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Abstract

The goal of this study is to further investigate multiple landslides in Ottadalen,

Norway, following the extraordinary storm Hans in 2023. One interesting ob-

servation is that landslides initiated significantly more in birch forests compared

to spruce and pine forests and non-forested areas. To advance this research and

gain further insight into one of the most destructive natural hazards, an investig-

ation into forests and forest parameters was conducted to understand their role in

landslide triggering. Additionally, two different machine learning (ML) models,

Logistic Regression (LR) and Random Forest (RF), were utilized to compare the

two models and explore their predictive abilities on landslides. Dynamic para-

meters, such as rainfall and soil saturation, were implemented in the RF model.

The approach proposes a method for generating spatio-temporal landslide sus-

ceptibility maps, which is still in the preliminary phase for ML-based methods.

The study found that in respective areas, the weight of the forest and a thin soil

layer might have contributed to the larger number of landslides initiated in for-

ested areas compared to non-forested areas. Birch forests, in particular, likely

experienced more landslides due to these trees having leaves, larger canopies and

a shallow root system. Also, birch forests covers a relatively large area in addi-

tion to the possibility of the forest being old – providing more weight and less

stabilization due to root strength loss. Additionally, the performance of both the

RF and LR models to predict landslides was considered excellent for both static

and dynamic approaches, with a slightly better performance for the RF model.

It seems likely that the models are efficient in producing accurate susceptibility

maps over large regions. However, they are quite site- and storm-specific and

would most likely not perform well if applied to other areas in Norway that rely

on different input parameters, or other meteorological conditions than Hans.



Sammendrag

Målet med denne studien er å videre undersøke en rekke skred i Ottadalen,

Norge, etter den ekstraordinære stormen Hans i 2023. En interessant observas-

jon er at skred initierte betydelig hyppigere i bjørkskog sammenlignet med gran-

og furuskog samt områder uten skog. For å se nærmere på denne observasjonen

og får å få en bedre forståelse rundt jordskred, en av de mest ødeleggende natur-

farene, ble det gjennomført en undersøkelse av skog og skogparametere for å

forstå deres rolle i utløsningen av jordskred. I tillegg ble to forskjellige maskin-

læringsmodeller (ML), Logistisk Regresjon (LR) og Random Forest (RF), brukt

for å teste deres prediktive evner på skred og for å muliggjøre en sammenligning

av de to modellene. Implementeringen av dynamiske parametere, som nedbør

og jordsmetning, i RF modellen ble også utført, og gir en foreslått metode for

å generere dynamiske aktsomhetskart som fortsatt er i den innledende fasen når

det gjelder ML-baserte tilnærminger.

Studien fant at i det respektive området kan vekten av skogen og det tynne jord-

laget i området ha bidratt til det større antallet skred som initierte i skogkledde

områder sammenlignet med ikke-skogkledde områder. Bjørkskog, spesielt,

opplevde flere skred på grunn av at de har blader, større trekroner og et grunt

rotsystem. Samtidig dekker bjørkskogen et relativt stort område og innehar mu-

ligheten for å være en gammel skog – som bidrar til mer vekt og mindre sta-

biliserende krefter på grunn av svakere rotstyrke. Resultatene fra både RF- og

LR-modellene var utmerket, med tanke på både statisk og dynamisk tilnærm-

ing, med en noe bedre ytelse for RF-modellen. Modellene kan effektivt lage

nøyaktige aktsomhetskart over store områder. De er imidlertid ganske sted- og

stormsensitive og vil mest sannsynlig ikke prestere like godt hvis de brukes på

andre områder i Norge som er avhengige av andre parametere, eller ved andre

meteorologiske forhold enn Hans.
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1 Introduction

Landslides are among the most common geohazards globally, causing significant damage

to both life and property (W. Chen, Z. Sun et al. 2019; W. Chen, Xie et al. 2017; Dai et al.

2002; Merghadi et al. 2020). It is established that extreme weather bringing significant

amounts of precipitation is the most common trigger for landslides (Bogaard and Greco

2016; Gariano and Guzzetti 2016; Nocentini et al. 2023; Sandersen et al. 1997; Wieczorek

and Glade 2005). Norway’s landscape, characterized by high peaks, low valleys and steep

terrain throughout its expanse are expected to experience more intense precipitation and

higher temperatures due to climate change (Hanssen-Bauer et al. 2015; Ramberg et al.

2006). Increased urbanization, deforestation and precipitation in the future will likely

lead to more frequent and severe landslide events (Ado et al. 2022; Mondini et al. 2023;

Ren et al. 2024).

Hans was an extraordinary storm that affected large parts of southeastern Norway between

7-9 August 2023, bringing substantial amounts of precipitation (Granerød et al. 2023).

Due to climate change, it is reasonable to assume that possible “normal” storms in the fu-

ture will be similar to Hans. Hans initiated a multiple-occurrence regional landslide event

(MORLE), which can be defined as several landslides occurring almost simultaneously

over a large area (Crozier 2005). During Hans, 2900 people had to be evacuated from

their homes in the affected areas (Revheim-Rafaelsen et al. 2023). The material cost of

Hans turned out to be 1.8 billion Norwegian kroner (Torkelsen et al. 2023).

The wetter, wilder climate of the future is, in other words, already affecting people and

infrastructure today. The current expected cost of weather and natural disaster damages

in Norway is 5.5 billion Norwegian Kroner per year, and this is projected to rise to 19

billion by 2100 if our current level of mitigation efforts remains unchanged (Pedersen

et al. 2024). Further preventing activities is therefore important, but to a broader, better

and with more urgency than we see today. These measures include mapping and securing

landslide-prone areas, as well as improving warning systems and preparedness (Pedersen

et al. 2024).
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1.1 Background

It is well known that forests contribute positively to the stabilization of slopes (Cohen and

Schwarz 2017; Dorren and Schwarz 2016; Z. Guo et al. 2023; Saito et al. 2017; Wu et al.

1979). Tree roots contribute to removal of water from the soil due to evapotransporation

and provide additional lateral reinforcement (Ziemer 1981b). However, in the study done

by Hågensen (2023) (literature review preceding this Master’s thesis), it was shown that

a large number of the reported landslides initiated in forested areas compared to non-

forested areas in Ottadalen, Norway. The study also highlighted that generally decidu-

ous forests had a significantly higher amount of landslides compared to spruce and pine

forests. Because of this, a further investigation was deemed interesting and necessary.

Prediction of when and where landslides will occur is a key ability for the future, and up

to date knowledge about landslides may aid in minimizing the material cost and danger

to human lives (Bogaard and Greco 2016; Mondini et al. 2023). Regional landslide sus-

ceptibility mapping is a critical step in the prediction and mitigation of future landslide

occurrences (Merghadi et al. 2020). Susceptibility maps show the probability of spatial

occurrence of landslides given a set of geoenvironmental conditions (Guzzetti et al. 2006).

However, generating accurate landslide susceptibility maps for a large area is difficult and

time consuming and at least until recently required extensive field work (Liu et al. 2021;

Rickli and Graf 2009).

Dai et al. (2002) stated that new methodologies are required to investigate landslide haz-

ard and susceptibility efficiently. Several methods have been applied since, like heuristic,

statistical or physically based models (Guzzetti et al. 2006; Korup and Stolle 2014). The

rapid advance in computing technology during later years have included the development

of fast algorithms and large storage space, allowing for Machine learning (ML) tech-

niques in earth sciences (Korup and Stolle 2014). Numerous studies have investigated the

effectiveness of various ML algorithms, and the results have been rather positive. ML-

generated landslide susceptibility maps could therefore enhance susceptibility mapping

and potentially serve as a useful tool for identifying landslide-prone areas (Kavzoglu et

al. 2019; Liu et al. 2021; Merghadi et al. 2020).

A constraint of susceptibility maps is that they generally do not include dynamic inform-
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ation related to the triggering and pre-conditioning factors of landslides (Nocentini et al.

2023). These factors, for instance rainfall and soil water saturation, are essential when

determining the timing of landslides, since the immediate risk depends on how quickly

water is supplied and to which extent the soil is saturated with water (Crozier 2010; J.

Li et al. 2021; NGI 2014). Different attempts and methodologies have been proposed to

incorporate dynamic factors and create spatio-temporal susceptibility maps, for instance

with the implementation of rainfall thresholds (Huang et al. 2022; Ng et al. 2021). How-

ever, the use of ML techniques to obtain spatio-temporal landslide susceptibility maps is

still largely in the preliminary phase (Ado et al. 2022; Merghadi et al. 2020; Nocentini

et al. 2023; Tehrani et al. 2022).

Given the current upswing in the use of ML algorithms, alongside numerous studies

demonstrating their effectiveness and a strong interest in their potential applications, this

study aims to explore the feasibility of the algorithms for the MORLE triggered by Hans,

both spatially and spatio-temporally. Also, a further analysis of different forests and forest

parameters was conducted to gain supplemental insights regarding landslides initiating in

forested areas and to assess whether some factors are more significant than others.

1.2 Research questions

Considering the topics discussed, this study seeks to address three research questions:

• Is it possible to identify whether certain forests or forest parameters are common

for landslide triggering?

• Can machine learning models create efficient, spatio-temporal landslide susceptib-

ility maps?

• Can machine learning models be utilized for other areas or storm events in Norway

to predict landslides?
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1.3 Thesis structure

This thesis is structured into seven sections. The first section is the Introduction. In section

2 we delve into the theory. Landslide classifications, conditioning and triggering factors

of landslides in general and susceptibility and hazard maps are explained. Two different

ML algorithms are examined and explained, both how the algorithms work and how to

analyze the performance. Additionally, typical Norwegian forests and root cohesion is

explained. The study area is presented in Section 3 and shows the landslide distribution

in Ottadalen, Norway after the storm Hans based on a gathered inventory. Geology and

climate of the study area is analyzed and described. In Section 4 the different parameters

and corresponding data collection is presented. Furthermore, the method and handling of

data is explained before the results are presented in Section 5. A discussion of the results

is provided in Section 6 and a conclusion is given in Section 7.

The literature review in section 2 and data description and collection in section 4 was

partly done in the TGB4575, “Engineering geology, Specialization project” in 2023. It

has been modified and new information relevant for the thesis has been added. Wherever

necessary, it is stated that large or parts of the text is taken from Hågensen (2023).
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2 State of the art

2.1 Landslide classifications

The following subsection is largely taken from Hågensen (2023).

A landslide is generally a mass of soil or rock that moves downslope due to the action of

gravity (Cruden and Varnes 1996; Gariano and Guzzetti 2016). The word landslide how-

ever, is a widely used term to describe slope movement that does not necessarily have true

sliding (Varnes 1978). The range of processes regarding landslides makes it impossible

to have a common term for all. Because of this, several different classifications exists.

The Norwegian Water Resources and Energy Directorate (NVE) created a natural haz-

ards classification based on collection of data and development of existing classifications

in cooperation with the Norwegian railway authority and the Norwegian Public Roads

Administration (Kristensen et al. 2015). The Varnes classification system, illustrated in

Figure 1, categorizes landslides based on various movements such as falling, toppling,

sliding, spreading, and flowing. Furthermore, these landslides involve different materials,

including rock, debris, or earth (Varnes 1978).

Landslides are a complex phenomena (Hungr et al. 2013). It is important to be able to

classify the different landslide types in order to reconstruct future landslides and under-

stand their distribution (Crozier 2010). Inconsistencies across the definitions would lead

to confusion and contradictions (Y. Li and Mo 2019). Hungr et al. (2013) modified the

Varnes classification from 1978, defining 32 different landslides. In this report the classi-

fication is based on Hungr et al. (2013) and Varnes (1978).
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Figure 1: The Varnes classification system distinguishes type of landslides based on the

material (rock, debris or earth) and the type of movement. The illustration is based on

Varnes (1978) and Cruden and Varnes (1996).
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In this study we will focus on landslides triggered in soil in steep terrain and the land-

slides consisting of debris and earth in a flowing or sliding motion. Shallow landslides

can generally be classified as debris flows, debris slides and debris avalanches and are dis-

tinguished from debris floods (Ruther et al. 2022). Herein is a more detailed explanation

of the characteristics of each of these events.

2.1.1 Shallow landslides

The following sub-sub-section is largely taken from Hågensen (2023).

Shallow landslides are characterized by a fracture depth ranging from a few decimeters

to a couple of meters. The sliding plane is located within the soil cover or in contact

with the bedrock (Crosta and Frattini 2003; Melchiorre and Frattini 2012). They have

a small source area and can be characterized as point release (Ruther et al. 2022). The

slipped material evolves into a debris flow propagating and entraining material as it moves

downwards (Crosta and Frattini 2003). Material like sand, till and gravel usually generate

shallow landslides (Emdal 2022).

2.1.2 Debris flow

The following sub-sub-section is largely taken from Hågensen (2023).

Debris flows are landslides that move downslope with a flow-like movement due to the

water content (Figure 1)(NGI 2014). They are a rapid, saturated debris in a steep channel

where most of the material in the flow comes from the entrainment of material along the

way (Hungr et al. 2013). Debris flows typically follow the natural drainage paths of water

but can also deviate into areas not typically traversed by water (Hungr et al. 2013; NVE

2022). Typically, debris flows initiate on slopes with angles larger than 25°, but under

extreme precipitation events, they can occur on slopes with angles as low as 10° (NGI

2014).
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2.1.3 Debris slide

The following sub-sub-section is largely taken from Hågensen (2023).

Debris slide is defined as a sliding of granular mass on a shallow, planar surface parallel

to the ground (Hungr et al. 2013). These slides are between 0.5-2 meters thick and initiate

in slope angles between 30-60° primarily (Hungr et al. 2013). Many debris slides become

flow-like after a short distance and transform into debris avalanches or debris flow (Hungr

et al. 2013). The debris slides can either be rotational or translational (planar) (Figure 1).

2.1.4 Debris avalanche

The following sub-sub-section is largely taken from Hågensen (2023).

Debris avalanches are shallow slides and can be found anywhere on a steep slope. They

initiate as debris slides and move at extremely high velocities (more than 70km/h) (Hungr

et al. 2013). A debris avalanche move open-slope while a debris flow moves in a more

channeled matter (Ruther et al. 2022). Debris avalanches can be triggered due to a rock

fall because of the quickly undrained loading process. Once initiated, this continues pro-

gressively and can entrain many thousands squared meters of material (Hungr et al. 2013).

2.1.5 Debris flood

The following sub-sub-section is largely taken from Hågensen (2023).

Debris flood moves with a flow like movement and has a very rapid flow of water (Hungr

et al. 2013). The maximum discharge of water flow is comparable to a water flood (Hungr

et al. 2013). The main difference between a debris flood and debris flow is the amount of

water. Generally, debris floods are more diluted while debris flows have a larger amount

of debris (Ilinca 2021). The velocities of debris floods are typically lower than those of

debris flows, resulting in lower impact forces and reduced potential for damage to struc-

tures. However, debris floods can occur in large watersheds, often called “flash floods”.

