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Abstract

We study the asymptotic behaviour of the heat equation and a scalar
convection-diffusion equation with a non-linear convection term, mainly fol-
lowing Zuazua [1]. The work is carried out in a framework of strong solutions
on Rn × (0,∞) with initial data in L1(Rn). First, using a scaling argument
and parabolic L1–L∞-smoothing, we show that the asymptotic behaviour of
the heat equation is given by the mass of its solution times the heat kernel,
and that the same essentially applies when introducing a linear convection
term in the equation. Then, we introduce the scalar convection-diffusion
equation, and after developing some results regarding well-posedness, we
investigate its asymptotic behaviour when the non-linearity is of the form
a∂x(u

q) for q > 1. By a similar approach as for the heat equation, we find
weakly non-linear asymptotic behaviour for q > 2, in the sense that the
non-linear term disappears, leaving us with the same behaviour as for the
heat equation. The case q = 2 is not considered, here we refer to [2]. For
1 < q < 2, we find that the non-linear term dominates, yielding a hyperbolic
L1–L∞-smoothing result, where the rate is different from the parabolic re-
sult. The resulting asymptotic behaviour is called strongly non-linear, and is
given by the solution of a purely convective equation with initial data given
by the mass of the solution times Dirac’s delta. Finally, we present some of
the theory needed for this equation, specifically the uniqueness for entropy
solutions with a non-negative finite Radon measure on R as initial data.
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Sammendrag

Vi studerer den asymptotiske oppførselen til varmelikninga og en skalar
konveksjon-diffusjonslikning med et ikke-lineært konveksjonsledd, hvor vi
følger Zuazua [1]. Rammeverket for arbeidet er sterke løsninger i Rn×(0,∞)
med initialdata i L1(Rn). Først, ved bruk av et skaleringsargument og
parabolsk L1–L∞-smoothing, viser vi at den asymptotiske oppførselen til
varmelikninga er gitt ved massen til løsninga ganger varmekjernen, og at det
samme essensielt ogs̊a gjelder dersom vi legger til et lineært konveksjonsledd i
likninga. Deretter introduserer vi den skalare konveksjon-diffusjonslikninga,
og etter å ha vist noen resultater om velstiltheten til denne likninga, un-
dersøker vi dens asymptotiske oppførsel n̊ar ikke-lineariteten er p̊a formen
a∂x(u

q) for q > 1. Med en liknende fremgangsm̊ate som for varmelikninga,
finner vi svak ikke-lineær asymptotisk oppførsel for q > 2 i den forstand at
det ikke-lineære leddet forsvinner, slik at oppførselen blir den samme som
for varmelikninga. Tilfellet q = 2 diskuteres ikke her, vi viser heller til [2].
For 1 < q < 2 finner vi at det ikke-lineære leddet dominerer, noe som gir hy-
perbolsk L1–L∞-smoothing, hvor raten er endret i forhold til det parabolske
tilfellet. Den resulterende asymptotiske oppførselen kalles sterk ikke-lineær,
og er gitt av løsninga til en ren konveksjonslikning med initialdata gitt av
massen til løsninga ganger Diracs delta. Til slutt presenterer vi noe teori
for denne likninga, mer spesifikt entydighet for entropiløsninger med et ikke-
negativt endelig Radonm̊al p̊a R som initialdata.
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Notation

:=, defined to be equal.

∗
⇀, weak* convergence.

a.e., almost everywhere, that is, everywhere except on a set of measure zero.

C, a constant.

N = {1, 2, 3, . . .}, natural numbers.

Rn, n-dimensional real Euclidean space. A point in Rn is x = (x1, . . . , xn).

x · y =
∑n

i=1 xiyi, the scalar product between x, y ∈ Rn.

|x| =
√

x21 + · · ·+ x2n, the Euclidean norm for some x ∈ Rn.

∂x = ∂
∂x , the partial derivative with respect to the variable x. ∂2

x = ∂2

∂x2 denotes the

second derivative with respect to the variable x, while ′ or d
dx denotes the derivative

of a function of one variable.

∇ = (∂x1 , . . . , ∂xn), the gradient operator on Rn. As a shorthand, we will sometimes let
∇u denote all the first order partial derivatives of u instead of the gradient vector.
For example, we write ∇u ∈ L∞(Rn) to say that ∂xiu ∈ L∞(Rn) ∀ i ∈ {1, . . . , n}.

∆ =
∑n

i=1
∂2

∂x2
i
, the Laplacian operator on Rn.

U , an open set in Rn. ∂U denotes its boundary, and U = U ∩ ∂U denotes its closure.

sup, supremum, the least upper bound.

inf, infimum, the greatest lower bound.

lim infn→∞ xn = limn→∞ (infm≥n xm), the limit inferior of a sequence {xn}∞n=1.

ess lim, the essential limit, meaning we consider the limit a.e.
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f = O(g) as x → x0, big-oh notation. This means that there exists a constant C such
that for all x sufficiently close to x0,

|f(x)| ≤ C|g(x)|,

where f, g : U → R and x, x0 ∈ U . We will drop the limit when it is obvious.

f(A) = {f(x) | x ∈ A}, the image under the function f : U → R of the subset A of U .

(f ∗ g)(x) =
∫
Rn f(x− y)g(y)dy =

∫
Rn f(y)g(x− y)dy, the convolution of the functions

f, g : Rn → R.

supp(f) = {x ∈ U | f(x) ̸= 0}, the closed support of a function f : U → R. If the closed
support of f is a compact subset of U, then f is said to have compact support.

[f ]+(x) = max{f(x), 0}, [f ]−(x) = max{−f(x), 0}, the positive and negative parts of
a function f : U → R. f = [f ]+ − [f ]−, |f | = [f ]+ + [f ]−.

B(x, r) = {y ∈ Rn | |x− y| < r}, the open ball in Rn, centered in x ∈ Rn with radius
r > 0.

sign : R → {−1, 0, 1}, the sign function, defined by

sign(x) =


−1, x < 0

0, x = 0,

1, x > 0.

Similarly, we define the positive and negative sign functions respectively, by

sign+(x) =

{
0, x ≤ 0

1, x > 0,
sign−(x) =

{
−1, x < 0

0, x ≥ 0.

1A : U → {0, 1}, the indicator function of a subset A of the set U , defined by

1A(x) =

{
1, x ∈ A

0, x /∈ A.

C(U) = {u : U → R | u is continuous}.

Ck(U) = {u : U → R | u is k-times continuously differentiable}.

C∞(U) = {u : U → R | u is infinitely differentiable}. Referred to as smooth functions.

C∞
c (U) = {u : U → R | u is infinitely differentiable with compact support}. Referred

to as test functions.
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Lp(U) = {u : U → R | u is Lebesgue measurable, ∥u∥Lp(U) < ∞}, where

∥u∥Lp(U) =

(∫
U
|u|pdx

) 1
p

(1 ≤ p < ∞).

The norm is written as ∥·∥Lp , when the domain U is clear. We shall refer to
functions in L1(U) as integrable on U .

L∞(U) = {u : U → R | u is Lebesgue measurable, ∥u∥L∞(U) < ∞}, where

∥u∥L∞(U) = ess sup
U

|u| = inf{C ≥ 0 | µ({x ∈ U | |u(x)| > C}) = 0}.

µ is the Lebesgue measure.

Lp
loc(U) = {u : U → R | u ∈ Lp(K) ∀ compact K ⊂ U}. We shall refer to functions in

L1
loc(U) as locally integrable on U .

L1(U ; 1 + |x|) = {u : U → R | u ∈ L1(U) and ∥u∥L1(U ;1+|x|) < ∞}, where

∥u∥L1(U ;1+|x|) =

∫
Rn

|u|(1 + |x|)dx.

Referred to as L1(U) with weights. The weights may vary.

W k,p(U) = {u : U → R | u is locally integrable and ∂|α|

∂x
α1
1 ···∂xαn

n
u ∈ Lp(U) ∀ |α| ≤

k in the weak sense}, where 1 ≤ p ≤ ∞, α = (α1, . . . , αn) with |α| =
∑n

i=1 αi, and
k, αi are non-negative integers. Referred to as Sobolev spaces.
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Chapter 1

Introduction

In the study of parabolic partial differential equations (PDEs), the heat equation{
∂tu−∆u = 0, (x, t) ∈ Rn × (0,∞)

u(x, 0) = u0(x), x ∈ Rn,
(1.1)

plays a vital role as the prime example for this class of equations. Because it is so
fundamental, this equation has been widely studied for centuries, resulting in a well-
developed and rich theory. In the specialisation project [3], we studied classical results
regarding well-posedness for the heat equation. By well-posedness, we mean that [4,
p. 7]:

(i) A solution exists.

(ii) The solution is unique.

(iii) The solution depends continuously on the initial data.

Now, by adding a non-linear convection term on the right hand side of (1.1), we get
a general scalar convection-diffusion equation{

∂tu−∆u = a · ∇(F (u)), (x, t) ∈ Rn × (0,∞)

u(x, 0) = u0(x), x ∈ Rn.
(1.2)

Details on the terms of this equation will be made clear later, but by adding a hyperbolic
term we now have a parabolic-hyperbolic equation. This combination makes (1.2) suit-
able as a simple model for physical phenomena containing both diffusion and convection
[5, p. 43]. Depending on the choice of a and F , some examples of such phenomena are
fluid displacement in a porous medium, as well as other types of fluid flow with both
non-linear wave propagation and heat conduction [1, p. 1].

We are interested in the mathematical properties of (1.2). Because of its relative
simplicity as a model, it is suitable for rigorous mathematical investigation in order to
get a better understanding of the mathematics of diffusive-convective phenomena, as
stated in [5, p. 43].

1



2 CHAPTER 1. INTRODUCTION

The main property we wish to study in this thesis is asymptotic behaviour, that
is, the behaviour of solutions for large times. We will work in a framework of strong
solutions with initial data u0 ∈ L1(Rn). Strong solutions will be defined later on, but
we essentially require the solutions to solve the equations a.e., thus requiring them to
be actual functions and not just distributions.

We will mainly follow the work done by Zuazua in [1], but we will expand his argu-
ments and pay more attention to details, to gain a better understanding of the asymp-
totic behaviour and how it arises. An important technique in this regard is a scaling
argument, as we will see.

The asymptotic behaviour will be studied both for the heat equation (1.1) and the
scalar convection-diffusion equation (1.2), not only with a non-linear convection term,
but also with a linear one. In particular, we wish to compare the behaviour of these equa-
tions to the heat equation, to see how the introduction of a convection term influences
the behaviour.

1.1 Thesis outline

The thesis is structured as follows:

• Chapter 1: Introduction. We introduce some background and present the goal and
outline of this thesis, as well as its relevance to the Sustainable Development Goals
of the United Nations.

• Chapter 2: A priori estimates for the heat equation. We repeat useful definitions
and results developed for the heat equation (1.1) in the specialisation project [3].

• Chapter 3: Asymptotic behaviour for the heat equation The theory on the heat
equation from the specialisation project [3] is continued and completed by char-
acterising its asymptotic behaviour. Following Chapter 1 of [1], by introducing
a scaling argument and parabolic L1–L∞-smoothing (3.1), we motivate that we
expect the asymptotic behaviour to be given by the heat kernel G times the mass
M of the solution. This is proved rigorously in Theorem 3.3. Finally, we intro-
duce a linear convection term in the heat equation, and see in Theorem 3.5 that it
essentially does not affect the asymptotic behaviour, except by a shift of the heat
kernel.

• Chapter 4: Scalar convection-diffusion equations. A general scalar convection-
diffusion equation of the form (1.2) is introduced within the suitable framework of
strong solutions. Following Chapter 4 of [1], we develop two main results which
establish the necessary well-posedness for this equation, first with initial data in
L1(Rn)∩L∞(Rn) in Theorem 4.6, then in L1(Rn) in Theorem 4.11 by an approx-
imation argument. One of several important results in this theorem is that the
parabolic L1–L∞-smoothing still holds for this equation.
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• Chapter 5: Asymptotic behaviour for a convection-diffusion equation. We investi-
gate the asymptotic behaviour of the convection-diffusion equation in one dimen-
sion with a particular convection term of the form a∂x(u

q) with q > 1. Through
a scaling argument similar to the one for the heat equation, we find that the
behaviour depends on the value of q. For q > 2, the convection term disappears,
leading to the same asymptotic behaviour as for the heat equation. For this reason,
this behaviour is said to be weakly non-linear. The result is proved in Theorem 5.2
following Chapter 5 of [1] and depends on the L1–L∞-smoothing from the previ-
ous chapter. We do not consider the case of q = 2, but rather refer to [2]. For
1 < q < 2, on the other hand, the non-linear convection term dominates, leading
to a hyperbolic L1–L∞-smoothing result given in Lemma 5.5, where the rate is
sharper than in the parabolic result. The resulting asymptotic behaviour is given
by a solution of a purely convective equation (5.8) with the mass M of the solu-
tion times Dirac’s delta function δ as initial data. This behaviour is characterised
as strongly non-linear, and since it differs from the parabolic equations we have
worked with so far, the proof is more difficult in this case. We show this result in
Theorem 5.9 by following [5, 6].

• Chapter 6: Entropy solutions for a convection equation. The purely convective
equation resulting from the strongly non-linear behaviour in the previous chapter
is discussed in more detail. Following [7, 8], we discuss uniqueness for so-called
entropy solutions for a general convective equation (6.1) with a non-negative finite
Radon measure on R as initial data.

• Chapter 7: Further work. We propose some possibilities for further work, such
as proving some results which we only stated in the thesis, and introducing new
terms in order to consider the asymptotic behaviour of other types of parabolic-
hyperbolic equations.

Finally, for convenience and completeness, there are two appendices containing prelimi-
nary results and heat kernel estimates, respectively.

1.2 Relevance to the Sustainable Development Goals

The 17 Sustainable Development Goals (SDGs) of the United Nations were created with
the goal of achieving a more sustainable development of the world [9]. Although this
thesis is theoretical in nature, dealing with the mathematical theory on PDEs, it can
still be relevant for several of the SDGs.

First, Goal 4 is concerning quality education, and the development and study of
mathematical theory is important with regards to this.

Second, Goal 9 is about industry, innovation and infrastructure, and the theory dis-
cussed in this thesis may be relevant because the equations we study arise from physical
phenomena, as discussed earlier. Therefore, a better mathematical understanding of the
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equations may lead to better modelling and understanding of these phenomena, which
may have applications in many industries.

Third, the results discussed are all results of global scientific research collaborations,
which is relevant for Goal 17, partnerships for the goals.

Finally, the equations studied may be used in many types of applications, so several of
the other goals may also be relevant depending on the type of application one considers.



Chapter 2

A priori estimates for the heat
equation

In the specialisation project [3], we considered the initial-value problem for the heat
equation in Rn (n ≥ 1) {

∂tu−∆u = 0, (x, t) ∈ Rn × (0, T )

u(x, 0) = u0(x), x ∈ Rn,
(2.1)

where T > 0, u0 is some given initial value and u is the solution to be found. We
showed existence and uniqueness of solutions to (2.1), both in the so-called classical
and very weak sense, before we finally developed some well-known regularity estimates
in Lp-norm for the class of strong solutions. This class lies between the classical and
very weak solutions, in the sense that we have the inclusions classical solutions ⊂ strong
solutions ⊂ very weak solutions. The regularity estimates are useful on their own, by
providing information on how the solutions depend on their initial data, but they will
also prove to be useful when we later turn our attention to other parabolic differential
equations. For this reason, we will repeat these results without proof in this chapter,
referring to Chapter 3 and 4 of the specialisation project [3] for details.

Definition 2.1. We call u a very weak solution of the heat equation on Rn× [0, T ) with
initial value u0, if u ∈ L1

loc(Rn × (0, T )), u0 ∈ L1
loc(Rn), and if∫ T

0

∫
Rn

[u(x, t)∂tφ(x, t) + u(x, t)∆φ(x, t)]dxdt+

∫
Rn

u0(x)φ(x, 0)dx = 0,

for all φ ∈ C∞
c (Rn × [0, T )).

5



6 CHAPTER 2. A PRIORI ESTIMATES FOR THE HEAT EQUATION

Theorem 2.2. Assume u0 ∈ L1(Rn), and define

u(x, t) = (G(·, t) ∗ u0)(x) = (4πt)−
n
2

∫
Rn

e−
|x−y|2

4t u0(y)dy (x ∈ Rn, t > 0). (2.2)

Then u ∈ C([0,∞);L1(Rn))∩C∞(Rn×(0, T )), and the initial-value problem (2.1) admits
a unique1 very weak solution given by (2.2).

Remark 2.3. The function

G(x, t) = (4πt)−
n
2 e−

|x|2
4t (x ∈ Rn, t > 0),

is called the heat kernel on Rn.

Lemma 2.4. Let u ∈ L1(Rn × (0, T ))∩C([0, T );L1(Rn)) be a very weak solution of the
heat equation with initial data u0 ∈ L1(Rn). Then, the mass of u is conserved, i.e.∫

Rn

u(x, t)dx =

∫
Rn

u0(x)dx ∀ t ∈ [0, T ).

Remark 2.5. This result still holds when we only assume u ∈ C([0, T );L1(Rn)), that
is, when we remove the assumption of u to be integrable in time. The reason for this
is that we in the proof [3, pp. 27–30] multiply u with a test function that has compact
support in time, and thus we only need to consider the integral of u on a compact time
interval. Since continuous functions on a compact set are bounded, it is sufficient with
u ∈ C([0, T );L1(Rn)) for the proof to hold.

Definition 2.6. We call u a strong solution of the heat equation with initial value u0 if:

(i) ∂tu,∆u ∈ L1
loc((0, T );L

1(Rn)).

(ii) ∂tu−∆u = 0 a.e. in Rn × (0, T ).

(iii) u(·, 0) = u0 a.e. in Rn.

Lemma 2.7. Let u, v ∈ C([0, T );L1(Rn)) ∩ L∞(Rn × (0, T )) be two strong solutions
of the heat equation with initial values u0, v0 ∈ L1(Rn) ∩ L∞(Rn). Then we have the
following:

(i) If u0(x) ≤ v0(x) for a.e. x ∈ Rn, then u(x, t) ≤ v(x, t) for a.e. (x, t) ∈ Rn × [0, T ).

(ii) If u0(x) ≥ 0 for a.e. x ∈ Rn, then u(x, t) ≥ 0 for a.e. (x, t) ∈ Rn × [0, T ).

(iii) ∥(u(·, t)− v(·, t)∥L1(Rn) ≤ ∥u0 − v0∥L1(Rn) ∀ t ∈ [0, T ).

1Note that there is an error in Theorem 3.5 in the specialisation project [3, pp. 24–26], which deals
with uniqueness for very weak solutions of the heat equation. The theorem falsely states that we only
require initial data u0 ∈ L1

loc(Rn) to have a unique solution. The correct statement is that we require
u0 ∈ L1(Rn), which guarantees that the solution exists and is given by the convolution solution. The
error in the statement of the theorem does not affect its proof, which correctly assumes u0 ∈ L1(Rn).
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(iv) ∥u(·, t)∥L1(Rn) ≤ ∥u0∥L1(Rn) ∀ t ∈ [0, T ).

Lemma 2.8. Let u ∈ C([0, T );L1(Rn)) ∩ L∞(Rn × (0, T )) be a strong solution of the
heat equation with initial value 0 ≤ u0 ∈ L1(Rn) ∩ L∞(Rn). Let p ∈ (1,∞). Then, for
t ∈ [0, T ), we have the following:

(i) ∥u(·, t)∥Lp(Rn) ≤ ∥u0∥Lp(Rn).

(ii)
∥∥∥∇u

p
2

∥∥∥2
L2(Rn×[0,t))

≤ p
4(p−1)∥u0∥

p
Lp(Rn).

Lemma 2.9. Let u ∈ C([0, T );L1(Rn)) ∩ L∞(Rn × (0, T )) be a strong solution of the
heat equation with initial value 0 ≤ u0 ∈ L1(Rn)∩L∞(Rn). Let p ∈ (1,∞) and q ∈ [1, p).
Then, for t ∈ (0, T ), we have the following:

∥u(·, t)∥Lp ≤ Ct
−n

2
( 1
q
− 1

p
)∥u0∥Lq ,

where

C =

(
np2

8(p− 1)
(
1

q
− 1

p
)C̃2

)n
2
( 1
q
− 1

p
)

.

C̃ = C̃(n) is the constant from the Sobolev inequality (Theorem A.1).

Remark 2.10. We did not cover the case p = ∞ in the spesialisation project. It is
tempting to simply let p → ∞ in Lemma 2.9, but this leads to C → ∞, thus not giving
us any useful information. We will return to this problem in Chapter 4.
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Chapter 3

Asymptotic behaviour for the
heat equation

We now turn our attention to asymptotic behaviour, asking what happens to solutions
of the heat equation (2.1) as t → ∞. Our previous results have been developed for the
time interval [0, T ) for some T > 0, but we will now extend this to [0,∞), since the
validity of these results does not depend on the choice of T .

In this chapter we will follow the approach made in Chapter 1 of Zuazua [1], repli-
cating his results while trying to fill out some of his arguments in more detail. In the
first section, we will motivate what type of asymptotic behaviour we should expect from
the heat equation by the use of a scaling argument. This technique will play a crucial
role throughout the thesis when we are discussing asymptotic behaviour.

3.1 Motivation

Throughout this chapter, we will work in the framework of initial data u0 ∈ L1(Rn).
As we saw in Theorem 2.2 in Chapter 2, the heat equation is well-posed in this case.
Furthermore, with initial data in L1(Rn) ∩ L∞(Rn), it fulfills an Lp–Lq estimate given
in Lemma 2.9 for strong solutions. Through an approximation argument, this estimate
may be extended to still hold for q = 1 in the case of initial data in L1(Rn), analogously
to what we will see in Chapter 4. Another way to obtain the estimate, is as follows:

∥u(·, t)∥Lp = ∥G(·, t) ∗ u0∥Lp ≤ ∥G(·, t)∥Lp∥u0∥L1 ≤ Cpt
−n

2
(1− 1

p
)∥u0∥L1 ∀ t > 0, (3.1)

where p ∈ [1,∞]. We have used the solution formula from Theorem 2.2, Young’s inequal-
ity (Theorem A.11) and an estimate for the Lp-norm of the heat kernel (Lemma B.2).
The estimate shows that the solution decays in Lp-norm over time, and also implies

that the expression t
n
2
(1− 1

p
)∥u(·, t)∥Lp is bounded for all t > 0, with a bound indepen-

dent of time. This suggests that it might be interesting to investigate the behaviour of

t
n
2
(1− 1

p
)
u(·, t) in Lp-norm as t → ∞.

9
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Furthermore, we define

M :=

∫
Rn

u0(x)dx, (3.2)

i.e. the initial mass of the solution. From Lemma 2.4 and Remark 2.5, we have that this
mass is conserved. Thus this property must be fulfilled for u(·, t) when t → ∞ as well,
suggesting that M plays a role in the asymptotic behaviour.

To gain some more insight into what kind of asymptotic behaviour we should expect
for solutions of the heat equation, we make use of the well-known fact that they are
invariant under a specific scaling. Indeed, with u as defined above, the rescaled function

uλ(x, t) := λnu(λx, λ2t),

where λ > 0, is a solution to (2.1) with initial data λnu0(λx), i.e.{
∂tuλ −∆uλ = 0, (x, t) ∈ Rn × (0,∞)

uλ(x, 0) = λnu0(λx), x ∈ Rn.

