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Abstract

This thesis proposes advances in control structure design to solve a steady-state
optimization problem in real-time through feedback control. This is especially be-
neficial when a real-time optimization layer is not implemented, or its updates are
too slow. However, when disturbances act upon the system and change the set
of optimally active constraints, a different control structure becomes necessary to
achieve optimal operation. This thesis addresses this challenge by proposing sys-
tematic methods for designing control structures that automatically switch control
objectives when necessary. In Chapter 2, a decentralized control structure is pro-
posed for processes with few constraints, and optimal operation is attained with
PID controllers and min/max selectors. In Chapter 3, a region-based MPC is pro-
posed, with different tracking objectives for each set of active constraints, and an
active set detection block that switches the control objectives being tracked.

The ideal controlled variables for the unconstrained degrees of freedom are closely
related to the steady-state cost gradient with respect to the inputs. In Chapter 4, a
cost gradient estimation method is proposed based on the self-optimizing control
methods for controlled variable design, resulting in a static linear combination of
the available measurements. This estimated cost gradient can be used in a variety
of methods for feedback optimizing control.

Chapter 5 presents a case with several constraints, to exemplify the challenges that
decentralized region-based control faces in such cases. In Chapter 6, we further
compare the region-based control approach to primal-dual feedback optimizing
control, which is another approach to solving optimization problems through feed-
back.

Chapter 7 presents a problem of optimal inventory management of units in series
subject to bottlenecks, which is an inherently dynamic problem of maximizing
production. The bidirectional inventory control structure solves this problem op-
timally, as long as minimum flow constraints are not relevant. The control structure
is extended to deal with minimum flow constraints by introducing additional feed-

iii



iv Abstract

back control loops, and simulations illustrate the trade-off between satisfying the
different constraints.

In Chapter 8, motivated by the usefulness of the mathematical framework of self-
optimizing control, an alternate formulation for the existing exact local method
is presented, together with an explicit expression for the optimal measurement
combination when rejecting disturbances is to be prioritized over measurement
error, which is the idea of the nullspace method. The obtained expressions are
valid regardless of the number of measurements or the presence of measurement
error.

Overall, this thesis was able to provide guidelines on how to propose optimal con-
trol structures for cases when a steady-state model of the system is available for
design, dealing with changes in active constraints during operation. Most methods
described in this thesis require an estimate of the cost gradient, but this limitation
was addressed by the proposed gradient estimation method. This method does not
assume an accurate dynamic model is available, and it is not based on persistent
input excitation, making it suitable for a wider class of applications. In a broader
sense, this thesis illustrates how the use of logic elements for switching controlled
variables is the exact solution for these optimal operation problems.
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A,iĴu is controlled by a different controller Ku,i

(which in general is multivariable). If nu ≥ ng, a fixed projection
matrix can be used for all Ai, and simple max/min-selectors can
be used (see Figure 4.4). . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Decentralized region-based optimizing control structure using SISO
controllers and selectors. . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Active constraint regions as a function of disturbances for case
study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Dynamic simulation over all active constraint regions using the
proposed control structure with H = HJ (exact local method). . . 101

4.7 Steady-state loss for closed-loop operation with H = HJ from the
exact local method. . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.8 Steady-state loss for closed-loop operation with H from the exten-
ded nullspace method . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Heat exchanger network scheme . . . . . . . . . . . . . . . . . . 114

5.2 Proposed adaptive control structure . . . . . . . . . . . . . . . . . 116

5.3 Simulation of region-based control structure using Jäschke tem-
peratures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Simulation of steady-state RTO with model-plant mismatch . . . . 118

6.1 Region-based control strategy using selectors . . . . . . . . . . . 125



LIST OF FIGURES xix

6.2 Primal-dual feedback optimizing control framework, based on the
DFRTO framework (Krishnamoorthy 2021). . . . . . . . . . . . . 126

6.3 Heat exchanger network scheme. . . . . . . . . . . . . . . . . . . 128

6.4 Operation of case study 1 with region-based control using classic
pairing, along with optimal inputs (dashed). . . . . . . . . . . . . 129

6.5 Operation of case study 1 with region-based control using adaptive
pairing, along with optimal inputs (dashed). . . . . . . . . . . . . 130

6.6 Test of primal-dual control framework over case study 1, along
with optimal inputs (dashed). . . . . . . . . . . . . . . . . . . . . 131

6.7 Lagrange multiplier estimates from the primal-dual control frame-
work in case study 1, along with optimal multiplier values (dashed). 132

6.8 Scheme of two distillation columns in sequence, based on Jacob-
sen and Skogestad (2012) . . . . . . . . . . . . . . . . . . . . . . 132

6.9 Test of primal-dual control framework over case study 2, along
with optimal inputs (dashed). . . . . . . . . . . . . . . . . . . . . 134

6.10 Lagrange multiplier estimates from the primal-dual control frame-
work in case study 2, along with optimal multiplier values (dashed). 134

7.1 Proposed bidirectional inventory control structure with minimum
flow constraint handling (black denotes original bidirectional struc-
ture, red denotes the addition proposed by this work) . . . . . . . 139

7.2 Both control structures are able to maximize production at the bot-
tleneck under temporary disturbances (continuous lines represent
the proposed structure, dashed lines represent simple bidirectional
control) — simulation with TPM at z3 with short flow reductions
at z0 and z3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3 Long disturbances force reduction on production at steady-state
bottleneck, with the proposed structure (continuous lines) being
affected before simple bidirectional control (dashed) — simulation
with TPM at z3 with flow reductions at z0 and z3 . . . . . . . . . 144

7.4 The proposed structure (continuous line) allows for feasible opera-
tion during longer periods than simple bidirectional control (dashed)
— simulation with TPM at z3 with larger flow reductions at z1 and
z3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



xx LIST OF FIGURES

7.5 The proposed structure (continuous line) completely avoids viol-
ating the minimum flow constraint, as opposed to simple bidirec-
tional control (dashed) — simulation with TPM at z0 with flow
reductions at z0 and z3 . . . . . . . . . . . . . . . . . . . . . . . 146

7.6 With TPM at z3, higher intermediary setpoints (continuous line,
MH = ML = 80%) improve operation when inlet is disturbed, but
worsen performance when outlet is disturbed (dashed lines repres-
ent MH = ML = 50%) . . . . . . . . . . . . . . . . . . . . . . . 147

7.7 With intermediary setpoints farther from critical values (continu-
ous line, MH = 20%, ML = 80%), the period of feasible op-
eration is maximized for disturbances on z0 and z3 (dashed lines
represent MH = ML = 50%) . . . . . . . . . . . . . . . . . . . 148



Chapter 1

Introduction

The field of process systems engineering relies on process modeling, design, op-
timization, and control to improve the operational performance of process systems.
Each of these core activities is fundamental for a good process operation, and pro-
cess modeling is the initial step that informs control and optimization techniques.
Some processes have an inherent connection between optimization and control, in
the sense that dynamic aspects greatly influence economic performance, such as
batch processes or processes with cycling. In such cases, there is a big investment
in modeling to accurately describe the system, and the control and optimization
tools needed to guarantee optimal operation must make use of all this information,
usually in the form of dynamic optimization schemes (Ellis et al. 2014).

Most process systems implemented in practice, however, are designed to operate at
a steady state, which greatly simplifies the efforts needed to guarantee optimal op-
eration. Even though dynamic optimization solutions should also give good solu-
tions to these problems, their complexity would lead to unnecessary investments in
obtaining accurate models, which would not necessarily pay off with the resulting
performance increase. In such cases, a decomposed, hierarchical approach would
be sufficient to attain acceptably small economic losses.

The most common form of a hierarchical control framework is given by an optim-
ization layer, a supervisory control layer, and a regulatory control layer, see Fig-
ure 1.1 (Skogestad 2000). The layers depend on a time scale separation between
them for a good dynamic performance, such that the interaction between the lay-
ers is minimized. In this sense, a reasonable assumption in the design and tuning
of these layers is that the lower layers are at steady state and that the upper lay-
ers have no effect on the process dynamics. The regulatory layer serves the pur-

1
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pose of process stabilization, the optimization layer calculates setpoints based on
a steady-state description of the system (consisting of a nonlinear process model,
operational cost, and constraints), and the supervisory control layer acts as an in-
termediate between these layers, dealing with multivariable dynamics, constraints
satisfaction, and helping on the implementation of the optimal policy. The super-
visory layer has a great degree of flexibility in its implementation and functions,
and for this reason, this thesis will focus on the analysis and design of this layer.

Process

Regulatory
control

Supervisory
control

Real-time
optimization

y

u

d

Figure 1.1: Typical hierarchy in process control implementations (Skogestad 2000). In
this thesis, the focus is on the supervisory control layer.

The academic community has placed a great focus on model predictive control
(MPC) as the main tool for supervisory control. Indeed, MPC is the most suc-
cessful multivariable controller that can additionally deal with input and output
constraints, nonlinear models, and predicted setpoint or disturbance changes in
its formulation. However, there are still open issues when it comes to control of
uncertain systems, whether this uncertainty comes from stochasticity or model-
ing errors, and these open issues are intimately related to the proper incorporation
of feedback into MPC (Mayne 2014). In most cases of modeling errors, offset-
free MPC can be successfully implemented with good closed-loop performance
(Morari and Maeder 2012, Pannocchia et al. 2015), even when a simplified linear
dynamic model is used, and this is, therefore, the standard form of practical MPC
implementation. However, the general case of the separation principle does not
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hold for linear or nonlinear systems (Doyle 1978, Freeman 1995), which means
that there are fundamental limitations to the use of MPC with state estimators for
feedback control.

While MPC is useful for cases where multivariable control is necessary, it should
not be considered the only possible solution for supervisory control. For suffi-
ciently decoupled systems, the use of decentralized control gives good perform-
ance, and its simplicity of tuning, implementation, and interpretability justifies
its use over MPC. Even if the control loops have some interaction, they can be
decoupled in time with the sequential design of the loops (Skogestad and Postleth-
waite 2005), if the response time for some loops is not critical.

In this sense, considering that good performance can be obtained by a given feed-
back controller, it is often more important to make a good choice of controlled
variables (CVs), such that the closed-loop system tracks good objectives. This is
the idea of self-optimizing control, with “self-optimizing” being used in the sense
that the chosen controlled variables (CVs), when kept at constant setpoints, drive
the system to the optimal operating point (Morari et al. 1980, Skogestad 2000),
or at least close to it. This choice of CVs is done such that there is no need for
coordination by a higher optimization layer, which means that the real-time op-
timization (RTO) layer can be completely removed for simple problems. While
complex problems can still benefit from this RTO layer, the supervisory layer is
designed to give a small economic loss, which improves performance in the fast
time scales, i.e. when RTO updates are not yet available.

The choice of good self-optimizing CVs has been extensively studied (Jäschke
et al. 2017), and most design methods are based on the assumption that the set of
active constraints is constant and directly controlled, with some important excep-
tions being the works of Manum and Skogestad (2012), Ye et al. (2023), which
did not exhaust the topic. Additionally, Reyes-Lúa et al. (2019), Krishnamoorthy
and Skogestad (2019) have discussed the use of logic control elements to deal
with changes in active constraints, with guidelines that apply when the operating
regions are known beforehand.

1.1 Scope of the thesis
The main challenge that this thesis aims to tackle is the design of self-optimizing
control structures for systems that are subject to changes in active operational con-
straints. This arises when sustained disturbances affect the system, changing the
way it should operate at steady state. This thesis will mostly focus on the steady-
state optimal operation problem, except for Chapter 7, which presents a dynamic
optimal operation problem.
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When a new constraint is reached, it is intuitive that these should also be con-
trolled directly, in order to remain feasible and reject the disturbances as quickly
and effectively as possible. On the other hand, it is less obvious when to stop con-
trolling a constraint, but controlling the constraints when they are not optimally
active is too conservative and can lead to considerable economic losses. In other
words, it is not immediately clear what unconstrained degrees of freedom are to
be controlled when constraint control should be given up. A flexible control struc-
ture, with changing control objectives, is a solution that allows for controlling the
constraints only when necessary.

For this reason, this thesis studies how to best implement switching control struc-
tures for optimal operation. This problem has two fundamental parts, those being
the control strategy (decentralized (e.g. PID) or centralized (e.g. MPC) control,
along with the control objectives) and the element for switching between object-
ives. While there is some experience with the use of logic control elements for
switching in decentralized control (Reyes-Lúa and Skogestad 2019) and with de-
fining controlled variables for different operating regions (Jäschke and Skogestad
2012), this thesis aims to expand on these topics by proposing complete control
structures that can be applied to generic systems. Furthermore, because steady-
state optimality conditions usually involve driving a projection of the cost gradient
to zero (when the Karush–Kuhn–Tucker conditions apply), estimating this cost
gradient plays a vital role in the course of this thesis.

1.2 Thesis structure
The main chapters of this thesis are based on self-contained manuscripts, which
have been or will be submitted to peer-reviewed publication.

In Chapter 2, assuming knowledge of the cost gradient from a model-based es-
timator, the main contribution is the development of a simple decentralized control
framework that operates optimally over all possible constraint regions. This frame-
work can be applied to systems where the number of constraints is smaller than the
number of operational degrees of freedom.

The general multivariable case is addressed in Chapter 3, where the main contri-
bution is a methodology for applying MPC with different tracking objectives for
each set of active constraints. It consists of using a cost gradient estimate, which
here is a static linear combination of measurements, for both active set detection
and reference tracking.

In Chapter 4, self-optimizing control methods for the design of CVs are used to ob-
tain the best cost gradient estimate to be controlled for minimizing economic loss
under disturbances and measurement bias. This expands previous results that were
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valid for systems with a sufficient number of perfect measurements (used in the
previous chapter), and the result is now applicable to the case with measurement
noise and changing active constraints.

In Chapter 5 a heat exchanger network with more constraints than inputs is con-
sidered. We show how decentralized, region-based control can be used to operate
such a system optimally. Here, the gradient estimate is based on an analytic deriv-
ation for heat exchanger systems.

We exemplify how a primal-dual feedback optimizing control structure can be used
for optimal operation in Chapter 6. It can be implemented under the assumption
that gradients are measured and that a time-scale separation is imposed between
the primal and dual control layers.

Chapter 7 is fundamentally different from the preceding chapters in that dynamic
optimal operation is the key issue. Here, the case of interest is the optimal in-
ventory management subject to unit bottlenecks solved through feedback control.
The bidirectional inventory control is the basis for solving this problem, and an
extra control layer is proposed to deal with minimum flow constraints. The simil-
arity with the previous chapters is in the switching control of constraints to achieve
optimal operation, but in this case, there are no unconstrained degrees of freedom.

Some notes on self-optimizing control methods are presented in Chapter 8, with
a simpler derivation and alternate formulation for the existing exact local method,
and an explicit expression for the case where disturbance rejection is to be priorit-
ized, which is valid regardless of the number of measurements.

In Chapter 9 the thesis is concluded with some final remarks and perspectives for
future work on the discussed topics.

1.3 List of publications

1.3.1 Conference papers

• L. F. Bernardino, D. Krishnamoorthy, and S. Skogestad. Comparison of
simple feedback control structures for constrained optimal operation. IFAC-
PapersOnLine, 55(7):883–888, 2022a (Chapter 6)

• L. F. Bernardino, D. Krishnamoorthy, and S. Skogestad. Optimal opera-
tion of heat exchanger networks with changing active constraint regions.
In Computer Aided Chemical Engineering, volume 49, pages 421–426. El-
sevier, 2022b (Chapter 5)

• L. F. Bernardino and S. Skogestad. Bidirectional inventory control with
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optimal use of intermediate storage and minimum flow constraints. IFAC-
PapersOnLine, 56(2):2665–2670, 2023a (Chapter 7)

• L. F. Bernardino and S. Skogestad. Decentralized control for optimal op-
eration under changing active constraints. In Computer Aided Chemical
Engineering, volume 52, pages 1699–1704. Elsevier, 2023b
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Chapter 2

Decentralized control using
selectors for optimal steady-state
operation with changing active
constraints

This chapter has been published as a full paper:

L. F. Bernardino and S. Skogestad. Decentralized control using selectors for
optimal steady-state operation with changing active constraints. Journal of
Process Control, 137:103194, 2024c

2.1 Introduction
The integration of optimization and control is very important when designing the
control system for a process. The main objective of the control system is to keep
the process stable and operating at the economically optimal operating point. Al-
though these two objectives can be assessed simultaneously, for example, using
economic model predictive control (EMPC) (Ellis et al. 2014), a simpler, and in
most cases equally optimal1, approach is to decompose the system hierarchically
into an optimization and a control layer as shown in Figure 2.1, where setpoints

1In fact, in some cases a decomposed approach with separate optimization and control layers
may be better performing economically than EMPC, because the control layer may be tuned to be
fast, whereas this is likely difficult to achieve with a centralized solution like EMPC. This may give
economic benefits, especially for fast-changing disturbances.

7
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CV sp are used to connect the two layers. The setpoints may need to be updated due
to disturbances that affect the process economics. In the standard implementation
in Figure 2.1, the real-time optimization (RTO) and setpoints update is performed
on a slow time scale based on a detailed nonlinear process model and the estimated
states of the process. In most cases, the RTO layer is static.

Control
layer

Optimization
layer (RTO)

Process

K

min
u

J(x, u, d)
s.t. ẋ = f (x, u, d) = 0

g(x, u, d) ≤ 0

H(y)

Estimator

d y

CV

x̂, û, d̂

CV sp

u

Figure 2.1: Standard optimizing control implementation with separate layers for real-
time optimization (RTO) and control (K, which can be e.g. MPC or PID). J denotes the
(economic) cost function to be minimized, f the process model, g the process constraints,
x the model states, d the disturbances, and u the process inputs (MVs).

Based on the concept of Morari et al. (1980) of feedback optimizing control, the
aim of the current paper is to move the real-time optimization, or at least parts of
it, into the control layer. A recent review on this topic is given in Krishnamoorthy
and Skogestad (2022), where the authors state some of the challenges with RTO
implementation, including the cost of developing the model, the uncertainty re-
lated to the model and its parameters (or disturbances), and human aspects related
to the maintenance of an optimization layer in addition to the already existing di-
gital control system (DCS). The importance of feedback optimizing control lies
in being able to reject disturbances that affect economic performance in a simple
manner, without relying on an upper optimization layer that may sometimes not
even exist. To that end, an appropriate selection of the controlled variables (CVs)
for the control layer is important. This is the main idea of self-optimizing control
(Skogestad 2000). It is particularly important to include the active constraints as
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CVs, that is, the constraints that are optimally at their limiting value (Maarleveld
and Rijnsdorp 1970, Morari et al. 1980). If information about the cost gradient is
available, the optimal CVs are the active constraints plus the reduced cost gradi-
ents, and by controlling these at a constant setpoint of zero we may eliminate the
optimization layer Jäschke and Skogestad (2012). This choice of CVs is valid if
the set of active constraints does not change in the considered operating region.

Dealing with changes in active constraints has been a concern in previous works.
For example, Cao (2004) implemented a cascade control structure with selectors
to avoid constraint violation by the lower self-optimizing layer, and Graciano et al.
(2015) applied MPC with zone control to the same end. A global self-optimizing
control method for changing active constraints has been proposed by Ye et al.
(2017), where the goal is to minimize the average loss obtained with a single set of
CVs. However, in a new active constraint region, not only do the active constraints
change, but the directions related to the reduced cost gradient change accordingly.
This means that to eliminate the RTO layer one needs to change the control layer in
Figure 2.1 during operation, both in terms of the selected CVs and the correspond-
ing feedback controller K. With this perspective, Manum and Skogestad (2012)
has considered a centralized, steady-state analysis on switching control structures,
with different CVs for each region.

However, the implementation of such a region-based control strategy quickly be-
comes impractical. This is because the number of active constraint regions grows
exponentially with the number of constraints. Let nu denote the number of pro-
cess inputs or manipulated variables (MVs) and ng the number of independent
constraints. The upper bound on the number of active constraint regions is 2ng ,
which is reached when all constraint combinations are feasible (Reyes-Lúa and
Skogestad 2019). In each region, we ideally need a new controller K, and if we
want to use decentralized control then we need to design nu single-input single-
output (SISO) controllers in each region. For example, with ng = 4 and nu = 5,
there could be up to 24 = 16 constraint regions, which may require the tuning
of 2ng · nu = 16 · 5 = 80 SISO controllers. Even though some CVs are reused
between regions, the number of necessary SISO loops will be high.

The key contribution of this paper is to propose a simple and generic region-based
control structure with only ng +nu SISO controllers, as represented in Figure 2.2,
with the same set of unconstrained variables (CV 0 and CV 0g) in all operating re-
gions2. Considering the previous example, this structure would have only 4+5 = 9
SISO controllers. In the paper, we show that the unconstrained variables are ob-

2The superscript 0 is used to indicate the unconstrained case and g the constrained case. The
superscript 0g indicates unconstrained cases that are associated with switching constraints.
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tained from nu projections of the full cost gradient with respect to the inputs,∇uJ .
This leads to nu gradient controllers (K0 and K0g) and ng constraint controllers
(Kg). However, at any given time, only a subset with nu of the nu + ng control-
ler outputs is implemented as process inputs, with the switching logic choosing
between the controller outputs u0g and ug.

Process

Switching
logic

Kg

K0g

K0

Estimator

NT

N0T

(constraint control)

(unconstrained control)

d y

CVg = g
∇u Ĵ

CV0g

CV0

ugu0g

u

Figure 2.2: Proposed optimizing control implementation, assuming nu ≥ ng . The con-
trollers K0, K0g and Kg are usually single-variable PID controllers. The projection (null-
space) matrices N0 and N are defined in Equation (2.7) and Equation (2.8), respectively.
There is no CV0, N0, and K0 if nu = ng . Note that the optimization layer in Figure 2.1is
eliminated, and an estimate∇uĴ of the cost gradient is needed. The switching logic takes
care of the change between active constraint regions. In this paper, this logic is decent-
ralized to ng individual blocks, see Figure 2.3, which can be implemented as min or max
selectors according to Theorem 2.3.

The second key contribution of this paper is to show that the switching logic in
Figure 2.2 can be effectively implemented using ng min or max selectors, which
are well-known advanced control elements and commonly used in practical con-
trol applications. An important decision is to pair each constraint to an MV, but
this pairing problem is not addressed in this paper (the interested reader is referred
to Skogestad and Postlethwaite (2005)). The main assumptions in this work are
that we have at least as many MVs as constraints (nu ≥ ng), and that an estimator
for the unconstrained cost gradient ∇uJ is available. In terms of cost gradient es-
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timation, there are several methods available (see Krishnamoorthy and Skogestad
(2022)), and in this work, we use the simple model-based approach of dynamic
state estimation and model linearization proposed by Krishnamoorthy et al. (2018).

Selectors have been used in industry to switch between CVs since the 1940s (Sko-
gestad 2023). Selectors are also used in academic case studies on optimal oper-
ation (Reyes-Lúa and Skogestad 2019, Krishnamoorthy and Skogestad 2019). In
these case studies, a control structure is proposed for the nominal operating re-
gion, with added logic elements and control loops to deal with the neighboring
regions. However, the treatment of the unconstrained degrees of freedom is not
clear. Krishnamoorthy and Skogestad (2020) proposes a framework for constraint
handling using min and max selectors, focusing on systems with a single MV, and
therefore not considering the changes of reduced gradients for the unconstrained
variables. To the best of the authors’ knowledge, even though a general scheme
for the paradigm of region-based control is proposed in the review paper by Krish-
namoorthy and Skogestad (2022), a systematic procedure for designing a decent-
ralized control structure for optimal operation of generic multivariable systems has
not yet been explored, as well as whether there are any fundamental limitations for
the design of such systems. In this work, we explore these topics, and we de-
scribe a class of multivariable systems for which a decentralized control structure
is always possible.

2.2 Decentralized control framework for optimal opera-
tion

We consider a generic, steady-state optimization problem given by:

min
u

J(u, d)

s.t. g(u, d) ≤ 0
(2.1)

Here, J : Rnu × Rnd → R is a scalar cost function to be minimized, g : Rnu ×
Rnd → Rng is the function that returns the vector of inequality constraints, u ∈
Rnu is the vector of decision variables (MVs), and d ∈ Rnd is the vector of disturb-
ances. Note that the states x (see Figure 2.1) have been formally eliminated from
the equations, such that J and g are functions only of the independent variables u
and d. Introduce the Lagrange function L(u, λ, d) = J(u, d) + λT g(u, d). Then,
for a given value of d, define u∗ as the solution of Equation (2.1), which satisfies
the Karush–Kuhn–Tucker (KKT) conditions (Nocedal and Wright 2006):
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∇uL(u∗, λ∗, d) = ∇uJ(u
∗, d) + (∇ug(u

∗, d))T λ∗ = 0 (2.2a)

g(u∗, d) ≤ 0 (2.2b)

λ∗ ≥ 0 (2.2c)

λ∗
i gi(u

∗, d) = 0, i = 1, · · · , ng (2.2d)

Here, λ is the vector of Lagrange multipliers associated with the inequality con-
straints, and λ∗ is its optimal value. We remark that the KKT conditions only imply
that the solution is a stationary point, and they are also satisfied by local minima or
maximum and saddle points. We do not address these issues in this work, and we
consider that the optimization problem in Equation (2.1) is convex. While these
optimization problems can be efficiently solved using numerical methods, we here
focus on how to solve these problems with feedback control. For this, we rewrite
the KKT conditions as control objectives, which allows us to embed the optimiza-
tion into the control layer design.

The set of active constraints A is defined as the set that satisfies gi(u∗, d) = 0 for
i ∈ A. For convenience, define gA : Rnu×Rnd → Rna as the function that returns
the active constraints. Define the matrix:

Gg = ∇ug(u, d) (2.3)

as the gradient of the constraints with respect to the MVs, and the matrix Gg
A =

∇ugA(u, d) as the gradient of the active constraints with respect to the MVs. If
the set of active constraints A is known, Jäschke and Skogestad (2012) prove that
optimality can be attained by controlling to zero the active constraints and the
associated reduced cost gradient. Their result is given by the following theorem:

Theorem 2.1 (Optimal controlled variables). Consider the optimization problem
in Equation (2.1), where we assume that linear independence constraint qualific-
ation (LICQ) holds. We assume that the set of optimally active constraints A is
known. Let NA ∈ Rnu×(nu−na) be a basis for the nullspace of Gg

A such that:

Gg
ANA = 0 (2.4)

Further, define the reduced cost gradient as:

∇u,AJ(u, d) = NT
A∇uJ(u, d) (2.5)

Then controlling gA(u, d) = 0 and ∇u,AJ(u, d) = 0 results in optimal steady-
state operation.
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Proof. (Jäschke and Skogestad 2012) If the active constraints A are known, the
necessary optimality conditions (2.2) are equivalent to:{

∇uL(u∗, d) = ∇uJ(u
∗, d) +

(
Gg

A
)T

λ∗
A = 0

gA(u
∗, d) = 0

(2.6)

where λ∗
A > 0 is the optimal vector of Lagrange multipliers for the active con-

straints. Premultiplying∇uL(u∗, d) by NT
A leads to:

NT
A∇uL(u∗, d) = NT

A∇uJ(u
∗, d) +

(
Gg

ANA
)T

λ∗
A = 0

Since by definition Gg
ANA = 0, the optimality conditions are equivalent to gA(u

∗, d) =
0 and NT

A∇uJ(u
∗, d) = 0, which are nu equations that fully determine u∗ be-

cause NA is full rank, and the associated optimal Lagrange multiplier can al-
ways be found as λ∗

A = −
(
Gg

A(G
g
A)

T
)−1

Gg
A∇uJ(u

∗, d). Therefore, enforcing
gA(u

∗, d) = 0 and NT
A∇uJ(u

∗, d) = 0 leads to satisfying (2.6), which is equival-
ent to satisfying (2.2).

In terms of feedback control, Theorem 2.1 says that gA and ∇u,AJ (both with
setpoints 0) are the steady-state optimal CVs for a given operating region where
the active constraints do not change. Here, the reduced cost gradient ∇u,AJ =
NT

A∇uJ is defined as the gradient in the unconstrained directions as given by the
nullspace NA of the active constraints (Jäschke and Skogestad 2012). If the system
is to operate at another active constraint region, however, the CVs need to change,
and if shifts in operating regions happen in real-time, the control system needs to
automatically detect these region switches. The main idea of this work is to design
a decentralized control structure, see Figure 2.2, for all possible active constraint
regions of the optimization problem in Equation (2.1). The main assumption for
guaranteeing the existence of this decentralized control structure is as follows:

Assumption 2.1. The matrix Gg is always full row rank, and the number of con-
straints is not greater than the number of MVs, that is, rank(Gg) = ng, and
nu ≥ ng.