They extend further down slope compared to debris flows (Hungr et al. 2013).
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2.2 Landslide causes and triggers

The following sub-section is largely taken from Hågensen (2023).

The conditioning factor for a landslide is the processes that happen over time, setting the

slope up to fail (Bogaard and Greco 2016). This goes back to the beginning of formation

of rock itself and the creation of the landscapes that exists today (Schuster and Wieczorek

2018). Conditioning factors include crustal movement, erosion, weathering, geology, soil,

geomorphology (slope, elevation, aspect etc.) vegetation, previous landslides and human

activity (roads, changed drainage etc.) (Kavzoglu et al. 2015; Schuster and Wieczorek

2018). Also volcanic eruptions that produce pyroclastic flows can mobilize landslides on

the volcano’s slopes (Jaedicke et al. 2014; Wieczorek and Glade 2005). The diverse range

of conditioning factors complicates the determination of the most significant contributors

to a specific landslide problem (Kavzoglu et al. 2015).

A trigger is what finally makes a slope unstable (Bogaard and Greco 2016). It is an

external stimulus that causes an immediate or near immediate reaction from the slope

(Schuster and Wieczorek 2018). Triggering factors can be heavy precipitation events,

earthquakes, erosion processes and external influence of rock fall or rock slides (Gariano

and Guzzetti 2016; NGI 2014; Wieczorek and Glade 2005). Human activities like excav-

ation and construction can alter the natural landscape and the stability of slopes, making

them more susceptible to landslides. Deforestation can reduce the stability of slopes by

increasing surface runoff and soil erosion (Gariano and Guzzetti 2016; Highland and

Bobrowsky 2008).

Extraordinary precipitation events are one of the most common triggering factor of land-

slides (Bogaard and Greco 2016; Gariano and Guzzetti 2016; Ma et al. 2021; Sandersen

et al. 1997; Wieczorek and Glade 2005). The rapid infiltration of water is causing the

soil to be saturated, increasing pore pressure and decreasing the effective stress (Abanco

et al. 2021; Iverson 2000; Medina et al. 2021; Nocentini et al. 2023; Terzaghi et al. 1996).

Heavy precipitation/snowmelt or large water discharge/erosion are the usual trigger mech-

anisms for debris flows, slides, and floods (Hungr et al. 2013; NVE 2022).
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2.3 Landslide susceptibility, hazard assessment and risk zoning

The following sub-section is largely taken from Hågensen (2023).

Authorities need to depict areas that may be affected by future landslides. Considerations

with respect to development plans and appropriate risk mitigation measures can then be

implemented (Fell et al. 2008). Landslide inventories, susceptibility maps, hazard maps

and risk maps serve as useful tools for providing information about these areas. Improved

susceptibility maps can reduce the impact of landslides on infrastructure and human pop-

ulation (Goetz, Guthrie et al. 2011).

2.3.1 Scales

The following sub-sub-section is largely taken from Hågensen (2023).

The first step in landslide susceptibility, hazard and risk zoning is determining the scale of

the analysis. Different scales can for instance be global, continental or regional (Reichen-

bach et al. 2018). In an even smaller study area, physically-based models can be em-

ployed. They involve numerical simulations and equations that describe the physics of

landslides. A comprehensive analysis can be conducted to try and accurately determine

the most critical soil properties (Medina et al. 2021). This requires information on the

geotechnical parameters. Collecting this information over large areas can be challenging

due to the spatial variability of the parameters (Tofani et al. 2017). The expense can be

big and the computational capacity could also be demanding (Medina et al. 2021). They

are therefore suited to study specific events and applied to single slopes (Micheletti et al.

2014).

If the scale is over larger regions, empirical models should be used. These models are

based on observed data from historical landslide and statistical relationships between

landslide occurrence and various influencing factors (Goetz, Guthrie et al. 2011; D. Guo et

al. 2014). Empirical models do not consider the underlying physical processes. They are

relatively simple and easy to implement and therefore often used for broad-scale landslide

susceptibility mapping, hazard assessment, and early warning systems (Goetz, Guthrie et

al. 2011).
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2.3.2 Inventory

The following sub-sub-section is largely taken from Hågensen (2023).

A landslide inventory is a systematic and comprehensive database that documents inform-

ation about landslides that have occurred in a particular area or region (Wubalem 2021). It

typically includes detailed information about each landslide event such as a classification

of landslide, location, date, extent, travel distance, validation, uncertainties and limita-

tions (Fell et al. 2008). A landslide inventory is necessary to evaluate the conditioning

and triggering factors of a landslide (Abanco et al. 2021). The inventory can be created

using several methods, including satellite data, field work or evaluation of archived data

coupled with Geographic Information System (GIS) tools (Wubalem 2021).

2.3.3 Susceptibility maps

The following sub-sub-section is partly taken from Hågensen (2023), but with additional

information.

Landslide mapping can be divided into three consecutive levels such as susceptibility,

hazard and risk (Vakhshoori et al. 2019). Landslide susceptibility refers to the probability

of an area to experience landslides based on local terrain conditions (Fell et al. 2008;

Ma et al. 2021; NVE 2023b; Reichenbach et al. 2018). It is basically trying to estimate

“where” landslides are likely to happen based on the landslide inventory (Ma et al. 2021;

Reichenbach et al. 2018). Conditions that led to landslides in the past facilitates the

assessment of potential future landslides (Canoglu et al. 2019; Fell et al. 2008; Guzzetti

et al. 2006; J. Li et al. 2021; Vakhshoori et al. 2019). Susceptibility mapping can be done

through either quantitative or qualitative methods (Vakhshoori et al. 2019). Qualitatively

methods are based on experts opinion and are subjective (Vakhshoori et al. 2019; Wang,

Wen et al. 2021). Quantitative methods are based on using statistical and/or mathematical

modelling techniques (Vakhshoori et al. 2019; Wang, Wen et al. 2021). This can for

instance be ML methods (Ma et al. 2021).

Previous research on landslide susceptibility mapping has primarily focused on static

factors, as the specific time and date of landslides are often unknown (Ng et al. 2021;
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Nocentini et al. 2023). A map based on static factors indicates a spatial susceptibility

map. Spatial susceptibility maps only highlight where landslides are likely to occur in

the future, without specifying when (Nocentini et al. 2023). By adding dynamic factors,

the susceptibility maps rather becomes spatio-temporal. The attempt to obtain spatio-

temporal landslide susceptibility maps by applying ML models is however still in the

preliminary phase (Nocentini et al. 2023).

2.3.4 Hazard and risk maps

The following sub-sub-section is largely taken from Hågensen (2023).

Landslide hazard zoning is utilizing the landslide susceptibility zoning and attempting to

quantify the level of hazard by considering the frequency of the possible landslide (Fell

et al. 2008; NVE 2023b). It includes categorizing areas into different hazard levels. This

is valuable information regarding land-use planning and safety measures.

The risk is often estimated by taking the product of the probability of a landslide times

the consequence. Consequence would involve potential damage to persons, property and

environmental features (Fell et al. 2008; NVE 2023b).

2.4 Machine learning

Machine learning (ML) is a subfield of artificial intelligence, which is broadly defined as

the capability of a machine to imitate human behaviour (Brown 2021). The functionality

of ML is broad and used in several different fields like image analysis, self driving cars

and personalized recommendations for new shows and songs on platforms like Netflix

and Spotify (Brown 2021). The availability of online data and low-cost computation has

improved the development of new learning algorithms and furthermore the progress in

ML (Jordan and Mitchell 2015).

ML methods were introduced to the field of landslides in the early to mid 2000s (Merghadi

et al. 2020). Since then, ML methods have rapidly evolved the scope, applications, preci-

sion and accuracy of susceptibility models (Merghadi et al. 2020). Predicting landslides
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is a binary classification problem, where the two outcomes are either landslide or no-

landslide (Navlani 2019). The ML algorithms try to assess whether a correlation exists

between the observed landslides and various parameters related to conditioning and trig-

gering factors (Ma et al. 2021). A variety of ML algorithms are available, offering a wide

range of approaches (Ado et al. 2022; Merghadi et al. 2020).

In this thesis, the Random Forest (RF) and Logistic Regression (LR) models have been

tested for landslide prediction in Ottadalen, Norway after the storm Hans in 2023. Both

models are supervised learning models, so-called “soft-coded”. That means the machine

learns from the input provided by the user and produces an output that is most likely to

occur (El Naqa and Murphy 2015; Jordan and Mitchell 2015; Ma et al. 2021; Tavasoli

2024). The algorithms adapt or change their architecture through repetition and experi-

ence so they become better at achieving the desired task.

2.4.1 Random Forest algorithm (RF)

The RF algorithm is a suitable ensemble model to predict the spatial distribution of land-

slides over a large area (Achu et al. 2023; W. Chen, Xie et al. 2017; Goetz, Brenning et al.

2015; Kavzoglu et al. 2019; Liu et al. 2021; Ma et al. 2021; Merghadi et al. 2020; Wang,

Wen et al. 2021). The algorithm was proposed by Breiman (2001) and is composed of

multiple decision trees, hence the term “forest” (Liu et al. 2021). A decision tree is like a

flowchart where an internal node represents a parameter, the branch represents a decision

and each leaf node represents the outcome of either landslide or non-landslide (Navlani

2023). The algorithm uses bootstrapping, which means that it generates random datasets

based on the original dataset for each decision tree. This is done to prevent the trees from

using the same data (Smolic 2023). Based on the outcome of the decision trees the al-

gorithm does an aggregation. Aggregation means, in the case of a binary classification

system, that it combines the results from the different decision trees and makes a final pre-

diction, hence the term “ensemble” (Liu et al. 2021; Merghadi et al. 2020; Smolic 2023).

Shafi (2023) illustrates the idea of the RF algorithm this way: “Imagine you have a com-

plex problem to solve, and you gather a group of experts from different fields to provide

their input. Each expert provides their opinion based on their expertise and experience.

Then, the experts would vote to arrive at a final decision.” An illustration of how the
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algorithm works is shown in Figure 2.

Figure 2: Illustration of the Random Forest algorithm. The figure is taken from Merghadi

et al. (2020).

2.4.2 Logistic Regression algorithm (LR)

The LR algorithm is one of the ten most popular ML algorithms, initially applied from

statistics and is one of the earliest ML methods (Ma et al. 2021; Merghadi et al. 2020;

Ng et al. 2021). It has a straightforward algorithmic architecture, making the underlying

concept easy to understand (Navlani 2019). The LR algorithm describes the relationship

between a dependent variable (the presence or absence of landslides) and independent

variables (conditioning and triggering factors) through a linear fitting model (Kavzoglu

et al. 2019). The linear fitting function for the LR algorithm is expressed in Equation 1.

z = β0 +β1x1 +β2x2 + ...+βixi + e (1)

z is the output, xi is the i-th parameter, β indicates the learned parameter weights and e

is the error (Budimir et al. 2015; Khaliq et al. 2023; Merghadi et al. 2020; Molnar 2020).

The LR algorithm then adds a Sigmoid function to the linear combination of inputs which

converts the output to a probability between 0 and 1 (Merghadi et al. 2020; Molnar 2020).

The Sigmoid function is shown in Equation 2 and illustrated in Figure 3. The z from
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Equation 1 is used in Equation 2. In this study the result outputs the probability of a

landslide.

P =
1

1+ e−z =
ez

ez +1
(2)

Figure 3: Illustration of the Sigmoid function applied to the linear fitting function for the

Logistic Regression algorithm. The figure is taken from Merghadi et al. (2020).

2.4.3 Machine learning challenges

There are several factors to consider while utilizing ML algorithms, for example: (i) Im-

balance in the dataset, (ii) bias, (iii) underfitting and overfitting, and (iv) multicollinearity.

Imbalance in the dataset means that the no-events (no landslides) significantly outnumber

the events (landslides). The no-events represent the majority of the dataset, while events

represent the minority. Such imbalance can cause an algorithm to be biased (Ma et al.

2021). A biased algorithm consistently makes incorrect predictions due to its inability

to represent the relationship between input and output (Barcelos 2022; GeeksforGeeks

2024b).

One way to handle imbalance is to undersample the no-events. Undersampling can be

done in several different ways, where the simplest method is randomly selecting a certain
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amount of the data (Brownlee 2021b). A major drawback of this method is the possible

removal of important data (Brownlee 2021b; Merghadi et al. 2020). Another way to

deal with imbalanced datasets is by utilizing the data augmentation Synthetic Minority

Oversampling Technique (SMOTE) (Brownlee 2021a). The SMOTE technique propose

an oversampling approach of the minority class (Chawla et al. 2002). This is achieved

by selecting an instance from the minority class. Then it locates its k nearest neighbor,

establishes a connection, and generates an artificial point within the expanse of the fea-

ture space between the two points (Ge et al. 2024). According to Chawla et al. (2002),

a combination of undersampling and SMOTE provides better classifier performance to

imbalanced datasets.

Algorithms can also experience underfitting or overfitting. Underfitting happens when the

algorithm is too simple to capture the data complexities (GeeksforGeeks 2024b). It results

in models giving poor accuracy from both training and test data (Amazon n.d.[b]; Geeks-

forGeeks 2024b). Overfitting occurs if a model is too complex and the algorithm learns

noise and irrelevant details from training data and applies it when making predictions

on unrevealed data (Amazon n.d.[b]; GeeksforGeeks 2024b). Indication of overfitting is

when the model performs well on training data but poor on new, unseen data (Amazon

n.d.[b]). If the performance on the training data matches that on the test data, overfitting

is not an issue.

Multicollinearity indicates a linear relationship among the parameters, making it difficult

to decide the individual contribution. This especially disturbs the weights in a LR al-

gorithm (Molnar 2020). Variance Inflation Factors (VIF) is used to detect and quantify

multicollinearity (Merghadi et al. 2020). VIF measures how much the variance of an

algorithm increases when adding more variables, showing how much they are related

(Merghadi et al. 2020). VIF can be described by Equation 3.

V IF =
1

1−R2 (3)

The VIF procedure involves fitting a linear regression model to one of the independent

inputs (for example the slope angle). The R2 of the linear regression model evaluates

how well the data predicts the values of the slope angle (O’brien 2007). Generally, if
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VIF is equal to 1 the variables are not correlated. If VIF is between 1 and 5 the vari-

ables are moderately correlated and if VIF is greater than 5 the multicollinearity can be

a problem (O’brien 2007; Zhou et al. 2018). This does not hold true for every parameter

or algorithm, but it serves as a guideline to understand how various VIF values can be

interpreted (O’brien 2007).