The term λn which we multiply u with is chosen so that uλ conserves its mass like u.
We now claim that the initial data fulfills∫

Rn

uλ(x, 0)φ(x)dx → Mφ(0) as λ → ∞,

for all φ ∈ C(Rn) ∩ L∞(Rn). This in turn implies

uλ(·, 0) → Mδ as λ → ∞,

where δ denotes Dirac’s delta function. To justify this claim, we use (3.2) and a change
of variables z := λx to get:∣∣∣∣∫

Rn

uλ(x, 0)φ(x)dx−Mφ(0)

∣∣∣∣ = ∣∣∣∣∫
Rn

λnu0(λx)φ(x)dx−
∫
Rn

u0(z)φ(0)dz

∣∣∣∣
z:=λx
=

∣∣∣∣∫
Rn

u0(z)φ(
z

λ
)dz −

∫
Rn

u0(z)φ(0)dz

∣∣∣∣
≤
∫
Rn

|u0(z)|
∣∣∣φ( z

λ
)− φ(0)

∣∣∣dz
→ 0 as λ → ∞.

Passing the limit inside the integral is justified by the Dominated convergence theorem
(Theorem A.8), since the integrand is bounded by the integrable function 2∥φ∥L∞u0.

Thus, we know that the initial data uλ(·, 0) converges to Mδ as λ → ∞. It is well-
known that the heat kernel G is a solution to the heat equation with δ as initial data,
and thus we should expect uλ(·, t) to converge to MG(·, t) for all t > 0 as λ → ∞.
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To connect this to our question of what happens when t → ∞, consider convergence
in L1(Rn) with t = 1. We can write this as

∥uλ(·, 1)−MG(·, 1)∥L1 → 0 as λ → ∞.

This statement is in fact equivalent to

∥u(·, t)−MG(·, t)∥L1 → 0 as t → ∞,

which can be seen through a change of variables z := λx together with the relation
G(x, t) = t−

n
2 G( x√

t
, 1):

∥uλ(·, 1)−MG(·, 1)∥L1

=

∫
Rn

∣∣λnu(λx, λ2)−MG(x, 1)
∣∣dx z:=λx

=

∫
Rn

∣∣∣∣u(z, λ2)−M
G( zλ , 1)

λn

∣∣∣∣dz
=

∫
Rn

∣∣u(z, λ2)−MG(z, λ2)
∣∣dz =

∥∥u(·, λ2)−MG(·, λ2)
∥∥
L1 .

Thus, we obtain information about the expected asymptotic behaviour of solutions u
through the rescaled solutions uλ. In the next section we will prove that our expectations
are indeed correct, so that the solutions do converge to MG(·, t) as t → ∞, not just in
L1(Rn), but also in Lp(Rn) for p ∈ [1,∞].

3.2 Asymptotic behaviour

Before we can show our main theorem, we need a growth bound under the strengthened
assumption of initial data in the space of L1-functions with weights, i.e. u0 ∈ L1(Rn; 1+
|x|) (see Notation).

Lemma 3.1. Let p ∈ [1,∞], then there exists a constant Cp > 0 such that

∥G(·, t) ∗ u0 −MG(·, t)∥Lp ≤ Cpt
−n

2
(1− 1

p
)− 1

2 ∥u0∥L1(Rn;|x|) ∀ t > 0,

for all u0 ∈ L1(Rn; 1 + |x|) with
∫
Rn u0(x)dx = M ̸= 0.

Proof. We follow the proof of Lemma 1.2 in Zuazua [1, pp. 9–10].
Using that M =

∫
Rn u0(x)dx, we get

(G(·, t) ∗ u0)(x)−MG(x, t) = (4πt)−
n
2

∫
Rn

e−
|x−y|2

4t u0(y)dy −
∫
Rn

u0(y)dy(4πt)
−n

2 e−
|x|2
4t

= (4πt)−
n
2

∫
Rn

[
e−

|x−y|2
4t − e−

|x|2
4t

]
u0(y)dy.

To rewrite the integrand, we use the following generalised mean value theorem, which is
valid for f ∈ C1:

f(x− y)− f(x) =

(∫ 1

0
∇f(x− θy)dθ

)
· (−y). (3.3)
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In our case this yields

e−
|x−y|2

4t − e−
|x|2
4t =

1

2t

∫ 1

0
y · (x− θy)e−

|x−θy|2
4t dθ,

and so

(G(·, t) ∗ u0)(x)−MG(x, t) =
(4πt)−

n
2

√
t

∫ 1

0

∫
Rn

y · (x− θy)

2
√
t

e−
|x−θy|2

4t u0(y)dydθ,

where we have used Fubini’s theorem (Theorem A.10) to interchange the integrals.
Next, we further apply Fubini’s theorem and a change of variables z := x−θy

2
√
t

to

calculate the norm for p = 1:

∥(G(·, t) ∗ u0)(·)−MG(·, t)∥L1

≤ (4πt)−
n
2

√
t

∫
Rn

∫ 1

0

∫
Rn

|y| |x− θy|
2
√
t

e−
|x−θy|2

4t |u0(y)|dydθdx

= (4π)−
n
2 t−

n
2
− 1

2

∫ 1

0

∫
Rn

∫
Rn

|x− θy|
2
√
t

e−
|x−θy|2

4t |y||u0(y)|dxdydθ

z:=x−θy

2
√

t
= (4π)−

n
2 t−

n
2
− 1

2

∫ 1

0

∫
Rn

∫
Rn

|z|e−|z|2 |y||u0(y)|2nt
n
2 dzdydθ

= π−n
2 t−

1
2

∥∥∥|z|e−|z|2
∥∥∥
L1

∫ 1

0

∫
Rn

|y||u0(y)|dydθ

= π−n
2

∥∥∥|z|e−|z|2
∥∥∥
L1
t−

1
2 ∥u0∥L1(Rn;|x|) ∀ t > 0.

Thus we have our result for p = 1 with C1 = π−n
2

∥∥∥|z|e−|z|2
∥∥∥
L1
.

For p = ∞, we get

∥(G(·, t) ∗ u0)(·)−MG(·, t)∥L∞

= ess sup
x∈Rn

∣∣∣∣∣(4πt)−
n
2

√
t

∫ 1

0

∫
Rn

y · (x− θy)

2
√
t

e−
|x−θy|2

4t u0(y)dydθ

∣∣∣∣∣
≤ (4π)−

n
2 t−

n
2
− 1

2

∫
Rn

ess sup
x∈Rn

∫ 1

0

|x− θy|
2
√
t

e−
|x−θy|2

4t |y||u0(y)|dθdy

≤ (4π)−
n
2 t−

n
2
− 1

2

∫
Rn

ess sup
x,y∈Rn

{∫ 1

0

|x− θy|
2
√
t

e−
|x−θy|2

4t dθ

}
|y||u0(y)|dy

= (4π)−
n
2 t−

n
2
− 1

2 ∥u0∥L1(Rn;|x|) ess sup
x,y∈Rn

{∫ 1

0

|x− θy|
2
√
t

e−
|x−θy|2

4t dθ

}
≤ (4π)−

n
2 t−

n
2
− 1

2 ∥u0∥L1(Rn;|x|)

∫ 1

0
ess sup
z∈Rn

{
|z|e−|z|2

}
dθ

= (4π)−
n
2

∥∥∥|z|e−|z|2
∥∥∥
L∞

t−
n
2
− 1

2 ∥u0∥L1(Rn;|x|) ∀ t > 0,
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and so C∞ = (4π)−
n
2

∥∥∥|z|e−|z|2
∥∥∥
L∞

.

For p ∈ (1,∞), we use the interpolation inequality for Lp-norms (Theorem A.4) to
interpolate between our results for p = 1 and p = ∞. This yields

∥(G(·, t) ∗ u0)(·)−MG(·, t)∥Lp

≤ ∥(G(·, t) ∗ u0)(·)−MG(·, t)∥
1
p

L1∥(G(·, t) ∗ u0)(·)−MG(·, t)∥
p−1
p

L∞

≤ π
−n

2
1
p

∥∥∥|z|e−|z|2
∥∥∥ 1

p

L1
t
− 1

2
1
p ∥u0∥

1
p

L1(Rn;|x|)(4π)
−n

2
p−1
p

∥∥∥|z|e−|z|2
∥∥∥ p−1

p

L∞
t
−(n

2
+ 1

2
) p−1

p ∥u0∥
p−1
p

L1(Rn;|x|)

= 2
−n

2
(1− 1

p
)
π−n

2

∥∥∥|z|e−|z|2
∥∥∥ 1

p

L1

∥∥∥|z|e−|z|2
∥∥∥(1− 1

p
)

L∞
t
−n

2
(1− 1

p
)− 1

2 ∥u0∥L1(Rn;|x|) ∀t > 0.

Thus we have our result for p ∈ (1,∞) with

Cp = 2
−n

2
(1− 1

p
)
π−n

2

∥∥∥|z|e−|z|2
∥∥∥ 1

p

L1

∥∥∥|z|e−|z|2
∥∥∥(1− 1

p
)

L∞
,

which concludes the proof.

With this lemma at hand, we are now able to show rigorously the asymptotic be-
haviour which we motivated in Section 3.1, starting with the case u0 ∈ L1(Rn; 1 + |x|):

Theorem 3.2. Let u0 ∈ L1(Rn; 1 + |x|) with
∫
Rn u0(x)dx = M ̸= 0. Then, the solution

u given by (2.2) of the heat equation (2.1) satisfies

t
n
2
(1− 1

p
)∥u(·, t)−MG(·, t)∥Lp → 0 as t → ∞, (3.4)

for all p ∈ [1,∞].

Proof. The result follows directly from Lemma 3.1. Indeed, using this result gives that
for p ∈ [1,∞] and ∀ t > 0,

0 ≤ t
n
2
(1− 1

p
)∥u(·, t)−MG(·, t)∥Lp ≤ Cpt

− 1
2 ∥u0∥L1(Rn;|x|) → 0 as t → ∞. (3.5)

Finally, we obtain the result for u0 ∈ L1(Rn) through an approximation:

Theorem 3.3. Let u0 ∈ L1(Rn) with
∫
Rn u0(x)dx = M ̸= 0. Then, the solution u given

by (2.2) of the heat equation (2.1) satisfies

t
n
2
(1− 1

p
)∥u(·, t)−MG(·, t)∥Lp → 0 as t → ∞, (3.6)

for all p ∈ [1,∞].

Proof. We follow the proof of Theorem 1.1 in Zuazua [1, pp. 10–11].
To extend Theorem 3.2 to u0 ∈ L1(Rn), we will argue that L1(Rn; 1 + |x|) is dense

in L1(Rn). Indeed, we know that C∞
c (Rn) is dense in L1(Rn) (see for example Bresiz

[10, pp. 97–98]), and that C∞
c (Rn) ⊂ L1(Rn; 1 + |x|). Therefore, given any u0 ∈ L1(Rn)
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with
∫
Rn u0(x)dx = M , there exists a sequence {φk} ⊂ C∞

c (Rn) ⊂ L1(Rn; 1 + |x|)
such that for each k ∈ N, φk ∈ L1(Rn; 1 + |x|) with

∫
Rn φk(x)dx = M . Furthermore,

φk → u0 in L1(Rn) as k → ∞.
Thus, for p ∈ [1,∞] and ∀ t > 0, we get

t
n
2
(1− 1

p
)∥G(·, t) ∗ u0 −MG(·, t)∥Lp

= t
n
2
(1− 1

p
)∥G(·, t) ∗ u0 −MG(·, t)±G(·, t) ∗ φk∥Lp

≤ t
n
2
(1− 1

p
)
(∥G(·, t) ∗ φk −MG(·, t)∥Lp + ∥G(·, t) ∗ (φk − u0)∥Lp)

Let ε > 0. Since φk ∈ L1(Rn; 1 + |x|), by Theorem 3.2 we have

t
n
2
(1− 1

p
)∥G(·, t) ∗ φk −MG(·, t)∥Lp → 0 as t → ∞.

So there exists a t0 > 0 sufficiently large so that for each fixed k ∈ N,

t
n
2
(1− 1

p
)∥G(·, t) ∗ φk −MG(·, t)∥Lp <

ε

2
∀ t ≥ t0. (3.7)

For the second part, we use (3.1) to get

t
n
2
(1− 1

p
)∥G(·, t) ∗ (φk − u0)∥Lp ≤ Cp∥φk − u0∥L1 .

Since φk → u0 in L1(Rn) as k → ∞, we know there exists a K ∈ N large enough so that
the expression above is arbitrarily small, i.e.

t
n
2
(1− 1

p
)∥G(·, t) ∗ (φK − u0)∥Lp <

ε

2
∀ t > 0. (3.8)

Finally, combining (3.7) and (3.8) we get

t
n
2
(1− 1

p
)∥G(·, t) ∗ u0 −MG(·, t)∥Lp < ε ∀ t ≥ t0.

Since ε > 0 was arbitrary, this implies (3.6), and we are done.

In Theorem 3.2, we saw that when we assumed u0 ∈ L1(Rn; 1 + |x|), we obtained
(3.5). This result contains more information than (3.6), in the sense that it tells us not
only that the solution converges as t → ∞, but also that the convergence follows the rate
O(t−

1
2 ). Thus, we have obtained a better result by putting higher constraints on the

solution. We will now briefly investigate how the assumption u0 ∈ L1(Rn; 1+ |x|) affects
the conservation properties of the solution. In Section 3.1, we saw that the mass of u is
conserved when u0 ∈ L1(Rn). A natural question to ask is therefore if the expression∫

Rn

xu(x, t)dx

is conserved when u0 ∈ L1(Rn; 1 + |x|). This expression is called the first (signed)
moment, and is to be understood as a vector in Rn with components

∫
Rn xiu(x, t)dx, i =

1, . . . , n. The next result shows that the first moment indeed is conserved:
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Proposition 3.4. Let u be a solution to the heat equation with initial data u0 ∈
L1(Rn; 1 + |x|), given by (2.2). Then, the first moment of u is conserved, i.e.∫

Rn

xu(x, t)dx =

∫
Rn

xu0(x)dx ∀ t ≥ 0. (3.9)

Proof. The case t = 0 is obvious. For t > 0, we will use estimates for the heat kernel
given by Lemma B.1 and Lemma B.5. The latter gives that the heat kernel conserves
the first moment, i.e. ∫

Rn

xG(x, t)dx = 0 ∀ t > 0.

We will only show the result for the first component of (3.9), as all components are
similar. The result follows directly by applying the lemmas mentioned above:∫

Rn

x1u(x, t)dx =

∫
Rn

x1

∫
Rn

G(x− y)u0(y)dydx

=

∫
Rn

(y1 + (x1 − y1))

∫
Rn

G(x− y)u0(y)dydx

=

∫
Rn

∫
Rn

G(x− y)y1u0(y)dydx+

∫
Rn

∫
Rn

(x1 − y1)G(x− y)u0(y)dydx

z:=x−y
=

∫
Rn

∫
Rn

G(z)y1u0(y)dydz +

∫
Rn

∫
Rn

z1G(z)u0(y)dydz

=

∫
Rn

G(z)dz︸ ︷︷ ︸
=1

∫
Rn

y1u0(y)dy +

∫
Rn

z1G(z)dz︸ ︷︷ ︸
=0

∫
Rn

u0(y)dy

=

∫
Rn

y1u0(y)dy

x:=y
=

∫
Rn

x1u0(x)dx ∀ t > 0.

Once again, we see how the solution inherits many of its properties from those of the
heat kernel. It is possible to further assume u0 ∈ L1(Rn; 1 + |x|2) and ask if the second
moment

∫
Rn |x|2u(x, t)dx is conserved. We will not pursue this question any further

here, but one would then find that neither the heat kernel nor the solution u conserves
the second moment. However, the strengthened assumption on u0 does lead to a better
asymptotic convergence result, as can be seen in [11, pp. 16–19].

3.3 Asymptotic behaviour with linear convection

We now turn to the asymptotic behaviour of a slightly moderated equation, where we
have added a linear convection term:{

∂tu−∆u = a · ∇u, (x, t) ∈ Rn × (0,∞)

u(x, 0) = u0(x), x ∈ Rn.
(3.10)
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Here, a ∈ Rn is a constant and the initial data u0 is still in L1(Rn).
This problem is very closely related to the original heat equation, and thus we should

expect the asymptotic behaviour to be very similar to the one we uncovered in the
previous section.

Indeed, if we let u be a solution to (3.10), then the chain rule yields that the translated
function

v(x, t) = u(x− at, t)

is a solution to the heat equation, i.e.{
∂tv −∆v = 0, (x, t) ∈ Rn × (0,∞)

v(x, 0) = u0(x), x ∈ Rn.
(3.11)

By Section 3.1, this problem admits a unique solution in C([0,∞);L1(Rn)) given by

v(x, t) = (G(·, t) ∗ u0)(x).

Rewriting back in terms of u, we get a unique solution of (3.10) in C([0,∞);L1(Rn))
given by

u(x, t) = (G(·, t) ∗ u0)(x+ at). (3.12)

This solution corresponds to a translated solution to the heat equation, and thus fulfills
the same Lp-decay estimate as the one given in (3.1). For the asymptotic behaviour, we
simply get a translated version of Theorem 3.3:

Theorem 3.5. Let u0 ∈ L1(Rn) with
∫
Rn u0(x)dx = M ̸= 0. Then, the solution u given

by (3.12) of the heat equation with linear convection (3.10) satisfies

t
n
2
(1− 1

p
)∥u(·, t)−MG(·+ at, t)∥Lp → 0 as t → ∞,

for all p ∈ [1,∞].



Chapter 4

Scalar convection-diffusion
equations

The previous chapter ended with a discussion around the heat equation with a linear
convection term. We will now generalise this term into a non-linear one, which leads to
the following scalar convection-diffusion equation:{

∂tu−∆u = a · ∇(F (u)), (x, t) ∈ Rn × (0,∞)

u(x, 0) = u0(x), x ∈ Rn.
(4.1)

Here, the initial data u0 is assumed to be either in L1(Rn) or in L1(Rn)∩L∞(Rn), while
F ∈ C1(R) with F (0) = 0. a ∈ Rn is a constant.

We want to investigate the asymptotic behaviour of solutions to (4.1) similarly as we
did in the previous chapter, and also compare the behaviour of the different equations.
However, we first need to establish fundamental results regarding existence, uniqueness
and regularity of the solutions. The results in Chapter 2 were developed in the framework
of strong solutions to the heat equation, meaning solutions fulfilling the equation almost
everywhere. As we discussed in the specialisation project [3, p. 30], this class of solutions
imposes higher regularity demands than very weak solutions, as we require the derivatives
to be functions, not just distributions.

The scalar convection-diffusion equation (4.1) differs from the heat equation with
the introduction of a non-linear convection term, but the diffusion term ∆u is still the
leading order of the equation. The leading order controls much of the behaviour of the
equation, and we therefore hope that (4.1) is so closely related to the heat equation
that we will be able to make use of our results from Chapter 2. It is therefore natural
to continue working in a strong solution framework, which leads us to the following
definition:

Definition 4.1. Let F ∈ C1(R) with F (0) = 0. We call u a strong solution of
the scalar convection-diffusion equation (4.1) with initial value u0 ∈ L1(Rn) if u ∈
C([0,∞);L1(Rn)) ∩ L∞

loc((0,∞);L∞(Rn)), and if:

(i) ∂tu,∆u,∇(F (u)) ∈ Lp
loc((0,∞);Lp(Rn)) for p ∈ (1,∞).

17
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(ii) ∂tu−∆u = a · ∇(F (u)) a.e. in Rn × (0,∞).

(iii) u(·, 0) = u0 a.e. in Rn.

Throughout this chapter, similarly as in the previous one, we have replicated and
adapted the results in Chapter 4 of Zuazua [1], expanding or rewriting some of his more
brief arguments.

4.1 Well-posedness

Before we present the main theorem which establishes the well-posedness of solutions to
(4.1), we start with four lemmas which we will need in its proof. This section follows
the proof of Theorem 4.1 in Chapter 4 in [1, pp. 27–32], but we have restructured it
into several parts to suit our needs. The first lemma deals with regularity and is stated
without proof (see Zuazua [1, p. 29]).

Lemma 4.2. Let u0 ∈ L1(Rn). Suppose u ∈ C([0, T );L1(Rn)) ∩ L∞
loc((0, T );L

∞(Rn))
solves the integral equation

u(x, t) = (G(·, t) ∗ u0)(x) +
∫ t

0
[a · ∇G(·, t− s) ∗ F (u(·, s))] (x)ds,

for (x, t) ∈ Rn × [0, T ), where T > 0. Then, we have u ∈ C((0, T );W 2,p(Rn)) ∩
C1((0, T );Lp(Rn)) for all p ∈ (1,∞).

The second lemma is a Kato inequality, resulting from the use of the inequality in
Theorem A.17 introduced by Kato [12].

Lemma 4.3. Let u, v be two strong solutions of (4.1) up to some time T > 0, with
initial values u0, v0 ∈ L1(Rn) ∩ L∞(Rn). Then∫ T

0

∫
Rn

(
[u(x, t)− v(x, t)]+∂tφ(x, t) + [u(x, t)− v(x, t)]+∆φ(x, t)

− sign+(u(x, t)− v(x, t))(F (u(x, t))− F (v(x, t)))a · ∇φ(x, t)
)
dxdt ≥ 0,

for all 0 ≤ φ ∈ C∞
c (Rn × (0, T )).

Proof. Since u and v both satisfy (4.1) a.e., we get that u− v satisfies

∂t(u− v)−∆(u− v) = a · ∇(F (u))− a · ∇(F (v)) = a · ∇(F (u)− F (v)) a.e.

We will multiply this equation with p(u − v)φ and integrate over Rn × (0, T ), where
0 ≤ φ ∈ C∞

c (Rn× (0, T )). We define p to approximate the sign+ function (see Notation)
in such a way that p ∈ C1(R)∩L∞(R) fulfills 0 ≤ p ≤ 1, p(y) = 0 for y ≤ 0 and p′(y) > 0
for y > 0. Thus, we get

0 =

∫ T

0

∫
Rn

∂t(u− v)p(u− v)φdxdt−
∫ T

0

∫
Rn

∆(u− v)p(u− v)φdxdt

−
∫ T

0

∫
Rn

a · ∇(F (u)− F (v))p(u− v)φdxdt.

(4.2)
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Now, consider the first term on the right hand side of (4.2). We wish to let p tend
to the sign+ function to get∫ T

0

∫
Rn

∂t(u− v)sign+(u− v)φdxdt =

∫ T

0

∫
Rn

∂t[u− v]+φdxdt

=

∫
Rn

∫ T

0
∂t[u− v]+φdtdx = −

∫ T

0

∫
Rn

[u− v]+∂tφdtdx = −
∫ T

0

∫
Rn

[u− v]+∂tφdxdt.

(4.3)
To justify taking the limit for p, we make use of the Dominated convergence theorem
(Theorem A.8). Using the theorem is justified since∣∣∣∣∣∣∣∂t(u− v) p(u− v)︸ ︷︷ ︸

≤1

φ

∣∣∣∣∣∣∣ ≤ |∂t(u− v)φ|,

where the right hand side is integrable in Rn × (0, T ) by Hölder’s inequality (Theo-
rem A.3). Indeed, φ ∈ C∞

c (Rn × (0, T )), while ∂t(u − v) ∈ C((0, T );Lp(Rn)) for all
p ∈ (1,∞) by Lemma 4.2. It is not directly clear that this lemma is applicable here,
but as we will see in Theorem 4.6, the solutions are constructed to fulfill the integral
equality given in Lemma 4.2. Thus, we get∫ T

0

∫
Rn

|∂t(u(x, t)− v(x, t))φ(x, t)|dxdt ≤
∫ T

0
∥∂t(u(·, t)− v(·, t))∥Lp∥φ(·, t)∥Lqdt

≤ ess sup
t∈(0,T )

{∥∂t(u(·, t)− v(·, t))∥Lp∥φ(·, t)∥Lq}T < ∞,

where q is the conjugate exponent of p, i.e. 1/p + 1/q = 1. Similarly, we may use
this approach to justify the use of Fubini’s theorem (Theorem A.10) to interchange the
integrals in (4.3).

