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ABSTRACT

This master’s thesis studies a problem on time-frequency localization, namely that
of computing the norm of point evaluation in Paley–Wiener Lp spaces, denoted
PW p, with emphasis on the range 1 < p < 2. We have sought upper and lower
bounds using methods based on theoretical and numerical techniques developed
in the paper An Extension of Bohr’s Inequality by Lars Hörmander and Bo Bern-
hardsson, who studied the case p = 1. We have produced lower bounds through a
numerical implementation of the Newton–Raphson method, and will present evi-
dence supporting that the upper bound is not much larger than these lower bounds.
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SAMMENDRAG

Denne masteroppgaven studerer et problem innen tid-frekvens lokalisering, nemlig
å beregne normen av punkt-evaluering i såkalte Paley–Wiener Lp rom, der 1 <
p < 2. Vi har forsøkt å finne nedre og øvre grenser ved hjelp av metoder basert
på teoretiske og numeriske teknikker utviklet i artikkelen An Extension of Bohr’s
Inequality av Lars Hörmander og Bo Bernhardsson, som studerte tilfellet p = 1.
Vi har produsert nedre begrensninger ved å implementere en Newton–Raphson
metode, og vil presentere resultater som støtter at de øvre begrensningene ikke er
mye større enn de nedre.
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CHAPTER

ONE

INTRODUCTION

1.1 Project description

We are studying the following problem in time-frequency localization; what is the
smallest constant C, called Cp, such that the inequality

|f(0)|p ≤ C||f ||pp (1.1.1)

holds for all f in PW p, where 1 < p < 2?

1.2 Motivation

In time-frequency analysis, one of the classic problems is that of estimating point-
evaluation, especially in spaces of integrable functions, such as PW p, where one
generally does not have pointwise control. The main motivation for this thesis is
that lower and upper bounds for Cp have been furnished for all other convex PW p

spaces, that is 2 < p < ∞, see [1]. Therefore it is of interest to see whether such
explicit bounds can be found for 1 < p < 2. The thesis also attempts to directly
answer problem 4 in the survey of Lubinsky [2].

The problem is also interesting in the context of uncertainty principles, as
uncertainty principles in Fourier analysis describe the interplay between the decay
of a function and the smoothness of its Fourier transform.

1.3 Outline of the thesis

The main idea of the thesis is to attempt to utilise and modify the techniques from
Hörmander and Bernhardsson’s paper An extension of Bohr’s inequality [3] to
produce upper and lower estimates for Cp for 1 < p < 2. The lower estimates were
found by solving an extremal problem in Lp numerically. The upper estimates were
considerably harder to produce, as Hörmander’s analysis for the upper estimate
of C1 does not naturally extend to PW p for 1 < p < 2. Evidence supporting the
upper bounds being close to the lower bounds, however, will be presented. In the
end we will present and discuss some results for estimates of Cp, and discuss what
further improvements can be made.

1



2 CHAPTER 1. INTRODUCTION

1.4 Sustainability
As part of the thesis, it is mandatory that we discuss the thesis’ relevance to
the United Nations SDGs. Mathematical research, like this thesis, contributes to
increasing the body of knowledge used in higher education, something which fall
under Goal 4: Quality education.

Mathematical research is also a fundamental part of technological innovation.
Breakthroughs in time-frequency localization can have applications in fields such
as signal analysis or telecommunication, or other technologies that are essential to
modern infrastructure. This fits well with Goal 9: Industry, Innovation and
Infrastructure.

Other than these goals, it is hard to find some concrete relevance to the SDGs,
mainly because this thesis is a purely theoretical one, and is without any immediate
real-life applications at this point in time.



CHAPTER

TWO

PRELIMINARIES

The Paley–Wiener spaces PW p are the subspaces of Lp(R) consisting of functions
f that are entire and of exponential type at most π. We denote by || · ||p the
standard Lp-norm on the real line, that is

||f ||p =
(∫ ∞

−∞
|f(x)|pdx

)1/p

.

Similarly, we will call ||f ||pp the Lp integral of f . A function is said to be of
exponential type if its growth is bounded by an exponential eA|z| for large |z|, that
is there exists some finite constant C = C(A) such that

|f(z)| ≤ CeA|z| as |z| → ∞.

Its type is then the infimum of all such A’s. Since any function in PW p is both
entire and of exponential type ≤ π, by the Paley–Wiener theorem [4, Theorem 4],
its Fourier transform is supported in [−π, π]. We will throughout the thesis be
using the following normalization of the Fourier transform and its corresponding
inverse transform;

pf(ξ) =

∫ ∞

−∞
f(x)e−ixξdx, f(x) =

1

2π

∫ ∞

−∞

pf(ξ)eixξdξ.

It is assumed that the reader has some knowledge of introductory Fourier analysis,
functional analysis and Lp-theory.

