117), tells us that if D(0) > 1, we have more triplets than singlet
correlations.

Next, we consider a S-F-S Josephson junction. All the values are kept the same as for
the bilayer, and we assume the magnitude of the gaps of the superconductors to be equal.
However, in the Kupriyanov-Lukichev boundary conditions, we apply a phase to the two
bulk superconductors. The density of states in the F-layer will depend on the supercon-
ductors’ phase difference. We denote this phase difference ϕ. The phases of the first and
second superconductors are chosen to share the total phase difference equally. This is for
numerical stability, and ϕ could, in principle, be distributed arbitrarily and yield the same

65



66 One-dimensional systems

-1.5 -1 -0.5 0 0.5 1 1.5

E="

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

D
(E

)
h = (1:5"; 0; 0)

, = - = 0 , = - = 0:3 , = - = 1

(a)

-1.5 -1 -0.5 0 0.5 1 1.5

E="

0.4

0.6

0.8

1

1.2

1.4

1.6

D
(E

)

h = (3:0"; 0; 0)

, = - = 0 , = - = 0:3 , = - = 1

(b)

Figure 6.1: The normalized density of states is plotted for an increasing exchange field
and increasing spin-orbit coupling in an S-F bilayer. Slightly increasing the exchange field
can suppress the mixing significantly. Then, the density of states goes towards that of a
normal metal. The values are taken from the center of the ferromagnet.

results. Again, we show the density of states at the center of the ferromagnet. It can
be shown that the density of states remains the same throughout the magnet’s length.
In fig. 6.2, we illustrate that both the phase and spin-orbit coupling can be detrimental
to the generation of triplets. When the singlets dominate, we see that there is a mini-
gap opening. When such a minigap is present, the ferromagnet mimics the behavior of
the bulk superconductors. Increasing the exchange field would take it beyond a resonant
condition [111, 112] where the minigap would vanish and increasing the phase difference
would increase the density of states towards that of a normal metal [113].
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Figure 6.2: The figures show the normalized density of states D(E) for a Josephson junc-
tion with an exchange field in the z-direction, h = (0, 0, 1.5∆). The density of states
is normalized to the gap parameter ∆. The mini-gap in the ferromagnet grows with an
increase in the spin-orbit coupling, which is normalized to the inverse of the length of the
ferromagnet 1/LF . Also, when the two superconductors reach a phase difference of ϕ = π,
the density of states reaches that of a normal metal.



Usadel in curvilinear coordinates 67

6.2 Usadel in curvilinear coordinates

We have solved the Usadel equation in straight S-F and S-F-S systems, but the complexity
increases as we introduce curvature. We will apply the curvilinear coordinates to the
equation since we expect that altering the geometry of the ferromagnet will affect the
triplet generation. To consider the geometry and the SU(2) spin-orbit gauge field, we
have to change the derivatives in the equation with the space-gauge covariant derivative
to have a consistent theory. Using the definition in eq. (3.38), we can write the Usadel
equation as

iDFGλµD̃λ

(
ĝRD̃µĝR

)
=
[
E τ̂3 − ∆̂− Gλµhλσµ, ĝR

]
. (6.1)

This is the Usadel equation in its most general form, where the geometry and spin-orbit
field still need to be specified. Therefore, even the equation in Cartesian coordinates
for a straight wire is a special case of the above. We can express the equation in the
Frenet-Serret frame without specifying the curvature and torsion. In that case, we have
κ(s), τ(s) ̸= 0 and include the derivatives in the normal and binormal direction. The
left-hand side becomes

iDFGλµD̃λ

(
ĝRD̃µĝR

)
= iDFGλµ∂̃λ

(
ĝR∂̃µĝR

)
− iDFGλµΓν

λµ

(
ĝR∂̃ν ĝR

)
, (6.2)

where we have not written out the dependence on Aλ explicitly. To get a clearer idea of
how the choice of a system affects the equations, we write out both terms without using the
Einstein summation notation. For a curved, 3-dimensional surface, the first and second
terms are, respectively

iDFGλµ∂̃λ
(
ĝR∂̃µĝR

)
=

iDF

η(s, n)2

{
∂̃s(ĝR∂̃sĝR) + bτ(s)∂̃s(ĝR∂̃nĝR)− nτ(s)∂̃s(ĝR∂̃bĝR)

+ bτ(s)∂̃n(ĝR∂̃sĝR) +
[
η(s, n)2 + b2τ(s)2

]
∂̃n(ĝR∂̃nĝR)

− nbτ(s)2∂̃n(ĝR∂̃bĝR)− nτ(s)∂̃b(ĝR∂̃sĝR)

− nbτ(s)2∂̃b(ĝR∂̃nĝR) +
[
η(s, n)2 + n2τ(s)2

]
∂̃b(ĝR∂̃bĝR)

}
,

(6.3)

iDFGλµΓν
λµ

(
ĝR∂̃ν ĝR

)
=

iDF

η(s, n)3

{
(ĝR∂̃sĝR)

[
∂sη(s, n)− bτ(s)κ(s)

]
+ (ĝR∂̃nĝR)

[
−η(s, n)2∂nη(s, n) + b∂s

(
η(s, n)τ(s)

)
+ (n2 − b2)κ(s)τ(s)2 + nτ(s)2

]
+ (ĝR∂̃bĝR)

[
nτ(s)∂sη(s, n)− nη(s, n)∂sτ(s) + bτ(s)2

]}
.

(6.4)

Next, we consider an in-plane curved ferromagnetic wire sandwiched between two bulk
superconductors. In the language of curvilinear coordinates, the in-plane curvature means
no torsion τ(s) = 0. Assuming a one-dimensional nanowire means we set n, b = 0 in the
equations we have developed above. The second term containing the Christoffel symbols
vanishes completely. The only terms that remain in the Usadel equation are

iDF ∂̃s(ĝR∂̃sĝR) =
[
E τ̂3 − ∆̂− h · σ, ĝR

]
, (6.5)
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since also the contravariant metric tensor Gλµ reduces to the identity matrix. The mag-
netization M = h · σ is expressed in curvilinear components. That means that h =
(hT , hN , hB) and σ = (σT , σN , σB), where still σT,N,B = σ · {T̂ (s), N̂ (s), B̂(s)}, and thus
are dependent on where along the wire we look. This looks exactly like the straight
problem, so we can immediately write down the Riccati parametrization for the curved
problem

∂2sγ + 2(∂sγ)Ñ γ̃(∂sγ) =− 2i
E
DF

γ − ih

DF
· (γσ∗ − σγ)− i

[
(∂sAT )γ + γ(∂sA

∗
T )
]

+A2γ − γ(A∗)2 + 2(Aγ + γA∗)Ñ(A∗ + γ̃Aγ)

+ 2i
[
(AT + γA∗

T γ̃)N(∂sγ) + (∂sγ)Ñ(A∗
T + γ̃ATγ)

]
. (6.6)

Note that this is the equation for the ferromagnet and that we have inserted that the
spin-orbit field only has a tangential direction. Since we assume weak proximity, we apply
the bulk solution on both sides and do not present the equations for the superconductor.
The boundary conditions for the ferromagnet are

∂Iγ = ΩF (1− γγ̃s)Ns(γ − γs) + iATγ + iγA∗
T , (6.7)

∂I γ̃ = ΩF (1− γ̃γs)Ñs(γ̃ − γ̃s)− iA∗
T γ̃ − iγ̃AT , (6.8)

where ∂I is the gradient at the interface and γs is the gamma matrix for the BCS bulk
solution. We are mainly concerned with the weak link in this example because the ex-
change field direction changes as we introduce curvature. We consider the exchange field
to be parallel to the tangential vector h(s) = hT̂ (s). This is how the field is expected to
orient in a curved, one-dimensional structure [114]. If we map the curved ferromagnet to
a straight wire, it is equivalent to a rotating exchange field. Electrons traveling through
the ferromagnet will experience a varying magnetic field, equivalent to a spin-orbit cou-
pling. We will refer to this effect as the curvature-induced spin-orbit coupling, not to be
confused with the strain-induced one. Therefore, we expect the rotating field to create
triplet correlations within the wire. In fig. 6.3, we show the density of states from the
center of the ferromagnet for three different curvatures and two different lengths LF . In
both cases, the curvature creates a zero-bias conductance peak, which can be tuned with
the curvature. Even for a longer junction LF = 2ξs, where the density of states begins to
resemble that of a normal metal, one can make a triplet contribution easily detectable [115].

The previous section established that combining the exchange field in the ferromagnet and
intrinsic spin-orbit can enhance or degrade the proximity effect. Therefore, it is natural
to assume that the same is true for a bent ferromagnet. In fig. 6.4, we show a setup where
the strain- and curvature-induced spin-orbit interaction acts as a source for triplets. The
intrinsic spin-orbit coupling through αB has the opposite effect. There is a small peak at
zero energy without curvature seen in fig. 6.4b, but the peaks in fig. 6.3a are suppressed
as the curvature is introduced. Although the peaks have vanished, triplet pairings are
still present. This can again be argued from the fact that D(0) > 1 in fig. 6.4b. It can
also be seen in the weak proximity equations. The triplet correlations vanish entirely
for high curvatures, and a minimap opens in the density of states. In fig. 6.5, we show
how the curvature kills the triplet correlations in a ferromagnet with Rashba spin-orbit
coupling. We have neglected the strain-induced spin-orbit coupling since it is additive to
the curvature-induced one. We can show this if we go to the weak proximity limit and
linearize the Usadel equation.
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Figure 6.3: The density of states D(E) for a curved ferromagnet without intrinsic or strain-
induced spin-orbit coupling. (a) Shows the density for a ferromagnet with the same length
as the coherence length and (b) twice the coherence length. The exchange field points in
the tangential direction T̂ (s) and is normalized to the gap magnitude. The energies E are
also normalized to ∆.

In the weak proximity limit, we assume that |γαβ| ≪ 1, which means we can set N ≈ 1.
We use the same expression as before for the anomalous Green’s function fR, given in
eq. (4.116). However, we now change to the curvilinear coordinates, which is realized
by switching expressing d = (dT , dN , dB) and σ = (σT , σN , σB). Using the curvilinear
coordinates given in eq. (3.53), we can write the γ = fR/2 matrix as

γ =
1

2

(
(idT + dN )e−iκs dB + f0

dB − f0 (idT − dN )eiκs

)
. (6.9)

Since we are considering an exchange field with only one directional component, it is
straightforward to identify the short- and long-ranged triplet components. As mentioned,
the d-vector components describe triplets with a finite spin projection in the plane perpen-
dicular to itself. The spins parallel to the exchange field have a longer diffusion length and
describe the long-ranged triplets. The long-ranged triplets are associated with dN and dB
for an exchange field in the tangential direction. The spins perpendicular to the exchange
field are described by dT . If we insert the expression for γ in the weak proximity limit, we
can write down a linearized version of the Usadel equation. This lets us see directly how
the d-vector components are affected by tuning the curvature and spin-orbit factors αN

and αB. The weak proximity equations in the curved ferromagnet become [51]

iDF

2
∂2sdT − iDF (κ+ 2αN )∂sdN − 2iDFαB∂sdB

= f0hT +

{
E + iDF

2

[
(κ+ 2αN )2 + 4α2

B

]}
dT , (6.10)

iDF

2
∂2sdN + iDF (κ+ 2αN )∂sdT

=

{
E + iDF

2
(κ+ 2αN )2

}
dN − iDFαB(κ+ 2αN )dN , (6.11)

iDF

2
∂2sdB + 2iDFαB∂sdT =

{
E + 2iDFα

2
B

}
dB − iDFαB(κ+ 2αN )dN , (6.12)

iDF

2
∂2sf0 = Ef0 + hTdT . (6.13)
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Figure 6.4: Density of states D(E) for a curved ferromagnet with (a) curvature-induced
spin-orbit coupling and (b) intrinsic spin-orbit coupling. The exchange field points in the
tangential direction T̂ (s) and is normalized to the gap magnitude. The energies are also
normalized to ∆. The ferromagnet has the same length as the coherence length, LF = ξs.

These equations describe how the spin-singlet to triplet conversion occurs in the ferromag-
net. Starting from eq. (6.13), it represents spin-singlets from the superconductors injected
into the ferromagnet. These are then converted to short-ranged triplets dT due to the
exchange field h = hT T̂ (s). The remaining equations describe how short-ranged triplets
can be converted to long-ranged triplets and how all components diffuse through the ferro-
magnet. These two physical effects can be associated with the first-order derivative terms
and an additional imaginary component to the triplet energy [71]. The first derivatives
describe the rotation of superconducting triplet correlations as they move along the ferro-
magnet. Naturally, this is called spin precession. The spin-relaxation from the imaginary
contribution to the energy is due to the high impurity density. Since the quasiparticles
scatter often, their spin information is gradually lost when traversing the ferromagnet.
Therefore, both the curvature and the spin-orbit coupling can be a source of long-range
triplet generation independent of each other. It is also clear that without an exchange
field h, we cannot convert singlets to short-ranged triplets. Consequently, there will not
be any long-ranged triplet correlations either. We do not expect to find any triplet cor-
relations if we use the Usadel equation and Kupriyanov-Lukichev boundary condition to
describe a curved superconductor-normal metal-superconductor junction. However, the
interface between a superconductor and normal metal with spin-orbit coupling should be
sufficient to create triplet pairings [116–120]. Note that these might have different orbital
symmetries and cannot be captured by the Usadel equation.

Curvature in the S-F-S junction can also induce a 0− π transition [50], which is schemat-
ically drawn in fig. 1.5. As previously mentioned, the current in a Josephson junction is
dependent on the phase difference between the superconductors, and we generally have
I(ϕ) = I0 sin(ϕ) for the 0-state. It is possible to affect the relation to get a π-state [44,
121], where the current is I(ϕ) = I0 sin(ϕ+ π). In fig. 6.6, we show the transition for the
critical current I(π/2) for different lengths of the ferromagnet. At κLF = 0 the junction
is in the 0 state, and after the current vanishes, it has the opposite direction; it is in the
π state. To understand how the transition appears, we consider the singlet and triplet
contributions to the current. It can be shown that for κ = 0, the contributions to the
charge current from the singlets and triplets have opposite signs. In the absence of spin-
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Figure 6.5: The zero energy density of states D(0) as a function of the Rasbha spin-otbit
strength αB and the curvature κLF . The singlet correlations dominate for large curvatures,
D(0) < 1 and a minigap opens in the ferromagnet. The temperature is T = 0.005Tc and
the interface resistance ζ = 3.

orbit coupling, there is no mechanism for spin-precession in the straight case, which can
be seen from the weak proximity equations. Therefore, the only triplet contribution to the
charge current is from the tangential d-vector component dT . Generally, this contribution
is bigger than the singlet one. Introducing curvature creates a non-zero long-range dN
component, which contributes with a current in the opposite direction as dT . The sign
of the singlet current contribution is unaffected by the curvature. Increasing the curva-
ture enough, the singlet and dN contribution surpasses the dT contribution, and the total
current switches direction. The total singlet and triplet currents have the same sign for a
half-circle. Therefore, the magnitude of the total charge current is greater in the π state
than in the 0 state. Note that the length of the ferromagnet can affect for which curvature
the transition takes place, as seen in fig. 6.6. This is because changing the length of the
weak link can also induce a 0− π transition [122, 123]. Changing the length is, however,
unsuitable for device implementation, as one would need to prepare multiple samples.
That is why ref. [50] proposes to curve the ferromagnet in situ, which makes for a much
easier device implementation.