Furthermore, we may also let p tend to sign+ to deal with the diffusion term, since
∆(u− v) ∈ C((0, T );Lp(Rn)). Then, we make use of Kato’s inequality (Theorem A.17)
and Green’s first identity (Theorem A.6), ending up with∫ T

0

∫
Rn

∆(u− v)sign+(u− v)φdxdt ≤
∫ T

0

∫
Rn

∆[u− v]+φdxdt

=

∫ T

0

∫
Rn

[u− v]+∆φdxdt.

For the final term, we use integration by parts to get∫ T

0

∫
Rn

a · ∇(F (u)− F (v))p(u− v)φdxdt

= −
∫ T

0

∫
Rn

a · (p(u− v)∇φ+ φ∇p(u− v))(F (u)− F (v))dxdt
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= −
∫ T

0

∫
Rn

p(u− v)(F (u)− F (v))a · ∇φdxdt

−
∫ T

0

∫
Rn

a · ∇(u− v)p′(u− v)(F (u)− F (v))φdxdt.

The second term in the last equality above vanishes in the limit because p′(u − v)
approaches δu−v, thus yielding a contribution only when u = v. The first term becomes,
after taking the limit,

−
∫ T

0

∫
Rn

sign+(u− v)(F (u)− F (v))a · ∇φdxdt.

The use of dominated convergence is justified here since F ∈ C1(R), while u, v ∈
L∞
loc((0,∞);L∞(Rn)), while ∇φ has compact support. Thus, u and v are bounded,

which means F (u) and F (v) attains their maximas, and consequently, the integrand is
bounded by the integrable function (|F (u)|+ |F (v)|)|a||∇φ|.

Returning to (4.2), we finally get

0 ≥ −
∫ T

0

∫
Rn

[u− v]+∂tφdxdt−
∫ T

0

∫
Rn

[u− v]+∆φdxdt

+

∫ T

0

∫
Rn

sign+(u− v)(F (u)− F (v))a · ∇φdxdt.

This is equivalent to

0 ≤
∫ T

0

∫
Rn

[u− v]+∂tφdxdt+

∫ T

0

∫
Rn

[u− v]+∆φdxdt

−
∫ T

0

∫
Rn

sign+(u− v)(F (u)− F (v))a · ∇φdxdt,

as we wanted.

By making use of this result, we obtain the third lemma which we will see yields the
important property of L1-contraction.

Lemma 4.4. Let u, v be two strong solutions of (4.1) up to some time T > 0, with
initial values u0, v0 ∈ L1(Rn) ∩ L∞(Rn). Then∫

Rn

[u(x, t)− v(x, t)]+dx ≤
∫
Rn

[u0(x)− v0(x)]
+dx ∀ t ∈ [0, T ).

Proof. We will show that this result follows from the result in Lemma 4.3 by choosing a
specific test function 0 ≤ φ ∈ C∞

c (Rn × (0, T )). The approach we make is very similar
to the one we did in the proof of Lemma 4.1 in the specialisation project [3, pp. 27–30].

First, let us choose the test function

φ(x, t) := θε(t)ξR(x),
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where 0 ≤ ξR ∈ C∞
c (Rn) is a bump function approximating 1 as R → ∞. The function

fulfills ξR(x) = ξ( xR), ξR(x) = 1 for |x| ≤ R and ξR(x) = 0 for |x| > 2R. We also assume
∇ξ,∆ξ ∈ L∞(Rn), so that we obtain the following bounds:

|∇ξR(x)| =
∣∣∣∇ξ(

x

R
)
∣∣∣ = 1

R

∣∣∣∇ξ(
x

R
)
∣∣∣ ≤ 1

R
∥∇ξ∥L∞ ,

|∆ξR(x)| =
∣∣∣∆ξ(

x

R
)
∣∣∣ = 1

R2

∣∣∣∆ξ(
x

R
)
∣∣∣ ≤ 1

R2
∥∆ξ∥L∞ .

(4.4)

Moreover, 0 ≤ θε ∈ C∞
c ((0, T )) approximates a jump from 0 to 1 at some time t1 and

a jump from 1 to 0 at some time t2 > t1, as ε → 0. This function fulfills θε(t) = 1 for
t ∈ (t1 + ε, t2 − ε) and θε(t) = 0 for t ∈ (0, t1 − ε)∪ (t2 + ε, T ), where t1, t2 ∈ (0, T ) such
that t2 > t1. Furthermore, |θ′ε(t)| ≤ C/ε for t ∈ (0, T ), where C > 0 is some constant.

Applying Lemma 4.3 with this test function, we get∫ T

0

∫
Rn

(
[u− v]+θ′εξR + [u− v]+θε∆ξR

+ sign+(u− v)(F (u)− F (v))a · ∇ξRθε
)
dxdt ≥ 0.

Observe that the diffusion term vanishes as R → ∞:∣∣∣∣∫ T

0

∫
Rn

[u− v]+|θε|∆ξRdxdt

∣∣∣∣ ≤ ∫ T

0

∫
Rn

[u− v]+ |θε|︸︷︷︸
≤1

|∆ξR|dxdt

≤ 1

R2
∥∆ξ∥L∞

∫ T

0

∫
Rn

[u− v]+dxdt

→ 0 as R → ∞.

The last integral is finite since u, v ∈ C([0,∞);L1(Rn)), and the identity |u− v| =
[u− v]+ + [u− v]− yields [u− v]+ ≤ |u− v|.

We will also show that the convection term vanishes. To deal with F ∈ C1(R),
we make use of Lipschitz continuity, since a function in C1(R) is uniformly Lipschitz
continuous on any compact set in R. Definition 4.1 only gives u, v ∈ L∞

loc((0, T );L
∞(Rn)),

but since we also assume u0, v0 ∈ L∞(Rn), this in fact leads to u, v ∈ L∞(Rn × (0, T )).
This result will be shown in Theorem 4.61.

Now, with u, v ∈ L∞(Rn × (0, T )), we know that M := max{∥u∥L∞ , ∥v∥L∞} < ∞.
Therefore, for all (x, t) ∈ Rn × [0, T ), u, v only take values on the compact set [−M,M ],
which implies there exists a constant L > 0 such that

|F (u(x, t))− F (v(x, t))| ≤ L|u(x, t)− v(x, t)| ∀ (x, t) ∈ Rn × [0, T ).

1Note that the proof of Theorem 4.6 depends on Lemma 4.4 which we are currently proving, but the
regularity result we are using here is proved independently of the lemma, so we do not have a circular
reasoning.
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Applying this yields as wanted∣∣∣∣∫ T

0

∫
Rn

sign+(u− v)(F (u)− F (v))a · ∇ξRθεdxdt

∣∣∣∣
≤
∫ T

0

∫
Rn

∣∣sign+(u− v)
∣∣︸ ︷︷ ︸

≤1

|F (u)− F (v)||a||∇ξR| |θε|︸︷︷︸
≤1

dxdt

≤
∫ T

0

∫
Rn

|a||∇ξR|L|u− v|dxdt

≤ 1

R
∥∇ξ∥L∞ |a|L

∫ T

0

∫
Rn

|u− v|dxdt

→ 0 as R → ∞,

where the last integral is finite since u, v ∈ C([0,∞);L1(Rn)).

Thus, we are only left with the term involving the time derivative. Observing that
θ′ε only is supported on (t1 − ε, t1 + ε) and (t2 − ε, t2 + ε), we can change the area of
integration and get

0 ≤
∫ T

0

∫
Rn

[u− v]+θ′εξRdxdt

=

∫ t1+ε

t1−ε

∫
Rn

[u− v]+θ′εξRdxdt+

∫ t2+ε

t2−ε

∫
Rn

[u− v]+θ′εξRdxdt.

(4.5)

As both terms are very similar, we only focus on the first term. By the Dominated
convergence theorem (Theorem A.8), we may take the limit R → ∞, in which ξR → 1.
This is justified since the integrand is bounded by the integrable function [u − v]+|θ′ε|.
We get ∫ t1+ε

t1−ε

∫
Rn

[u− v]+θ′εξRdxdt →
∫ t1+ε

t1−ε

∫
Rn

[u− v]+θ′εdxdt as R → ∞.

To continue, we add and subtract a new integral to get∫ t1+ε

t1−ε

∫
Rn

[u(x, t)− v(x, t)]+θ′ε(t)dxdt±
∫ t1+ε

t1−ε

∫
Rn

[u(x, t1)− v(x, t1)]
+θ′ε(t)dxdt

=

∫ t1+ε

t1−ε

∫
Rn

θ′ε(t)
(
[u(x, t)− v(x, t)]+ − [u(x, t1)− v(x, t1)]

+
)
dxdt

+

∫ t1+ε

t1−ε

∫
Rn

[u(x, t1)− v(x, t1)]
+θ′ε(t)dxdt.

The first integral vanishes as ε → 0. To see this, we use that |θ′ε(t)| ≤ C/ε for t ∈ (0, T )
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and Lebesgue’s differentiation theorem (Theorem A.9):∣∣∣∣∫ t1+ε

t1−ε

∫
Rn

θ′ε(t)
(
[u(x, t)− v(x, t)]+ − [u(x, t1)− v(x, t1)]

+
)
dxdt

∣∣∣∣
≤
∫ t1+ε

t1−ε

∣∣θ′ε(t)∣∣ ∫
Rn

∣∣[u(x, t)− v(x, t)]+ − [u(x, t1)− v(x, t1)]
+
∣∣dxdt

≤
∫ t1+ε

t1−ε

C

ε

∫
Rn

∣∣[u(x, t)− v(x, t)]+ − [u(x, t1)− v(x, t1)]
+
∣∣dxdt

→ 0 as ε → 0.

The second integral may be split up in two independent integrals:∫ t1+ε

t1−ε

∫
Rn

[u(x, t1)− v(x, t1)]
+θ′ε(t)dxdt

=

∫ t1+ε

t1−ε
θ′ε(t)dt

∫
Rn

[u(x, t1)− v(x, t1)]
+dx

= (θε(t1 + ε)− θε(t1 − ε))

∫
Rn

[u(x, t1)− v(x, t1)]
+dx.

Returning to (4.5), we thus get

0 ≤ (θε(t1 + ε)− θε(t1 − ε))

∫
Rn

[u(x, t1)− v(x, t1)]
+dx

+ (θε(t2 + ε)− θε(t2 − ε))

∫
Rn

[u(x, t2)− v(x, t2)]
+dx

= (1− 0)

∫
Rn

[u(x, t1)− v(x, t1)]
+dx+ (0− 1)

∫
Rn

[u(x, t2)− v(x, t2)]
+dx

=

∫
Rn

(
[u(x, t1)− v(x, t1)]

+ − [u0(x)− v0(x)]
+
)
dx+

∫
Rn

[u0(x)− v0(x)]
+dx

−
∫
Rn

[u(x, t2)− v(x, t2)]
+dx.

Next, we use that [u(·, t1) − v(·, t1)]+ → [u0 − v0]
+ in L1(Rn) as t1 → 0, because

u, v ∈ C([0, T );L1(Rn)), to get∣∣∣∣∫
Rn

(
[u(x, t1)− v(x, t1)]

+ − [u0(x)− v0(x)]
+
)
dx

∣∣∣∣
≤
∫
Rn

∣∣[u(x, t1)− v(x, t1)]
+ − [u0(x)− v0(x)]

+
∣∣dx

→ 0 as t1 → 0.

Thus, we are left with∫
Rn

[u(x, t2)− v(x, t2)]
+dx ≤

∫
Rn

[u0(x)− v0(x)]
+dx.

Since t2 ∈ (0, T ) such that t2 > t1 was arbitrary, we have our result.
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We will also need this fourth lemma to bound our solutions in L∞ by their initial
data:

Lemma 4.5. Let u be a strong solution of (4.1) up to some time T > 0, with initial
value u0 ∈ L1(Rn) ∩ L∞(Rn). Then

∥u(·, t)∥L∞ ≤ ∥u0∥L∞ ∀ t ∈ [0, T ).

Proof. Let µ := ∥u0∥L∞ . We wish to show that∫
Rn

[u(x, t)− µ]+dx ≤
∫
Rn

[u0(x)− µ]+dx ∀ t ∈ [0, T ), (4.6)

because this yields

[u0 − µ]+ = 0 =⇒ [u(x, t)− µ]+ ≤ 0 =⇒ u(x, t) ≤ µ ∀ t ∈ [0, T ). (4.7)

It is tempting to apply Lemma 4.4 with v = µ, but µ /∈ L1(Rn), and so it does
not fulfill the assumptions needed to use this result directly. Instead we make a similar
argument, also using techniques from Lemma 4.3. First, observe that since u satisfies
(4.1) a.e., it also satisfies

∂t(u− µ)−∆(u− µ) = a · ∇(F (u)) a.e.

Next, we multiply this equation with p(u − µ)ξR, where p is as defined in Lemma 4.3
and ξR is as defined in Lemma 4.4, and integrate over Rn to get∫

Rn

∂t(u− µ)p(u− µ)ξRdx−
∫
Rn

∆(u− µ)p(u− µ)ξRdx

=

∫
Rn

a · ∇(F (u))p(u− µ)ξRdx.

(4.8)

Now, defining

H(z) :=

∫ z

0
F ′(s)p(s− µ)ds,

we move the gradient over to the bump function ξR, before making use of Lipschitz
continuity and F (0) = 0 to get

∣∣∣∣∫
Rn

a · ∇(F (u))p(u− µ)ξRdx

∣∣∣∣ = ∣∣∣∣∫
Rn

a · ∇H(u)ξRdx

∣∣∣∣
=

∣∣∣∣∫
Rn

a · ∇ξRH(u)dx

∣∣∣∣
≤ 1

R
|a|∥∇ξ∥L∞

∫
Rn

|H(u)|dx
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=
1

R
|a|∥∇ξ∥L∞

∫
Rn

∣∣∣∣∣∣∣
∫ u

0
F ′(s) p(s− µ)︸ ︷︷ ︸

≤1

ds

∣∣∣∣∣∣∣dx
≤ 1

R
|a|∥∇ξ∥L∞

∫
Rn

|F (u)− F (0)|dx

≤ 1

R
L|a|∥∇ξ∥L∞∥u(·, t)∥L1

R→∞→ 0 ∀ t ∈ [0, T ).

In Theorem 4.5 of [3, pp. 32–35], we proved a similar result for the heat equation.
Since we now have removed the convection term from (4.8) in the limit R → ∞, this
means we are left with the same expression as in the case of the heat equation. The rest
of this proof is therefore almost identical to the one in [3, pp. 32–35]. We will thus refer
to the proof of this theorem for details, but the main idea is to obtain∫

Rn

∆(u− µ)p(u− µ)ξRdx ≤ 0 as R → ∞,

so that (4.8) becomes ∫
Rn

∂t(u− µ)p(u− µ)ξRdx ≤ 0.

Next, we integrate over [0, t′] in time, where 0 ≤ t′ < T , and let p tend to the sign+

function to get∫ t′

0

∫
Rn

∂t(u− µ)sign+(u− µ)ξRdxdt =

∫ t′

0

∫
Rn

∂t[u− µ]+ξRdxdt ≤ 0.

Taking this limit using dominated convergence (Theorem A.8) is justified just as in
Lemma 4.3.

Finally, the idea is to first move the derivative out of the spatial integral, then
applying the fundamental theorem of calculus, before finally letting R → ∞ to obtain∫

Rn

[u(x, t′)− µ]+dx−
∫
Rn

[u0(x)− µ]+dx ≤ 0 ∀ t′ ∈ [0, T ),

which is the claim in (4.6).
To obtain a lower bound for the L∞-norm of u, we claim that∫

Rn

[u(x, t) + µ]−dx ≤
∫
Rn

[u0(x) + µ]−dx ∀ t ∈ [0, T ), (4.9)

because this yields

[u0 + µ]− = 0 =⇒ [u(x, t) + µ]− ≤ 0 =⇒ u(x, t) ≥ −µ ∀ t ∈ [0, T ).
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This together with (4.7) implies Lemma 4.5. To show this claim, we observe that u
satisfies

∂t(u+ µ)−∆(u+ µ) = a · ∇(F (u)) a.e.

To adjust for the fact that we are dealing with the negative part of a function, [·]−, we
multiply this equation by q(u + µ)ξR, where q ∈ C1(Rn) ∩ L∞(Rn) fulfills −1 ≤ q ≤ 0,
q(y) = 0 for y ≥ 0 and q′(y) > 0 for y < 0. Thus, q approximates the function sign−

function (see Notation), and we get∫
Rn

∂t(u+ µ)q(u+ µ)ξRdx−
∫
Rn

∆(u+ µ)q(u+ µ)ξRdx

=

∫
Rn

a · ∇(F (u))q(u+ µ)ξRdx.

From this we proceed in the same way as we did in the first part, with some obvious
modifications, to obtain (4.9).

Finally, we are ready to show the following well-posedness theorem:

Theorem 4.6. Suppose F ∈ C1(R) with F (0) = 0. If u0 ∈ L1(Rn)∩L∞(Rn), then there
exists a unique strong solution u to (4.1) with u ∈ L∞(Rn × (0,∞)). For all p ∈ (1,∞),
we also have u ∈ C((0,∞);W 2,p(Rn)) ∩ C1((0,∞);Lp(Rn)).

Furthermore, if u and v are strong solutions to (4.1) with initial data u0, v0 ∈
L1(Rn) ∩ L∞(Rn) respectively, then

∥u(·, t)− v(·, t)∥L1 ≤ ∥u0 − v0∥L1 ∀ t ≥ 0.

Proof. We follow and expand the proof of Theorem 4.1 in Zuazua [1, pp. 27–32].

First, we consider existence of a solution. To find such a solution, we will take
inspiration from the inhomogeneous heat equation{

∂tu−∆u = f, (x, t) ∈ Rn × (0,∞)

u(x, 0) = u0(x), x ∈ Rn.

By using Duhamel’s principle, one can obtain the following classical solution to this
problem (see Evans [4, pp. 49–51]):

u(x, t) = (G(·, t) ∗ u0)(x) +
∫ t

0
[G(·, t− s) ∗ f(·, s)] (x)ds.

We wish to make use of this solution formula to find a solution to (4.1), by using
the same idea as we did when showing existence of very weak solutions to the heat
equation (Theorem 3.4 of [3, pp. 22–24]): we plug in less regular functions into a classical
solution formula in order to obtain a weaker solution. In our case this means weakened
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assumptions on u0 and setting f = a · ∇(F (u)), which leads us to the following integral
equation:

u(x, t) = (G(·, t) ∗ u0)(x) +
∫ t

0
[G(·, t− s) ∗ a · ∇(F (u(·, s)))] (x)ds

= (G(·, t) ∗ u0)(x) +
∫ t

0
[a · ∇G(·, t− s) ∗ F (u(·, s))] (x)ds.

(4.10)

Thus, if u solves the last equality in (4.10) and fulfills the regularity demands in Defini-
tion 4.1, then it is a strong solution to (4.1).

To find a solution to (4.10), we first restrict ourselves to local time, t ∈ [0, T ], where
T > 0 is some sufficiently small time which we will choose later. Next, we define the
operator ϕ : XT → XT by

ϕ[u](x, t) := (G(·, t) ∗ u0)(x) +
∫ t

0
[a · ∇G(·, t− s) ∗ F (u(·, s))] (x)ds,

where XT is the Banach space

XT := C([0, T ];L1(Rn)) ∩ L∞(Rn × (0, T )),

with corresponding norm

∥u∥XT
:= ess sup

t∈[0,T ]
{∥u(·, t)∥L1 + ∥u(·, t)∥L∞}.

By the Banach fixed-point theorem (Theorem A.14), we have that if ϕ is a contraction
in XT , then it admits a unique fixed point u ∈ XT , i.e. ϕ[u](x, t) = u(x, t) ∀ (x, t) ∈ XT .
In other words, we have local existence of a unique solution u ∈ C([0, T ];L1(Rn)) ∩
L∞(Rn × (0, T )) to (4.10).

To check this, we will show the sufficient condition that ϕ is a contraction on BR

and that ϕ[BR] ⊂ BR, where

BR := {u ∈ XT | ∥u∥XT
< R},

i.e. on a ball in XT with radius R > 0 yet to be determined.

Now, let u ∈ BR and r = 1,∞. We will first estimate the XT -norm of ϕ[u] to show
that ϕ[BR] ⊂ BR:

∥ϕ[u](·, t)∥Lr ≤ ∥G(·, t) ∗ u0∥Lr +

∥∥∥∥∫ t

0
[a · ∇G(·, t− s) ∗ F (u(·, s))] ds

∥∥∥∥
Lr

≤ ∥G(·, t) ∗ u0∥Lr +

∫ t

0
∥a · ∇G(·, t− s) ∗ F (u(·, s))∥Lrds

≤ ∥G(·, t)∥L1∥u0∥Lr +

∫ t

0
∥a · ∇G(·, t− s)∥L1∥F (u(·, s))∥Lrds.

(4.11)
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On the second line, we have used Minkowski’s integral inequality (Theorem A.12), while
on the third we have used Young’s inequality (Theorem A.11).

Turning to F (u), we use that u ∈ BR, which implies that u only takes values on the
compact set [−R,R]. F ∈ C1(R) is uniformly Lipschitz continuous on any compact set
in R, and so there exists a constant L(R) > 0 depending on R, such that

|F (x)− F (y)| ≤ L(R)|x− y| ∀ x, y ∈ [−R,R]. (4.12)

Using that F (0) = 0, we get

|F (x)| ≤ L(R)|x| ∀ x ∈ [−R,R].

Thus we have

|F (u(x, t))| ≤ L(R)|u(x, t)| ∀ (x, t) ∈ Rn × [0, T ],

which gives

∥F (u(·, t))∥Lr ≤ L(R)∥u(·, t)∥Lr < L(R)R ∀ (x, t) ∈ Rn × [0, T ]. (4.13)

We will also use the following heat kernel estimates: ∥G(·, t)∥L1 = 1 ∀ t > 0

(Lemma B.1), and ∥∇G(·, t)∥L1 ≤ Ct−
1
2 ∀ t > 0 (Lemma B.3). Furthermore, let

M := max{∥u0∥L1 , ∥u0∥L∞}. Returning to (4.11) with these estimates we get:

∥ϕ[u](·, t)∥Lr ≤ M +

∫ t

0
|a|C(t− s)−

1
2L(R)Rds

≤ M + 2C|a|L(R)Rt
1
2

≤ M + 2C|a|L(R)RT
1
2 ∀ t ∈ [0, T ].

To guarantee that ϕ[BR] ⊂ BR, we need ∥ϕ[u]∥XT
< R, and this holds if

M + 2C|a|L(R)RT
1
2 <

R

2
. (4.14)

Choosing R ≥ 4M , (4.14) then becomes

2C|a|L(R)RT
1
2 <

R

4
=⇒ T <

1

(8C|a|L(R))2
. (4.15)

With these choices for R and T , ϕ[u] remains in BR as long as u is in BR.
Next, we let u, v ∈ BR and estimate the difference ϕ[u]−ϕ[v] in XT -norm in a similar

way:

∥ϕ[u](·, t)− ϕ[v](·, t)∥Lr ≤ ∥G(·, t) ∗ u0 −G(·, t) ∗ u0∥Lr

+

∥∥∥∥∫ t

0
[a · ∇G(·, t− s) ∗ (F (u(·, s))− F (v(·, s)))] ds

∥∥∥∥
Lr

≤
∫ t

0
∥a · ∇G(·, t− s)∥L1∥F (u(·, s))− F (v(·, s))∥Lrds.
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With u, v ∈ BR, we make use of Lipschitz continuity (4.12) once again to obtain

∥F (u(·, t))− F (v(·, t))∥Lr ≤ L(R)∥u(·, t)− v(·, t)∥Lr ∀ t ∈ [0, T ].