This not only guarantees LICQ for any set of constraints that may be optimally
active, but it also guarantees the existence of decoupled CVs for optimal opera-
tion, as shown in the next theorem. For use in the next theorem, define N0 as an
orthonormal basis of the nullspace of Gg, that is:

GgN0 = 0 (2.7)
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The matrix N0 represents the unconstrained directions that are never in conflict
with constraint control. Note here that N0 is an empty matrix (nonexistent) if we
have as many constraints as inputs (nu = ng). Further define Gg

−i as the matrix
containing all but the i-th row of Gg, and define:

N =
[
N1 · · · Nng

]
(2.8)

as a matrix of ng columns, where each column Ni is a unitary vector such that:[
Gg

−i

N0T

]
Ni = 0 (2.9)

Each vector Ni represents the direction that may conflict with the corresponding
constraint gi, as shown next.

Theorem 2.2 (Optimal switching between CVs). Given that Assumption 2.1
holds and that the active constraint index set is A, the following control strategy
allows for optimal operation:

• If nu > ng, which means N0 is non-empty, control CV 0 = N0T∇uJ(u, d) =
0;

• For i = 1, 2, · · · , ng, if i ∈ A, control CV g
i = gi(u, d) = 0; otherwise,

control CV 0g
i = NT

i ∇uJ(u, d) = 0.

Proof. To prove Theorem 2.2, it is sufficient to prove that the controlled variables
are equivalent to the necessary first-order optimality conditions. Firstly, it is useful
to note that, due to its construction, GgNi = (Gg

iNi)êi, with Gg
i being the i-th row

of Gg, and êi being the i-th unit vector from the standard basis. Additionally, if the
active constraint set is A, and the inactive constraint set is I = {1, . . . , ng} − A,
the optimality conditions can be written as:


∇uL(u∗, d) = ∇uJ(u

∗, d) +GgTλ∗ = 0

gi(u
∗, d) = 0, i ∈ A

λ∗
i = 0, i ∈ I

Let NI be the matrix with columns equal to Ni for i ∈ I. Then, premultiplying
∇uL by

[
NI N0

]T leads to:
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[
NI N0

]T ∇uL =
[
NI N0

]T ∇uJ +
(
Gg

[
NI N0

])T
λ∗

=
[
NI N0

]T ∇uJ +
([
GgNI 0

])T
λ∗

Here, (GgNI)
T λ∗ = 0, because GgNi = (Gg

iNi)êi, and, from the optimality
conditions, êTi λ

∗ = λ∗
i = 0 for i ∈ I. Therefore, the optimality conditions

become [
NI N0

]T ∇uL =
[
NI N0

]T ∇uJ = 0,

which are the CVs proposed in addition to gi(u, d) = 0 for i ∈ A. Similarly to
Theorem 2.1, this fully defines the operational degrees of freedom, and a suitable
vector of Lagrange multipliers can be found.

Note that the matrix
N(A) =

[
NI N0

]
(2.10)

used in the proof of Theorem 2.2 is a particular parametrization of the nullspace
matrix NA from Theorem 2.1, and therefore both results are equivalent for a given
active constraint region. In Theorem 2.2 however, we specify an ideal association
between CVs such that the handling of region switching may be done in a decent-
ralized fashion, avoiding changes in the rest of the control structure. For instance,
if the i-th constraint changes from inactive to active, only the corresponding un-
constrained degree of freedom CV 0g

i = NT
i ∇uJ will become uncontrolled, and

the remaining CVs are kept unaltered. In addition, the matrix N(A) =
[
NI N0

]T
is designed to be full row rank, and therefore all operational degrees of freedom
are filled for any active set A. The choice of building the vectors Ni unitary and
orthogonal to N0 is purely for the uniqueness of the solution, as one could pro-
pose another projection N ′

i = αNi + N0w for any nonzero scaling factor α and
any vector w, and optimal operation would still be attained, as N0T∇uJ is always
optimally zero.

Theorem 2.2 states a general set of feedback control objectives to attain optimal
operation. It does not specify the type of controller to be used, and one may apply
these results to obtain optimal operation with conventional tracking MPC with
switching objectives to eliminate the RTO layer. This would be useful for cases
where decentralized control performs poorly, but one still wishes to propose a
simple control layer. In this work, however, we choose to explore the implications
of this result for decentralized control, which is often more easily implemented in
practice.
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Pairing of MVs and CVs. It should be noted that Theorem 2.2 makes no dis-
tinction about the pairing between MVs and CVs, and it is left for the practi-
tioner to make this pairing taking into account controllability and performance as-
pects. However, the theorem states the optimal association between CVs for region
switching, which means that the control of CV g

i = gi and CV 0g
i = NT

i ∇uJ must
be performed by the same MV in the case of a decentralized framework. From
now on, it is considered that the MVs are ordered such that ui is used to control
the pair CV g

i = gi and CV 0g
i for i ≤ ng. These considerations lead to the control

structure presented in Figure 2.3. Here, ∇uĴ represents the estimate of the cost
gradient (∇uJ), Kg

i represent the individual constraint controllers, K0g
i represent

the individual gradient controllers that are conditionally active (i.e. only one of
Kg

i and K0g
i is active at any given time), and K0

i represent the individual gradient
controllers that are always active. It is important that the controllers Kg

i and K0g
i

include anti-windup action so that the integral modes in the inactive controllers do
not grow indefinitely.

We finally focus on the applicability of min/max selectors as the logic elements
to switch between active constraint regions, which were left undetermined in Fig-
ure 2.3 as “select” blocks. These selectors are applied on the controller outputs ugi
and u0gi associated with the controlled variables gi and CV 0g

i , respectively, result-
ing in the process input (MV) ui to be applied to the system. This methodology
was adopted in Krishnamoorthy and Skogestad (2020) for optimal operation in the
scalar case, i.e. with a single MV, where it was concluded that a constraint with a
positive gain (Gg > 0) requires a min selector, whereas a negative gain (Gg < 0)
requires a max selector. In the next theorem, we present similar results for the
multivariable case.

Theorem 2.3 (Decentralized control. Applicability of min/max selectors). In
addition to Assumption 2.1, assume that the Hessian of the cost function with re-
spect to the inputs is constant and positive definite, that is, ∇uJ(u, d) = Juuu +
Ju,m(d), with Juu > 0 and arbitrary Ju,m(d), and that Gg is constant. Con-
sider the control structure in Figure 2.3 and Theorem 2.2, and assume that every
possible subsystem is stable.

Let u0gi denote the value of ui that controls CV 0g
i = NT

i ∇uJ(u, d) = 0, and let
ugi denote the value of ui that controls gi(u, d) = 0. For a given active set A, the
associated nullspace of the active constraint gain matrix Gg

A isN(A) =
[
NI N0

]
.

Define the scaled projection matrix PA and the transformed constraint gain matrix
Gg

PA
as:

PA = N(A)

(
NT

(A)JuuN(A)

)−1
NT

(A) (2.11)
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Figure 2.3: Decentralized control structure for optimal operation according to The-
orem 2.2. The “select” blocks are usually max or min selectors (see Theorem 2.3).
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Gg
PA

= GgPA (2.12)

The optimal input is given by u∗i = min(u0gi , ugi ) if the i-th diagonal element of
the transformed gain matrix is positive ((Gg

PA
)ii > 0) for any active set A that

does not include i. Conversely, the optimal input is given by u∗i = max(u0gi , ugi ) if
(Gg

PA
)ii < 0 ∀A ̸∋ i.

Proof. See 2.A

It is worth noting that the i-th row of Gg
PA

is identically zero for i ∈ A, since PA
involves a projection to the nullspace of the active constraints. If (Gg

PA
)ii changes

sign for different active sets, a single type of selector would not account for all
theoretical regions. The single-input case of Theorem 2.3 can be easily verified by
writing ug − u0g = − 1

Juu
Ggλi. As Juu > 0 for a convex optimization problem,

Gg > 0 leads to u∗ = min(u0g, ug), and Gg < 0 leads to u∗ = max(u0g, ug),
which is equivalent to the result in Krishnamoorthy and Skogestad (2020).

Can some of the assumptions in Theorem 2.3 be removed? According to The-
orem 2.3, the use of max- (or min-) selectors in Figure 2.3 assumes that (Gg

PA
)ii

remains positive (or negative) for any active set A that does not include i. This is
to rule out cases where the steady-state gain for control of the constraint gi changes
sign, as this would lead to instability with integral action in the controller. In other
words, this is to rule out interacting processes where u∗i = min(u0gi , ugi ) for a
given active set A, and u∗i = max(u0gi , ugi ) for another. However, it is not clear
whether this is a restriction in practice. Thus, it is possible that the assumption
about no sign change for the diagonal elements (Gg

PA
)ii is not needed. This is left

as an open research issue.

Cascade implementation. It is anyway possible to avoid this restriction by using
the cascade switching implementation in Figure 2.4. That is, for this implementa-
tion the simple selector logic is always optimal without the assumption about the
sign of (Gg

PA
)ii in Theorem 2.3. In the cascade implementation in Figure 2.4, the

constraints are always controlled in the lower layer, and the optimal constraint set-
point gspi will either be the value gsp,0i that controls CV 0g

i = 0 or the constraint’s
limit value itself, such that gspi = min(gsp,0i , 0) leads to optimal operation. This
result can also be obtained by rewriting Theorem 2.3 in terms of the transformed
inputs v =

[
g1 · · · gng ung+1 · · · unu

]T , where it can be verified that the
condition (Gg,v

PA
)ii > 0 is always satisfied. This result is presented in 2.B.

The idea of using cascade control for self-optimizing control and constraint sat-
isfaction has been previously proposed in Cao (2004). There, the cost gradient
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Figure 2.4: Decentralized control structure for optimal operation, using an alternative
cascade implementation.
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is controlled in the unconstrained case, while the lower layer keeps the system
feasible by saturating the setpoint from the upper layer. This approach ensures
feasibility and self-optimizing behavior at the unconstrained region, but optimality
at all active constraint regions is only ensured by carefully selecting the CVs at the
upper layer, which is the main idea of the present work. In addition, even though
the cascade structure will always operate optimally at steady state, it requires that
the outer controllers K0g

i are sufficiently slower than the inner controllers Kg
i , and

therefore the generic structure in Figure 2.3 offers more flexibility in terms of loop
tuning and implementation of further control overrides. The simulations presented
in this paper are for the implementation in Figure 2.3.

2.3 Case study 1 - Toy example
In this section, to illustrate the implementation of the proposed control structure,
we consider a linear process with a quadratic cost function and 2 linear constraints.
The process has 2 dynamic states x, 3 inputs (MVs) u, and 2 disturbances d. The
linear state-space model is:

ẋ =

[
− 1

τ1
0

0 − 1
τ2

]
︸ ︷︷ ︸

A

x+

[0.2
τ1

0 0

0 0.2
τ2

0

]
︸ ︷︷ ︸

B

u+

[ 1
τ1

0

0 1
τ2

]
︸ ︷︷ ︸

Bd

d
(2.13)

with τ1 = 1 and τ2 = 2. It is assumed that both states are measured, that is,
y = Cx+Du with C = I and D = 0.

The steady-state optimization problem in terms of the states is:

min
u

1

2
xT

[
1 0
0 10

]
x+

1

2
uT

 1 −0.1 −0.2
−0.1 0.8 −0.1
−0.2 −0.1 0.3

u

s.t.

{
g1 = x1 − 0.8x2 ≤ 0

g2 = u1 + u2 + u3 ≤ 0

(2.14)

At steady state, the states can be eliminated to give the following static optimiza-
tion problem:
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min
u

J(u, d) =
1

2
uT

1.04 −0.1 −0.2
−0.1 1.2 −0.1
−0.2 −0.1 0.3

u+ uT

0.2 0
0 2
0 0

 d

s.t. g(u, d) =

[
0.2 −0.16 0
1 1 1

]
︸ ︷︷ ︸

Gg

u+

[
1 −0.8
0 0

]
d ≤ 0

(2.15)

For given disturbances d, we can solve the problem in Equation (2.15) to find the
optimal steady-state inputs u∗ and the active set A. From this, we can graphically
represent the active constraint regions as a function of the two disturbances as
shown in Figure 2.5. Note that this is done for visualization purposes only and is
not a part of the proposed method. In fact, for the proposed method we do not need
to know what the disturbances are; what is needed is measured or estimated values
for the constraints g and the unconstrained cost gradient∇uĴ . We see in Figure 2.5
that all 2ng = 22 = 4 combinations of constraints are possible. Each region has
a specific set of CVs for optimal operation, namely the active constraints and the
corresponding reduced gradients, as given in Theorem 2.2.

4 3 2 1 0 1 2 3 4
d1

4

3

2

1

0

1

2

3

4

d 2

{}

{g1}

{g2}

{g1, g2}

Figure 2.5: Active constraint regions for case study 1 as a function of disturbances.

We have nu = 3 and ng = 2, so with the proposed method, we need to design
nu+ng = 5 SISO controllers with ng = 2 selectors to obtain optimal steady-state
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operation. Since nu > ng, we always have nu − ng = 1 unconstrained degree
of freedom corresponding to the controlled variable CV 0 = N0T∇uĴ . From the
nullspace of the full Gg matrix, we find that this direction is given by

N0 =
[
−0.36214 −0.45268 0.81482

]T
.

In addition, there are two unconstrained directions related to the two constraints.
We have that CV 0g

1 = NT
1 ∇uĴ should be controlled when g1 is not active, and

CV 0g
2 = NT

2 ∇uĴ should be controlled when g2 is not active. These directions
are:

[
1 1 1

−0.36214 −0.45268 0.81482

]
N1 = 0 =⇒ N1 =

−0.731790.67952
0.052271


[

0.2 −0.16 0
−0.36214 −0.45268 0.81482

]
N2 = 0 =⇒ N2 =

0.509020.63627
0.57971


For designing a decentralized control structure, a pairing between the constraints
and the MVs must be performed. From the steady-state gain matrix Gg we see that
u3 should not be used to control g1 (because of zero gain). Otherwise, there are no
clear restrictions, and g1 is arbitrarily paired to u1, and g2 is paired to u2. We must
require that the corresponding unconstrained optimal CVs are paired accordingly,
meaning that CV 0g

1 is paired to u1, CV 0g
2 is paired to u2, and CV 0 is paired to u3.

A (Gg
PA

)11 (Gg
PA

)22

{} 0.201 1.443
{1} - 1.801
{2} 0.155 -

Table 2.1: Diagonal elements of Gg
PA

for all relevant sets A for case study 1.

For selector design, Table 2.1 shows the transformed constraint gains calculated
using Equation (2.12) for all active constraint sets, and we verify that the gains
are always positive for both constraints. This means that selectors are possible for
both control loops and that both selectors should be “min"-selectors. The resulting
control structure is shown in Figure 2.6.

The cost gradient is estimated through a relinearization of the dynamic model at
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Figure 2.6: Decentralized control structure for case study 1.
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the current estimated state to obtain the following linear model:{
ẋ = Ax+Bu

J = CJx+DJu
(2.16)

where, by setting ẋ = 0, the estimated steady-state cost gradient becomes (Krish-
namoorthy et al. 2018)

∇uĴ = −CJA
−1B +DJ (2.17)

For state estimation, the model is augmented to include the disturbances as integ-
rating states, according to:


[
ẋ

ḋ

]
=

[
A Bd

0 0

] [
x
d

]
+

[
B
0

]
u

y =
[
C 0

] [x
d

] (2.18)

To estimate the states, a continuous-time Kalman filter is implemented with this
augmented model, and the estimated state x̂ and current input u are used to evaluate
the matrices in Equation (2.16) at all times, leading to the estimated cost gradient
∇uĴ in (2.17) . The matrices A, B, Bd, C, and D are as defined in Equation (2.13),
and CJ and DJ are calculated from Equation (2.14) to give:

CJ = x̂T
[
1 0
0 10

]

DJ = uT

 1 −0.1 −0.2
−0.1 0.8 −0.1
−0.2 −0.1 0.3


We emphasize that analytical expressions for these derivatives are available due to
the simplicity of this case study, and we encourage the use of automatic differenti-
ation tools to obtain these matrices in more realistic case studies.

The constraint controllers Kg
1 and Kg

2 were designed according to the SIMC rules
(Skogestad 2003) with the choice τC,1 = 0.1 s and τC,2 = 0.01 s. In terms of
gradient control, we assume that the effect of the inputs on the estimated ∇uĴ is
that of a pure gain process, neglecting any dynamics associated with the gradient
estimation, and therefore the gradient controllers K0g

1 , K0g
2 , and K0 become pure

integral controllers. These were tuned according to the SIMC rules with τC = 0.5
s. All controllers linked to selectors are implemented with anti-windup action
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based on the back-calculation strategy (Åström and Rundqwist 1989, Skogestad
2023), with a tracking time of τT = 0.01 s. The resulting controller tunings are
summarized in Table 2.2.

Controller Parameter Value

Kg
1

Kc 50
τI 1.0

Kg
2 KI 100

K0g
1 KI -2.382

K0g
2 KI 3.055

K0 KI 5.523

Table 2.2: PI controller tunings for case study 1. Note that KI = Kc/τI is the integral
gain. The first four controllers have anti-windup with tracking time τT = 0.01 s

The closed-loop simulations are shown in Figure 2.7. To validate the optimality
of the control structure, the disturbances were changed stepwise every 15 seconds
(see lower left plots) to make the system operate in all four active constraint regions
(see lower right plot). It can be seen that constraint changes are effectively handled,
giving up the corresponding gradient projection when a constraint becomes active,
and that operation is driven to the optimal steady state for all disturbances.

2.4 Case study 2 - Williams-Otto reactor
The control structure proposed in Section 2.2 depends on using projection matrices.
These are constant only when the constraints are linear in the MVs. We now con-
sider a nonlinear case study where this assumption is not satisfied and one may
expect economic losses in some regions. The case study is based on the process
described by Williams and Otto (1960) and studied in (Krishnamoorthy and Sko-
gestad 2020), see Figure 2.8. It consists of a continuously stirred reactor tank with
perfect level control, in which A and B are mixed, generating the main product P,
the less interesting product E and the undesired byproduct G. The reactions and
reaction rates are given by:

A+B
k1−→ C k1 = k0,1e

−E1/Tr

C +B
k2−→ P + E k2 = k0,2e

−E2/Tr

P + C
k3−→ G k3 = k0,3e

−E3/Tr
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Figure 2.7: Closed-loop simulation results for case study 1.
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Figure 2.8: Schematic representation of Williams-Otto reactor, with MVs in red.

The component mass balances for the six components give the following set of
ODEs:

dxA
dt

=
FA

W
− (FA + FB)xA

W
− k1xAxB (2.19a)

dxB
dt

=
FB

W
− (FA + FB)xB

W
− k1xAxB − k2xCxB (2.19b)

dxC
dt

= −(FA + FB)xC
W

+ 2k1xAxB − 2k2xCxB − k3xPxC (2.19c)

dxP
dt

= −(FA + FB)xP
W

+ k2xCxB − 0.5k3xPxC (2.19d)

dxE
dt

= −(FA + FB)xE
W

+ 2k2xCxB (2.19e)

dxG
dt

= −(FA + FB)xG
W

+ 1.5k3xPxC (2.19f)

The model parameters for this case study are summarized in Table 2.3. The eco-
nomic cost J includes the cost of reactants pA and pB and the selling price of
products pP and pE , and the operational constraints are related to maximum al-
lowed values for xA and xE . The steady-state optimization problem becomes
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min
u

J = pAFA + pBFB − (FA + FB) [pP (1 + ∆pP )xP + pExE ]

s.t. g1 = xE − 0.30 ≤ 0

g2 = xA − 0.12 ≤ 0

(2.20)

The degrees of freedom (MVs) are u =
[
FB Tr

]T , and the disturbances are

d =
[
FA ∆pP

]T , where ∆pP is the relative change in the price of the main
product, as defined in Equation (2.20).

Parameter Value

W 2105 kg
k0,1 1.6599 × 10−6 kg/s
k0,2 7.2117 × 10−8 kg/s
k0,3 2.6745 × 10−12 kg/s
E1 6666.7 K
E2 8333.3 K
E3 11111 K
pA 79.23 $/kg
pB 118.34 $/kg
pP 1043.38 $/kg
pE 20.92 $/kg

Table 2.3: Model parameters for case study 2.

The active constraint regions as a function of the two disturbances are shown in
Figure 2.9. In contrast to the previous case study, the lines delimiting each region
are not straight. This alone should not affect the optimality of the proposed frame-
work, as the optimality only requires that the constraints are linear in the MVs.
However, since the latter does not hold for the case study, the use of constant pro-
jection matrices will lead to some economic loss.

We have nu = ng = 2 so Assumption 2.1 is satisfied. With the proposed method
we need to design nu + ng = 4 SISO controllers with ng = 2 selectors to obtain
optimal steady-state operation. To obtain the gain matrix Gg from the MVs to the
constraints, we need to linearize the steady-state model of the constraints. In the
following simulations, we use the linearization performed at the nominal operating
point presented in Table 2.4, leading to fixed CVs for operation in all regions. This
linearization gives:
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Figure 2.9: Active constraint regions for case study 2 as a function of disturbances.

Gg =

[
−0.1045 0.003268
−0.04379 −0.00241

]
Since nu = ng, the system has no completely unconstrained degrees of freedom,
so there are no variables CV 0 that are always controlled. The gradient projections
N1 and N2 for the two potentially unconstrained degrees of freedom become:

[
−0.04379 −0.00241

]
N1 = 0 =⇒ N1 =

[
−0.05499
0.9985

]

[
−0.1045 0.003268

]
N2 = 0 =⇒ N2 =

[
0.03126
0.9995

]

For MV-CV pairing, we choose u1 = FB for controlling g1 and CV 0g
1 = NT

1 ∇uĴ ,
and u2 = Tr controlling g2 and CV 0g

2 = NT
2 ∇uĴ . This pairing choice was made

based on the steady-state RGA for constraint control, which gives λ = 0.638 for
the chosen pairing. For designing the selectors according to Theorem 2.3, a local
analysis of the transformed constraint gains given in Equation (2.12) was made
at the nominal point and is summarized in Table 2.5. The projected gains are



30 Decentralized control using selectors for optimal steady-state operation with changing
active constraints

Variable Value

FA 0.5 kg/s
∆pP 0
FB 1.4587 kg/s
Tr 342.537 K
xA 0.0712 kg/kg
xB 0.4107 kg/kg
xC 0.0173 kg/kg
xP 0.1246 kg/kg
xE 0.3 kg/kg
xG 0.0762 kg/kg

Table 2.4: Nominal operating point for case study 2.

negative for both constraints regardless of the active set, which means that both
selectors should be “max" selectors. The resulting control structure is presented in
Figure 2.10.

A (Gg
PA

)11 (Gg
PA

)22

{} −6.01× 10−4 −0.0279
{1} - −0.0287
{2} −5.05× 10−4 -

Table 2.5: Diagonal of Gg
PA

for all relevant sets A for case study 2.

To tune the controllers, we obtained the following transfer functions from the MVs
to the constraints (with time in hours):

G11(s) =
−0.1045
0.225s+ 1

, G22(s) =
−0.00241
0.072s+ 1

Based on this, the PI controllers for the constraints were tuned using the SIMC
rules (Skogestad 2003) with τC,1 = 0.005 h and τC,2 = 0.01 h. Similar to the
previous case study, the method for gradient estimation is again considered to be
instantaneous with respect to the inputs, meaning that the gradient controllers be-
come integral controllers, tuned using the SIMC rules with τC = 0.05 h. All four
controllers were implemented with anti-windup action based on back-calculation
with a tracking time of τT = 0.01 h. The controller tunings are summarized in
Table 2.6.
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Figure 2.10: Complete control structure for case study 2.
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Controller Parameter Value

Kg
1

Kc -430.6
τI 0.225 h

Kg
2

Kc -2988
τI 0.072 h

K0g
1 KI -1.833

K0g
2 KI 202.5

Table 2.6: PI controller tunings for case study 2.

Closed-loop dynamic simulations are presented in Figure 2.11. The disturbances
were changed so that all four active constraint regions were explored. Since we
consider that the cost gradient∇uĴ is an available measurement (from an estimator
with a perfect model), operation in the fully unconstrained region (from t = 21 h
to t = 27 h) is optimal at steady state, which can be seen by the input values
converging to the exact steady-state optimal value. Since we assume that the con-
straints are directly measured (which is a mild assumption), the same logic applies
to the fully constrained region from t = 9 h to t = 15 h. In addition, operation
is optimal at the nominal point by design. In the two remaining partly constrained
regions, the system does not converge exactly to the steady-state optimum, but the
constraints are always satisfied (except for short dynamic transients, which may be
avoided by introducing a back-off for the constraints).

It is interesting to note that for the third set of disturbances (d = [1.0, −0.2]T
from t = 6 h to 9 h), the second constraint (g2 = 0) is not controlled, even though
it should be optimally controlled together with g1 = 0. Instead, the selector logic
results in the control of CV 0g

2 = 0, which can be done without violation of g2,
that is, constraint g2 is "over-satisfied". The reason for this non-optimal operation
is that the selected value for projection matrix N2 is not optimal in this operating
region.

The steady-state economic loss is better visualized as a function of the disturb-
ances in Figure 2.12. The highest losses are observed around where we ideally
should switch between the partly constrained and the fully constrained regions.
The optimal switch between these regions (black lines) does not coincide with the
actual switch obtained with the selectors (blue lines). Economic loss is observed
before the optimal switch due to the inaccuracy of the projection matrices. For the
same reason, and because this further leads to suboptimal performance of the se-
lectors, economic loss is also seen between the optimal and actual switch of CVs.
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Figure 2.11: Closed-loop simulation results for case study 2.
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However, the optimal switch between the fully unconstrained and the partly con-
strained regions coincides with the actual switch between the corresponding CVs.
This happens because, before the switch, the full cost gradient ∇uĴ is controlled
to zero, leading to zero economic loss, and the constraint becomes active imme-
diately at the switch. Therefore, at this switch, the economic loss is zero, and it
continuously grows as the system moves further into the partly constrained region.
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Figure 2.12: Steady-state closed-loop economic loss for case study 2.

2.5 Discussion

2.5.1 Steady-state cost gradient estimation

The results in this paper assume the availability of the steady-state cost gradi-
ent ∇uJ during operation. This can be fulfilled through model-based estimation,
model-free estimation, or a combination of both methods (Krishnamoorthy and
Skogestad 2022).Model-free methods usually depend on the perturbation of the
inputs, and when the constraints are being controlled the perturbation can be done
in their setpoints instead. In the presented case studies, we used a model-based
approach, where a Kalman Filter was used to estimate the current dynamic state x
and disturbance d with an augmented model (2.18), and then setting ẋ = 0 in the
linearized model (2.16) leads to the gradient estimate (2.17).
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Because the cost gradient ∇uJ is, by definition, a steady-state variable, it is not
well-defined during a dynamic transition, and any gradient estimator must make
some steady-state assumption or prediction. The necessity of estimating the cost
gradient is related to ensuring exact optimality. In practice, one would wish to use
an approximation of the cost gradient that is more easily implementable, even if
that means accepting some economic loss. In that sense, data-driven approaches
for this estimation would be appealing, as well as self-optimizing control methods
that provide an approximation for the cost gradient through a static combination
of measurements (Jäschke and Skogestad 2012).

However, a simpler approach is to use a static estimation of ∇uJ directly based
on the measurements y. In another paper (Bernardino and Skogestad 2024a), we
prove the optimality of a simple linear steady-state gradient estimate of the form

∇uĴ = Hy − cs

where y are the measurements, and the constant vector cs and the constant matrix
H are obtained using the “exact local method” of self-optimizing control. In ad-
dition, a correction of cs from a more accurate gradient estimator may be applied
on a slower time scale, for example, using a model-based approach like RTO or a
data-based perturbation method like extremum-seeking control.

2.5.2 Handling of constraints

Constraints in process systems are usually measured or estimated, and our ap-
proach is optimal for such cases, as control loops are implemented to handle these
constraints. In MPC applications, where the problem is formulated as a dynamic
trajectory optimization, it is common that process constraints are posed as con-
straints on the dynamic states, but this is not how our approach handles this issue.
Rather, our method is focused on process constraints that may become active at
steady state and influence process economics.

2.5.3 Updating of projection matrices

In the simulations presented in this paper, we assumed that a linearization of the
constraints at a nominal operating point would be sufficiently accurate for cap-
turing the transitions between active constraint regions. This simplification was
primarily made to ensure a control structure that can be easily implemented, and
it led to acceptable results even for a nonlinear case study (see Figure 2.12). How-
ever, it is possible to enhance economic performance by updating the projection
matrices N and N0 during operation. To accomplish this, an accurate estimator
for the complete constraint gradient matrix Gg is required, and typically such an
estimator is only available at a time scale similar to that of RTO. However, our
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primary objective is to achieve acceptable economic losses in fast time scales, and
this could be accomplished by using constant projection matrices.