6.3 Triplet pairings in nanowire

Although we cannot find triplet pairings by solving the Usadel equation for a superconductor-
normal metal-superconductor junction, they should be present. This section presents a
short analytical derivation of the triplet components we predict to be in a curved wire.
We begin with the Hamiltonian for a nanowire, including curvature and torsion, as well
as both intrinsic and curvature-induced spin-orbit interactions from before. For now, if
we disregard superconductivity, the Hamiltonian is given in eq. (3.43). If we consider a
one-dimensional curved nanowire without an intrinsic spin-orbit interaction, which means
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setting τ(s), αB = 0, we are left with

H =− ℏ2

2m

(
∂2s +

κ(s)2

4

)
− iℏ
m
αNσB∂s

=
ℏ2

2m

(
k2 − κ(s)2

4

)
+

ℏ
m
αNσBk

=ξk + α̃NσBk, (6.14)

where we used that k = −i∂s and discarded the κ2 term because this acts as a potential
due to the curvature and only gives a constant shift to the overall energy. Next, we combine
the curvature Hamiltonian above and the mean-field BCS Hamiltonian. The spin-orbit
interaction due to curvature acts as a spin-splitting potential [124], and the Hamiltonian
we get is

H =
∑
k σ

[
(ξk + σα̃Nk) c†k σck σ + (ξk − σα̃Nk) c†−k σc−k σ

]
+
∑
k σ

[
σ∆c†k σc

†
−k −σ + σ∆∗c−k −σck σ

]
. (6.15)

Next, we reintroduce the Nambu⊗Spin-space spinors Ψk in momentum space with the
creation and annihilation operators c†k σ and ck σ. We use some of the fermionic commuta-
tion relations of the electron operators given in eq. (2.1) to rewrite the Hamiltonian. This
is the same procedure as in section 5.1, and means we can write it as

H =
∑
k

Ψ†
k


ξk + α̃Nk 0 0 ∆

0 ξk − α̃Nk −∆ 0
0 −∆∗ −ξk + α̃Nk 0
∆∗ 0 0 −ξk − α̃Nk

Ψ†
k , (6.16)

where we neglected the constant terms and prefactors from the commutations performed.
To find the dispersion relation, we find the eigenvalues λ of ĥk, we solve the equation
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Figure 6.7: Band structure with the curvature induced spin-orbit interaction. Here, it
showcases a horizontal shift, lifting the twofold degeneracy. The faded, dashed (full) lines
show the two spin species’ normal-state electron (hole) band structures. The lines are the
eigenenergies E±k, and the shifted Fermi momentum kFσ are shown.

|ĥk − λI| = 0. This yields a quadratic equation where the solutions are the energy
spectrum. We rename the eigenvalues λ→ E . We see that they induce a horizontal shift
in bands, lifting the spin degeneracy. The eigenenergies are

Ek = ±
√
(ξk − α̃Nk)2 + |∆|2 , (6.17)

E−k = ±
√
(ξk + α̃Nk)2 + |∆|2 , (6.18)

where we have shown a qualitative picture of the upper sign in fig. 6.7. Next, we can find
the Green’s function by taking the inverse of the Gaussian action (iω −H) in Matsubara
space [125], which gives

Ĝ(k, iω) =
[
iω τ̂0 − ĥk

]−1
(6.19)

=



−η+k −iω

−(iω)2+(η+k )2+|∆|2 0 0 −∆
−(iω)2+(η+k )2+|∆|2

0
−η−k −iω

−(iω)2+(η−k )2+|∆|2
∆

−(iω)2+(η−k )2+|∆|2 0

0 ∆∗

−(iω)2+(η−k )2+|∆|2
η−k −iω

−(iω)2+(η−k )2+|∆|2 0

−∆∗

−(iω)2+(η+k )2+|∆|2 0 0
η+k −iω

−(iω)2+(η+k )2+|∆|2


,

where we have defined η±k ≡ ξk ± α̃Nk. Note that the denominators are unequal and
must be left inside the matrix. We can directly read off the anomalous Green’s function
elements related to the singlet and triplet pairing amplitudes. They are

F↑↓(k, iω) = +
∆

(iω)2 − (ξk + α̃Nk)2 − |∆|2 , (6.20)

F↓↑(k, iω) = −
∆

(iω)2 − (ξk − α̃Nk)2 − |∆|2 . (6.21)

Because F↑↓ + F↓↑ ̸= 0, this indicates that there exist p-wave pairings in the system.
However, we do note that this alone is an insufficient requirement to produce measurable
p-wave triplet Cooper pairs [124]. Even in the absence of a finite magnetization, there is
an equilibrium spin-current with a relative momentum shift due to the spin-orbit coupling
[126, 127]. If the phase difference between the singlet and triplets is different from π/2,
the requirements to obtain a finite magnetization are met [100].
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6.4 Eilenberger in curvilinear coordinates

The Usadel equation is a specific case of the equations of motion in the dirty limit. We
expect the high impurity density to kill all p-wave correlations. It is likely not the best-
suited formalism to look for these correlations. Whereas curvature effects have been
studied using the Usadel equation [50–54], introducing the curvilinear coordinates to the
Eilenberger equation is novel. We begin with the expression in eq. (4.82). Since we want
to introduce curvature, we go to a covariant form, thus rewriting the dot product as
p̂F · ∇R = Gλµp̂Fλ ∂̃µ. Now, we apply the same procedure as in the previous subsection:
changing the derivatives with their space-gauge covariant counterparts. We can collect all
terms constant in ǧ on the right-hand side and the derivative on the left. Including the
spin-orbit field Aµ implicitly contained in the partial derivative ∂̃µ, the equation takes the
form

vF Gλµ p̂Fλ ∂µ ǧ = vF Gλµ p̂Fν Γν
λµ ǧ + i

[
E τ̂3 − Σ̌ + vF Gλµ p̂Fλ Âµ, ǧ

]
. (6.22)

Beginning with the term on the right-hand side of the above equation, we write out all
terms explicitly. We get

vF Gλµ p̂Fλ ∂µ ǧ =
vF

η(s, n)2
(
p̂Fs + bτ(s) p̂Fn − nτ(s) p̂Fb

)
∂sǧ

+
vF

η(s, n)2
(
bτ(s) p̂Fs + [η(s, n)2 + b2τ(s)2] p̂Fn − nbτ(s)2 p̂Fb

)
∂nǧ

+
vF

η(s, n)2
(
−nτ(s) p̂Fs − nbτ(s)2 p̂Fn + [η(s, n)2 + n2τ(s)2] p̂Fb

)
∂bǧ ,

(6.23)

vF Gλµ p̂Fν Γν
λµ ǧ =

vF
η(s, n)3

p̂Fs
[
∂sη(s, n)− bτ(s)κ(s)

]
ǧ

+
vF

η(s, n)3
p̂Fn
[
−η(s, n)2∂nη(s, n) + b∂s(η(s, n)τ(s))

+ κ(s)ζ(s, n, b)2 − 2b2τ(s)2κ(s) + nτ(s)2
]
ǧ

+
vF

η(s, n)3
p̂Fb
[
nτ(s)∂sη(s, n)− nη(s, n)∂sτ(s) + bτ(s)2

]
ǧ , (6.24)

[
E τ̂3 − Σ̌ + vF Gλµ p̂Fλ Âµ, ǧ

]
=

[
E τ̂3 − Σ̌ +

vF
η(s, n)2

(p̂Fs + bτ(s) p̂Fn − nτ(s)p̂Fb ) ÂT , ǧ

]
.

(6.25)

Now, we apply the above equation to a 1D nanowire. Thus, we assume an infinite well
trapping the particles to one dimension and setting the curvilinear coordinates n and b to
zero. This also means that there will not be any changes along the normal and binormal
direction either, so we set ∂n,b = 0. The resulting equation is thus

ξvF∂sǧ = i
[
E τ̂3 − ∆̂ + ξvF ÂT , ǧ

]
, (6.26)

where ξ = p̂F = ±1. Note that we have used the spin-orbit field from eq. (3.48), which only
has a tangential component, ÂT = diag(AT ,−A∗

T ), AT = αNσB − αBσN . The constant
αB is the intrinsic Rashba spin-orbit coupling, and αN ∝ κ(s) is the strain-induced spin-
orbit coupling. We assume that the system is in equilibrium and thus only consider the
retarded Green’s function. We again introduce the parametrization in eq. (4.102). The
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Eilenberger equation for a curved superconductor expressed in the Ricatti parametrization
can therefore be summarized as

∂sγ =
2iE
ξvF

γ +
i

ξvF

(
∆− γ∆∗γ

)
+ i
(
γA∗

T +ATγ
)
, (6.27)

∂sγ̃ =
2iE
ξvF

γ̃ − i

ξvF

(
∆∗ − γ̃∆γ̃

)
− i
(
γ̃AT +A∗

T γ̃
)
. (6.28)

As the boundary conditions, we set ∂sγ = ∂sγ̃ = 0 at both ends of the superconductor. To
calculate the density of states, we have used the expression below to include both possible
directions of the Fermi momentum [128]. Otherwise it resembles that in eq. (4.115). We
get that

N(E) = 1

4

∑
ξ=±1

Re
{
Tr[N(1 + γγ̃)]

}
. (6.29)

When solving this version of the Eilenberger equation numerically, we find no trace of
triplet pairings. This is likely because of the boundary conditions we have chosen. Setting
the derivative in the endpoints to zero effectively sets it to zero everywhere. Thus, we are
solving only the commutator in eq. (6.26), which is the equation for a bulk superconductor.
That would explain why we only get a superconductor density of states for all κ values.
Two different approaches could potentially alter the result of this analysis. First, one could
change the boundary conditions to something more fitting. This can be another type of
boundary condition or making an uncurved bulk BCS-curved superconductor-uncurved
bulk BCS type of junction. The second is to change the method. Namely, using a lattice
model instead of the quasiclassical theory. This is what the next section will discuss.

6.5 Curved superconductors

This section presents the analysis done on curved superconductors. We will use the lattice
model presented in chapter 5, which is highly flexible and well-suited for exploring p-
wave contributions. Using this method, we solve the gap self-consistently, which lets us
determine if there are changes to its magnitude and orbital symmetry. We will begin by
writing down the Hamiltonian containing terms for intrinsic and strain-induced spin-orbit
coupling. A similar model has been considered in ref. [42] where they have neglected
strain-induced effects. We continue to use curvilinear coordinates in this chapter, and
thus, the Hamiltonian can be written as

H =
∑
σσ′

∫
ds c†σ(s)

{(
−ℏ2∂2s

2m
− µ

)
+
iαB

2

(
σN (s) ∂s + ∂s σN (s)

)
− iαN

2

(
σB(s) ∂s + ∂s σB(s)

)}
cσ′(s) (6.30)

+

∫
ds
[
∆(s)c†↑(s)c

†
↓(s) + ∆∗(s)c↓(s)c↑(s)

]
.

In the above, the arclength s is a continuous variable in the tangential direction. To be
able to apply this Hamiltonian to an actual lattice, it needs to be discretized. Applying a
discretization scheme, we arrive at the Hamiltonian

H =− µ
∑
iσ

c†iσciσ −
∑

⟨ij⟩σσ′

(
tδσσ′ + ασσ′

ij

)
c†iσcjσ′ +

∑
i

(
∆ic

†
i↑c

†
i↓ +∆∗

i ci↓ci↑

)
, (6.31)
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where the indexes i and j refer to the site at si and sj respectively. The spin index σσ′

refers to the different indexes in the matrix structure. We find that the spin-orbit hopping
term becomes

aij =
iαB

4

[
σN (si) + σN (sj)

]
− iαN

4

[
σB(si) + σB(sj)

]
, (6.32)

where aij is related to the spin-orbit hopping amplitude through the expression in eq. (5.7).
The details of the discretization can be found in appendix C. The curvilinear Pauli matri-
ces σN , σB and curvature κ are decided by the shape of the system we are examining. To
begin with, we will consider a curved semiconductor placed on a superconductor such that
it becomes superconducting through the proximity effect. The semiconductor is assumed
to have an intrinsic Rashba spin-orbit coupling αB, because of the breaking of the surface
inversion symmetry [36].

We start by considering a wire with circular curvature, so we choose the parametrization
given in eq. (3.49), where κ ∈ [0, 2π/L). On a lattice, this means κ ∈ [0, 2π/N), where N
is the number of total lattice sites. We find the order parameter ∆ self-consistently using
the numerical implementation detailed in appendix E.1. We obtain the results shown in
fig. 6.8 for a superconducting chain. Our figure shows that increasing a wire’s curvature
with considerable strain-induced spin-orbit coupling alters the order parameter magni-
tude. We have taken the mean of the magnitude of the order parameter for increasing
chemical potential and curvature. These results are comparable with what Ying Zu-Jian
et al. [47]. They analyze a superconducting ring with increasing Rashba spin-orbit cou-
pling and increasing chemical potential. This example, however, only shows a wire with
constant curvature. This will not alter the order parameter throughout the material. If
we want to alter the order parameter locally, we must introduce non-constant curvature.
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Figure 6.8: (b) Mean magnitude |∆| for a curved superconductor, found for N = 50 sites,
U = 2.0, and T = 0.01. We have only considered strain-induced spin-orbit coupling, so
we have set αB = 0 and αN = 0.6 .
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We begin by investigating how the non-constant curvature affects the order parameter
through the intrinsic spin-orbit coupling. We assume the semiconductor is shaped like a
circle, which we can deform to get an ellipse. Since the wire is circular before we squeeze
it, we have κ = 2π/N . This means that the curvilinear Pauli matrices do a full rotation
in the lab frame when traversing the wire we are considering. Therefore, in this case, we
must connect the first and last sites using a hopping term in our Hamiltonian. This will
be the total Hamiltonian’s upper right and lower left blocks. We set αB = 2 and αN = 0.
The Rashba spin-orbit coupling has Pauli matrices that do not rotate constantly, and this
alters the gap ∆ locally. The chemical potential µ decides if the gap experiences an en-
hancement or decreases. In fig. 6.9a, we show how the singlet pairing |S0| is affected close
to the ellipse vertex at is = 50 for a ring with N = 100 sites. For b/a = 0.1 the chemical
potential below two will enhance the order parameter, while it will decrease above. The
gap has vanished everywhere for µ = 3, consistent with the findings in ref. [47]. The gap
survives for such high fillings because of the bandwidth enlargement caused by the high
spin-orbit coupling αB.

In addition to altering the singlet order parameter, the curvature induces a p-wave pairing
at the vertex. In fig. 6.9b, we show the zero-projection p-wave triplet |P0| for different
chemical potentials. Triplet pairings can arise due to the spin-orbit coupled semiconduc-
tor in proximity with an s-wave superconductor [129]. The oscillating singlet pairing in
fig. 6.9a is also present in the p-wave pairing for low µ. Both peak exactly at the ellipse
vertex, where the curvature is the highest. This is due to a winding of the d-vector around
the wire [37]. For b/a close to one, away from the vertex, the d-vector lies in the plane,
parallel to the effective magnetic field due to the spin-orbit coupling [130]. However, the
direction changes close to is = 50, and as |S0| is enhanced, so is |P0|. For low b/a and
high αB the d-vector will have high winding numbers when traversing the wire. The
checkered pattern in fig. 6.9b is the changing spin-polarization of the p-wave correlations.
The squeezing of a superconducting ring with negligible strain effects can directly alter
the spin texture in the structure.
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Figure 6.9: (a) Singlet |S0| and (b) triplet |P0| for an ellipse with b/a = 0.1 and N = 100
sites. The curvature at the ellipse vertex alters the magnitude of the pairings. We have
used U = 2, αB = 2, aN = 0, and T = 0.01. (a) Reproduces the results in ref. [47].
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Next, we consider the strain effects only, so we set αB = 0. We use the strain-induced
spin-orbit factor in eq. (3.80). Therefore, we assume that the semiconductor shaped like
a circle is unstrained. We can introduce strain in situ by squeezing it into an ellipse. No-
tably, there is most strain at the vertex, which reduces the local singlet order parameter
|S0|. In this limit, where the intrinsic spin-orbit coupling is negligible, we don’t have a
winding of the d-vector. This is because the intrinsic term αBσN (is) is position-dependent
in spin space, and αNσB is not. Only the strain-induced factor αN (is) = aNκ(ia) changes
in magnitude locally. However, the spin-orbit coupling still creates |P0| correlations, as
shown in fig. 6.10. The triplets vanish as the gap closes for low b/a fractions. This in-
dicates that there is a conversion from |S0| → |P0|, similar to the spin-mixing in S-F-S
proximity systems. Therefore, creating a controlled localized p-wave order parameter in
situ may be possible by geometrical curvature, such as an ellipse.
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Figure 6.10: (a) Singlet |S0| and (b) p-wave triplet |P0| for a ellipse with N = 100 sites.
The curvature at the ellipse vertex (is = 50) decreases the singlet magnitude and induces
a triplet pairing. We have used U = 2, αB = 0, aN = 0.5, µ = 1 and T = 0.01.