Thus, for all t ∈ [0, T ]

∥ϕ[u](·, t)− ϕ[v](·, t)∥Lr ≤
∫ t

0
|a|C(t− s)−

1
2L(R)∥u(·, t)− v(·, t)∥Lrds,

and so

∥ϕ[u](·, t)− ϕ[v](·, t)∥L1 + ∥ϕ[u](·, t)− ϕ[v](·, t)∥L∞

≤
∫ t

0
|a|C(t− s)−

1
2L(R) (∥u(·, t)− v(·, t)∥L1 + ∥u(·, t)− v(·, t)∥L∞) ds

≤
∫ t

0
|a|C(t− s)−

1
2L(R)∥u− v∥XT

ds

≤ 2C|a|L(R)T
1
2 ∥u− v∥XT

.

Taking supremum over time, we get

∥ϕ[u]− ϕ[v]∥XT
≤ 2C|a|L(R)T

1
2 ∥u− v∥XT

∀ u, v ∈ BR.

Therefore, ϕ is a contraction on BR with ϕ[BR] ⊂ BR if T is chosen so that

2C|a|L(R)T
1
2 < 1 =⇒ T <

1

(2C|a|L(R))2
(4.16)

holds, in addition to (4.15), where R ≥ 4M .
From this we have existence of a unique fixed point u ∈ BR, in other words, a local

solution u ∈ C([0, T ];L1(Rn))∩L∞(Rn × (0, T )) to (4.10) for t ∈ [0, T ]. By Lemma 4.2,
we further have u ∈ C((0, T );W 2,p(Rn)) ∩C1((0, T );Lp(Rn)) for p ∈ (1,∞), and thus u
is a strong local solution to (4.1).

We wish to extend the solution in time to some maximal time of existence Tm > 0.
To do this, we use a classical extension method, where the idea is to cover the timeline
with overlapping local solutions, and then using the fact that each of these solutions
are unique to uncover a global solution. Indeed, we have just found a unique solution
u to (4.1) in the time interval [0, T ], with regularity as stated in the paragraph above.
As we can see from (4.15) and (4.16), T is not dependent on the initial time. Define
u1(x) := u(x, T/2), then u1 ∈ L1(Rn)∩L∞(Rn). By using u1 as initial data in our proof
above, we obtain a unique local solution v to (4.1) in the time interval [T/2, 3T/2], with
regularity as above. Both solutions are overlapping on the interval [T/2, T ], but they
should be unique. Thus, they must coincide on this interval, giving us existence of a
unique solution on [0, 3T/2].

Continuing in the same way, we can also cover the intervals [T, 2T ], [3T/2, 5T/2], . . .
with unique local solutions until we reach Tm. This process yields existence of a unique
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maximal solution u to (4.1), with regularity C([0, Tm);L1(Rn))∩L∞(Rn × (0, Tm)) and
C((0, Tm);W 2,p(Rn)) ∩ C1((0, Tm);Lp(Rn)) for p ∈ (1,∞).

What remains is to decide what the maximal time Tm must be, and here we have
two possibilities: either Tm = ∞, or Tm < ∞. In the latter case, the solution must leave
the space C([0, Tm);L1(Rn)) ∩ L∞(Rn × (0, Tm)) as the time approaches Tm, i.e.

lim sup
t→T−

m

{∥u(·, t)∥L1 + ∥u(·, t)∥L∞} = ∞.

So if we can show that

ess sup
t∈[0,Tm)

{∥u(·, t)∥L1 + ∥u(·, t)∥L∞} < ∞, (4.17)

then we have Tm = ∞, and thus a global solution.

To show (4.17), we will make use of the lemmas above. Let v be a solution to
(4.1) similarly as u, but with v0 ∈ L1(Rn) ∩ L∞(Rn) as initial data instead of u0. By
Lemma 4.4, we then have∫

Rn

[u(x, t)− v(x, t)]+dx ≤
∫
Rn

[u0(x)− v0(x)]
+dx ∀ t ∈ [0, Tm).

By using that [v(x, t) − u(x, t)]+ = [−(u(x, t) − v(x, t))]+ = [u(x, t) − v(x, t)]−, we can
apply Lemma 4.4 once again with u and v switched to get∫

Rn

[u(x, t)− v(x, t)]−dx ≤
∫
Rn

[u0(x)− v0(x)]
−dx ∀ t ∈ [0, Tm).

Finally, since |u(x, t)− v(x, t)| = [u(x, t) − v(x, t)]+ + [u(x, t) − v(x, t)]−, we add the
results above to get

∥u(·, t)− v(·, t)∥L1 ≤ ∥u0 − v0∥L1 ∀ t ∈ [0, Tm). (4.18)

By letting v = 0, we get that the L1-norm of u is bounded by its initial data u0:

∥u(·, t)∥L1 ≤ ∥u0∥L1 ∀ t ∈ [0, Tm). (4.19)

Lemma 4.5 directly yields a similar bound for the L∞-norm of u:

∥u(·, t)∥L∞ ≤ ∥u0∥L∞ ∀ t ∈ [0, Tm).

This result together with (4.19) implies (4.17), and so we have Tm = ∞ and a global
solution to (4.1). What remains is to show uniqueness and the L1-contraction property,
but observe that we already showed the latter in (4.18). Furthermore, uniqueness also
follows directly from this, as (4.18) implies that any two solutions u, v with the same
initial data u0 = v0, must be equal themselves. This concludes the proof.
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4.2 Regularity estimates

As we saw in the previous section, we are often able to remove the influence of the
convection term and thus reduce the properties of the convection-diffusion equation
back to those of the heat equation. In this section, we will see that this is also the case
when dealing with estimates in Lp(Rn)-norm of the solutions we found in Theorem 4.6.
The case p = 1 is already covered with the L1-contraction result from the mentioned
theorem, and we will consider the rest here, treating the cases p ∈ (1,∞) and p = ∞
separately. We will assume, as we did with the heat equation, that u0 ≥ 0, which implies
that u ≥ 0 by Lemma 4.4.

Theorem 4.7. Let u be a strong solution of (4.1) with initial data 0 ≤ u0 ∈ L1(Rn) ∩
L∞(Rn). Let p ∈ (1,∞) and q ∈ [1, p). Then, we have

∥u(·, t)∥Lp ≤ Ct
−n

2
( 1
q
− 1

p
)∥u0∥Lq ∀ t > 0, (4.20)

where

C =

(
np2

8(p− 1)
(
1

q
− 1

p
)C̃2

)n
2
( 1
q
− 1

p
)

.

C̃ = C̃(n) is the constant from the Sobolev inequality (Theorem A.1).

Proof. This proof is almost identical to the one we performed in [3, pp. 36–41] to prove
Lemma 2.9, so we will only focus on the differences between the proofs.

We start by multiplying (4.1) with up−1ξR and integrate over Rn, where ξR is a bump
function as defined in the proof of Lemma 4.4. We get∫

Rn

∂tuu
p−1ξRdx−

∫
Rn

∆uup−1ξRdx =

∫
Rn

a · ∇(F (u))up−1ξRdx.

Once again, our goal is to get rid of the convection term on the right hand side to
reduce back into the heat equation. Let

H(z) :=

∫ z

0
F ′(s)sp−1ds,

then, analogously as in the previous section, we use Lipschitz continuity to get

∣∣∣∣∫
Rn

a · ∇(F (u))up−1ξRdx

∣∣∣∣ = ∣∣∣∣∫
Rn

a · ∇ξRH(u)dx

∣∣∣∣
≤ 1

R
|a|∥∇ξ∥L∞

∫
Rn

|H(u)|dx

=
1

R
|a|∥∇ξ∥L∞

∫
Rn

∣∣∣∣∫ u

0
F ′(s)sp−1ds

∣∣∣∣dx
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≤ 1

R
|a|∥∇ξ∥L∞

∫
Rn

∣∣∣∣up−1

∫ u

0
F ′(s)ds

∣∣∣∣dx
=

1

R
|a|∥∇ξ∥L∞

∫
Rn

up−1|F (u)− F (0)|dx

≤ 1

R
L|a|∥∇ξ∥L∞

∫
Rn

updx

=
1

R
L|a|∥∇ξ∥L∞∥u(·, t)∥pLp

R→∞→ 0 ∀ t > 0.

We have also used u ∈ C((0,∞);L1(Rn)) ∩ L∞(Rn × (0,∞)) to ensure that ∥u(·, t)∥Lp

is finite.

Now, we are left with exactly the same expression as in the case of the heat equation,
namely ∫

Rn

∂tuu
p−1ξRdx =

∫
Rn

∆uup−1ξRdx. (4.21)

From this point we can proceed just as in [3, pp. 36–41] to obtain the result.

Remark 4.8. To prove the next result, we will need an estimate of the form as in point
(i) of Lemma 2.8 for the convection-diffusion equation. In the case of the heat equation,
we saw in [3, pp. 38–39] that this estimate followed from an estimate of the exact form as
in (4.21). Since we now have shown this estimate for the convection-diffusion equation
(4.1), we may extend the result in Lemma 2.8 to solutions of (4.1) as well, i.e.

∥u(·, t)∥Lp ≤ ∥u0∥Lp ∀ t ≥ 0,

where p ∈ (1,∞).

As we mentioned in Remark 2.10, in order to obtain an estimate when p = ∞, we
cannot simply let p → ∞ in Theorem 4.7, as C → ∞ in this case as well. The next
result shows that we can overcome this by gaining control over how C grows as p → ∞,
leading to the following:

Proposition 4.9. Let u be a strong solution of (4.1) with initial data 0 ≤ u0 ∈ L1(Rn)∩
L∞(Rn). Let q ∈ [1,∞). Then, we have

∥u(·, t)∥L∞ ≤ Ct
− n

2q ∥u0∥Lq ∀ t > 0, (4.22)

where

C =
(
2nC̃2

) n
2q
.

C̃ = C̃(n) is the constant from the Sobolev inequality (Theorem A.1).
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Remark 4.10. Proposition 4.9 holds for the heat equation as well, which can be seen by
setting F = 0. Thus we have solved the problem which we commented in Remark 2.10,
and we have finally covered all p ∈ [1,∞] for both the heat equation and the convection-
diffusion equation.

Proof. We are following the approach by Zuazua [1, pp. 34–35].

Observe that solutions of (4.1) are translation invariant in time, and so if u(x, t)
solves ∂tu(x, t) −∆u(x, t) = a · ∇(F (u(x, t))) with initial data u(x, 0), then u(x, t + s)
solves ∂tu(x, t+ s)−∆u(x, t+ s) = a · ∇(F (u(x, t+ s))) with initial data u(x, s) for any
s > 0. Applying Proposition 4.9, we get for s < t,

∥u(·, t)∥Lp ≤ C(t− s)
−n

2
( 1
q
− 1

p
)∥u(·, s)∥Lq , (4.23)

where p ∈ (1,∞), q ∈ [1, p) and

C =

(
np2

8(p− 1)
(
1

q
− 1

p
)C̃2

)n
2
( 1
q
− 1

p
)

.

As mentioned in our discussion above, we must gain control over C as p → ∞, and
in order to do this, we use Moser iteration, introduced by Jürgen Moser in [13, 14]. The
idea behind this method is to iterate over a sequence of values for p and t, repeatedly
making use of (4.23), so that we obtain a constant which does not blow up as p → ∞.

We start by letting p0 = q and pk = 2kq for k = 1, 2, . . ., thus creating an increasing
sequence of values such that pk → ∞ as k → ∞. For the time, we let t0 be some starting
point with 0 < t0 < t, and tk − tk−1 = t−t0

2k
for k = 1, 2, . . .. This creates a sequence

moving from t0 to t with decreasing step size as k → ∞.

Next, we insert our new values into eq. (4.23) with p = pk, q = pk−1, t = tk and
s = tk−1, leading to

∥u(·, tk)∥Lpk ≤ I

n
2

(
1

pk−1
− 1

pk

)
k ∥u(·, tk−1)∥Lpk−1 , (4.24)

where

Ik =

np2k
8(pk−1)(

1
pk−1

− 1
pk
)C̃2

tk − tk−1
=

n(2kq)2

8(2kq−1)
( 1
2k−1q

− 1
2kq

)C̃2

t−t0
2k

=
4knC̃2q

8(t− t0)(2kq − 1)
≤ 4knC̃2

8(t− t0)
=: 4k

Ĉ

t− t0
.

The last inequality makes use of the fact that q ≥ 1 ⇐⇒ q
2kq−1

≤ 1, thus giving an

upper bound independent of q. Now, we make repeated use of (4.24) to write out the
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right hand side, also using the bounds for Ik:

∥u(·, tk)∥Lpk ≤ I

n
2

(
1

pk−1
− 1

pk

)
k ∥u(·, tk−1)∥Lpk−1

≤ I

n
2

(
1

pk−1
− 1

pk

)
k I

n
2

(
1

pk−2
− 1

pk−1

)
k−1 ∥u(·, tk−2)∥Lpk−2

≤ I

n
2

(
1

pk−1
− 1

pk

)
k I

n
2

(
1

pk−2
− 1

pk−1

)
k−1 · · · I

n
2

(
1
p0

− 1
p1

)
1 ∥u(·, t0)∥Lp0

≤

(
4kĈ

t− t0

)n
2

1

2kq
(
4k−1Ĉ

t− t0

)n
2

1

2k−1q

· · ·

(
4Ĉ

t− t0

)n
2

1
2q

∥u(·, t0)∥Lq

= 4
n
2q

∑k
i=1

i

2i

(
Ĉ

t− t0

) n
2q

∑k
i=1

1

2i

∥u(·, t0)∥Lq

≤ 4
n
2q

∑∞
i=1

i

2i

(
Ĉ

t− t0

) n
2q

∑∞
i=1

1

2i

∥u(·, t0)∥Lq

= 4
n
2q

2

(
Ĉ

t− t0

) n
2q

∥u(·, t0)∥Lq

=

(
2nC̃2

t− t0

) n
2q

∥u(·, t0)∥Lq .

(4.25)

To calculate the infinite series, we have made use of the geometric series
∑∞

i=0 x
i = 1

1−x ,

for |x| < 1. Inserting x = 1
2 and removing the first term, this yields

∑∞
i=1

1
2i

= 1. Fur-
thermore, differentiating this geometric series and multiplying by x, we get

∑∞
i=1 ix

i =
x

(1−x)2
, for |x| < 1. Thus, with x = 1

2 we get
∑∞

i=1
i
2i

= 2.

Observe that the constant on the last line of (4.25) now is independent of k, meaning
that we have gained control over the right hand side of the inequality.

Furthermore, since tk ≤ t for all k, by Remark 4.8 we can use the result in point
(i) of Lemma 2.8 to remove k from inside the norm on the left hand side, viewing tk as
initial time:

∥u(·, t)∥Lpk ≤ ∥u(·, tk)∥Lpk ≤

(
2nC̃2

t− t0

) n
2q

∥u(·, t0)∥Lq .

Next, we want to let t0 → 0 so that we have the initial data on the right hand
side. Making use of the reverse triangle inequality, the interpolation inequality for Lp-
norms (Theorem A.4) and the fact that u ∈ C([0,∞);L1(Rn)) ∩ L∞(Rn × (0,∞)) and
u0 ∈ L1(Rn) ∩ L∞(Rn), we get

|∥u(·, t0)∥Lq − ∥u0∥Lq | ≤ ∥u(·, t0)− u0∥Lq ≤ ∥u(·, t0)− u0∥
q−1
q

L∞ ∥u(·, t0)− u0∥
1
q

L1

≤ (∥u∥L∞(Rn×(0,∞)) + ∥u0∥L∞(Rn))
q−1
q ∥u(·, t0)− u0∥

1
q

L1 → 0 as t0 → 0.
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Thus, we end up with

∥u(·, t)∥Lpk ≤
(
2nC̃2

) n
2q
t
− n

2q ∥u0∥Lq ∀ t > 0.

Finally, with u(·, t) ∈ L1(Rn) ∩ L∞(Rn), we can let pk → ∞ to conclude that (4.22)
holds.

4.3 Initial data in L1(Rn)

In this section, we will remove the assumption of u0 ∈ L∞(Rn), and see that the results
we developed in the previous section may be extended to this more general setting
through an approximation.

Theorem 4.11. Suppose F ∈ C1(R) with F (0) = 0. If u0 ∈ L1(Rn), then there exists
a unique strong solution u to (4.1). Furthermore:

(i) u ∈ C((0,∞);W 2,p(Rn)) ∩ C1((0,∞);Lp(Rn)) for all p ∈ (1,∞).

(ii) u satisfies the regularity estimates (4.20) and (4.22) with q = 1.

(iii) If u and v are strong solutions to (4.1) with initial data u0, v0 ∈ L1(Rn) respectively,
then

∥u(·, t)− v(·, t)∥L1 ≤ ∥u0 − v0∥L1 ∀ t ≥ 0

If u0 ≤ v0, then

u(x, t) ≤ v(x, t) ∀ t > 0, a.e. x ∈ Rn.

Proof. We follow the proof of Theorem 4.1 in Zuazua [1, pp. 35–36].
Let u0 ∈ L1(Rn). By Bresiz [10, pp. 97–98], we know that C∞

c (Rn) is dense in
L1(Rn). Thus, there exists a sequence {u0,k} ⊂ C∞

c (Rn) ⊂ L1(Rn) ∩ L∞(Rn) such that

u0,k → u0 in L1(Rn) as k → ∞, (4.26)

and

∥u0,k∥L1 ≤ ∥u0∥L1 . (4.27)

Since each u0,k lies in L1(Rn) ∩ L∞(Rn), Theorem 4.6 gives that there exists a strong
solution uk to (4.1) with initial data u0,k for each k ∈ N. To show that this sequence of
strong solutions {uk} converges to some u ∈ C([0,∞);L1(Rn)), we will show that it is
a Cauchy sequence in the Banach space C([0,∞);L1(Rn)). From Theorem 4.6, we have
the L1-contraction property, so that

∥uk(·, t)− um(·, t)∥L1 ≤ ∥u0,k − u0,m∥L1 ∀ t ≥ 0, ∀ k,m ∈ N.
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Now, since {u0,k} converges in the Banach space L1(Rn), it is also Cauchy in L1(Rn).
Thus, for all ε > 0, there exists a N ∈ N such that for k,m ≥ N ,

∥uk(·, t)− um(·, t)∥L1 ≤ ∥u0,k − u0,m∥L1 < ε ∀ t ≥ 0.

Taking supremum in time, we get

∥uk(·, t)− um(·, t)∥C([0,∞);L1(Rn)) < ε.

Thus {uk} is Cauchy in C([0,∞);L1(Rn)), which means it converges to some u in
C([0,∞);L1(Rn)), i.e.

uk → u in C([0,∞);L1(Rn)) as k → ∞. (4.28)

We are yet to show that u ∈ L∞
loc((0,∞);L∞(Rn)) as well. The reason we work

with this space and not L∞(Rn × (0,∞)) as in Theorem 4.6, is that we no longer have
u0 ∈ L∞(Rn). Thus, we can only expect u to be locally bounded in time.

To show u ∈ L∞
loc((0,∞);L∞(Rn)), it is tempting to try to extend the argument above

and show that {uk} is Cauchy in the space C([0,∞);L1(Rn)) ∩ L∞
loc((0,∞);L∞(Rn)).

However, we do not have a L∞(Rn)-contraction result needed to show that {uk} is
Cauchy in this space, and therefore, we must try another approach. Observe that by
Proposition 4.9 and (4.27), each uk fulfills

∥uk(·, t)∥L∞ ≤ Ct−
n
2 ∥u0,k∥L1 ≤ Ct−

n
2 ∥u0∥L1 ∀ t > 0, (4.29)

where C only depends on n. Thus, uk ∈ L∞(Rn × (τ, T )) for 0 < τ ≤ T ≤ ∞. By the

Banach-Alaoglu theorem (Theorem A.15), this implies that uk
∗
⇀ w in L∞(Rn× (τ, T )),

for some w. If we can show that uk
∗
⇀ u, then we have w = u. This means that

u ∈ L∞(Rn × (τ, T )), in other words u ∈ L∞
loc((0,∞);L∞(Rn)) as wanted. By definition

of weak* convergence, we therefore need to show∫ T

τ

∫
Rn

ukφdxdt →
∫ T

τ

∫
Rn

uφdxdt as k → ∞ ∀ φ ∈ L1(Rn × (τ, T )).

Since uk → u in C([0,∞);L1(Rn)), we have that there exists a subsequence of {uk}
which converges to u a.e. Thus, for k large enough, we get

|u| ≤ |uk − u|+ |uk| ≤ 1 + Ct−
n
2 ∥u0∥L1 ,

so that u is bounded. By dominated convergence (Theorem A.8), we thus get∣∣∣∣∫ T

τ

∫
Rn

ukφdxdt−
∫ T

τ

∫
Rn

uφdxdt

∣∣∣∣ ≤ ∫ T

τ

∫
Rn

|uk − u||φ|dxdt → 0 as k → ∞.

It is clear by construction that u(·, 0) = u0 a.e. in Rn, but we also need to show
that u still solves (4.1) a.e. In Theorem 4.6, we argued that this follows if u satisfies the
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integral equation (4.10). We know from this theorem that uk satisfies (4.10) for each
k ∈ N, i.e.

uk(x, t) = (G(·, t) ∗ u0,k)(x) +
∫ t

0
[a · ∇G(·, t− s) ∗ F (uk(·, s))] (x)ds.

If we can show that each term above converges to u in L1(Rn) for all t > 0, then we
have that u solves (4.10), and thus also (4.1).

First, the left hand side simply converges by (4.28). Second, we apply Young’s
inequality (Theorem A.11), Lemma B.2 and (4.26) to get

∥G(·, t) ∗ u0,k −G(·, t) ∗ u0∥L1 = ∥G(·, t) ∗ (u0,k − u0)∥L1 ≤ ∥G(·, t)∥L1∥u0,k − u0∥L1

≤ Ct−
n
2 ∥u0,k − u0∥L1 → 0 as k → ∞ ∀ t > 0.

Finally, we proceed with the last term similarly as in the proof of Theorem 4.6:∥∥∥∥∫ t

0
a · ∇G(·, t− s) ∗ F (uk(·, s))ds−

∫ t

0
a · ∇G(·, t− s) ∗ F (u(·, s))ds

∥∥∥∥
L1

=

∥∥∥∥∫ t

0
a · ∇G(·, t− s) ∗ [F (uk(·, s))− F (u(·, s))] ds

∥∥∥∥
L1

≤
∫ t

0
∥a · ∇G(·, t− s) ∗ [F (uk(·, s))− F (u(·, s))]∥L1ds

≤
∫ t

0
∥a · ∇G(·, t− s)∥L1∥F (uk(·, s))− F (u(·, s))∥L1ds

≤ |a|C
∫ t

0
(t− s)−

1
2 ∥F (uk(·, s))− F (u(·, s))∥L1ds

= |a|C
∫ ε

0
(t− s)−

1
2 ∥F (uk(·, s))− F (u(·, s))∥L1ds

+ |a|C
∫ t

ε
(t− s)−

1
2 ∥F (uk(·, s))− F (u(·, s))∥L1ds.

On the last line, we have split the integral in two parts by some ε > 0. The reason
for this is to overcome the non-linearity introduced by F . We wish to use Lipschitz
continuity once again, but with u ∈ L∞

loc((0,∞);L∞(Rn)), i.e. only locally bounded in
time, we must be careful. As we discussed above, the problem with boundedness for
u arises at time 0, so if we restrict our time interval to s ≥ ε, we get local Lipschitz
continuity, i.e. for all s ≥ ε > 0 and t > 0,

∥F (uk(·, s))− F (u(·, s))∥L1 ≤ L∥uk(·, s)− u(·, s)∥L1 → 0 as k → ∞.