2.5.4 Controller tuning

Even though the proposed control structure only has nu + ng SISO controllers to
be designed, the tuning of these controllers may prove to be challenging. This is
because these controllers must work in many different regions (up to 2ng theoret-
ical regions), and the interaction between loops will change depending on which
controllers are active. The pairing between MVs and CVs should consider this,
and the tuning for the loops should be robust in the sense that acceptable perform-
ance is attained for every operation mode. This issue was not noticed in the case
studies in this work, but it is easy to see that it may arise in practice.

2.5.5 Limitations for systems with many constraints

In this paper, we consider a class of problems with nu ≥ ng, so it is possible to
devise a simple, decentralized control structure. There is a particular case of sys-
tems with more constraints than inputs that can fit into the framework proposed
in this work. That would be the case where the constraints can be arranged into
ng groups, where each group is comprised of constraints that have parallel gain
vectors with respect to the inputs, i.e. the constraints gi and gj would belong to
the same group if ∇ugi = α∇ugj for some nonzero α. In practice, this would
represent a process variable with lower and upper bounds, or constraints of similar
nature caused by different factors, e.g. a maximum processing rate due to up-
stream or downstream conditions. Each of these groups has a unique characteristic
direction in terms of the rows of Gg, which can be used to calculate the gradient
projections with the methodology described in Theorem 2.2. Each of these groups
should then be organized internally following the single-variable methodology de-
scribed by Krishnamoorthy and Skogestad (2020). As the methodology devised in
this paper mitigates the correlation between each group of constraints, the gradi-
ent projections that serve as unconstrained CVs remain constant with respect to
changes in the remaining loops, and therefore no additional logic is required in the
implementation of max/min selectors for constraint handling.

The main case not covered by the present methodology is when there are ng > nu

independent constraints that may become active, expressly violating Assumption
2.1. In this case, considering that some pairing between MVs and constraints is
done, the first problem that arises is the possibility of constraints paired with the
same MV becoming active at the same time, requiring that one or several con-
straints become controlled by other MVs. A heat exchanger case with ng = 3 >
nu = 2 was studied in Bernardino et al. (2022a), where it was shown that a region-
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based approach similar to the one studied in the present paper fails to achieve
optimality for some disturbance scenarios, whereas the primal-dual approach al-
ways reaches the optimal steady state. To achieve optimality with a region-based
approach, an adaptive pairing strategy may be used, as described for this case study
in Bernardino et al. (2022b). This gives optimal operation for all disturbances, but
the adaptive pairing becomes quite complicated (see Figure 2 in (Bernardino et al.
2022b)).

In this sense, general strategies for switching pairings require more complex logic,
and currently, there is no systematic arranging of classical control logic blocks that
can account for that. On top of that, even if conflicting constraints are not an issue
for the considered operating window, i.e. constraints paired to the same MV do
not become active at the same time for the considered disturbances, the design of
controllers for the unconstrained degrees of freedom becomes more complicated.
As the constraints are assumed to be independent, the gradient projections optim-
ally controlled to zero will be different when each of them is active. This entails
that the remaining control loops have to change depending on which controller
related to this MV is active. Therefore, proposing decentralized control structures
for the optimal operation of systems with more constraints than MVs inevitably
leads to complex and interacting control loops, and centralized strategies such as
the primal-dual feedback optimizing control presented in Krishnamoorthy (2021)
or MPC become more appealing.

For the same reason, the proposed framework has limitations in optimal dealing
with input saturation. In real systems, every MV has physical bounds ulb ≤ u ≤
uub in addition to the process constraints g. Therefore, every physical system in a
way has more constraints than MVs, and one must identify the constraints that are
more likely to become active if one follows Theorem 2.2 for designing a control
structure. The choice of not pairing an MV that may saturate with an important
CV, in this case, an economic constraint, agrees with the rule of thumb “pair an
MV that may saturate with a CV that may be given up" (Skogestad 2004), as the
gradient projections paired to that MV should by design be given up in case of MV
saturation.

The proposed framework attains optimal operation in a wide operating range, by
enforcing optimality conditions at steady state for all possible active set combin-
ations for a maximum of nu independent constraints. It should also be emphas-
ized that less frequent constraints can still be dealt with in the current framework
by the implementation of more selectors, even if ng > nu, bearing in mind that
steady-state optimal operation will not be guaranteed when those become active
due to changes in the unconstrained CVs. However, violation of such infrequent
constraints would be prevented, which is the main goal of such additional control
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loops.

2.5.6 Stability and optimal convergence of selectors

The control strategy proposed in this work relies on switching blocks to per-
form optimal operation in different operating regions. Analyzing the stability of
switched systems is more complex, as the stability of a switched system may not
necessarily match that of its corresponding continuous subsystems (Liberzon and
Morse 1999). In Theorem 2.3, we assume that each subsystem within the switch-
ing system is stable, which is a condition already present and well described when
using decentralized control in multivariable systems. By ensuring that every sub-
system is stable, the overall stability of the switching system can be guaranteed.
This can be achieved by enforcing a sufficiently large average dwell time (Lin and
Antsaklis 2009), which is a practical and easily implementable solution.

The conditions for implementing min/max selectors to detect switches in active
constraints optimally are outlined in Theorem 2.3. This theorem is based on a local
analysis of the optimization problem and is rigorously applicable to problems with
a constant positive definite Hessian Juu and constant constraints gain Gg. A relev-
ant case in practice is that of linear economic objectives, for which Juu is positive
semidefinite, but this case is always solved by active constraint control, as there
are no unconstrained degrees of freedom to be determined. While the presented
proof does not address generic nonlinear optimization problems, it provides a use-
ful local test that can eliminate certain impossible configurations resulting from
the chosen MV-CV pairings or the formulation of the optimal operation problem
itself. If the conditions specified in Theorem 2.3 are not satisfied, we recommend
utilizing the cascade framework presented in Figure 2.4.

The condition derived in Theorem 2.3 for applicability of selectors would only
be violated by highly interacting systems, where the sign of the transformed con-
straint gain (Gg

PA
) would change depending on the active loops. This condition is

conjectured to be associated with the decentralized integral controllability (DIC)
of each potential subsystem (Lee and Edgar 2002). In our study, we could not
find an example of a linear system with a convex objective function and without
DIC that does not satisfy the conditions stated in the selector theorem. This fur-
ther suggests a connection between these concepts and that the DIC conditions
possibly imply the applicability of selectors. The link between the conditions of
Theorem 2.3 and controllability aspects remains an open challenge that requires
further investigation.
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2.5.7 Other switching approaches

In this work, we have proposed the use of selectors in the controller outputs for
detecting switches in active constraints. However, other strategies for adaptively
controlling constraints in the context of optimal operation have been proposed.
Manum and Skogestad (2012) studied the problem of active constraint switching
in self-optimizing control by tracking the self-optimizing CVs in neighboring re-
gions, where the switching happens when there is a change of sign in the monitored
variable. In the notation herein presented, this would be equivalent to the following
switching logic:

• If CV 0g
i = NT

i ∇uJ is being controlled to zero, a change of sign in gi means
that the i-th constraint became active, as this sign change corresponds to
constraint violation;

• Conversely, if gi is being controlled to zero, a change of sign in CV 0g
i =

NT
i ∇uJ means that the i-th constraint became inactive, as this sign change

corresponds to a change in the objective function slope.

The problem with implementing such logic lies in the resulting dynamics of the
control system. As this logic implies that the reference variable is perfectly con-
trolled for accurate detection, the logic should operate in a slower time scale than
that of the closed-loop system, which would in turn result in undesired behavior,
especially constraint violation. Operating the switching logic in fast time scales
could in turn lead to the appearance of limit cycles, due to self-sustained switching
between control loops.

We have also presented the cascade control structure in Figure 2.4 as an alternative
switching strategy. A similar idea has been proposed by Cao (2004) to promote
self-optimizing operation at the nominal region while sub-optimally coping with
constraint satisfaction. There are however some disadvantages to this approach
related to the limitations that the cascade structure imposes. If constraint control
is slow, controlling the corresponding gradient projection becomes unnecessarily
slow. Moreover, even though constraint control may help with decoupling the sys-
tem, it may also cause the opposite problem, and the interaction between loops
may impose limitations on the performance of the upper layer. Therefore, the use
of a cascade framework for optimal operation may be beneficial, but the improve-
ment that it may bring must be assessed for each particular case study.

Recently, the work of Ye et al. (2023) has tackled the problem of changing active
constraints by embedding the switching constraints into the CV design, generating
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a single nonlinear CV. Because the resulting CV design problem was deemed in-
tractable in most cases, a neural network was used to approximate the behavior of
this theoretical CV. It is interesting to note that the switching behavior still happens
in the designed CV, with the exact ideal CV being in general non-smooth. This is
expected because of the nature of the problem, and although neural networks can
approximate these variables, the interpretability of the resulting CV is lost, and
constraint control must be explicitly performed elsewhere. In the present work,
we deal with the switching explicitly, controlling the constraints directly when it
is optimal.

2.6 Conclusion
We propose a simple framework for decentralized optimizing control with chan-
ging active constraints. The starting point is that at steady state, optimal economic
operation in a given active constraint region A is achieved by keeping the con-
trolled variables CV =

[
gA;N

T
A∇uJ(u

∗, d)
]

at constant setpoints CV sp = 0
(Theorem 1 Jäschke and Skogestad (2012)). Here gA denotes the set of active
steady-state constraints, and NT

A∇uJ(u
∗, d) is the reduced steady-state cost gradi-

ent for the remaining unconstrained degrees of freedom.

There are some degrees of freedom in the choice of the directions in the uncon-
strained nullspace NA and to implement constraint switching in a simple manner,
these should be chosen in accordance with the constraint directions. The main con-
tribution of this paper is to prove in Theorem 2.2 for the case with nu ≥ ng, that
we should control the unconstrained variables CV 0 = N0T∇uJ (which are not
affected by the constraints), and in addition, depending on whether the constraint
gi is active or not, either control the constraint CV g

i = gi or the associated uncon-
strained variable CV 0g

i = NT
i ∇uJ , where N0 and Ni are calculated according

to (2.7)-(2.9). This can be implemented with the simple control structure in Fig-
ure 2.2. Furthermore, Theorem 2.3 shows that the switching can be performed
with min/max selectors, which leads to the simple control structure in Figure 2.3.
Here, no centralized supervisor is needed to determine the active constraints, as
the switching logic uses local feedback controllers.
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2.A Proof of Theorem 2.3
Proof. Define a set A ⊂ {1, 2, · · · , ng} and an index i such that i /∈ A, and
another set A∗ such that A∗ = A ∪ {i}. We prove the theorem by comparing the
solution of the optimization problems with active sets A∗ and A, i.e. what is the
effect of controlling gi = 0 instead of the corresponding unconstrained degree of
freedom CV 0g

i = NT
i ∇uJ = 0 for arbitrary A and i.

The optimality conditions for A∗ as the active set are given by:

{
∇uL = Juuu

A∗
+ Ju,m(d) + (Gg

A∗)
TλA∗

= 0

gA∗(uA
∗
, d) = Gg

A∗u
A∗

+ gmA∗(d) = 0

in which the constraint-related matrices are partitioned with relation to the active
set A and the remaining index i as Gg

A∗ =
[
(Gg

A)
T (Gg

i )
T
]T and gmA∗(d) =[

gmA (d)T gmi (d)T
]T .

Eliminating uA
∗

from the first equation gives:

uA
∗
= −J−1

uu Ju,m(d)− J−1
uu (G

g
A∗)

TλA∗

Substituting this equation into the second optimality condition gives the following
expression for λA∗

:

(Gg
A∗J

−1
uu (G

g
A∗)

T )λA∗
= gmA∗(d)−Gg

A∗J
−1
uu Ju,m(d)

The variables can be partitioned as follows:

[
Gg

AJ
−1
uu (G

g
A)

T Gg
AJ

−1
uu (G

g
i )

T

Gg
i J

−1
uu (G

g
A)

T Gg
i J

−1
uu (G

g
i )

T

][
λ(A)

λi

]
=

[
gmA (d)−Gg

AJ
−1
uu Ju,m(d)

gmi (d)−Gg
i J

−1
uu Ju,m(d)

]

The same procedure with A as the active set leads to:

{
uA = −J−1

uu Ju,m(d)− J−1
uu (G

g
A)

TλA

(Gg
AJ

−1
uu (G

g
A)

T )λA = gmA (d)−Gg
AJ

−1
uu Ju,m(d)

The term (Gg
A∗)TλA∗

= (Gg
A)

Tλ(A) + (Gg
i )

Tλi can be expressed in terms of the
solution for A, as follows:
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λ(A) = (Gg
AJ

−1
uu (G

g
A)

T )−1
(
gmA (d)−Gg

AJ
−1
uu Ju,m(d)−Gg

AJ
−1
uu (G

g
i )

Tλi
)

= λA − (Gg
AJ

−1
uu (G

g
A)

T )−1Gg
AJ

−1
uu (G

g
i )

Tλi

=⇒ (Gg
A∗)

TλA∗
= (Gg

A)
TλA +

(
I − (Gg

AJ
−1
uu (G

g
A)

T )−1Gg
AJ

−1
uu

)
(Gg

i )
Tλi

Therefore, uA
∗

can be expressed in terms of uA as follows:

uA
∗
= −J−1

uu Ju,m(d)− J−1
uu (G

g
A∗)

TλA∗

= uA − J−1
uu

(
I − (Gg

AJ
−1
uu (G

g
A)

T )−1Gg
AJ

−1
uu

)
(Gg

i )
Tλi

The transformation PA = J−1
uu

(
I − (Gg

AJ
−1
uu (G

g
A)

T )−1Gg
AJ

−1
uu

)
is equivalent to

a scaled projection to the nullspace of Gg
A, N(A) (Nocedal and Wright 2006), ac-

cording to the identity:

PA = N(A)

(
NT

(A)JuuN(A)

)−1
NT

(A) = J−1
uu

(
I − (Gg

AJ
−1
uu (G

g
A)

T )−1Gg
AJ

−1
uu

)
PA is therefore positive semidefinite. The effect of inclusion of an arbitrary con-
straint gi is therefore given by:

uA
∗ − uA = −PA(G

g
i )

Tλi (2.21)

We can see that the i-th component of the vector PA(G
g
i )

T dictates the steady-state
behavior of the i-th MV when the i-th constraint becomes active and the system is
operating at the active set A. Following the notation introduced in the statement of
Theorem 2.3 and in Figure 2.3, we have ugi = (uA

∗
)i and u0gi = (uA)i, since these

are the MV values such that gi = 0 and CV 0g
i = NT

i ∇uJ = 0, respectively. This
means that, for (PA(G

g
i )

T )i > 0, ugi − u0gi < 0 when λi > 0 and consequently
ugi should be selected, and ugi − u0gi > 0 when λi < 0 and consequently u0gi
should be selected, meaning that we must use u∗i = min(u0gi , ugi ) for guaranteeing
optimality. Similar analysis can be performed for (PA(G

g
i )

T )i < 0, leading to
u∗i = max(u0gi , ugi ). Since this analysis is performed for arbitrary i and A ̸∋ i,
guaranteeing that (PA(G

g
i )

T )i = (Gg
PA

)ii has the same sign for any possible A is
sufficient for guaranteeing the theorem statement, which completes the proof.

2.B Optimality of min selectors in cascade structure
In this section, we restate Theorem 2.3 for the cascade case illustrated in Fig-
ure 2.4, proving its optimality. In this control structure, the manipulated variables
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as seen from the higher layer can be represented at steady-state as:

v =



g1
...

gng

ung+1
...

unu


=⇒ ∆v =

[
Gg

0(nu−ng)×ng
Inu−ng

]
∆u = W∆u

With this change of variables, the transformed optimization problem becomes:

min
v

J(v, d)

s.t. vi ≤ 0, i = 1, · · · , ng

(2.22)

Note that we must require that W , the Jacobian for the change of variables, is full
rank, such that the optimality conditions for Equation (2.22) and Equation (2.1)
are equivalent. This is a mild assumption related to the steady-state controllability
of the constraints in the lower layer with the chosen pairing, and it results in a
transformed Hessian Jvv = W TJuuW that is also positive definite. Also, for the
transformed problem, we have the gain matrix Gg,v from the transformed inputs to
the constraints:

Gg,v =
[
Ing 0ng×(nu−ng)

]
This allows us to write the optimal CVs in terms of the projection matrices Ni and
N0 for the transformed problem as:

N0 =

[
0ng×(nu−ng)

Inu−ng

]

Ni = êi, i = 1, · · · , ng

The procedure for obtaining the difference in the optimal solution for neighboring
regions presented in 2.A is also valid for the transformed problem, and we must
therefore analyze the sign of the diagonal of the matrix product Gg,vPA. Recall

that PA = N(A)

(
NT

(A)JvvN(A)

)−1
NT

(A), where the matrix NT
(A)JvvN(A) is pos-

itive definite, being here a principal submatrix of Jvv which selects the rows and
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columns with indexes not in A. Therefore, PA becomes a positive seimdefinite
nu × nu matrix, where the diagonal elements PAii are zero for i ∈ A and positive
for i /∈ A.

Finally, we can see that (Gg,vPA)ii > 0 for i /∈ A, since the first ng elements of
the diagonal of Gg,vPA are the same as those of PA. It follows that, according
to Equation (2.21) and the results here obtained, the optimal solution is given by
v∗i = min(v0gi , 0) for i = 1, · · · , ng, which completes the proof.



Chapter 3

Region-based model predictive
control for self-optimizing
operation

This chapter has been submitted as a full paper:

L. F. Bernardino and S. Skogestad. Optimal switching of MPC cost function
for changing active constraints. Submitted to Journal of Process Control,
2024b

3.1 Introduction
Model predictive control (MPC) denotes a class of control strategies based on the
online optimization of the predicted dynamic trajectory of the system (Rawlings
2000). It is a valuable tool for process control, being able to deal with multivariable
interactions and constraint satisfaction. In practice, MPC is usually implemented
as a supervisory control layer above the plant regulatory layer, where stability is
assessed, and is subordinate to a real-time optimization (RTO) layer, which updates
plant operation based on economics, as presented in Figure 3.1. It is possible to
combine the RTO and control (MPC) layers into one; this is commonly known as
Economic MPC (Ellis et al. 2014) and is not considered in this paper.

The steady-state economic optimization of the plant, solved at the RTO layer, can
be defined as the following constrained optimization problem:

45
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Figure 3.1: Typical hierarchical control structure with standard setpoint-tracking MPC in
the supervisory layer. The cost function for the RTO layer is Jec and the cost function
for the MPC layer is JMPC . With no RTO layer (and thus constant setpoints CV sp), this
structure is not economically optimal when there are changes in the active constraints. For
smaller applications, the state estimator may be used also as the RTO estimator, provided
there is an accurate dynamic model.
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min
u

Jec(u, d)

s.t. g(u, d) ≤ 0
(3.1)

where u ∈ Rnu is the vector of inputs or manipulated variables (MVs), d ∈ Rnd is
the vector of disturbances, Jec is the scalar economic cost function, and g(u, d) ∈
Rng is the vector of inequality constraints. Note that the model equations and
correspondent states have been formally eliminated from the formulation. The set
of active constraints A is defined for the optimal solution u∗ as the set for which
gi(u

∗, d) = 0 with i ∈ A.

Solving the problem in (3.1) results in the optimal plant inputs u∗, but as shown
in Figure 3.1 the RTO layer implements the optimization results in the form of
setpoint updates CV sp to the MPC layer. We refer to this type of implementation
as setpoint-tracking MPC, or standard MPC. As discussed in more detail later, see
Equation (3.5), standard MPC uses a cost function of the form:

JMPC =

N∑
k=1

||CV k − CV sp||2Q + ||∆uk||2R

where the first term penalizes setpoint deviations and the last term penalizes dy-
namic input changes.

Standard MPC has two main elements: a state estimator and an open-loop moving
horizon optimizer (which is often referred to simply as MPC). The state estimator
ensures feedback, correcting the internal model according to the measurements,
and the MPC uses that information to calculate the input sequence that drives the
internal model to the desired operating point. The MPC problem can accommod-
ate constraint satisfaction, either as direct constraints in the optimization problem
or through the use of penalty terms. Additionally, one may consider a target cal-
culation block, which ensures that the setpoint that the MPC tracks is feasible at
steady state (Rawlings 2000).

In most standard MPC implementations, the CVs are selected based on process
intuition, and not in a systematic manner. In this context, self-optimizing con-
trol (SOC) provides useful tools for systematic selection of CVs, having optimal
steady-state operation as the main goal (Skogestad 2000, Jäschke et al. 2017). This
gives the controlled variables:

CV = Hy

where y denotes the available process measurements (including selected inputs
and measured disturbances) and H is a selection or combination matrix. Most
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SOC approaches for CV selection assume that the steady-state active constraint
set A is constant (Jäschke et al. 2017).

Graciano et al. (2015) implemented MPC using nominal self-optimizing CVs, that
is, with the nominally active constraints. This can reject disturbances in fast times-
cales and minimize the nominal economic loss without the intervention of the RTO
layer, at the same time avoiding violation of constraints. This is relatively simple
to implement, but it cannot be regarded as self-optimizing in a broad sense, be-
cause the optimal approach is to use different self-optimizing CVs for each set of
active steady-state constraints (Jäschke and Skogestad 2012).

This work proposes a framework for self-optimizing control under changing active
constraints, which we label “region-based MPC", see Figure 3.2. Here, the self-
optimizing CVs tracked by MPC are a function of the detected active constraint
set. The constraint switching is based on the work of Woodward et al. (2010) and
on the self-optimizing CVs here used. In three case studies, we show that standard
MPC with a single (nominal) set of CVs leads to economic loss when there are
changes in active constraints during operation, and we show that the proposed
MPC framework attains steady-state optimal operation if the design conditions of
SOC are met, and near-optimal operation in a broader sense.

The rest of the paper is organized as follows. In Section 3.2 we present some basic
notions of MPC implementation. In Section 3.3 we describe the control structure
proposed in this work, and the results of its application in some case studies are
presented in Section 3.4. Based on these results and the theoretical aspects of the
control structure, we discuss the proposed framework in Section 3.5, and the paper
is then concluded in Section 3.6.

3.2 Standard MPC implementation
We first briefly discuss the standard MPC implementation represented in Fig-
ure 3.1, which includes a state estimator and an open-loop optimizer (MPC block).
For the estimator, consider the following dynamic model used as an internal model
for MPC:


dx

dt
= f(x, u, dc)

y = h(x, u, dc)
(3.2)

Here, x ∈ Rnx represents the vector of dynamic states, u ∈ Rnu the vector of
inputs (MVs), y ∈ Rny the vector of measurements and dc ∈ Rndc a vector of
model disturbances.
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Figure 3.2: Proposed region-based MPC structure with active set detection and change in
controlled variables. The possible updates from an upper RTO layer (y∗, J∗

u etc.) are not
considered in the present work. Even with no RTO layer (and thus with constant setpoints
CV sp

A , see (3.14) and (3.15), in each active constraint region), this structure is potentially
economically optimal when there are changes in the active constraints.
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There is usually one dc for each controlled variable, which is used to account
for uncertainty, for example, related to the “true” disturbances d, measurement
bias, or model parameter changes. Note that dc does not need to have a physical
interpretation and is used mainly to include integral action in MPC. In other words,
to attain offset-free control, the internal model is augmented with the integrating
states dc:

xaug =

[
x
dc

]
(3.3)

For a linear internal model, the number of additional integrating states must be at
least the number of controlled variables, and it need not be greater than the number
of measurements (Maeder et al. 2009). The dynamic model considered by the state
estimator is therefore of the form:


dx̂aug
dt

=
d

dt

[
x̂

d̂c

]
=

[
f(x̂, u, d̂c)

0

]
+ ω

ŷ = h(x̂, u, d̂c) + ν

(3.4)

where ω ∼ N (0, Qe) and ν ∼ N (0, Re) are the random variables present in
most state estimation frameworks, and Qe and Re are the corresponding tuning
parameters (Simon 2006). The estimated states x̂ and d̂c are then used to solve a
moving-horizon optimization problem, which results in the next control action to
be implemented. A simple discretized MPC optimization problem can be of the
form:

min
uk,xk

JMPC =

N∑
k=1

||CV k − CV sp||2Q + ||∆uk||2R

s.t. xk = ϕ(xk−1, uk−1, d̂c)

yk = h(xk, uk, d̂c)

CV k = Hyk

∆uk = uk − uk−1

x0 = x̂

ymin ≤ yk ≤ ymax

xmin ≤ xk ≤ xmax

umin ≤ uk ≤ umax

−∆umax ≤ ∆uk ≤ ∆umax

(3.5)
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Here, xk denotes the state at the k-th time step, and ϕ(xk−1, uk−1, d̂c) is the result
of the integration of the dynamic model (3.2) from tk−1 to tk = tk−1 + ∆t with
u = uk−1, dc = d̂c, and the initial condition as the previous state x(tk−1) = xk−1.
The objective function JMPC aims to minimize the tracking error CV − CV sp

while penalizing large input changes ∆uk. N is the number of prediction steps,
and Q and R are tuning matrices.

The output, state, and input constraints in (3.5) can be used to embed the RTO
constraint g(u, d) ≤ 0 (3.1) in the MPC time scale. State constraints are not
needed if we assume that the constraints g(u, d) are measured (or estimated) and
included as elements in the measurements vector y. Without loss of generality,
we will assume that the economic constraints can be estimated from the dynamic
model as:

g = hg(x, u, dc) (3.6)

We remark that an MPC in the form of Equation (3.5) has no stability guaran-
tees, but it can converge if the prediction horizon N is large enough (the reader is
referred to Mayne (2014) for an in-depth review of MPC formulations).

The focus of the present work is the case where the original setpoints CV sp must
be given up due to constraints becoming active at steady state. In theory, the RTO
layer may update the setpoints, but in most cases there is no RTO layer, so the
setpoints are constant. Standard MPC satisfies the constraints, but it is suboptimal
in terms of steady-state economic performance, and we propose a better way of
dealing with economic constraints on standard setpoint-tracking MPC, without the
need for RTO updates.

3.3 Region-based MPC framework
The structure of the proposed region-based MPC scheme is summarized in Fig-
ure 3.2. The state estimator, also present in standard MPC, serves as the feedback
element for MPC as well as for the active set detection block, which is the new
element of the framework when compared to standard MPC. The detected active
setA along with the setpoints, is sent to the MPC block, which uses a different set
of CVs for each active set A.

We next describe how the CVs for each active set are determined, and how the set
of active constraints can be estimated online.
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3.3.1 Controlled variables for MPC

The controlled variables for each region are defined such that the steady-state eco-
nomic problem (3.9) is solved by feedback control, meaning that we adjust u to
keep CV = CV sp. These CVs are defined as:

CV A =

[
gA
cA

]
(3.7)

Here, gA denotes the active constraints, and cA denotes the unconstrained CVs for
optimal operation. The control action calculation for the proposed region-based
MPC is very similar to that of Equation (3.5), but the objective function changes
for each A according to:

JMPC
A =

N∑
k=1

||CV A − CV sp
A ||

2
QA + ||∆uk||2RA

(3.8)

where QA and RA are tuning parameters that can be chosen independently for
each active set A.

The unconstrained controlled variables cA should be selected to minimize the
steady-state cost, given that the active constraints gA are being controlled. For
that, we follow Halvorsen et al. (2003) and we consider a local QP approximation
of the economic optimization problem of the form:

min
∆u

Jec = Jec⋆ +
[
∆uT ∆dT

] [J⋆
u

J⋆
d

]
+

1

2

[
∆uT ∆dT

] [ Juu Jud
Jud

T Jdd

] [
∆u
∆d

] (3.9a)

s.t. g = g⋆ +Gg∆u+Gg
d∆d ≤ 0 (3.9b)

Here, ∆d = d − d⋆ and ∆u = u − u⋆ represent the disturbances and inputs as
their deviation from their reference values d⋆ and u⋆ respectively, and Jec⋆, J⋆

u ,
and Juu represent respectively the cost function, its gradient, and its Hessian with
respect to the inputs, evaluated at steady state at the reference point. Additionally,
the measurements y can be locally represented by a linear steady-state model of
the form:

∆y = Gy∆u+Gy
d∆d (3.10)
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The linearized expression (3.9b) for the constraints is not used by Halvorsen et al.
(2003), but it is needed here because we consider changes in active constraints. The
unconstrained CVs cA are defined in terms of the CVs for the fully unconstrained
region, c0, which is itself a static linear combination of the measurements:

c0 = H0y (3.11)

Assuming that there are enough measurements (ny = nu + nd), we can find an
analytical expression for H0 based on the nullspace method that is given by (Alstad
et al. 2009, Jäschke and Skogestad 2011):

H0 =
[
Juu Jud

] [
Gy Gy

d

]† (3.12)

which is used to obtain an optimal first-order estimate of the cost gradient Ju
(Jäschke and Skogestad 2011):

Ĵu = c0 − csp0 = H0(y − y⋆) + J⋆
u (3.13)

The setpoint for the unconstrained CV, csp0 = H0y
⋆ − J⋆

u , is calculated based on
the reference steady state and the corresponding value of the cost gradient. If the
reference steady state is an optimal operating point at a fully unconstrained region,
J⋆
u is zero. However, if the reference steady state is not optimal, or if the system is

operating at a constrained region, it is nonzero.