6.6 Josephson junction

Josephson junctions are interesting to study because of the current flowing between the
superconductors, among other things. In this section, we will consider a junction where
both the superconductors and the weak link are curved, as shown in fig. 6.11. We will
consider a setup that allows us to have curvature in plane, and introduce torsion if we
want to. In terms of the parameterizations presented in section 3.3, that means we analyze
a helical junction. For a fixed number of turns n, there is a correspondence between the
curvature κ and the torsion τ . The curvature and torsion are related through eq. (3.65). In
the analysis presented in this section, we will vary both the number of turns and torsion,
not keeping one fixed. Therefore, τ will, in the following, be normalized to a fraction of the
in-plane circle with length L and the number of turns. Thus, we write τ = 0.1×2πn/L as
τ = 0.1. For τ = 1, we obtain a straight wire with the tangential unit vector T̂ (s) point-
ing in the z-direction. We initialize the superconductors with an s-wave gap and with a
constant phase throughout them. We use the Hamiltonian in eq. (6.31), and set ∆i = 0 in-
side the normal metal. More details about the implementation can be found in appendix E.
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Figure 6.11: Schemtic illustration of a curved Josephson junction including the curvilinear
coordinates and the curvature κ and zero torsion τ .

We can induce a 0−π transition in the clean, curved S-N-S junction. We consider a junc-
tion with NS = 50 lattice sites in superconductors and NN = 11 in the normal metal. For
τ = 0, we can show that the curvature induces the transition because of the strain-induced
spin-orbit coupling. In fig. 6.12, we show the total charge current as a function of κ and ϕ.
We use the expression in eq. (5.75) for the charge current. We also show the absolute value
of the hopping and spin-orbit contributions from eqs. (D.23) and (D.26) in fig. 6.12a. The
spin-orbit contribution has the opposite sign of the hopping illustrated in fig. 6.13, so as
it becomes greater in magnitude, the 0− π transition takes place. The contribution ⟨Is⟩α
grows in amplitude since the spin-orbit factor αN = aNκ increases with curvature. The
current goes to zero for high curvatures because the |S0| pairings vanish. The spin-orbit
coupling enhances the oscillations always present at the ends of the superconductor [131],
which kills the pairings in the normal metal. However, this is a finite-size effect and can
be avoided by having more lattice sites in the superconductors. In fig. 6.14, we show the
density of states in the center of the first superconductor for NS = 250. The gap does not
close entirely, which it does for NS = 50.
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Figure 6.12: The charge current at the center of the center of the normal metal. (a) The
0 − π transition for the critical current, and (b) the current-phase relation for different
curvatures. (a) We show the total charge current and the contributions from the hopping
and spin-orbit terms. As |⟨Is⟩α| becomes greater than |⟨Is⟩t|, the current switches direc-
tion. We have used U = 2, T = 0.05, and L for the length of the entire junction.
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In fig. 6.13, we show the current phase relation for the different charge current contribu-
tions. Both have in common that higher harmonics contribute. The Josephson current
can be written as a sine Fourier series

∑
m sin(mϕ), where the term with m = 1 usu-

ally has the most significant contribution. Both ⟨Is⟩t and ⟨Is⟩α have higher harmonic
contributions, m > 1, that change for increasing curvature. Past the 0 − π transition,
the curves go from having tilt towards π to tilting towards zero phase. Although it is
not immediately apparent from fig. 6.13a, the line for n = 0.8 is skewed in the opposite
direction compared to the rest. The line for n = 0.8 in fig. 6.13b exhibits this more clearly.
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Figure 6.13: The charge current contributions at the center of the center of the normal
metal. (a) The contribution from the hopping term in the Hamiltonian, and (b) the
contribution from the spin-orbit term. We have used U = 2 and T = 0.05.

The charge current through the normal metal can be associated with Andreev bound
states. The electrons reflected at the interfaces are present in the density of states and
have an energy dispersion that lies within the gap [132]. If we plot the density of states at
the center of the normal metal, we see non-zero densities, which are the Andreev-bound
states. In fig. 6.14, we show the density of states in the superconductors without the
presence of the bound states. However, the inset shows the Hamiltonian eigenenergies,
where the Andreev-bound states have the energies within the gap. These will be localized
to the normal metal. The outer pair of the bound states disappears at the 0−π transitions
because of the reduction in the band gap. The transition occurs at roughly κL ≈ 0.64 for
these parameters, seen in fig. 6.12a and the inset in fig. 6.14. The bound states provide
channels for the charge current, and as the curvature increases, it diminishes the gap,
removing a channel. It can be argued that the skewness in the current-phase relations
depends on higher harmonics and which channels contribute to the charge current [133].

By changing the pitch, tuning the 0−π is possible. To show this, we assume that an S-N-S
junction can be manufactured as a helix without strain. It is unstrained until squeezed
or stretched. We choose to have a helix without strain at n = 2 turns and τ = 0.5, in-
troducing strain by changing the torsion. The strain effects will be most significant when
reducing the torsion since the curvature will be the highest. It is equivalent to squeezing
a spring. Also, when the helix is stretched, it becomes strained, and the charge current
is reduced. In fig. 6.15, we show how the junction responds to torsion. At τ = 0.5, the
current ⟨Is⟩ and singlet pairing |S0| are at their maximum since no strain exists. When
compressing the helix enough, τ ≈ 0.11, we get a 0− π transition.
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Figure 6.14: Density of state at the center of the first superconductor for increasing
curvature κ. (inset) Shows the eigenenergies of the Hamiltonian for increasing curvature.
We used NS = 250, NN = 11, U = 2, T = 0.05, and L for the length of the entire junction.

As we established in the previous section, the strain-induced spin-orbit coupling can in-
duce p-wave pairings. In fig. 6.15b, we show the correlations that are present at the center
of the normal metal. For a junction curved in-plane, τ = 0, we only get P0 correlations.
This is related to the chosen spin-axis: we have chosen the spin-axis in the z-direction,
which coincides with B̂(s) in the τ = 0 case. The spin-orbit term couples to σB, and
so the p-wave pairings have no spin projection, Sz = 0. When we introduce torsion, the
binormal unit vector gets a tilt and becomes a mix of all the Cartesian Pauli matrices,
which can be seen in eq. (3.68). Figure 6.15b shows that close to the torsion without strain
τ = 0.5, we get more spin-polarized p-wave pairings since the helix is torsion-dominated.
When we assumed that the strain was low for τ = 0.5, we assumed the curvature was also
low. Therefore, the κ-τ relation in eq. (3.65) is essentially shifted by τ = 0.5 and n = 2.
Hence, we go from torsion-dominated to curvature-dominated at τ = 1/

√
2− 1/2 ≈ 0.21.

Here, the zero-projection triplet is larger |P0| > |Pσ|, as shown in fig. 6.15. Consequently,
torsion gives us a mechanism for controlling the type of induced p-wave pairings in the
junction. Since the intrinsic Rasbha term couples to σN , it will also induce Pσ pairings.
Therefore, if we have a helix, the intrinsic spin-orbit coupling is additive to the torsion.
Therefore, we have not considered its contribution.

In conclusion, we can control the superconducting correlations with a helix. In-plane
curvature creates P0 correlations, and spin-polarized Pσ correlations will be present if the
system has intrinsic spin-orbit coupling. Alternatively, a helix with strain-induced spin-
orbit coupling can create the same pairings. We can control the direction of the charge
current by in-plane curvature or tuning the torsion of a helix. The transition happens when
a channel in the Andreev bound states disappears, and the spin-orbit contribution to the
current becomes greater than the hopping contribution. We should note that fig. 6.15 could
be misleading because it appears that the S0 are responsible for the ⟨Is⟩t current and the
P0 pairings for the ⟨Is⟩α current. The hopping current is related to the singlet pairings,
and as the gap decreases with curvature, so does the current contribution. The p-wave
correlations and spin-orbit current contribution are not related to each other. However,
both originate from the strain-induced term ∝ αN . With only Rashba and without the
strain-induced spin-orbit, the ⟨Is⟩α would remain constant. The same would apply to
the gap and the hopping current contribution. Therefore, the strain-induced spin-orbit is
crucial for controlling the effects discussed in this section.
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Figure 6.15: (a) The total critical charge current and its contributions. (b) The s- and
p-wave pairing correlations as a function of the torsion. We have assumed no strain at
n = 2 and τ = 0.5. The values are taken from the center of the normal metal, and we
have used NS = 50, NN = 11, U = 2, and T = 0.05.

6.7 Dirty and clean limit

When comparing the dirty and clean limits, we found that we can induce p-wave pairings
in the clean limit but not in the dirty when curving an s-wave superconductor. In the clean
limit, we can control where the correlation is induced in the wire, depending on where it
is considerably strained. We used an unstrained ring as an example; if it is squeezed into
an ellipse, it has the highest strain and localized p-wave pairings at the vertices.

We have shown that we can induce 0 − π transitions in both limits. However, we need
an exchange field in the dirty limit to change the spin axis and obtain spin rotation.
The exchange field and the spin-mixing can generate a greater amount of triplet pairings.
Therefore, in the dirty limit, they can dominate over the singlets. These can be curvature-
induced, and the strain-induced spin-orbit is not necessary for the 0−π transition. In the
clean limit, the induced p-wave pairings are always a fraction of the s-wave and cannot
dominate. On the other hand, the exchange field is not necessary to change the direction
of the current. However, the strain-induced spin-orbit field is crucial.



Chapter 7

Two-dimensional Josephson
junction

This chapter will present the results of curvature in two-dimensional systems. Solving
quasiclassical equations in two dimensions is possible but requires the application of the
method of finite elements [134, 135]. Creating such a numerical code can be cumbersome
and is beyond the scope of this thesis. Therefore, all results in this chapter have been ob-
tained using the Bogoliubov de Gennes method with periodic boundary conditions parallel
to the interfaces or perpendicular to the curvature direction. Throughout this chapter, we
will consider the geometry illustrated in fig. 7.1. In this geometry, we assume the junction
has no thickness n = 0, but we keep the binormal coordinate b. Since the curvature is in
the tangential direction, we apply periodic boundary conditions in the binormal.

Figure 7.1: Curved two-dimensional Josephson junction. The curvature is given as the
inverses of the radius R. The phase difference between the superconductors is ϕ.

From eq. (3.48), we established that the curvature-induced spin-orbit field also has a
binormal component. To keep things general, we keep the curvature-induced spin-orbit
coupling αN and denote the intrinsic αR. The intrinsic spin-orbit form comes from a lack
of surface inversion symmetry. The symmetry breaking is in the normal direction, and we
can write its Hamiltonian as

HR = −αR

ℏ
(σ · p)× N̂ (s) = iαR

(
σB(s)∂s − σT (s)∂b

)
. (7.1)

Since it is in the normal direction, it is additive to the strain-induced spin-orbit coupling.
We could introduce a shifted curvature to the spin-orbit αN = aNκ→ aN (αR/aN + κ).
However, we set αR = 0 since the effects of intrinsic only shift the curvature-induced ones.
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This lets us write down a continuum expression for the Hamiltonian. We can express it as

H =
∑
σσ′

∫∫
ds db c†σ(s, b)

{(
− ℏ2

2m
(∂2s + ∂2b )− µ

)
+ iαN

(
σB(s) ∂s − σT (s) ∂b

)}
cσ′(s, b) (7.2)

+

∫∫
ds db

[
∆(s, b)c†↑(s, b)c

†
↓(s, b) + ∆∗(s, b)c↓(s, b)c↑(s, b)

]
,

where we have discarded constant shifts to the energy. Applying a finite difference scheme
in the tangential direction yields a similar expression for the spin-orbit term in the dis-
cretized Hamiltonian as in one dimension. However, we get an extra sin(kb)σT for the
spin-orbit interaction in the binormal direction. This is consistent with the result in
eq. (5.26). A detailed derivation is given in appendix C.3.

7.1 Dispersion

The dispersion relation in two dimensions is expected to vary from the one dimensional
given in eq. (6.17) since the spin-orbit, and therefore spin-splitting is different. We will
compare the analytical dispersion with the Bogoliubov-de Gennes simulations. We con-
sider the Hamiltonian presented above and the curvilinear Pauli matrices from eq. (3.53).
We begin finding the analytical dispersion, so we denote the first integral in eq. (7.2) as
H0(r) and q = κT̂ (s), which means q · r = κs. We propose a unitary transformation U ,
and we choose U(r) = diag(i, ie−iq·r, i, ieiq·r). This unitary transformation will have
the following effect on the spin element and the interaction part

H ′
0(r) =

(
− ℏ2

2m∇2 − iα̃N∂s α̃N∂b
−α̃N∂b − ℏ2

2m

[
(∂s + iκ)2 + ∂2b

]
+ iα̃N (∂s + iκ)

)
, (7.3)

∆′(r) =

(
0 ∆e−iq·r

−∆e−iq·r 0

)
= ∆(r)e−iq·r . (7.4)

Next, we would like to Fourier transform the Hamiltonian. This is to be able to find the
energy dispersion in terms of the momentum variables. We assume the real space spinor
of the noninteracting part Fourier transforms into the spinor in section 6.3, with creation
and annihilation operators c†±k and c±k. Therefore, the Hamiltonian H ′

0 describing the
free electrons and spin-orbit coupling will become

H0(k) =

(
ξk + α̃Nks −iα̃Nkb
iα̃Nkb ξk − (α̃N − αq)ks + f(κ)

)
,

where we have introduced the quantities αq = ℏ2κ/m and f(κ) = ξq − α̃Nκ. In the inter-
action part of the Hamiltonian, we get finite momentum pairs. Namely, the exponential
with q · r shifts the Fourier transform integral over k. Therefore, we can write this part
of the Hamiltonian as

H′
int =

∑
k

[
∆c†k↑c

†
−q−k↓ +∆∗c−q−k↓ck↑ −∆c†k↓c

†
−q−k↑ −∆∗c−q−k↑ck↓

]
. (7.5)

To express the interacting and non-interacting part using the same spinors, we shift the
summation variable k → k − q/2 in H0 and its spinors. We assume that the shifted
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variable stays within the first Brillouin zone. It lets us write the total Hamiltonian in the
new basis as

H =
∑
k

Ψ̂†
k

(
H0(k − q/2) ∆

∆† −H0(−k − q/2)

)
Ψ̂k , (7.6)

where the spinor is

Ψ̂k =

(
ck−q/2 ↑, ck−q/2 ↓, c

†
−k−q/2 ↑, c

†
−k−q/2 ↓

)T

. (7.7)

The Hamiltonian in the summation above can be diagonalized. The eigenvalues give the
dispersion and band structure. In fig. 7.2, we show the bands. Again, we predict a hori-
zontal shift in the bands, lifting the spin degeneracy.