2.4.4 Model performance assessment

There are various performance metrics that can be employed to evaluate the effectiveness

of the model (Bajaj 2023). One example is the confusion matrix. The confusion matrix

divides the model prediction into either positive or negative classes depending on whether

they indicate a landslide or not (Liu et al. 2021). The confusion matrix is shown in Table

1. It consists of four possible outcomes in the binary classification. True negative (TN)

indicates that the model correctly predicts a no-landslide. False negative (FN) would mean

an actual landslide was predicted to be a no-landslide. False positive (FP) indicates that

a no-landslide is incorrectly marked as a landslide. True Positive (TP) indicate correctly

predicting a landslide (Chawla et al. 2002; Liu et al. 2021). The TN and TP has a green

color in Table 1. They are both positive outcomes indicating correct prediction of the

model.

Table 1: Confusion matrix representing True negative (TN), False negative (FN), False

positive (FP) and True positive (TP). The green cells indicate a correct classification,

while the white cells indicates an incorrect classification.

Predicted Negative “0” Predicted Positive “1”

Actual Negative “0” TN FP

Actual Positive “1” FN TP

Based on the confusion matrix, several performance indicators can be determined. Table

2 indicates the different performance indicators.
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Table 2: Performance indicators used to evaluate the performance of the models. The

performance indicators are based on the confusion matrix. The table is inspired by Chawla

et al. (2002) and Liu et al. (2021).

Formula Range Optimal Value

Accuracy = T N+T P
T N+T P+FN+FP [0,1] 1

Precision = T P
T P+FP [0,1] 1

Efficiency Index = T P
FP+T P+FN [0,1] 1

True Positive Rate = T P
T P+FN [0,1] 1

False Positive Rate = FP
FP+T N [0,1] 0

Accuracy is the most used indicator to analyze the confusion matrix (Liu et al. 2021). It

considers all cells of the confusion matrix and the optimal value of 1 would indicate a

perfect prediction. A value of 0 indicates that the model did not predict any TN or TP.

The accuracy can be misleading in the concept of landslide classification, as it is heavily

influenced by the most common category which is the no-events (CAWCR 2015; Liu et

al. 2021).

Precision is the proportion of positive results that were correctly classified. The indicator

gives credit only for the correctly predicted landslide occurrences, not for all the no-

landslide occurrences predicted correctly. It is therefore not affected by the potential

imbalance of the dataset, emphasizing the correctness of positive predictions (Chawla et

al. 2002). The optimal value of 1 indicates that the model correctly identified all events

that actually happened. A value of 0 indicates that the model was not able to predict any

landslides.

Efficiency Index (EI) takes a broader approach compared to precision, which describe the

ratio of TP to the sum of TP and the unsuccessful predictions (Liu et al. 2021). Like

precision, it does not get credit for the correctly predicted TN, which often overestimates

the model prediction (CAWCR 2015; Liu et al. 2021). It evaluates the accuracy where the

positive class is of specific interest, accounting for both FP and FN. The optimal value of

1 indicates the model correctly predicting all landslides. A value of 0 means the model is

not able to predict any actual landslides.
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The True Positive Rate (TPR) shows the ratio of an actual landslide being predicted as a

landslide. A TPR value of 1 means a perfectly predicted landslide occurrence. A value

of 0 means the model is not able to predict any actual landslides. The False Positive

Rate (FPR) measures the ratio of events that was incorrectly identified. A FPR value of

1 means the model only predicts no-landslides as landslides, while a value of 0 means no

falsely predicted landslides was made.

The TPR plotted against the FPR is used to generate the Reciever Operating Characteristic

(ROC) curve. The ROC curve is illustrated in Figure 4. The ROC curve is an analytical

method used to evaluate the performance of a binary classification method (Nahm 2022).

It generates the curve by setting different thresholds of probability. The TPR and FPR are

assigned a value based on a given threshold and the corresponding amount of TP, TN, FP

and FN. A point can then be placed in the graph, and several points generate the curve.

Point (1,1) (top right corner of the graph, Figure 4) indicates that all landslide points was

correctly classified, but the model also incorrectly classified all no-landslide points as

landslides. The point (0,1) shows a perfectly predictive model discriminating correctly

between landslides and no-landslides. The yellow, diagonal line (Figure 4) indicates a

random classifier, which means that the proportion of correctly predicting landslides is

the same as incorrectly predicting landslides.

The Area Under the Curve (AUC) is the area under the ROC curve. The indicator makes

it easy to compare ROC curves of different ML models. According to Ado et al. (2022),

which studied 119 articles and provides a comprehensive overview of ML-based landslide

susceptibility mapping, the AUC is considered the best evaluation method to assess the

performance. An AUC of 1 represents perfect discrimination (Hoo et al. 2017).
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Figure 4: Illustration of the Reciever Operating Characteristic (ROC) curve. The Area

Under the Curve (AUC) is the gray area, and the yellow dotted line indicates a random

classifier. The ROC curve is generated based on the False Positive Rate (FPR) on the x-

axis and the True Positive Rate (TPR) on the y-axis. The orange star in the top left corner

indicates a perfect classifier. The figure is taken from MathWorks (n.d.).

The feature importance can be specified in the RF and LR models. This indicates which

features (slope angle etc.) that are most relevant for the models predictive abilities (Shin

2023). In LR, the feature importance can be calculated through the coefficients after fitting

the data (Filho 2023). Since the algorithm is operating on different units of the features,

a standardization allows for comparison on equal terms. The coefficients (β ’s in Equa-

tion 1) and the corresponding feature importance are found through maximum likelihood

estimation. This is a process that assigns a value to the features to maximize the likeli-

hood that the process described by the algorithm was actually observed (Brooks-Bartlett

2018). The feature importance in RF is calculated as the mean and standard deviation

of the accumulation of impurity decrease across all the trees in the forest (ScikitLearn

n.d.[a]). Each time a feature is used to split a node, the impurity is calculated before and

after the split, and the difference represents the decrease in impurity. Impurity measures

how mixed the data is within a node. If a node contains data points from only one class, it
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is very pure (low impurity). If a node contains a mix of data points from different classes,

it is less pure (high impurity) (GeeksforGeeks 2024a).

Hyper-parameter tuning is a technique that allows for optimization of the models (Feurer

and Hutter 2019). The hyper-parameters are external to the algorithms and can for in-

stance be the depth of trees in a RF algorithm (Amazon n.d.[a]; Merghadi et al. 2020).

There are no set rules as to which hyper-parameters that works best (Amazon n.d.[a]).

One need to experiment to find the most optimal hyper-parameters (Amazon n.d.[a]). Ex-

perimenting manually can be time consuming. Therefore, different approaches of hyper-

parameter tuning algorithms exists. Bayesian optimization and grid search are examples

of such tuning techniques (Amazon n.d.[a]; Feurer and Hutter 2019).

Cross-validation is a technique used in ML to evaluate the performance of a model on

unseen data. It can be used to detect overfitting, and several cross-validation methods ex-

ists (GeeksforGeeks 2023). A k-fold cross-validation involves dividing the available data

into multiple (k) folds, using one of them as a validation set and the remaining (k-1) as a

training set (Amazon 2024). This process is repeated k times, each time using a different

fold as the validation set. Finally, the results from each validation step are averaged to

produce the overall estimate of the models performance (GeeksforGeeks 2023). This is

done to ensure that the actual discriminating abilities works on unseen data. It also de-

tects overfitting and reduces bias as more of the data is being used (GeeksforGeeks 2023;

Gupta 2017).

2.5 Forest parameters

It is well known that forests and plants contribute positively to stabilization of slopes

(Cohen and Schwarz 2017; Z. Guo et al. 2023; Saito et al. 2017; Wu et al. 1979; Ziemer

1981b). Roots provide increasing shear resistance to the ground both hydrologically and

mechanically (L. Zhang et al. 2021). Hydrologically, the roots contribute to less water

in the soil due to evapotranspiration (Gariano and Guzzetti 2016; L. Zhang et al. 2021)

and facilitates drainage by increasing permeability (Hwang et al. 2015; Shen et al. 2017).

This leads to less pore water pressures. High pore water pressures are a known trigger for

landslides (Gariano and Guzzetti 2016; Nocentini et al. 2023; Sidle et al. 2006).
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Mechanically, roots enhance slope stability by providing lateral reinforcement (Ziemer

1981b). They anchor through the soil mass into bedrock fractures or more stable soil

layers, and contribute interlocking binders within weaker soil masses (Ziemer 1981b).

Also, the roots produce an apparent cohesion through root fiber reinforcement (Schmidt

et al. 2001). This is reffered to as “root cohesion”, which is the shear strength originating

from the root system and improves stability of the slope (L. Zhang et al. 2021).

2.5.1 Norwegian forests

Norway has a large range of trees covering around 30 different types (NIBIO n.d.).

Around 39% of Norway is covered by forests (Kildahl 2020). It is dominated by three

tree types; pine & spruce (coniferous) and birch (deciduous). These together cover more

than 90% of the forests in Norway (NIBIO n.d.).

There are roughly 1.5 billion pine trees in Norway (Dalen 2022). Pine trees (Pinus

sylvestris) have deep-going, robust taproots that extends straight down into the ground

(Sunding et al. 2024). This results in a highly storm-resistant tree species. They are how-

ever unable to develop taproots in areas with little loose material. Instead, they will spread

outwards, making them more vulnerable to storms (Sunding et al. 2024). The tree height

is usually between 20-30 meters, but can reach 40 meters. The lifetime of a pine tree can

be as long as 600 years (Sunding et al. 2024).

There are approximately 3.2 billion spruce trees in Norway (Dalen 2022). Spruce forest

(Picea abies) are conifers - cone bearing seed plants. Spruce is a part of the pine fam-

ily, has a flat root system and can survive in quite shallow soil depths (Aarnes 2014;

Christensen 2012). The tree height can reach 40-50 meters and they can live for 400 years

(Aarnes 2014)

Deciduous trees has leaves compared to spruce and pine which has needles (Larsson

2024). Deciduous trees is a term that encompasses several different trees. In Norway,

birch is the most common type of deciduous tree (Grindeland and Larsen 2024), reaching

a total of probably around 4.9 billion trees in all of Norway (Dalen 2022). Birch has a

shallow and wide root system (Planteportalen n.d.). The tree height is usually between 3

and 15 meters and they have a lifetime of around 300 years (Grindeland 2023).
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2.5.2 Root cohesion

Root cohesion enhances the mechanical stabilization of a soil slope via root fiber rein-

forcement, providing increased resistance against shallow landslides (Schmidt et al. 2001;

L. Zhang et al. 2021). Root reinforcement, the increase of tensile strength in soils due to

the root network (Masi, Segoni et al. 2021), is difficult to measure (Schmidt et al. 2001).

The magnitude of root cohesion depends on several factors like vegetation type, age, root

architecture and root tensile strength (Schmidt et al. 2001; L. Zhang et al. 2021). There-

fore, root cohesion values are typically back-calculated because direct field measurements

are time-consuming and challenging to conduct over large areas (Schmidt et al. 2001). It

can therefore be described as a function of the number and distribution of roots within a

soil column and their elastic properties (Hwang et al. 2015). Hwang et al. (2015) proposes

a way to calculate the root cohesion through Equation 4.

Cr = K ·Tr ·
Br

ρr
(4)

Cr [kPa] is the root cohesion of the specific tree root, K is a constant equal to 1.2 [m−1],

Tr [MPa] is the tensile strength of the specific root, Br [ tonnes
hectare ] is the total below ground

biomass and ρr [ kg
m3 ] is the density of the root. This method provides a very simple and

computationally efficient estimation of the spatial pattern of root cohesion (Hwang et al.

2015).

2.5.3 Tensile strength

In order to use Equation 4, the tensile strength is needed. Wide variations in root tensile

strength have been reported in the literature and appear to depend on species and site

factors such as the local environment, season, root diameter, and orientation (Genet,

Stokes, Salin et al. 2005; Ziemer 1981a). The seasons affect tensile strength, with roots

being stronger in winter than in summer due to the decrease in water content. Also,

the tensile strength usually decrease with increasing root size (Genet, Stokes, Salin et

al. 2005; Hales 2018; Mao et al. 2012; Mattia et al. 2005). From literature, the tensile

strength can be based on Equation 5.
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Trn = α ·dβ
n (5)

α and β are empirical constants depending on different tree species and d is the diameter

of the tree root, while n assigns the specific tree species.

2.5.4 Underground biomass

Underground biomass is the organic material below ground (Ravindranath and Ostwald

2008). The biomass produced by trees and plants drives productivity in forest ecosystems

(Smith 2020). Older forests for instance, have more underground biomass than younger

forests (Hwang et al. 2015). Defining the underground biomass is however difficult and is

therefore often sampled and scaled-up to component estimates (Smith 2020). Information

on underground biomass is provided by the Norwegian Institute of Bioeconomy Research

(NIBIO) and can be extracted from the forest resource map (SR16R). This is described

more thoroughly in Section 4.
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3 Study area

Section 3 is partly taken from Hågensen (2023).

The work presented herein focuses in the Ottadalen area, an east-west trending valley

situated in the heart of southern Norway (Figure 5). It is surrounded by the mountain-

ous expanses of Jotunheimen, Rondane, and Dovrefjell. These mountain massifs all have

peaks surpassing 2000 meters above sea level. Positioned at approximately 360 meters

above sea level, Vågåvatnet (lake) at the bottom of Ottadalen is centrally located in the

study area (Kartverket 2023b). Consequently, the area exhibits considerable altitude re-

lief. The study area (red square) is approximately 3071.1 km2.

Figure 5: Map of the study area. The study area is in Ottadalen, indicated by the red

square. The brown dots are release points of landslides. North arrow and scale bar is

added to both maps. Vågåmo is marked with a blue star. The background map is the

OpenStreetMap from ArcGIS Pro.
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3.1 Geology

3.1.1 Bedrock geology

Large parts of central and mountainous Norway has bedrock geology originating from

the formation of the Caledonian mountain range around 400 million years ago (Bryhni

and Fossen 2023). The process of mountain range formation, known as orogeny, consists

of large-scale movements, folding, magmatic activity, and overthrusting (Fossen 2023b).

Overthrust sheets are large sheets of the earths crust being pushed by tectonic forces over

the already existing lithosphere, making it both deeper and thicker (Fossen 2023a). It can

be referred to four levels of overthrust sheets in Norway after the Caledonian orogeny;

lower, middle, upper, and uppermost allochthon (Bryhni and Fossen 2023).

The bedrock geology in Ottadalen primarily consists of the lower, middle and upper al-

lochthons, as well as Precambrian bedrock. These allochthons contribute to the study

area’s diverse geology, which includes igneous, sedimentary, and metamorphic rocks,

along with numerous faults and shear zones (NGU 2023). Granitic gneiss, predomin-

antly of Precambrian age, dominates the northwestern part of the study area (Hole and

Bergersen 1981; NGU 2023). The rest of the study area is extensively influenced by the

overthrust sheets, resulting in complex geology. Various rock types, including granite,

quartzite, sandstone, conglomerate, phyllite, calcareous phyllite, greenschist, mica schist

and different types of gneisses are found in the area (NGU 2023). Common for the rocks

in the area, with some exceptions, is that they break down easily and that they form a

fine-grained moraine soil (Kleiven 2022; Nystuen 2013).