Thus, using this, (4.28) and dominated convergence (Theorem A.8), the second integral
becomes

|a|C
∫ t

ε
(t− s)−

1
2 ∥F (uk(·, s))− F (u(·, s))∥L1ds

≤ |a|CL

∫ t

ε
(t− s)−

1
2 ∥uk(·, s)− u(·, s)∥L1ds → 0 as k → ∞ ∀ t > 0.
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The first integral yields,

|a|C
∫ ε

0
(t− s)−

1
2 ∥F (uk(·, s))− F (u(·, s))∥L1ds → 0 as ε → 0 ∀ t > 0,

where the integral is bounded for k large enough since F ∈ C1(Rn) and u, uk are bounded.
So u satisfies (4.10), and by Lemma 4.2 we also obtain (i). With this, we have that

u is a strong solution to (4.1).
To show uniqueness of the solution, we can proceed similarly as we did in Lemma 4.4

to show that this result still holds for strong solutions u, v given by initial values u0, v0 ∈
L1(Rn). Thus, we have∫

Rn

[u(x, t)− v(x, t)]+dx ≤
∫
Rn

[u0(x)− v0(x)]
+dx ∀ t ≥ 0,

which we saw implies both L1(Rn)-contraction and uniqueness in Theorem 4.6. The
comparison principle also follows from this result, as

u0 ≤ v0 =⇒ [u0 − v0]
+ = 0 =⇒ [u− v]+ ≤ 0 =⇒ u ≤ v.

Thus, we have (iii).
Finally, it remains to show the regularity estimates in (ii). We must restrict ourselves

to q = 1, since u0 only is assumed to be in L1(Rn). Theorem 4.7 gives that each uk
satisfies (4.20), and together with (4.27), this yields for p ∈ (1,∞),

∥uk(·, t)∥Lp ≤ Ct
−n

2
( 1
q
− 1

p
)∥u0,k∥L1 ≤ Ct

−n
2
( 1
q
− 1

p
)∥u0∥L1 ∀ t > 0,

where C only depends on n and p. The right hand side is uniformly bounded in k, while
uk on the left hand side converges to u in C([0,∞);L1(Rn)), thus also a.e. We may
therefore apply Fatou’s lemma (Theorem A.7) to take the limit and obtain the estimate
for p ∈ (1,∞) and t > 0:

∥u(·, t)∥Lp ≤ lim inf
k→∞

∥uk(·, t)∥Lp ≤ lim inf
k→∞

Ct
−n

2
( 1
q
− 1

p
)∥u0∥L1 = Ct

−n
2
( 1
q
− 1

p
)∥u0∥L1 .

For p = ∞, we have from (4.29) that

∥uk(·, t)∥L∞ ≤ Ct−
n
2 ∥u0∥L1 ∀ t > 0,

where C only depends on n. By Theorem A.16, uk(·, t)
∗
⇀ u(·, t) in L∞(Rn) implies

lower semicontinuity in L∞(Rn), thus

∥u(·, t)∥L∞ ≤ lim inf
k→∞

∥uk(·, t)∥L∞ ≤ lim inf
k→∞

Ct−
n
2 ∥u0∥L1 = Ct−

n
2 ∥u0∥L1 ∀ t > 0.

This concludes the proof.



Chapter 5

Asymptotic behaviour for a
convection-diffusion equation

Having established in the previous chapter that the convection-diffusion equation (4.1) is
well-posed with initial data u0 ∈ L1(Rn), we are now ready to investigate the asymptotic
behaviour of the solutions. We will start by motivating what type of behaviour we should
expect similarly as in Section 3.1.

5.1 Motivation

We have seen that mass conservation is an important property to understand the asymp-
totic behaviour, and so we start by showing mass conservation for solutions of (4.1):

Lemma 5.1. Let u be a strong solution of (4.1) with initial value u0 ∈ L1(Rn). Then,
the mass of u is conserved, i.e.∫

Rn

u(x, t)dx =

∫
Rn

u0(x)dx ∀ t > 0.

Proof. We multiply (4.1) by ξR as defined in Lemma 4.4 and integrate over Rn to get∫
Rn

∂tuξRdx =

∫
Rn

∆uξRdx+

∫
Rn

a · ∇(F (u))ξRdx.

Proceeding as we have done several times by now, we wish to show that both terms on
the right hand side tend to 0 as R → ∞. For the first integral, we apply Green’s first iden-
tity (Theorem A.6) to move the Laplacian over to ξR, and since u ∈ C([0,∞);L1(Rn)),
we can bound this integral as follows:∣∣∣∣∫

Rn

∆uξRdx

∣∣∣∣ ≤ ∫
Rn

|u||∆ξR|dx ≤ 1

R2
∥ξ∥L∞∥u(·, t)∥L1 → 0 as R → ∞ ∀ t > 0.

39
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For the second term, we similarly move the gradient over to ξR, and since Theorem 4.11
gives that u ∈ L∞

loc((0,∞);L∞(Rn)), we can apply Lipschitz continuity, with some care
as we did in the proof of Theorem 4.11, to move from F (u) to u:∣∣∣∣∫

Rn

a · ∇(F (u))ξRdx

∣∣∣∣ ≤ ∫
Rn

|a · ∇ξRF (u)|dx ≤ 1

R
|a|∥∇ξ∥L∞

∫
Rn

|F (u)|dx

≤ 1

R
L|a|∥∇ξ∥L∞∥u(·, t)∥L1 → 0 as R → ∞ ∀ t > 0.

Thus we are left with ∫
Rn

∂tu(x, t)ξR(x)dx = O (1/R) .

Theorem 4.11 gives u ∈ C1((0,∞);Lp(Rn)) for p ∈ (1,∞), and together with ξR ∈
C∞
c (Rn), this implies that we can move the derivative out of the integral. Finally,

by dominated convergence (Theorem A.8), we can let ξR → 1 as R → ∞, since u ∈
C([0,∞);L1(Rn)). This gives

d

dt

∫
Rn

u(x, t)dx = 0 ∀ t > 0.

which implies our result.

The equation (4.1) contains an unspecified function F ∈ C1(R) with F (0) = 0. The
asymptotic behaviour of this equation may vary a lot depending on F , and so we need
to specify this function somewhat. For the rest of this chapter, we will therefore work in
one spatial dimension (n = 1) with F (u) := uq for some q > 1, assuming 0 ≤ u0 ∈ L1(R),
which implies u ≥ 0 by Theorem 4.11. Thus, (4.1) becomes{

∂tu− ∂2
xu = a∂x(u

q), (x, t) ∈ R× (0,∞)

u(x, 0) = u0(x), x ∈ R.
(5.1)

Although we assume q > 1, observe that q = 1 yields a linear convection term on the
right hand side. In fact, we covered the asymptotic behaviour in this case in Section 3.3,
and found that it was given by a translation of the asymptotic behaviour for the heat
equation.

To motivate what type of asymptotic behaviour we should expect from the equation
(5.1), we will make a scaling argument similarly as is Section 3.1. The idea is to inves-
tigate what equation the scaled solution uλ fulfills for a fixed time as λ → ∞. Through
a change of variables, this provides us with the asymptotic behaviour of u as t → ∞.

Let λ > 0, assume u solves (5.1) and consider the rescaled function

uλ(x, t) := λαu(λβx, λγt),

with initial value uλ(x, 0) = λαu0(λ
βx) =: u0,λ(x). We will now determine appropriate

choices for α, β, and γ. Mass conservation was an important property in the asymptotic
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behaviour of the heat equation, and since u conserves its mass by Lemma 5.1, we also
want uλ to conserve its mass. To ensure this holds, we require that α = β, which can
be seen from the following:∫

R
uλ(x, t)dx =

∫
R
λαu(λβx, λγt)dx

z:=λβx
=

∫
R
λαu(z, λγt)λ−βdz

α=β
=

∫
R
u(z, λγt)dz

=

∫
R
u0(z)dz

x:=λ−αz
=

∫
R
λαu0(λ

αx)dx =

∫
R
u0,λ(x)dx.

With this condition, we also get

u0,λ → Mδ as λ → ∞. (5.2)

This can be seen by proceeding exactly as in Section 3.1 to show that∫
R
uλ(x, 0)φ(x)dx → Mφ(0) as λ → ∞, (5.3)

for all φ ∈ C(R) ∩ L∞(R).
Furthermore, differentiating uλ yields

∂tuλ(x, t) = λα+γ∂tu(λ
αx, λγt)

∂2
xuλ(x, t) = λ3α∂2

xu(λ
αx, λγt)

∂x((uλ(x, t))
q) = λα(q+1)∂x(u

q)(λαx, λγt).

(5.4)

Observe that if γ = 2α, then the λ’s in front of the first two terms above have the same
power. We choose α = 1 and γ = 2 and thus get the same scaling we had for the heat
equation in Section 3.1. This uλ solves the equation

∂tuλ − ∂2
xuλ = λ2−qa∂x(u

q
λ).

To see what happens to the equation as λ → ∞, we must consider different choices for
q separately.

First, let us mention that if q = 2, then (5.1) is invariant with respect to this scaling.
We will not study this case here, but rather refer to the work by Escobedo and Zuazua [2],
where they find that the asymptotic behaviour in this case is given by explicit self-similar
solutions.

Second, if q > 2, then λ2−q → 0 as λ → ∞, in which case the convective term
disappears and the equation approaches the heat equation. For this reason, together
with (5.2), we expect the same asymptotic behaviour as we saw for the heat equation,
i.e. that the solution converges to M times the heat kernel G. From the estimates given

in point (ii) of Theorem 4.11, we also see that t
1
2
(1− 1

p
)∥u(·, t)∥Lp is bounded independent

of the time t for all t > 0 and p ∈ [1,∞]. This suggests that the convergence takes place
in this setting, which we also saw in the case of the heat equation.

This type of asymptotic behaviour is referred to as weakly non-linear, as the non-
linear convection term disappears from the equation in the long run, thus not influencing
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the asymptotic behaviour of the solutions. For the time being, we have only motivated
that we expect this type of behaviour in the case q > 2, but in the next section we will
show rigorously that this indeed holds.

Finally, what remains is the case 1 < q < 2, but here we see that λ2−q → ∞ as
λ → ∞, and thus we can no longer expect the convective term to disappear in the long
run. To overcome this, we search for a different scaling, where we try to remove the
diffusion term instead as λ → ∞. Observe that if γ = qα, then the λ’s in front of the
first and last term of (5.4) have the same power. Choosing α = 1 and γ = q, we get that
uλ solves the equation

∂tuλ − λq−2∂2
xuλ = a∂x(u

q
λ).

With 1 < q < 2, we get that λq−2 → 0 as λ → ∞, in which case the diffusion term
disappears and we end up with a convective partial differential equation in the limit:

∂tu− a∂x(u
q) = 0. (5.5)

Thus, we expect the asymptotic behaviour to be given by the solution of this equation
with Mδ as initial data, by (5.2). However, this hyperbolic equation is fundamentally
different from the parabolic heat equation which we have based our studies on previously,
and it is therefore not as obvious what kind of approach to use in order to show this
rigorously. We will return to this problem in Section 5.3.

Since the non-linear term does not disappear in the case of 1 < q < 2, this type of
asymptotic behaviour is referred to as strongly non-linear.

5.2 Weakly non-linear asymptotic behaviour

In this section we consider the case q > 2. We will show rigorously what we motivated in
the previous section, namely that the equation (5.1) admits a weakly non-linear asymp-
totic behaviour in this case, resulting in the same asymptotic behaviour as for the heat
equation.

Theorem 5.2. Let 0 ≤ u0 ∈ L1(R) with
∫
R u0(x)dx = M > 0. Then, the strong solution

u to (5.1) with q > 2 satisfies

t
1
2
(1− 1

p
)∥u(·, t)−MG(·, t)∥Lp → 0 as t → ∞, (5.6)

for all p ∈ [1,∞].

Remark 5.3. This result may be extended to hold in dimensions n ≥ 1 and for more
general functions F ∈ C1(R) than F (u) = uq, under some conditions on their behaviour
near zero. This is a quite natural extension, since the solution u approaches zero for
large time values, thus making the behaviour of F around zero the most influential for
the asymptotic behaviour, as commented in [5, p. 63].

The proof presented below is in fact a simplification of Theorem 5.1 in Zuazua [1,
pp. 42–43], which covers this more general setting. The reason for our simplification here
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is that we want to work in the same framework as the one we use in the next section,
when we cover the more difficult case of 1 < q < 2.

Proof. We follow the proof of Theorem 5.1 in Zuazua [1, pp. 42–43].

We saw in the proof of Theorem 4.11 that u satisfies the integral equation

u(x, t) = (G(·, t) ∗ u0)(x) +
∫ t

0
a[∂xG(·, t− s) ∗ (u(·, s))q](x)ds.

Inserting this directly into (5.6) yields

t
1
2
(1− 1

p
)∥u(·, t)−MG(·, t)∥Lp

= t
1
2
(1− 1

p
)

∥∥∥∥G(·, t) ∗ u0 +
∫ t

0
a∂xG(·, t− s) ∗ (u(·, s))qds−MG(·, t)

∥∥∥∥
Lp

≤ t
1
2
(1− 1

p
)∥G(·, t) ∗ u0 −MG(·, t)∥Lp + t

1
2
(1− 1

p
)

∥∥∥∥∫ t

0
a∂xG(·, t− s) ∗ (u(·, s))qds

∥∥∥∥
Lp

.

We wish to show that both of these two terms go to zero as t → ∞. The first
part simply corresponds to the asymptotic behaviour of the heat equation, which by
Theorem 3.3 gives us

t
1
2
(1− 1

p
)∥G(·, t) ∗ u0 −MG(·, t)∥Lp → 0 as t → ∞.

For the second part, we proceed similarly as done before by using Minkowski’s integral
inequality (Theorem A.12) and Young’s inequality Theorem A.11:∥∥∥∥∫ t

0
a∂xG(·, t− s) ∗ (u(·, s+ 1))qds

∥∥∥∥
Lp

≤
∫ t

0
∥a∂xG(·, t− s) ∗ (u(·, s+ 1))q∥Lpds

=

∫ t
2

0
∥a∂xG(·, t− s) ∗ (u(·, s+ 1))q∥Lpds

+

∫ t

t
2

∥a∂xG(·, t− s) ∗ (u(·, s+ 1))q∥Lpds

≤
∫ t

2

0
∥a∂xG(·, t− s)∥Lp∥(u(·, s+ 1))q∥L1ds

+

∫ t

t
2

∥a∂xG(·, t− s)∥L1∥(u(·, s+ 1))q∥Lpds.

We have split this integral in two parts in order to control the singularity which arises

at time 0, so that we still obtain a decay in t which is stronger than the growth t
1
2
(1− 1

p
)
.

To bound the second integral, we use the L1-norm estimate for the gradient of the heat
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kernel given in Lemma B.3 and the Lp-norm estimates for u given in Theorem 4.11,
which yields ∫ t

t
2

∥a∂xG(·, t− s)∥L1∥(u(·, s))q∥Lpds

≤
∫ t

t
2

|a|C̃(t− s)−
1
2 ∥u(·, s)∥qLpqds

≤ |a|C̃
∫ t

t
2

(t− s)−
1
2Cpqs

− 1
2
(1− 1

pq
)q∥u0∥qL1ds

≤ |a|C∥u0∥qL1

∫ t

t
2

(t− s)−
1
2 s

− 1
2
(q− 1

p
)
ds

≤ |a|C∥u0∥qL1

(
t

2

)− 1
2
(q− 1

p
) ∫ t

t
2

(t− s)−
1
2ds

= 2|a|C∥u0∥qL1

(
t

2

)− 1
2
(q− 1

p
)( t

2

) 1
2

.

Therefore, we get

t
1
2
(1− 1

p
)
∫ t

t
2

∥a∂xG(·, t− s)∥L1∥(u(·, s+ 1))q∥Lpds

≤ 2|a|C∥u(·, 1)∥q
L1

(
1

2

)− 1
2
(q− 1

p
)+ 1

2

t
1
2
(1− 1

p
)− 1

2
(q− 1

p
)+ 1

2

= 2|a|C∥u(·, 1)∥q
L1

(
1

2

)− 1
2
(q− 1

p
)+ 1

2

t
2−q
2 → 0 as t → ∞.

For the first integral, we use a stronger estimate for the gradient of the heat kernel
given in Lemma B.4. Together with the usual L1-norm estimate for u, this yields∫ t

2

0
∥a∂xG(·, t− s)∥Lp∥(u(·, s))q∥L1ds

≤
∫ t

2

0
|a|C̃(t− s)

− 1
2
(1− 1

p
)− 1

2 ∥u(·, s)∥qLqds

≤ |a|C̃
(
t

2

)− 1
2
(1− 1

p
)− 1

2
∫ t

2

0
∥u(·, s)∥qLqds

≤ |a|C̃
(
t

2

)− 1
2
(1− 1

p
)− 1

2
∫ t

2

0
Cqs

− 1
2
(1− 1

q
)q∥u0∥qL1ds

= |a|C∥u0∥qL1

(
t

2

)− 1
2
(1− 1

p
)− 1

2
∫ t

2

0
s−

1
2
(q−1)ds

= |a|C∥u0∥qL1

(
t

2

)− 1
2
(1− 1

p
)− 1

2 2

3− q

(
t

2

) 3−q
2

.
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Finally, we get

t
1
2
(1− 1

p
)
∫ t

2

0
∥a∂xG(·, t− s)∥Lp∥(u(·, s))q∥L1ds

≤ 2

3− q
|a|C∥u0∥qL1

(
1

2

)− 1
2
(1− 1

p
)− 1

2
+ 3−q

2

t
1
2
(1− 1

p
)− 1

2
(1− 1

p
)− 1

2
+ 3−q

2

=
2

3− q
|a|C∥u0∥qL1

(
1

2

)− 1
2
(1− 1

p
)− 1

2
+ 3−q

2

t
2−q
2 → 0 as t → ∞.

This concludes the proof.

5.3 Strongly non-linear asymptotic behaviour

In this section we consider the case of 1 < q < 2. To show the asymptotic behaviour of
(5.1) in this case, we will follow the approach made by Escobedo, Vázquez and Zuazua
in [5] and [6]. Consequently, we also assume a = −1/q in (5.1), yielding the following
problem: {

∂tu = ∂2
xu− 1

q∂x (u
q) , (x, t) ∈ R× (0,∞)

u(x, 0) = u0(x), x ∈ R.
(5.7)

As we saw in Section 5.1, for λ > 0, the rescaled function

uλ(x, t) := λu(λx, λqt)

conserves its mass and solves the equation

∂tuλ = λq−2∂2
xuλ − 1

q
∂x
(
uqλ
)
,

with initial data

uλ(x, 0) = λu0(λx).

In the limit λ → ∞, this turns into the convective equation{
∂tu+ 1

q∂x (u
q) = 0, (x, t) ∈ R× (0,∞)

u(x, 0) = Mδ, x ∈ R.
(5.8)

We expect the solution of (5.8) to give the asymptotic behaviour of (5.7). The equation
(5.8) is hyperbolic and therefore of a different nature than the parabolic heat equation
for which we have based most of our theory upon thus far. Liu and Pierre show in [7,
p. 432] that (5.8) admits a so-called entropy solution given by the function

uM (x, t) :=

{(
x
t

) 1
q−1 if 0 < x < r(t)

0 otherwise,
(5.9)
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where

r(t) :=
q

q − 1

q−1
q
M

q−1
q t

1
q .

This solution also fulfills the following decay in time:

∥uM (·, t)∥L∞ ≤ Ct
− 1

q ∀ t > 0. (5.10)

Finally, we claim that this solution is unique. The question of uniqueness of solutions
to (5.8) and its relation to entropy solutions is the main focus of Chapter 6, and we will
therefore return to this claim there. Right now, however, our focus is to show that the
solution u of (5.7) indeed converges to uM given by (5.9), and find out in what sense
this happens.

A natural starting point may be to investigate if the method applied in the weakly
non-linear case, where q > 2, still is useful here. The answer is unfortunately negative,
even though the Lp-estimates and the integral equality from Theorem 4.11 are still valid.
As we will see below, the dominating convection term in (5.7) yields a norm estimate
of the form (5.10) for solutions of (5.7). With 1 < q < 2, this estimate is sharper than
the corresponding estimate from Theorem 4.11, which has a decay in time of the form
t−

1
2 . With a sharper expected convergence rate, our previous results are in a sense ”too

slow” to help us out.
To cope with this, we instead make use of what we have, namely the scaled solutions

uλ. We wish to show that these solutions do in fact converge to uM as λ → ∞ with a
sharper rate, and then connect this to t → ∞ in the same way as we did in Section 3.1.

Before we can show this result rigorously, however, we first need some estimates on
the solutions of (5.7), starting with the so-called entropy inequality.

Lemma 5.4. Let u0 ∈ C∞(R) be strictly positive and bounded. Then, the classical
solution u to (5.7) with 1 < q < 2 satisfies

∂x
[
(u(x, t))q−1

]
≤ 1

t
∀ (x, t) ∈ R× (0,∞). (5.11)

Proof. We will only make a sketch of the proof here, in the same way as it is done in
the proof of Lemma 1.1 in [5, p. 48]. With u0 ∈ C∞(R) such that u0 is strictly positive
and bounded, the resulting classical solution u is also strictly positive, bounded and lies
in C∞(R× [0,∞)), since we have a parabolic equation.

Let z := uq−1, then u = z
1

q−1 , so that (5.7) becomes

∂tz + z∂xz − β
(∂xz)

2

z
= ∂2

xz,

where β := (2−q)/(q−1). By differentiating this equation with respect to x and defining
w := ∂xz, we obtain

∂tw − ∂2
xw +

(
z − 2β

w

z

)
∂xw + w2 + β

w3

z2
= 0. (5.12)
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Next, observe that the function

W (t) :=
1

t
,

solves the ordinary differential equation

∂tw + w2 = 0. (5.13)

Furthermore, it is also a supersolution for (5.12), i.e. it solves

∂tw − ∂2
xw +

(
z − 2β

w

z

)
∂xw + w2 + β

w3

z2
≥ 0.

To see this, we observe that the first and fifth term on the left hand side yield 0 by
(5.13), the second, third and fourth term involve spacial derivatives and thus disappear,
while the sixth term is non-negative since β > 0 when 1 < q < 2.

To obtain the result (5.11), we apply the results above together with the fact that
W (0) = ∞, so that the maximum principle yields

w(x, t) ≤ W (t) ∀ (x, t) ∈ R× (0,∞).

From this result, we may now show the hyperbolic L1–L∞-smoothing result which
we claimed earlier:

Lemma 5.5. Let 0 ≤ u0 ∈ L1(R) ∩ C∞(R) such that u0 is bounded and
∫
R u0(x)dx =

M > 0. Then, the classical solution u to (5.7) with 1 < q < 2 satisfies

∥u(·, t)∥L∞ ≤ Ct
− 1

q ∥u0∥
1
q

L1 ∀ t > 0, (5.14)

where C > 0 is a constant depending on q.

Remark 5.6.

(i) For simplicity, we will sometimes write this result as

∥u(·, t)∥L∞ ≤ Ct
− 1

q ∀ t > 0,

where ∥u0∥
1
q

L1 is included in the constant C.

(ii) We will need this result in the weaker setting of strong solutions to (5.7) with
initial data 0 ≤ u0 ∈ L1(R) such that

∫
R u0(x)dx = M > 0. This extension may

be achieved by means of an approximation, and we will therefore use this result
with strong solutions below. The same also applies for the result in Lemma 5.4, as
discussed in [5, p. 48].
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Proof. We follow the proof of Lemma 1.2 in [5, pp. 48–49]. This result builds upon
the result from Lemma 5.4, which assumes u0 is strictly positive. However, by an
approximation, we may still use this result here, where u0 only is assumed to be non-
negative.

First, we get the lower bound from u0 ≥ 0, since this implies u ≥ 0.
To obtain the upper bound, we start by integrating the result from Lemma 5.4 to

get

(u(x, t))q−1 ≤ x

t
∀ (x, t) ∈ R× (0,∞).