Figure 7.2: Energy dispersion for a two-dimensional curved superconducting sheet at
ks = 0. The spin degeneracy is lifted, and the bands are shifted horizontally.

When showing the dispersion obtained from the Bogoliubov-de Gennes method, we again
use the momentum variable kb. Since we sum over kb in eq. (5.34), we essentially are
solving one-dimensional systems and changing the momentum for each term. Therefore,
we can use the eigenenergies from the diagonalization to extract the dispersion [136]. For
a superconducting tunnel with Ns = 99 and Nb = 99 sites, we obtain the dispersions given
in fig. 7.3. We have highlighted the trend of the two spin species to show the similarity
to fig. 7.2. Apart from the parabola to cosine approximation in the discretized dispersion,
they are similar.
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(a) (b)

Figure 7.3: The energy spectrum for a superconducting tunnel with (a) κL = 0 and (b)
κL = π, where L is the length in the tangential direction. We have used a 99× 99 lattice,
U = 2 and T = 0.1
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If we extract the eigenenergies and the spectrum for a curved S-N-S junction, it is similar.
However, there are lines within the gap; they are the Andreev bound states discussed in the
previous chapter. The strain-induced spin-orbit coupling also lifts their degeneracy since
electrons and holes carry the Andreev bound states. In fig. 7.4, we show the dispersion
for the S-N-S tunnel and highlight the bound states. We do note that the energies do
not cross zero or touch; they are topologically trivial [137]. There are more bound states
in the two-dimensional case than in the one-dimensional if the number of lattice sites in
the tangential direction is the same. This is because the electrons with energies below
the superconducting gap, bound to the normal metal, may have a binormal component in
their velocity. It opens up for more bound states to accumulate the correct phase by not
traveling perpendicular to the interfaces. As in the one-dimensional Josephson junction,
the bands also shift vertically, so the gap closes for high spin-orbit strengths.
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Figure 7.4: The energy spectrum for a Josephson junction tunnel with (a) κL = 0 and (b)
κL = 1.5, where L is the length of the entire junction in the tangential direction. We have
used a lattice with NS = 35, NN = 11, and Nb = 81 sites. We set U = 1.4 and T = 0.1.

7.2 Magnetization

Due to the binormal component in the strain-induces spin-orbit field, we get a spin-
magnetization in the two-dimensional S-N-S junction. In the binormal component of
the spin-orbit field, the momentum is coupled to the tangential curvilinear Pauli matrix
σT . Because we assume periodic boundary conditions, this term becomes an onsite, spin-
and momentum-dependent potential. This can be seen in eq. (5.24), where we get a factor
which translates to sin kb σT in this geometry. The derivation details can be found in
appendix C.3, which results in the form implemented numerically. This subsection will
consider a square junction with NS = 20, NN = 21 lattice sites in the superconductors
and normal metal in the tangential direction, respectively. Therefore, it has Nb = 60
sites in the binormal direction. We use U = 1.5, aN = 0.5 and T = 0.05. For reasons
that will become apparent, we will vary the remaining variables. We assume the chem-
ical potential is identical in the normal metal and the superconductors, so we write it as µ.

As in the previous chapter, the strain-induced spin-orbit coupling is a source of p-wave
correlations. We have determined that in one dimension, the tangential component AT of
the field containing σB is responsible for generating Ps

0 correlations wherever the structure
has curvature and the intrinsic S0 pairings are present. If we assume that we have two
different coefficients αN,1 and αN,2, we can check which components of the spin-orbit field
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A(s) = αN,1 σBT̂ (s) + αN,2 σT B̂(s) produces which correlations in the two-dimensional
junction. If we set αN,2 = 0 and αN,1 ̸= 0, we find that we get Ps

0 correlations, exactly
like in one dimension. For αN,1 = 0 and αN,2 ̸= 0, we get spin-polarized triplets Pb

σ.
In the previous chapter, we argued that σT and σN should induce spin-polarized p-wave
pairings, so it is consistent that we obtain these in two dimensions. The spin-polarized
pairings mentioned are p-wave pairings with the lobes oriented in the binormal direction.
We were unable to obtain these before because we were constrained to the tangential di-
rection only. In fig. 7.5, we show the amplitudes for the singlet pairing and the gap |∆|.
We also show the non-zero p-wave pairings for κ = π, ϕ = π/2, and µ = 1. Notice that in
fig. 7.5b the pairings Pb

↑ and Pb
↓ are not equal in magnitude. This results in the generation

of a finite spin magnetization along the spin axis, which is the binormal direction.
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Figure 7.5: (a) The magnitude of the gap and singlet pair correlations throughout the
junction. (b) The p-wave triplet corrections are present due to the strain-induced spin-
orbit coupling. (a) and (b) show the same system with ϕ = π/2, µ = 1, T = 0.05, and
κL = π, where L is the length of the entire junction in the tangential direction.

The chemical potential plays a crucial role in generating the spin magnetization in the
normal metal. The chemical potential can control the amount of p-wave pairings we get in
the junction. In section 6.6, we showed that the gap magnitude would vary with µ when
solving the gap equation self-consistently in a superconductor. This also affects the p-wave
amplitudes as they are created from the s-wave amplitudes. However, the correspondence
is not one-to-one; p-wave pairings vanish for µ = 0. In fig. 7.6, we show real and imag-
inary parts of the spin-polarized p-wave triplet pairings. The correlations get a π phase
difference for changing the sign of µ. The spin magnetization in the binormal direction
SB also changes sign with the chemical potential. We show that the other directions have
zero spin magnetization SS,N = 0 for completeness.

The phase difference across the junction is the final component that is needed to induce
spin magnetization in the normal metal. It creates the difference in magnitude between the
spin-polarized p-wave correlations Pb

↑ and Pb
↓. In addition to having unequal magnitudes,

the overall phases of the correlations also become different. This can be seen from fig. 7.6a
because the real and imaginary parts do not vary equally; the Pb

↑ amplitude is not simply

a constant factor times Pb
↓. In fig. 7.7a, we show that the difference in magnitude depends

on the superconductors’ phase difference. For zero phase difference, the magnitudes are
equal and have the same phase. For ϕ < π, the magnitudes and phases become unequal,
which results in a finite spin magnetization. In fig. 7.7b, we show the dependence of the
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Figure 7.6: (a) The spin-polarized p-wave triplet pairings and (b) the spin magnetizations
as functions of the chemical potential µ. We used ϕ = π/2, T = 0.05, and κL = π, where
L is the length of the entire junction in the tangential direction.

magnitude of the spin magnetization as a function of the phase difference. As expected,
it vanishes for ϕ = 0 and ϕ = π. It has a sinusoidal form, similar to the charge current,
which we will investigate next.
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Figure 7.7: (a) The spin-polarized p-wave triplet pairings and (b) the spin magnetizations
as functions of the phase difference ϕ. We used µ = 1, T = 0.05, and denoted the length
of the entire junction in the tangential direction L.

7.3 Currents

In the two-dimensional S-N-S junction, we can also induce a 0−π transition, similar to the
one in section 6.6. As in the previous section, we consider a square junction with NS = 20,
NN = 21 lattice sites in the superconductors and normal metal in the tangential direction
and Nb = 60 sites in the binormal direction. We use U = 1.5, aN = 0.5 and T = 0.05. In
fig. 7.8a, we show the 0−π transition, which takes place when the spin-orbit contribution
⟨Is⟩α surpasses the hopping contribution ⟨Is⟩t in magnitude. As with the p-wave pairings,
the magnitudes of the current contributions depend on the chemical potential. In fig. 7.8b,
we show this dependence and find that the total charge current is the highest for µ = 0.
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Figure 7.8: (a) The 0 − π transition for increasing curvature, and (b) the current contri-
butions as a function of the chemical potential µ. We used ϕ = π/2. In (a), µ = 1, and in
(b) κL = π. Here, L denotes the length of the entire junction in the tangential direction.

In a two-dimensional system, there are more Andreev bound states compared to a one-
dimensional system. We have previously argued for this statement and depicted them in
fig. 7.4. As the gap decreases with increasing curvatures, only a few of the many bound
states disappear, which have smaller contributions to the charge current than in the one-
dimensional analysis. The direction of the charge current and the change in direction
depend only on the magnitudes of ⟨Is⟩t and ⟨Is⟩α. Since the density of Andreev bound
states is high, and many survive even when the junction is made into a cylinder, the skew-
ness in the phase-current plots should remain unchanged. In fig. 7.9, we show the charge
current contributions as a function of the phase difference ϕ. As argued, they are skewed
towards ϕ = π for all κ. For κL = 2π in fig. 7.9b, it is less skewed but still in the same
direction. We highlight this line because it is past the 0−π transition, where the skewness
direction had changed in the one-dimensional junction.

0.0 0.2 0.4 0.6 0.8 1.0

φ/π

0.000

0.005

0.010

0.015

0.020

0.025

|〈I
s
〉 t|

κL = 0.0π

κL = 0.5π

κL = 1.0π

κL = 1.5π

κL = 2.0π

(a)

0.0 0.2 0.4 0.6 0.8 1.0

φ/π

−0.012

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

|〈I
s
〉 α
|

κL = 0.0π

κL = 0.5π

κL = 1.0π

κL = 1.5π

κL = 2.0π

(b)

Figure 7.9: Shows the phase-current relation for the (a) hopping and (b) spin-orbit contri-
bution to the charge current for different curvatures. We used µ = 1, and the total length
of the junction in the tangential direction is denoted L.
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Lastly, we consider the spin current across the junction. The strain-induced spin-orbit
coupling in our junction will create a spin-current [138]. We use the expression given in
eq. (5.76). There is one crucial point to keep in mind, however: the spin-orbit coupling
prevents the spin S from being a good quantum number [139]. Since we show the spin-
current in areas with spin-orbit coupling, it is not a conserved quantity. In fig. 7.10, we
show the binormal component of the spin current in the tangential direction, ⟨Is,bS ⟩. It
shows that the spin-current increases with the curvature. It also reaches its maximum
for zero chemical potential, as shown in fig. 7.10b. Although we have not shown it, ⟨Is,bS ⟩
is independent of the phase difference between the superconductors. Therefore, the spin
current will be highest for a junction with high curvature and low chemical potential,
regardless of the phase difference between the superconductors.
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Figure 7.10: The b-component of the total spin current in the s-direction as a function of
the (a) curvature and (b) chemical potential. We used ϕ = π/2. In (a), µ = 1, and in (b)
κL = π. Here, L denotes the length of the entire junction in the tangential direction.



Chapter 8

Conclusion and outlook

We have shown that curvature and strain have the potential to alter superconducting pair
correlations in superconductors and Josephson junctions. We derived curvilinear coordi-
nate systems for different geometries and the resulting strain-induced spin-orbit coupling
to study these effects. We also derived the curvilinear Pauli matrices for one-dimensional
space curves with and without torsion.

To build an intuition for the interplay between the exchange field in a ferromagnet and the
intrinsic spin-orbit coupling in the dirty limit, we solved the Usadel equation numerically
for straight S-F-S systems. Then, we added curvature, which, for the ferromagnet, cre-
ated a curvature-induced spin-orbit coupling. A curved ferromagnet alone was sufficient
to create spin-triplet correlations, and we showed that the strain-induced spin-orbit cou-
pling was additive to the curvature. The curvature could change the state of the junction
and induce a 0 − π transition. We also derived the Eilenberger equation in curvilinear
coordinates to investigate increases in the p-wave contribution but found no contributions
to the gap in a curved superconductor.

In the clean limit, we found that curving superconductors with considerable strain-induced
spin-orbit coupling will alter the superconducting gap. We showed that the magnitude
will vary depending on the curvature. We also showed that the orbital symmetry will be
mixed, and we obtain p-wave correlations. As an example, we analyzed superconduct-
ing rings and applied strain by squeezing them into ellipses. This created high strain at
the vertices, and the p-wave correlations were localized there. We also found that strong
strain-induced spin-orbit coupling will kill the superconductivity entirely.

We found that we can induce 0 − π transitions in the clean limit as well. If the strain-
induced spin-orbit coupling is strong, we can induce the transition without a ferromagnet
in the weak link. The transition takes place in both one- and two-dimensional curved
S-N-S junctions. We also found that in two-dimensional Josephson junctions, the strain-
induced spin-orbit coupling creates a finite spin-magnetization in the binormal direction.
Lastly, we showed that the non-conserved spin current will be highest for a junction with
high curvature and low chemical potential.

Further extensions of this work could include studying stacked thin films. In chapter 7,
we neglected the thickness of the junction, so one could consider a geometry like the one
depicted in fig. 8.1. This is an interesting geometry since the Christoffel symbols are non-
zero. Therefore, one would get an extra partial derivative in the Hamiltonian. The kinetic
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and spin-orbit part of the Hamiltonian can be written as

H = − ℏ2

2m
Gµν

(
∂µ∂ν − Γλ

µν∂λ

)
− iℏ
m

ϵλµν√
|G|

αλσµ∂ν , (8.1)

where the greek indecies run over s, n, b. Since the Christoffel symbols differ from zero, the
curvilinear Pauli matrices are not given by σT,N,B ̸= σs,n,b. If one assumes that τ(s) = 0,
and only considers the cross-section of the junction, b = 0, the Hamiltonian reads

H =
−ℏ2
2m

(
∂2s +

1

η(s, n)2
∂2n

)
− ℏ2

2m

κ(s)

η(s, n)
∂n −

iℏ
m

1

η(s, n)
αNσB∂s , (8.2)

which should display different curvature phenomena than those discussed in this thesis.

Figure 8.1: Stacked thin-films with curvature, where the (s, n)-plane might display novel
phenomena.

Another possible extension is to investigate what happens when curving superconducting
thin films with an intrinsic p-wave orbital symmetry. In one-dimensional Rashba wires, it
has been shown that curvature can generate edge states and topological insulating phases
[42]. Therefore, it could be interesting to investigate if one could induce corner modes in
a two-dimensional setup. One likely needs curvature in both in-plane axes. Therefore, the
Frenet-Serret equations do not suffice, and two principle curvatures are needed. The ap-
propriate framework has been developed in ref. [140], using differential geometry instead
of the Frenet-Serret frame.

This thesis has analyzed Josephson junctions in the dirty and clean limit and found inter-
esting phenomena in curved superconductors in the clean limit. However, this work has
numerous possibilities for further extensions, and curvature in condensed matter systems
remains an active research area.
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Caud, Y. Chen, L. Goldfarb, M. Gomis, et al., “Climate change 2021: the physical
science basis”, Contribution of working group I to the sixth assessment report of
the intergovernmental panel on climate change 2, 2391 (2021).

[3] F. Pulizzi, “Spintronics”, Nature materials 11, 367 (2012).