What is interesting, is the behaviour of (1.1.1) as an uncertainty principle.
As mentioned in the introduction, an uncertainty principle describes the interplay
between the decay of a function, and the smoothness of its Fourier transform.
This is the same as saying f and pf cannot both be localized on small sets. This
is nicely illustrated by the Fourier transform of the delta measure, δ(x), which, in
the sense of distributions, is

pδ = 1,

which is completely delocalized, while the delta measure itself is sharply localized.
In layman’s terms one could say the Fourier transform "spreads out" sharply
localized signals. In Lp spaces, as p ↘ 0, f ∈ Lp needs to be increasingly rapidly
decaying. An L1-integrable function may blow up near 0, but must decay rapidly

3



4 CHAPTER 2. PRELIMINARIES

enough as |x| → ∞, while an L∞ function need not decay at all, but cannot
blow up. Rapid decay of f means pf needs to be increasingly smooth as p ↘ 0.
Since, in PW p, supp pf ⊂ [−π, π], this imposes a limit on how large the Fourier
transform can grow on [−π, π] without losing smoothness. Since we have the
following relation

f(0) =

∫ π

−π

pf(ξ)
dξ

2π
,

(1.1.1) can be interpreted as an uncertainty principle on PW p, describing the
relation between the decay of f and its blow-up at the origin.

The case p = 1 was studied by Lars Hörmander and Bo Bernhardsson in
their paper An extension of Bohr’s Inequality [3], which was published in 1993.
The project thesis was devoted to studying this paper, and also reproducing the
numerical results [5]. In their paper, Hörmander and Bernhardsson were able to
find numerical estimates for C1,

0.5409288219 ≤ C1 ≤ 0.5409288220. (2.0.1)

The case p = 1 has in fact been studied by several other authors (e.g. [6, 7, 8])
since Hörmander and Bernhardsson published their paper, mainly due to C1’s use
in problems in analytic number theory. However, the estimates produced in [3]
remain the best one yet. In fact, the authors seem to not be aware of the results of
Hörmander and Bernhardsson, almost as if they were forgotten. As an example,
in [8, Extremal Problem 1], it is clear that the constant C(∞) is equal to 2C1, but
there is no mention of the work of Hörmander and Bernhardsson. In addition, the
bounds produced in [8] correspond to

0.540925 . . . ≤ C1 ≤ 0.548845 . . . ,

which is considerably worse than (2.0.1), at least from above. Therefore it is of
great interest to study whether the techniques of Hörmander and Bernhardsson
yield estimates similar to (2.0.1) for the cases 1 < p < 2.

In the other tail-end of our interval for p, we have the special Hilbert space
PW 2, where it has been proven that C2 = 1. In fact this is the only known
value for Cp. This is due to the fact that for all f in PW 2, we have the following
reproducing kernel [1];

f(0) =

∫ ∞

−∞
f(x) sincπxdx,

where we use the unnormalized version of the sinc function

sincx :=
sinx

x
.

For p ̸= 2, the exact reproducing kernels for functions in PW p have not yet been
identified. Hörmander and Bernhardsson had hoped to be able to identify their
extremal from the numerical data, but were unable to do so.



CHAPTER

THREE

METHODS

3.1 Formulating an ansatz function

To approach the problem of estimating Cp, we will start with expressing Cp as the
solution to the following extremal problem;

1

Cp

= inf
f∈PW p

{
||f ||pp : f(0) = 1

}
. (3.1.1)

Via a compactness argument and a rescaling argument, one can show that (3.1.1)
admits a solution for any p ∈ (0,∞) [1], and that these extremal functions are
of type exactly π. Strict convexity of Lp for 1 < p < ∞ implies the extremal is
unique, but we are "only" interested in the range 1 < p < 2. Hörmander was
made aware by Professor Helmut Rüssmann that, for C1, the function

f1(x) =
3 sinπx− 3πx cos πx

π3x3

was close to the unique extremal function, and was able to approximate the ex-
tremal via a perturbation of this ansatz function. As previously stated, C2 = 1 is
the only known value for Cp, with f2(x) = sinc πx being the extremal function in
this case. By examining both f1 and f2, the hypothesis in [1] is that the function

fp(x) =
2

B(1/2, 2/p)

∫ π

−π

(
1− ξ2

π2

) 2
p
−1

eixξdξ/2π (3.1.2)

is close to the exact extremal function, in the sense that ||fp||−p
p is close to Cp.

Here we denote by B(·, ·) the beta function, which is defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, ℜx,ℜy > 0. (3.1.3)

The beta function is closely related to the gamma function, and it can be shown
that

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

5



6 CHAPTER 3. METHODS

A proof of this relation is given in Appendix A. To see that sinc πx actually is
equal to (3.1.2) for p = 2, we recall that it is the inverse Fourier transform of the
rectangular box, that is the function

Π(x) =

{
1, |x| ≤ π

0, |x| > π
= 1χ[−π,π],

where χA is the well-known indicator function. Thus it is clear that sinc πx =
f2(x). By examining the Fourier transform of f1, we see that the same holds
when p = 1. These fp’s can all be written in either the form of Bessel functions
modified by division with a power of x, or in the form of confluent hypergeometric
functions. This will prove to be a useful tool for the numerical calculations.