For the constrained case, the ideal self-optimizing variable is the reduced gradient
NT

AJu (Jäschke and Skogestad 2012), and the CVs related to the unconstrained
degrees of freedom are given by:

cA = NT
AH0y

where NA is a projection matrix, defined as a basis for the nullspace of the active
constraints gradient, i.e. Gg

ANA = 0. Because cA is a linear combination of the
unconstrained CVs c0, the corresponding setpoint will be given by cspA = NT

Ac
sp
0 .

The full set of CVs for each active constraint region A then becomes:

CV A =

[
gA
cA

]
=

[
gA

NT
AH0y

]
(3.14)

with the corresponding setpoints being:
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CV sp
A =

[
0

NT
A(H0y

⋆ − J⋆
u)

]
(3.15)

This choice of CVs minimizes the steady-state economic loss around the reference
point (u⋆, d⋆). Furthermore, even if the new operating point is such that the active
set A is different than that of the reference point, the use of CV A minimizes the
steady-state loss, as long as the approximations in Equations (3.9) and (3.10) hold.
We now discuss how to detect the active set using the available measurements, so
as to select the correct controlled variables.

3.3.2 Active constraint set detection

In the previous section, we estimated the cost gradient Ju as a function of the
available measurements y. The same idea is now applied to active set detection.
Woodward et al. (2010) describes an active set detection algorithm for a feedback
optimizing strategy that only depends on the current value of the cost gradient Ju,
the constraints g, and the constraints gradient Gg. Here, we adapt this strategy so
that the method depends directly on the available measurements. In summary, we
assume g to be directly measured, Ju is estimated using Equation (3.13), and Gg

is assumed constant at its nominal value from Equation (3.9b).

In order to estimate Ju, which is the steady-state cost gradient, we use the value
of the measurements at the expected steady state where the CVs are driven to their
setpoints, which we call yss. This expected steady state can be determined using
Equation (3.2), leading to:

{
0 = f(xss, uss, d̂c)

CV A(x
ss, d̂c) = CV sp

A
(3.16)

The steady-state measurements are then obtained as yss = h(xss, uss, d̂c), along
with the corresponding predicted constraint values from Equation (3.6) as gss =
hg(x

ss, uss, d̂c). With these values, we are ready to apply the method from Wood-
ward et al. (2010). The algorithm is summarized in Algorithm 1, and we shall
explain its main steps.

The algorithm begins in step 1 by finding the expected steady-state measurements
yss by solving Equation (3.16), and with it we find the predicted cost gradient Ĵu
through Equation (3.13). Then, we include in step 2 the constraints predicted to be
violated, i.e. gssi ≥ 0, into the estimated active set. With this augmented active set
A, we solve in step 3 the following optimization problem:
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Algorithm 1 Active set estimation based on the MPC internal model, adapted from
Woodward et al. (2010)

1: Ĵu ← H0(y
ss − y⋆) + J⋆

u ▷ from (3.13)
2: Ak ← Ak−1 ∪ { i | gssi ≥ 0 }
3: δu∗ ← solution of (3.17)
4: Ak ← { i ∈ Ak | Gg

i δu
∗ = 0 }

5: if n
(
Ak

)
> nu then ▷ too many active constraints

6: Find A′ ⊂ Ak | gss(CV A′ = CV sp
A′) ≤ 0 ▷ re-solve (3.16)

7: Ak ← A′

8: end if

δu∗ = argmin
δu
−δuT δu

s.t.

{
Gg

Aδu ≤ 0

δuT δu = −δuT Ĵu

(3.17)

With this problem, we wish to find the largest projection of the negative of the
estimated cost gradient, −Ĵu, onto the feasible directions, i.e. directions that do
not violate Gg

Aδu ≤ 0. The solution δu∗ therefore dictates the best feasible des-
cent direction for improving the economic cost function. In step 4, the inactive
constraints at the solution (Gg

i δu
∗ < 0) are then removed from the active setA, as

controlling these constraints would hinder economic improvement.

Because this method does not account for infeasibility, an additional step to obtain
the active set A sent to the controller is necessary. If the active set resulting from
the previous operations has more than nu elements, it is deemed infeasible, be-
cause the controller cannot track more than nu variables with the available inputs.
One must then pick a subset that is predicted to be feasible (gssi ≤ 0 ∀i) by evaluat-
ing the corresponding expected steady states with Equation (3.16), as represented
in step 6. With this, the controller always tries to control a feasible set of active
constraints. One may also add a constraint priority list, such that, when operation
is infeasible for all candidate active sets, the less important constraint is given up.

The problem given in Equation (3.17) is presented as an NLP due to the quadratic
equality constraint, but the work of Woodward et al. (2010) solves this problem us-
ing a specific algorithm. Here, we simply solve the optimization problem directly.
To prevent premature switching due to the estimator dynamics, the estimated A is
only used for switching CVs after Nsw time steps where the estimated A is differ-
ent than the one being implemented in the controller, and Nsw becomes a tuning
parameter that improves switching performance.
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3.4 Case studies
For the following case studies, consider the continuous-discrete time objective
function for MPC:

JMPC
A =

∫ N∆t

0
||CV A − CV sp

A ||
2
QA dt+

N∑
k=1

||∆uk||2RA
(3.18)

This formulation is used for convenience, as the integration of the MPC objective
function and the internal model are done together using orthogonal collocation.
The resulting problem is solved using CasADi/IPOPT (Andersson et al. 2019).

3.4.1 Case study 1 - toy example

In this example, we illustrate the optimality of the proposed methodology for sys-
tems with quadratic cost function and linear dynamic and constraint models, which
is sufficient for the exactness of the methodology described in Section 3.3, and
the economic improvement when compared to a standard implementation of self-
optimizing MPC.

The hypothetical system considered here has 2 dynamic states x and 3 MVs u,
with economic objectives and constraints being represented by the following op-
timization problem:

min
u

1

2
xT

[
1 0
0 10

]
x+

1

2
uT

 1 −0.1 −0.2
−0.1 0.8 −0.1
−0.2 −0.1 0.3

u

s.t.

{
g1 = x1 − 0.8x2 ≤ 0

g2 = u1 + u2 + u3 ≤ 0

(3.19)

The dynamic states x are affected by the MVs u and the disturbances d according
to the following linear state-space dynamic model:



ẋ =

[
− 1

τ1
0

0 − 1
τ2

]
x+

[0.2
τ1

0 0

0 0.2
τ2

0

]
u+

[ 1
τ1

0

0 1
τ2

]
d

y =


g1
g2
x2
u2
u3

 =


1 −0.8
0 0
0 1
0 0
0 0

x+


0 0 0
1 1 1
0 0 0
0 1 0
0 0 1

u

(3.20)
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with τ1 = 1 and τ2 = 2. For the vector of measurements y, as discussed in Sec-
tion 3.3, we follow the convention of considering the constraints as direct meas-
urements, figuring in the first two rows of the measurement vector. The remaining
measurements are chosen with the goal of satisfying a sufficient number of inde-
pendent measurements (ny = nu + nd).

Using the information above, we may eliminate the state variables x, since at
steady state, we have that:

x =

[
0.2 0 0
0 0.2 0

]
u+

[
1 0
0 1

]
d (3.21)

We then write the steady-state optimization problem in the standard form:

min
u

J =
1

2
uT

1.04 −0.1 −0.2
−0.1 1.2 −0.1
−0.2 −0.1 0.3

u+ uT

0.2 0
0 2
0 0

 d

s.t. g =

[
0.2 −0.16 0
1 1 1

]
u+

[
1 −0.8
0 0

]
d ≤ 0

(3.22)

along with the steady-state expression for the measurements:

y =


0.2 −0.16 0
1 1 1
0 0.2 0
0 1 0
0 0 1

u+


1 −0.8
0 0
0 1
0 0
0 0

 d (3.23)

for which the matrices presented in Equations (3.9) and (3.10) are recognizable.
This problem has two inequality constraints and three MVs, so optimal operation
has always between one and three unconstrained DOFs. As the system has only
two disturbances, we can graphically illustrate the active constraint regions as in
Figure 3.3, where we can see all possible combinations of active constraints. This
map of disturbances is not used in the method, and it is only made with the goal of
visualizing the optimal operation mode for each disturbance.

For implementing a standard self-optimizing MPC controller with dynamic con-
straint handling, we follow the strategy described by Graciano et al. (2015). We
design the self-optimizing CVs c = Hy at the unconstrained region, choosing as
the reference steady state the optimal value for d⋆ =

[
−4; +4

]
. We can therefore

use the matrix H = H0 as defined in Equation (3.12), leading to:
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Figure 3.3: Active constraint regions for case study 1 as a function of disturbances

H0 =

0.2 1 0.16 −1.1 −1.2
0 −0.1 2 0.9 0
0 −0.2 0 0.1 0.5


The measurements at the optimal operating point for d⋆ are y⋆ = [−6.17 −9.86
2.62 −6.91 −2.56]T , and the corresponding setpoint is csp = H0y

⋆ =
[
0 0 0

]T .
The implementation of the region-based MPC controller leads to c0 being this same
set of CVs, and it depends additionally on the calculation of projection matrices
NA for the constrained regions. These are presented in Table 3.1. In terms of the
tuning of the controllers, these are presented in Table 3.2, with the standard MPC
using only the tuning corresponding to the fully unconstrained region (A = {}).

The process was simulated at two different points inside each region. Results of
the closed-loop simulation of both control strategies are given in Figure 3.4. The
three CVs c = H0y obtained in the unconstrained region (A = {}) are not suitable
for the constrained regions in terms of optimal operation. This is most easily seen
by comparing the inputs (u1, u2, u3) from standard MPC (green) with the optimal
inputs (magenta). The inputs obtained with the proposed region-based MPC (blue)
are optimal at steady state in all four regions, and the switching of CVs is seen to
be smooth.
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A NT
A

{}

1 0 0
0 1 0
0 0 1


{1}

[
0.625 0.781 0
0 0 1

]
{2}

[
−0.577 0.789 −0.211
−0.577 −0.211 0.789

]
{1, 2}

[
−0.362 −0.453 0.815

]
Table 3.1: Optimal gradient projections for case study 1

Parameter A Value

QA

{} diag([1, 1, 100])
{1} diag([1, 1, 1])
{2} diag([1, 1, 1])
{1, 2} diag([1, 1, 1])

RA diag([0.01, 0.01, 0.01])

N 30

∆t 0.333

Qe diag([0.05, 0.05, 1, 1])

Re diag([0.01, 0.01, 0.01, 0.01, 0.01])

Table 3.2: Tuning of controllers and estimator for case study 1
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Figure 3.4: Dynamic simulation results for case study 1 - comparison between standard
MPC (green) and the proposed region-based MPC (blue)
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The economic loss of standard MPC is shown in more detail in Figure 3.5. It
can be seen that the loss is nonzero whenever the system leaves the unconstrained
region. Note that the lines delimiting the operating regions (blue) do not coincide
with the optimal boundaries (magenta) at the partly constrained regions, because
the use of fixed CVs is not optimal. Therefore, standard MPC does not guarantee
control of the correct active constraints.
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Figure 3.5: Economic loss of standard MPC for case study 1 as a function of disturbances.
Magenta lines delimit optimal active constraint regions, blue lines delimit operating re-
gions of standard MPC. Region-based MPC attains zero loss for all disturbance values.

It is worth mentioning that the proposed method does not rely on RTO updates for
dealing with changes in active constraints. Instead, it relies on a switching logic
for the CVs solely based on measurements and the nominal plant behavior, and
on the self-optimizing property of the chosen CVs, which means that no setpoint
updates are required for the system to operate optimally.

3.4.2 Case study 2 - Williams-Otto reactor

This case study is based on the process described by Williams and Otto (1960),
see Figure 3.6. It consists of a continuously stirred reactor tank with perfect level
control, in which A and B are mixed, generating the main product of interest P,
along with the less interesting product E and the undesired byproduct G. The three
reactions are:
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A+B
k1−→ C k1 = k0,1e

−E1/Tr

C +B
k2−→ P + E k2 = k0,2e

−E2/Tr

P + C
k3−→ G k3 = k0,3e

−E3/Tr

TC


FB

TR

FA

FC


xA, xB, xC

xP, xE, xG

Figure 3.6: Schematic representation of Williams-Otto reactor, with MVs in red

The component mass balances result in the following system of ODEs:

dxA
dt

=
FA

W
− (FA + FB)xA

W
− k1xAxB (3.24a)

dxB
dt

=
FB

W
− (FA + FB)xB

W
− k1xAxB − k2xCxB (3.24b)

dxC
dt

= −(FA + FB)xC
W

+ 2k1xAxB − 2k2xCxB − k3xPxC (3.24c)

dxP
dt

= −(FA + FB)xP
W

+ k2xCxB − 0.5k3xPxC (3.24d)

dxE
dt

= −(FA + FB)xE
W

+ 2k2xCxB (3.24e)

dxG
dt

= −(FA + FB)xG
W

+ 1.5k3xPxC (3.24f)

Here, xi represents the mass fraction of component i. The model parameters for
this case study are summarized in Table 3.3. The economic optimization problem
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to be considered is:

min
u

J = pAFA + pBFB − (FA + FB) [pP (1 + ∆pP )xP + pExE ]

s.t. xE ≤ 0.30

xA ≤ 0.12

(3.25)

Parameter Value

W 2105 kg
k0,1 1.6599 × 10−6 kg/s
k0,2 7.2117 × 10−8 kg/s
k0,3 2.6745 × 10−12 kg/s
E1 6666.7 K
E2 8333.3 K
E3 11111 K
pA 79.23 $/kg
pB 118.34 $/kg
pP 1043.38 $/kg
pE 20.92 $/kg

Table 3.3: Model parameters for case study 2

The available DOFs for operation are u =
[
FB TR

]T , namely the mass inflow
of pure B and the reactor temperature, and the considered disturbances are d =[
FA ∆pP

]T , namely the mass inflow of pure A and the relative variation of the
price pP . Similar to case study 1, we can visualize the active constraint regions as
a function of the two disturbances, as shown in Figure 3.7.

We choose to scale the constraints relative to the maximum optimal constraint
value in the disturbance window shown in Figure 3.7. This gives the following
scaled problem:

min
u

J = pAFA + pBFB − (FA + FB) [pP (1 + ∆pP )xP + pExE ]

s.t. g1 =
xE − 0.30

0.0287329
≤ 0

g2 =
xA − 0.12

0.0714527
≤ 0

(3.26)
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Figure 3.7: Active constraint regions for case study 2 as a function of disturbances

The measurements are the two constraints, the fraction of component P and the
price of P, that is, y =

[
g1 g2 xp ∆pP

]T . To design the region-based MPC,
we must first obtain the matrices Juu, Jud, Gy, Gy

d, and Gu, which depend on
the operating point. One simple approach is to calculate those matrices at the
design point and keep them constant during operation. We shall consider this
strategy using two design points, in order to evaluate the effect of nonlinearity on
the proposed framework.

For the MPC controllers, we use a linear approximation of the dynamic model at
the design point, and estimate disturbances and additional integrating states using
a linear Kalman filter that ensures zero offset (Pannocchia et al. 2015). The use
of a mismatch between the internal linear MPC model and the true nonlinear plant
model is to show that the steady-state economic performance is a result of a correct
choice of CVs, and not necessarily of a correct dynamic process model.

The first set of simulations refers to a linearization at the vertex between the regions
(d⋆ = [1.54265− 0.0891]), where the resulting H0 is given by:

H0 =

[
−42.0785 −36.0878 1153.68 −126.066
3.42257 −0.370313 −232.921 0.369661

]
and the corresponding gradient projections and controller tunings are given in
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Tables 3.4 and 3.5, respectively.

A NT
A

{}
[
1 0
0 1

]
{1}

[
0.1208 0.9927

]
{2}

[
−0.0849 0.9964

]
{1, 2} -

Table 3.4: Optimal gradient projections for example 2 - linearization at vertex

Parameter A Value

QA

{} diag([0.01, 1.0])
{1} diag([30.0, 1.0])
{2} diag([30.0, 1.0])
{1, 2} diag([3.0, 30.0])

RA diag([0.5, 0.02])

N 60

∆t 0.0333 h

Qe diag([10−3, 10−3, 10−3, 10−3, 10−3, 10−3, 8, 8, 0.8, 0.8])

Re diag([10−12, 10−12, 10−12, 10−12])

Table 3.5: Tuning of controllers and estimator for example 2 - linearization at vertex

The results are shown in Figures 3.8 to 3.10, From the dynamic simulation in
Figure 3.8, we see that the behavior of standard MPC and region-based MPC is
identical in the unconstrained region (until t = 4 h), but the operation at the sub-
sequent region with g1 active (from t = 4 to t = 8 h) highlights the difference
between the approaches. The region-based MPC framework detects quite accur-
ately the region change and switches the CVs accordingly, whereas standard MPC
attempts to track the CVs from the unconstrained region, which is not always op-
timal. There is some loss with region-based MPC associated with the nonlinearity
in the model. For the fully constrained region ({g1, g2} from t = 8 to t = 12 h),
the two MPC schemes behave similarly, attaining zero steady-state loss by taking
all the constraints to their limit values. The region-based MPC attains this through
direct constraint control, whereas standard MPC relies on its dynamic constraint
handling, which has its own issues regarding stability and performance.
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Figure 3.8: Dynamic simulation results for case study 2 - comparison between standard
MPC (green) and the proposed region-based MPC (blue) - linearized at vertex
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The steady-state behavior for both the region-based MPC and the standard MPC
was simulated for the whole domain displayed in Figure 3.7, and the results are
presented in Figures 3.9 and 3.10, respectively. Due to the linearization being per-
formed at the vertex between the four regions, the description of the boundaries
between the regions is fairly accurate for the region-based MPC in Figure 3.9,
which illustrates the local exactness of the method. However, we can see a large
economic loss at the unconstrained region as the system moves further from the
reference point, and this can be attributed to the errors associated with Equa-
tion (3.12) for nonlinear systems. The standard MPC in Figure 3.10 does not
reproduce the optimal behavior locally in terms of region boundaries, and it cre-
ates an economic loss peak at the region with g1 active, which is not seen in the
same magnitude for the region-based MPC. It can also be seen that there are some
disturbance combinations with a smaller economic loss for standard MPC than for
region-based MPC, although this is not the general trend. This curious behavior is
a combination of the inaccuracy of the CVs calculated locally with the giving up of
those CVs by the MPC algorithm, which in itself depends on the tuning paramet-
ers of the MPC. This fact is illustrated in Figure 3.11, where a different standard
MPC tuning than that of Table 3.5 led to much worse overall performance in the
constrained regions. For the proposed region-based MPC this is not an issue be-
cause the choice of CVs is consistent with the active constraints, and therefore
the control offset will be zero at steady state, making the steady-state performance
independent of the dynamic tuning.

We now design the region-based MPC and the standard MPC to operate around
d⋆ = [2.0,+0.2], which lies in the interior of the unconstrained region. Here, the
resulting H0 is:

H0 =

[
−46.0296 −32.6404 1577.81 −96.6946
5.50426 −2.61125 −393.808 0.342395

]
and the corresponding gradient projections and controller tunings are given in
Tables 3.6 and 3.7, respectively.

For this linearization, the results are shown in Figures 3.12 to 3.14. In this case,
the region-based MPC overall gives a much smaller economic loss on the partly
constrained regions compared to standard MPC. Also, the regions obtained in Fig-
ure 3.13 are shaped similarly to the optimal regions, which does not happen with
the standard MPC in Figure 3.14. Because the linearization of the system happened
in the interior of the unconstrained region, the economic loss on that region is smal-
ler when compared to that of Figure 3.9, while not resulting in a larger loss for the
remaining regions in the case of the region-based MPC.
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Figure 3.9: Steady-state economic loss for region-based MPC on case study 2 - linearized
at vertex
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Figure 3.10: Steady-state economic loss for standard MPC on case study 2 - linearized at
vertex
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Figure 3.11: Steady-state economic loss for standard MPC on case study 2 - linearized at
vertex, Q = diag([5× 10−4, 5])

A NT
A

{}
[
1 0
0 1

]
{1}

[
0.1110 0.9938

]
{2}

[
−0.1685 0.9857

]
{1, 2} -

Table 3.6: Optimal gradient projections for example 2 - linearization at d⋆ = [2.0,+0.2]

Parameter A Value

QA

{} diag([5× 10−4, 5])
{1} diag([30.0, 1.0])
{2} diag([30.0, 1.0])
{1, 2} diag([3.0, 30.0])

Table 3.7: Tuning of controllers and estimator for example 2 - linearization at d⋆ =
[2.0, +0.2] (omitted parameters are the same as in Table 3.5)
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Figure 3.12: Dynamic simulation results for case study 2 - comparison between standard
MPC (green) and the proposed region-based MPC (blue) - linearized at d⋆ = [2.0,+0.2]
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Figure 3.13: Steady-state economic loss for region-based MPC on case study 2 - linear-
ized at d⋆ = [2.0,+0.2]
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Figure 3.14: Steady-state economic loss for standard MPC on case study 2 - linearized at
d⋆ = [2.0,+0.2]
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3.4.3 Case study 3 - Williams-Otto reactor revisited

We now revisit the previous case study, to consider a case with three rather than two
constraints and only one disturbance. This is a case where standard decentralized
selector-based region-based control would not work because ng > nu Bernardino
and Skogestad (2024c). We consider the following optimization problem:

min
u

J = pAFA + pBFB − (FA + FB) (pPxP + pExE)

s.t. FB ≤ 4.0

Tr ≤ 355.0

xG ≤ 0.105

(3.27)

Here, the operational constraints are related to maximum allowed values for FB ,
Tr, and xG. The MVs are the same, u =

[
FB Tr

]T , but we only consider one
disturbance, d = FA, which is in the range 0.5 ≤ d ≤ 3.5. We again normalize
the constraints. The normalized problem is given by:

min
u

J = pAFA + pBFB − (FA + FB) (pPxP + pExE)

s.t. g1 =
FB − 4.0

2.68018
≤ 0

g2 =
Tr − 355.0

9.55095
≤ 0

g3 =
xG − 0.105

0.00411912
≤ 0

(3.28)

Figure 3.15 present the active constraint regions as a function of the disturbance
FA. It can be seen that all possible feasible combinations of active constraints
appear in the considered disturbance range.

This problem has three constraints and two MVs, and therefore a fixed pairing
between constraints and MVs would not account for all possible active constraint
regions. For instance, if u1 is paired to g1, u2 is paired to g2, and g3 may be active
at the same time as the other constraints, control of g3 must have some sort of
adaptive pairing, if decentralized control is to be achieved (see Bernardino et al.
(2022b) for an example).

In Figure 3.16, we present results for the dynamic simulation of the system. It
should be noted that the tuning used for the standard MPC is done such that it
can operate acceptably even when constraints become active, which hinders the
overall attainable performance. Because the region-based MPC can be tuned inde-
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Figure 3.15: Active constraint regions for case study 3 in terms of optimal constraint
values as a function of d (magenta dashed lines represent region switches)

pendently for every active constraint region, dynamic performance can be expected
to be better.

In Figures 3.17 to 3.19 we compare the steady-state behavior of the region-based
MPC and the standard MPC, respectively, in terms of the constraints’ values and
economic losses. We can see that the linearization strategy is such that the opera-
tion is exactly optimal at d = d⋆ = 1.0 for the region-based MPC, but the same
cannot be said for the standard MPC. This is because the system was linearized
at a partly constrained region, and while the region-based MPC is able to use the
correction J⋆

u in Equation (3.13), the same correction applied to the standard MPC
does not lead to optimal operation. In addition, standard MPC performs poorly at
driving the system to the correct constraints to be controlled, which leads to huge
discrepancies with relation to optimality for d > 1.9 and large economic losses.
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Figure 3.16: Dynamic simulation results for case study 3 - comparison between standard
MPC (green) and the proposed region-based MPC (blue)
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Figure 3.17: Steady-state constraint values for standard MPC on case study 3 (optimal
values as dashed lines)
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3.5. Discussion 77

3.5 Discussion

3.5.1 Exact local method for gradient estimation

The gradient estimation in this work, first shown in Jäschke and Skogestad (2011),
is based on the nullspace method of self-optimizing control. This estimated gradi-
ent is used to determine the unconstrained CVs and to detect switches in active
constraints, and we use the nullspace method due to the simplicity of the resulting
gradient estimate. This method, however, disregards measurement error, and is
limited in applicability for cases with few measurements. In another paper (Bern-
ardino and Skogestad 2024a), we propose a gradient estimation method that ac-
counts for static measurement error (ny), based on the exact local method, which
results in an optimal linear combination of any number (ny) of measurements,
preserving the simplicity of the method.

3.5.2 Optimal operation under changing active constraints

The region-based MPC proposed in this work depends on a logic element that
detects the current active constraint set so that the corresponding self-optimizing
CVs, defined by CV A, are selected and controlled. The use of simple logic ele-
ments for changing control structures is very common among practitioners, but
it is not generally clear how to use these elements optimally (Skogestad 2023).
This issue has received attention in recent developments, especially when a low
number of switching variables is involved (Reyes-Lúa and Skogestad 2020, Krish-
namoorthy and Skogestad 2019). In general, it is necessary that one has analyzed
the range of disturbances to be handled by the control structure, in order to propose
a switching strategy, along with a pairing between MVs and CVs, that accommod-
ates all control objectives. That procedure is, however, dependent on the case study
and the engineering insight, and one may find cases where a decentralized strategy
would be impossible or too complex to be considered in practice (Bernardino et al.
2022b).

In addition to this issue, even if the disturbance range is such that constraints paired
to the same MV are never active at the same time, the whole control structure
should in principle be changed according to which set of constraints is active be-
cause the optimal CVs related to the unconstrained degrees of freedom will change.
Therefore, in terms of self-optimizing control of such systems, we can say that the
general case of a switching logic between CVs must be in some sense centralized,
as the complexity of the decision process becomes combinatorial. Because of
these intrinsic limitations of decentralized SOC structures, centralized approaches
for SOC become vital for guaranteeing optimal operation of systems with several
changing constraints.
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3.5.3 Estimation of active constraints

To determine the active set during operation, we use the method by Woodward
et al. (2010), which is proven optimal for measured gradients. In this work, the cost
gradient is estimated through a linear combination of the measurements, which is
consistent with the CVs being used.

Another approach for detecting changes in the active constraint region is to track
the values of the CVs in the neighboring regions. (Jäschke and Skogestad 2012,
Manum and Skogestad 2012). The CVs determined for each region must be con-
sistent to result in a unique solution to the switching problem. If this is not the case,
one may encounter multiple steady-state solutions or lack of convergence where
the control structures switch indefinitely. This was observed when applying this
approach to the case studies. On the other hand, the solution presented in this work
relies on a single model realization, and all CVs obtained from it are consistent.

3.5.4 Use of direct measurements

To simplify the active constraint detection block, one may consider using a gradi-
ent estimate based directly on the current measurements, instead of the expected
steady-state measurements described in Algorithm 1. The use of direct measure-
ments is illustrated in Figure 3.20, compared to the approach used in this work,
with all other parameters being the same across the simulations.

We can see that the use of direct measurements on the active set detection al-
gorithm gives a worse overall closed-loop behavior in this case. For the first step
change on the disturbance (t = 1.5 h), even though g3 is dynamically violated,
the cost gradient estimated directly from the measurements dictates that it will be
given up at steady state, and the constraint is therefore not deemed active. When
the system is close to steady state, the cost gradient estimate becomes more accur-
ate, and the constraint is then considered active. A similar behavior happens for
the second step change on the disturbance (t = 3 h). For the last disturbance value
(from t = 6 h), the closed-loop system faces problems, as the estimated active set
does not match the actual system operation (g3 is active despite the wrong estima-
tion), and the state estimator is in conflict with the dynamic constraint. Because of
this, we see oscillation in the result, and the system does not seem to converge.