[4] A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Diény, P. Pirro, and B.
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Appendix A

Derivation Christoffel symbol

In this appendix, we give the derivation of the first Christoffel symbol Γs
µν of the second

kind, which is

Γs
µν =

1

2
Gss [∂νGµs + ∂µGsν − ∂sGµν ]

+
1

2
Gsn [∂νGµn + ∂µGnν − ∂nGµν ]

+
1

2
Gsb [∂νGµb + ∂µGbν − ∂bGµν ] . (A.1)

Note that the expression is not the same as in eq. (3.7) since the metric is not diagonal
for a parametrization with torsion. Thus, the inverse metric runs over all indices of σ in
eq. (2.25). In the following, we separately calculate each line in eq. (A.1). The first line
in the equation above for the Christoffel symbol is

1

2
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(A.2)

Moving on to the second line in eq. (A.1), we get
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∂s (0) ∂n (0) ∂b (0)
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+
1

2
Gsn

∂s (−bτ(s)) ∂s (1) ∂s (0)
∂n (−bτ(s)) ∂n (1) ∂n (0)
∂b (−bτ(s)) ∂b (1) ∂b (0)


− 1

2
Gsn

∂n (η(s, n)2 + ζ(s, n, b)2
)

∂n (−bτ(s)) ∂n (nτ(s))
∂n (−bτ(s)) ∂n (1) ∂n (0)
∂n (nτ(s)) ∂n (0) ∂n (1)


=

1

2
Gsn

2∂s (−bτ(s))− ∂n
(
η(s, n)2 + ζ(s, n, b)2

)
0 −2τ(s)

0 0 0
−2τ(s) 0 0

 . (A.3)

Finally, the third and last line in eq. (A.1) evaluates to

1

2
Gsb [∂νGµb + ∂µGbν − ∂bGµν ] =

1

2
Gsb
∂s (nτ(s)) ∂n (nτ(s)) ∂b (nτ(s))

∂s (0) ∂n (0) ∂b (0)
∂s (1) ∂n (1) ∂b (1)


+

1

2
Gsb
∂s (nτ(s)) ∂s (0) ∂s (1)
∂n (nτ(s)) ∂n (0) ∂n (1)
∂b (nτ(s)) ∂b (0) ∂b (1)


− 1

2
Gsb
∂b (η(s, n)2 + ζ(s, n, b)2

)
∂b (−bτ(s)) ∂b (nτ(s))

∂b (−bτ(s)) ∂b (1) ∂b (0)
∂b (nτ(s)) ∂b (0) ∂b (1)


=

1

2
Gsb
2∂s (−bτ(s))− ∂b

(
η(s, n)2 + ζ(s, n, b)2

)
2τ(s) 0

2τ(s) 0 0
0 0 0

 . (A.4)

Having all three terms, we can sum up the contributions. However, we do it elementwise
since we do not need to calculate both Γs

µν and Γs
νµ. It can be seen directly from eqs. (A.2)

to (A.4), so no further proof is necessary. We start with the first element, which is

Γs
ss =

1

2η(s, n)2
[
∂s
(
η(s, n)2 + ζ(s, n, b)2

)
− 2bτ(s)∂s(bτ(s))− bτ(s)∂n

(
η(s, n)2 + ζ(s, n, b)2

)
+nτ(s)∂b

(
η(s, n)2 + ζ(s, n, b)2

)
− 2nτ(s)∂s(nτ(s))

]
=

1

η(s, n)
[∂sη(s, n) + bτ(s)κ(s)] . (A.5)

The rest of the elements are,

Γs
sn =

1

2η(s, n)

[
∂n
(
η(s, n)2 + ζ(s, n, b)2

)
− 2nτ(s)2

]
= − κ(s)

η(s, n)
, (A.6)

Γs
sb =

1

2η(s, n)

[
∂b
(
η(s, n)2 + ζ(s, n, b)2

)
− 2bτ(s)2

]
= 0. (A.7)

The calculations for the other Christoffel symbols are identical to the one already pre-
sented. Thus, we do not present them.



Appendix B

Gradient approximation derivation

This appendix will investigate how the change of coordinates affects the bullet product.
However, first, we need to define the product. We consider the Dyson equation (4.13) to
give the product meaning, where we first introduced the notation. Intuitively, when and
where the propagators interact with the external potential should not be fixed. Contribu-
tions from interaction anywhere and at any time should contribute as long as the particle
arrives at the appropriate time and place. Thus, the product should be both a matrix
multiplication and an integral over all possible positions and times. The bullet product is
defined as

(A •B) (r1, t1; r2, t2) =

∫
d3r′

∫
dt′A(r1, t1; r

′, t′)B(r′, t′; r2, t2). (B.1)

Next, we will see how this definition is affected by the mixed representation. Specifically,
we will derive a practical approximation for the quasiclassical approximation in the mixed
representation. Our starting point is the definition in eq. (B.1). When this is expressed
in terms of the relative and center-of-mass coordinates defined in eq. (4.44), we can write
the product as

(A •B)(R, T ; r, t) =

∫
d3r

∫
dt A

(
R+

r

2
, T +

t

2
; r′, t′

)
B

(
r′, t′;R− r

2
, T − t

2

)
.

(B.2)

Next, to lighten the notation, we will write everything in four-vector notation. That is
X = (T, R) for the center-of-mass and x = (t, r) for the relative coordinate. In addition
we Fourier transform x→ P = (E , p) the product, so we have

(A •B)(X,P ) =

∫
d4x′

∫
d4x eiPxA

(
X +

x

2
, x′
)
B
(
x′, X − x

2

)
, (B.3)

where the exponent Px should be understood as the Lorentz invariant product Pµx
µ =

Pµg
µνxν . Since we integrate over the whole domain of x′, we can shift it by X without

changing the result. [85] We get

(A •B)(X,P ) =

∫
d4x′

∫
d4x eiPxA

(
X +

x

2
, x′ +X

)
B
(
x′ +X,X − x

2

)
. (B.4)

Next, we introduce a coordinate transformation, simplifying our expression later. The
new coordinates are given by

x = u+ v, x′ =
u− v
2

, (B.5)
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so that dxdx′ → |J(u, v)|dudv, where the Jacobian has a value of J(u, v) = −1, which
does not change the sign of the expression because of the absolute value. [64] Thus, the
coordinate transformation gives us

(A •B)(X,P ) =

∫
du

∫
dv eiP (u+v) A

(
X +

u+ v

2
,
u− v
2

+X

)
B

(
u− v
2

+X,X +
u+ v

2

)
.

(B.6)

Next, we do a Taylor expansion of A in u and B in v, both about zero. The series is

A

(
X +

u+ v

2
,
u− v
2

+X

)
=
∑
n

1

n!

(
1

2

)n

∇n
X A

(
X +

v

2
, X − v

2

)
un, (B.7)

B

(
X +

u− v
2

, X − u+ v

2

)
=
∑
m

1

m!

(−1
2

)m

∇m
X B

(
X +

u

2
, X − u

2

)
vm. (B.8)

Note that A is independent of u, and B is independent of v, which means the integrals
over u and v can be separated in the bullet product. Inserting the Taylor series of A and
B, the product now takes the form

(A •B)(X,P ) =
∑
n

∑
m

1

n!

1

m!

(
1

2

)n(−1
2

)m [∫
dv ∇n

X A
(
X +

v

2
, X − v

2

)
eiPvvm

]
×
[∫

du∇m
X B

(
X +

u

2
, X − u

2

)
eiPuun

]
. (B.9)

We rewrite the last part in the square brackets as eiPuun = (−i)n∇n
P e

iPu. This gives us

(A •B)(X,P ) =
∑
n

∑
m

1

n!

1

m!

(−i
2

)n( i
2

)m

∇m
P∇n

X

[∫
dv A

(
X +

v

2
, X − v

2

)
eiPv

]
×∇n

P∇m
X

[∫
du B

(
X +

u

2
, X − u

2

)
eiPu

]
.

(B.10)

Next, we notice that the integrals inside the square brackets are simply the Fourier trans-
form to P space of the coordinate v and u, respectively. In the following, we use the
superscript of the nabla operator to write upon which matrix it acts explicitly. This
means, for instance, (∇n

XA) (∇m
P B) =

(
∇A

X

)n (∇B
P

)m
AB. Using the Taylor series of the

exponential function, which is∑
n

1

n!

(−i
2

)n (
∇A

X

)n (∇B
P

)n
= e

−i
2
∇A

X∇B
P , (B.11)

the bullet product can be written as

(A •B)(X,P ) = e
i
2(∇

B
X∇A

P−∇A
X∇B

P ) A(X,P )B(X,P ). (B.12)

Switching back to three-vector notation, this becomes

(A •B)(R, T,p, E) = e
i
2(∂

B
T ∂A

E −∂A
T ∂B

E )e
i
2(∇

A
R∇B

p −∇B
R∇A

p ) A(R, T,p, E)B(R, T,p, E),
(B.13)

which expanded to the first order can be approximated as

(A •B)(R, T,p, E) ≈
[
1 +

i

2

(
∂BT ∂

A
E − ∂AT ∂BE +∇A

R∇B
p −∇B

R∇A
p

)]
A(R, T,p, E)B(R, T,p, E).

(B.14)
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In the Gor’kov equation (4.43), for instance, we have used the bullet commutator defined
as [A,B]• = A •B −B •A. We can use the first-order approximation to write it as

[A,B]• ≈ [A,B] +
i

2

(
{∂EA, ∂TB} − {∂TA, ∂EB}+ {∇RA,∇pB} − {∇pA,∇RB}

)
,

(B.15)

where the ordinary anti-commutator was inserted.
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Appendix C

Continuum Hamiltonian
discretization

There are several ways to discretize a continuum Hamiltonian. We have chosen to use
localized Wannier orbitals in chapter 5. These are in principle known, and the hopping
amplitudes can be calculated directly from the integrals in eqs. (5.5) and (5.6). We will
show how to obtain the nearest neighbor vector and spin-orbit hopping amplitudes by
a crude approximation equivalent to a finite difference scheme, which is a common dis-
cretization technique.

C.1 Nearest neighbor vector

We will begin from eq. (5.6) and insert the definition of the derivative. We can write

ασσ′
ij = iα (n× σ)σσ

′ ·
∫
dr w∗(r −Ri)∇w(r −Rj)

= lim
d→0

iα (n× σ)σσ
′ ·
∫
dr w∗(r −Ri)

d̂

2d

[
w(r −Rj − d)− w(r −Rj + d)

]
,

(C.1)

where d is the distance between nearest neighbors. However, we cannot let d → 0, so we
approximate the derivative. This is equivalent to the central difference scheme. We can
therefore write

ασσ′
ij =

iα

2d
(n× σ)σσ

′ · d̂
∫
dr w∗(r −Ri)

[
w(r −Rj − d)− w(r −Rj + d)

]
=
iα

2d
(n× σ)σσ

′ · d̂
[
δ(Ri −Rj − d)− δ(Ri −Rj + d)

]
=
iα

2d
(n× σ)σσ

′ · dij . (C.2)

Under an interchange of hopping direction, the nearest neighbor vector changes sign,
dij = −dji. The relations in eq. (5.8) can be derived easily(

ασ′σ
ji

)∗
=
−iα
2d

(n× σ)σσ
′ · (−dij) = ασσ′

ij , (C.3)

where we used that (n×σ∗)σ
′σ = (n×σ)σσ

′
. In the next section, we see what happens if

the Pauli matrices are position-dependent as well. The spin-orbit term maps to the lattice
are somewhat different, but the relations in eq. (5.8) are still valid.
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C.2 Discrete 1D strain-induced spin-orbit Hamiltonian

In this section, we consider the spin-orbit field in eq. (3.44). Since the curvilinear Pauli-
matrices have a position dependence, we have to write the intrinsic contribution to the
continuum Hamiltonian as

Hrsoc =
∑
σσ′

∫
dr ψ†

σ(r)
iαB

2
T̂ (r) ·

[
σN (r)∇+∇σN (r)

]
ψσ′(r), (C.4)

where the second term in the brackets assures the Hamiltonian is Hermitian. If we again
use the Wannier orbitals, partial integration, and assume the surface term vanishes, we
get

Hrsoc =
∑
σσ′

∑
ij

c†iσcjσ
iαB

2
T̂ ·
[∫

dr σN (r)w∗(r −Ri)∇w(r −Rj)

−
∫
dr σN (r)∇w∗(r −Ri) w(r −Rj)

]
=
∑
σσ′

∑
ij

c†iσcjσ
iαB

4d
T̂ · d̂

[∫
dr σN (r)w∗(r −Ri)

[
w(r −Rj − d)− w(r −Rj + d)

]
−
∫
dr σN (r)

[
w∗(r −Ri + d)− w∗(r −Ri − d)

]
w(r −Rj)

]
=
∑
σσ′

∑
⟨ij⟩

c†iσcjσ
iαB

4d

[
σN (Ri) + σN (Rj)

]
T̂ · dij . (C.5)

This is consistent with the discretized expression in [42]. We could also write T̂ ·dij = dTij .
Next, we consider the strain-induced contribution. We don’t assume a torsion-free wire,
therefore the Hamiltonian becomes

Hκ = −
∑
σσ′

∫
dr ψ†

σ(r)
iαN

2
T̂ (r) ·

[
σB(r)∇+∇σB(r)

]
ψσ′(r)

= −
∑
σσ′

∑
⟨ij⟩

c†iσcjσ
iαN

4d

[
σB(Ri) + σB(Rj)

]
dTij , (C.6)

where the derivation is the same as above. In the analysis in the main text, we don’t
consider a wire with torsion and variable curvature; we only consider variable curvature
or a helix. Note that the above expressions assume a one-dimensional wire, as in the
main text. However, if we were to consider the thickness of the material as in fig. 3.2, the
nearest neighbor vector would have a dependence on the normal coordinate n to account
for the variable strain. For a circular geometry, we have

Hκ = −
∑
σσ′

∑
⟨ij⟩

c†iσcjσ
iαN

2d
σB d

T
ij . (C.7)
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C.3 Discrete 2D strain-induced spin-orbit Hamiltonian

If we consider the 2D Hamiltonian with strain-induced spin-orbit coupling as in eq. (3.48),
the relevant part becomes

Hsoc =
∑
σσ′

∫
dr ψ†

σ(r)
[
iαNσB(r) T̂ (r) · ∇ − iαNσT (r) B̂(r) · ∇

]σσ′
ψσ′(r)

=
∑
σσ′ij

c†iσcjσ′ iαN

∫
dr w∗(r −Ri)

[
σB(r)T̂ (r)− σT (r)B̂(r)

]σσ′
· ∇w(r −Rj)

=
∑

σσ′⟨ij⟩

c†iσcjσ′ iαN

[
σB d

T
ij − σi,T dBij

]σσ′

=
∑

σσ′⟨ij⟩s

c†iσcjσ′ iαN σσσ
′

B dTij −
∑

σσ′⟨ij⟩b

c†iσcjσ′ iαN σσσ
′

i,T dBij

=
∑

σσ′⟨ij⟩s

c†iσcjσ′ ασσ′
ij +

∑
σσ′⟨ij⟩b

c†iσcjσ′ aσσ
′

ii dBij . (C.8)

In the above, we used that σT and σB is constant in the binormal direction. Thus, in the
second term, the curvilinear Pauli matrix only depends on the tangential coordinate: σi,T .
In the main text, we only investigate 2D systems where this is true. Applying periodic
boundary conditions and taking the mean in the binormal direction of the first term, we
get ∑

σσ′⟨ij⟩s

c†iσcjσ′ ασσ′
ij =

1

Nb

∑
⟨isjs⟩ib

∑
σσ′

∑
kb,k

′
b

ασσ′
is,jsc

†
is,kb,σ

cjs,k′b,σ′ei(k
′
b−kb)ib

=
∑
⟨isjs⟩

∑
σσ′

∑
kb

ασσ′
is,jsc

†
is,kb,σ

cjs,kb,σ′ . (C.9)

Taking the mean in the binormal direction of the hopping in the same direction gives∑
σσ′⟨ij⟩b

c†iσcjσ′ aσσ
′

ii dBij =
1

Nb

∑
is,ib

∑
kb,k

′
b

∑
±
±e±ikb aσσ

′
is ei(k

′
b−kb)ib c†is,kb,σcis,k′b,σ′

=
∑
is,kb

∑
σσ′

2i sin kb a
σσ′
is c†is,kb,σcis,kb,σ′

=
∑
is,kb

∑
σσ′

ϵσσ
′

is,kb
c†is,kb,σcis,kb,σ′ . (C.10)