3.2 Different representations of fp
In this section we will discover some other ways to represent fp. As stated pre-
viously, fp can be written in the form of either a Bessel function, or a confluent
hypergeometric function. A useful tool is the relation

0F1(a+ 1;−x2

4
) = 2aΓ(a+ 1)x−aJa(x), (3.2.1)

for any a and any x for which 0F1 and Ja are well-defined. The confluent hyper-
geometric limit function is defined as follows;

0F1(a; z) =
∞∑
n=0

zn

(a)nn!
,

where (a)n is the Pochhammer symbol, also called the rising factorial, and is
defined as Γ(a + n)/Γ(a). We also have the following integral representation of
0F1;

0F1(b; z) =
Γ(b)√

πΓ(b− 1/2)

∫ 1

−1

(
1− t2

)b−3/2
e−2t

√
zdt, ℜ(b) > 1/2.

We can already see a road to finding a representation of fp by way of 0F1. By
setting b− 3/2 = 2/p− 1, we can see that

b− 3

2
=

2

p
− 1

=⇒ b =
2

p
+

1

2
,

and since 1 < p < 2, we can assure that ℜ(b) > 1/2. We then turn to the fraction
in front of the integral. Now that b = 2/p+ 1/2, we can see that

Γ(b)√
πΓ(b− 1/2)

=
Γ(2/p+ 1/2)

Γ(1/2)Γ(2/p)
=

1

B(1/2, 2/p)
,

since Γ(1/2) =
√
π. By evaluating in z = −π2x2/4, and using the u-substitution

τ = −πt, we see that in fact

fp(x) = 0F1(
2

p
+

1

2
;−π2x2

4
). (3.2.2)
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Then by the main relation between 0F1 and the Bessel functions, we must also
have

fp(x) = 22/p−1/2Γ(2/p+ 1/2)(πx)1/2−2/pJ2/p−1/2(πx).

These representations will be vital in formulating the numerical scheme for the
extremal problem in (3.1.1), as defining functions by their Fourier integral nu-
merically leads to high computational complexity. Instead, we can use already
implemented functions within Python libraries such as SciPy or mpmath.

3.3 The main inequality

It is clear that any function f in PW p, with f(0) = 1, will yield a lower bound
for Cp, via taking the reciprocal of its Lp integral. But we still need some control
over the upper bound of Cp. We will make use of a result from [1, Theorem 3.10],
which states that for any function φ ∈ PW p which evaluates to 1 in the origin

1

||φ||p
≤ C 1/p

p ≤ 1

||φ||p
+ ||φ2 − Φ ∗ φ2||q, (3.3.1)

where p and q are conjugate exponents. The function φ2 is simply sinc πx, whereas

Φ(x) :=
|φ(x)|p−2φ(x)

||φ||pp
. (3.3.2)

The lower bound is trivial, as any function in PW p naturally has to obey this
given how Cp is defined in (3.1.1). The proof in [1] is not hard to follow, but I will
nevertheless give a version of it here.

First we define F := φ2 + Φ − Φ ∗ φ2, and then take its convolution with an
arbitrary f in the intersection of the Schwartz class, denoted by S , and PW 2.
Recall that, for any f ∈ PW 2, sinc is a reproducing kernel, so point evaluation is
simply convolution with sinc πx. Thus φ2 ∗ f = f . We then have that

F ∗ f = φ2 ∗ f + Φ ∗ f − (Φ ∗ φ2) ∗ f

by distributivity of convolution. By associativity of convolution, we must then
have

F ∗ f = f + Φ ∗ f − Φ ∗ (φ2 ∗ f) = f + Φ ∗ f − Φ ∗ f = f.

This means that F is a reproducing kernel for f , i.e.

f(0) =

∫ ∞

−∞
F (x)f(x)dx

=⇒ |f(0)| ≤ ||Ff ||1 ≤ ||F ||q||f ||p,

where the last inequality holds by Hölder’s inequality. Taking the Lp integral of f
is not a problem, since S is dense in all Lp spaces when 1 ≤ p < ∞, and f must
therefore be Lp-integrable. By rearranging the inequality, we have

|f(0)|
||f ||p

≤ ||F ||q,
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but recall that C 1/p
p is the supremum of the left hand side, so necessarily

C 1/p
p ≤ ||F ||q.

What is left now is examining the Lq integral of F . From the triangle inequality
it is clear that

||F ||q ≤ ||Φ||q + ||φ2 − Φ ∗ φ2||q,

and so we must calculate ∥Φ∥qq. We know that

∥Φ∥qq = ∥φ∥−pq
p

∫
R

∣∣|φ|p−2φ
∣∣q dx,

and since p and q are conjugate exponents we must have

p−1 + q−1 = 1 =⇒ p+ q = pq =⇒ p = q(p− 1).

Therefore we can show that

∥Φ∥qq = ∥φ∥−pq
p

∫
R

∣∣|φ|p−2φ
∣∣q dx

= ∥φ∥−pq
p

∫
R
|φ|(p−2+1)q dx

= ∥φ∥−pq
p

∫
R
|φ|p dx

= ∥φ∥p−pq
p = ∥φ∥−q

p .