Fix a time t > 0 and a point x0 ∈ R. Then, this result yields

(u(x0, t))
q−1 ≤ (u(x, t))q−1 +

x0 − x

t
for x ≤ x0,

which can be rewritten as

(u(x, t))q−1 ≥ (u(x0, t))
q−1 − x0 − x

t
for x ≤ x0. (5.15)

Let x1 := x0 − (u(x0, t))
q−1t, then x1 ≤ x0 since u(x0, t) ≥ 0, and we can use (5.15) to

get

(u(x, t))q−1 ≥ (u(x0, t))
q−1 − x1 + (u(x0, t))

q−1t− x

t
=

x− x1
t

for x1 ≤ x ≤ x0.

Taking the root and integrating this inequality over [x1, x0] gives∫ x0

x1

u(x, t)dx ≥
∫ x0

x1

(
x− x1

t

) 1
q−1

dx.

The left hand side yields ∫ x0

x1

u(x, t)dx ≤
∫
R
u(x, t)dx = M,

while the right hand side yields∫ x1+(u(x0,t))q−1t

x1

(
x− x1

t

) 1
q−1

dx
z:=(x−x1)/t

=

∫ (u(x0,t))q−1

0
z

1
q−1 tdz =

q − 1

q
(u(x0, t))

qt.

Thus, we end up with

M ≥ q − 1

q
(u(x0, t))

qt,

which implies the upper bound

u(x0, t) ≤
(

Mq

q − 1

) 1
q

t
− 1

q .

The point x0 ∈ R was arbitrary, and so we have (5.14).
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We will also need the following lemma which bounds the derivatives of uq:

Lemma 5.7. Let 0 ≤ u0 ∈ L1(R) with
∫
R u0(x)dx = M > 0. Then, the strong solution

u to (5.7) with 1 < q < 2 satisfies

∂x[(u(x, t))
q] ≤ qu(x, t)

(q − 1)t
∀ (x, t) ∈ R× (0,∞).

Proof. The result follows directly from Lemma 5.4, as stated in [5, p. 49]:

∂x[(u(x, t))
q] = q(u(x, t))q−1∂xu(x, t) = q

q − 1

q − 1
u(x, t)(u(x, t))q−2∂xu(x, t)

=
qu(x, t)

q − 1
∂x[(u(x, t))

q−1] ≤ qu(x, t)

(q − 1)t
.

The last lemma is an energy estimate for u:

Lemma 5.8. Let 0 ≤ u0 ∈ L1(R) with
∫
R u0(x)dx = M > 0. Then, the strong solution

u to (5.7) with 1 < q < 2 satisfies∫ T

τ

∫
R
|∂xu(x, t)|2dxdt ≤

1

2

∫
R
(u(x, τ))2dx ≤ Cτ

− 1
q ∀ 0 < τ < T,

where C = C(q,M) is a constant.

Proof. The result is stated in Lemma 1.5 in [5, p. 50] without a detailed proof, but we
will write it out here.

With u being a strong solution of (5.7), we have that it fulfills

∂tu(x, t) = ∂2
xu(x, t)− (u(x, t))q−1∂xu(x, t),

a.e. for (x, t) ∈ R× (0,∞). We begin by multiplying this equation by u(x, t)ξR(x) and
integrating over R, where ξR is a bump function as defined in (4.4):∫

R
∂tuuξRdx =

∫
R
∂2
xuuξRdx−

∫
R
uq∂xuξRdx. (5.16)

Integrating by parts the first term on the right hand side yields∫
R
∂2
xuuξRdx = [∂xuuξR]

∞
x=−∞ −

∫
R
∂xu∂x(uξR)dx = −

∫
R
∂xu(∂xuξR + u∂xξR)dx

= −
∫
R
|∂xu|2ξRdx−

∫
R
u∂xu∂xξRdx.

We wish to show that the last term above vanishes as R → ∞ by using the estimate
on ∂2

xξR given in (4.4). To do this, we move the derivative over to ∂xξR through another
round of integration by parts, which gives∣∣∣∣−∫

R
u∂xu∂xξRdx

∣∣∣∣ = ∣∣∣∣12
∫
R
∂x(u

2)∂xξRdx

∣∣∣∣ = ∣∣∣∣[12u2∂xξR
]∞
x=−∞

− 1

2

∫
R
u2∂2

xξRdx

∣∣∣∣
≤ 1

2

∫
R
|u|2
∣∣∂2

xξR
∣∣dx ≤ 1

2

1

R2

∥∥∂2
xξ
∥∥
L∞

∫
R
|u|2dx → 0 as R → ∞.
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The last integral is finite by point (i) of Theorem 4.11, which states that for p ∈ (1,∞),
u ∈ C1((0,∞);Lp(R)). Additionally, the theorem states that u ∈ C((0,∞);W 2,p(R)).
Therefore, we have ∂2

xu(·, t) ∈ L2(R), and so we can apply the Dominated convergence
theorem (Theorem A.8) to let ξR → 1 as R → ∞ in the first term above:

−
∫
R
|∂xu|2ξRdx → −

∫
R
|∂xu|2dx as R → ∞.

We get rid of the second term on the right hand side of (5.16) in a similar manner.
In particular, observe that u(·, t) ∈ Lq+1(R) since 2 < q + 1 < 3:∣∣∣∣−∫

R
uq∂xuξRdx

∣∣∣∣ = ∣∣∣∣ 1

q + 1

∫
R
∂x(u

q+1)ξRdx

∣∣∣∣
=

∣∣∣∣[ 1

q + 1
uq+1ξR

]∞
x=−∞

− 1

q + 1

∫
R
uq+1∂xξRdx

∣∣∣∣
≤ 1

q + 1

∫
R
|u|q+1|∂xξR|dx

≤ 1

q + 1

1

R
∥∂xξ∥L∞

∫
R
|u|q+1dx

→ 0 as R → ∞.

Next, we move out the time derivative on the left hand side of (5.16) and take the limit
R → ∞ inside the integral with dominated convergence (Theorem A.8), to get∫

R
∂tuuξRdx =

1

2

∫
R
∂t(u

2)ξRdx =
1

2

d

dt

∫
R
u2ξRdx → 1

2

d

dt

∫
R
u2dx as R → ∞.

Returning to (5.16), this equation simplifies to

1

2

d

dt

∫
R
u2dx = −

∫
R
|∂xu|2dx,

and by integrating this in time over [τ, T ] with 0 < τ < T , we get∫ T

τ

∫
R
|∂xu(x, t)|2dxdt = −1

2

∫ T

τ

d

dt

∫
R
(u(x, t))2dxdt

= −1

2

∫
R
(u(x, T ))2dx+

1

2

∫
R
(u(x, τ))2dx

≤ 1

2

∫
R
(u(x, τ))2dx.

Finally, we obtain the wanted estimate for the right hand side by using Lemma 5.5
and that u(·, τ) has mass M by the mass conservation result in Lemma 5.1:

1

2

∫
R
(u(x, τ))2dx ≤ 1

2

∫
R
u(x, τ)∥u(·, τ)∥L∞dx ≤ 1

2

(
qM

q − 1

) 1
q

τ
− 1

q

∫
R
u(x, τ)dx

=
1

2

(
q

q − 1

) 1
q

M
q+1
q τ

− 1
q =: Cτ

− 1
q .
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Finally, we are ready to show the main result of this section, confirming our expec-
tations from above and thus completing our studies of strongly non-linear asymptotic
behaviour.

Theorem 5.9. Let 0 ≤ u0 ∈ L1(R) with
∫
R u0(x)dx = M > 0. Then, for p ∈ [1,∞)

and 1 < q < 2, the strong solution u to (5.7) satisfies

t
1
q
(1− 1

p
)∥u(·, t)− uM (·, t)∥Lp → 0 as t → ∞, (5.17)

where uM is the entropy solution to (5.8) given by (5.9).

Remark 5.10. As we have mentioned, this strongly non-linear behaviour is vastly dif-
ferent from the weakly non-linear behaviour found in the previous section. Not only does
the convergence rates differ, but by comparing the asymptotic solutions, we see that the
entropy solution (5.9) is both asymmetrical and discontinuous. The asymptotic solution
for the weakly non-linear behaviour, on the other hand, is given by the mass M times
the heat kernel G, which follows a classical Gaussian profile.

Remark 5.11. This result may be generalised in many different ways. Similarly as
we commented in Remark 5.3, we may consider higher dimensions as done in [15].
Furthermore, in Chapter 3 of [5] the assumption of non-negative solutions is removed,
while Chapter 7 generalises the result to more general non-linearities F (u) behaving like
uq near 0.

Remark 5.12. As commented in [1, p. 5], Theorem 5.9 still holds for a general constant
a, not just our convenient choice a = −1/q, in the sense that we just replace uM by the
unspecified entropy solution of the general problem (5.5) with initial data Mδ.

Remark 5.13. Observe that we no longer have a result in the case when p = ∞.
The reason for this is that we converge towards a discontinuous solution uM , while
convergence in L∞ happens pointwise a.e.

Proof. We follow a combination of the proofs presented in [5, pp. 50–54] and [6, pp. 7–11],
where the approach is to prove the convergence by scaling arguments. The proof is split
into steps to cover the different ideas of the proof. This proof technique is also described
in [11, p. 10] and used in [16]. Even though we follow the general approach as described
above, some of the arguments are considerably expanded where the original sources are
brief or unspecific. This is especially the case in Step 3 where we are justifying the
passage to the limit.

Step 1. Rescaling. Let λ > 0. We have already used the rescaling

uλ(x, t) := λu(λx, λqt)

to determine that we expect the asymptotic behaviour of u to be given by uM , but now
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we will use it to show rigorously that this is the case. The idea is based on the following:

∥uλ(·, 1)− uM (·, 1)∥L1

=

∫ 0

−∞
|λu(λx, λq)− 0|dx+

∫ r(1)

0

∣∣∣λu(λx, λq)− x
1

q−1

∣∣∣dx+

∫ ∞

r(1)
|λu(λx, λq)− 0|dx

y:=λx
=

1

λ

∫ 0

−∞
|λu(y, λq)|dy + 1

λ

∫ λr(1)

0

∣∣∣∣λu(y, λq)−
(y
λ

) 1
q−1

∣∣∣∣dy + 1

λ

∫ ∞

λr(1)
|λu(y, λq)|dy

=
1

λ

∫ 0

−∞
|λu(y, λq)|dy + 1

λ

∫ λr(1)

0

∣∣∣λu(y, λq)− λuM

( y

λq
, 1
)∣∣∣dy + 1

λ

∫ ∞

λr(1)
|λu(y, λq)|dy

t:=λq

=

∫ 0

−∞
|u(y, t)− 0|dy +

∫ r(t)

0
|u(y, t)− uM (y, t)|dy +

∫ ∞

r(t)
|u(y, t)− 0|dy

= ∥u(·, t)− uM (·, t)∥L1 .

Thus, if we can show that uλ(·, 1) → uM (·, 1) in L1 as λ → ∞, this is equivalent to
showing that u(·, t) → uM (·, t) in L1 as t → ∞.

Furthermore, the result (5.17) is implied by the convergence of u to uM in L1 com-
bined with the L∞-estimates (5.10) and (5.14) for uM and u:

t
1
q
(1− 1

p
)∥u(·, t)− uM (·, t)∥Lp

= t
1
q
(1− 1

p
)
(∫

R
|u(x, t)− uM (x, t)|pdx

) 1
p

≤ t
1
q
(1− 1

p
)
(∫

R
|u(x, t)− uM (x, t)|∥u(·, t)− uM (·, t)∥p−1

L∞ dx

) 1
p

≤ t
1
q
(1− 1

p
)
(∥u(·, t)∥L∞ + ∥uM (·, t)∥L∞)

p−1
p

(∫
R
|u(x, t)− uM (x, t)|dx

) 1
p

≤ t
1
q
(1− 1

p
)
(
C1t

− 1
q + C2t

− 1
q

) p−1
p ∥u(·, t)− uM (·, t)∥

1
p

L1

= t
1
q
(1− 1

p
)
(C1 + C2)

p−1
p t

− 1
q
(1− 1

p
)∥u(·, t)− uM (·, t)∥

1
p

L1

= (C1 + C2)
p−1
p ∥u(·, t)− uM (·, t)∥

1
p

L1 .

Therefore, we are done if we can show that uλ(·, 1) → uM (·, 1) in L1 as λ → ∞.

Step 2. Uniform estimates.

In order to pass to the limit λ → ∞ for uλ, we first need some estimates on these
functions. First, observe that

u(x, t) ≥ 0 =⇒ uλ(x, t) ≥ 0 ∀ (x, t) ∈ R× (0,∞). (5.18)

Through direct computation, it can be seen that the estimates on u given in Lemma 5.4,
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Lemma 5.5 and Lemma 5.7 still hold for uλ, so that we have

∂x
[
(uλ(x, t))

q−1
]
≤ 1

t
∀ (x, t) ∈ R× (0,∞), (5.19)

∥uλ(·, t)∥L∞ ≤ Ct
− 1

q ∀ t > 0, (5.20)

∂x[(uλ(x, t))
q] ≤ quλ(x, t)

(q − 1)t
∀ (x, t) ∈ R× (0,∞). (5.21)

Furthermore, we ensured mass conservation for uλ in Section 5.1, giving∫
R
uλ(x, t)dx = M ∀ t > 0. (5.22)

However, the estimate given in Lemma 5.8 is changed in the sense that it behaves
like λ2−q → ∞ as λ → ∞:∫ T

τ

∫
R
|∂xuλ(x, t)|2dxdt ≤

1

2
λ2−q

∫
R
(uλ(x, τ))

2dx = O(λ2−q) ∀ 0 < τ < T. (5.23)

This can be seen by the following:∫ T

τ

∫
R
|∂xuλ(x, t)|2dxdt =

∫ T

τ

∫
R

∣∣λ2∂xu(λx, λ
qt)
∣∣2dxdt

z:=λx
y:=λqt
= λ4

∫ λqT

λqτ

∫
R
|∂xu(z, y)|2

1

λq+1
dzdy ≤ 1

2
λ3−q

∫
R
(u(z, λqτ))2dz

x:=z/λ
=

1

2
λ3−q

∫
R
(u(λx, λqτ))2λdx =

1

2
λ2−q

∫
R
(uλ(x, τ))

2dx = O(λ2−q),

where the final integral is bounded using (5.20) and (5.22). We will also need an estimate
in L1(R) on uqλ, and this is obtained similarly:∫

R
|(uλ(x, t))q|dx ≤

∫
R
|uλ(x, t)|∥uλ(·, t)∥q−1

L∞ dx ≤ Cq−1t
− q−1

q M ∀ t > 0. (5.24)

Next, we introduce the functions

vλ(x, t) :=

∫ x

−∞
uλ(y, t)dy.

The reason for this is that they will play a role in taking the limit for λ. Observe that
by (5.18) and (5.22), these functions are bounded:

0 ≤ vλ(x, t) ≤ M ∀ (x, t) ∈ R× (0,∞). (5.25)

By the fundamental theorem of calculus, we have

∂xvλ = uλ,
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which combined with (5.20) gives us a bound on ∂xvλ as well:

∥∂xvλ(·, t)∥L∞ = ∥uλ(·, t)∥L∞ ≤ Ct
− 1

q ∀ t > 0. (5.26)

We finally wish to bound ∂tvλ. Recall that the rescaled functions uλ satisfy the
following equation:

∂tuλ = λq−2∂2
xuλ − uq−1

λ ∂xuλ ∀ (x, t) ∈ R× (0,∞). (5.27)

By integrating this equation, we get∫ x

−∞
∂tuλdy =

∫ x

−∞
λq−2∂2

xuλdy −
∫ x

−∞
uq−1
λ ∂xuλdy.

Since u ∈ C([0,∞);L1(R)), this implies that uλ ∈ C([0,∞);L1(R)) as well, and thus we
can move the derivatives out of the integrals and apply the definition of vλ to get

∂tvλ = λq−2∂2
xvλ − 1

q
(uλ)

q = λq−2∂xuλ − 1

q
(uλ)

q ∀ (x, t) ∈ R× (0,∞).

For the last term we used the fundamental theorem of calculus to get rid of the integral.

Moreover, since uλ is non-negative by (5.18), we get

∂tvλ ≤ λq−2∂xuλ.

Now, we can apply this to (5.23) to get∫ T

τ

∫
K
|∂tvλ(x, t)|2dxdt ≤

∫ T

τ

∫
K

∣∣λq−2∂xuλ(x, t)
∣∣2dxdt

≤ λ2(q−2)

∫ T

τ

∫
R
|∂xuλ(x, t)|2dxdt ≤ λ2(q−2) 1

2
λ2−q

∫
R
(uλ(x, τ))

2dx

≤ 1

2
λq−2

∫
R
uλ(x, τ)∥uλ(·, τ)∥L∞dx ≤ 1

2
λq−2MCτ

− 1
q ≤ 1

2
MCτ

− 1
q .

(5.28)

We have used (5.20), (5.22) and the fact that λq−2 ≤ 1 for λ ≥ 1 since 1 < q < 2 =⇒
−1 < q − 2 < 0. Thus, we have a uniform bound for ∂tvλ in L2

loc((0,∞);L2(R)).
Step 3. Passage to the limit.

Let

S := {ṽλ | λ > 0},

where

ṽλ := vλ · 1Kx×Kt ,
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for some compact Kx ×Kt ⊆ R× (0,∞). Thus, S is a subset of Lp(R2) for p ∈ [1,∞),
which can be seen as follows:

∥ṽλ∥Lp =

(∫
R

∫
R
|vλ(x, t)1Kx×Kt(x, t)|

pdxdt

) 1
p

=

(∫
Kt

∫
Kx

|vλ(x, t)|pdxdt
) 1

p

≤
(∫

Kt

∫
Kx

Mpdxdt

) 1
p

= M(µ(Kx ×Kt))
1
p < ∞.

Here, µ denotes the Lebesgue measure, and we have used (5.25) to bound vλ. We wish
to make use of Kolmogorov’s compactness theorem (Theorem A.18) to take the limit
λ → ∞ for ṽλ. The theorem states that S is relatively compact if and only if three
specific conditions are fulfilled, and we will now show this indeed is the case.

For the first condition, observe that the bound on ṽλ in Lp(R2) above is independent
of λ, thus we have

sup
λ>0

∥ṽλ∥Lp < ∞,

and condition (i) is fulfilled.

For condition (ii), we need to show that

∥ṽλ(·+ h, ·+ k)− ṽλ(·, ·)∥Lp ≤ ε(|(h, k)|),

for a modulus of continuity ε that is independent of λ. In order to control this translation,
we will make use of the bounds on the first derivatives of vλ established in the last step.

We start by expanding the expression with the triangle inequality:

∥ṽλ(·+ h, ·+ k)− ṽλ(·, ·)∥Lp = ∥ṽλ(·+ h, ·+ k)− ṽλ(·, ·)± ṽλ(·+ h, ·)∥Lp

≤ ∥ṽλ(·+ h, ·+ k)− ṽλ(·+ h, ·)∥Lp + ∥ṽλ(·+ h, ·)− ṽλ(·, ·)∥Lp =: A+B.

Next, we write out ṽλ and expand part A once more:

A =
∣∣∣∣vλ(·+ h, ·+ k)1Kx×Kt(·+ h, ·+ k)− vλ(·+ h, ·)1Kx×Kt(·+ h, ·)
± vλ(·+ h, ·)1Kx×Kt(·+ h, ·+ k)

∣∣∣∣
Lp

≤ ∥vλ(·+ h, ·+ k)1Kx×Kt(·+ h, ·+ k)− vλ(·+ h, ·)1Kx×Kt(·+ h, ·+ k)∥Lp

+ ∥vλ(·+ h, ·)1Kx×Kt(·+ h, ·+ k)− vλ(·+ h, ·)1Kx×Kt(·+ h, ·)∥Lp =: A1 +A2.

For A1, we use the generalised mean value theorem (3.3) introduced in Chapter 3
and the bound (5.25) for vλ to get
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A1 =

(∫
R

∫
R
|vλ(x+ h, t+ k)− vλ(x+ h, t)|p|1Kx×Kt(x+ h, t+ k)|pdxdt

) 1
p

≤
(∫

Kt−k

∫
Kx−h

|vλ(x+ h, t+ k)− vλ(x+ h, t)|pdxdt
) 1

p

=

(∫
Kt−k

∫
Kx−h

|vλ(x+ h, t+ k)− vλ(x+ h, t)|2

· |vλ(x+ h, t+ k)− vλ(x+ h, t)|p−2dxdt

) 1
p

≤

(∫
Kt−k

∫
Kx−h

∣∣∣∣(∫ 1

0
∂tvλ(x+ h, t+ θk)dθ

)
· k
∣∣∣∣2(2M)p−2dxdt

) 1
p

.

The notation Kt − k and Kx − h expresses that the sets Kt and Kx are translated by
k and h, respectively, corresponding to the indicator function. To continue, we wish
to make use of the fact that ∂tvλ is in L2

loc((0,∞);L2(R)) by (5.28). Observing that
the function x → |x|2 for x ∈ R is convex, we use Jensen’s inequality (Theorem A.5)
to move the squared absolute value inside the inner integral, while Fubini’s theorem
(Theorem A.10) ensures we can interchange the integral order to get

(∫
Kt−k

∫
Kx−h

∣∣∣∣(∫ 1

0
∂tvλ(x+ h, t+ θk)dθ

)
· k
∣∣∣∣2(2M)p−2dxdt

) 1
p

≤ (2M)
p−2
p |k|

2
p

(∫
Kt−k

∫
Kx−h

∫ 1

0
|∂tvλ(x+ h, t+ θk)|2dθdxdt

) 1
p

= (2M)
p−2
p |k|

2
p

(∫ 1

0

∫
Kt−k

∫
Kx−h

|∂tvλ(x+ h, t+ θk)|2dxdtdθ
) 1

p

→ 0 as |(h, k)| → 0.

For A2, we once again bound vλ using (5.25), while continuity of translation for
Lp-functions (Theorem A.13) allows us to take the limit for 1Kx×Kt ∈ Lp(R2):

A2 =

(∫
R

∫
R
|vλ(x+ h, t)|p|1Kx×Kt(x+ h, t+ k)− 1Kx×Kt(x+ h, t)|pdxdt

) 1
p

≤
(∫

R

∫
R
Mp|1Kx×Kt(x+ h, t+ k)− 1Kx×Kt(x+ h, t)|pdxdt

) 1
p

= M∥1Kx×Kt(·, ·+ k)− 1Kx×Kt(·, ·)∥Lp(R2)

→ 0 as |(h, k)| → 0.
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Next, we turn to part B which we handle similarly as part A, first expanding and
using the triangle inequality:

B = ∥vλ(·+ h, ·)1Kx×Kt(·+ h, ·)− vλ(·, ·)1Kx×Kt(·, ·)± vλ(·, ·)1Kx×Kt(·+ h, ·)∥Lp

≤ ∥vλ(·+ h, ·)1Kx×Kt(·+ h, ·)− vλ(·, ·)1Kx×Kt(·+ h, ·)∥Lp

+ ∥vλ(·, ·)1Kx×Kt(·+ h, ·)− vλ(·, ·)1Kx×Kt(·, ·)∥Lp =: B1 +B2

For B1 we proceed as with A1, but this time we make use of the bound on ∂xvλ in
(5.26), since we are dealing with a translation in space instead of in time. This yields

B1 =

(∫
R

∫
R
|vλ(x+ h, t)− vλ(x, t)|p|1Kx×Kt(x+ h, t)|pdxdt

) 1
p

≤
(∫

Kt

∫
Kx−h

|vλ(x+ h, t)− vλ(x, t)|pdxdt
) 1

p

=

(∫
Kt

∫
Kx−h

∣∣∣∣(∫ 1

0
∂xvλ(x+ θh, t)dθ

)
· h
∣∣∣∣pdxdt)

1
p

≤
(∫

Kt

∫
Kx−h

∣∣∣∣∫ 1

0
Ct

− 1
q dθ

∣∣∣∣p|h|pdxdt)
1
p

=

(∫
Kt

∫
Kx−h

Cpt
− p

q |h|pdxdt
) 1

p

= C|h|(µ(Kx − h))
1
p

[
t
q−p
pq

]
∂Kt

→ 0 as |(h, k)| → 0.