To express the above terms in Nambu⊗spin space, we find relations similar to eq. (5.8).
We can write down the following relations for the spin-orbit hopping amplitudes:

ασσ′
is,js = iαNσ

σσ′
B dTis,js =

(
ασ′σ
js,is

)∗
, (C.11)

ϵσσ
′

is,kb
= 2 sin kb αNσ

σσ′
is,T = −

(
ϵσ

′σ
is,−kb

)∗
. (C.12)

The spin-orbit part of the Hamiltonian is therefore

Hsoc =
∑
⟨isjs⟩

∑
σσ′

∑
kb

[
ασσ′
is,jsc

†
is,kb,σ

cjs,kb,σ′ −
(
ασσ′
is,js

)∗
cis,−kb,σc

†
js,−kb,σ′

]

+
∑
is,kb

∑
σσ′

[
ϵσσ

′
is,kb

c†is,kb,σcis,kb,σ′ +
(
ϵσσ

′
is,kb

)∗
cis,−kb,σc

†
is,−kb,σ′

]
. (C.13)
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Appendix D

Derivation expectation values on a
lattice

D.1 Superconducting gap

For the gap, we find the singlet pairing ↑↓ − ↓↑ at each point on the lattice. Because of
the periodic boundary conditions in the y-direction, we take the mean in that direction.
We can write this as

∆ix =
1

Ny

∑
iy

Ui

2
[⟨ci,↑ci,↓⟩ − ⟨ci,↓ci,↑⟩]

=
Uix

2Ny

∑
ky ,k′y

1

Ny

∑
iy

ei(ky+k′y)iy
[
⟨cix,ky ,↑cix,k′y ,↓⟩ − cix,ky ,↓cix,k′y ,↑

]
=

Uix

2Ny

∑
ky

[
⟨cix,ky ,↑cix,−ky ,↓⟩ − ⟨cix,−ky ,↓cix,ky ,↑⟩

]
=

Uix

2Ny

∑
ky

∑
n,m

[
uix,n,kyx

∗
ix,m,ky⟨γn,kyγ

†
m,ky
⟩ − x∗ix,n,kyuix,m,ky⟨γ†n,kyγm,ky⟩

]
. (D.1)

Next, we split the ky sum into the positive, negative, and ky = 0 contribution not to keep
linearly dependent quasiparticle operators. We find that

∆ix =
Uix

2Ny

∑
n,m

{∑
ky>0

[
uix,n,kyx

∗
ix,m,ky⟨γn,kyγ

†
m,ky
⟩ − x∗ix,n,kyuix,m,ky⟨γ†n,kyγm,ky⟩

]
+
∑
ky<0

[
uix,n,kyx

∗
ix,m,ky⟨γn,kyγ

†
m,ky
⟩ − x∗ix,n,kyuix,m,ky⟨γ†n,kyγm,ky⟩

]
+
∑
ky=0

[
uix,n,0x

∗
ix,m,0⟨γn,0γ†m,0⟩ − x∗ix,n,0uix,m,0⟨γ†n,0γm,0⟩

]}

=
Uix

2Ny

{ ∑
n,m,ky>0

[
uix,n,kyx

∗
ix,m,ky⟨γn,kyγ

†
m,ky
⟩ − x∗ix,n,kyuix,m,ky⟨γ†n,kyγm,ky⟩

]
+

∑
n,m,ky>0

[
uix,n,−kyx

∗
ix,m,−ky⟨γn,−kyγ

†
m,−ky

⟩ − x∗ix,n,−kyuix,m,−ky⟨γ†n,−ky
γm,−ky⟩

]

+
2N∑

n,m=1

[
uix,n,0x

∗
ix,m,0⟨γn,0γ†m,0⟩ − x∗ix,n,0uix,m,0⟨γ†n,0γm,0⟩

]
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+

4N∑
n,m=2N+1

[
uix,n,0x

∗
ix,m,0⟨γn,0γ†m,0⟩ − x∗ix,n,0uix,m,0⟨γ†n,0γm,0⟩

]}

=
Uix

2Ny

{ ∑
n,m,ky>0

[
uix,n,kyx

∗
ix,m,ky⟨γn,kyγ

†
m,ky
⟩ − x∗ix,n,kyuix,m,ky⟨γ†n,kyγm,ky⟩

]
+

∑
n,m,ky>0

[
w∗
ix,n,kyvix,m,ky⟨γ†n,kyγm,ky⟩ − vix,n,kyw∗

ix,m,ky⟨γn,kyγ
†
m,ky
⟩
]

+

2N∑
n,m=1

[
uix,n,0x

∗
ix,m,0⟨γn,0γ†m,0⟩ − x∗ix,n,0uix,m,0⟨γ†n,0γm,0⟩

]

+
2N∑

n,m=1

[
w∗
ix,n,0vix,m,0⟨γ†n,0γm,0⟩ − vix,n,0w∗

ix,m,0⟨γn,0γ†m,0⟩
]}

=
Uix

2Ny

{ ∑
n,ky>0

[
uix,n,kyx

∗
ix,n,kyf(−2En,ky)− x∗ix,n,kyuix,n,kyf(2En,ky)

]
+
∑

n,ky>0

[
w∗
ix,n,kyvix,n,kyf(2En,ky)− vix,n,kyw∗

ix,n,kyf(−2En,ky)
]

+
∑
En≥0

[
uix,n,0x

∗
ix,n,0f(−2En,0)− x∗ix,n,0uix,m,0f(2En,0)

]
+
∑
En≥0

[
w∗
ix,n,0vix,m,0f(2En,0)− vix,n,0w∗

ix,m,0f(−2En,0)
]}

=
Uix

2Ny

{ ∑
n,ky>0

[
uix,n,kyx

∗
ix,n,ky − vix,n,kyw∗

ix,n,ky

]
tanh

(
βEn,ky

)
+
∑
En≥0

[
uix,n,0x

∗
ix,n,0 − w∗

ix,n,0vix,m,0

]
tanh (βEn,0)

}
, (D.2)

where we have used that ⟨γ†n,kyγm,ky⟩ = f(2En,ky)δn,m. We have also inserted the relation

f(−2E)− f(2E) = tanh(βE). Note that the sum ends up having the same form as the one
we defined in eq. (5.58).

D.2 Singlet and triplet amplitudes

We begin with the s-wave pairing. It is calculated the same way as the gap, not including
the pairing potential Uix . Therefore, we can write down the expression without any explicit
calculation.

Six,0 =
1

2Ny

{ ∑
n,ky>0

[
uix,n,kyx

∗
ix,n,ky − vix,n,kyw∗

ix,n,ky

]
tanh

(
βEn,ky

)
+
∑
En≥0

[
uix,n,0x

∗
ix,n,0 − w∗

ix,n,0vix,m,0

]
tanh (βEn,0)

}
. (D.3)

Next, we derive the p-wave triplets. We have six different p-wave amplitudes, the threefold
degeneracy of the spin in both the x- and y-direction. We begin with the zero-projection
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px-wave amplitude, which is

Px
ix,0 =

1

Ny

∑
iy

∑
±
±1

2
[⟨ci,↑ci±x̂,↓⟩+ ⟨ci,↓ci±x̂,↑⟩]

=
1

2Ny

∑
ky ,k′y

∑
±

∑
iy

± 1

Ny
ei(ky+k′y)iy

[
⟨cix,ky ,↑cix±1,k′y ,↓⟩+ ⟨cix,ky ,↓cix±1,k′y ,↑⟩

]
=

1

2Ny

∑
n,m,ky

∑
±
±
[
uix,n,kyx

∗
ix±1,m,ky⟨γn,kyγ

†
m,ky
⟩+ x∗ix,n,kyuix±1,m,ky⟨γ†n,kyγm,ky⟩

]
=

1

2Ny

∑
±
±
{∑

n,m

∑
ky>0

[
uix,n,kyx

∗
ix±1,m,ky⟨γn,kyγ

†
m,ky
⟩+ x∗ix,n,kyuix±1,m,ky⟨γ†n,kyγm,ky⟩

]
+
∑
n,m

∑
ky>0

[
w∗
ix,n,kyvix±1,m,ky⟨γ†n,kyγm,ky⟩+ vix,n,kyw

∗
ix±1,m,ky⟨γn,kyγ

†
m,ky
⟩
]

+

2Nx∑
n,m=1

[
uix,n,0x

∗
ix±1,m,0⟨γn,0γ†m,0⟩+ x∗ix,n,0uix±1,m,0⟨γ†n,0γm,0⟩

]

+

2Nx∑
n,m=1

[
w∗
ix,n,0vix±1,m,0⟨γ†n,0γm,0⟩+ vix,n,0w

∗
ix±1,m,0⟨γn,0γ†m,0⟩

]}

=
1

2Ny

′∑
n,ky

∑
±
±
[(
x∗ix±1,n,kyuix,n,ky + w∗

ix±1,n,kyvix,n,ky

)
f(−2En,ky)

+
(
x∗ix,n,kyuix±1,n,ky + w∗

ix,n,kyvix±1,n,ky

)
f(2En,ky)

]
. (D.4)

As stated in the main text, the ± in the expression above was added since the lobes of
the p-wave orbital have opposite signs. Thus, without it, they cancel, and we are left with
zero. For the remaining amplitudes, we add the ± as well. The spin-polarized px-wave
amplitudes are

Px
ix,↑ =

1

Ny

∑
iy

∑
±
±⟨ci,↑ci±x̂,↑⟩

=
1

Ny

∑
ky ,k′y

∑
±

∑
iy

± 1

Ny
ei(ky+k′y)iy⟨cix,ky ,↑cix±1,k′y ,↑⟩

=
1

Ny

∑
n,m,ky

∑
±
±w∗

ix,n,kyuix±1,m,ky⟨γ†n,kyγm,ky⟩

=
1

Ny

∑
±
±
{∑

n,m

∑
ky>0

[
w∗
ix,n,kyuix±1,m,ky⟨γ†n,kyγm,ky⟩+ uix,n,kyw

∗
ix±1,m,ky⟨γn,kyγ

†
m,ky
⟩
]

+

2Nx∑
n,m=1

[
w∗
ix,n,0uix±1,m,0⟨γ†n,0γm,0⟩+ uix,n,0w

∗
ix±1,m,0⟨γn,0γ†m,0⟩

]}

=
1

2Ny

′∑
n,ky

∑
±
±
[
w∗
ix,n,kyuix±1,n,kyf(2En,ky) + w∗

ix±1,n,kyuix,n,kyf(−2En,ky)
]
, (D.5)
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Px
ix,↓ =

1

Ny

∑
iy

∑
±
±⟨ci,↓ci±x̂,↓⟩

=
1

Ny

∑
ky ,k′y

∑
±

∑
iy

± 1

Ny
ei(ky+k′y)iy⟨cix,ky ,↓cix±1,k′y ,↓⟩

=
1

Ny

∑
n,m,ky

∑
±
±x∗ix,n,kyvix±1,m,ky⟨γ†n,kyγm,ky⟩

=
1

Ny

∑
±
±
{∑

n,m

∑
ky>0

[
x∗ix,n,kyvix±1,m,ky⟨γ†n,kyγm,ky⟩+ vix,n,kyx

∗
ix±1,m,ky⟨γn,kyγ

†
m,ky
⟩
]

+

2Nx∑
n,m=1

[
x∗ix,n,0vix±1,m,0⟨γ†n,0γm,0⟩+ vix,n,0x

∗
ix±1,m,0⟨γn,0γ†m,0⟩

]}

=
1

2Ny

′∑
n,ky

∑
±
±
[
x∗ix,n,kyvix±1,n,kyf(2En,ky) + x∗ix±1,n,kyvix,n,kyf(−2En,ky)

]
. (D.6)

The py-wave amplitudes are found the same way. However, due to the periodic boundary
conditions, they only have onsite contributions. We begin with the zero spin-projection
amplitude, which is

Py
ix,0

=
1

2Ny

∑
iy

∑
±
± [⟨ci,↑ci±ŷ,↓⟩+ ⟨ci,↓ci±ŷ,↑⟩]

=
1

2Ny

∑
ky ,k′y

∑
±

∑
iy

± 1

Ny
eikyiy+ik′y(iy±1)

[
⟨cix,ky ,↑cix,k′y ,↓⟩+ ⟨cix,ky ,↓cix,k′y ,↑⟩

]
=

1

2Ny

∑
ky

∑
±
±
[
⟨cix,ky ,↑cix,−ky ,↓⟩e∓iky + ⟨cix,−ky ,↓cix,ky ,↑⟩e±iky

]
=

1

2Ny

∑
n,m,ky

∑
±
±
[
e∓ikyuix,n,kyx

∗
ix,m,ky⟨γnγ†m⟩+ e±ikyx∗ix,n,kyuix,m,ky⟨γ†nγm⟩

]
=

1

2Ny

∑
±
±
{∑

n,m

∑
ky>0

[
e∓ikyuix,n,kyx

∗
ix,m,ky⟨γn,kyγ

†
m,ky
⟩+ e±ikyx∗ix,n,kyuix,m,ky⟨γ†n,kyγm,ky⟩

]
+
∑
n,m

∑
ky>0

[
e±ikyw∗

ix,n,kyvix,m,ky⟨γ†n,kyγm,ky⟩+ e∓ikyvix,n,kyw
∗
ix,m,ky⟨γn,kyγ

†
m,ky
⟩
]

+

2Nx∑
n,m=1

[
uix,n,0x

∗
ix,m,0⟨γn,0γ†m,0⟩+ x∗ix,n,0uix,m,0⟨γ†n,0γm,0⟩

]

+

2Nx∑
n,m=1

[
w∗
ix,n,0vix,m,0⟨γ†n,0γm,0⟩+ vix,n,0w

∗
ix,m,0⟨γn,0γ†m,0⟩

]}

=
−i
Ny

′∑
n,ky

sin(ky)

[
x∗ix,n,kyuix,n,ky + w∗

ix,n,kyvix,n,ky

]
tanh

(
βEn,ky

)
. (D.7)

Here we have used that eix− e−ix = 2i sinx. Note also that we have written the sum with∑′

n,ky
since the sin(ky) kills the ky = 0 sum which vanishes because of the ± sum. The

same happens for the spin-polarized amplitudes,



Charge current 115

Py
ix,↑ =

1

Ny

∑
iy

∑
±
±⟨ci,↑ci±ŷ,↑⟩

=
1

Ny

∑
ky ,k′y

∑
±

∑
iy

± 1

Ny
eikyiy+ik′y(iy±1)⟨cix,ky ,↑cix,k′y ,↑⟩

=
1

Ny

∑
ky

∑
±
±e±iky⟨cix,−ky ,↑cix,ky ,↑⟩

=
2i

Ny

∑
n,m,ky

sin(ky) uix,n,kyw
∗
ix,m,ky⟨γ

†
n,m,ky

γm,ky⟩

=
2i

Ny

∑
n,m,ky>0

[
sin(ky) uix,n,kyw

∗
ix,m,ky⟨γ

†
n,ky

γm,ky⟩+ sin(−ky) w∗
ix,n,kyuix,m,ky⟨γn,kyγ†m,ky

⟩
]

=
2i

Ny

∑
n,ky>0

sin(ky)

[
uix,n,kyw

∗
ix,m,kyf(2En,ky)− w∗

ix,n,kyuix,m,kyf(−2En,ky)
]

=
−2i
Ny

′∑
n,ky

sin(ky)w
∗
ix,n,kyuix,n,ky tanh

(
βEn,ky

)
, (D.8)