The right hand side of (3.3.1) then follows by density of S .
Since, in our case, 1 < p < 2, we can use the Hausdorff–Young inequality

to produce a weaker, but hopefully more numerically manageable inequality than
(3.3.1). Recall that the Hausdorff–Young inequality states the following;

Theorem 3.3.1 (Hausdorff–Young). Let f ∈ Lp(R), where 1 ≤ p ≤ 2. Then

|| pf ||q ≤ ||f ||p,
1

p
+

1

q
= 1. (3.3.3)

We have already seen that Φ ∈ Lq, and it is a well-known fact that φ2 ∈ Lr

for any r > 1. Thus it is of interest to compute the inverse Fourier transform of
φ2 − Φ ∗ φ2. Since the sinc function is even, it is clear that

|φ2 =
1

2π
xφ2 =

1

2π
χ[−π,π].

Since Φ is even as well, we get by a similar argument

Φ ∗ φ2 =
1

2π
pΦχ[−π,π].

Therefore, by Hausdorff–Young,

||φ2 − Φ ∗ φ2||q ≤
(∫ π

−π

∣∣∣1− pΦ(ξ)
∣∣∣p dξ

2π

)1/p

. (3.3.4)
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By examining the right-hand side it seems that, for non-integer p’s, this could
prove to be a nightmare to compute numerically. Therefore it is of interest to
look for some way to simplify our numerical task. This will of course yield a
suboptimal bound, but it may be better than nothing at all. Note that in (3.3.4),
the right-hand side is simply

(2π)−1/p||
(
1− pΦ

)
χ[−π,π]||p.

By the Hölder inequality, we have that

||fg||p ≤ ||f ||2||g||q,
1

p
=

1

q
+

1

2
,

for suitable functions f and g. In our case, we define

f(ξ) =
(
1− pΦ

)
χ[−π,π]

g(ξ) = 1χ[−π,π],

and thus we have that

||fg||p ≤ ||f ||2||g||q = (2π)1/p−1/2 ||f ||2
=⇒ (2π)−1/p ||f ||p ≤ (2π)−1/2 ||f ||2,

(3.3.5)

which means that

||φ2 − Φ ∗ φ2||q ≤
(∫ π

−π

∣∣∣1− pΦ
∣∣∣2 dξ

2π

)1/2

. (3.3.6)

Notice that we can utilise Parseval’s identity now, and recall that it states that

||f ||L2(−π,π) =

(
2π

∞∑
n=−∞

|cn|2
)1/2

, cn =
1

2π

∫ π

−π

f(x)e−inxdx. (3.3.7)

Therefore our task reduces to computing the Fourier coefficients of the function

1− pΦ(ξ).

The Fourier coefficients of the function ξ 7→ 1 are trivial, as we have

1

2π

∫ π

−π

e−inxdx = sincπn,

which equals 1 when n = 0, and 0 for every other n ∈ Z. Thus we have some
candidates for estimating the upper bounds for Cp.

3.4 An extremal problem in Lp

The first, and most approachable, obstacle is to improve the lower bound for Cp

via solving the extremal problem in (3.1.1) numerically. This will not give us an
exact extremal, but the hope is that it will yield a function "close enough" to
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the actual extremal, although it seems unlikely that we will reach the accuracy
of Hörmander and Bernhardsson. In their paper, Hörmander’s approach was to
consider the integral

Ip(ε) =

∫ ∞

0

|G+ εH|p dx,

where G = f1, and H is a perturbation of f1, which must have the property
H(0) = 0 and pH(±π) = 0. Recall that Hörmander studied the case p = 1 only.
He realised that f1 was equal to the inverse Fourier transform of (1−ξ2/π2)χ[−π,π],
up to a constant. He does not explicitly state this in his and Bernhardsson’s paper,
but we are led to believe he considered the following basis for his perturbation of
f1;

εH(x) =
∑
k

ckHk, k = 1, 2, · · ·

xHk(ξ) =

[
A

(
1− ξ2

π2

)k+1

−B

(
1− ξ2

π2

)k
]
χ[−π,π],

(3.4.1)

where A and B are some constants so that Hk(0) = 0 for all k. This was covered
in the project thesis [5, Section 4].

In the case of 1 < p < 2, our aim was to modify this approach to find a
minimizer for Ip. Notice that we are only integrating over R+, because the ex-
tremal function must necessarily be even [1]. Thus when Ip has been minimized
(numerically), we have the following lower bound for Cp;

1

2Ip(cex)
≤ Cp, (3.4.2)

where cex is the minimizer. Our initial function is of course fp, as defined in
(3.1.2). One can clearly see that its Fourier transform is

pfp(ξ) =
2

B(1/2, 2/p)

(
1− ξ2

π2

)2/p−1

χ[−π,π].

Following in Hörmander’s footsteps, it would seem natural to consider a basis of
functions of similar form to (3.4.1), with the modification that we are now looking
at the Fourier transforms being of form[

A

(
1− ξ2

π2

)(2/p−1)(k+1)

−B

(
1− ξ2

π2

)(2/p−1)k
]
χ[−π,π].

It is though important to realise we have to be careful when determining the
constants A & B, as they clearly must depend on p. Recalling the beta function,
notice that

B(1/2, y) =

∫ 1

0

t−1/2(1− t)y−1dt

= 2

∫ 1

0

(1− s2)y−1ds

=

∫ 1

−1

(1− s2)y−1ds

= 2

∫ π

−π

(
1− ξ2

π2

)y−1
dξ

2π
.
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This means that when y = (2/p− 1)k + 1, we have

B(1/2, k(2/p− 1) + 1)

2
=

∫ π

−π

(
1− ξ2

π2

)k(2/p−1)
dξ

2π
.