3.1.2 Surficial deposits

Norway’s landscape has been significantly shaped by multiple large ice sheets, intermit-

tently covering the country over the past 2.6 million years (Vorren and Mangerud 2013).

Most of the surficial deposits found in Norway today are geologically young, dating back

to the last ice sheet known as the Weichselian glaciation, which ended approximately

10,000 years ago (Lundqvist 1986; NGI 2014). The relatively young deposits is be-

cause glaciers typically (though not always) remove existing deposits and materials in
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their path (Lasberg 2014; Vorren and Mangerud 2013). Deglaciation leave behind un-

sorted sediments of various sizes, also known as till and glaciomarine deposits (Vorren

and Mangerud 2013). Till is the most widespread type of sediment in Norway by far

(Bergersen and Garnes 1972; NGU n.d.).

Ottadalen, a part of Gudbrandsdalen, is a classic U-shaped valley originating from glacial

erosion (Mæhlum 2023; Thorsnæs 2023; Vorren and Mangerud 2013), where till of vary-

ing thickness is the primary surficial deposit (NGU n.d.; Romundset et al. 2023). Three

different tills have been distinguished in the study area on the basis of textural and struc-

tural analyses and an investigation of the till stratigraphy was performed (Bergersen and

Garnes 1972; Hole and Bergersen 1981). Of special interest is the finding that the basal

part of the till is sandy-gravelly, somewhat sorted and more rounded. Higher up, the ma-

terial is distinctly less sorted and richer in clay. The different tills have been exposed to

different depositional conditions. The lowest part of the till is assumed to originate from

the sub-till sediments which were deposited before the last glaciation. The finer materials

in the top layer of the till can be correlated to the deglaciation period. During this period,

several glacier dammed lakes existed, for instance Store Dølasjø which extended across

Northern Gudbrandsdalen and Ottadalen towards the end of the Weichselian glaciation

(Kleiven 2022; Romundset et al. 2023). A material richer in clay is more susceptible for

landslides, as pore pressures can build up over time due to low permeability (NGI 2014).

Other surficial deposits are also found in the study area. Most of the valley floor is

covered in alluvial deposits from the Ottariver and glaciolacustrine deposits from the gla-

cier dammed lakes (Romundset et al. 2023). Glaciofluvial deposits is scattered around the

study area due to interstadial deglaciation periods (Kleiven 2022; Romundset et al. 2023).

Avalanche activity and weathered materials are also profound in the area (Kleiven 2022;

NGU n.d.). A map showing the different deposits can be found in Figure 9.

3.2 Climate

Ottadalen has a relatively continental climate. Continental climates often have a signific-

ant annual variation in temperature compared to the coastal areas, which have more even

annual temperatures (NationalGeographic 2023). On average, since 1991 the study area
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has been colder than the coastal areas (SeNorge 2023). The mean annual temperature in

Otta since 2018 is 4.2°C (Klimaservicesenter 2023).

Ottadalen is one of the locations in Norway with the least precipitation. SeNorge (2023)

shows the average precipitation from 1991-2020. The study area has less than 500 mm

annually. The average yearly precipitation since 2020 was 410 mm (Klimaservicesenter

2023). Compared to the average annual precipitation of 3000 to 4000 mm observed on the

western coast of Norway, the study area experiences a relatively low average annual pre-

cipitation (SeNorge 2023). The low precipitations are due to the surrounding high moun-

tains “protecting” the inner areas of Norway from the moist air (Dannevig and Harstveit

2022).

3.3 Description of the storm Hans

On Monday 7 August 2023, large parts of south-central Norway were hit by the storm

Hans. Hans was a combination of low pressure systems from both the Atlantic Ocean and

Mediterranean Sea that “joined forces” over central Europe and took a westerly turn as

they merged over southern Sweden and the Baltic Sea (Granerød et al. 2023). As the low

pressure system progressed northward, it accumulated a significant amount of moisture

along its path (Andreassen 2023). The fact that the low pressures were coming towards

Norway from the southeast meant no protection from the mountains on the west coast.

In the flat, eastern landscapes, water lingers long, flows slowly, and accumulates. Heavy

rainfall affects these areas on a larger scale compared to the west coast where the steep

mountainsides quickly drains water. Figure 6 shows the progression of the low pressure

during Hans between 7-9 August 2023.

Neither nature nor people were prepared for the rainfall intensity during Hans. As a result

of the extreme precipitation event, large areas were flooded (Bugge and Borgmo 2023;

Ekroll 2023). Hans initiated a MORLE and almost 2900 people had to be evacuated

from their homes (Revheim-Rafaelsen et al. 2023). Landslides were hitting houses and

damaging infrastructure. The material cost of Hans turned out to be 1.8 billion Norwegian

Kroner (Torkelsen et al. 2023).
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Figure 6: Map showing the meteorological situation of Hans over Norway at 11 a.m.

for three consecutive days, 7-9 August 2023. The black lines are showing borders, the

blue lines are showing the pressure contour lines in Pascal and the red areas are showing

precipitation. The colorbar is indicating the amount of rain in mm. The map is based on

data from METNorway (2023).
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4 Data and Methods

4.1 Data

The parameters used for landslide investigation and in the ML models included the soil

type, tree type, root cohesion, slope angle, slope aspect, flow accumulation, precipitation

and soil saturation. To facilitate the examination of these parameters, data collection was

necessary. Table 3 outlines the type of data, its resolution and the sources used to enable

the analysis.

Table 3: Overview of the collected data used for both landslide investigation and ML

methods. The resolution and source of the data is stated. The table is taken from Hågensen

(2023).

Data Resolution/Quality Source

DTM 10 m2 Høydedata

Quaternary map 1:50 000 NGU

Vegetation SR16 16 m2 NIBIO

Precipitation/Soil saturation 1 km2 MET Norway

4.1.1 Terrain data

The following sub-sub-section is partly taken from Hågensen (2023).

To measure slope angle, slope aspect and flow accumulation, a 10 m2 resolution Digital

Terrain Model (DTM) from Høydedata was used (Kartverket 2023b). The data is estab-

lished as “point clouds” based on Light detection and ranging (LiDAR) from planes and

aerial photos (Kartverket 2023a). LiDAR determines the distance from a sensor to a tar-

get by analyzing half of the time it takes for a laser pulse to be emitted and then reflected

back (Baltensweiler et al. 2017; StatensKartverk 2018). Kartverket classifies precision

into classes from A to D. A DTM of 10 m2 can be fulfilled with class C, which indicates

a minimum of two point per m2 (StatensKartverk 2018).

Information about the surficial formations existing in the study area was obtained from the
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Quaternary geology map of Norway (NGU n.d.). The map is produced by the Norwegian

Geological Survey (NGU). The Quaternary geology map in this report has a resolution of

1:50 000. The data distributed from NGU are collected from detailed surveys in the field,

based on a thorough prestudy of maps, topographic maps and air photos. The survey also

includes reports, scientific publications and data from ground investigations (NGU n.d.).

An important note is that the quaternary map is showing the soil only in the top meters

of the terrain. Thick and thin layers of other types of soil can be found beneath this top

layer, but are not necessarily shown (NGU n.d.).

The SR16 is a forest resource map from the Norwegian Institute of Bioeconomy Research

(NIBIO) with a resolution of 16 m2 (NIBIO 2023). The primary method of generating

the dataset involves automated processing of remote sensing data, which includes tech-

niques like photogrammetry and laser technology. Other methods of creation are terrain

models, satellite data and existing data like AR5. The AR5 map shows land use and land

cover (LULC) and is continuously updated based on administrative tasks fulfilled by the

municipality (Tenge 2016). The SR16 map is divided into SR16R and SR16V which are

raster map and vector map, respectively. The SR16R mostly consists of three band rasters

representing the minimum, maximum and mean values. These numerical values naturally

consists of uncertainties, and this is dealt with by using a 95% prediction interval. The

SR16R includes information about several different forest parameters. Different forest

parameters examined in this study are the amount of trees per hectare with varying tree

diameter at breast height, the leaves coverage, tree height, tree diameter at breast height

and the different forest types. Breast height is 1.3 meters above ground (Bækkelund

2024).

4.1.2 Landslide inventory data

The following sub-sub-section is partly taken from Hågensen (2023).

A systematic and comprehensive landslide inventory for the study area is a combination

of three different databases and was gathered with diverse methods; (i) An inventory

from field observations after Hans gathered by Norwegian Geotechnical Institute (NGI),

(ii) a database provided by Denise Rüther from Western Norway University of Applied
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Sciences (HVL) on landslide observations based on satellite imagery (Rüther et al. 2024),

and (iii) landslides that were recorded in The Norwegian Water Resources and Energy

Directorate’s (NVE) database.

Field data was collected by NGI on foot utilizing mapping tools and drones. The drones

were only used for photography. In national park areas where drones were prohibited

and the landslides was hard to reach by foot, mapping was conducted using cameras and

binoculars. The mapping had focus on parameters that can be used for landslide hazard

modelling like extent, vegetation and soil properties. Additionally, the triggering cause of

the landslides was investigated. In total, the inventory contained 53 landslides initiation

points. 33 of these landslides were additionally mapped as polygons.

The satellite inventory provided by Denise Rüther from HVL was obtained primarily from

remote sensing comparison of pre-event and post-event images of the area (Lindsay et al.

2022; Rüther et al. 2024). This approach is highly effective in terms of covering a lot

of area but requires cloud free images before and after the event within a sensible time

period (Abanco et al. 2021). Due to the difficulty of classifying landslides solely based

on satellite images, multiple validation methods were used. This included either field

work, field reconnaissance, orthophoto, national databases, newspaper articles, Coperni-

cus emergency response or other high resolution satellite data (Rüther et al. 2024).

Data from NVE was extracted from their website (NVE 2023a). The website has several

different maps. The map of “avalanche events” was used. It is a database containing more

than 94,000 landslide observations all over Norway. The resolution “varies” according to

NVE (2018) and Rüther et al. (2024). The map reaches a scale of 1:20 m. The registra-

tion of observations is open for anyone and the road and rail authorities are continuously

updating their data to the website. Quality control of the observations is happening con-

stantly and the observations are marked with three different quality levels (NVE 2018).

In order to focus on the landslides that initiated during Hans, the dates was filtered to

include observations that had been registered from 1 August until 16 October 2023. The

decision to set it until 16 October was to ensure that landslides during Hans had been

recorded in the database. The gathered landslide inventory from NVE was then merged

with the inventory from NGI and HVL. The resulting landslide inventory was manually

checked to remove duplicates. It was afterwards confirmed that the six NVE slides in this
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report was between 8-10 August and inside the respective study area in Ottadalen. This

means that Hans initiated the slides. Additionally, the locations of the slides was usually

at the observation point down by the road instead of at the actual release area. The points

was therefore manually placed in the most natural location based on the description of the

landslide and the surrounding terrain.

Table 4: Summary of data points provided by contributors to the inventory within the

study area.

Name Number of landslides

NGI 53

NVE 6

HVL 171

Total 230

When implementing dynamic factors, it is important to know the initiation date of the

landslides (Nocentini et al. 2023). The landslide inventory used in this study contained

this information for 39 landslides. Since the most common triggering factor of landslides

is precipitation, the date that provided most precipitation during Hans at the landslide

locations would be considered the initiation date. This approach resulted in landslides on

respective dates as shown in Table 5, with 175 landslides on August 8, 52 on August 9

and no landslides on August 7 and 10. The reason for 227 landslides instead of 230 is

explained in the Methods section (4.2).

Table 5: Overview of amount of landslides on respective dates based on the assumptions

mentioned and the landslide inventory provided.

Date Landslides

August 7 0

August 8 175

August 9 52

August 10 0
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4.1.3 Precipitation data

The following sub-sub-section is partly taken from Hågensen (2023).

In order to investigate the precipitation, data from MET Norway was used (METNorway

2023). The data include measurements since 1957 for large parts of Norway (Lussana

2023; SeNorge n.d.). The precipitation data are based on measurements with either in-

strumental or manual rain gauges (METNorway 2017). In order to interpolate the precip-

itation values for all of Norway, a statistical method is used with 1 km2 grids (Lussana

et al. 2019). Measurements have been adjusted with regards to wind-induced under-catch,

that considers disruption of the measurements due to wind (Lussana 2023; Lussana et al.

2019). In addition to observations, the spatial interpolation utilize information provided

by a climate model (Lussana et al. 2019).

The precipitation data used in this study represents the modeled values accumulated over

24 hours for August 7 to 10. This time frame was selected because the storm Hans

impacted Norway from August 7 to August 9, delivering significant rainfall (Granerød et

al. 2023). Also, MET Norway collects precipitation data from 06:00 “yesterday” to 06:00

“today”. The precipitation data for August 7 is therefore measurements from 06:00 on

August 6 to 06:00 on August 7 (Lussana 2023). Table 6 illustrates the modelled average

precipitation and soil saturation degree across the entire study area during the different

dates and times.

4.1.4 Soil saturation degree data

The following sub-sub-section is partly taken from Hågensen (2023).

The soil saturation degree is determined using a model that computes the quantity of water

coming from rainfall and snowmelt. It is a time dependent parameter and combines the

groundwater conditions and the conditions in the root zone (soil water) (SeNorge n.d.).

Additionally, it considers how long the water remains in the soil before it drains as ground-

water or evaporates (SeNorge n.d.). The soil saturation degree are shown as a percent-wise

unit. The percentage describes the relationship between today’s simulated water storage

compared to maximum simulated water storage in the reference period 1981-2010 with
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the use of the Gridded Water Balance (GWB) model. The GWB-model is a spatially dis-

tributed version of the Hydrologiska Byråns Vattenbalansavdelning-model (Beldring et al.

2003; Boje et al. 2018; SeNorge n.d.). The GWB-model is a 1 km2 grid based version and

considers how the topography and vegetation are distributed within each grid-cell (SeN-

orge n.d.). The values for soil saturation degree was in this study extracted every 24h. The

values was gathered for the same dates as the precipitation data, between 7 to 10 August.

The only difference is that the soil saturation degree value is generated at 08:00 every day

instead of 06:00 (Xgeo n.d.). The soil saturation degree is showed with red text in Table 6

to distinguish it from the precipitation data.

Table 6: Average, modelled precipitation and soil saturation over the total study area for

each day. The table illustrate the reference time for the different dates, and the averaged

amount of precipitation and soil saturation for each day.

Date
Modelled Average

Precipitation [mm/day]

Modelled Average

Soil Saturation

Degree [%]

August 7, 2023

(August 6, 06:00 - August 7, 06:00)

(August 6, 08:00 - August 7, 08:00)

3.7 63.6

August 8, 2023

(August 7, 06:00 - August 8, 06:00)

(August 7, 08:00 - August 8, 08:00)

63.9 87.3

August 9, 2023

(August 8, 06:00 - August 9, 06:00)

(August 8, 08:00 - August 9, 08:00)

53.9 104.1

August 10, 2023

(August 9, 06:00 - August 10, 06:00)

(August 9, 08:00 - August 10, 08:00)

18.2 101.8
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4.2 Methods

All data regarding the different parameters was investigated with the use of Python and

ArcGIS Pro. Python is an interpreted, high level programming language. It has a simple,

easy to learn syntax and provides access to several open source libraries essential for

data handling and implementation of ML models. It is free and one of the most popular

programming languages in data science and ML (Python n.d.).