3.5.5 Region-based MPC tuning

The region-based MPC can be seen as a set of multivariable feedback controllers
coordinated by a logic element. This logic element introduces an additional in-
formation loop, besides the feedback controller itself, which may cause stability
problems. Rapid changes in which of the controllers is active may occur from the
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Figure 3.20: Comparison between region-based MPC with active set detection from
closed-loop predictions (blue) and from direct measurements (green)

interaction between the switching element and the closed-loop dynamics, generat-
ing high-frequency, self-sustained switching. This is a known issue in closed-loop
systems with selectors or other logical elements, and it may be counteracted by re-
stricting how fast the logical element may change, leading to overall system stabil-
ity (Lin and Antsaklis 2009). In this work, this is attained by the tuning parameter
Nsw.

Additionally, the cost functions (3.8) for the region-based MPC must be inde-
pendently tuned. This is necessary because different CVs usually have different
dynamic behaviors. Careful evaluation of MPC tunings for different regions is
therefore advised, so that good dynamic performance is attained in all relevant
operating conditions.

3.5.6 Comparison between region-based MPC and other MPC ap-
proaches

The simulations verify that standard setpoint-tracking MPC is unable to deal with
changing steady-state constraints. To satisfy a steady-state constraint which is not
in the nominal region, the standard MPC gives up on tight control of its CVs,
usually all at the same time. In our simulations, the prioritization of CVs is auto-
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matically done by tuning the MPC control weights, and therefore the steady-state
offset of the CVs will be indirectly determined by such tuning. This aspect is not
usually prioritized in the design of MPC controllers, and therefore we have no
quantitative control over how much offset we tolerate for each CV. Another pos-
sibility, which is used in industrial implementations of MPC, is solving a sequence
of steady-state calculations, assessing constraint satisfaction, before solving the
MPC problem itself (Strand and Sagli 2004). This allows for adapting the MPC
problem, changing control specifications so that constraints are considered when
necessary, and avoiding the use of dynamic constraints that may cause stability
issues. The problem here becomes determining the control specifications, which
is often based on process experience.

The present work has not focused on integrating the proposed tool with RTO, as
other works have covered (Delou et al. 2021). Instead, the region-based MPC was
formulated to be independent of the RTO layer, such that it operates near optim-
ally without its updates. Naturally, the proposed tool can be integrated with RTO,
by updating the gain matrices and reference values in Figure 3.2. Because these
updates are associated with the steady-state conditions of optimality, the economic
performance of the region-based MPC will be as good as the quality of these up-
dates.

Some MPC frameworks (for example, that of Rawlings (2000)) include a target
calculation block, which will define to what steady state the MPC will converge.
In these frameworks, it seems possible that the approach presented in this work
can be used at the target calculation block only, and the MPC problem remains
unchanged for every active constraint region. The main benefit of this would be
that the stability properties of the MPC problem would remain the same regardless
of the detected active set. This does not completely solve the stability issue, as the
estimator and the target calculator blocks must converge, but it would still be an
appealing approach.

We must also note that the proposal of this work is fundamentally different from
that of centralized approaches such as economic model predictive control (EMPC).
In these approaches, the dynamic and economic problems are solved together,
which requires a high level of detail in the available dynamic model (Ellis et al.
2014). In the proposed region-based MPC, we only require a reasonable dynamic
model to ensure closed-loop stability for the tracking of CVs and an accurate eco-
nomic steady-state problem that will define these CVs.
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3.6 Conclusion
A framework for self-optimizing control under changing active constraints was
presented, see Figure 3.2. Its main elements are (1) the active set detection block
(see Algorithm 1), and (2) the design of self-optimizing CVs in each active con-
straint region for the unconstrained degrees of freedom, see cA = NT

AH0y in
Equation (3.14) and the respective setpoint cspA in Equation (3.15). In this paper,
we estimated the cost gradient Ju using the nullspace method from self-optimizing
control, by obtaining a measurement combination matrix H0. More generally, with
measurement bias and any number of measurements y, it is recommended to obtain
H0 for estimating the cost gradient Ju using the exact local method (Bernardino
and Skogestad 2024a). The setpoints cspA are calculated based on the nominal op-
erating point and were not updated during the simulations for the three case stud-
ies, to show the self-optimizing nature of the chosen CVs. We highlight that the
switching of control objectives is done without the need for pairing MVs and CVs
and without the need for RTO updates, making it applicable to a wide class of
problems.
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Chapter 4

Optimal measurement-based cost
gradient estimate for real-time
optimization

This chapter has been submitted as a full paper:

L. F. Bernardino and S. Skogestad. Optimal measurement-based cost gradi-
ent estimate for real-time optimization. Submitted to Computers & Chemical
Engineering, 2024a

4.1 Introduction
When the aim is to implement a control strategy to achieve optimal steady-state op-
eration, one usually thinks of adding a real-time optimization (RTO) layer which
adjusts the setpoints to the control layer. However, conventional RTO requires
online optimization of a detailed nonlinear model which is usually expensive to
obtain and maintain. In addition, the success of RTO relies on estimating the dis-
turbances, which is usually slow (Krishnamoorthy and Skogestad 2022). This lim-
itation can be circumvented by proper selection of the controlled variables (CVs)
so that the RTO layer may be eliminated or at least less frequent RTO updates are
needed. This is the idea of self-optimizing control (Skogestad 2000). According
to the first-order optimality conditions, the ideal self-optimizing CV would be the
gradient of the economic cost function (reduced gradient for the constrained case),
which when driven to zero achieves optimal operation without the need for an
RTO layer. In this paper, the cost gradient is denoted Ju, but it is also sometimes
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denoted ∇uJ in other works. The goal of this paper is then to derive a simple
measurement-based estimate the gradient Ju.

The most common approach is to combine the available measurements with a plant
model and from this derive an estimate of the states (including disturbances) and
subsequently the gradient. One approach is described in Krishnamoorthy et al.
(2018), where a Kalman filter is used for dynamic state estimation, and the model
is then linearized around the estimated operating point to give an estimate for Ju.

An alternative model-free approach is to directly estimate the cost gradient Ju
from plant data by input excitation, which is done in extremum-seeking control
strategies (Tan et al. 2010). However, this assumes that a cost measurement J is
available and that the plant dynamics are fast, neither of which are usually satisfied
in process control applications.

Both these existing model- and data-based estimation approaches have in common
that they are rather complex and that the gradient estimation and its use for control
are divided into separate tasks. However, this separation between estimation and
control is not generally optimal. In other words, since it is not clearly defined what
the gradient Ju will be used for in the estimation step, we cannot expect that the
resulting estimate will be optimal in terms of minimizing the cost J .

A third approach for estimating the gradient, the focus of this paper, is to make
use of self-optimizing control methods. These methods aim to design controlled
variables (CVs) that directly minimize the cost, that is, there is no intermediate
step to estimate disturbances or gradients. A further advantage of this approach
is simplicity. The resulting CVs are static linear combinations of the available
measurements, which greatly simplifies implementation. It has been known that
self-optimizing CVs are linked to the cost gradient for the simple case with a suf-
ficient number of noise-free measurements Jäschke and Skogestad (2011). The
main contribution of this work is to extend this link and derive a simple static lin-
ear measurement-based expression for the gradient Ju for any number of noisy
measurements. The basis is the exact local method Alstad et al. (2009) of self-
optimizing control. We also show in this paper how this gradient estimate is useful
when dealing with constraints, both to set the unconstrained degrees of freedom
and to identify constraint switching.

The paper is organized as follows. Section 4.2 presents the mathematical problem
considered in this work. Section 4.3 describes how this problem is related to self-
optimizing control. In Section 4.4 we present the main result of this work based on
the analysis of the unconstrained problem, which is complemented by the analysis
of the constrained problem in Section 4.5. An example of the application of these
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results to a decentralized control framework is shown in Section 4.6 with a nu-
merical example, showing its use with changing active constraints. Some remarks
about the presented results are made in Section 4.7, and the paper is concluded in
Section 4.8.

4.2 Problem statement
The steady-state optimization problem considered in this work is of the form:

min
u

J(u, d)

s.t. g(u, d) ≤ 0
(4.1)

Here, J : Rnu × Rnd −→ R denotes the objective function, g: Rnu × Rnd −→ Rng

the inequality constraints, u ∈ Rnu the decision variables (inputs; manipulated
variables for steady-state control), and d ∈ Rnd the disturbance variables (includ-
ing model parameters) which are assumed varying and generally unknown in this
paper. The available online information about the system is assumed to be the
measured variables y ∈ Rny (which usually include u and may include measured
disturbances). Any internal states have been formally eliminated from the math-
ematical formulation in (4.1).

The optimal input, which is the solution to the problem in Equation (4.1), is in the
paper denoted uopt(d). It satisfies the following first-order KKT conditions:

Ju(u
opt, d) + gu(u

opt, d)
T
λopt = 0 (4.2a)

g(uopt, d) ≤ 0 (4.2b)

λopt ≥ 0 (4.2c)

g(uopt, d)
T
λopt = 0 (4.2d)

Here, Ju(u, d) ∈ Rnu denotes the gradient of J with respect to u, gu(u, d) ∈
Rng×nu denotes the gradient of g with respect to u, and λopt ∈ Rng denotes the
Lagrange multipliers at the optimum. Note that it is the unconstrained cost gradi-
ent Ju that enters into the first-order optimality conditions.

The cost J(u, d) and the constraints g(u, d) in Equation (4.1) can be approximated
locally by the following Taylor expansions centered at the nominal point (u∗, d∗):
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J(u, d) = J∗ +
[
J∗
u
T J∗

d
T
] [(u− u∗)

(d− d∗)

]
+

1

2

[
(u− u∗)T (d− d∗)T

] [Juu Jud
JT
ud Jdd

]
︸ ︷︷ ︸

H

[
(u− u∗)
(d− d∗)

]
(4.3)

g(u, d) = g∗ +
[
g∗u g∗d

] [(u− u∗)
(d− d∗)

]
(4.4)

where (u − u∗) and (d − d∗) denote, respectively, the inputs and disturbances as
their deviation from the nominal point.

The cost expression in Equation (4.3) is exact for quadratic problems where the
HessianH (including Juu) is independent of the operating point. In general, there
will be an approximation error if the actual operation moves away from the nom-
inal point. Strictly speaking, the elements in the Hessian matrix H should have a
superscript ∗ (e.g. J∗

uu), but this is omitted to simplify notation, and also because
it assumed that they remain approximately constant.

The objective of this paper is to find from the available measurements y (which
are subject to noise ny) an optimal estimate of the gradient Ju (which will vary
as a function of u and d) for use in real-time optimization. The expected mag-
nitudes of the disturbances and measurement errors are quantified by diagonal
weight matrices Wd and Wny . That is, we assume that:

(d− d∗) = Wdd
′

ny = Wnyny ′ (4.5)

where the combined generating set of possible d′ and ny ′ is unit two-norm bounded,
i.e.: ∣∣∣∣∣∣∣∣[ d′

ny ′

]∣∣∣∣∣∣∣∣
2

≤ 1 (4.6)

Note that we are considering steady-state operation, so ny represents the static
measurement error, that is, the measurement bias. Often, ny is called measurement
noise, but this may be a bit misleading because the average (steady-state) value
is not zero, as is usually assumed in stochastic optimal control. For example,
ny = 0.15 means that if the actual value is y = 2.7, then the measured value is
ym = y + ny = 2.85. Finally, note that the objective of this paper is not to find
the “optimal” gradient Ju in itself, but the optimal estimate Ĵu to be used in the
first-order optimality condition (4.2a) to solve the problem in (4.1).
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4.3 Optimal operation for the unconstrained case: Self-
optimizing control

In the following consider the case with no constraints g and assume that the nom-
inal operating point is optimal, that is,

u∗ = uopt(d∗)

It then follows from the first-order KKT condition (4.2a) that:

J∗
u = 0

This assumption is made to simplify the expressions for the loss, and the controlled
variables derived here do not depend on this assumption (see chapter 6 in Alstad
(2005)).

Following Halvorsen et al. (2003), we can derive from Equation (4.3) the economic
loss encountered by applying an input u, compared to using the optimal input
uopt(d):

L = J(u, d)− Jopt(d) =
1

2
(u− uopt)TJuu(u− uopt) =

1

2
||z||22 (4.7)

where Jopt(d) = J(uopt(d), d) is the optimal cost for a given d and the loss vari-
able z is defined as:

z ≜ J
1/2
uu (u− uopt) (4.8)

The idea of self-optimizing control is to achieve optimal operation using feedback
control. In this paper, the controlled variables (CVs) c are assumed to be linear
combinations of the measured variables, c = Hy, and we use a linear steady-state
measurement model:

y = Gyu+Gy
dd (4.9)

Note that the actual measured value is ym = y+ny. The setpoints cs are assumed
to be constant; see Figure 4.1. To be nominally optimal (with no disturbances or
measurement noise), we must choose cs = c∗ = Hy∗ where y∗ = yopt(d∗). The
controller K has integral action, which means that at steady state the control error

(cm − c∗) = H(ym − y∗)

is controlled to a constant value of zero. The controlled variables c should use up
all the available degrees of freedom, and therefore nc = nu. In this paper, H is
allowed to be a full matrix, that is, there are no structural limitations on H .
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Figure 4.1: Block diagram of closed-loop system. When H is selected as proposed in
this paper, the input to the controller K is the negative cost gradient, that is, cs −Hym =
−Ĵu see eq. (4.21). This achieves optimal steady-state operation if in addition any active
constraints are controlled.

For the expected disturbances and noise in Equation (4.6), Alstad et al. (2009) de-
rived the following analytical expression for the optimal H , known as the “exact
local method”, which minimizes both the worst-case and average loss L in Equa-
tion (4.7):

H = M−1
n J

1/2
uu

[
GyT

(
F̃ F̃ T

)−1
Gy

]−1

GyT
(
F̃ F̃ T

)−1
(4.10)

where
F̃ = [FWd Wny ]

F =
dyopt

dd
= Gy

d −GyJ−1
uu Jud (4.11)

The solution for H is not unique as the matrix Mn = J
1/2
uu (HGy)−1 can be freely

chosen. The non-uniqueness comes because if c−c∗ = 0 then so is D(c−c∗) = 0
for any non-singular D. In the solution derived in Alstad et al. (2009), the choice
is Mn = I . The simplest expression for the optimal H results if we select Mn

such that H = GyT
(
F̃ F̃ T

)−1
(Yelchuru and Skogestad 2012).

However, in the next section, we want to find an estimate for Ju (also when Ju ̸=
0), and in this case directions matter. For this reason, we will choose:
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Mn = J−1/2
uu (4.12)

and we show below that the optimal estimate for the gradient Ju is then equal to
HJ(y − y∗), where according to the exact local method:

HJ = Juu

[
GyT

(
F̃ F̃ T

)−1
Gy

]−1

GyT
(
F̃ F̃ T

)−1
(4.13)

With different assumptions, other expressions for H may be derived. For the case
with a sufficient number of independent measurements (ny ≥ nu + nd) it is pos-
sible to achieve zero disturbance loss for the case with no measurement noise by
choosing H such that HF = 0 (nullspace method). For the case ny = nu + nd,
we have the following explicit expression for the nullspace method:

H = M−1
n J̃(G̃y)−1 (4.14)

where G̃y = [Gy Gy
d] and J̃ = J

1/2
uu [I J−1

uu Jud]. The generalization to use
all measurements (ny ≥ nu + nd) in a way that also minimizes the effect of
measurement noise is known as the extended nullspace method Alstad et al. (2009)
for which we have:

H = M−1
n J̃(W−1

ny G̃y)†W−1
ny (4.15)

All these expressions for H can be used for gradient estimation, provided that we
choose Mn = J

−1/2
uu , or equivalently HGy = Juu.

4.4 Optimal gradient estimate for the unconstrained case
We will now use the results from self-optimizing control to derive the optimal
gradient estimate, where by “optimal” we mean that controlling the gradient estim-
ate to zero achieves optimal steady-state operation, that is, it minimizes the loss L
in Equation (4.7) (worst-case or average value) for the expected disturbances and
noise as in Equation (4.6).

To do this, we want to express the loss variable z from (4.8) in terms of the gradient
Ju. First, note that (Figure 4.1):

(c− copt(d)) = HGy(u− uopt)

Second, a first-order Taylor expansion of the gradient around the optimal operating
point gives:

Ju(u, d) = Ju(u
opt, d)︸ ︷︷ ︸

Jopt
u (d)

+Juu(u− uopt(d))
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Inserting the above two expressions into the definition of the loss variable z in
(4.8) gives:

z ≜ J
1/2
uu (u− uopt) = J

1/2
uu (HGy)−1︸ ︷︷ ︸

Mn

(c− copt(d)) = J−1/2
uu (Ju− Jopt

u (d)) (4.16)

For the unconstrained case, we have Jopt
u (d) = 0, and this is assumed in the fol-

lowing. We then get z = J
− 1/2
uu Ju and to minimize the norm of z, and thereby

the loss in (4.7), we conclude that we ideally want Ju = 0 at steady state. How-
ever, as we will see, it is not possible to achieve Ju = 0 in practice because of
measurement error.

For the choice Mn = J
−1/2
uu (which we will use in the following), we derive from

(4.16) the following expression for the gradient:

Ju = c− copt(d) = Hy −Hyopt(d)

which may be rewritten as:

Ju = H(ym − y∗)−H (ym − y)︸ ︷︷ ︸
ny

−H(yopt(d)− y∗) (4.17)

where we choose y∗ = yopt(d∗) because the nominal point is assumed optimal.
Note from (4.11) that (yopt(d)− y∗) = F (d− d∗) for the unconstrained case. We
then have:

Ju = H(ym − y∗)−Hny −HF (d− d∗) (4.18)

Note that with a fixed matrix H , the last two terms are unaffected by the input u,
that is, unaffected by control.

With no measurement error (ny = 0), the second term in Equation (4.18) is zero.
If we use the nullspace method to choose H , then HF = 0, and also the third term
is zero. The optimal control policy, according to self-optimizing control, is then
to adjust u such that the first term is zero, for example, to use feedback control
to keep the measurement combinations keep cm = Hym at a constant setpoint
c∗ = Hy∗. This gives Ju = 0 and the loss is zero.

More generally, with measurement noise and disturbances, we can use the exact
local method to choose the H that minimizes the combined effect of the second
and third terms in (4.18). The optimal control policy, similarly to the case without
noise, is then to adjust u such that the first term in Equation (4.18) is zero. This
minimizes the expected norm of z as in (4.16), and consequently the economic
loss L in (4.7). More importantly, and this is the main result of the paper, the
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optimal gradient estimate for unconstrained operation, which should be kept at
zero at steady state, is simply the first term in (4.18), that is:

Ĵu = H(ym − y∗) (4.19)

where ym is the measurement vector, y∗ = yopt(d∗) is the nominal optimal value of
the measurement y, and H is given by HJ in Equation (4.13) (exact local method).
This follows from self-optimizing control theory, because choosing H = HJ min-
imizes the effect of the second and third terms in Equation (4.18) (it minimizes
both the expected and worst-case loss when d and ny vary as given in (4.6)).

Interestingly, since the second and third terms in (4.18) are generally nonzero (due
to measurement noise and disturbances), it follows that optimal operation (in terms
of minimizing the economic loss) does not give Ju = 0 at steady state. This may
seem surprising, but it is expected because one cannot achieve truly optimal steady-
state operation (with Ju = 0 and zero loss) with unknown disturbances and static
measurement bias (nonzero ny).

In summary, the steady-state loss L in Equation (4.7) is minimized when we keep
Ĵu = HJ(ym − y∗) = 0, and we have proven the following theorem:

Theorem 4.1. Optimal unconstrained gradient estimate. Consider the static
optimization problem in (4.1) with no active constraints, where the quadratic ap-
proximation (4.3) holds. The available measurements are ym = Gyu+Gy

dd+ ny

(linear approximation) where the unknown disturbances d and static measure-
ment errors ny are bounded as given in (4.5) and (4.6). Consider further that
the point (u∗, d∗) is an optimal unconstrained point, such that Ju(u∗, d∗) = 0,
u∗ = uopt(d∗) and y∗ = yopt(d∗). The cost gradient Ju is then given in (4.18) and
the estimate Ĵu = HJ(ym − y∗) with HJ in (4.13) is an optimal estimate in the
sense that adjusting the inputs u to make Ĵu = 0 (e.g., by feedback control, see
Figure 4.1) minimizes both the average and the worst-case value of the economic
loss (4.7).

If there is no measurement error (ny = 0, that is,Wny = 0) and we have a sufficient
number of measurement (ny = nu + nd) then instead of using H = HJ from the
exact local method, we may use H from the nullspace method (equation (4.14)
with Mn = J

−1/2
uu ). This gives H in the nullspace of F (HF = 0) and achieves

zero loss for disturbances (with no measurement error), that is, the last term in
(4.18) is zero. If we have additional measurements (ny > nu + nd) then we may
use H from the “extended nullpace method” (equation (4.15) with Mn = J

−1/2
uu )

which uses the extra measurements to minimize also the second term in (4.18).
However, in general we recommend using H = HJ from the exact local method.
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It gives the optimal balance between disturbances and measurement error (as it
minimizes both the average and worst-case sum of last two terms in (4.18)) and
importantly applies also to the case with fewer measurements (ny < nu + nd).

4.5 Optimal gradient estimate for the constrained case
Now, we focus on the use of this result in the operation with changing active con-
straints. For that, we state the following:

Theorem 4.2. Optimal gradient estimate in constrained case. The optimal
unconstrained gradient estimate Ĵu = HJ(ym − y∗) (Theorem 4.1) is optimal
also in the constrained case when used in the first-order KKT conditions (4.2).
This also means that the optimal estimate of the reduced gradient (which should
be zero at the optimal point) is NA

T Ĵu = NA
THJ(ym− y∗) where NA is a basis

for the nullspace of gu,A, that is, gu,ANA = 0, and A represents the set of active
constraints.

The theorem may seem straightforward and require no further proof since Ju in
(4.2a) is the unconstrained gradient, and the gradient estimate Ĵu in (4.19) is the
one that minimizes the loss in the unconstrained case for a given measurement set
y. Nevertheless, in Appendix 4.A, we provide a detailed proof that controlling the
reduced gradient estimate NA

T Ĵu minimizes the loss for the constrained case.

It is important to note that Equation (4.19) is valid when the nominal point (u∗, d∗)
is an optimal unconstrained reference point. If the reference point has a non-zero
gradient, the optimal gradient estimate takes the form (the reader is referred to
Appendix 4.B for a derivation of this expression):

Ĵu = H(ym − y∗) + J∗
u (4.20)

where J∗
u = Ju(u

∗, d∗) (obtained from the nonlinear model). Note here that both
(4.19) and (4.20) can be written in the form:

Ĵu = Hym − cs (4.21)

where cs is a constant (see Figure 4.1).

The simple gradient estimate in (4.19) and (4.20) avoids implementing a model-
based estimator, for example, a dynamic Kalman filter, and thus greatly simplifies
the practical use of feedback-based real-time optimization, which is based on the
first-order KKT condition (4.2a).

The gradient estimate can be used in a wide array of RTO control applications.
In particular, it may be used in the following approaches for optimal steady-state
operation with changes in active constraints:
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1. Primal-dual approaches (Krishnamoorthy 2021) based directly on the optimal-
ity condition (4.2a) with a (slow) update of the Lagrange multiplier λ. This
may be done using a slow controller Kdual which controls the measured
constraints by manipulating the dual variables (λ) and with max-selectors
for switching active constraints, see Figure 4.2 (Dirza et al. 2021, Dirza and
Skogestad 2024).

Process

H

Lu = Ĵu + λ
T gu

Kprimal

max

Kdual

d y

ĴuLu

SP = 0

u

g

SP = 0

λ

0

cs

−

Figure 4.2: Primal-dual optimizing control structure using the proposed gradient estimate.
The controller Kdual is always diagonal (decentralized), whereas the controller Kprimal

may be multivariable or diagonal.

2. Region-based control (Jäschke and Skogestad 2012, Krishnamoorthy and Sko-
gestad 2022) where we in each region i control the active constraints and the
associated reduced gradient NT

A,iĴu to zero, see Figure 4.3.

2A. Region-based control may be applied to multivariable control, for ex-
ample, model predictive control, by changing the cost function for
designing the controller for each region, according to Bernardino and
Skogestad (2024b). There, the gradient estimate is also used for con-
straint switching.
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Figure 4.3: Region-based optimizing control structure using the proposed gradient es-
timate. In this scheme, each projection matrix NA,i is linked to a different set of active
constraints Ai, and the resulting gradient projection NT

A,iĴu is controlled by a different
controller Ku,i (which in general is multivariable). If nu ≥ ng , a fixed projection matrix
can be used for all Ai, and simple max/min-selectors can be used (see Figure 4.4).
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2B. Decentralized region-based control with constraint switching using se-
lectors (Bernardino et al. 2022a, Bernardino and Skogestad 2024c)
(Figure 4.4). This approach requires at least as many inputs (degrees
of freedom) as constraints, that is, nu ≥ ng. An example of its applic-
ation is given next.

In summary, the cost gradient estimate presented in Equation (4.20) can be used in
a wide array of control applications focused on optimal operation, eliminating the
need for a dynamic state estimator and thus greatly simplifying implementation.

4.6 Example: Decentralized region-based control
Here, we consider a system with more inputs than constraints (nu ≥ ng) and
design a region-based decentralized control structure with simple min/max-selectors
(Figure 4.4) that minimizes the loss in all active constraint regions (Bernardino and
Skogestad 2024c). In order to use simple switching, the nullspace associated with
the unconstrained gradients (Theorem 4.2) needs to be selected in accordance with
the constraint directions. This is done using the following steps (Bernardino and
Skogestad 2024c):

• Define N0 as an orthonormal basis for the nullspace of gu, such that guN0 =
0;

• Find W =

[
gu

N0T

]−1

, and define the vectors Ni, i = 1, · · · , ng as the first

ng normalized columns of W .

Then, controlling the active constraints gi, for i ∈ A and the remaining uncon-
strained degrees of freedom NT

i Ju, for i /∈ A, and N0TJu will lead to optimal
operation (Bernardino and Skogestad 2024c). The final simple decentralized con-
trol system with min or max selectors can be implemented as shown in Figure 4.4
where all controllers (K) are single-input single-output (SISO), for example, PID
controllers. The controllers linked to selectors must have anti-windup action, to
cancel the integral action when the controllers are inactive.

As a case study, we consider a linear dynamic system with a quadratic cost function
given by:
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Figure 4.4: Decentralized region-based optimizing control structure using SISO control-
lers and selectors.
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min
u

1

2
xT

[
1 0
0 10

]
x+

1

2
uT

 1 −0.1 −0.2
−0.1 0.8 −0.1
−0.2 −0.1 0.3

u

s.t.

{
g1 = x1 − 0.8x2 ≤ 0

g2 = u1 + u2 + u3 ≤ 0

(4.22)

ẋ =

[
− 1

τ1
0

0 − 1
τ2

]
x+

[0.2
τ1

0 0

0 0.2
τ2

0

]
u+

[ 1
τ1

0

0 1
τ2

]
d (4.23)

with τ1 = 1 and τ2 = 2. The set of optimal active constraint regions can be
visualized as a function of the two disturbances as shown in Figure 4.5. Here, the
upper left green region is unconstrained and the lower middle grey region is with
all constraints being active (and one unconstrained degree of freedom).
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d1

4
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2

1

0

1
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d 2

{}

{g1}

{g2}

{g1, g2}

Figure 4.5: Active constraint regions as a function of disturbances for case study 1

For estimating the cost gradient, the following measurements are available:

y =



g1
g2
x1
x2
u2
u3

 =



1 −0.8
0 0
1 0
0 1
0 0
0 0

x+



0 0 0
1 1 1
0 0 0
0 0 0
0 1 0
0 0 1

u (4.24)
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Note that both constraints and both states are measured. In addition, we choose
to include two of the three inputs. The expected static disturbance and noise mag-
nitudes are Wd = diag([4, 4]) and Wny = diag([0, 0, 1, 2, 1.5, 5]). The two
first zeros in Wny imply that the constraints have no static measurement error, that
is, the constraints can be perfectly controlled. In general, static measurement error
for a constraint may be counteracted by using back-off for its setpoint, but this
issue is not explored in the case study.