Thus the reciprocal of the left side is the normalization factor chosen such that
each basis function evaluates to 0 in the origin.

Let us define dk,p and hk,p as follows:

dk,p(x) :=
2

B(1/2, k(2/p− 1) + 1)

∫ π

−π

(
1− ξ2

π2

)k(2/p−1)

eixξ
dξ

2π
, (3.4.3)

hk,p(x) := dk+1,p(x)− dk,p(x). (3.4.4)

Thus we end up with the following integral to be minimized;

Ip(c) =

∫ ∞

0

∣∣∣∣∣fp(x) +∑
k

ckhk,p(x)

∣∣∣∣∣
p

dx. (3.4.5)

Let us, for ease of notation going forward, denote h(x) :=
∑

k ckhk,p(x). Using the
representation found in the previous section, we can also see that

dk,p(x) = 0F1

(
k

(
2

p
− 1

)
+

3

2
;−π2x2

4

)
.

In [3] the integral I1(ε) was minimized by using Newton’s method. Therefore it
seemed feasible that this approach could be used for minimizing Ip for 1 < p < 2.
Recall that the multivariate Newton–Raphson method for minimizing a function
F is defined as follows

xn+1 = xn −
[
∇2F (xn)

]−1 · ∇F (xn)

with an initial guess x0. Thus we need to study the derivatives of Ip(c). The first
derivatives of Ip with respect to the ck’s are as follows

∂Ip(c)

∂cj
=

∫ ∞

0

∂cj |fp + h|p dx

=

∫ ∞

0

p |fp + h|p−1 fp + h

|fp + h|
hj,p(x)dx

=

∫ ∞

0

p |fp + h|p−2 (fp + h)hj,p(x)dx.

(3.4.6)

We may differentiate under the integral sign without worry, as by [1, Lemma 3.2(a)]
the extremal φp has simple zeros for p ≥ 1/2, and it is a known result for Bessel
functions that

x−aJa(x)

has simple zeros.
The second derivatives are somewhat more troublesome. We note that in the

second integral, the integrand contains

fp + h

|fp + h|
≡ sgn (fp + h).
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We will also keep in mind that(
fp + h

|fp + h|

)2

(x) = 1 a.e..

It evaluates to 0 at the zeros of fp(x) + h(x), but the integrals do not see sets of
measure zero, and since the zeros of fp + h are simple, we do not arrive at any
problems.

Hörmander exploited this for p = 1, where the integrand in the first derivative
simply becomes sgn (f + h)hj,1. This simplified their calculation of the second
derivatives, as this reduced to a summation of the terms

2(−1)n
hj,1(tn)hi,1(tn)

(f1 + h)′ (tn)
,

where (tn)n∈N were the positive zeros of f1 + h. This is not the case for p ̸= 1.
Nevertheless, we can still derive the second derivatives of Ip;

(
∇2I(c)

)
ij
=

∂

∂ci

∫ ∞

0

p |fp + h|p−2 (fp + h)hjdx

= p

∫ ∞

0

hj∂i
[
|fp + h|p−2 (fp + h)

]
dx,

(3.4.7)

where we need to study the integrand further. Differentiating the left term in the
integrand with respect to ci yields

(fp + h) ∂i|fp + h|p−2 = (p− 2)|fp + h|p−3 fp + h

|fp + h|
(fp + h)hi

= (p− 2)|fp + h|p−2

(
fp + h

|fp + h|

)2

hi

= (p− 2)|fp + h|p−2hi,

whereas differentiating the right term yields

|fp + h|p−2 ∂i(fp + h) = |fp + h|p−2 hi.

Thus by differentiating the whole integrand using the product rule, we get

(
∇2I(c)

)
ij
= p(p− 1)

∫ ∞

0

|fp + h|p−2 hihjdx. (3.4.8)

Having derived the expressions for both the gradient and the Hessian matrix, we
can solve the extremal problem numerically in Python. This was done using the
Python library mpmath, along with the module gmpy2, which allows for arbitrary
precision floating-point arithmetic. This library was favored ahead of SciPy and
NumPy, as these libraries seemed to poorly handle the oscillatory nature of the
integrands.
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3.5 Remarks on p = 1

The case of p = 1 is a curious one. Recall that when φ is the extremal, (3.3.2)
gives rise to a reproducing kernel, which in the case of p = 1 is

Φ(x) =
sgnφ(x)

||φ||1
.