Geographic Information System (GIS) is a system that creates, manages, analyzes and

maps all types of data and connects where things are with all type of descriptive informa-

tion (Esri n.d.). ArcGIS Pro is a software from ESRI that allows for exploring, visualizing

and analyzing spatial data. Through the application you can store maps, layouts, tables

and work with them as needed (ArcGISPro n.d.[e],[f]). The combination of Python and

ArcGIS Pro allows for a thorough analysis of the data.

4.2.1 Landslide frequency

The following sub-sub-section is partly taken from Hågensen (2023).

The landslide frequency is a value that helps assess “where” landslides are likely to occur.

It provides a better understanding of the landslide risk associated with specific areas. It

is a key parameter and provides valuable information for hazard assessment and land-use

planning and helps evaluate the effects of specific site characteristics on slope stability

(Reichenbach et al. 2018; Rickli and Graf 2009). In this study, the frequency is employed

to identify and evaluate areas prone to landslides based on the investigated parameters.

The frequency can be found with Equation 6.

Frequency =

(
Number of landslides in class 1

Total number of landslides

)
(

Area of class 1
Total area

) (6)

“Class 1” represents the number of landslides and the corresponding area for one of the

parameters. The total area corresponds to the study area, facilitating the comparison of

frequencies.
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4.2.2 Computation of parameters with GIS tools

The following sub-sub-section is partly taken from Hågensen (2023).

Slope angle and slope aspect have been computed using the “Slope” and “Aspect” tool

in ArcGIS Pro, applied to the DTM. The slope result shows the rate of change in eleva-

tion and is given in degrees ranging from 0-90° (ArcGISPro n.d.[h]). The aspect results

identifies the compass direction the terrain face. It is measured clockwise in degrees from

0 (north) to 360 (again north) encompassing the whole circle (ArcGISPro n.d.[a]). See

Table 7 for division of the different aspects.

Table 7: Slope aspect with corresponding degrees.

N NE E SE

337.5-22.5 22.5-67.5 67.5-112.5 112.5-157.5

S SW W NW

157.5-202.5 202.5-247.5 247.5-292.5 292.5-337.5

The flow accumulation is also computed from the DTM. The “Fill” tool had to be used in

order to ensure proper delineation of basins and streams (ArcGISPro n.d.[b]). Afterwards,

the “Flow Direction” tool was utilized. This tool generates eight possible directions for

water flow in each pixel derived from elevation of the surrounding pixels (ArcGISPro

n.d.[d]). The D8 method determines the direction based on the steepest descent. When a

direction of steepest descent is found, the output cell is coded with the value representing

that direction. The “Flow Accumulation” tool counts total accumulated flow as the sum of

weights from all “Flow Direction” cells contributing to each cell positioned downslope.

Cells with high flow accumulation values are areas of concentrated flow, while areas of

zero flow accumulation are topographic highs (ArcGISPro n.d.[c]).

The “Resample” tool adjusts the spatial resolution of a raster dataset and establishes rules

for aggregating the interpolated values across the new pixels (ArcGISPro n.d.[g]). Ensur-

ing the same resolution, which provides a consistent number of pixels, is crucial when

running a ML model. A bilinear resampling technique is the best way to deal with con-

tinuous data and was therefore utilized in this study (ArcGISPro n.d.[g]). The interpola-
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tion exhibit smoother transitions and represent real life better. It is important to keep in

mind that the bilinear resampling technique can change a pixel from zero to non-zero (Ar-

cGISPro n.d.[g]). The forest data, soil data, precipitation data and soil saturation degree

data were resampled to a 10m x 10m resolution to align with the resolution of the DTM.

4.2.3 Method to obtain root cohesion

To determine root cohesion, information on root tensile strength, underground biomass,

root density and root diameter is required. The method, proposed by Capobianco et al.

(2024), is employed in this study to derive values for root cohesion. The method applies

Equation 4 which is shown below.

Cr = K ·Tr · Br
ρr

The method assumes that roots have a diameter of 3.5 mm. The root diameter is then

used to further determine the tensile strength Tr. Table 8 lists the root density and tensile

strength values for the different tree species suggested by Capobianco et al. (2024). It

is important to keep in mind that the density of trees vary significantly both between and

within regions (Fischer et al. 2016). Constant values of density were used for simplicity in

this study. The underground biomass, Br, can be collected from the forest resource map

(SR16R) (NIBIO 2023). The root cohesion was then calculated for the different areas

covered in either spruce, pine or deciduous forests.
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Table 8: Values used to generate the root cohesion suggested by Capobianco et al. (2024)

are shown. Reference to Norway Spruce: Bischetti et al. (2007). Reference to Pine:

Genet, Stokes, Salin et al. (2005). Reference to Deciduous: Mao et al. (2012).

Species

Norwegian

Forests

Root

Density

[kg/m3]

Reference

species

Regression

equation

for Tr [MPa]

Reference

forest

Norway Spruce

Picea Abies
451

Norway Spruce

Picea Abies
Tr = 28.1d−0.72 Italian alps

Italy

Pine

Pinus Sylvestris
539 Austrian Pine Tr = 18.4d−0.52 Gironde

France

Deciduous 671

Generic for

several tree

species

Tr = 28.97d−0.52 French

4.2.4 Preparation of total dataset

Figure 7 is a flow chart showing the process of producing landslide susceptibility maps,

from data collection to complete maps. The process is general for both static and dynamic

approaches used in this study, and is mainly supposed to give an overview. Part 2 of

the flow chart however is slightly different between the two approaches and is further

described in each respective section. A general explanation is given first.
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Figure 7: Flow chart showing the process from data collection in (1.) to generating land-

slide susceptibility maps in (2). The flow chart offers an overview, but especially (2.)

should be linked to the method descriptions for both static and dynamic approaches to

provide a complete understanding, as these approaches differ slightly.

Firstly looking at Part 1 of Figure 7. After acquiring the total dataset, the “Resample”

tool segmented the respective parameters inside the study area into 10m x 10m pixels,

totaling 30,711,300 pixels. Each pixel had eight values corresponding to the eight input

parameters. Additionally, a ninth value was assigned based on the landslide inventory,

indicating whether the pixel represented a landslide or not. Pixels where landslides oc-

curred were given a value of “1”, while no landslide pixels were assigned a value of “0”.

Consequently, the total dataset comprised 30,711,300 pixels, each with nine parameter

values.

Only 227 pixels were classified as landslide pixels instead of the expected 230. This

discrepancy occurred because three pairs of landslides were located within the same pixel.

These pairs of landslides initiated in close proximity to each other and were therefore

counted as one.
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4.2.5 General preparation of training and test set

Now looking at Part 2 of the flow chart in Figure 7. The total dataset’s imbalance needed

to be addressed and the no-landslide pixels was therefore randomly undersampled. An

optimized ratio no−landslide
landslide had to be found for both static and dynamic approaches. As

this was accomplished differently, it is further explained in the respective sections. The

resulting dataset with the respective ratios was split into a training and test set with a 70/30

split, a common split used in ML methods (Ado et al. 2022; Liu et al. 2021; Yang et al.

2023; Zhou et al. 2018). Hyper-parameter tuning, VIF investigation and cross-validation

was performed to obtain the best model configuration and to ensure no overfitting.

The training set is then presented to the models. During training, all information is

provided – the model knows the input parameters and whether the pixel is a landslide

pixel or not. Afterwards, the models are presented to the new, unseen data of the test set.

During testing, the models are provided with input parameters for each pixel without any

information regarding their landslide status. The task of the models is to predict which

pixels represent landslides and which do not.

The confusion matrix, generated from the model’s predictions on the test set, indicates

the amount of TP, TN, FP and FN from testing. This sets the basis for the performance

assessment. If the model performance is satisfactory, the models are introduced to the

study area and predicts landslide probability for each pixel.

Scikit Learn provides the necessary Python (computer language) libraries for utilizing the

RF and LR models. The libraries are relatively accessible to non-specialists, user-friendly

and provides tutorials, examples and user guides. The libraries are easily downloaded,

and Python was therefore used to run the models (ScikitLearn n.d.[b],[c]). Scripts used

throughout this study (also from the Specialization Project) showing data collection, pre-

paration of datasets, creation of plots and figures and running of the RF and LR models are

shared (open source, and open science) on Github: (Repository Master thesis) or URL:

https://github.com/isakhag/master thesis.git
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4.2.6 Method to assess static landslide susceptibility

For the static factor assessment, precipitation and soil saturation data was removed from

the dataset. This allowed for further investigation of the parameters slope angle, slope

aspect, tree type, root cohesion, flow accumulation and soil type.

To avoid the imbalance, the no-landslide pixels was randomly undersampled. SMOTE

was attempted but did not provide better performance. To facilitate a consistent compar-

ison between RF and LR, the same ratio was used. The optimal ratio varies with different

ML models, areas and different split ratios (Yang et al. 2023). A ratio of 3:1 no−landslide
landslide

was used. This ratio provided a total of 908 pixels in the dataset, with 681 being random

no-landslide pixels and 227 being landslide pixels.

The dataset was further divided into training and testing sets at a 70/30 split. The training

set consisted of 635 pixels, comprising 159 landslide pixels and 476 no-landslide pixels.

The test set contained 273 pixels, with 68 landslide pixels and 205 no-landslide pixels.

Figure 8 and 9 shows the distribution of the static parameters. The map bounds is the study

area as indicated in Figure 5. The position of Vågåmo is marked with a star, landslides are

marked as brown points and the different values of the input parameters are illustrated in

the legend. The flow accumulation varied greatly between small and large accumulations.

It was therefore difficult to illustrate it in a good way. The best attempt is shown in Figure

9, where the largest accumulations are shown as white lines on a purple background that

illustrates low flow accumulation. Also, the soil legend in Figure 9 is quite small due to

the large amount of different soils. The legend is the same as NGU standards, and can

additionally be found in the Appendix (Figure 36 and 37) or on NGU’s website (NGU

n.d.).
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Figure 8: Illustration of three maps showing slope angle (top), slope aspect (middle) and

flow accumulation (bottom). Corresponding values and colors are described in the legend.

Vågåmo is marked with a blue star and the landslides are marked as brown points.
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Figure 9: Illustration of three maps showing soil type (top), tree type (middle) and root

cohesion (bottom). Corresponding values and colors are described in the legend. Vågåmo

is marked with a blue star in the maps and the landslides are marked as brown points. The

background map is the OpenStreetMap in ArcGIS Pro.
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4.2.7 Method to assess dynamic landslide susceptibility

In a dynamic approach, the input parameters change with time. Information on the land-

slide initiation date is therefore needed (Nocentini et al. 2023). This information was

gathered as described in the Landslide inventory section (4.1.2).

The decision was made to exclusively use the RF model for the dynamic approach. This

was because the RF model provided slightly better results regarding performance com-

pared to the LR model. Additionally, the RF model generally performs well according

to other studies (Goetz, Brenning et al. 2015; Hussain et al. 2022; Kavzoglu et al. 2019;

Khaliq et al. 2023; J. Li et al. 2021; Liu et al. 2021; Merghadi et al. 2020; Ng et al. 2021).

It is essential to remove irrelevant or less relevant parameters in order to improve the

efficiency and performance of landslide models as part of the analysis (Liu et al. 2021;

Micheletti et al. 2014; Zhou et al. 2018). The precipitation and soil saturation provides

additional parameters to the model which further complicates the process. This led to an

exclusion of the soil type parameter. The soil type had the least feature importance and

was not contributing to the performance of the algorithm.

The dataset used for this approach consisted of 2270 no-landslide pixels and 227 land-

slides pixels, totaling 2497 pixels. A new “Day” column with the corresponding days

between August 7 to 10 was added to the dataset in order to separate them later during

testing. This column was removed before training of the model.

The dataset was split into training and test sets with a 70/30 ratio. Using SMOTE, 170

synthetic landslide pixels were generated based on the 158 landslides present in the train-

ing set. Consequently, the training dataset comprised 1589 no-landslide pixels and 328

landslide pixels, giving a ratio of 5 : 1 no−landslide
landslide . The test set consisted of 750 pixels,

with varying distributions across the four days. August 7 had 149 pixels, August 8 had

239 pixels, August 9 had 184 pixels, and August 10 had 178 pixels. The datasets was

presented to the RF model.

The difference in pixel counts between the days can be attributed to the stratification

performed during the train-test split. The stratification was based on the presence of land-

slides, not the specific day. This approach ensures that both the training and testing sets
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contain a balanced number of landslides, which is crucial for maintaining the represent-

ativeness and effectiveness of the model (ScikitLearn n.d.[d]). Stratifying by landslides

ensures that the model is trained and tested on equally representative samples of landslide

and non-landslide data, matching the desired dataset split (70/30).

Figure 10 and 11 shows the precipitation and soil saturation distribution for August 7 to

10. The map bounds is the study area as indicated in Figure 5. The position of Vågåmo is

marked with a star, landslides are marked as brown points and the different values of the

precipitation and soil saturation are illustrated in the legend.
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Figure 10: Illustration of the precipitation from August 7 at the top to August 10 at the

bottom. The legend is the same for all figures and going from 0 mm (red colors) to 108

mm (blue colors). Vågåmo is marked with a star, and landslides as brown points.
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Figure 11: Illustration of the soil saturation degree from August 7 at the top to August 10

at the bottom. The legend is the same for all figures and going from 32% (red colors) to

128% (black colors). Vågåmo is marked with a star, and landslides as brown points.
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5 Results

5.1 Analysis of forest parameters

Figure 12a) displays the amount of landslides and the tree type inside the study area. Both

landslide amount and landslide frequency in birch (deciduous) forest far exceeds the other

forests and areas without forest. The amount of landslides in birch forest is 116 and the

frequency almost reached 4.5. The landslide frequency in the other forests are 1.2 and

1.5. The total amount of landslides is 230, so more than half of the landslides initiated in

birch forests.

Figure 12b) illustrates the amount of landslides versus the leaf coverage percentage. The

highest landslide frequency (3.2) and landslide initiations (83) occur where the leaf cov-

erage is between 90-100%, indicating a tendency to be more frequent in dense forests.

Additionally, another peak in landslide frequency is observed at 30-40% leaf coverage.