To find the optimal cost gradient estimate using the formulation proposed in this
work, we first use (4.23) with ẋ = 0 to derive the steady-state relationship:

x =

[
0.2 0 0
0 0.2 0

]
u+

[
1 0
0 1

]
d (4.25)

This is used to eliminate the states x from the problem (4.22), resulting in the
following steady-state optimization problem:

min
u

J =
1

2
uT

1.04 −0.1 −0.2
−0.1 1.2 −0.1
−0.2 −0.1 0.3


︸ ︷︷ ︸

Juu

u+ uT

0.2 0
0 2
0 0


︸ ︷︷ ︸

Jud

d

s.t. g =

[
0.2 −0.16 0
1 1 1

]
︸ ︷︷ ︸

gu

u+

[
1 −0.8
0 0

]
d ≤ 0

(4.26)

From the matrix gu, we can find the projections Ni and N0 to be multiplied with
the unconstrained gradient Ju. N0 is the nullspace of gu given by:

N0 =
[
−0.36214 −0.45268 0.81482

]T (4.27)

The vectors Ni are the first ng normalized columns of W =

[
gu

N0T

]−1

, calculated

as:

W =

 2.8689 0.29508 −0.36214
−2.6639 0.36885 −0.45267
−0.20491 0.33607 0.81482

 (4.28)

N1 =
[
0.73179 −0.67952 −0.052271

]T (4.29)
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N2 =
[
0.50902 0.63627 0.57971

]T (4.30)

To estimate the gradient from the measurements, we also need their corresponding
steady-state model. Plugging the steady-state expression for the states into (4.24)
leads to:

y =



0.2 −0.16 0
1 1 1
0.2 0 0
0 0.2 0
0 1 0
0 0 1


︸ ︷︷ ︸

Gy

u+



1 −0.8
0 0
1 0
0 1
0 0
0 0


︸ ︷︷ ︸

Gy
d

d (4.31)

The optimal sensitivity is then:

F =
dyopt

dd
= Gy

d −GyJ−1
uu Jud =



0.9599 −0.5830
−0.4207 −2.8867
−0.0065 0.6479
−0.0324 −1.7605
−0.1618 −0.8026
0.9547 −0.0647

 (4.32)

With this information and the matrices from Equation (4.26), we can calculate the
measurement combinations HJ from Equation (4.13), which gives:

HJ =

[
0.2741 0.9842 0.1560 −1.0715 −1.1842 0.0050
−0.1897 −0.0735 1.7813 0.8869 −0.0265 0.0570
−0.0180 −0.1964 −0.0091 0.0953 0.4964 −0.0003

]
(4.33)

and the estimated gradient is Ĵu = HJ(y − y∗) = HJ − cs. Here, we note that
the approximations in (4.3) and (4.4) are exact for this example, and therefore HJ

does not depend on the nominal point to be considered. However, we still need a
reference point to calculate the constant cs = HJy∗, and for that, we choose an
optimal point with d∗ = [0, 0]T . This gives cs = [0, 0, 0]T .

Dynamic simulation results for the closed-loop system with the proposed control
structure in Figure 4.4 with H = HJ are shown in Figure 4.6. The PI controllers
tuning are given in Table 4.1. The simulated disturbances cover all four active
constraint regions but we did not include measurement noise. The responses are
fairly smooth (see the three input profiles) and there are as expected three changes
in active constraints. The gradient estimate with H = HJ is optimal in terms of
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minimizing the average loss with the expected (assumed) disturbances and noise.
However, this means that the gradient estimates (and resulting CVs) are not de-
signed to reject the disturbances completely, as they simultaneously try to reduce
the effect of measurement noise. This is the reason why the resulting steady-
state inputs ui (blue lines) do not match exactly the corresponding optimal values
(magenta dashed lines). At steady state, the economic loss L resulting from this
input mismatch is, however, very small.

Controller Parameter Value

Kg
1

Kc 50
KI 50

Kg
2 KI 100

K0g
1 KI -1.191

K0g
2 KI 1.528

K0 KI 2.761

Table 4.1: Proportional and integral gains of controllers for the example. All controllers
have anti-windup with tracking time τT = 0.01.

In Figure 4.7, we present the steady-state loss obtained in closed loop both without
and with static measurement noise (bias). The loss is shown as a heatmap for
each disturbance combination. The much larger loss (note the difference in scale)
with measurement noise in Figure 4.7(b) is for the worst-case measurement error
satisfying ny = Wnyny ′ with ||ny ′||2 ≤ 1. The optimal active constraint regions
(same as Figure 4.5) are shown by black lines whereas the actual operating regions
resulting from using the control structure are shown by blue lines. Note that the
constraint switching is moved away from the optimal, which is not surprising (see
discussion).

Figure 4.7(a) shows that the measurement combination H = HJ (which is based
on the exact local method of self-optimizing control) does not perfectly reject dis-
turbances, even without measurement error. To achieve zero loss for disturbances,
H must be in the nullspace of F . For instance, if we apply the extended nullspace
method (4.15) to this problem (with Mn = J

−1/2
uu ), we get:

H =

[
0.195 1 0.156 −1.1 −1.2 0.005
−0.0624 −0.1 1.95 0.9 0 0.0624

0 −0.2 0 0.1 0.5 0

]
(4.34)
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Figure 4.6: Dynamic simulation over all active constraint regions using the proposed
control structure with H = HJ (exact local method).
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(b) Worst-case loss with measurement error. The new narrow operating region (which starts from
point d = [−2.8, −4]T ) has both constraints g1 and g2 active.

Figure 4.7: Steady-state loss for closed-loop operation with H = HJ from the exact local
method.
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With the resulting gradient estimate (and set of CVs), the steady-state closed loop
loss for the extended nullspace method (without noise and with the worst-case
noise) are presented in Figure 4.8. We see that in the case without noise (Fig-
ure 4.8(a)), the economic loss is exactly zero in all constraint regions. This is
expected since the original problem is linear with a quadratic cost. However, we
see that the exact local method (HJ ) is better at locally rejecting noise (note that
the worst-case loss in Figure 4.7(b) is smaller around the nominal point), but the
extended nullspace method (Figure 4.8(b)) handles large disturbances better, as
expected.



104 Optimal measurement-based cost gradient estimate for real-time optimization

4 3 2 1 0 1 2 3 4
d1

4

3

2

1

0

1

2

3

4

d 2

optimal switch
simulated switch
nominal point

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss
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(b) Worst-case loss with measurement error.

Figure 4.8: Steady-state loss for closed-loop operation with H from the extended null-
space method
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4.7 Discussion

4.7.1 Local gradient estimation (block-diagonal H)

The matrix HJ in (4.14) for the optimal gradient estimate is a full matrix. This
means that control systems in Figures 4.2 and 4.4 may not be decentralized, even
if the controllers K themselves are decentralized. To obtain a decentralized con-
trol system, the relationship from y (measurements) to u (inputs) needs to be de-
coupled. For example, if we have a complex process with many units, then decent-
ralized control implies that only measurements from unit k should be used by the
control system to compute the inputs for unit k. To accomplish this, the matrix H
needs to be block-diagonal. There exists no analytical solution in this case so the
optimal block-diagonal H must be obtained numerically. Depending on the case
study, there may be a small or large performance loss compared to using a full H .
This problem has been studied in detail by Yelchuru and Skogestad (2012) using
mixed-integer quadratic programming (MIQP). However, their objective was to
find self-optimizing controlled variables c = Hym + cs, so their results need to be
modified to estimate instead the gradient, Ĵu = Hym + cs.

Finally, note that for the primal-dual optimizing control structure in Figure 4.2, the
Lagrange multiplier (λ) may introduce a coupling from the measured constraint (g)
to the inputs (u) even for cases where the gradient controller (Kprimal) is diagonal
and the gradient estimator (matrix H) is block-diagonal.

4.7.2 Addition of RTO layer

The optimality of the static gradient estimate is based on a quadratic approximation
(4.3) of the cost, and a linear approximation of the constraints (4.4) and of the
measurement model (4.9). In general, these assumptions are not satisfied, and
in this case, a static real-time optimization layer may be used to provide updates
of the constants presented in this work, namely the controller setpoints cs, the
measurement combinations H , and the projection matrices Ni and N0 (or NA
when generalizing to centralized approaches).

Using the RTO layer to update the setpoints cs is the simplest and most important,
being sufficient to drive the system to optimality in a new operating condition. That
is, cs is optimally updated, while the matrix H and the projection matrices constant
can be kept constant. The use of constant matrices implies the self-optimizing
properties (related to optimality on a shorter time scale) may degrade somewhat
in a new operating point. On the other hand, changing these matrices will affect
the control problem and, consequently, the controllers’ tuning that should be used.
Thus, updating only cs is recommended in most practical applications.
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As an alternative to model-based RTO, data-based methods based on perturbing the
process, for example, extremum-seeking control may be used to update cs. How-
ever, data-based methods are not realistic for most process control applications
because the convergence of these methods is too slow to track changing disturb-
ances. Regardless, these methods are complementary to the method discussed in
this work, as they are applied on an upper layer.

4.7.3 Required model information

The methods for self-optimizing control usually only need model information in
the form of the matrices F and Gy, which can be estimated from plant data with
relative ease. For estimating the gradient Ju, we additionally require knowledge
of the Hessian matrix Juu so that the directions of the unconstrained gradient are
retrieved. The Hessian is harder to estimate from measurement information, as it
requires more data. In addition, the constraint gradient gu is needed to find the
nullspace matrix for the reduced gradient NT

AJu, but gu is easy to estimate from
data. However, if a steady-state model is available for control structure design, all
of these matrices can easily be obtained.

4.7.4 Discussion of case study

In this work, we illustrate the method with a case study where the formulation
is exact, that is, Equations (4.3), (4.4) and (4.9) hold. It was shown that the exact
local method (4.13) is not designed to perfectly reject disturbances, that is ∆copt =
HF∆d ̸= 0, which results in non-zero loss as shown in Figure 4.7(a). Therefore,
if a new estimate of the disturbances is available, an update of cs will lead to
improved performance around the new operating point, even if the optimal H is
unchanged. This is not the case for the extended nullspace method, where we see
in Figure 4.8(a) that the obtained loss is zero for all disturbance values, which
means that the optimal setpoint value is constant, i.e. ∆copt = HF∆d = 0.

We see from Figure 4.7 that measurement bias has a comparatively bigger effect
on the economic loss than the disturbances in this numerical example, which is
worsened the further the disturbances are from their design value. We also see
that the measurement bias may trigger control of constraints that are not optimally
active, which could be a problem if there were no constraint controllers. This is
the reason why the pattern of the operating regions is so different from the optimal
in Figure 4.7(b). Overall, we see that for the nominal case (Figure 4.7(a)), optimal
behavior is well captured, with the closed-loop operating regions closely resem-
bling the optimal active constraint regions. For the worst-case loss (Figure 4.7(b)),
the resulting economic loss is still small when compared to the values attained
dynamically in Figure 4.6.
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4.8 Conclusion
The optimal local gradient estimate for use in steady-state real-time optimization
is simply Ĵu = HJ(ym − y∗) + J∗

u with HJ as in Equation (4.13) (Theorem 4.1).
This gradient estimate is optimal also in the constrained case when used with the
KKT optimality conditions (4.2) (Theorem 4.2). The gradient estimate Ĵu may be
used in a multitude of control applications (Figures 4.1 to 4.4) where it is desired
to include the optimality conditions (4.2) directly into the feedback control layer.

Funding
This work was funded by the Research Council of Norway through the IKTPLUSS
programme (project number 299585).

4.A Proof: Optimal gradient estimate for the constrained
case

We begin by describing the loss function for the constrained optimization problem,
resulting in a simple form. Then, we show that the ideal variables for a given set of
active constraints are the projection of the unconstrained gradient estimate onto the
nullspace of the gradient of the active constraints, in the sense that they minimize
the expected loss.

4.A.1 Loss for constrained optimization problem

From Equation (4.3), we have:

L = J(u, d)− Jopt(d) = J∗
u
T (u− uopt)

+
1

2
(u− u∗)TJuu(u− u∗) + (d− d∗)TJT

ud(u− uopt)

− 1

2
(uopt − u∗)TJuu(u

opt − u∗)

L = (J∗
u + Jud(d− d∗))T (u− uopt) +

1

2
(u− u∗)TJuu(u− u∗)

− 1

2
(uopt − u∗)TJuu(u

opt − u∗)

(4.35)

The optimality conditions state that:
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Lu(uopt, d, λopt) = Ju(u
opt, d) + g∗u

Tλopt = 0

=⇒ J∗
u + Juu(u

opt − u∗) + Jud(d− d∗) + g∗u
Tλopt = 0

=⇒ J∗
u + Jud(d− d∗) = −(Juu(uopt − u∗) + g∗u

Tλopt)

(4.36)

We can therefore rewrite Equation (4.35) as:

L =−
(
Juu(u

opt − u∗) + g∗u
Tλopt

)T
(u− uopt)

+
1

2
(u− u∗)TJuu(u− u∗)− 1

2
(uopt − u∗)TJuu(u

opt − u∗)

=− λoptT g∗u(u− uopt) +
1

2
(u− u∗)TJuu(u− u∗)

− 1

2
(uopt − u∗)TJuu(u

opt − u∗)− (uopt − u∗)TJuu(u− uopt)

=− λoptT g∗u(u− uopt) +
1

2
(u− u∗)TJuu(u− u∗)

− 1

2
(uopt − u∗)TJuu(u

opt − u∗)− (uopt − u∗)TJuu(u− u∗)

+ (uopt − u∗)TJuu(u
opt − u∗)

=− λoptT g∗u(u− uopt) +
1

2
(u− u∗)TJuu(u− u∗)

− (uopt − u∗)TJuu(u− u∗) +
1

2
(uopt − u∗)TJuu(u

opt − u∗)

From this, we conclude that:

L =
1

2
(u− uopt)TJuu(u− uopt)− λoptT g∗u(u− uopt) (4.37)

This expression is very similar to Equation (4.7), the difference being the lin-
ear term λoptT g∗u(u − uopt), which is related to constraint control. Because the
optimal Lagrange multipliers for the inactive constraints are zero, we have that
λoptT g∗u(u−uopt) = λopt

A
T
gu,A(u−uopt), with gu,A defined as the gradient of the

active constraints with respect to the inputs. If the optimal active constraint set A
is perfectly controlled, we have:
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{
gA(u

opt, d) = g∗A + gu,A(u
opt − u∗) + gd,A(d− d∗) = 0

gA(u, d) = g∗A + gu,A(u− u∗) + gd,A(d− d∗) = 0

=⇒ gu,A(u− uopt) = 0

(4.38)

This means that only the quadratic term on Equation (4.37) is relevant when the
correct constraints are controlled, with the additional restriction on the allowed
directions of (u− uopt), which are in the nullspace of gu,A. Define NA as a basis
for the nullspace of gu,A. This means that the loss from Equation (4.37) is further
simplified when the correct constraints are controlled to give:

L =
1

2
(u− uopt)TJuu(u− uopt) =

1

2
wTNA

TJuuNAw (4.39)

Here, w is an appropriately sized vector that represents the unconstrained degrees
of freedom.

4.A.2 Connection with the unconstrained problem

We now show that the ideal controlled variables for this problem are directly linked
to the ones from the unconstrained problem. First, note that the matrix Jww =
NA

TJuuNA is invertible by definition, and therefore we can write:

L =
1

2
wTJwwJ

−1
wwJwww (4.40)

From this, we can see that the loss variable zw for this problem can be represented
by:

zw = J−1/2
ww NA

TJuuNAw = J−1/2
ww NA

TJuu(u− uopt) (4.41)

Similarly to Equation (4.8), we can write zw in terms of the unconstrained CVs c
as:

zw = J−1/2
ww NA

TJuu(HGy)−1(c− copt)

= J−1/2
ww NA

TJ
1/2
uuMn(c− copt)

We can similarly write zw in terms of the unconstrained gradient:
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Ju = Ju(u
opt, d) + Juu(u− uopt)

=⇒ zw = J−1/2
ww NA

T (Ju − Ju(u
opt, d))

Note that, because of the optimality conditions, we have that:

Ju(u
opt, d) + g∗u

Tλopt = 0 =⇒ NA
TJu(u

opt, d) = 0

and with the choice of Mn = J
−1/2
uu , we compare both expressions for zw and we

see that:

NA
TJu = NA

T (c− copt)

= NA
T
(
H(ym − y∗)−Hny −H(yopt(d)− y∗)

) (4.42)

This formulation is similar to that of Equation (4.18), with the exception that now
uopt(d) and yopt(d) represent a constrained optimal point, and therefore are a dif-
ferent function of the disturbances, (yopt(d)−y∗) = FA(d−d∗). We can determine
FA from the constrained optimization problem as follows:

[
Juu gTu,A
gu,A 0

] [
∆uopt

∆λopt
A

]
=

[
−Jud
−gd,A

]
∆d (4.43)

First we eliminate ∆uopt by premultiplying both sides by
[
gu,AJ

−1
uu −I

]
, leading

to the solution ∆λopt
A = WA∆d, where

WA =
(
gu,AJ

−1
uu g

T
u,A

)−1 (
gd,A − gu,AJ

−1
uu Jud

)
The solution for the new optimal inputs follows as:

∆uopt = −J−1
uu

(
(gu,A)

TWA + Jud
)
∆d

and the optimal sensitivity matrix FA can be obtained as:

FA = F −GyJ−1
uu g

T
u,AWA (4.44)

with F being the unconstrained optimal sensitivity matrix. The second term of FA
is related to constraint control, and we can see that, with Mn = J

−1/2
uu :
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NA
THFA = NA

THF −NA
T

= I︷ ︸︸ ︷
HGyJ−1

uu gTu,AWA

= NA
THF −

= 0︷ ︸︸ ︷
NA

T gTu,AWA = NA
THF

This means that the last two terms in Equation (4.42) are minimized by the un-
constrained self-optimizing control solution for H = HJ (4.13), and therefore the
reduced gradient estimate

NA
T Ĵu = NA

THJ(ym − y∗) (4.45)

is the unconstrained CV that should be kept at zero to minimize the expected norm
of zw.

4.B Effect of nominal setpoint
Here, we evaluate the effect of having a non-optimal reference point. From Equa-
tion (4.16) and choosing Mn = J

−1/2
uu , we have:

c(u, d)− c(uopt(d), d) = Ju(u, d)− Ju(u
opt(d), d)

The same expression is valid for the nominal point, according to:

c(u∗, d∗)− c(uopt(d∗), d∗) = Ju(u
∗, d∗)− Ju(u

opt(d∗), d∗)

Here, we assume that u∗ ̸= uopt(d∗), that is, the nominal point is not optimal.
For the unconstrained problem, Ju(uopt(d), d) = Ju(u

opt(d∗), d∗ = 0, and we
subtract the two equations to give:

Ju(u, d) = Ju(u
∗, d∗) + c(u, d)− c(u∗, d∗)

−
(
c(uopt(d), d)− c(uopt(d∗), d∗)

)
or

Ju(u, d) = Ju(u
∗, d∗) +H(ym − y∗)−H (ym − y)︸ ︷︷ ︸

ny

−HF (d− d∗) (4.46)
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Choosing the exact local method solution for H from (4.13), we minimize the
last two terms from the previous equation, and the optimal gradient estimate to be
controlled is given by:

Ĵu(u, d) = HJ(ym − y∗) + Ju(u
∗, d∗)

as stated in Equation (4.20). As previously shown, this gradient estimate is also
valid for the constrained region, with the corresponding reduced gradient estimate
being the optimal variable to be controlled.
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Optimal operation of heat
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This chapter has been published:

L. F. Bernardino, D. Krishnamoorthy, and S. Skogestad. Optimal opera-
tion of heat exchanger networks with changing active constraint regions.
In Computer Aided Chemical Engineering, volume 49, pages 421–426. El-
sevier, 2022b

5.1 Introduction
In the context of optimal operation of process systems, the choice of controlled
variables plays a vital role, as it will dictate how efficiently a process can oper-
ate without interference of higher layers (Skogestad 2000). The ideal design of a
supervisory control layer would result in a structure that is able to operate optim-
ally under constant setpoints. This concept is known as self-optimizing control,
and recent developments aim for systematic choice of control objectives (Krish-
namoorthy and Skogestad 2019). A known challenge in supervisory layer design
is the change in optimally active constraints during operation, which can be caused
by changes in disturbances that affect process objectives. When that happens, re-
configuration of the controlled structure is usually desired to minimize the oper-

113
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ational losses. If that does not happen, interactions with the higher optimization
layer become stronger, as the sensitivity of the optimal setpoint values with relation
to the changing disturbances is high when there are no changes in the control struc-
ture. Krishnamoorthy and Skogestad (2019) discusses the handling of changes
in active constraints through feedback control, without the solution of online op-
timization problems, by selector-based control structures. This approach is to be
evaluated in this work, compared to the solution of real-time optimization (RTO)
problems, which can be problematic in the presence of model-plant mismatch.

5.2 Case study modeling
The case study considered in this work consists of three heat exchangers in parallel,
see Figure 5.1. Each exchanger has its own source of hot fluid, such that the cold
fluid is split and sent to the exchangers, and the operational goal is to maximize the
outlet temperature of the cold fluid, subject to constraints related to the maximum
temperature in the individual exchangers.

UA1

UA2

UA3

α2

α1

wh,1, Th,1

Th,1e

Th,2e

Th,3e

wh,2, Th,2

wh,3, Th,3

w0, T0

T1

T2

T3

T

Figure 5.1: Heat exchanger network scheme

In addition to the mass and energy balances, an additional relation is necessary for
calculating the total exchanged heat in each equipment, Qi. The analytic solution,
assuming constant heat capacities and countercurrent flow, is given by Eq.(5.1).

Qi = UAi ∆TLM,i (5.1)

In this equation, ∆TLM,i represents the logarithmic mean of temperature differ-
ences inside the heat exchanger. Although exact, this model presents some nu-
merical challenges, especially when the heat capacities are too close, or when the
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temperature differences assume opposite signs during iteration. A simplified linear
version of this model makes use of the arithmetic mean of temperature differences,
∆TAM,i, and for this model, simple analytic expressions for the gradient can be
derived (Jäschke and Skogestad 2014).

The steady-state optimization problem considered for the optimal operation of this
system can therefore be written as:

min
α

J = −T

s.t. gi = Ti − Tmax ≤ 0, i = 1, 2, 3
(5.2)

5.3 Proposed control structure
The optimal operation of heat exchanger networks has been extensively studied by
Jäschke and Skogestad (2014) for the unconstrained case. In this case, the gradient
Ju to be driven to zero can be approximately written in terms of the Jäschke tem-
peratures. For the constrained case, however, the set of controlled variables need
to change so that optimal operation is achieved. Given that the active constraints
gA are effectively controlled, there are still unconstrained degrees of freedom that
need to be used for optimal operation. As proven by Krishnamoorthy and Sko-
gestad (2019), we can find the additional controlled variables as a linear combin-
ation of the gradient such that the necessary conditions of optimality are satisfied.
These correspond to c = NTJu, where N is the nullspace of the gradient of the
active constraints with relation to the inputs,∇ugA, at the optimal point. This pro-
cedure results in a set of controlled variables per region, defined by the respective
set of active constraints.

For this case study, there are 7 feasible operating regions, one of which is fully
unconstrained, 3 being partially constrained (one active constraint per region), and
the remaining being fully constrained (two active constraints per region). The
case with all 3 constraints being active is infeasible with the available degrees of
freedom, and will therefore not be considered. The fully unconstrained region
can be optimally operated by controlling the plant gradient to zero, and the fully
constrained regions are optimally operated through active constraint control. For
the optimal operation in the partially constrained regions, the combinations of the
gradient to be controlled in addition to the active constraints are given in Table 5.1.

The next step for the design of a simple control structure is defining the pairing
between manipulated and controlled variables, and the switching between active
controllers. In the current case study, there are 2 manipulated variables and 3
constraints, which means that the constraints cannot be assigned to one specific
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Active constraint NT

g1
[
0 1

]
g2

[
1 0

]
g3

[
− 1√

2
1√
2

]
Table 5.1: Linear combinations of gradient per active constraint

input if optimal operation over all regions is desired. Therefore, at least one of the
constraints needs to be controlled by multiple inputs.

Based on this reasoning, this work proposes an adaptive control structure to deal
with all possible active constraint regions. The full control structure, showing the
logic blocks and controllers, is presented in Figure 5.2. and the pairing between
manipulated and controlled variables is summarized in Table 5.2. All presented
controllers have integral action, so that steady-state offset is eliminated.

Process

𝑇𝑇1

𝑇𝑇2

𝑇𝑇3
𝛼𝛼2

𝐽𝐽𝑢𝑢
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min

𝐾𝐾11

𝑇𝑇1
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𝑆𝑆𝑆𝑆 = 0

1 0

𝐾𝐾21

𝑇𝑇2
𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝐾𝐾22

𝑇𝑇3
𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝐾𝐾23

𝑆𝑆𝑆𝑆 = 0

− 1
2

+ 1
2

𝐾𝐾24

𝑆𝑆𝑆𝑆 = 0

0 1
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𝛼𝛼11 𝛼𝛼1
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0 1

Figure 5.2: Proposed adaptive control structure
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α1 α2 (T1 inactive) α2 (T1 active)

T1 T2 T2[
1 0

]
Ju

[
0 1

]
Ju

[
0 1

]
Ju

T3

[
− 1√

2
1√
2

]
Ju T3

Table 5.2: Proposed adaptive pairing for all operating regions

5.4 Simulation results and discussion
The control structure previously presented is now evaluated in closed-loop simula-
tion face to changing disturbances. Figure 5.3 shows the simulation results, where
all 7 possible regions are explored. As the process itself is considered to be at
steady state at all times, the dynamics of the system is fully attributed to the tuning
of the controllers. Operation in the fully constrained regions is optimal at steady
state, whereas there is some deviation from the optimal conditions in the partially
constrained and unconstrained regions. This is due to the estimation of gradients
by Jäschke temperatures, which does not fully represent the plant model, but gives
a reasonable estimate for control, so that low operational loss is achieved.

Figure 5.3: Simulation of region-based control structure using Jäschke temperatures

These results are compared with a traditional RTO implementation, see Figure 5.4.
This implementation consists of a two-step approach, with disturbance estimation
followed by model-based constrained optimization. The system converges in few
iterations, with similar steady-state behavior to the region-based control structure.
The unconstrained and partially constrained regions suffer from deviations from
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the true optima, due to model-plant mismatch, and the converged state is quite
similar to that of the region-based control structure. This is to be expected, as
Jäschke temperatures represent the gradient information extracted from the model
used in the RTO framework.

Figure 5.4: Simulation of steady-state RTO with model-plant mismatch

In the RTO simulation, a curious undesired behavior is observed. From t = 40, in
the fifth simulated region, the system converges to an infeasible point. This hap-
pens because the disturbance estimation step returns parameter values that make
the optimization problem infeasible, meaning that there are no inputs that satisfy
all constraints on the model with the given parameters, even if the estimation step
returns parameters that agree with the plant measurements. Some workarounds are
therefore deemed necessary for the effective implementation of the RTO strategy,
such as the adaptation of the optimization problem itself, based on the estimation
of gradients from the true plant (Marchetti et al. 2009).

5.5 Conclusion
In this work, we extended previous work on the optimal operation of heat ex-
changer networks to the constrained case, where the ideal self-optimizing vari-
ables known as Jäschke temperatures cannot be applied to every operating con-
dition. Instead, control of the active constraints becomes necessary for optimal
operation, and the challenge lies in deciding automatically what are the best con-
trolled variables during operation. This has been achieved with the use of selectors,
with steady-state performance comparable to a traditional model-based RTO im-
plementation. With the proposed control implementation, one avoids the solution
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of online optimization problems, which can be problematic, as highlighted by the
presented results. However, the simultaneous use of the presented tools is en-
couraged, so that near-optimal operation is achieved in the faster timescales, and
optimization tools can correct for mismatches under more careful evaluation of the
results.
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Chapter 6

Comparison of simple feedback
control structures for constrained
optimal operation

This chapter has been published:

L. F. Bernardino, D. Krishnamoorthy, and S. Skogestad. Comparison of
simple feedback control structures for constrained optimal operation. IFAC-
PapersOnLine, 55(7):883–888, 2022a

6.1 Introduction
Optimal operation is one of the main objectives in process operation, as it is al-
ways desired that losses are minimized when possible. Optimal operation requires
optimization of economic objectives, i.e. maximization of profit or minimization
of costs, subject to constraints related to intrinsic or external conditions, such as
operational capacity, product specification, or emission limit values. This is often
formulated as a steady-state optimization problem, which can be solved through
a plethora of methods (Nocedal and Wright 2006), given that a full model for the
system is known. While all constraints are satisfied in the solution of such prob-
lems, some constraints influence the location of the solution, but others do not.
The former type of constraints is typically referred to as active constraints.