Examining the initial function f1, Hörmander made great use of the fact that
u = sgn f1 behaved similarly to

x 7→ − sgn cosπx, (3.5.1)

which changes sign at the half-integers. He also noticed that the positive zeros of
f1 lay close to an = n + 1

2
, n = 1, 2, . . . , which of course are the positive zeros

of cosπx larger than 1
2
. Since both f1 and cos πx are even functions, their signs

must be too, and so we need only examine them on the positive real line. Using
this relation, Hörmander was able to, rather miraculously, gain a very tight upper
bound for C1. It is known that the Fourier transform of a P-periodic signal f is,
in the distributional sense,

pf(ξ) = 2π
∞∑

n=−∞

cnδ(
2πn

P
− ξ)

cn =
1

P

∫
P

f(x)e−i2π n
P
xdx,

(3.5.2)

where δ(x) is the usual delta measure on R. (3.5.1) is 2-periodic with mean value
0, so its Fourier transform simply consists of point masses at ξ = nπ, with the
weights being equal to 2πcn. The fact that u exhibited said behaviour, allowed
Hörmander to express the Fourier transform of u as

pu(ξ) = 4
∞∑
k=0

(−1)k
∫ ak

tk

cosπxξdx, (3.5.3)

where tk were the zeros of f1 [3, Equation 3.10]. It is not as simple for 1 < p < 2,
as Φ is not a simple sign-function. Should one, however, examine Φ as p → 1, it
seems to continually deform from sinc πx into sgn fp.

The expression in (3.5.3) leads to a tighter inequality than the one in (3.3.1),
which is the main reason why the bounds for C1 are so precise. Another point
of interest is how the integrands in the derivatives of Ip changes as p → 1, as
previously mentioned. This reduced the numerical complexity significantly, as
instead of integrating a highly oscillatory function, the calculation reduced to a
summation over the zeros of f1 + h.

3.6 An upper estimate for Cp

To gain an upper bound for Cp, and to show it is not much larger than the lower
bounds found via Newton’s method, we need to estimate the right hand side of
(3.3.1). Hörmander and Bernhardsson made use of the fact that for p = 1

Φ(x) =
sgnφ

||φ||1
(x),
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which made the calculation of (3.3.4) significantly easier, since this function be-
haves similarly to − sgn cosπx. This is not the case for other p’s, as

Φ(x) =
|φ|p−1 sgnφ(x)

||φ||pp
,

and calculating the integral in (3.3.4) is a difficult numerical task. After some
difficulties with computing the Fourier coefficients of (3.3.2), we decided to nu-
merically approximate the convolution

Φ ∗ φ2,

by using the built in function convolve from scipy.signal. This functions sam-
ples the two functions on some finite interval, and produces a numerical approxi-
mation of the convolution on this interval. To ensure the convolution was accurate
on this interval, it was important to have enough sample points, to be able to effec-
tively capture the oscillating nature of both functions. Therefore we chose to use
103N + 1 equidistant sample points for the interval (−N,N), which is equivalent
to a sample rate of 500, i.e. 500 samples per unit length. Since both sinc πx and
Φ decay relatively fast, it is reasonable to assume the main contribution to the
Lq norm is contained in the interval (−104, 104). Then, after producing this con-
volution, we turn to approximating the Lq norm in (3.3.1). To approximate this
Lq norm, we will integrate the samples using np.trapz, which approximates the
integral of the function using the trapezoidal rule, which is a 2nd order numerical
integration technique.

This will, of course, yield some numerical error. In the first instance, we
are sampling the functions over a finite interval, and then integrating using the
sample points, so we will need to estimate the contribution from the tail-ends of
the integral. In other words, we need to find an estimate for∫

|x|>10000

|φ2 − Φ ∗ φ2|q dx. (3.6.1)
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4.1 Lower bounds for Cp

The lower bounds arising from (3.4.2) are presented in Table 4.1.1, while the lower
bound arising from the ansatz functions, fp, are presented in Table 4.1.2.

p c Cp ≥

1 0.029854 0.5409288219

1.1 0.026205 0.5904496737

1.2 0.020401 0.6390809499

4/3 0.014428 0.7026277974

1.4 0.011869 0.7338627545

1.5 0.008446 0.7800570531

1.7 0.002707 0.8701760940

1.8 -0.000440 0.9141453879

2 0.000000 1

Table 4.1.1: Lower bounds for Cp after Newton iteration. The parameter c
denotes the minimizer in (3.4.5).

This shows that the Newton iteration yields stronger lower bounds for Cp, as
we had hoped. It is also evident that we are making a similar improvement in the
lower bound as Hörmander and Bernhardsson did in [3], as we seem to improve
the lower bounds in the 5th decimal place for the different values of p.

4.2 Upper bounds for Cp

The upper bounds were found by numerically estimating the rightmost term in
(3.3.1), and adding this to the lower bounds in Table 4.1.1, and are presented in

15
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p Cp ≥

1 0.5408879784

1.1 0.5903918196

1.2 0.6390350580

4/3 0.7025916777

1.4 0.7338280575

1.5 0.7800255171

1.7 0.8701452647

1.8 0.9141164376

2 1

Table 4.1.2: Lower bounds for Cp before Newton iteration, acquired by calculat-
ing ∥fp∥−1.

Table 4.2.1. It is clear by the table values that our numerical computation does
not yield particularly tight upper bounds, especially for p’s closer to p = 1. An
important disclaimer is that we cannot be 100% certain that these upper bounds
are correct, as we need to study the numerical error in the convolution algorithm.
Therefore these estimates must, in the first place, rather be understood as evidence
supporting the claim that the upper bounds are not much larger than the lower
bounds in Table 4.1.1.

p Cp ≤

1 0.5409288220

1.1 0.8111373925

1.2 0.7265669010

4/3 0.7411531953

1.4 0.7613370212

1.5 0.7976297081

1.7 0.8786150672

1.8 0.9203609850

2 1

Table 4.2.1: Upper bounds arising from numerical convolution.
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4.3 A plot of the upper and lower bounds for Cp

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.6

0.7

0.8

0.9

1

p

Figure 4.3.1: Upper and lower bounds for Cp, as functions of p. The curve p/2
is included as a reference curve.