Turning to B2, we treat this as as we did with A2, to get:

B2 =

(∫
R

∫
R
|vλ(x, t)|p|1Kx×Kt(x+ h, t)− 1Kx×Kt(x, t)|

pdxdt

) 1
p

≤
(∫

R

∫
R
Mp|1Kx×Kt(x+ h, t)− 1Kx×Kt(x, t)|

pdxdt

) 1
p

= M∥1Kx×Kt(·+ h, ·)− 1Kx×Kt(·, ·)∥Lp(R2)

→ 0 as |(h, k)| → 0.

Thus, we have bounded all four parts of the expression independently of λ in such a way
that they all approach 0 as |(h, k)| → 0, meaning condition (ii) is fulfilled.

Finally, condition (iii) requires that

lim
α→∞

∫
{(x,t)∈R2||(x,t)|≥α}

|ṽλ(x, t)|pdxdt = 0 uniformly for ṽλ ∈ S.

This condition is immediately fulfilled by construction of ṽλ = vλ · 1Kx×Kt .
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Thus, we have that S is relatively compact in Lp(R2), meaning that the closure
of S, S, is compact, i.e. every infinite sequence in S contains a subsequence which is
strongly convergent in Lp(R2). We may therefore take a subsequence λj of λ which goes
to infinity, and conclude that ṽλj

→ ṽ in Lp(R2), for some ṽ.

From this we can recover the original function vλj
by a covering and a diagonal

argument, so that vλj
converges to some v̄ in Lp

loc(R × (0,∞)) for p ∈ [1,∞) and thus
also a.e. in R× (0,∞).

Next, we turn to the convergence of (uλ(·, t0))q, for a fixed t0 > 0. This time, we let

S ′ := {ũλ | λ > 0},

where

ũλ(·) := (uλ(·, t0))q · 1Kx(·),

for some compact Kx ⊆ R. Proceeding analogously as we did with ṽλ, we get that S ′ is
a subset of Lp(R) for p ∈ [1,∞). We can now repeat the steps we took for ṽλ, with some
simplifications (due to the lack of a time dimension) and modifications, to show that the
three conditions in Kolmogorov’s compactness theorem (Theorem A.18) are also fulfilled
in this framework. For instance, we make use of the estimates (5.24) and (5.21) to bound
uqλ and ∂xu

q
λ.

Thus, we get that S ′ is relatively compact in Lp(R), which gives that (uλj′ (·, t0))
q

converges along some subsequence λj′ to some w̄(·, t0) in Lp
loc(R) for p ∈ [1,∞) and a.e.

in R.
To recover the convergence of uλ from this, we will make use of Theorem A.19 to

write ∣∣∣uλ(x, t0)− (w̄(x, t0))
1
q

∣∣∣ = ∣∣∣((uλ(x, t0))q) 1
q − (w̄(x, t0))

1
q

∣∣∣
≤ |(uλ(x, t0))q − w̄(x, t0)|

1
q for a.e. x ∈ R.

(5.29)

To justify the use of this theorem, we need to ensure that uqλ and w̄ are finite. For uqλ,
observe that (5.20) yields the following bound:

0 ≤ (uλ(x, t0))
q ≤ Cq

t0
for a.e. x ∈ R. (5.30)

For the limit w̄, we use this bound together with the convergence of uqλj′
a.e. to say that

for λj′ large enough,

|w̄(x, t0)| ≤
∣∣∣w̄(x, t0)− (uλj′ (x, t0))

q
∣∣∣+ ∣∣∣(uλj′ (x, t0))

q
∣∣∣ ≤ 1 +

Cq

t0
for a.e. x ∈ R.

Thus, by (5.29) we get that uλj′ (·, t0) converges along the subsequence λj′ to (w̄(·, t0))
1
q

a.e. in R.
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For the convergence locally in Lp, we similarly get

∥∥∥uλ(·, t0)− (w̄(·, t0))
1
q

∥∥∥
Lp
loc

=

(∫
K

∣∣∣((uλ(x, t0))q) 1
q − (w̄(x, t0))

1
q

∣∣∣pdx) 1
p

≤
(∫

K

∣∣∣|(uλ(x, t0))q − w̄(x, t0)|
1
q

∣∣∣pdx) 1
p

=

(∫
K
|(uλ(x, t0))q − w̄(x, t0)|

p
q dx

) 1
p
· q
q

= ∥(uλ(·, t0))q − w̄(·, t0)∥
1
q

L
p
q
loc

,

where K ⊆ R is some compact subset. In order to use the convergence of (uλj′ (·, t0))
q to

w̄(·, t0) in Lp
loc(R) for p ∈ [1,∞) here, we need to ensure that p/q ≥ 1. With 1 < q < 2,

we therefore require p ∈ [2,∞), meaning we must show the result for p ∈ [1, 2) in some
other way.

To cover p = 1, we apply Hölder’s inequality (Theorem A.3) and the newly estab-
lished convergence in L2

loc(R):∥∥∥uλ(·, t0)− (w̄(·, t0))
1
q

∥∥∥
L1
loc

=

∫
K

∣∣∣(uλ(x, t0)− (w̄(x, t0))
1
q

)
· 1
∣∣∣dx

≤
(∫

K

∣∣∣uλ(x, t0)− (w̄(x, t0))
1
q

∣∣∣2dx) 1
2
(∫

K
|1|2dx

) 1
2

= (µ(K))
1
2

∥∥∥uλ(·, t0)− (w̄(·, t0))
1
q

∥∥∥
L2
loc

.

For p ∈ (1, 2), we interpolate between the convergence in L1
loc and L2

loc with (Theo-
rem A.4):

∥∥∥uλ(·, t0)− (w̄(·, t0))
1
q

∥∥∥
Lp
loc

≤
∥∥∥uλ(·, t0)− (w̄(·, t0))

1
q

∥∥∥ 2−p
p

L1
loc

∥∥∥uλ(·, t0)− (w̄(·, t0))
1
q

∥∥∥ 2(p−1)
p

L2
loc

.

Thus, we have shown that uλj′ (·, t0) converges to ū(·, t0) := (w̄(·, t0))
1
q in Lp

loc(R) for
p ∈ [1,∞).

Next, recall the relation between uλ and vλ:

vλ(x, t) =

∫ x

−∞
uλ(y, t)dy.

By taking the limit in this relation, we conclude that

∂xv̄(x, t0) = ū(x, t0) for a.e. x ∈ R.
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Thus, by this relation, we have now identified the limit of uqλj′
independently of the

subsequence, meaning the whole sequences uλj
and uqλj

converge to ū and w̄, respectively,

for the fixed time t0. Moreover, the bounds given in (5.20) and (5.30) still hold for the
limits ū and w̄, respectively. For ū, this can be seen from

|ū(x, t)| ≤
∣∣ū(x, t)− uλj

(x, t)
∣∣+ ∣∣uλj

(x, t)
∣∣

≤
∣∣ū(x, t)− uλj

(x, t)
∣∣+ Ct

− 1
q

→ Ct
− 1

q ,

along the sequence λj , for t > 0 and a.e. x ∈ R. w̄ can be treated similarly.
What remains is to take the very weak limit in the equation (5.27) for uλ. We

multiply this equation by a test function φ ∈ C∞
c (R) and integrate over R × (τ, t), for

0 < τ < t to get∫ t

τ

∫
R
∂tuλ(x, s)φ(x)dxds = λq−2

∫ t

τ

∫
R
∂2
xuλ(x, s)φ(x)dxds

−
∫ t

τ

∫
R
(uλ(x, s))

q−1∂xuλ(x, s)φ(x)dxds.

Through integration by parts and by moving the time derivative out of the inner integral
on the left hand side, this turns into∫

R
uλ(x, t)φ(x)dx−

∫
R
uλ(x, τ)φ(x)dx = λq−2

∫ t

τ

∫
R
uλ(x, s)∂

2
xφ(x)dxds

+
1

q

∫ t

τ

∫
R
(uλ(x, s))

q∂xφ(x)dxds.

(5.31)

We claim that by taking the limit through the sequence λj → ∞, we end up with∫
R
ū(x, t)φ(x)dx−

∫
R
ū(x, τ)φ(x)dx =

1

q

∫ t

τ

∫
R
(ū(x, s))q∂xφ(x)dxds,

which states that ū fulfills the convective equation (5.8) in the sense of distributions for
time greater than 0. To show this claim, we consider each term separately. Let s = τ, t,
then the terms on the left hand side converge by the Dominated convergence theorem
(Theorem A.8):∣∣∣∣∫

R
uλj

(x, s)φ(x)dx−
∫
R
ū(x, s)φ(x)dx

∣∣∣∣ ≤ ∫
R

∣∣uλj
(x, s)− ū(x, s)

∣∣|φ(x)|dx → 0, (5.32)

as λj → ∞.

The diffusion term disappears as expected, since λq−2
j → 0 as λj → ∞, and the

integral is bounded similarly as we have done several times by now:∣∣∣∣λq−2
j

∫ t

τ

∫
R
uλj

(x, s)∂2
xφ(x)dxds

∣∣∣∣ ≤ λq−2
j

∥∥∂2
xφ
∥∥
L∞

∫ t

τ

∫
R
uλj

(x, s)dxds

≤ λq−2
j

∥∥∂2
xφ
∥∥
L∞M(t− τ) → 0 as λj → ∞.
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Finally, for the last term, we apply the Dominated convergence theorem (Theo-
rem A.8) together with the established convergence of uqλj

to get

∣∣∣∣1q
∫ t

τ

∫
R
(uλj

(x, s))q∂xφ(x)dxds−
1

q

∫ t

τ

∫
R
(ū(x, s))q∂xφ(x)dxds

∣∣∣∣
≤ 1

q

∫ t

τ

∫
R

∣∣(uλj
(x, s))q − (ū(x, s))q

∣∣|∂xφ(x)|dxds
→ 0 as λj → ∞.

Step 4. Initial condition.

Having shown that ū fulfills the convective equation (5.8) in the limit for time
greater than zero, what remains is to check the initial condition. We wish to show
that ess limt→0+ ū(x, t) = Mδ(x) in the weak sense of finite measures on R, i.e. for all
ε > 0, ∣∣∣∣∫

R
ū(x, t)φ(x)dx−Mφ(0)

∣∣∣∣ ≤ ε, (5.33)

as long as 0 < t < τ for some τ > 0. This must hold for all φ ∈ C(R) ∩ L∞(R).
To show this, we start by assuming φ ∈ C∞

c (R) such that 0 ≤ φ ≤ 1. Expanding the
expression and using the triangle inequality yields∣∣∣∣∫

R
ū(x, t)φ(x)dx−Mφ(0)

∣∣∣∣
=

∣∣∣∣∫
R
ū(x, t)φ(x)dx−Mφ(0)±

∫
R
uλ(x, t)φ(x)dx±

∫
R
uλ(x, 0)φ(x)dx

∣∣∣∣
≤
∣∣∣∣∫

R
ū(x, t)φ(x)dx−

∫
R
uλ(x, t)φ(x)dx

∣∣∣∣+ ∣∣∣∣∫
R
uλ(x, t)φ(x)dx−

∫
R
uλ(x, 0)φ(x)dx

∣∣∣∣
+

∣∣∣∣∫
R
uλ(x, 0)φ(x)dx−Mφ(0)

∣∣∣∣.
Now, we showed in (5.32) that the first term converges to zero:∣∣∣∣∫

R
ū(x, t)φ(x)dx−

∫
R
uλj

(x, t)φ(x)dx

∣∣∣∣→ 0 as λj → ∞.

For the third term, recall from (5.3) in Section 5.1, that for all φ ∈ C(R) ∩ L∞(R),∣∣∣∣∫
R
uλ(x, 0)φ(x)dx−Mφ(0)

∣∣∣∣→ 0 as λ → ∞.

For the second term, we use (5.31) with τ = 0 to bound it when 0 < t < t0 and
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λ > λ0 for a sufficiently small t0 > 0 and sufficiently large λ > 0:∣∣∣∣∫
R
uλ(x, t)φ(x)dx−

∫
R
uλ(x, 0)φ(x)dx

∣∣∣∣
=

∣∣∣∣λq−2

∫ t

0

∫
R
uλ(x, s)∂

2
xφ(x)dxds+

1

q

∫ t

0

∫
R
(uλ(x, s))

q∂xφ(x)dxds

∣∣∣∣
≤ λq−2

∥∥∂2
xφ
∥∥
L∞

∫ t

0

∫
R
|uλ(x, s)|dxds+

1

q
∥∂xφ∥L∞

∫ t

0

∫
R
|uλ(x, s)|∥uλ(·, s)∥q−1

L∞ dxds

≤ λq−2
∥∥∂2

xφ
∥∥
L∞Mt+

1

q
∥∂xφ∥L∞M

∫ t

0
Cq−1s

− q−1
q ds

= λq−2
∥∥∂2

xφ
∥∥
L∞Mt+ ∥∂xφ∥L∞MCq−1t

1
q

≤ ε.

We thus have control over all parts, meaning (5.33) holds with φ ∈ C∞
c (R) such that

0 ≤ φ ≤ 1. To extend this to φ ∈ C(R) ∩ L∞(R), one may perform an argument
analogous to the one by Ignat and Stan in [17, pp. 277–278], where they control the tails
of uλ and thereby the tails of ū.

Step 5. Identification of the limit.
Now that we have found a limit ū, we wish to identify this as the solution uM of

the convective equation (5.8). We showed in the last step that ū solves the convective
equation (5.8) in the sense of distributions, i.e. in a very weak sense, with initial data
Mδ in the weak sense of finite measures. Regarding the regularity of the solution, we
have seen that ū is bounded away from zero, giving ū ∈ L∞(R× (τ,∞)) for some τ > 0.
Furthermore, we claim that ū ∈ L∞((0,∞);L1(R)). Indeed, for λj great enough, we
have∫
R
|ū(x, t)|1B(0,r)(x)dx ≤

∫
R

∣∣ū(x, t)− uλj
(x, t)

∣∣1B(0,r)(x)dx+

∫
R

∣∣uλj
(x, t)

∣∣1B(0,r)(x)dx

≤
∫
B(0,r)

∣∣ū(x, t)− uλj
(x, t)

∣∣dx+

∫
R
uλj

(x, t)dx

≤ 1 +M,

for some r > 0. Applying Fatou’s lemma (Theorem A.7) in the limit for r yields∫
R
|ū(x, t)|dx ≤ lim inf

r→∞

∫
R
|uλ(x, t)|1B(0,r)(x)dx ≤ 1 +M.

Since this bound does not depend on the time, we may take essential supremum in time
and conclude that ū ∈ L∞((0,∞);L1(R)).

In order to identify our solution ū equal to the unique entropy solution uM , we claim
that it suffices to ensure that our solution ū satisfies the entropy inequality we introduced
in Lemma 5.4,

∂x[(ū(x, t))
q] ≤ Cū(x, t)

t
, (5.34)
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in a sense of distributions. We will justify this claim in Chapter 6.
To show the inequality (5.34) still holds in the limit, we multiply the estimate given

in (5.21) by a test function 0 ≤ φ ∈ C∞
c (R × (0,∞)) and integrate over R × (0,∞)) to

get: ∫ ∞

0

∫
R
∂x[(uλ(x, t))

q]φ(x, t)dxdt ≤
∫ ∞

0

∫
R

Cuλ(x, t)

t
φ(x, t)dxdt,

which through integration by parts on the left hand side becomes

−
∫ ∞

0

∫
R
(uλ(x, t))

q∂xφ(x, t)dxdt ≤
∫ ∞

0

∫
R

Cuλ(x, t)

t
φ(x, t)dxdt.

Finally, by taking the limit along the sequence λj for uqλj
and uλj

using dominated

convergence (Theorem A.8), we get

−
∫ ∞

0

∫
R
(ū(x, t))q∂xφ(x, t)dxdt ≤

∫ ∞

0

∫
R

Cū(x, t)

t
φ(x, t)dxdt,

as wanted.
Since the limit ū now has been uniquely identified as uM , and therefore the same

applies to the limit v̄, we are able to say that the convergence holds for the whole family
{uλ} and not just the sequence {uλj

}. Therefore, we conclude that uλ → uM as λ → ∞.
Step 6. Convergence in L1.
Finally, we are ready to show that uλ(·, 1) → uM (·, 1) in L1(R) as λ → ∞, which is

the last step of the proof. Observe that uM as defined in (5.9), only has support on a
bounded subset of R, say [−r, r] for some r > 0. We have shown that uλ(·, 1) converges
to uM (·, 1) in L1

loc(R), and so for every ε > 0 there exists a λ0 such that for λ > λ0,∫ r

−r
|uλ(x, 1)− uM (x, 1)|dx ≤ ε. (5.35)

Next, we must gain control outside of [−r, r]. Since uM is a fundamental solution
of (5.8) with initial data Mδ, and mass conservation holds for this equation (this can
be seen by removing the diffusion term in the proof of Lemma 5.1), we deduce that the
mass of uM must be equal to M :∫

R
uM (x, 1)dx =

∫ r

−r
uM (x, 1)dx = M. (5.36)

We use (5.35) to write∫ r

−r
uM (x, 1)dx =

∫ r

−r
uλ(x, 1)dx+

∫ r

−r
(uM (x, 1)− uλ(x, 1))dx

≤
∫ r

−r
uλ(x, 1)dx+

∫ r

−r
|uM (x, 1)− uλ(x, 1)|dx

≤
∫ r

−r
uλ(x, 1)dx+ ε,
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and together with the mass estimate in (5.36) this yields∫ r

−r
uλ(x, 1)dx ≥

∫ r

−r
uM (x, 1)dx− ε = M − ε.

Thus, we control the outer part as well:∫
{|x|>r}

|uλ(x, 1)− uM (x, 1)|dx =

∫
{|x|>r}

uλ(x, 1)dx = M −
∫ r

−r
uλ(x, 1)dx

≤ M − (M − ε) = ε.

(5.37)

At last, combining (5.35) and (5.37), we get∫
R
|uλ(x, 1)− uM (x, 1)|dx

=

∫ r

−r
|uλ(x, 1)− uM (x, 1)|dx+

∫
{|x|>r}

|uλ(x, 1)− uM (x, 1)|dx

≤ 2ε,

and so we are done.



Chapter 6

Entropy solutions for a convection
equation

We saw in the end of the last chapter that the strongly non-linear asymptotic behaviour
of the convection-diffusion equation in (5.1), was given by a solution ū of (5.8), a strictly
convective equation with Mδ as initial data, where M was the mass of the solution.
Furthermore, we found a unique so-called entropy solution uM to this problem given
by (5.9), and claimed that the two actually were equal since ū satisfied the entropy
inequality (5.34). In this chapter we will see why this was the case, by studying entropy
solutions and their uniqueness, for the following more general convection equation

∂tu+ ∂x(F (u)) = 0, (6.1)

where (x, t) ∈ R×(0,∞), while F : R → R is locally Lipschitz continuous with F (0) = 0.

We will mainly follow the work by Liu and Pierre [7] on this matter, as well as the
fundamental work by Kružkov [8], which Liu and Pierre build their work upon. These
articles are working for time up to some T > 0, but we will extend this to T = ∞
similarly as we did in Chapter 3.

The content in this chapter is not treated as rigorously as the previous chapters,
we will skip many proofs and rather focus on illustrating and discussing the main ideas
behind them.

6.1 Defining entropy solutions

As stated in [5, p. 44], solutions to (6.1) are generally not unique, and so it is necessary
to define a special class of solutions called entropy solutions. The idea is that we want to
define a class of solutions to (6.1) for which L1-contraction holds. The reason for this, is
that under the assumption of sufficient regularity, L1-contraction implies uniqueness for
solutions with the same initial data, as we saw in the proof of Theorem 4.6 in Chapter 4.
This leads us to a definition very similar to the result of Lemma 4.3, a result which
implied L1-contraction for the convection-diffusion equation in Chapter 4.
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We present a definition of entropy solutions based on the one given by Liu and Pierre
[7, p. 422], that is, in the sense as introduced by Kružkov [8, p. 220]:

Definition 6.1. Let F : R → R be locally Lipschitz continuous with F (0) = 0, and µ
be a non-negative finite Radon measure on R. We say that u is an entropy solution to
(6.1) with initial value µ if u ∈ L∞((τ,∞);L1(R)) ∩ L∞(R× (τ,∞)) for all τ > 0, and
if:

(i) For all k ∈ R and φ ∈ C∞
c (R× (0,∞)) with φ ≥ 0,∫ ∞

0

∫
R
(|u− k|∂tφ+ sign(u− k)(F (u)− F (k))∂xφ) dxdt ≥ 0. (6.2)

(ii) For all φ ∈ C(R) ∩ L∞(R),

ess lim
t→0+

∫
R
φ(x)u(x, t)dx =

∫
R
φ(x)dµ(x).

Note that the sign in front of the convection term in point (i) is different when
comparing to the Kato inequality in Lemma 4.3. This difference comes from the fact
that the convection term is on the right hand side of the convection-diffusion equation
(4.1), which the Kato inequality is based on. The inequality above, on the other hand,
comes from (6.1), where the convection term is on the left hand side.

The initial data is defined in this broad sense of non-negative finite Radon measures
(see e.g. [18, p. 63] for a definition) to eventually allow us to choose Dirac’s delta
function δ as initial data. We will, however, first consider more regular initial data in
L1(R) ∩ L∞(R) before we get to this case.

Entropy solutions of (6.1) are contained in the class of very weak solutions, i.e.
solutions taken in the distributional sense. To see this, we choose k ≤ −∥u∥L∞ in the
definition above, which yields u− k ≥ u+ ∥u∥L∞ ≥ 0, and thus

0 ≤
∫ ∞

0

∫
R
(|u− k|∂tφ+ sign(u− k)(F (u)− F (k))∂xφ) dxdt

=

∫ ∞

0

∫
R
((u− k)∂tφ+ (F (u)− F (k))∂xφ) dxdt

=

∫ ∞

0

∫
R
(u∂tφ+ F (u)∂xφ) dxdt−

∫ ∞

0

∫
R
(k∂tφ+ F (k)∂xφ) dxdt

=

∫ ∞

0

∫
R
(u∂tφ+ F (u)∂xφ) dxdt.

We have used that the second integral on the third line is zero, since k and F (k) are
constants and φ has compact support in both time and space, thus integrating to zero
on the boundaries of the integrals.
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Similarly, choosing k ≥ ∥u∥L∞ yields u− k ≤ u− ∥u∥L∞ ≤ 0, and thus

0 ≤
∫ ∞

0

∫
R
(|u− k|∂tφ+ sign(u− k)(F (u)− F (k))∂xφ) dxdt

=

∫ ∞

0

∫
R
(−(u− k)∂tφ− (F (u)− F (k))∂xφ) dxdt

= −
∫ ∞

0

∫
R
(u∂tφ+ F (u)∂xφ) dxdt+

∫ ∞

0

∫
R
(k∂tφ+ F (k)∂xφ) dxdt

= −
∫ ∞

0

∫
R
(u∂tφ+ F (u)∂xφ) dxdt.

Combining these two results by choosing k = ∥u∥L∞ , we get∫ ∞

0

∫
R
(u∂tφ+ F (u)∂xφ) dxdt = 0 ∀ φ ∈ C∞

c (R× (0,∞)), φ ≥ 0. (6.3)

To remove the requirement of non-negative test functions, we define φ := φ+ − φ−,
where φ± ∈ C∞

c (R × (0,∞)) such that φ± ≥ 0. Thus, φ ∈ C∞
c (R × (0,∞)), and since

φ± each satisfy (6.3), we combine the two and get∫ ∞

0

∫
R

(
u∂t(φ

+ − φ−) + F (u)∂x(φ
+ − φ−)

)
dxdt = 0,

which is the same as∫ ∞

0

∫
R
(u∂tφ+ F (u)∂xφ) dxdt = 0 ∀ φ ∈ C∞

c (R× (0,∞)).