The low amount of landslides (8) but high landslide frequency (2.9) in the 30-40% leaves

coverage range indicate that the area is quite small, furthermore providing a high fre-

quency. Compared to for instance the 40-50%, where the landslide frequency drops down

to 0.6, which likely represents a larger area.
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(a)

(b)

Figure 12: a) is illustrating the number of landslides versus the tree type, while b) is show-

ing the number of landslides versus the leaves coverage. The blue bars are showing the

amount of landslides and the red line is showing the landslide frequency, which indicates

how “often” landslides initiate for the respective parameters, see Equation 6 for descrip-

tion.
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Figure 13a) illustrates the amount of landslides versus the number of trees per hectare

with a diameter greater than 5 cm at breast height (1.3 meters above ground). The data

reveals a trend of increasing landslide frequency correlating with a higher density of trees

per hectare. The highest landslide frequency (7.5) occurs in areas with the greatest tree

density, ranging from 2400 to 2800 trees per hectare. Most landslides (34) occur (not

considering where there is no trees) when the mean amount of trees ranges between 1600

to 2000 trees per hectare.

The same trend is observed in Figure 13b) which examines trees with a diameter of 16 cm

at breast height, indicating larger trees compared to a). The highest landslide frequency

(6) again occurs in areas with the greatest tree density, where the mean amount of trees

per hectare range from 800 to 900. Additionally, a smaller peak in landslide frequency

(3.6) is noted where tree density is between 300 and 400 trees per hectare. The amount

of landslides (35) is also highest in this range, not counting areas without trees. The same

peak at 300 and 400 trees per hectare is also seen where the leaves coverage is around

30-40% in Figure 12b).
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(a)

(b)

Figure 13: a) shows trees with a diameter at breast height (1.3 meter above ground) bigger

than 5 cm and b) shows trees with a diameter bigger than 16 cm at breast height. The blue

bars are showing the landslide amount and the red, dotted line is indicating the landslide

frequency, which indicates how “often” landslides initiate for the respective parameters,

see Equation 6 for description.
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Figure 14a) shows the amount of landslides versus the mean tree height (dm). The highest

landslide frequency (3.5) is observed when the tree height is between 15-20 meters. Also

a high landslide frequency (3.1) is seen where the tree height is between 20-25 meters.

The highest amount of landslides (63) is seen when the trees are between 10-15 meters

high, again not considering areas without trees. Additionally, a frequency peak (2.8)

is observed when trees have a height between 0-5 meters. Overall, the figure indicates

highest landslide frequency with greater tree height.

Figure 14b) depicts the amount of landslides versus the mean tree diameter (cm) at breast

height. The highest landslide frequency (2.9) occurs where trees have a diameter of 10-20

cm and 30-40 cm. The actual number of landslides is significantly higher in the 10-20 cm

range (110) compared to the 30-40 cm range (1), despite similar frequency. This indicates

a relatively small area coverage of relatively large trees with a diameter of 30-40 cm.
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(a)

(b)

Figure 14: a) is illustrating the number of landslides versus the mean tree height (dm),

while b) is showing the number of landslides versus the mean tree diameter (cm) at breast

height (1.3 meters above ground). The blue bars are showing the amount of landslides and

the red line is showing the landslide frequency, which indicates how “often” landslides

initiate for the respective parameters, see Equation 6 for description.
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Figure 15 shows the diameter (cm) at breast height and height (m) for the different tree

types inside the study area. The x-axis represents the upper limit of each bin. That means

a diameter between 11-20 cm is placed in the 20 cm bin. It can be seen that the spruce

forest shows a diameter mostly between 10-30 cm, while pine and birch (deciduous) trees

shows primarily diameters of 30 and 20 cm, respectively. The tree height distribution

shows the spruce ranging mostly around 20 meters but has trees reaching 30 meters. Most

pine trees have a tree height of 15 meters , but also 5 meters and 25 meters. The birch

trees are mainly around 10 and 15 meters height, with some at 5 and 20 meters. It can

also be depicted from the figure that the total area of spruce forest is smaller than the area

of pine and birch forests.
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(a)

(b)

Figure 15: a) shows the mean tree diameter (cm) distribution at breast height (1.3 meters

above ground) for the different trees while b) shows the mean tree height (m) distribution.

The blue bars shows spruce, the green bars shows pine and the orange bars shows birch

(deciduous) inside the study area.
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5.2 Results static susceptibility maps

5.2.1 Maps

To be able to compare the two models and the susceptibility maps, an equal break method

was utilized. This process involved classifying the map into four probability classes:

0-0.25, 0.25-0.5, 0.5-0.75, and 0.75-1, which indicate the predicted probabilities of land-

slides from low to high. Low values indicate a “safe area” from mass movement activity

and high values indicate a probability of landslide occurrence. The resulting susceptibil-

ity map produced by the RF model is shown in Figure 16a) and the map generated from

the LR model is shown in Figure 16b).

The area distribution of probabilities in percentages is shown in Figure 17. The figure

presents histograms displaying the area percentages for different probability ranges for

both RF and LR models. The green bars show the RF model while the red bars show the

LR model.

There is a noticeable correlation of susceptibility zones between the two maps. Addition-

ally, the lack of landslides aligns well with the predicted low landslide susceptibility. For

both models, all landslide probability zones (except for the 0-0.25 range) are primarily

located in the valleys of the study area, matching the actual landslide locations.

Both maps show extensive areas of low landslide susceptibility, with around 80% of the

area falling in the 0-0.25 range. RF assigns a higher area percentage (14%) in the 0.25-

0.5 probability range compared to the LR (10%). In the 0.5-0.75 range, both models

exhibit similar results with around 6% area coverage. A notable difference occurs in

the probability range between 0.75-1, where the LR assigns a higher percentage of area

compared to the RF, with 4% against 1%.
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Figure 16: Comparison of susceptibility maps generated from Random Forest (a) and

Logistic Regression (b). The range between 0-0.25 probability has no color in the map.

This was done to emphasize the other probabilities. Vågåmo is marked with a blue star,

and a north arrow and scale bar is placed inside the map. The background map is the

OpenStreetMap in ArcGIS Pro.
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Figure 17: Area percentages of the landslide probabilities shown in Figure 16. The map

generated with Random Forest is shown as green bars and the map generated with Logistic

Regression is shown as red bars. The respective probability zones are indicated on the x-

axis and the area percentages are shown on the y-axis.

5.2.2 Evaluation of model performance

It is observed from Table 9 that the Flow accumulation and the Soil type is contributing

the least to the RF, while the Slope angle is the most important. The Soil type and Slope

aspect has the least influence in the LR, with Slope angle again being the most important.

The VIF varies between 1 and 1.7, indicating no multicollinearity.
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Table 9: Values indicating the Variance Inflation Factor (VIF) and the Feature Importance

for Random Forest and Logistic Regression.

Parameter VIF Random Forest Logistic Regression

Feature importance Feature importance

Slope angle 1.3 0.48 1.49

Root cohesion 1.7 0.21 0.32

Slope aspect 1 0.09 0.15

Tree type 1.7 0.09 0.27

Flow accumulation 1 0.07 0.29

Soil type 1 0.05 0.17

Table 10 shows the TN, FP, FN and TP of both RF and LR. Both models predict almost the

same amount of TP (50 and 49). The most considerate difference is that the LR predicts

more FN and FP, and less TN compared to the RF. Based on the confusion matrix the

performance indicators is shown in Table 11. The RF obtains better scores for all the

indicators compared to LR. The ROC curve can be drawn based on the confusion matrix

and different thresholds, with a corresponding AUC value. The ROC curve is shown in

Figure 18. The curves follow each other closely, with the RF obtaining a slightly higher

AUC value compared to the LR, with 0.93 compared to 0.91.

Table 10: Confusion Matrix from Random Forest and Logistic Regression, indicating the

amount of landslide pixels predicted as TN, FP, FN, and TP.

Random Forest Logistic Regression

Predicted

Negative

Predicted

Positive

Predicted

Negative

Predicted

Positive

Actual Negative 191 14 185 20

Actual Positive 18 50 19 49
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Table 11: Performance indicator values based on the confusion matrix in Table 10.

Performance indicators Random Forest Logistic Regression

Accuracy 0.88 0.86

Precision 0.78 0.71

Efficiency Index 0.61 0.56

Figure 18: Reciever Operating Characteristic (ROC) curve of Random Forest (green) and

Logistic Regression (red) models, indicating the relationship between True Positive Rate

and False Positive Rate. The Area Under the Curve (AUC) is indicated in the legend and

a random predictor model is shown as a grey, dotted line.

Table 12 shows the actual landslide pixels (227 in total) overlaid on the predicted maps

generated by the RF and LR models. The RF assigned 12 actual landslide pixels a prob-
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ability between 0-0.25, while the LR assigns 38 landslide pixels to this range. Moreover,

the RF and LR assigned 50 and 45 landslide pixels, respectively, a probability between

0.25-0.5. For the probability between 0.5-0.75, the RF assigned 84 landslide pixels and

the LR assigned 80 landslide pixels within this range. Finally, in the 0.75-1 probability

range, the RF assigned 81 landslide pixels and the LR assigned 64 landslide pixels.

Table 12: Overview of actual landslide pixels overlaid on the predicted maps generated

by the Random Forest (RF) and Logistic Regression (LR) models.

Probability zones Landslides (RF) Landslides (LR)

0 - 0.25 12 38

0.25 - 0.5 50 45

0.5 - 0.75 84 80

0.75 - 1 81 64

5.3 Results of dynamic susceptibility maps

When reviewing this part of the results, it is important to recognize that the reference

times for August 7 to 10 are as outlined in Table 6.

5.3.1 Maps

The spatio-temporal susceptibility maps are displayed in Figure 19 and 20. The equal

break method was also utilized for these maps. An additional range of landslide probabil-

ity between 0-0.1 was included to illustrate the distribution of landslide susceptibility for

August 7 and 10 in the maps without covering the area completely. The respective prob-

ability zones, ranging from low to high, are therefore defined as 0-0.1, 0.1-0.25, 0.25-0.5,

0.5-0.75 and 0.75-1.

Figure 19 shows the landslide susceptibility maps for August 7 and 8. On August 7 only

small patches of green are visible, for instance around the glaciers in the southwestern part

of the map. Overall, the probability of landslides is low across the study area. In contrast,

on August 8, both the probability of landslides and the affected area is significantly higher.
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The landslide susceptibility is highest in the valley areas, but this time to a much wider

extent compared to the static maps (Figure 16).

Figure 20 shows the landslide susceptibility maps for August 9 and 10. August 9 also

shows high landslide probability over a large area, though not as pronounced as August 8.

The probability of landslides on August 9 is more concentrated on the eastern part of the

map compared to the western part, but also in the valleys. On August 10, the likelihood

of landslides is generally low, mirroring the conditions on August 7. However, there is a

larger area displaying a landslide probability between 0.1-0.25 on August 10 compared to

August 7. Nonetheless, the overall probability of landslides remains low.

Figure 19: Comparison of susceptibility maps generated from Random Forest model for

August 7 and 8. The range between 0-0.1 probability has no color in the map. The

background map is the OpenStreetMap in ArcGIS Pro.
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Figure 20: Comparison of susceptibility maps generated from Random Forest model for

August 9 and 10. The range between 0-0.1 probability has no color in the map. The

background map is the OpenStreetMap in ArcGIS Pro.

Figure 21 shows the area percentage of different probability ranges for each day. Both

August 7 and 10 are completely covered in landslide probabilities within the 0-0.25 range.

On August 8, 80% of the area falls within this range, while on August 9, it is 92%. All

landslide probability ranges are present on August 8 and 9, with August 8 consistently

covering a larger area than August 9 across the highest probability ranges. Specifically,

in the 0.25-0.5 range, August 8 displays 12% area coverage compared to 5% on August

9. For the 0-5-0.75 range, August 8 covers 5% of the area while August 9 covers 2%. In

the highest probability range (0.75-1), August 8 covers 3% whereas August 9 covers 1%.
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Figure 21: Percentages of the different landslide probabilities during August 7-10. The

respective probability zones are indicated on the x-axis and the area percentage is shown

on the y-axis.

Figure 22 displays the same susceptibility maps as before for August 8 and 9, but this time

representing landslides that initiated on the respective dates. The distribution of landslide

probability and landslide initiation points correlate quite well on August 8. The landslide

susceptibility covers large areas but seems to follow the pattern of landslide locations.

Similarly, on August 9, areas of high predicted landslide probability are primarily con-

centrated in the eastern part of the map, aligning with the spatial distribution of landslide

initiation areas.
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Figure 22: Susceptibility maps and corresponding landslide initiation points on different

dates, August 8 and 9. The range between 0-0.1 probability has no color in the map. The

background map is the OpenStreetMap in ArcGIS Pro.

5.3.2 Evaluation of model performance

Table 13 shows the feature importance. It is seen that Tree type, Slope Aspect and Flow

Accumulation has a much lower value compared to the other features. Slope angle was

the most important feature followed by precipitation. Soil saturation and root cohesion

are equally important. The VIF is not included here as the RF is not affected by multicol-

linearity in the same way as the LR (Yao et al. 2023). This is because the RF generates

an ensemble of decision trees instead of assigning weights to the different parameters

(Section 2).
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Table 13: Feature importance from Random Forest model with dynamic approach.

Parameter Feature Importance

Slope angle 0.33

Precipitation 0.26

Root cohesion 0.16

Soil saturation degree 0.16

Tree type 0.05

Slope aspect 0.03

Flow accumulation 0.02

The confusion matrices for August 7 to 10 is shown in Table 14 and 15. August 7 and 9

had 149 and 178 test pixels, respectively, and the model accurately predicted all of them

as TN. On August 8 the model correctly predicted 48 TP and 167 TN, but also predicted

17 FP and seven FN. On August 9, it successfully predicted 166 TN and 10 TP, with five

occurrences of FP and three occurrences of FN.

Table 14: Confusion Matrix from Random Forest, indicating the amount of landslide

pixels predicted either as TN, FP, FN, and TP for August 7 and 8.

August 7 August 8

Predicted

Negative

Predicted

Positive

Predicted

Negative

Predicted

Positive

Actual Negative 149 0 167 17

Actual Positive 0 0 7 48

Table 15: Confusion Matrix from Random Forest, indicating the amount of landslide

pixels predicted either as TN, FP, FN, and TP for August 9 and 10.

August 9 August 10

Predicted

Negative

Predicted

Positive

Predicted

Negative

Predicted

Positive

Actual Negative 166 5 178 0

Actual Positive 3 10 0 0
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Performance indicators of August 8 and 9 is given in Table 16. Unfortunately, it cannot

be assigned performance indicators for August 7 and 10 since the confusion matrix does

not include any TP, FP or FN. It is therefore not feasible to compute the ROC curve either.

Considering August 8 and 9, the precision and EI are higher for August 8 compared to

August 9. Precision reach a value of 0.74 and 0.67, while the EI reach a value of 0.67

and 0.56. The accuracy is relatively high, primarily because of the substantial number of

correctly predicted TN. The ROC curve and AUC value for August 8 and 9 are displayed

in Figure 23.

Table 16: Performance indicator values of August 8 and 9 based on the confusion matrices

in Table 14 and 15.