The main challenge related to implementation of real-time optimization (RTO)
strategies lies on the lack of knowledge about the system. This can be detected
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through the available system measurements, and how far these measurements are
from the model predictions gives a metric of how inaccurate the model is. If the
model is parametrized by disturbances which cannot be known or measured, online
parameter estimation can be used to fit the model to the measurements and thus
allowing for better predictions (Roberts and Williams 1981). This translates into
a two-step approach for RTO implementation, consisting of parameter estimation
and reoptimization, which is very simple, but depends heavily on the structural
similarity between model and plant. If this condition is not met, operation might
converge to a suboptimal or even infeasible point (Marchetti et al. 2009).

Therefore, the use of model-based RTO approaches has fundamental limitations,
as model-plant mismatch is always present in some degree, and may not be com-
pletely removed even in the presence of measurements. In this context, an in-
teresting area of research is attempting to satisfy optimality conditions without
solving the model-based optimization problem, and at the same time requiring
the least amount of knowledge of the system. One particularly useful concept is
self-optimizing control (Skogestad 2000), which is based on the translation of the
optimization problem into a feedback control problem, and the focus becomes the
selection of variables that, when kept controlled under a fixed setpoint, allow for
optimal operation. The resulting control structure minimizes the effect of disturb-
ances by design, based on the available model, and any model-plant mismatch is
dealt by the upper control layers through setpoint changes. With this, the mag-
nitude of setpoint changes that the upper layers must perform is minimized, guar-
anteeing that near-optimal operation is attained even in the faster timescales, when
the necessary update is not yet available.

This class of strategies, however, has limitations regarding the treatment of con-
straints, see Gros et al. (2009), François et al. (2005). If the set of active constraints
is fixed through operation, a single set of variables can be controlled for optimal
operation. In particular, if there are no active constraints, the ideal self-optimizing
variables are the gradient of the cost with relation to the inputs (Jäschke and
Skogestad 2011), and in presence of active constraints, the ideal self-optimizing
variables become the active constraints themselves and the reduced cost gradient
projected in the unconstrained directions (Krishnamoorthy and Skogestad 2019).
However, if the set of active constraints change during operation, these control
objectives no longer apply, and restructuring of the control system is required.

Another setback in the implementation of RTO strategies is related to the com-
putational effort necessary for implementation. As the solution of optimization
problems is computationally expensive, RTO is often performed in a slow times-
cale, and operation must always be performed with the aid of fast controllers that
stabilize the process and control key variables for operation. This means that rapid
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changes in active constraints may not be counteracted efficiently if changes in
active constraints are only dealt by the RTO layer, even if these RTO strategies
have the capability of completely eliminating the offset in steady state (Marchetti
et al. 2020). There is therefore great interest in the implementation of fast and
feedback-based approaches to optimal operation of processes with changes in act-
ive constraints.

For this end, a classic approach is analyzing the possible active constraint regions,
and designing a control structure that is able to switch between the controlled vari-
ables (CVs) (Krishnamoorthy and Skogestad 2019, Reyes-Lúa et al. 2018). A
limitation of this approach is the necessity of pairing, which becomes problematic
when constraints are independent and may activate at the same time. In such cases,
the pairing needs to be adaptive, but proposing adaptive structures may be cum-
bersome or even infeasible. In this work, such types of case study are explored,
and we aim to evaluate the viability of region-based control structures and the
use of more general feedback control structures in the optimal operation of these
systems. Specifically, we propose the use of a primal-dual feedback optimizing
control structure, based on the work presented in Krishnamoorthy (2021), which
can be applied to solve most steady-state optimal operation problems of interest.
In this structure, the Lagrange multipliers are introduced as extra degrees of free-
dom that can be used for constraint control, and therefore the resulting approach
presents both primal and dual decision variables as manipulated variables, which
enables for tracking of all necessary conditions of optimality.

6.2 Control structures for optimal operation
In this section we present the control structures considered in the present work,
which aim to solve a steady-state optimization problem through feedback. This
generic optimization problem can be defined as:

min
u

J(u, d)

s.t. g(u, d) ≤ 0
(6.1)

In this definition, u ∈ Rnu represents the manipulated variables (MVs), d ∈ Rnd

represents process disturbances, J : Rnu × Rnd −→ R represents the objective
function, and g: Rnu × Rnd −→ Rng represents all process inequality constraints.
For this problem, by introducing λ ∈ Rng as the Lagrange multipliers associated
to the inequality constraints, the Lagrangian function is written as:

L(u, d, λ) = J(u, d) + g(u, d)Tλ (6.2)



124 Comparison of simple feedback control structures for constrained optimal operation

The necessary Karush-Kuhn-Tucker (KKT) conditions for the optimization prob-
lem state that the optimal pair (u∗, λ∗) satisfies:

∇uL(u∗, d, λ∗) = ∇uJ(u
∗, d) +∇ug(u

∗, d)Tλ∗ = 0 (6.3a)

g(u∗, d) ≤ 0 (6.3b)

λ∗ ≥ 0 (6.3c)

g(u∗, d)Tλ∗ = 0 (6.3d)

The main challenge in solving this type of problem is related to the lack of know-
ledge about the set of active constraints gA, which is here written as the vector
composed of the elements of g such that gA(u∗, d) = 0. If this set is known before-
hand, the problem is simplified to an equality-constrained optimization problem,
which is written as:

∇uL(u∗, d, λ∗) = ∇uJ(u
∗, d) +∇ugA(u

∗, d)Tλ∗
A = 0 (6.4a)

gA(u
∗, d) = 0 (6.4b)

6.2.1 Active constraint region-based control using selectors

This strategy can be regarded as a generalization of the classic approach to design-
ing an advanced supervisory control layer for optimal operation. In this strategy,
each possible set of active constraints define a set of control objectives for optimal
operation (Krishnamoorthy and Skogestad 2019). For a given region defined by
the active set A, controlling gA(u, d) = 0 is the first straightforward choice of
CVs, which fills na degrees of freedom. The remaining nu − na unconstrained
degrees of freedom are filled with a projection of the cost gradient NT∇uJ(u, d)
such that N is the nullspace of ∇ugA(u, d). This leads to optimal operation be-
cause it automatically satisfies the KKT condition given in Equation (6.4a), since
NT∇uJ(u, d) = −NT∇ugA(u, d)

TλA = 0 at the stationary point. Therefore,
the control objectives in this strategy are calculated from the plant gradients, and
fully independent of the optimal Lagrange multipliers.

A scheme of the general control strategy is presented in Figure 6.1, where the
gradient ∇uJ is considered to be obtained with the aid of the model and meas-
urements. The control structure is designed taking into account the constraints g
and all possible gradient projections Ni∇uJ , each of them being paired to spe-
cific plant inputs, and logic must be applied to select between the corresponding
control actions ug and u0. This logic serves therefore as a detection mechanism
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of the active constraints, which can rapidly change during operation. In this work,
we attempt to implement the switching logic through the use of selectors, as it is
usually done in practice. However, this strategy alone is not effective when it is
necessary to switch pairings for different regions. This shall be discussed within
the first case study considered in this work.

min/max selectors

Process

𝑔𝑔

𝑢𝑢

𝑢𝑢0

𝑁𝑁1𝑇𝑇 𝐾𝐾10
SP = 0
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…
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𝑔𝑔

SP = 0

SP = 0 SP = 0…

Figure 6.1: Region-based control strategy using selectors

6.2.2 Primal-dual feedback optimizing control

In this strategy, a single control structure is used for all regions, with control-
lers arranged in a cascade layout, according to Figure 6.2. The components of
the Lagrangian gradient ∇uL are paired to the respective process inputs u with
simple controllers, and each constraint g is controlled in an outer loop by manip-
ulating the estimate of the respective Lagrange multipliers λ, entailing the use of
nu + ng controllers, labelled as Ku and Kλ in Figure 6.2. The constraint control-
lers must become inactive when the constraints are not violated (g(u, d) < 0), and
a switching logic to enforce λ ≥ 0 is thus introduced, guaranteeing steady-state
primal feasibility (6.3b), dual feasibility (6.3c), and complementarity conditions
(6.3d). This control structure is based on the works of Krishnamoorthy (2021),
Dirza et al. (2021), which were written under a distributed optimization perspect-
ive, but it can also be applied to a generic constrained optimal operation problem
(Krishnamoorthy and Skogestad 2022).

This structure gives up on tight control of constraints in fast timescales, as their
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SP = 0
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Figure 6.2: Primal-dual feedback optimizing control framework, based on the DFRTO
framework (Krishnamoorthy 2021).
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control is placed in an internal loop mediated by the Lagrange multiplier estimates.
However, given that the gradient calculations are accurate, and that integral action
is present in all controllers, optimality is attained at steady state. The switching
logic between active constraints is mediated by the max blocks, as the calculated λ
shifts the relevant directions for control in the actuator layer when the constraints
are violated, and zero is selected when the calculated λ value becomes negative,
which happens when the constraint is no longer being violated. One advantage of
this strategy is that pairing between constraints and MVs is not required, since this
association is done through the Lagrangian gradient calculation.

6.3 Case study 1: heat exchanger network
The first system considered in this work, based on the work of Jäschke and Sko-
gestad (2014), consists of three heat exchangers in parallel. The network is fed
with a cold stream, which is split to be heated into each line by different hot
streams. The goal of the process is therefore to maximize the final temperature
of the heated stream, T , but subject to constraints of maximum allowed temper-
ature in each branch, Ti ≤ Tmax. For this system, the available manipulated
variables are the splits for each line, u = α, and the possible disturbances are
d = [T0, w0, Th,i, wh,i, UAi], namely the cold stream inlet temperature and flow,
hot streams inlet temperatures and flows, and heat transfer coefficients for the ex-
changers. A representation of the system is shown in Figure 6.3, and the respective
optimization problem is written as:

min
u

J = −T

s.t. gi = Ti − Tmax ≤ 0, i = 1, 2, 3
(6.5)

6.3.1 Active constraint region-based control

The case study has a total of 23 = 8 possible regions, but only 7 are feasible re-
gions, as it is not possible to satisfy all 3 constraints with 2 manipulated variables.
In the case that all constraints are violated, it is acceptable that one constraint
is given up for the operation, but this is beyond the scope of this analysis. For
each region, the control objectives that allow for optimal operation are given in
Table 6.1. In this case study, due to the nature of the constraints, the derivation of
linear combinations of the gradient, NT , for the different regions results in con-
stant coefficients inside the region.

Upon inspection of the control objectives, it is clear that a single pairing strategy
cannot account for all regions, especially due to the regions with 2 active con-
straints. When g1 is paired to u1 and g2 is paired to u2, which is a natural pairing
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Figure 6.3: Heat exchanger network scheme.

Table 6.1: Control objectives per region for case study 1

Active constraints Control objectives

- ∇uJ
g1 g1, [0 1]∇uJ
g2 g2, [1 0]∇uJ
g3 g3, [−1 1]∇uJ

g1, g2 g1, g2
g2, g3 g2, g3
g1, g3 g1, g3
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choice, g3 cannot be attributed to a single MV if control over all regions is desired.
If g3 is paired to a single MV in this case, a selector strategy can account for 6
regions at most. One pairing example is given at Table 6.2. In this case, following
a classic approach of pairing and implementing a switching logic, the region where
g1 and g3 are simultaneously active cannot be optimally controlled.

Table 6.2: Example of classic pairing for region-based control of case study 1

u1 u2

g1 g2
[1 0]∇uJ [0 1]∇uJ

g3 [−1 1]∇uJ

Figure 6.4 shows the performance of this control structure over a disturbance se-
quence that activates all possible operation modes. In spite of it being able to
handle most regions correctly, there is steady-state constraint violation for g3 in
the region that cannot be handled, from t = 200 to t = 300.
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Figure 6.4: Operation of case study 1 with region-based control using classic pairing,
along with optimal inputs (dashed).

From these results, it becomes clear that a control structure that handles all re-
gions must be more flexible. Specifically, g3 must also be controlled using u2
in some cases. This introduces external conditions on the controllers activation,
since this possibility should only be accessed when g1 is being controlled by u1.
Implementing this logical statement should guarantee optimal operation over all
possible regions. This adaptive pairing is presented in Table 6.3.
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Table 6.3: Adaptive pairing for region-based control of case study 1

u1 u2 (g1 inactive) u2 (g1 active)

g1 g2 g2
[1 0]∇uJ [0 1]∇uJ [0 1]∇uJ

g3 [−1 1]∇uJ g3

The performance of the adaptive region-based control structure over the same dis-
turbance realization is presented in Figure 6.5. In this case, no steady-state con-
straint violation is obtained, and the expected peaks that happen when disturbances
change are quickly corrected. At t = 200, quick oscillations in u2 can be noticed,
due to the changes in the active control structure.
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Figure 6.5: Operation of case study 1 with region-based control using adaptive pairing,
along with optimal inputs (dashed).

6.3.2 Primal-dual feedback optimizing control

The performance of the primal-dual feedback optimizing control structure is presen-
ted in Figure 6.6. The steady-state performance of this structure is the same when
compared to what is attained by selectors, and constraint violation is efficiently
corrected even though it is regulated by an extra control layer.

In addition, Figure 6.7 shows the dual variables of the primal-dual control struc-
ture. The combination of layers leads to slower responses in some disturbance
changes, especially when there are big changes in the values of Lagrange multi-
pliers. Nevertheless, the estimated Lagrange multipliers smoothly converge to the
optimal values in each region, and spikes due to instantaneous constraint violation
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Figure 6.6: Test of primal-dual control framework over case study 1, along with optimal
inputs (dashed).

are corrected at steady state.

6.4 Case study 2: two distillation columns in sequence
Another system studied in this work has been described by Jacobsen and Sko-
gestad (2012), and it consists of two distillation columns in series, as presented in
Figure 6.8. The inlet stream, composed of three components A, B, and C, is fed
into the first column, with the goal of separating the most volatile component with
minimal purity specification xA. The bottom product is then fed into the second
column, which generates distillate and bottom products with minimal purity spe-
cifications xB and xC , respectively. In addition, there are constraints related to
maximum boilup of the columns, V1 and V2. The operational goal is to optimize
plant economics, with costs related to feed and vapor consumption, and profit from
selling the products. The steady-state optimization problem can then be written as:

min
u

J = pFF + pV (V1 + V2)− pAD1 − pBD2 − pCB2

s.t. g1 = xA,min − xA ≤ 0

g2 = xB,min − xB ≤ 0

g3 = xC,min − xC ≤ 0

g4 = V1 − V1,max ≤ 0

g5 = V2 − V2,max ≤ 0

(6.6)
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Figure 6.7: Lagrange multiplier estimates from the primal-dual control framework in case
study 1, along with optimal multiplier values (dashed).
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Figure 6.8: Scheme of two distillation columns in sequence, based on Jacobsen and Sko-
gestad (2012)
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The vector of manipulated variables for operation are the internal flows of the
columns u = [L1, L2, V1, V2], and the possible disturbances are d = [F, pV ],
namely the feed to the first column and the steam generation price. The system
is considered to be at steady state at all times, meaning that all changes in the
operating conditions are quickly accommodated by the system. This assumption
imposes the limitation that this control structure operates in a slower timescale than
that of the process, which is a common practice when dealing with supervisory
control.

In the considered operating range, there are 8 possible active constraint regions.
These regions are described in Table 6.4. Unlike case study 1, calculating gradient
projections for each region becomes more complicated, as the system constraints
have a nonlinear relationship with the inputs. Therefore, even though constraint
control can be achieved by using a selector-based logic, control of the uncon-
strained degrees of freedom requires an elaborate and interconnected logic, and is
therefore deemed outside of the scope of this paper.

Table 6.4: Active constraints per region for case study 2

Region number Active constraints

I xB
II xB , xA
III xB , V1

IV xB , xA, xC
V xB , xA, V1

VI xB , V1, V2

VII xB , xA, V1, V2

VIII xB , xA, xC , V1

The performance of primal-dual optimizing control in this system is presented
in Figure 6.9, and the corresponding Lagrange multiplier estimates are shown in
Figure 6.10. As in the previous case study, the optimal values for the plant inputs
and estimated Lagrange multipliers are attained at steady state, and any constraint
violation is corrected.

6.5 Conclusion
The presented case studies illustrate the complexity of optimal operation problems
when there is switching of active constraint regions. We explore the concept of
ideal controlled variables for optimal operation, and the close link between steady-
state plant gradients and optimal operation. It is assumed that these gradients are
available for the control structure, which can be burdensome especially in cases
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Figure 6.9: Test of primal-dual control framework over case study 2, along with optimal
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where these depend on the plant states. However, as this layer is meant to operate
in the slower timescales, it can be assumed that the system is settled, and gradient
estimation is possible. This can be done by using a model, with further correction
by the plant data. In this case, the use of an incorrect model is not detrimental,
as the inclusion of biases in the gradients do not impose hard constraints on the
control problem. The performance of this control structure may be improved even
further by making use of optimization results, as one can retrieve estimated gradi-
ents and Lagrange multipliers from these calculations.

The implementation of simple feedback structures that deal with constraints and
allow for optimal operation was accomplished. The choice of which structure
is favored lies in the nature of the system at hand. If there is a low number of
constraints, and pairing can be done to contemplate all regions, a simple struc-
ture consisting of selectors is to be considered, as in this case constraints are kept
more effectively under control. However, no big loss was noticed with the im-
plementation of indirect constraint control mediated by the control of the KKT
conditions. The latter is also not affected by the combinatorial nature of the num-
ber of active constraint regions, and by the concern of adequate pairing between
variables. The use of primal-dual feedback optimizing control is therefore deemed
promising in the handling of constrained systems, and further evaluation of this
strategy is encouraged, especially in terms of controller tuning and accounting for
process dynamics. The further study of control structures that deal with active
constraint switching in fast timescales remains relevant, bearing in mind that the
studied primal-dual framework requires a timescale separation between the primal
and dual control layers.
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Chapter 7

Bidirectional inventory control
with optimal use of intermediate
storage and minimum flow
constraints

This chapter has been published:

L. F. Bernardino and S. Skogestad. Bidirectional inventory control with
optimal use of intermediate storage and minimum flow constraints. IFAC-
PapersOnLine, 56(2):2665–2670, 2023a

7.1 Introduction
When operating a chemical plant, the periodic shutdown of units becomes neces-
sary, either due to planned maintenance, or due to failures that must be corrected.
To decouple the effect of these temporary shutdowns, buffer tanks are employed,
such that production is continued using the accumulated inventory, or accumu-
lated until unit reactivation, without compromising the overall processing rate.
The same principle is applied to maintaining a constant production rate in peri-
odic batch/semi-continuous processes (Karimi and Reklaitis 1983). Managing the
inventory of these units during operation becomes then paramount for maximiz-
ing the processing rate of the plant during these events. The problem of inventory
management face to disturbances is also relevant for supply chain management
(Schwartz and Rivera 2010).

137
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The installation of buffer tanks is especially important around critical units that
operate normally at full capacity, since unnecessary shutdown of these units leads
to irrecoverable losses that could otherwise be avoided with proper planning. The
unit that limits the overall processing capacity of a plant is known as the process
bottleneck. In terms of maximizing production, a good idea is therefore to set the
production rate of the plant close to this bottleneck (Downs and Skogestad 2011).
The valve that sets the overall production rate of a plant is known as the throughput
manipulator (TPM), and the control of the inventories must be defined as a function
of this TPM. For a consistent inventory control layer, the input-output pairs should
radiate from the chosen TPM, being in the direction of the flow for downstream
units, and opposite to the flow direction for upstream units (Price et al. 1994). This
rule is sufficient for processes with units arranged in series, which are the focus of
this work.

The management of buffer levels when shutdowns occur is often performed by the
plant operators, which switch the affected inventory controllers to manual mode,
until normal operation is restored. If the planned stop is long, this may be accom-
panied with some accumulation prior to the unit shutdown, such that production
may be continued without problems. This strategy, although often optimal, needs
human intervention, and therefore an automatic control framework that deals with
this issue is desired. On the other hand, the control strategies often employed in
the literature rely on dynamic models and optimization (Chong and Swartz 2013,
Boucheikhchoukh et al. 2022), which is costly to implement, and does not reflect
the simplicity of the policy that is implemented by experienced operators. The bi-
directional control structure, presented by Shinskey (1981) and further discussed
in Zoticǎ et al. (2022), is able to solve this problem in a simple automatic control
framework, comprised of PI controllers and selectors.

The main idea of the bidirectional control structure, shown in black in Figure 7.1,
is to use the inventory of each unit for maximizing the time in which the process
can run with maximum throughput. At steady state, the control structure treats the
process bottleneck as the TPM, as it is saturated and therefore cannot be used for
inventory control. As a consequence, due to the reconfiguring logic of the con-
trol loops, all downstream inventories will operate at the minimum level Mi = L
controlled by the respective outlets zi, and all upstream inventories will operate
at the maximum level Mi = H controlled by the respective inlets zi−1. If a new
bottleneck is introduced anywhere before the current TPM, reducing the flow at
that point, the downstream unit inventory is depleted until the minimum, becom-
ing then controlled by its outlet, generating a cascade effect that ends with the
previous TPM being used for inventory control of the unit before it. This results
in an effective change in the TPM position in the process, since the introduced
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bottleneck sets the production rate. A similar analysis can be made for new bottle-
necks after the original TPM. The variation in the inventories affected by this chain
of events serves as a buffer time in which the system can operate with the same
overall production, and if the introduced bottleneck is active only during a small
period, the system can revert to its original behavior without affecting production.

Although the solution given by bidirectional level control is valid for processes
with varying bottlenecks, care must be taken when implementing this control struc-
ture in processes where a minimum flow must be guaranteed in certain sections of
the process, a limitation that naturally appears for some types of equipment. In
these cases, if the inventory before the constrained section is critically low, or if
the inventory after it is critically high, there is no margin for satisfying this con-
straint dynamically. A reasonable strategy in these cases would be then to use
an intermediary value for the inventory of the neighboring units, so that there is
enough dynamic margin for satisfying these constraints, as well as temporary bot-
tlenecks. Together with this, additional control logic must be implemented, in
order to automatically reconfigure the control structure when these minimum flow
constraints become relevant. The additional control logic for dealing with min-
imum flow constraints is the novelty presented in this paper.

Mathematically, the goal can be defined as the maximization of the overall produc-
tion F̄ over a sufficiently long time horizon T of a series of N buffer inventories
subject to constraints in the manipulated variables, which are the valve positions zi,
i = 0, . . . , N , and constraints in the inventory levels Mi, i = 1, . . . , N , according
to:

max
z(t)

F̄ =
1

T

1

N + 1

N∑
i=0

∫ T

0
Fi(t) dt

s.t. Mmin
i ≤Mi(t) ≤Mmax

i , i = 1, . . . , N

zmin
i ≤ zi(t) ≤ zmax

i , i = 0, . . . , N

dMi

dt
=

1

V t
i

(Fi−1 − Fi) , i = 1, . . . , N

Fi = Cizi, i = 0, . . . , N

(7.1)

Here, V t
i represents the total capacity of the i-th inventory, and Ci represents the

flow coefficient of the i-th valve. While bidirectional level control can be used
to solve this problem when only the constraints zi ≤ zmax

i and Mmin
i ≤ Mi ≤

Mmax
i are relevant, through the previously described logic, this work considers

the case where the constraints zi ≥ zmin
i may also be activated during operation.
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To solve this problem, we propose an extension to the bidirectional inventory con-
trol framework, shown in red in Figure 7.1. In the proposal, we account for the
minimum flow constraints by using controllers with intermediary setpoints and
additional selectors. This portion of the control logic will be active as long as it is
feasible to satisfy the minimum flow constraints. The control framework will be
now presented and exemplified in a case study.

7.2 Proposed control structure
In this work, we consider a system of three tanks in series, described in Zoticǎ et al.
(2022). The physical parameters necessary to simulate the system are reproduced
in Table 7.1. For simplicity, we consider that only z2 is subject to a minimum flow
constraint, but the approach can naturally be extended to include minimum flow
constraints on other sections of the process. For designing the inventory control
layer, the desired closed-loop time constant is chosen as τc = 0.5 min, and is
used as the tuning parameter for tuning the PI controllers following the SIMC
rules (Skogestad 2003). All controllers are implemented with antiwindup action,
using the backcalculation strategy (Åström and Rundqwist 1989) with tracking
time constant τT = τI/4, where τI is the controller integral time.

i Ci [m3/min] V t
i [m3]

0 1 -
1 1.25 2.3
2 1.428 4.2
3 1.667 6.4

Table 7.1: Physical parameters for the three tank system

The proposed control structure is presented in Figure 7.1. In this structure, normal
inventory control done by z2 aims for intermediary setpoints ML and MH . This
normal mode may be overriden by the minimum flow constraint z2 ≥ zmin

2 , and in
this case inventory control is given up until normal operation is reestablished, or
until the inventory control that was given up reaches the associated critical value,
L or H . In this moment, inventory control must be resumed, to avoid complete
inventory depletion or overflow.

In terms of satisfying the minimum flow constraint on z2, it is desired that a high
value for ML and a low value for MH are selected, as this allows for continued
transfer from M2 to M3 when temporary bottlenecks appear. However, this con-
flicts with the usage of the buffer inventories for maximizing production, as the
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solution provided by the bidirectional inventory control dictates. This shall be
evidenced by the simulations presented next.

7.3 Simulation results
We present simulation results for two control structures:

• Proposed bidirectional structure with minimum flow constrain on F2 (Fig-
ure 7.1).

• Simple bidirectional structure (without the red parts in Figure 7.1).

The simulations represent some common disturbance scenarios, allowing us to
highlight when the current proposal succeeds or fails. Under all simulations, a
minimum flow at z2, zmin

2 = 60%, is desired, and the high and low level set-
points are chosen as H = 90% and L = 10%. In addition, as a compromise for
maximizing immediate production and satisfying minimum flow constraints, the
intermediate setpoints are initially chosen as MH = ML = 50%. This choice will
be further analyzed.

First, we show that the structures have similar behavior when the disturbances
do not affect the minimum flow constraint, and when these disturbances are only
present for a short period. In Figure 7.2 we present a simulation where the steady-
state bottleneck is at the process outlet with z3 = 100%, and therefore all nominal
inventories are at a high state. At t = 10 min, a temporary bottleneck is introduced
at the process inlet, with z0 = 50%, and due to that, all levels are depleted, in order
to keep production at the maximum. When the temporary bottleneck is removed at
t = 40 min, all tanks are filled back, and operation is back to steady state, without
affecting the production at the steady-state bottleneck. When the production rate
is changed at the TPM at t = 80 min and t = 100 min, both control structures
quickly respond accordingly, due to all inventory controllers being active. Instead,
if the temporary bottleneck on z0 is instead removed at t = 90 min, see Figure 7.3,
both control structures must reduce the flow at the original bottleneck. It can be
seen that the proposed control structure must reduce the flow at z3 earlier than
the simple bidirectional structure, which is expected since there is less inventory
to be used for rejecting the disturbance, as M3 = MH initially. Additionally,
both approaches tend to satisfy steady-state mass balances, working as consistent
inventory control structures.

We now consider cases where the minimum flow constraint may be violated, and
the differences between the control structures are highlighted. In the simulation
presented in Figure 7.4, the steady-state bottleneck is still at the process outlet,
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Figure 7.2: Both control structures are able to maximize production at the bottleneck
under temporary disturbances (continuous lines represent the proposed structure, dashed
lines represent simple bidirectional control) — simulation with TPM at z3 with short flow
reductions at z0 and z3

but greater temporary bottlenecks are introduced. As the first disturbance, z1 is
lowered to 40% at t = 7 min, which forces M2 to be emptied. While the inventory
is uncontrolled until M2 = L for the simple bidirectional structure, the proposed
framework activates the minimum flow constraint when M2 reaches ML, since it
cannot keep normal inventory control at M2 = ML without violating zmin

2 . That
behavior can be kept until M2 = L, but as the temporary bottleneck on z1 is
removed before the inventory reaches its critical value (at t = 20 min), feasib-
ility is maintained. This behavior comes at the expense of slightly affecting the
steady-state bottleneck, as M3, which started from MH , was depleted during the
event. Afterwards, at t = 40 min, the original TPM (z3) is further constrained
to 50%, forcing all the flows in the bidirectional control structure to drop almost
immediately to attain inventory control, which leads to infeasible operation. The
proposed control framework is able to use the margin between M3 = MH and
M3 = H to satisfy the minimum flow constraint, and after M3 reaches the upper
limit, operation becomes infeasible until the bottleneck is removed at t = 60 min.
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Figure 7.3: Long disturbances force reduction on production at steady-state bottleneck,
with the proposed structure (continuous lines) being affected before simple bidirectional
control (dashed) — simulation with TPM at z3 with flow reductions at z0 and z3

After that, M3 must be emptied out until MH while satisfying z2 ≥ zmin
2 in the

proposed framework, while all the flows go immediately up for the simple bid-
irectional scheme. In terms of mass balances, the proposed framework is forced
to operate in imbalance for the longest possible time, due to the minimum flow
constraint.