Py
ix,↓ =

1

Ny

∑
iy

∑
±
±⟨ci,↓ci±ŷ,↓⟩

=
1

Ny

∑
ky ,k′y

∑
±

∑
iy

± 1

Ny
eikyiy+ik′y(iy±1)⟨cix,ky ,↓cix,k′y ,↓⟩

=
1

Ny

∑
ky

∑
±
±e±iky⟨cix,−ky ,↓cix,ky ,↓⟩

=
2i

Ny

∑
n,m,ky

sin(ky) vix,n,kyx
∗
ix,m,ky⟨γ

†
n,m,ky

γm,ky⟩

=
2i

Ny

∑
n,m,ky>0

[
sin(ky) vix,n,kyx

∗
ix,m,ky⟨γ

†
n,ky

γm,ky⟩+ sin(−ky) x∗ix,n,kyvix,m,ky⟨γn,kyγ†m,ky
⟩
]

=
2i

Ny

∑
n,ky>0

sin(ky)

[
vix,n,kyx

∗
ix,m,kyf(2En,ky)− x∗ix,n,kyvix,m,kyf(−2En,ky)

]

=
−2i
Ny

′∑
n,ky

sin(ky)x
∗
ix,n,kyvix,n,ky tanh

(
βEn,ky

)
. (D.9)

D.3 Charge current

In this subsection we will derive a general expression for the charge current. To obtain an
expression for the current, we begin with the charge continuity equation [104], which is

∂tρi = −∇ · ji , (D.10)

where ρi is the charge density, and ji is the current density at site i. Since we begin from
a general expression, the indexes may contain a x- and y-component, so i = (ix, iy). We
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will reintroduce periodic boundary conditions at a later point. We find the total current
by integrating over one unit-cell volume Ω. Then, we use Green’s theorem to integrate
over the boundary ∂Ω of the unit cell. This gives∫

Ω
dr (∇ · ji) =

∫
∂Ω
dS (ji · êm) =

∑
m

Ii,m , (D.11)

where êm denotes the normal vector to the boundary. Thus, the current Ii,m is the current
flowing out of surface m, and its sign is determined by êm. The integrated time derivative
of the charge density can be rewritten using Heisenberg’s equation of motion. This relates
it to the Hamiltonian of the system by∫

Ω
dr ∂tρi = ∂tQi = i [H, Qi] . (D.12)

Therefore, we can write the continuity equation from before as∑
m

Ii,m = −i [H, Qi] , (D.13)

where H is the Hamiltonian given in eq. (5.12) not assuming periodic boundary condi-

tions yet, and the charge is given by Qi =
∑

σ c
†
i,σci,σ. Next, we calculate term by term

the commutation with the Hamiltonian. In these calculations, we will make use of the
commutation following relations[

ni,σ, c
†
j,σ′

]
= δi,jδσ,σ′c†i,σ ,

[
ni,σ, cj,σ′

]
= −δi,jδσ,σ′ci,σ . (D.14)

The first term in eq. (5.12) is the onsite chemical potential. The commutation with Qi

gives∑
i,σ

µic
†
i,σci,σ,

∑
σ′

nj,σ′

 =
∑
i,σ,σ′

µi

[
c†i,σci,σnj,σ′ − nj,σ′c†i,σci,σ

]
=
∑
i,σ,σ′

µi

[
c†i,σ

(
δi,jδσ,σ′cj,σ′ + nj,σ′ci,σ

)
−
(
δi,jδσ,σ′c†j,σ′ + c†i,σnj,σ′

)
ci,σ

]
=
∑
i,σ,σ′

µiδi,jδσ,σ′

[
c†i,σcj,σ′ − c†j,σ′ci,σ

]
=
∑
σ

µj

[
c†j,σcj,σ − c

†
j,σcj,σ

]
= 0 . (D.15)

The next is the nearest neighbor hopping. In this commutation, we will introduce a sum
over the nearest neighbor difference δ, which is ±x̂,±ŷ. The commutator becomes∑
⟨ij⟩,σ

ti,jc
†
i,σcj,σ,

∑
σ′

nl,σ′

 =
∑

⟨ij⟩,σ,σ′

ti,j

[
c†i,σcj,σnl,σ′ − nl,σ′c†i,σcj,σ

]
=
∑

⟨ij⟩,σ,σ′

ti,j

[
c†i,σ

(
δj,lδσ,σ′cl,σ′ + nl,σ′cj,σ

)
−
(
δi,lδσ,σ′c†l,σ′ + c†i,σnl,σ′

)
cj,σ

]
=
∑
⟨ij⟩,σ

ti,j

[
c†i,σcl,σδj,l − c

†
l,σcj,σδi,l

]
=
∑
i,δ,σ

ti,i+δ

[
c†i,σcl,σδi+δ,l − c†l,σci+δ,σδi,l

]
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=
∑
δ,σ

[
tl−δ,lc

†
l−δ,σcl,σ − tl,l+δc

†
l,σcl+δ,σ

]
=
∑
σ,±

[
tl,l±x̂c

†
l∓x̂,σcl,σ − tl,l±x̂c

†
l,σcl±x̂,σ + tl,l±ŷc

†
l∓ŷ,σcl,σ − tl,l±ŷc

†
l,σcl±ŷ,σ

]
.

(D.16)

The third term is the spin-orbit coupling. It can be thought of as spin-dependent hopping;
therefore, we follow the same procedure as above. This yields ∑
⟨ij⟩,σ1,σ2

ασ1,σ2
i,j c†i,σ1

cj,σ2 ,
∑
σ3

nl,σ3

 =
∑
⟨ij⟩

∑
σ1,σ2,σ3

ασ1,σ2
i,j

[
c†i,σ1

cj,σ2nl,σ3 − nl,σ3c
†
i,σ1

cj,σ2

]
=
∑
⟨ij⟩

∑
σ1,σ2,σ3

ασ1,σ2
i,j

[
c†i,σ1

(δj,lδσ2,σ3cl,σ3 + nl,σ3cj,σ2)

−
(
δi,lδσ1,σ3c

†
l,σ3

+ c†i,σ1
nl,σ3

)
cj,σ2

]
=

∑
i,δ,σ1,σ3

ασ1,σ3

i,i+δ

[
c†i,σ1

cl,σ3δi+δ,l − c†l,σ1
ci+δ,σ3δi,l

]
=

∑
σ1,σ3,±

±
[
aσ1,σ3

l∓x̂,l c
†
l∓x̂,σ1

cl,σ3 − aσ1,σ3

l,l±x̂ c
†
l,σ1

cl±x̂,σ3

+ aσ1,σ3

l∓ŷ,l c
†
l∓ŷ,σ1

cl,σ3 − aσ1,σ3

l,l±ŷ c
†
l,σ1

cl±ŷ,σ3

]
,

(D.17)

where we inserted to nearest neighbor vector to get the sum
∑

±. Lastly, we have the
superconducting term. We consider the electron and hole parts separately. From this, we
get the following contributions[∑

i

∆ic
†
i,↑c

†
i,↓,
∑
σ

nj,σ

]
=
∑
i,σ

∆i

[
c†i,↑c

†
i,↓nj,σ − nj,σc

†
i,↑c

†
i,↓

]
=
∑
i,σ

∆i

[
c†i,↑

(
nj,σc

†
i,↓ − δi,jδ↓,σc

†
j,σ

)
−
(
c†i,↑nj,σ + δi,jδσ,↑c

†
j,σ

)
c†i,↓

]
= −2∆jc

†
j↑c

†
j↓ , (D.18)

[∑
i

∆∗
i ci,↓ci,↑,

∑
σ

nj,σ

]
=
∑
i,σ

∆∗
i [ci,↓ci,↑nj,σ − nj,σci,↓ci,↑]

=
∑
i,σ

∆∗
i [ci,↓ (nj,σci,↑ + δi,jδ↑,σcj,σ)− (ci,↓nj,σ − δi,jδσ,↓cj,σ) ci,↑]

= 2∆∗
jcj↓cj↑ . (D.19)

Since we have chosen conventional superconductivity, we only have an onsite attractive
interaction contribution. Thus, it might seem strange that it should contribute to the
charge current. However, if we take the thermal and quantum average, we see that does,
in fact, not contribute. This is easily seen when inserting the average,〈

−2∆jc
†
j,↑c

†
j,↓ + 2∆∗

jcj,↓cj,↑

〉
= 2∆∗

j ⟨cj,↓cj,↑⟩ − 2∆j⟨c†j,↑c
†
j,↓⟩

= 2∆∗
j∆j − 2∆j∆

∗
j = 0 . (D.20)
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Before doing the same with the other commutators, we choose a current direction. We
choose the charge current in the x-direction to have a positive sign in the positive x-
direction. We begin with the contribution from the hopping term to the current in the
x-direction. We define Ix,ti,± as the contribution from t to the current through the unit cell
at i± x̂/2. The contributions through the right and left unit cell face are respectively

Ix,ti,+ = i
∑
σ

[
ti,i−x̂c

†
i+x̂,σci,σ − ti,i+x̂c

†
i,σci+x̂,σ

]
, (D.21)

Ix,ti,− = i
∑
σ

[
ti,i+x̂c

†
i−x̂,σci,σ − ti,i−x̂c

†
i,σci−x̂,σ

]
. (D.22)

The total current contribution is therefore Ix,ti = Ix,ti,+ − Ix,ti,−. Taking the thermal and
quantum average, as well as the mean in the y-direction, we get

⟨Ixix⟩t =
i

Ny

∑
iy ,σ

〈
ti,i−x̂

(
c†i+x̂,σci,σ + c†i,σci−x̂,σ

)
− ti,i+x̂

(
c†i,σci+x̂,σ + c†i−x̂,σci,σ

)〉
=

i

Ny

∑
ky ,k′y ,σ

∑
iy

1

Ny
ei(k

′
y−ky)iy

[
ti,i−x̂

(
⟨c†ix+1,ky ,σ

cix,k′y ,σ⟩+ ⟨c
†
ix,ky ,σ

cix−1,k′y ,σ⟩
)

− ti,i+x̂

(
⟨c†ix,ky ,σcix+1,k′y ,σ⟩+ ⟨c

†
ix−1,ky ,σ

cix,k′y ,σ⟩
)]

=
i

Ny

∑
ky ,σ

[
ti,i−x̂

(
⟨c†ix+1,ky ,σ

cix,ky ,σ⟩+ ⟨c†ix,ky ,σcix−1,ky ,σ⟩
)

− ti,i+x̂

(
⟨c†ix,ky ,σcix+1,ky ,σ⟩+ ⟨c†ix−1,ky ,σ

cix,ky ,σ⟩
)]

=
i

Ny

∑
n,m,ky

[
tix,ix−1

(
u∗ix+1,n,kyuix,n,ky + u∗ix,n,kyuix−1,n,ky

)
+ tix,ix−1

(
v∗ix+1,n,kyvix,m,ky + v∗ix,n,kyvix−1,m,ky

)
− tix,ix+1

(
u∗ix,n,kyuix+1,m,ky + u∗ix−1,n,kyuix,m,ky

)
− tix,ix+1

(
v∗ix,n,kyvix+1,m,ky + v∗ix−1,n,kyvix,m,ky

)]
⟨γ†n,kyγm,ky⟩

=
it

Ny

{∑
n,m

∑
ky>0

[
u∗ix+1,n,kyui,m,ky + v∗ix+1,n,kyvix,m,ky + u∗ix,n,kyuix−1,m,ky

+ v∗ix,n,kyvix−1,m,ky − u∗ix−1,n,kyui,m,ky − v∗ix−1,n,kyvi,m,ky

[
− u∗ix,n,kyui+1,m,ky − v∗ix,n,kyvi+1,m,ky

]
⟨γ†n,kyγm,ky⟩

+
∑
n,m

∑
ky>0

[
wix+1,n,kyw

∗
i,m,ky + xix+1,n,kyx

∗
ix,m,ky + wix,n,kyw

∗
ix−1,m,ky

+ xix,n,kyx
∗
ix−1,m,ky − wix−1,n,kyw

∗
i,m,ky − xix−1,n,kyx

∗
i,m,ky

[
− wix,n,kyw

∗
i+1,m,ky − xix,n,kyx∗i+1,m,ky

]
⟨γn,kyγ†m,ky

⟩

+

2Nx∑
n,m=1

[
u∗ix+1,n,0ui,m,0 + v∗ix+1,n,0vix,m,0 + u∗ix,n,0uix−1,m,0 + v∗ix,n,0vix−1,m,0
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− u∗ix−1,n,0ui,m,0 − v∗ix−1,n,0vi,m,0 − u∗ix,n,0ui+1,m,0 − v∗ix,n,0vi+1,m,0

]
⟨γ†n,0γm,0⟩

+

2Nx∑
n,m=1

[
wix+1,n,0w

∗
i,m,0 + xix+1,n,0x

∗
ix,m,0 + wix,n,0w

∗
ix−1,m,0 + xix,n,0x

∗
ix−1,m,0

− wix−1,n,0w
∗
i,m,0 − xix−1,n,0x

∗
i,m,0 − wix,n,0w

∗
i+1,m,0 − xix,n,0x∗i+1,m,0

]
⟨γn,0γ†m,0⟩

=
−2t
Ny

∑
±

′∑
n,ky

±
[
Im{u∗ix±1,n,kyuix,n,ky + v∗ix±1,n,kyvix,n,ky}f(2En,ky)

− Im{w∗
ix±1,n,kywix,n,ky + x∗ix±1,n,kyxix n,ky}f(−2En,ky)

]
, (D.23)

where we have assumed constant hopping amplitude everywhere. Also, we used the relation
z−z∗ = 2iIm{z} for the complex eigenvector elements. If we have no spin-orbit coupling,
this is the total charge current. However, we also calculate the contribution from the
spin-orbit coupling. Our starting point is once again the contributions in the two opposite
directions,

Ix,αi,+ =
∑
σ,σ′

[
−aσ,σ′

i+x̂,ic
†
i+x̂,σci,σ′ − aσ,σ′

i,i+x̂c
†
i,σci+x̂,σ′

]
, (D.24)

Ix,αi,− =
∑
σ,σ′

[
aσ,σ

′

i−x̂,ic
†
i−x̂,σci,σ′ + aσ,σ

′

i,i−x̂c
†
i,σci−x̂,σ′

]
. (D.25)

Again, we take the thermal and quantum average as well as the mean in the y-direction
of Ix,αi = Ix,αi,+ − I

x,α
i,− . Doing this gives

⟨Ixix⟩α =
−i
N2

y

∑
σ,σ′

∑
ky ,k′y

∑
iy

∑
±
ei(k

′
y−ky)iy

[
aσ,σ

′

i±x̂,i⟨c
†
ix±1,ky ,σ

cix,k′y ,σ′⟩+ aσ,σ
′

i,i±x̂⟨c
†
ix,ky ,σ

cix±1,k′y ,σ
′⟩
]

=
−i
Ny

∑
ky ,σ,σ′

∑
±

[
aσ,σ

′

ix±1,ix
⟨c†ix±1,ky ,σ

cix,ky ,σ′⟩+ aσ,σ
′

ix,ix±1⟨c
†
ix,ky ,σ

cix∓1,ky ,σ′⟩
]