The plot in Figure 4.3.1 shows that our upper and lower bounds are very tight
for values of p close to 2, but the two curves seem to diverge from each other as
p ↘ 1. It was mentioned in [1] that for p = 1, the functional

φ2 − Φ ∗ φ2

may be unbounded on the space S ∩L1(R), in the sense that we have no control
over

∥φ2 − Φ ∗ φ2∥∞.

Should this be true, it would make sense that the orange curve in Figure 4.3.1
would begin to grow rapidly towards +∞ as p ↘ 1. Unfortunately we have not
managed to prove, or disprove, this hypothesis.
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4.4 Upper and lower bounds together
Combining the lower and upper bounds for Cp for the samples in Table 4.1.1 and
Table 4.2.1, we write out the following inequalities;

0.5904496737 ≤ C1.1 ≤ 0.8111373925, (4.4.1)

0.6390809499 ≤ C1.2 ≤ 0.7265669010, (4.4.2)

0.7026277974 ≤ C4/3 ≤ 0.7411531953, (4.4.3)

0.7338627545 ≤ C1.4 ≤ 0.7613370212, (4.4.4)

0.7800570531 ≤ C1.5 ≤ 0.7976297081, (4.4.5)

0.8701760940 ≤ C1.7 ≤ 0.8786150672, (4.4.6)

0.9141453879 ≤ C1.8 ≤ 0.9203609850. (4.4.7)

4.5 The case p = 4/3

The case p = 4/3 is another curious case. A big thank you to PhD-student Sarah
May Instanes who made us aware of an interesting result for the upper bound of
C4/3 [9],

C4/3 < 0.713.

This result came from considering the approach from [1, Section 6], and realizing
that the intervals on level n+ 3 are copies of the intervals on level n, which gave
the following bound for C4/3;

C4/3 ≤ 2

∫ 5
4

0

sin2 2
3
πx

π2x2
dx+ 2

∞∑
n=1

∫ n+ 5
4

n+ 1
4

sin2 2
3
π(x− n)

π2x2
dx < 0.713. (4.5.1)

This is evidently a stronger bound than the upper bound we found via the numer-
ical convolution, but it seems difficult to replicate this for other 1 < p < 2.

4.6 Error analysis
Since the rightmost term in (3.3.1) is estimated numerically, we need to estimate
the error in this calculation. First we need to estimate what error we accumulate
when numerically integrating over the interval (−104, 104), and then we need to
bound the integral over R \ (−104, 104).

With a sample rate of 500, the numerical convolution is sure to be very precise,
as we are sampling the convolution Φ ∗ φ2 on 500 points per unit length, so that
we lose minimal information about the function. Then we turned to calculating
the integral ∫ 104

−104
|φ2 − Φ ∗ φ2|q dx (4.6.1)

using the trapezoidal rule. The usual error bound for the composite trapezoidal
rule is

Etrap ∼ 1/n2,
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where n is the number of subintervals. This estimate gives an error ∼ 10−14. When
testing against known solutions, the np.trapz-function seemed to exhibit an error
of this magnitude. When prompting WolframAlpha to compute the integral

I =

∫ 104

−104
| sincπx|2dx,

we got the following value for I;

I ≃ 0.9999898678816409 . . . .

While computing the same integral using np.trapz with 103 ·104+1 sample points,
we got

Itrap = 0.9999898678816397,

which is a very accurate approximation of I, with an error in the 15th decimal
place. One may also notice that both I and Itrap are close to the actual value of
∥sincπx∥22, which is well known;∫

R
| sincπx|2dx = 1.

It is also important to note that since 1 < p < 2, we must necessarily have
2 < q < ∞. When q is an even integer, the calculations using the trapezoidal
rule exhibit errors of even lower magnitude. For example, when q = 4, which
corresponds to p = 4/3, the error is ∼ 10−15. Therefore we can be confident that
the numerical estimate for (4.6.1) yields a low error. The remaining part is then
to give a bound for the integral(∫

|x|>104
|φ2 − Φ ∗ φ2|q dx

)1/q

. (4.6.2)

When |x| > 104,
| sincπx| ≤ 0.00003,

and |Φ ∗ φ2| will be of the same magnitude, and decaying. It is also clear that, as
|x| → ∞, both φ2 → 0 and Φ ∗ φ2 → 0. Thus we can be assured that our upper
bounds for Cp are not much larger than the ones calculated through the numerical
convolution algorithm. Plots of the convolutions versus sinc for some values of p
are included in Appendix B, to illustrate how close Φ is to being a reproducing
kernel for φ2.
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5.1 Discussing the results
The main observation made from the results is that the upper and lower bounds
seem to get tighter as p ↗ 2, which is consistent with the fact that fp is the
exact extremal when p = 2. The Newton–Raphson solver improved the lower
bounds in roughly the same decimal places as achieved in [3], which is a positive
result. This also supports the hypothesis that fp is close to the extremal for
all 1 < p < 2, and that the upper bounds may be closer to the lower bounds
than what we found in this thesis. It was also clear from the upper bounds, that
the numerical convolution provided weaker upper bounds for Cp as p ↘ 1. This
could be due to the fact that sinc(πx) is not L1-integrable, and (3.3.1) must be
interpreted differently when p = 1 compared to when 1 < p, as the inequality
must be interpreted in the distributional sense in this case.