For the first disturbance in Figure 7.4, it is interesting to note that there is an inver-
sion of behavior during operation. In a very short timescale, while M2 is between
H and ML, the control structures behave equally. If the disturbance continues
to be active, the original bidirectional control becomes best performing, as it still
maximizes the flow through z2, while the proposed control structure is more con-
servative. In the longer run, however, the original bidirectional structure loses
feasibility first, and in that case the proposed control structure performs best.

Figure 7.5 illustrates the case where the bottleneck is at the process inlet, with z0 =
50%, and therefore all inventories are initially at the lower state. The introduced
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Figure 7.4: The proposed structure (continuous line) allows for feasible operation during
longer periods than simple bidirectional control (dashed) — simulation with TPM at z3
with larger flow reductions at z1 and z3

disturbances in the simulation are z0 = 40%, from t = 5 min to t = 20 min,
and z3 = 60%, from t = 45 min to t = 70 min. Analogously to the previous
simulation, the reduction on z0, which was the original TPM, immediately makes
traditional bidirectional control infeasible, whereas the proposed framework uses
the buffer from M2 = ML until M2 = L to keep feasibility. The temporary
bottleneck on z3 leaves M3 uncontrolled in the simple bidirectional control until
it reaches the limit H , whereas the minimum flow constraint becomes active in
the proposed framework when M3 passes through MH . The proposed control
structure is able to keep feasibility for both disturbances, while simple bidirectional
control violates the constraint on both cases.

It must also be noted that changes in the intermediary setpoint values may improve
response face to some disturbances. Figure 7.6 illustrates the effect of raising all
intermediary inventory setpoints when the process bottleneck is originally at its
outflow, z3. In this case, the disturbances are z1 = 40% from t = 5 min to t = 20
min, and z3 = 65% from t = 50 min t = 65 min. A larger gap between ML
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Figure 7.5: The proposed structure (continuous line) completely avoids violating the min-
imum flow constraint, as opposed to simple bidirectional control (dashed) — simulation
with TPM at z0 with flow reductions at z0 and z3

and L allows for improving operation when bottlenecks appear before z2, in the
sense that the use of a higher intermediate setpoint lets the system operate with
feasibility for longer. In addition, the higher MH is, the slower the inventory M3

is consumed, which allows for keeping z3 unaltered for longer. Conversely, when
z3 is forced to be lowered, the gap between MH and H dictates how long the
system can be kept feasible, and a low MH would be desired.

Figure 7.7 illustrates the case where feasibility is prioritized in operation, with
high value of ML and low value of MH . The original bottleneck is at z0 = 50%,
and the tested disturbances are z0 = 40% from t = 5 min to t = 35 min, and
z3 = 65% from t = 75 min to t = 120 min. While the use of normal intermediary
setpoints fail to keep the process feasible face to these disturbances, the adjust of
setpoints allow for that end, at the expense of reducing the flow at the steady-state
bottleneck.
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Figure 7.6: With TPM at z3, higher intermediary setpoints (continuous line, MH =
ML = 80%) improve operation when inlet is disturbed, but worsen performance when
outlet is disturbed (dashed lines represent MH = ML = 50%)
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Figure 7.7: With intermediary setpoints farther from critical values (continuous line,
MH = 20%, ML = 80%), the period of feasible operation is maximized for disturb-
ances on z0 and z3 (dashed lines represent MH = ML = 50%)



7.4. Discussion 149

7.4 Discussion
The case study presented in this paper aims to reproduce a simplified version of
unit operations in series. These unit operations are for simplicity represented as
valves, and the buffer tanks represent the holdups between units. Therefore, for the
simulations presented in this work, temporary constraints on maximum allowed
valve opening represent temporary reductions on the operating capacity of the
units. For example, the case presented in Figures 7.2 and 7.3 refers to a hypothet-
ical process with a steady-state capacity bottleneck on the last unit (z3 = 100%),
and all other units operate below their nominal capacity. The temporary bottleneck
introduced by setting z0 = 50% represents a temporary limit on the processing ca-
pacity of that unit. Finally, the unit represented by z2 must always operate above a
certain throughput (zmin

2 = 60%), so that abnormal operation is avoided.

As evidenced by the presented results, the margin between intermediary and ex-
treme inventory levels is used for satisfying minimum flow constraints during tran-
sients. However, satisfying this constraint is not always feasible, since the mass
balances are forcibly not satisfied to attain feasibility. This contrasts with the prin-
ciple of consistent inventory control, which states that mass balances should be
satisfied at steady state with the proposed control structure. Due to this, satisfac-
tion of the minimum flow constraint must be given up, being overriden by consist-
ent inventory control loops at critical inventory levels. It must be noted that the
problem of maximizing the flow through a series of tanks is always feasible, and it
is solved automatically by the bidirectional inventory control structure.

As can be noted from the bidirectional control structure, the use of min select-
ors automatically yields the maximum feasible inputs, since the inputs that were
not selected would violate the objective corresponding to the input that was selec-
ted. Although this maximizes production, a max selector must be used to check
for violation of the minimum flow constraint. Since satisfying the minimum flow
constraint may not always be feasible, such constraint must be placed at a lower
priority than level control at extreme conditions. Similarly to Krishnamoorthy and
Skogestad (2020), where min and max selectors are combined for optimal switch-
ing between constraints at steady state, the order in the implementation of the
selectors is related to the order in which the objectives must be given up. There-
fore, if the minimum flow constraint is to be given up face to critical inventory
levels, the max selector must be implemented before the min selector related to the
extreme inventory control loops in Figure 7.1.

While the extreme inventory levels are defined by conditions such as drying out or
overflow, there are several conflicting objectives when selecting the intermediary
inventory setpoints, as shown by the simulations. In some cases, the override with
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the minimum flow constraint can be regarded as too conservative, since for short
enough disturbances this override may prove unnecessary. This requires some
knowledge on the nature of the expected disturbances, so that a reasonable value
for those setpoints is selected. For instance, if the minimum flow constraint was to
be fully prioritized, the choice of intermediary setpoints as MH = L and ML = H
would maximize the time for which the system can run feasibly, at the expense of
bypassing the buffering ability of the inventories for dealing with temporary bottle-
necks. On the other hand, choosing MH = H and ML = L, which is the same as
removing the red portion of Figure 7.1, maximizes production under bottlenecks,
ignoring the minimum flow constraints. The selection of ML = MH = 50% is
the more conservative approach, when information about the possible scenarios is
not available. If the buffer tanks are large enough, this choice will be sufficient to
reject all types of disturbances, whether they affect the minimum flow constraint
or not.

It was shown in Figure 7.3 that implementing intermediate level setpoints leads to
some loss in terms of rejecting temporary bottlenecks, since the period for which
the system can run with maximum production is proportional to the gap between
low and high inventory setpoints. The bidirectional inventory control structure
implements the optimal policy of maximizing production at the bottleneck, con-
strained to the inventory bounds, and the control logic added on top of it makes a
compromise between this objective and minimum flow constraints.

In industrial applications with minimum flow constraints, if such constraint is to
be violated, the system must be shut down to prevent equipment damage. This is
done until inventories are restored to operational levels, and operation can be then
restarted. Instead, if a shutdown is not desired, the minimum flow constraints can
be often dealt with by anti-surge systems, which recycle part of the outflow of the
unit so as to guarantee minimum flow. However, this solution may be too expens-
ive, since it generates a recycle flow, which is in turn tied to more pumping costs in
the operation. The control structure proposed in this work may reduce these costs
while normal operation is feasible, and can also be overriden by anti-surge control
when the system reaches critical levels, which is a simple and effective way of
solving the feasibility issues of the current proposal.

If the optimization problem from Equation (7.1) was to be solved through dynamic
optimization, assumptions about the nature of the disturbances should be clearly
made. For example, if economic MPC was to be implemented in the present case
study, the optimal levels for operation would not matter, unless some disturbance is
expected. Therefore, in order to determine the optimal operating inventory levels,
and to make a compromise between the conflicting cases we presented in the sim-
ulations of this work, robust approaches such as multi-stage NMPC (Lucia et al.
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2014) should be employed. This would come at the expense of implementation
complexity, in terms of system and disturbances modeling, and the high computa-
tional cost inherent to the tool. The control structure presented in the current work
aims to solve the operational problem using simple control structures, and the com-
promise between objectives is done by setting reasonable values to the setpoints of
the inventory control loops. This can be done with offline analysis through simula-
tion of the different disturbance scenarios, but it can also be easily done manually
after implementation. Such flexibility is hardly obtained when using centralized
optimization-based strategies.

7.5 Conclusion
The control structure proposed in this work was able to account for constraints
related to minimum allowed flow, when satisfying these constraints is feasible dy-
namically. When compared to the original bidirectional control structure, similar
behavior is observed when the system is far from the constraint, and a more con-
servative behavior is observed when the constraint becomes active, where feasible
operation is favored over maximizing immediate production. The implementa-
tion of this control structure is therefore recommended when constraints related
to maximum and minimum allowed flow must be considered simultaneously, to-
gether with other strategies that ensure feasibility, such as anti-surge loops.

The main limitation of the proposed control strategy is that, being built as an exten-
sion of the bidirectional inventory control, it only considers a linear arrangement
of the inventories. As splits and recycles are very common in process systems,
an interesting topic of research would be to propose extensions to this framework
to more complex arranges of inventories, such that production maximization is
achieved, respecting operational constraints, using simple feedback control ele-
ments.
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Chapter 8

Self-optimizing control methods
for ill-conditioned problems and
optimal disturbance rejection

Here, a variation of existing methods for self-optimizing control is presented, fo-
cusing on addressing the limitations of their applicability. The existing methods
are briefly presented in Section 8.1, the proposed reformulation is presented in
Section 8.2, and a numerical example is presented in Section 8.3.

8.1 Problem formulation and existing methods
The formulation presented in this section is mostly based on the material and de-
rivations from Alstad et al. (2009).

Consider that we wish to find the optimum of a system through feedback. The
steady-state optimization problem for the system is:

min
u

J(u, d) = J∗ +
[
J∗
u
T J∗

d
T
] [∆u

∆d

]
+

1

2

[
∆uT ∆dT

] [Juu Jud
JT
ud Jdd

]
︸ ︷︷ ︸

H

[
∆u
∆d

]
(8.1)

Define ∆u = u − u∗ and ∆d = d − d∗ as deviation variables from the nominal
conditions (u∗, d∗), for which information is available. The system has measured
variables y, which follow the linear model:
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∆y = y − y∗ = Gy∆u+Gy
d∆d (8.2)

The system is subject to unmeasured disturbances d, and the measurements ym
are subject to error, such that ym = y + ny, where ny represents the steady-state
measurement error (bias). The goal is to find controlled variables as a linear com-
bination of the measurements, c = Hy, such that the operational loss is minimized.
We assume that the problem Hessian H is constant, and that Juu is a positive def-
inite matrix, which means that the unconstrained cost gradient Ju(u, d) is a linear
function of the inputs and disturbances:

Ju(u, d) = J∗
u + Juu∆u+ Jud∆d (8.3)

The loss encountered by applying an input u, compared to using the optimal input
uopt(d), is derived from (8.1) as:

L = J(u, d)− Jopt(d) =
1

2
(u− uopt)TJuu(u− uopt) =

1

2
||z||22 (8.4)

where Jopt(d) = J(uopt(d), d) is the optimal cost for a given d and the loss vari-
able z is defined as:

z ≜ J
1/2
uu (u− uopt) (8.5)

For simplicity, assume that the nominal conditions are optimal, meaning that J∗
u =

0. The optimal values ∆uopt = uopt − u∗ and ∆yopt = yopt − y∗ for the uncon-
strained problem are then obtained by setting Ju(u

opt, d) = 0 to give:

∆uopt = −J−1
uu Jud∆d (8.6)

∆yopt = Gy∆uopt +Gy
d∆d = F∆d (8.7)

with F = −GyJ−1
uu Jud + Gy

d. We then rewrite the loss variable z in terms of the
controlled variables c:

{
∆c = HGy∆u+HGy

d∆d
∆copt = HGy∆uopt +HGy

d∆d

=⇒ u− uopt = ∆u−∆uopt = (HGy)−1(∆c−∆copt)

z = J
1/2
uu (u− uopt) = J

1/2
uu (HGy)−1(∆c−∆copt) (8.8)
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where ∆c and ∆copt are given by:

∆c = ∆cm −Hny (8.9)

∆copt = H∆yopt = HF∆d (8.10)

It is desired that the measured value cm is controlled to a constant setpoint, mean-
ing ∆cm = 0.

Here, we define normalized vectors d′ and ny ′, such that ∆d = Wdd
′ and ny = Wnyny ′

and the vectors are norm bounded, that is:

∣∣∣∣∣∣∣∣[ d′

ny ′

]∣∣∣∣∣∣∣∣
2

≤ 1 (8.11)

The loss variable z is then written in terms of these normalized vectors as:

z = Mdd
′ +Mnyny ′ (8.12)

where:

Md ≜ −J1/2
uu (HGy)−1HFWd (8.13)

Mny ≜ −J1/2
uu (HGy)−1HWny (8.14)

We then introduce Mn and M as follows:

Mn ≜ J
1/2
uu (HGy)−1 (8.15)

M ≜
[
Md Mny

]
= −MnH

[
FWd Wny

]︸ ︷︷ ︸
F̃

(8.16)

Given the expected disturbances and implementation error, the worst-case loss is
then given by (Halvorsen et al. 2003):
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Lwc = max∣∣∣∣∣∣
∣∣∣∣∣∣
 d′

ny ′

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤1

L =
1

2
(σ̄[M ])2 (8.17)

Similarly, the average loss for this problem is given by (Kariwala et al. 2008):

Lav =
1

6(ny + nd)
||M ||2F (8.18)

Kariwala et al. (2008) have shown that the matrix H that minimizes the Frobenius
norm of M in this problem also minimizes its biggest singular value, although the
reverse is not true. They have also shown that if the realizations of d′ and ny ′

are infinity-norm bounded, minimizing the Frobenius norm of M places an upper
bound on the worst-case loss.

Therefore, the optimal measurement combination H to minimize both the worst-
case and the average loss, which is known as the exact local method, can be found
by solving the optimization problem:

H = argmin
H
||M ||2F (8.19)

This problem presents an infinite number of solutions, and Alstad et al. (2009)
derived an analytical solution by introducing the constraint HGy = J

1/2
uu , which

results in:

HT =
(
F̃ F̃ T

)−1
Gy

[
GyT

(
F̃ F̃ T

)−1
Gy

]−1

J
1/2
uu (8.20)

This constraint can be added without any losses because if H is a solution to Equa-
tion (8.19), then so is H1 = DH , where D is any invertible nu × nu matrix. This
can be verified by checking that Md and Mny are unaffected by the choice of D
with the candidate solution H1. Therefore, we can rewrite this solution using the
definition of Mn in (8.15) as:

H = M−1
n J

1/2
uu

[
GyT

(
F̃ F̃ T

)−1
Gy

]−1

GyT
(
F̃ F̃ T

)−1
(8.21)

Alternatively, one may want to find measurement combinations H that completely
reject disturbances (i.e., by enforcing Md = 0). To accomplish that, we must
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find an H that is in the left nullspace of F as defined in Equation (8.7) (Alstad
and Skogestad 2007). With that end, the extended nullspace method (Alstad
et al. 2009) presents a solution that prioritizes the minimization of Md, attaining
Md = 0 if there are enough degrees of freedom, and minimizes ||Mny ||F with the
remaining degrees of freedom. It does this by defining the residual matrix E as:

E ≜ MnHG̃y − J̃ = MnHWny︸ ︷︷ ︸
−Mny

W−1
ny G̃y − J̃ (8.22)

where G̃y = [Gy Gy
d] and J̃ = J

1/2
uu [I J−1

uu Jud]. Here, the solution Mny that
minimizes ||E||F if the system is overdetermined (i.e. E = 0 cannot be satisfied)
and minimizes ||Mny ||F if the system is underdetermined (i.e. there are too many
degrees of freedom) is given by:

Mny = J̃(W−1
ny G̃y)†

The optimal H in this case is given by:

H = M−1
n J̃(W−1

ny G̃y)†W−1
ny (8.23)

This solution achieves an upper bound on the value of ||Md||F , because E and Md

are related by:

Md = −MnHFWd = −MnHG̃y

[
−J−1

uu Jud
I

]
Wd

=⇒ Md = (E + J̃)

[
J−1
uu Jud
−I

]
Wd = E

[
J−1
uu Jud
−I

]
Wd

=⇒ ||Md||F ≤ ||E||F ·
∥∥∥∥[J−1

uu Jud
−I

]
Wd

∥∥∥∥
F

This solution, although simple and compact, requires Wny to be invertible, and it
does not achieve the optimal ||Md||F nor it enforces HGy = M−1

n J
1/2
uu for the case

with few measurements (ny < nu + nd).

In both methods, there is a limitation regarding the conditioning of the problem.
The exact local method as posed requires that F̃ F̃ T is invertible, which is the
case when all measurements have noise, but it cannot be directly applied to the
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noiseless case (Wny not invertible). In the next section, we present an alternative
formulation also valid for these limiting cases.

8.2 Proposed reformulation
The exact local method is formulated as the following optimization problem:

min
H

1

2
||HF̃ ||2F

s.t. HGy = G
(8.24)

Here, we use G to simplify notation, reminding that this definition is arbitrary for
solving (8.19) (as long as G is invertible). Because ||HF̃ ||2F = tr(HF̃ F̃ THT ) =∑

i hiF̃ F̃ ThTi , each row of H behaves independently, according to the associated
set of subproblems:

min
hi

1

2
hiF̃ F̃ ThTi

s.t. hiG
y = Gi

(8.25)

where hi and Gi denote the i-th row of H and G respectively. We can see that the
solution to the original problem can be written as the concatenation of the solu-
tions to each subproblem, and all subproblems have the same formulation except
for the right-hand side of the equality constraint. Therefore, the first-order KKT
conditions for the full problem (8.24) can be written as:

[
F̃ F̃ T Gy

GyT 0nu×nu

] [
HT

Λ

]
=

[
0ny×nu

GT

]
=

[
0ny×nu

Inu

]
GT (8.26)

Note that, by definition, F̃ F̃ T is positive semidefinite, and therefore the first-order
conditions are necessary and sufficient optimality conditions. If F̃ F̃ T can be in-
verted, the solution is unique, and we arrive at the result presented in (8.20) by
doing Gaussian elimination. Otherwise, we can find a minimum-norm solution
through the pseudo-inverse of the full KKT matrix, leading to:

[
HT

Λ

]
=

[
F̃ F̃ T Gy

GyT 0nu×nu

]† [
0ny×nu

Inu

]
GT (8.27)

HT =
[
Iny 0ny×nu

] [HT

Λ

]
=⇒
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H = G
[
0nu×ny Inu

] [F̃ F̃ T Gy

GyT 0nu×nu

]† [
Iny

0nu×ny

]
(8.28)

This solution is equal to the original exact local method in Equation (8.20) with
G = J

1/2
uu in the case where F̃ F̃ T is invertible and Gy is full column rank, and it

can be directly used in the case where F̃ F̃ T is not invertible. In the latter case, the
solution (8.27) minimizes the Frobenius norm of the solution matrix

[
H ΛT

]T .

We can use the same idea to formulate an optimization-based extended nullspace
method that directly minimizes ||Md||F (instead of ||E||F ), and subsequently min-
imizes ||Mny ||F over all the minimizers of ||Md||F . This problem is written as:

min
H

1

2
||HWny ||2F

s.t. H = argmin
H

1

2
||HFWd||2F

s.t. HGy = G

(8.29)

The KKT conditions for the internal problem are written as:

[
FWd(FWd)

T Gy

GyT 0nu×nu

] [
HT

Λi

]
=

[
0ny×nu

Inu

]
GT (8.30)

We express these as equality constraints to the external problem, leading to the
corresponding KKT conditions:

min
H,Λi

1

2
||HWny ||2F

s.t.
[
FWd(FWd)

T Gy

GyT 0nu×nu

] [
HT

Λi

]
=

[
0ny×nu

Inu

]
GT

=⇒ Π


HT

Λi

Λe1

Λe2

 =


0ny×nu

0nu

0ny×nu

Inu

GT (8.31)
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Π =


WnyW T

ny 0ny×nu FWd(FWd)
T Gy

0nu×ny 0nu×nu GyT 0nu×nu

FWd(FWd)
T Gy 0ny×ny 0ny×nu

GyT 0nu×nu 0nu×ny 0nu×nu

 (8.32)

The minimum-norm solution is given by:

H = G
[
0nu×(2ny+nu) Inu

]
Π†

[
Iny

0(2nu+ny)×ny

]
(8.33)

In problem (8.29), the internal problem is prioritized over the external. If the solu-
tion to the internal problem is unique, the external optimization problem only has
one feasible point, regardless of the value of Wny . In the case where there are mul-
tiple solutions to the external problem, the solution given by applying the pseudo-
inverse minimizes the norm of the full vector comprised of H and all Lagrange
multipliers.

Different types of regularization can be used on this problem, depending on which
solution for H is to be prioritized. To maximize the sparsity of H , ℓ1-norm reg-
ularization (also known as lasso) can be used, while ℓ2-norm regularization (also
known as Tikhonov regularization or ridge regression) minimizes the Frobenius
norm of H (as opposed to the norm of H together with the Lagrange multiplies)
(Boyd and Vandenberghe 2004). A combination of both norms is used in the
method known as the elastic net (Zou and Hastie 2005). These are alternatives
to the use of the pseudo-inverses presented in Equations (8.28) and (8.33), but
the parameters used in these methods are problem-dependent, and therefore the
formulation with pseudo-inverses is deemed as the simplest generic approach.

The solution in Equation (8.29) is equivalent to Equation (8.23) for ny ≥ nu +
nd, because Md = 0 for both approaches. Furthermore, (8.29) minimizes the
effect of disturbances on the loss, ||Md||F , for ny < nu + nd, as opposed to
(8.23), which can only ensure an upper bound on ||Md||F . It also follows that the
nullspace method (without information of measurement bias) can be formulated by
only considering the internal problem in Equation (8.29), or equivalently by using
the proposed exact local method form in Equation (8.28) with Wny = 0. The
advantages of using this form are that it is valid for ny < nu + nd, in which case
it minimizes ||Md||F , and it finds the minimum-norm solution that drives Md to
zero for ny ≥ nu+nd, with the additional benefit that the resulting self-optimizing
variables are normalized to have the steady-state input gain matrix equal to G.

We remark that Equation (8.28) is not equivalent to replacing (F̃ F̃ T )−1 by the cor-
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responding pseudo-inverse in Equation (8.20). If one wants to use Equation (8.20)
for an ill-conditioned problem, a regularization factor must be used. For example,
(F̃ F̃ T+δI)−1 can be used as a replacement for (F̃ F̃ T )−1, where δ is a small num-
ber that guarantees good conditioning for the matrix inversion. This is equivalent
to artificially using a small non-zero value for the measurement noise magnitude,
Wny , or a ℓ2-norm regularized solution for H .

8.3 Numerical example
Let us consider an example with the following matrices (nu = 4, nd = 2, ny =
5 < nu + nd):

Gy =


1.03 0.89 1.44 −0.10
0.73 −1.15 0.33 −0.24
0.49 −0.79 −2.94 −1.71
−0.30 −1.07 −0.75 0.32
0.29 −0.81 1.37 0.31

 , Gy
d =


−0.03 −0.86
−0.16 0.08
−0.86 1.11
0.63 −1.21
1.09 −1.11

 ,

Juu =


3.84 1.08 0.66 0.79
1.08 2.00 1.17 0.14
0.66 1.17 1.95 1.87
0.79 0.14 1.87 3.10

 , Jud =


−0.12 0.67
1.49 −1.21
1.41 0.72
1.42 1.63


With this information, F is calculated as:

F =


1.8429 −3.6811
3.9232 −4.7642
−1.8437 5.2544
0.6561 −1.1400
5.3120 −7.1543


Let us now apply the self-optimizing control methods, with the choice HGy =

G = Juu, or equivalently Mn = J
−1/2
uu . With Wd = diag([4, 4]) and Wny =

diag([10−3, 10−3, 4, 10−3, 4]), we get the following results for (8.28) and (8.21):

H =


4.9567 3.6539 −1.4564 4.8593 −6.0735
2.0198 −0.7267 −0.0081 1.0175 −0.5543
1.7891 1.4224 −1.5145 2.1563 −2.8694
2.2643 3.3823 −2.6184 4.0225 −5.2468


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For this solution, we get ||HF̃ ||F = 53.1986. Applying the original extended
nullspace method (8.23) leads to:

H =


1.5179 1.2784 −0.0141 −0.0696 −0.9260
1.0260 −1.8992 0.6151 −0.4482 1.4982
−0.4031 −0.3558 −0.4830 −1.0083 0.7187
−1.1215 0.9656 −1.1653 −0.8372 −0.0881


Even though we use Mn = J

−1/2
uu , this is not enough to guarantee HGy = Juu,

because W−1
ny G̃y does not have independent rows (which comes from ny < nu +

nd). We must therefore rescale the result to compare the objective function value.
This gives:

H =


22.3748 −35.0732 12.7959 25.5267 26.8463
8.0654 −14.1683 4.9387 8.1908 10.8716
13.4424 −24.4872 8.0207 15.9834 19.1548
19.5764 −35.1091 11.5471 24.5640 27.4725


with ||HF̃ ||F = 543.3125, which is an order of magnitude higher than the exact
local method solution. On the other hand, applying (8.33) leads to:

H =


4.3009 5.1119 −1.9929 4.0812 −7.3128
1.9653 −0.6054 −0.0527 0.9528 −0.6574
1.4443 2.1890 −1.7966 1.7472 −3.5211
1.6402 4.7699 −3.1291 3.2820 −6.4263


for which ||HF̃ ||F = 56.4358, a value closer to the overall optimum. We can
measure the improved disturbance rejection by comparing the value of ||HF ||F
for the solutions of (8.28) and (8.33), which are 9.6257 and 8.6293 respectively.
The proposed method (8.33) works as expected, in the sense that it gives up overall
performance to prioritize disturbance rejection.



Chapter 9

Conclusion

This thesis has investigated some aspects of dealing with changing active con-
straints for optimal operation. The approach followed in Chapters 2 to 4 attempted
to be process-agnostic, in the sense that they can be applied to any process sys-
tem, given that a steady-state model is available for design. Therefore, the author
believes that these methods are useful for real applications and wishes that their
limitations are addressed.

A clear limitation of Chapter 2 is the number of constraints that can be dealt with
optimally. In Chapters 5 and 6 possible solutions are presented, but they do not
seem to scale well with the number of extra constraints (in the case of region-
based control), or there are fundamental performance limitations that need to be
addressed (in the case of primal-dual optimizing control). It would be interesting
to solve the case with more constraints in the general case, but this does not seem
realistic under the presented framework.

With that in mind, Chapter 3 describes an MPC framework that is compliment-
ary to the decentralized region-based approach, and can be used in scenarios with
several constraints. The methodology does not require direct estimation of dis-
turbances for optimization, as it relies on an offset-free formulation for the state
estimator to give steady-state predictions for the measurements, which are in turn
used to estimate the cost gradient. Although the MPC community recently fa-
vors the combination of optimization and control layers, this work is a step in the
opposite direction of this trend. The optimization problem is considered in the
design of the control layer but is considered as a different task. Aspects of stability
and robustness were not addressed in the proposed framework, and therefore the
presented ideas should be linked with other developments on MPC formulations
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present in the literature.

In Chapter 4 the link between self-optimizing control and gradient estimation was
further explored. This gives more applicability for feedback optimizing methods
that require gradient information, given that a reasonable estimate can be obtained
as a linear combination of the measurements. Furthermore, this increases the rel-
evance of studying methods for designing self-optimizing CVs. In Chapter 8 some
remarks about the self-optimizing control formulation are presented, with a sim-
plified derivation and expanded results.

The system and control structure studied in Chapter 7 has a considerably different
nature than what is studied in the rest of the thesis, but it highlights how selectors,
which are used for steady-state active constraint switching in the other chapters,
can also be used for dynamic constraint handling. In prior bidirectional control
structures, the optimal steady-state solution can be implemented with optimal use
of inventories to reject disturbances. The introduction of minimum flow constraints
leads to a system that may have infeasible operation at steady state, but it is still
possible to optimize the transients with additional control loops and then prior-
itize the constraints to be given up in the case of infeasibility. This case study
also further illustrates how simple control solutions can be implemented to operate
optimally for seemingly complex problems.
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