=
−i
Ny

∑
n,m,ky

∑
±

[
a↑,↑ix±1,ix

u∗ix±1,n,kyuix,m,ky + a↑,↑ix,ix±1u
∗
ix,n,kyuix±1,m,ky[

+ a↑↓ix±1,ix
u∗ix±1,n,kyvix,m,ky + a↑↓ix,ix±1u

∗
ix,n,kyvix±1,m,ky[

+ a↓↑ix±1,ix
v∗ix±1,n,kyuix,m,ky + a↓↑ix,ix±1v

∗
ix,n,kyuix±1,m,ky

+ a↓↓ix±1,ix
v∗ix±1,n,kyvix,m,ky + a↓↓ix,ix±1v

∗
ix,n,kyvix±1,m,ky

]
⟨γ†n,kyγm,ky⟩

=
−i
Ny

∑
n,m,ky

∑
±

[
a↑,↑ix±1,ix

u∗ix±1,n,kyuix,m,ky −
(
a↑,↑ix±1,ix

)∗
u∗ix,n,kyuix±1,m,ky[

+ a↑↓ix±1,ix
u∗ix±1,n,kyvix,m,ky −

(
a↓↑ix±1,ix

)∗
u∗ix,n,kyvix±1,m,ky[

+ a↓↑ix,ix±1v
∗
ix±1,n,kyuix,m,ky −

(
a↑↓ix±1,ix

)∗
v∗ix,n,kyuix±1,m,ky

+ a↓↓ix±1,ix
v∗ix±1,n,kyvix,m,ky −

(
a↓↓ix±1,ix

)∗
v∗ix,n,kyvix±1,m,ky

]
⟨γ†n,kyγm,ky⟩
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test
=
−i
Ny

∑
±

[ ∑
n,m,ky>0

Im
{
a↑,↑ix±1,ix

u∗ix±1,n,kyuix,m,ky + a↑↓ix±1,ix
u∗ix±1,n,kyvix,m,ky

+ a↓↑ix,ix±1v
∗
ix±1,n,kyuix,m,ky + a↓↓ix±1,ix

v∗ix±1,n,kyvix,m,ky

}
⟨γ†n,kyγm,ky⟩

+
∑

n,m,ky>0

Im
{
a↑,↑ix±1,ix

wix±1,n,kyw
∗
ix,m,ky + a↑↓ix±1,ix

wix±1,n,kyx
∗
ix,m,ky

[
+ a↓↑ix,ix±1xix±1,n,kyw

∗
ix,m,ky + a↓↓ix±1,ix

xix±1,n,kyx
∗
ix,m,ky

}
⟨γn,kyγ†m,ky

⟩

+

2Nx∑
n,m=1

Im
{
a↑,↑ix±1,ix

u∗ix±1,n,0uix,m,0 + a↑↓ix±1,ix
u∗ix±1,n,0vix,m,0

[
+ a↓↑ix,ix±1v

∗
ix±1,n,0uix,m,0 + a↓↓ix±1,ix

v∗ix±1,n,0vix,m,0

}
⟨γ†n,0γm,0⟩

+

2Nx∑
n,m=1

Im
{
a↑,↑ix±1,ix

wix±1,n,0w
∗
ix,m,0 + a↑↓ix±1,ix

wix±1,n,0x
∗
ix,m,0

[
+ a↓↑ix,ix±1xix±1,n,0w

∗
ix,m,0 + a↓↓ix±1,ix

xix±1,n,0x
∗
ix,m,0

}
⟨γn,0γ†m,0⟩

]
=

2

Ny

∑
±

′∑
n,ky

[
Im{a↑↑ix±1,ix

u∗ix±1,n,kyuix,n,ky + a↑↓ix±1,ix
u∗ix±1,n,kyvix,n,ky

+ a↓↑ix±1,ix
v∗ix±1,n,kyuix,n,ky + a↓↓ix±1,ix

v∗ix±1,n,kyvix,n,ky}f(2En,ky)
[

+ Im{a↑↑ix±1,ix
w∗
ix,n,kywix±1,n,ky + a↑↓ix±1,ix

x∗ix,n,kywix±1,n,ky

[
+ a↓↑ix±1,ix

w∗
ix,n,kyxix±1,n,ky + a↓↓ix±1,ix

x∗ix,n,kyxix±1,n,ky}f(−2En,ky)
]
.

(D.26)

As evident from the equation above, this contribution depends on the form of the spin-
orbit coupling. The exact form depends on whether there is intrinsic symmetry breaking,
which results in spin-orbit, and if the system is curved. The strain-induced spin-orbit field
is dependent on the exact geometry of the system. Generally, we can write

⟨Ixix⟩ =
−2t
Ny

∑
±

′∑
n,ky

±
[
Im{u∗ix±1,n,kyuix,n,ky + v∗ix±1,n,kyvix,n,ky}f(2En,ky)

− Im{w∗
ix±1,n,kywix,n,ky + x∗ix±1,n,kyxix n,ky}f(−2En,ky)

]
+

2

Ny

∑
±

′∑
n,ky

[
Im{a↑↑ix±1,ix

u∗ix±1,n,kyuix,n,ky + a↑↓ix±1,ix
u∗ix±1,n,kyvix,n,ky

+ a↓↑ix±1,ix
v∗ix±1,n,kyuix,n,ky + a↓↓ix±1,ix

v∗ix±1,n,kyvix,n,ky}f(2En,ky)
[

+ Im{a↑↑ix±1,ix
w∗
ix,n,kywix±1,n,ky + a↑↓ix±1,ix

x∗ix,n,kywix±1,n,ky

[
+ a↓↑ix±1,ix

w∗
ix,n,kyxix±1,n,ky + a↓↓ix±1,ix

x∗ix,n,kyxix±1,n,ky}f(−2En,ky)
]
.

(D.27)
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D.4 Spin current

The spin current can be found in the exact same way as the charge current. However,
instead of taking the commutator with the spin operator Si =

∑
αβ c

†
i,ασ

αβci,β. Thus, for
the z-component of the spin current flowing in the x-direction Ix,zS the commutator to be
calculated is ∑

m

IS,zi,m = −i[H, Sz
i ] , (D.28)

where Sz
i =

∑
σ σc

†
i,σci,σ. Therefore, there is only a sign-change on the second number

operator compared to the charge current derivation. One can immediately write down the
commutator between the hopping term and the spin operator,∑

⟨ij⟩,σ

tijc
†
i,σci,σ,

∑
σ′

σ′nl,σ′

 =
∑
σ,±

[
σtl,l±x̂(c

†
l∓x̂,σcl,σ − c

†
l,σcl±x̂,σ)

+ σtl,l±ŷ(c
†
l∓ŷ,σcl,σ − c

†
l,σcl±ŷ,σ)

]
. (D.29)

A similar thing happens to the spin-orbit term. We get that ∑
⟨ij⟩,σ1,σ2

ασ1,σ2
ij c†i,σ1

ci,σ2 ,
∑
σ3

σ3nl,σ3

 =
∑

σ1,σ2,±
±
[
aσ1,σ2

l∓x̂,l σ2c
†
l∓x̂,σ1

cl,σ2 − aσ1,σ2

l,l±x̂ σ1c
†
l,σ1

cl±σ2,σ2

+ aσ1,σ2

l∓ŷ,l σ2c
†
l∓ŷ,σ1

cl,σ2 − aσ1,σ2

l,l±ŷ σ1c
†
l,σ1

cl±σ2,σ2

]
.
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From this, we can see that in the z-component, we only have to change the sign of the
spin-down parts. The final expression we obtain is

⟨Ix,zS,ix
⟩ =−2t

Ny

∑
±

′∑
n,ky

±
[
Im{u∗ix±1,n,kyuix,n,ky − v∗ix±1,n,kyvix,n,ky}f(2En,ky)

− Im{w∗
ix±1,n,kywix,n,ky − x∗ix±1,n,kyxix,n,ky}f(−2En,ky)

]
+

2

Ny

∑
±

′∑
n,ky

[
Im{a↑↑ix±1,ix

u∗ix±1,n,kyuix,n,ky − a
↑↓
ix±1,ix

u∗ix±1,n,kyvix,n,ky

+ a↓↑ix±1,ix
v∗ix±1,n,kyuix,n,ky − a

↓↓
ix±1,ix

v∗ix±1,n,kyvix,n,ky}f(2En,ky)
[

+ Im{a↑↑ix±1,ix
w∗
ix,n,kywix±1,n,ky − a↑↓ix±1,ix

x∗ix,n,kywix±1,n,ky

[
+ a↓↑ix±1,ix

w∗
ix,n,kyxix±1,n,ky − a↓↓ix±1,ix

x∗ix,n,kyxix±1,n,ky}f(−2En,ky)
]
.

(D.31)
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D.5 Spin magnetization

Here, we will derive the expressions for the amplitude of the spin magnetization. We can
generally write it as Si = ⟨c†i,ασαβci,β⟩, where we have neglected constant prefactors. In
the three different directions in the lab frame, we have

Sx
i = ⟨c†i,↑ci,↓⟩+ ⟨c

†
i,↓ci,↑⟩ , Sy

i = i⟨c†i,↓ci,↑⟩ − i⟨c
†
i,↑ci,↓⟩ , Sz

i = ⟨c†i,↑ci,↑⟩ − ⟨c
†
i,↓ci,↓⟩ .

Taking the mean in the y-direction as before, the amplitudes become

Sx
ix =

1

N

∑
iy

∑
ky ,k′y

1

Ny
ei(k

′
y−ky)iy

[
⟨c†ix,ky ,↑cix,k′y ,↓⟩+ ⟨c

†
ix,ky ,↓cix,k′y ,↑⟩

]
=

1

Ny

∑
ky

[
⟨c†ix,ky ,↑cix,ky ,↓⟩+ ⟨c

†
ix,ky ,↓cix,ky ,↑⟩

]
=

1

Ny

∑
n,m,ky

[
u∗ix,n,kyvix,m,ky + v∗ix,n,kyuix,m,ky

]
⟨γ†n,kyγm,ky⟩

=
2

Ny

∑
n,m,ky

Re
{
u∗ix,n,kyvix,m,ky

}
⟨γ†n,kyγm,ky⟩ ,

=
2

Ny

{ ∑
n,m,ky>0

[
Re
{
u∗ix,n,kyvix,m,ky

}
⟨γ†n,kyγm,ky⟩+Re

{
wix,n,kyx

∗
ix,m,ky

}
⟨γn,kyγ†m,ky

⟩
]

+

2Nx∑
n,m=1

[
Re
{
u∗ix,n,0vix,m,0

}
⟨γ†n,0γm,0⟩+Re

{
wix,n,0x

∗
ix,m,0

}
⟨γn,0γ†m,0⟩

]}

=
2

Ny

′∑
n,ky

[
Re{u∗ix,n,kyvix,n,ky} f(2En,ky) +Re{x∗ix,n,kywix,n,ky} f(−2En,ky)

]
, (D.32)

hei

Sx
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1

N

∑
iy

∑
ky ,k′y

1

Ny
ei(k

′
y−ky)iy

[
⟨c†ix,ky ,↑cix,k′y ,↓⟩ − ⟨c

†
ix,ky ,↓cix,k′y ,↑⟩

]
=

1

Ny

∑
ky

[
⟨c†ix,ky ,↑cix,ky ,↓⟩ − ⟨c

†
ix,ky ,↓cix,ky ,↑⟩

]
=

1

Ny

∑
n,m,ky

[
u∗ix,n,kyvix,m,ky − v∗ix,n,kyuix,m,ky

]
⟨γ†n,kyγm,ky⟩

=
2

Ny

∑
n,m,ky

Im
{
u∗ix,n,kyvix,m,ky

}
⟨γ†n,kyγm,ky⟩ ,

=
2

Ny

{ ∑
n,m,ky>0

Im
{
u∗ix,n,kyvix,m,ky

}
⟨γ†n,kyγm,ky⟩+ Im

{
wix,n,kyx

∗
ix,m,ky

}
⟨γn,kyγ†m,ky

⟩

+

2Nx∑
n,m=1

Im
{
u∗ix,n,0vix,m,0

}
⟨γ†n,0γm,0⟩+ Im

{
wix,n,0x

∗
ix,m,0

}
⟨γn,0γ†m,0⟩

}

=
2

Ny

′∑
n,ky

[
Im{u∗ix,n,kyvix,n,ky} f(2En,ky) + Im{x∗ix,n,kywix,n,ky} f(−2En,ky)

]
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1

Ny

∑
iy

∑
ky ,k′y

1

Ny
ei(k

′
y−ky)iy

[
⟨c†ix,ky ,↑cix,k′y ,↑⟩ − ⟨c

†
ix,ky ,↓cix,k′y ,↓⟩
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=
1

Ny

∑
ky

[
⟨c†ix,ky ,↑cix,ky ,↑⟩ − ⟨c

†
ix,ky ,↓cix,ky ,↓⟩

]
=

1

Ny

∑
n,m,ky

[
u∗ix,n,kyuix,m,ky − v∗ix,n,kyvix,m,ky

]
⟨γ†n,kyγm,ky⟩

=
1

Ny

{ ∑
n,m,ky>0

[
(u∗ix,n,kyuix,m,ky − v∗ix,n,kyvix,m,ky)⟨γ†n,kyγm,ky⟩

+ (wix,n,kyw
∗
ix,m,ky − xix,n,kyx∗ix,m,ky)⟨γn,kyγ

†
m,ky
⟩
]

2Nx∑
n,m=1

[
(u∗ix,n,0uix,m,0 − v∗ix,n,0vix,m,0)⟨γ†n,0γm,0⟩

+ (wix,n,0w
∗
ix,m,0 − xix,n,0x∗ix,m,0)⟨γn,0γ†m,0⟩

]}
=

2

Ny

′∑
n,ky

[(
|uix,n,ky |2 − |vix,n,ky |2

)
f(2En,ky) +

(
|wix,n,ky |2 − |xix,n,ky |2

)
f(−2En,ky)

]
.
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It is also possible to express the spin magnetization in curvilinear coordinates, not the lab
frame, since these might be more intuitive. It can be done in two ways: We take the ele-
ments of Si in the lab frame and change the basis using the parametrization. Alternatively,
the Pauli-vector can be replaced by the curvilinear one, such that ST,N,B

i = ⟨c†i,ασ
αβ
T,N,Bci,β⟩.
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Appendix E

Code

E.1 Numerical implementation

In this appendix, we give an explanation for the numerical code to produce the results in
the main text. The code for the quasiclassical theory uses MATLAB and bvp6c. The latter
is a sixth-order boundary value solver. We solve the Riccati parametrized equations for
each element of a vector energies and use the obtained γ matrices as a guess for the
next energy. The initial guess is a normal metal. To help with the numerical stability,
we add a small imaginary contribution 1e-3i to the energy. We also distribute the phase
difference between the S-F-S systems’ superconductors equally between them. The func-
tions Usadel_curved and Eilenberger_curved_SC return the elements of γ, γ̃ and their
derivatives as a vector. The equations in section 4.9 can be used to obtain physical obser-
vational quantities. The functions Usadel_curved and Eilenberger_curved_SC can be
called to get the Green’s function and its derivatives.

The lattice code was written in Python, and uses the library kwant [141] to build the
Hamiltonian in eq. (5.33). It is a package for numerical quantum transport calculations
in the tight-binding model. However, we only use it for the functions kwant.lattice

and kwant.Builder() which lets us build the Hamiltonian easily. Diagonalization of
the Hamiltonian is done with np.linalg.eigh() function from numpy, which returns the
eigenvalues self.E and eigenvectors self.P in our classes. The classes are built such
that they return an object that can call on expectation values directly and is solved self-
consistently. The self-consistency iterations are done by diagonalizing the Hamiltonian
and calculating the gap given in eq. (5.59). The new gap is compared to the old one,
and if the maximum difference is below the convergence criteria, the iterations stop. All
other expectation values are calculated as detailed in the main text, using the eigenvector
self.P with the eigenvalues self.E. Since we effectively only solve one-dimensional sys-
tems, labeling the sites is trivial. If we have a junction with phase difference ϕ, we apply
the phase −ϕ/2 to the first superconductor and ϕ/2 to the second. Then, we solve for the
gap magnitude self-consistently, as described above. It is common practice to only lock
the phase in a few lattice points at the ends of the superconductors [100, 104, 131], but
this increases the iterations needed to fulfill the convergence criteria drastically.

The code is not included in the thesis but is available upon a reasonable request.
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