Performance indicators August 8 August 9

Accuracy 0.9 0.96

Precision 0.74 0.67

Efficiency Index 0.67 0.56
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Figure 23: Receiver Operating Characteristic (ROC) curve of August 8 and 9 with Ran-

dom Forest. The ROC curve is indicating the relationship between True Positive Rate and

False Positive Rate. The Area Under the Curve (AUC) is indicated in the legend and a

ROC curve equal to 0.5 is shown as a grey, dotted line.

In order to show the performance of the model including August 7 and 10, a discrim-

ination diagram was made (Figure 24). The discrimination diagram plots the likelihood

of landslide against the predicted probability for “Observed” cases (Landslide) and “Not

Observed” cases (No landslide) (CAWCR 2015). The y-axis represents the likelihood that

a given prediction (landslide or no landslide) falls within a specific probability bin. Per-

fect discrimination would be no overlapping bars, where the “Observed” bars are entirely
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separate from “Not Observed”. Overlapping bars indicate some model uncertainty.

Figure 24 shows good results for “Not Observed” cases, with a zero probability of land-

slide having a likelihood of 0.85. Although bars are present in the probability bins up

to 0.8, they have a low likelihood. The “Observed” bins are predominantly located in

the higher probability ranges, with the highest likelihood (0.4) occurring at a predicted

probability of 0.8. The “Observed” cases are, like the “Not Observed”, spread across the

probability ranges but with generally low likelihood. Overall, the discrimination diagram

indicates that the model has a high likelihood of correctly predicting TN, and a lower

likelihood when predicting TP. This is also evident in the confusion matrices (Table 14

and 15).

Figure 24: Discrimination Diagram for August 7 to 10. The likelihood represent the prob-

ability that a given prediction falls within a specific bin. The specific bins of probability

for landslides is shown on the x-axis. The orange bars are cases of “Not Observed” cases

(Not landslides). “Observed” cases are shown as blue bars and indicate cases of land-

slides.
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Table 17 shows the actual landslide pixels overlaid on the predicted rasters generated by

the RF model for August 8 and 9. August 7 and 10 are excluded since no landslides

occurred on these days and the susceptibility maps only showed landslide probabilities in

the 0-0.25 probability range. Only the landslides that actually initiated on the respective

dates were accounted for (Section 4.1.2), totaling 175 landslides on August 8 and 52 on

August 9 (227 in total).

The model predicted eight actual landslide pixels on August 8 and six on August 9 within

the 0-0.25 probability range. In the 0.25-0.5 probability range, August 8 assigned 26

landslide pixels and August 9 assigned six. August 8 assigned 39 landslide pixels with a

probability between 0.5-0.75, while August 9 assigned 15 within this range. Finally, in the

0.75-1 probability range, August 8 assigned 102 landslide pixels and August 9 assigned

30 landslide pixels.

Table 17: Overview of actual landslide pixels on respective dates from the inventory

overlaid on the predicted rasters generated by the Random Forest model for August 8 and

9.

Probability zones Landslides August 8 Landslides August 9

0 - 0.25 8 1

0.25 - 0.5 26 6

0.5 - 0.75 39 15

0.75 - 1 102 30
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6 Discussion

6.1 Forest and terrain influence on landslide initiations

The results indicate that areas with the highest trees per hectare experience the greatest

landslide frequency (Figure 13). Furthermore, a leaf coverage of 90-100% is also associ-

ated with higher landslide frequencies. This suggests a pattern where denser forests are

more prone to landslides, despite the general stabilizing effect of roots on slopes (Section

2.5). Denser forests have more extensive root systems that cross the potential slip sur-

face, thereby increasing stability (Genet, Stokes, Fourcaud et al. 2010). The results could

instead possibly be explained by denser forests contributing to a heavier weight on the

soil compared to a less dense forest – increasing the driving forces of a possible landslide

(Rickli and Graf 2009).

Figure 14a) shows that landslide frequency is highest when the tree height is around 15-

25 meters and the tree diameter is between 10-20 cm or 30-40 cm. This indicates quite

large trees that weighs more, further enhancing the driving forces behind potential land-

slides. Ziemer (1981b) argues however that for most mature forests, the weight of the

soil overlying a potential failure plane far exceeds the weight of the trees. If weight does

become a problem, it is usually in the cohesive soil during heavy rain when the weight of

increased soil moisture increases shear stress.

In this study, increased shear stress from the weight of a thick, saturated soil layer is likely

not a contributing factor. It is instead presumed that the soil layer where landslides initi-

ated is thin (Hågensen 2023). This was confirmed through site inspections in the field by

NGI, and can also be visualized in Figure 25, which is a photo taken from Ottadalen by

Anders Kleiven after the storm Hans. Additionally, Hågensen (2023) shows that 38 land-

slides initiated in bedrock (Appendix, Figure 29). Landslides cannot initiate in bedrock

due to the absence of soil. Further investigation proved that most of these landslides were

in fact located in deciduous forest. Soil is necessary for forest growth. The combination

of the field work, NGU classifying forested area as bedrock and that the forest contain

deciduous trees with typical shallow roots (Planteportalen n.d.), suggests that the area is

covered in a thin soil layer. Root depths in a thin soil layer is generally assumed to be
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limited due to the underlying bedrock, not providing further stability (Hasenmueller et al.

2017; Mauer and Palátová 2003).

Figure 25: Picture of a landslide in Ottadalen after Hans in August, 2023. The picture is

taken by Anders Kleiven, NGI. The thin soil layer on top of bedrock is clearly seen along

with quite dense forest in the area.

The immediate risk of shallow landslides depends on how quickly water is supplied and

the extent to which the soil is already saturated with water (Crozier 2010; J. Li et al. 2021;

NGI 2014). During heavy precipitation events, a thin soil layer on top of an impermeable

bedrock cover likely experiences a rapid increase in pore pressures. Furthermore, accord-

ing to the soil map produced by NGU and the forest resource map (SR16R) produced

by NIBIO, bare bedrock is situated higher up, above a lot of the forested areas where

landslides initiated. This could contribute to increased flow accumulation into the forests,

additionally increasing the pore pressures.

Forests means that there is underground biomass and therefore a presence of root co-

hesion. Root cohesion enhances the mechanical stabilization of a soil slope, providing
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increased resistance against shallow landslides (L. Zhang et al. 2021). The findings from

Masi, Tofani et al. (2023), which considers the modelled slope stability effect of plant

roots on shallow landslides in Italy, was that root cohesion undoubtedly contributes to

higher slope stability. Another finding from Masi, Tofani et al. (2023) however, was that

root cohesion had minimal impact particularly when saturated conditions were reached. A

storm like Hans brought a large amount of precipitation and hence a high soil saturation.

The modelled soil saturation reached 110% several places inside the study area (Figure

11 and Appendix, Figure 34a and 35a). That indicates a fully saturated soil, resembling

flowing water (Terzaghi et al. 1996). Under such conditions, the stabilizing effect of root

cohesion is likely diminished. Also Z. Guo et al. (2023) emphasize that the impact of

more intense rainfall is greater than the stabilizing effect of more forests on landslide sus-

ceptibility. When rainfall is excessively heavy, the land cover becomes irrelevant because

the preventive factors do not have sufficient time to stabilize the slope.

Figure 26 demonstrates the stabilizing influence of forests on slopes. The box plot com-

pares the slope angles where landslides initiated in forested versus non-forested areas. It

is observed that slope angles are generally steeper in forested areas than in non-forested

areas. This observation aligns with findings from the study by Rickli and Graf (2009),

who suggest that the increased slope angles in forested areas are primarily due to soil

reinforcement provided by tree roots.
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Figure 26: Box plot illustrating the distribution of landslide occurrences based on slope

angle, categorized by whether they initiated in forested or non-forested areas. Outliers are

represented as dots outside the box, and the orange line indicates the median value.

The initiation of shallow landslides depends on the interactions between soil physical

properties, hillslope hydrology, and below-ground ecologic processes (Hwang et al. 2015).

The reason for landslide initiation is complex and depend on several different factors. In

this case, factors such as a thin soil layer, heavy precipitation increasing pore pressures

and reducing root cohesion, additional weight from dense forests and potential increased

flow accumulation into forested areas due to overlying bedrock, are all potential factors

contributing to the predominance of landslides initiating in forested regions. Despite

that forests have been shown to have a stabilizing effect on slopes, this study shows that

there are complicating factors where the result is that many shallow landslides happen in

densely forested areas.

6.1.1 Birch forests vs. spruce and pine forests

According to Figure 12, most landslides initiated in birch forests compared to non-forested

areas and spruce and pine forests. Firstly, a reason could be that the roots of birch devel-
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ops long reaching, lateral root systems with age (Mauer and Palátová 2003). Pine, on the

other hand, have deep roots if the soil allows for it. Deeper roots anchor through the soil

mass into bedrock fractures or more stable soil layers, and contribute with interlocking

bindings within weaker soil masses (Ziemer 1981b). Also, the roots produce an apparent

cohesion through root fiber reinforcement (Schmidt et al. 2001). This could explain why

more landslide initiated in birch forest compared to pine forest. The spruce roots however

are also shallow. This means the roots would contribute to slope stability in the same way

as birch trees. The total area of spruce is half that of pine and birch trees within the study

area. The area covered by spruce, pine and birch forests inside the study area is 157,

399 and 354 square km, respectively. A larger area automatically increase the chance of

landslide.

Secondly, unlike spruce and pine trees, which have needles, birch trees bear leaves which

make it more susceptible to adverse wind forces. Leaves and a big tree canopy are more

easily caught by unfavorable wind forces, possibly moving the tree and exerting shear

stress into the soil (Rickli and Graf 2009). During the storm Hans, wind speeds reached

15 m
s according to weather stations surrounding the study area (Klimaservicesenter 2023).

However, Ziemer (1981b) argues that the shear stress contributed by trees subjected to an

22 m
s wind is not likely to exert a strong influence on slope stability. Despite this, some

soil movement due to wind exerting force on the trees is still likely.

Finally, a more speculative argument is proposed. Figure 15 shows the tree height and

diameter. The birch trees in the study area have reached their maximum typical size, in-

dicating that this could be an older, mature forest (Grindeland 2023). The pine and spruce

on the other hand could reach heights of 40-50 meters, but they only reach 25 meters or

below. This could indicate young forests (Aarnes 2014; Sunding et al. 2024). Older trees

possess more underground biomass and consequently greater root cohesion (Equation 4,

Enquist et al. 2020; Hwang et al. 2015). Thus, landslide probability should decrease with

tree age. A possible explanation for more landslides in birch forests could therefore be

that older forest contain numerous dead trees. After 15 to 20 years after the tree death,

the root system loses most of its soil-stabilizing function because the root strength loss

can be assumed proportional to root biomass loss (Ammann et al. 2009; Ziemer 1981a).

A healthier tree gives higher tensile strength and therefore a higher contribution from the
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roots to the stabilizing of slopes (Ammann et al. 2009; Ziemer 1981a). Dead trees would

therefore add weight and contribute with little stabilizing benefit, potentially increasing

landslide risk. The amount of dead trees is however unknown.

6.2 Static susceptibility maps

Utilizing ML methods is a growing trend in susceptibility mapping (Ado et al. 2022;

Nocentini et al. 2023). Regional landslide susceptibility mapping is a contentious topic

due to the ongoing risks it addresses in various regions around the world (Merghadi et al.

2020). ML techniques show significant promise when tackling the challenge of predicting

landslides over a large region (Goetz, Brenning et al. 2015). They serve as a good base

for mapping large areas that are inaccessible and with limited geological and geotechnical

data (Youssef and Pourghasemi 2021). ML models are therefore emerging as cost effect-

ive ways to assess landslide susceptibility as an alternative or complementary method to

costly and time consuming field mapping.

6.2.1 Model performance

Generally, ensemble algorithms (RF) outperform single-classifier (LR) algorithms (Ado

et al. 2022). Based on several studies investigating ML based spatial landslide susceptib-

ility mapping, the AUC of the RF is usually greater than 0.9 while the AUC of the LR is

usually greater than 0.8 (Ado et al. 2022; Kavzoglu et al. 2019; Khaliq et al. 2023; Liu

et al. 2021; Merghadi et al. 2020; Micheletti et al. 2014; Youssef and Pourghasemi 2021).

The RF and LR model obtained an AUC of 0.93 and 0.91 in this study, respectively. An

AUC greater than 0.9 indicates excellent model performance, generating highly reliable

susceptibility maps (Ado et al. 2022; Çorbacıoğlu and Aksel 2023). Both model perform-

ances obtained excellent results (Altexsoft 2022; Bajaj 2023; Barkved 2022), with the RF

model doing a bit better than the LR model.

The most important difference in the landslide prediction between the models was in

the range of high landslide probability (0.75-1). The LR model predicted around 4% of

the study area to be in this category, while the RF model only predicted it for around
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1%. Although the difference seems small, a probability range of 0.75-1 suggests a high

likelihood of landslides. Relying on the models could necessitate costly preventative

measures. This emphasizes the importance of ensuring the model’s accuracy for effective

prioritization and resource allocation.

Table 12 depicts the distribution of landslide probabilities generated by either the RF or

LR model at actual landslide locations. A notable finding from the LR-generated sus-

ceptibility map is the high number of landslide pixels (38) having a probability range

between 0-0.25. Ideally, an actual landslide should be assigned a probability range of

0.75-1. The RF model demonstrates a better capability in assigning more realistic prob-

abilities to pixels where landslides occurred (12 instead of 38 in the 0-0.25 probability

range, and 81 compared to 64 in the probability range 0.75-1). The difference between

the two models is likely due to the RF model’s ability to capture more complex interac-

tions between input parameters compared to the LR model (Catani et al. 2013; Yao et al.

2023). LR assumes a linear relationship between the input parameters and the log-odds

of the outcome, which might not capture the complexity as effectively. Additionally, the

feature importance of the Slope angle in the LR model is quite high compared to the other

parameters, likely resulting in lower probability values for landslides in areas with gentle

slopes, even though landslides also occurred there. The table provides an indication of

the model performance, further demonstrating the RF models superiority.

It is important to remember that in reality, not one model is correct and several different

changes to the process could change the performance (Chowdhury et al. 2024; J. Li et al.

2021; Tehrani et al. 2022). Changes to for instance parameters, model setup, sampling

design or pre-processing of data can alter the outcomes (Goetz, Brenning et al. 2015), and

care must be taken to assess model performance. The tendency from other studies is to

utilize several different models and move on with the model that performs best (Tehrani

et al. 2022).

6.2.2 Input parameters

According to Ado et al. (2022), which presents a meta-study that surveys ML models used

for landslide susceptibility mapping, commonly used parameters in ML models include
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slope degree, slope aspect, curvature, geology, rainfall, distance to rivers, land use land

cover, normalized difference vegetation index and distance to roads. The typical amount

of input parameters lies between 9-18 parameters (Tehrani et al. 2022). Too many para-

meters complicates the model and could lead to overfitting (Liu et al. 2021; Micheletti

et al. 2014; Zhou et al. 2018). This happens because the model acquires the capacity to fit

to a wide variety of data, including the sample noise present in the training data.