When examining the term
φ2 − Φ ∗ φ2

for p = 1, it is known that Φ ∈ L∞. And since φ2 is L2-integrable, we cannot
necessarily say anything about the convolution, as convolution between L∞ and
L2 functions is not well-defined. This is likely why the upper bound diverges from
the lower bound as p ↘ 1, although this is unknown to us.

5.2 Numerical Difficulties
The main numerical difficulties tied to this thesis were due to the fact that we were
dealing with highly oscillatory Lp-integrable functions for non-integer p’s. When
p is an even integer ≥ 2, taking the Fourier transform of |f |p−2f is handled by
the Fourier convolution theorem, but this is not possible for 1 < p < 2. Therefore
the calculations ended up having a high computational complexity, which is why
we used only one basis function in the Newton–Raphson implementation of the
extremal problem (3.1.1). Restricting to a single basis function necessarily lead to
a weaker bound for Cp, but as covered in the project thesis [5], where we solved the
extremal problem with both one and 3 basis functions, the bounds only differed
in the 9th decimal place, which for our purposes was sufficiently close. Estimating
the upper bound also proved to be a tough numerical task, as for either of the

21
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candidates for an upper bound, we would have to integrate over the entire real
line. Because of this, we turned to sampling the functions on a sufficiently big,
but finite, interval, and estimating the Lq norm of the convolution numerically.

5.3 Future work
The bounds we have furnished in this thesis are evidently not as tight as the
ones Hörmander and Bernhardsson found for C1, so there is definitely room for
improvement, on both sides of the main inequality (3.3.1).

The most obvious step further is to implement the Newton–Raphson solver
with more basis functions, hopefully without the runtime skyrocketing. Hörman-
der and Bernhardsson’s calculations were stable for 3 basis functions, and they did
not gain any significant accuracy by using more than 3, so it would be reasonable
to assume 3 basis functions would be enough for our case as well. It also seems
likely that the machinery in (3.3.1) may not yield the tightest upper bounds for
Cp, with both the cases p = 1 and p = 4/3 supporting this claim.

Thus the main task for future work is to furnish even stronger upper bounds
for Cp, than what we have achieved, as there is definite room for improvement.
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SIX

CONCLUSIONS

In this master’s thesis we have furnished lower bounds for Cp for 1 < p < 2, and
provided some calculations supporting our claim about the upper bounds for Cp,
that they are not much larger than the lower bounds we have found numerically
using Newton’s method. We have also found that the numerical and theoretical
framework of Hörmander and Bernhardsson yields solid results for p’s closer to
p = 2, but that the upper and lower bounds from (3.3.1) seem to diverge as
p → 1. Lastly, we have discussed future work, and what improvements can be
made to the results we have produced in this thesis.

23
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A - RELATION BETWEEN B(·, ·) AND Γ(·)

The beta function is defined, for z > 0, as

Γ(z) =

∫ ∞

0

e−ttz−1dt, (A.1)

and the beta function is defined as in (3.1.3). We want to prove that the following
relation holds:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (A.2)

We have that

Γ(x)Γ(y) =

∫ ∞

0

e−ttx−1dt

∫ ∞

0

e−ττ y−1dτ.

=

∫ ∞

0

∫ ∞

0

e−t−τ tx−1τ y−1dtdτ.

Consider the substitutions t = uv and τ = u(1 − v). The Jacobian of this trans-
formation (t, τ) 7→ (u, v) is

J =

∣∣∣∣ ∂t∂u ∂t
∂v

∂τ
∂u

∂τ
∂v

∣∣∣∣ = ∣∣∣∣ v u
(1− v) −u

∣∣∣∣ = −u.

Since u = t+ τ and v = t/(t+ τ), the limits of integration for u are 0 to ∞, while
the limits of integration for v are 0 to 1. Therefore

Γ(x)Γ(y) =

∫ ∞

u=0

∫ 1

v=0

e−u(uv)x−1 (u(1− v))y−1 ududv

=

∫ ∞

u=0

e−uux+y−1du

∫ 1

v=0

vx−1(1− v)y−1dv

= Γ(x+ y)B(x, y).

The result follows by dividing by Γ(x+ y) on both sides.
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B - PLOTS OF CONVOLUTIONS VS. SINC

Figure B.1: Plots of Φ(x), and Φ ∗ φ2 vs φ2 when p = 1.1.

Figure B.2: Plots of Φ(x), and Φ ∗ φ2 vs φ2 when p = 1.2.
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Figure B.3: Plots of Φ(x), and Φ ∗ φ2 vs φ2 when p = 1.5.

Figure B.4: Plots of Φ(x), and Φ ∗ φ2 vs φ2 when p = 1.7.
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