As we mentioned above, we have already found an entropy solution uM to (6.1) in
the case when F (u) = 1

qu
q with 1 < q < 2, given by (5.9). The solution ū found in the

proof of Theorem 5.9 fulfilled this equation in the very weak sense, with initial value
Mδ taken in the sense of finite measures. In addition, we saw that ū fulfills the entropy
inequality (5.34), and this is, as discussed in [5, p. 54], an equivalent way of stating that
ū therefore is an entropy solution as well. We therefore have two entropy solutions of
the same problem, and will see in the next section that they necessarily must be equal
by uniqueness.

We will not pursue the question of existence any further in the general case, but
rather refer to Chapter 3 in Kružkov [8] and Chapter 2 in Liu and Pierre [7].

6.2 Uniqueness of entropy solutions

We are now ready to look at the question of uniqueness. The idea is, as mentioned,
to obtain uniqueness through L1-contraction. Now, we will see that we can obtain this
from the inequality (6.2) in the definition of entropy solutions. Indeed, Kružkov showed
that we may move from this inequality to the next result from which we are able to
compare two solutions:
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Lemma 6.2. Let u, v be entropy solutions on R × (0,∞) to (6.1). Then, for all φ ∈
C∞
c (R× (0,∞)) with φ ≥ 0, we have∫ ∞

0

∫
R
[|u− v|∂tφ+ sign(u− v)(F (u)− F (v))∂xφ] dxdt ≥ 0.

Proof. We refer to Kružkov [8, pp. 223–224] for the full proof, but the main idea is to set
k = v(y, τ) for some fixed point (y, τ) in the inequality (6.2) for u(x, t), before integrating
over y and τ . Similarly, in the inequality (6.2) for v(y, τ), we set k = u(x, t) for some
fixed point (x, t) and integrate over x and t. Then, by combining the two results and
through a particular choice of test function φ, the result is obtained.

Let us first assume initial data 0 ≤ u0, v0 ∈ L1(R) ∩ L∞(R). By Kružkov [8] there
exists entropy solutions to (6.1) fulfilling u, v ∈ C([0,∞);L1(R))∩L∞(R×(0,∞)). Now,
analogously to what we did in Lemma 4.4 leading to L1-contraction for the convection-
diffusion equation, we may choose a particular test function φ := θεξR in Lemma 6.2
and get L1-contraction here as well:∫

R
|u(x, t)− v(x, t)|dx ≤

∫
R
|u0(x)− v0(x)|dx ∀ t ≥ 0.

Thus, uniqueness follows in this case when u0 = v0.
Next, we wish to consider the case of a non-negative finite Radon measure µ as initial

data, such as δ. It is often the case that when we relax our assumptions on the initial
data to allow for solutions in a broader sense, showing uniqueness becomes more difficult,
and this is also the case here. Liu and Pierre devote Chapter 1 in [7] to show the next
result, which guarantees uniqueness for such solutions.

Theorem 6.3. Assume F ([0,∞)) ⊂ [0,∞). Then there exists at most one entropy
solution u to (6.1) with a non-negative finite measure µ on R as initial data.

For a proof of this result, see [7, pp. 427–429]. This result finally allows us to conclude
that entropy solutions to (6.1) are unique. It also yields the claim from Chapter 5,
meaning that our solutions uM and ū coincide.

We will end this chapter with some discussion around why the proof works despite
only assuming initial data as a non-negative finite Radon measure. The reason for this
is that the solutions achieve the regularity L∞((τ,∞);L1(R)) ∩ L∞(R × (τ,∞)) for all
τ > 0, meaning we have a sufficient regularity away from zero. The property of bounded
solutions away from zero is not an obvious result, and we will see an example of where
it originates from in the familiar case of F (u) = 1

qu
q with 1 < q < 2 in (6.1), i.e.

∂tu+
1

q
∂x (u

q) = 0. (6.4)

For strong solutions u of the convection-diffusion equation (5.7) with initial data
u0 ∈ L1(R), we found the following L1–L∞-smoothing estimate in Lemma 5.5:

∥u(·, t)∥L∞ ≤ Ct
− 1

q ∥u0∥
1
q

L1 ∀ t > 0. (6.5)
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This estimate followed from the fact that the convection term was dominating over the
diffusion term in this equation when 1 < q < 2, thus it originated from the convective
part of the equation. For this reason, we expect our purely convective equation (6.4)
to also inherit this estimate. Indeed, we saw in (5.10) that this estimate holds for the
entropy solution uM . We will not prove this result here, but it can be obtained by
considering the convection-diffusion equation with a diffusion term of the form ε∂2

xu for
some ε > 0, and then make an approximation argument to let ε → 0.

Thus, by claiming that entropy solutions of (6.4) with initial data u0 ∈ L1(R) satisfy
the estimate (6.5), we wish to show this still holds when we generalise to initial data µ
being a non-negative finite Radon measure by means of an approximation. We do this
in our final result, under some assumptions on the convergence of the solutions and their
initial data:

Proposition 6.4. Let {µn}∞n=1 ⊂ L1(R) ∩ L∞(R) such that µn ≥ 0 and µn → µ in the
sense that

lim
n→∞

∫
R
fdµn =

∫
R
fdµ ∀ f ∈ C(R) ∩ L∞(R),

where µ is a non-negative finite Radon measure on R.
Let further un be entropy solutions to (6.1) with corresponding initial values µn, and

assume they fulfill estimate (6.5).
If, moreover, un(·, t) converges to u(·, t) in some appropriate sense in R for all t > 0,

then:

(i) Estimate (6.5) carries over to u as well, i.e.

∥u(·, t)∥L∞ ≤ Ct
− 1

q ∥µ∥
1
q ∀ t > 0.

(ii) u is an entropy solution to (6.1) with µ as initial data.

Proof. To show (i), we use that for each n ∈ N, we have

∥un(·, t)∥L∞ ≤ Ct
− 1

q ∥µn∥
1
q

L1 ∀ t > 0.

By the convergence of µn, we get

∥µn∥L1 = ∥µ∥ ∀ n ∈ N,

which means that un(·, t) is uniformly bounded in L∞(R) by the estimate above. This

implies that un(·, t)
∗
⇀ u(·, t) in L∞(R), by the Banach-Alaoglu theorem (Theorem A.15),

which further implies lower semi-continuity, by Theorem A.16. Thus we may take the
limit to get our result

∥u(·, t)∥L∞ ≤ lim inf
n→∞

∥un(·, t)∥L∞ ≤ Ct
− 1

q ∥µ∥
1
q ∀ t > 0.

Finally, for (ii), this is a more standard result, provided the sense of convergence for
un is appropriate to carry the inequality in Definition 6.1 over to u in the limit.
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Chapter 7

Further work

We have now completed our investigation of the asymptotic behaviour of different types
of parabolic-hyperbolic PDEs, having found that the behaviour depends on which of the
terms dominate in the equation for large times.

There are several possibilities regarding further work in this field. Some natural
extensions are to extend our results on asymptotic behaviour for the convection-diffusion
equation in (5.1) into more general settings, such as higher dimensions n > 1 or more
general non-linearities F ∈ C1(Rn) instead of F (u) = uq. We have already commented
on this in Remark 5.3 and Remark 5.11.

Furthermore, there are several useful results which we have stated and used without
proof, such as Lemma 4.2 regarding the regularity of solutions to the scalar convection-
diffusion equation (4.1), and Theorem 6.3, the uniqueness result for entropy solutions of
(6.1) with a non-negative finite Radon measure on R as initial data. For completeness,
it could be useful to prove these results as well.

Finally, it could be interesting to investigate the asymptotic behaviour of other
slightly more different equations, for example porous medium equations with convection
as in [19, 20], where they replace the diffusion term ∆u with the non-linear term ∆(um),
for m > 1. The extension in [21] is also interesting, where they consider the fractional
heat equation resulting from replacing the Laplace operator ∆ by the fractional Laplace
operator −(−∆)s. One could also consider a fractional diffusion-convection equation as
in [17].
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Appendix A

Preliminary results

For completeness, we here present some preliminary results referred to in the previous
chapters. If not mentioned otherwise, the results are stated here similarly as in Evans
[4, pp. 277–279, 705–708, 711–712, 732–733].

Theorem A.1 (Sobolev inequality). Assume 1 ≤ p < n. Define

p∗ :=
np

n− p
.

Then there exists a constant C = C(p, n), depending only on p and n, such that

∥u∥Lp∗ (Rn) ≤ C∥∇u∥Lp(Rn),

for all u ∈ C1
c (Rn).

Remark A.2. By density, this result holds for other u as well, as long as the right hand
side of the inequality is finite.

Theorem A.3 (Hölder’s inequality). Assume 1 ≤ p, q ≤ ∞, with 1
p + 1

q = 1. Then if
u ∈ Lp(U), v ∈ Lq(U), we have ∫

U
|uv|dx ≤ ∥u∥Lp∥v∥Lq .

Theorem A.4 (Interpolation inequality for Lp-(quasi)norms). Assume 0 < b ≤ a ≤
c ≤ ∞ and ν ∈ [0, 1] such that

1

a
=

ν

b
+

1− ν

c
.

Suppose also u ∈ Lb(U) ∩ Lc(U), where U is a bounded, open subset of Rn. Then
u ∈ La(U), and

∥u∥La ≤ ∥u∥νLb∥u∥1−ν
Lc .

Theorem A.5 (Jensen’s inequality). Assume f : Rm → R is convex and U ⊂ Rn is
open, bounded. Let u : U → Rm be finitely integrable. Then

f

(
1

|U |

∫
U
udx

)
≤ 1

|U |

∫
U
f(u)dx.
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Theorem A.6 (Green’s first identity). Assume U is a bounded, open subset of Rn and
∂U is C1. Let u, v ∈ C1(Ū). Then∫

U
(∇v · ∇u+ u∆v)dx =

∫
∂U

u
∂v

∂ν
dS,

where ∂u
∂ν = ν · ∇u is the directional derivative of u with respect to ν, the outward unit

normal on ∂U .

Theorem A.7 (Fatou’s lemma). Assume the functions {fk}∞k=1 are non-negative and
measurable. Then ∫

Rn

lim inf
k→∞

fkdx ≤ lim inf
k→∞

∫
Rn

fkdx.

Theorem A.8 (Dominated convergence theorem). Assume the functions {fk}∞k=1 are
integrable and fk → f a.e. Suppose also |fk| ≤ g a.e. for some finitely integrable function
g. Then

lim
k→∞

∫
Rn

fk(x)dx =

∫
Rn

f(x)dx.

Theorem A.9 (Lebesgue’s differentiation theorem). Let f ∈ Lp
loc(R

n) (1 ≤ p < ∞),
then for a.e. point x0 ∈ Rn we have

1

|B(x0, r)|

∫
B(x0,r)

|f(x)− f(x0)|pdx → 0 as r → 0,

where |B(x0, r)| denotes the n-dimensional volume of the ball B(x0, r).

Stated as in [22, p. 218]:

Theorem A.10 (Fubini’s theorem). Let (X,A, µ) and (Y,B, ν) be two σ-finite measure
spaces. If f ∈ L1(µ× ν), then∫∫

X×Y
fd(µ× ν) =

∫
X

∫
Y
f(x, y)dν(y)dµ(x) =

∫
Y

∫
X
f(x, y)dµ(x)dν(y).

Stated as in [10, pp. 104–105]:

Theorem A.11 (Young). Let f ∈ L1(Rn) and g ∈ Lp(Rn) with 1 ≤ p ≤ ∞. Then,
f ∗ g ∈ Lp(Rn) and

∥f ∗ g∥Lp ≤ ∥f∥L1∥g∥Lp .

Stated as in [23, p. 271]:

Theorem A.12 (Minkowski’s integral inequality). Let F (x, y) be a measurable function
on the σ-finite product measure space X × Y . Let 1 ≤ p < ∞. Then(∫

Y

(∫
X
|F (x, y)|dx

)p

dy

) 1
p

≤
∫
X

(∫
Y
|F (x, y)|pdy

) 1
p

dx.
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Stated as in [3, p. 52]:

Theorem A.13 (Continuity of translation in Lp). Let f ∈ Lp(Rn) (1 ≤ p < ∞) and
y ∈ Rn, then

lim
y→0

∥f(· − y)− f(·)∥Lp(Rn) = 0.

Stated as in [10, p. 138]:

Theorem A.14 (Banach fixed-point theorem). Let (X, d) be a non-empty complete
metric space and let T : X → X be a contraction, i.e. ∃ 0 < K < 1 such that

d(T (x), T (y)) ≤ Kd(x, y) ∀ x, y ∈ X.

Then T has a unique fixed point x∗ ∈ X such that T (x∗) = x∗.

Stated as in [10, p. 66]:

Theorem A.15 (Banach-Alaoglu theorem). The closed unit ball

BE∗ = {f ∈ E∗ | ∥f∥ ≤ 1}

is compact in the weak* topology σ(E∗, E).

Stated as in [10, p. 63]:

Theorem A.16 (Weak* lower semi-continuity). Let {fn}∞n=1 be a sequence in E∗. If

fn
∗
⇀ f in the weak* topology σ(E∗, E), then {∥fn∥}∞n=1 is bounded, and

∥f∥ ≤ lim inf
n→∞

∥fn∥.

Stated as in [24, p. 600]:

Theorem A.17 (Kato’s inequality). Let u ∈ L1
loc(U) such that ∆u ∈ L1

loc(U), where U
is a bounded, open subset of Rn. Then ∆[u]+ is a Radon measure, and∫

U
sign+(u(x))∆u(x)φ(x)dx ≤

∫
U
∆[u(x)]+φ(x)dx ∀ φ ∈ C∞

c (U).

Stated as in [25, p. 435]:

Theorem A.18 (Kolmogorov’s compactness theorem). Let M be a subset of Lp(Ω),
p ∈ [1,∞), for some open set Ω ⊆ Rn. Then M is relatively compact if and only if the
following three conditions are fulfilled:

(i) M is bounded in Lp(Ω), i.e.

sup
u∈M

∥u∥Lp < ∞.
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(ii) We have

∥u(·+ ε)− u(·)∥Lp ≤ λ(|ε|),

for a modulus of continuity λ that is independent of u ∈ M (we let u equal zero
outside Ω).

(iii)

lim
α→∞

∫
{x∈Ω||x|≥α}

|u(x)|pdx = 0 uniformly for u ∈ M.

Theorem A.19. Let 0 ≤ x, y < ∞. Assume 1 < q < 2, then∣∣∣x 1
q − y

1
q

∣∣∣ ≤ |x− y|
1
q .

Proof. In the cases x = y, 0 = x < y and x > y = 0, both sides are trivially equal.
Assume therefore that x > y > 0, and define

f(x) := x
1
q (x ≥ 0).

Differentiation yields

f ′(x) =
1

q
x

1
q
−1

(x ≥ 0).

By the fundamental theorem of calculus, we get

f(x)− f(y) =

∫ x

y
f ′(s)ds =

∫ x

y

1

q

(
1

s

)1− 1
q

ds
u:=s−y
=

∫ x−y

0

1

q

(
1

u+ y

)1− 1
q

du

<

∫ x−y

0

1

q

(
1

u

)1− 1
q

du =

∫ x−y

0
f ′(u)du = f(x− y)− f(0),

where the inequality comes from the fact that 0 < 1 − 1/q < 1/2, in which case the

function α
1− 1

q is increasing as α ≥ 0 increases. Using that f(0) = 0, we obtain the
upper bound in this case:

x
1
q − y

1
q = f(x)− f(y) < f(x− y) = (x− y)

1
q = |x− y|

1
q .

Next, we assume y > x > 0. To avoid evaluating f at the negative value x − y, we
observe that f is an increasing function, and thus y > x implies f(y) − f(x) > 0 and
f(x)− f(y) < 0. Using this, we rewrite so that we can apply the result above, and get

x
1
q − y

1
q < y

1
q − x

1
q < |y − x|

1
q = |x− y|

1
q .
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Thus, we have the upper bound

x
1
q − y

1
q ≤ |x− y|

1
q ,

for all 0 ≤ x, y < ∞. To obtain the lower estimate, we simply switch the roles of x and
y to get

y
1
q − x

1
q ≤ |y − x|

1
q ⇐⇒ −(x

1
q − y

1
q ) ≤ |x− y|

1
q ⇐⇒ x

1
q − y

1
q ≥ −|x− y|

1
q .

This concludes the proof.
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Appendix B

Heat kernel estimates

Recall that the heat kernel is given by

G(x, t) := (4πt)−
n
2 e−

|x|2
4t (x ∈ Rn, t > 0).

Lemma B.1. ∫
Rn

G(x, t)dx = 1 ∀ t > 0.

For a proof, see Lemma 2.3 in [3, p. 7].

Lemma B.2. Let p ∈ [1,∞], then there exists a constant Cp > 0 such that

∥G(·, t)∥Lp ≤ Cpt
−n

2
(1− 1

p
) ∀ t > 0.

Proof. The case p = 1 follows from Lemma B.1, so we can choose C1 = 1.
Next, consider 1 < p < ∞. Through some manipulations, and using the well-known

result
∫
R e−y2dy =

√
π, we get

∥G(·, t)∥pLp =

∫
Rn

∣∣∣∣(4πt)−n
2 e−

|x|2
4t

∣∣∣∣pdx
= (4πt)−

np
2

∫
Rn

e−
p|x|2
4t dx

z:=
√

p/tx
= (4πt)−

np
2

∫
Rn

e−
|z|2
4

(
t

p

)n
2

dz

= (4π)−
np
2 t

n
2
(1−p)p−

n
2

∫
R
· · ·
∫
R
e−

z21
4 · · · e−

z2n
4 dz1 · · · dzn

= (4π)−
np
2 t

n
2
(1−p)p−

n
2

(∫
R
e−

z21
4 dz1

)n

y:=z1/2
= (4π)−

np
2 t

n
2
(1−p)p−

n
2

(
2

∫
R
e−y2dy

)n
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= (4π)−
np
2 t

n
2
(1−p)p−

n
2
(
2
√
π
)n

= (4π)
n
2
(1−p)p−

n
2 t

n
2
(1−p),

Taking the p-th root, we obtain as wanted

∥G(·, t)∥Lp = (4π)
−n

2
(1− 1

p
)
p
− n

2p t
−n

2
(1− 1

p
)
=: Cpt

−n
2
(1− 1

p
) ∀ t > 0.

Finally, we consider the case p = ∞, which yields

∥G(·, t)∥L∞ = ess sup
x∈Rn

∣∣∣∣(4πt)−n
2 e−

|x|2
4t

∣∣∣∣ = (4π)−
n
2 t−

n
2 ess sup

x∈Rn

∣∣∣∣e− |x|2
4t

∣∣∣∣
= (4π)−

n
2 t−

n
2 · 1 =: C∞t−

n
2 ∀ t > 0.

Lemma B.3. There exists a constant C > 0 such that

∥∇G(·, t)∥L1 ≤ Ct−
1
2 ∀ t > 0.

Proof. By differentiating the heat kernel, we get

∂G

∂xi
(x, t) = −xi

2t
G(x, t).

Assume without loss of generality that i = 1. Calculating the norm using Lemma B.1
finally yields∥∥∥∥ ∂G∂x1 (·, t)

∥∥∥∥
L1

=

∫
Rn

∣∣∣−x1
2t

G(x, t)
∣∣∣dx

=

∫
R
· · ·
∫
R

|x1|
2t

(4πt)−
n
2 e−

x21
4t · · · e−

x2n
4t dx1 · · · dxn

=

∫
R

|x1|
2t

(4πt)−
1
2 e−

x21
4t dx1

(∫
R
(4πt)−

1
2 e−

z2

4t dz

)n−1

= (4πt)−
1
2 2

∫ ∞

0

x1
2t

e−
x21
4t dx1 · 1n−1

u:=x2
1/4t= (πt)−

1
2

∫ ∞

0
e−udu

= (πt)−
1
2 [−e−u]∞0

=
1√
π
t−

1
2

=: Ct−
1
2 ∀ t > 0.

Lemma B.4. Let p ∈ [1,∞], then there exists a constant Cp > 0 such that

∥∇G(·, t)∥Lp ≤ Cpt
−n

2
(1− 1

p
)− 1

2 ∀ t > 0.
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Proof. Let first p ∈ [1,∞). We argue as in the proof of Lemma B.3, and thus get∥∥∥∥ ∂G∂x1 (·, t)
∥∥∥∥p
Lp

=

∫
Rn

∣∣∣−x1
2t

G(x, t)
∣∣∣pdx

= (2t)−p(4πt)−
np
2

∫
Rn

|x1|pe−
p|x|2
4t dx

y:=
√

p/tx
= (2t)−p(4πt)−

np
2

∫
Rn

∣∣∣∣√ t

p
y1

∣∣∣∣pe− |y|2
4

(
t

p

)n
2

dy

= 2−p(4π)−
np
2 p−

n+p
2 t−

n
2
(p−1)− p

2

∫
Rn

|y1|pe−
|y|2
4 dy ∀ t > 0.

Taking the p-th root, we get the term t
−n

2
(1− 1

p
)− 1

2 , so if we can ensure the integral is
finite, we are done. Calculating the integral, we get∫

Rn

|y1|pe−
|y|2
4 dy =

∫
R
· · ·
∫
R
|y1|pe−

y21
4 · · · e−

y2n
4 dy1 · · · dyn

=

∫
R
|y1|pe−

y21
4 dy1

(∫
R
e−

z2

4 dz

)n−1

u:=z/2
=

∫
R
|y1|pe−

y21
4 dy1

(
2

∫
R
e−u2

du

)n−1

= 2
(
2π

1
2

)n−1
∫ ∞

0
yp1e

− y21
4 dy1

=
(
2π

1
2

)n−1
(
1

4

)− p+1
2

Γ

(
p+ 1

2

)
< ∞,

as wanted. We have made use of the result
∫
R e−y2dy =

√
π, that the integrand is an

even function and the following integral result from [26, p. 155]:∫ ∞

0
xke−λx2

dx =
1

2
λ− k+1

2 Γ

(
k + 1

2

)
, k > −1, λ > 0.

Finally, for the case p = ∞ we get

∥∇G(·, t)∥L∞ = ess sup
x∈Rn

∣∣∣− x

2t
G(x, t)

∣∣∣
= ess sup

x∈Rn

∣∣∣∣− x

2t
(4πt)−

n
2 e−

|x|2
4t

∣∣∣∣
= (4π)−

n
2 t−

n
2
− 1

2 ess sup
x∈Rn

{
|x|
2t

1
2

e−
|x|2
4t

}
z:=|x|/2t

1
2

= (4π)−
n
2 t−

n
2
− 1

2 ess sup
z≥0

{
ze−z2

}
= (4π)−

n
2

√
2

2
e−

1
2 t−

n
2
− 1

2 ∀ t > 0.
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Lemma B.5. ∫
Rn

xG(x, t)dx = 0 ∀ t > 0.

Proof. We only show the result for the first component, since all of them yield the same
result. We get∫

Rn

x1G(x, t)dx =

∫
Rn

x1(4πt)
−n

2 e−
|x|2
4t dx

=

∫
R
x1(4πt)

− 1
2 e−

x21
4t dx1

(∫
R
(4πt)−

1
2 e−

z2

4t dz

)n−1

= (4πt)−
1
2

∫
R
x1e

−x21
4t dx1 · 1n−1

= 0 ∀ t > 0,

where we have used Lemma B.1 and the fact that x1e
−x21

4t is an odd function, and thus
integrates to zero over Rn.
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