This study utilized six parameters for the static approach. An essential part of ML

and landslide susceptibility mapping lie in the selection of input data (J. Li et al. 2021;

Merghadi et al. 2020). If not all relevant parameters are included, the algorithm identify

certain inputs as important without knowing how their significance might change if addi-

tional data were included. Parameters that appear crucial could become less significant.

One example of this is shown from Table 9, which indicates the feature importance. Land-

slides occur only within specific slope angles, making this a crucial factor. It is evident

that the Slope angle is the most critical parameter in both the RF and LR models. How-

ever, the feature importance assigned to the slope angle is quite large compared to the

other parameters, especially in the LR model. This causes the models to predict a prob-

ability of landslides on glaciers, where landslides do not occur. The models currently

only differentiate between land covers based on soil and tree type. Incorporating a Land

Use and Land Cover (LULC) map could enhance the models’ capacity to differentiate

between various land use categories, such as urban areas, agricultural zones, and glaciers.

This additional parameter might facilitate the identification of areas where landslides are

unlikely to occur, such as glaciers (Heggem et al. 2019).

The importance of the soil type feature in both models is interesting. A lot of the land-

slides in the landslide inventory from this study, and in Norway in general, initiate in

valley slopes where the superficial deposits is till (Appendix, Figure 31, NGI 2014). If

the soil is till and the slope is greater than 30°, it is an indication that the potential land-

or debris flow hazard could be significant (NGI 2014). However, soil type was the least

and second least important feature in the RF and LR models, respectively, even though

73% of the landslides in the inventory initiated in either thick or thin till (Appendix, Fig-

ure 29). One would expect the model to pick up on this to a larger extent. In the study

conducted by Ng et al. (2021), geology performed worst among 15 controlling factors.
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They attributed this to the fact that most landslides occurred on geological types that

covered large areas, making it difficult to identify specific geological conditions favorable

for landslides. Similarly, in this study, thick till covers 1222 km2 and thin till covers 968

km2 out of a total of 3071 km2. This extensive coverage may hinder the model’s ability to

pinpoint favorable soil types for landslides, as most landslides initiated in till. Also, with

the resolution of 1:50,000 in the soil map, the quality could affect model performance.

One solution could be to differentiate the till even further (Ng et al. 2021). Three different

tills was distinguished in the area on the basis of textural and structural analyses and an

investigation of the till stratigraphy was performed (Bergersen and Garnes 1972; Hole and

Bergersen 1981). However, acquiring this detailed information considering the extent of

the study area would be extremely time-consuming. It is beyond the scope of this study,

but could be an interesting topic for future studies.

6.2.3 Limitations

A notable limitation in this study, which is common for landslide predictions, is imbal-

ance of the datasets. To perform predictions of landslide susceptibility in the study area,

the dataset was randomly undersampled from a total of 30 million pixels down to less

than 0.1% to prevent excessive computational time. This undersampling involves remov-

ing possible critical information regarding the no-landslide pixels. One possible way of

minimizing the need for undersampling could be to lower the data resolution. The res-

olution of the DTM does not necessarily have to be as precise as possible to get the best

outcome (Merghadi et al. 2020; Tehrani et al. 2022). A lower resolution would result in

less pixels and furthermore less computational demand.

Another way to minimize imbalance of the dataset, which is additionally another signi-

ficant limitation, is the assumption that the release area of the landslide is only limited

to a 10m x 10m area, equivalent to one pixel. Shallow landslides do have a small source

area and can be characterized almost as a point (Ruther et al. 2022). However, it must

be realized that the release area could be larger or smaller than a 10m x 10m area. If the

release area of the landslide is large, it would result in more landslide pixels, increasing

the landslide dataset and decreasing the imbalance. Simultaneously, it could complicate
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the discrimination process of the models as a larger landslide release area could consist

of different types of soil. Previous studies on the same topic use the release area (Liu

et al. 2021). The release area information was unfortunately not included in the landslide

inventory, only as a combination of release area and run-out area.

Both the ratio no−landslide
landslide and the split ratio between training and testing sets can be

sources of error in ML methods. The split ratio 70/30 is used by several studies and have

shown good results (Achu et al. 2023; Ado et al. 2022; Liu et al. 2021; Yang et al. 2023).

Therefore the use of this split ratio can be supported. However, the no−landslide
landslide ratio is

less straightforward. In this study, a ratio of 3:1 was used, although other research has

explored various ratios such as 1:1, 2:1, 3:1 and 4:1 (Akinci and Zeybek 2021; Goetz,

Brenning et al. 2015; Kavzoglu et al. 2019; Liu et al. 2021; Pourghasemi et al. 2020). The

optimal ratio differs between studies since the study areas are different and use different

models (Yang et al. 2023). Therefore, it is difficult to obtain the optimal ratio for a specific

area from previous studies, and a certain ratio could contribute to inaccuracies (Yang et al.

2023). Deciding on a 3:1 ratio for both RF and LR models was done to be able to compare

the models using the same ratio. However, this may bias the results against the LR model,

which performed worse than the RF model.

6.3 Dynamic susceptibility maps

In this study, an attempt to integrate dynamic variables such as precipitation and soil

saturation into susceptibility modelling is proposed. Since the use of ML-based spatio-

temporal landslide susceptibility maps are still in the preliminary phase (Khaliq et al.

2023; Nocentini et al. 2023; Tehrani et al. 2022), comparing the results to other work is

difficult. There are, however, studies that apply similar methods as proposed in this study,

while other studies use different approaches (Canoglu et al. 2019; J. Li et al. 2021; Ng

et al. 2021; Nocentini et al. 2023; Pradhan et al. 2019; Segoni et al. 2018).
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6.3.1 Model performance

Considering the performance indicators of the RF model, a slightly lower precision is

observed when compared to the RF model on static parameters (Table 11 and 16). The EI

on August 8 is performing better compared to the static approach, but slightly worse again

on August 9. The accuracy remains high, and the ROC curve and AUC shows improved

results for August 8 and 9 compared to the static ROC curves (Figure 23). AUC values of

0.94 and 0.98 indicates excellent model performance. The discrimination diagram show

that the model is good at predicting TN, but not as good at predicting TP. Overall, the

model performance is strong.

The generated susceptibility maps highlight the significance of rainfall and soil saturation

in the model. Between August 7 and 10, when precipitation amounts were low, the pre-

dicted probability of landslides across the study area was also low (Figure 19, 20). This

is consistent with observations, as no landslides occurred on these dates. Conversely, on

August 8 and 9, the maps show a markedly different scenario. The predicted probability

of landslides was much higher and spanned a broader area (Figure 19, 20, 21). The ex-

treme precipitation on these dates corresponded with numerous landslides in the area, and

the model’s output therefore appears reasonable.

Another interesting feature can be seen by investigating the landslides and corresponding

landslide susceptibility map on August 9 (Figure 22). The predicted high-probability

landslide areas are primarily located in the southeastern part of the map, which aligns with

the region that experienced heavier rainfall (Figure 10). The actual landslide occurrences

on August 9 are also concentrated in this area, confirming the alignment between observed

and predicted spatial distributions of landslides. The trend is less distinct on August 8 due

to a broader spatial distribution of landslides. However, the probability zones are also

spread across the study area, indicating a similar trend.

Table 17 depicts the distribution of landslide probabilities generated by the RF model at

actual landslide locations for August 8 and 9. In contrast to the static approach (Table

12), where especially the LR model assigned several actual landslides a low probability,

the RF model in the dynamic approach provide reasonable probabilities to observed land-

slides. On August 8, 102 actual landslides were assigned a probability value of 0.75 - 1,
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while 30 landslides fell into this range on August 9. Although some landslides received

lower probabilities, the numbers were fewer compared to the static approach. This dis-

crepancy could be due to the larger area coverage of higher probabilities for August 8

and 9 compared to the static maps. Additionally, the total amount of landslides are fewer

on August 8 and 9 due to the landslide separation based on the landslide initiation dates.

However, the results further highlights the high predictive abilities of the RF model.

6.3.2 The role of input parameters

There are several possible dynamic factors that can be considered in a spatio-temporal

evaluation (J. Li et al. 2021; Ng et al. 2021; Nocentini et al. 2023; Pradhan et al. 2019;

Segoni et al. 2018). For instance, factors such as the 3-hour cumulative rainfall, ante-

cedent rainfall or the sum of cumulative rainfall during a storm or a certain period are

all providing information on landslide initiation criteria. The cumulative rainfall would

give an indication towards which rainfall thresholds that trigger landslides. An investiga-

tion of the 3-hour cumulative rainfall could provide information on what rainfall intensity

that affects landslide initiation. The antecedent rainfall provide information on the soil

saturation leading up to landslides. For an analysis considering these factors, precise

information on the initiation date and time of landslides would be necessary. This in-

formation was unavailable for this study. On the other hand, studies that has access to

this information showed that either the 2-day cumulative rainfall or the 12-hour rolling

(average) rainfall was the most important factor (Ng et al. 2021; Nocentini et al. 2023).

Based on this, the dynamic input of the 24-hour cumulative rainfall and soil saturation

used in this study is reasonable. This enhances the model’s predictive capabilities re-

garding landslide probabilities during storm scenarios, where precipitation levels and soil

saturation vary. It is important to keep in mind that the extreme event Hans is the basis for

the model experiments in this study. This corresponds to large rainfall amounts during a

short time. It is therefore possible that the model could underestimate the landslide prob-

ability of quite large precipitation amounts that are still below Hans level, or overestimate

landslide probability for precipitation amounts that exceeds Hans levels. Training the

model on different storm events would provide changing precipitation amounts and soil

saturation, making model prediction likely more accurate and realistic. This would, how-
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ever, only be relevant for an area with the same local climate as Ottadalen, where precip-

itation amounts during Hans was extreme. It is likely that the model would overestimate

landslide probability if applied to western parts of Norway, where average precipitation

amounts are considerably higher compared to Ottadalen.

6.3.3 Limitations

Although the results are promising, there are some important considerations to note. One

is for instance the 1km x 1km grid size of the precipitation and soil saturation data, which

is significantly larger than the other data resolutions (Table 3). When this data is res-

ampled to 10m x 10m, many smaller pixels within the larger grid retain similar values,

creating large areas of uniform data. Due to the high feature importance of rainfall and

soil saturation, the 1km x 1km squares are visible in the maps as quite distinct breaks

or lines. This does not accurately represent real-life conditions, introducing a degree of

inaccuracy in the maps.

Also, the ratio no−landslide
landslide for the dynamic approach was specifically important. Based on

the inputs, the ML model learns a “rule” that produces the desired outcome (Tehrani et al.

2022). If the ratio was too small, precipitation would exhibit a disproportionately large

feature importance compared to the other parameters, even the slope angle. This resulted

in flat areas with no inclination being assigned a high landslide probability, which is illo-

gical and not realistic. Changing the ratio allowed for the feature importance of different

parameters to be adjusted and determined by the user. In essence, the user could alter the

“rules” learned by the algorithm. This emphasizes the structure of a supervised ML model

where the inputs and model configuration is important. If the user is inexperienced, this

could lead to inaccurate landslide susceptibility maps.

Information on exact landslide initiation time and date is essential to associate each land-

slide to the respective triggering rainfall (Nocentini et al. 2023). The exact time and date

information was not provided for the majority of the landslides in this study. The as-

sumption that landslides initiated during the most intense rainfall aligns with theoretical

expectations, but it may not always be accurate or representative of real-life scenarios.

Acquiring this information for a large amount of landslides is however difficult, as land-
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slides are usually not observed as they happen, storms and heavy rainfall usually bring

clouds which makes it hard for determining exact timing of landslides with satellites, and

considering the wide spatial distribution of (perhaps small) landslides over large areas

(Abanco et al. 2021; Rüther et al. 2024). Developing methods to acquire landslide invent-

ory data fast and gaining information about the timing of landslides is of crucial interest

in further spatio-temporal landslide susceptibility mapping. This is, again, beyond the

scope of this study. However, satellite images, other aerial images, citizen science, field

work, reports from locals, newspapers or in NVE database, or Copernicus rapid mapping

commissioned by NVE could provide insights into developing such methods (Rüther et

al. 2024).

6.4 Future studies

6.4.1 Future research with significant resources

In a research project with comprehensive funding the following ideas are proposed. The

ML models in this study produce quite accurate but probably site-specific susceptibility

maps, which are likely to be inaccurate when predicting landslides in different geograph-

ical areas. This is an important but often neglected aspect of ML modelling – how the

model performs in areas beyond the training area (D. Sun et al. 2020; Tehrani et al. 2022).

Many studies, including this one, evaluate the performance indicators of the models in the

same area to determine whether the model prediction was a success or not. Developing

a well-performing, generalized model across different geographical areas can be challen-

ging due to significant variations in input parameters, which increases complexity and the

risk of overfitting. D. Sun et al. (2020) investigates how two supervised model performs

on new, unseen area, but for two quite similar areas with respect to input parameters.

The model showed good generalizing abilities. A well-performing, generalized model

would offer uniform evaluation across areas and optimize resource allocation, reducing

the workload and efficiency in practice (D. Sun et al. 2020).

Tehrani et al. (2022) express skepticism about the immediate development of such gen-

eralized (almost global coverage) models. However, they emphasize the potential in for

instance integrating ML methods with physically-based models, into a hybrid physics-ML
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model. Perhaps also supervised models in combination with unsupervised, deep learning,

statistical methods or other hybrid methods offers possibilities regarding good generaliz-

ing models.

Unsupervised learning methods have been applied less frequently than supervised meth-

ods and the unlabeled datasets makes the unsupervised ML methods less popular (Tehrani

et al. 2022). Chang et al. (2020) compares two supervised and two unsupervised models,

finding that the supervised models perform better, suggesting a potential limitation in the

effectiveness of unsupervised methods for this application.

Deep learning models (a sub-set of ML), on the other hand, have shown promising res-

ults and often outperform some supervised models (Azarafza et al. 2021; Habumugisha

et al. 2022; Mondini et al. 2023; Ngo et al. 2021; Wang, Fang et al. 2019; T. Zhang et al.

2022). Also hybrid methods, which combine different models, generally perform better

than standalone models (Ado et al. 2022; X. Chen and W. Chen 2021; Fang et al. 2020;

Lv et al. 2022; Mavaie et al. 2023; Nguyen et al. 2019; Su et al. 2023). These models,

in combination with physically-based models and heuristic approaches, might provide

valuable insights and could be worth exploring further to gain a more robust and gen-

eralized assessment of regional landslide susceptibility. The potential of gaining a well

generalized model is undoubtedly evident and could enhance the effectiveness and preci-

sion of regional landslide susceptibility mapping. The growing interest in tackling these

challenges highlights the potential for wider practical application (Tehrani et al. 2022).

6.4.2 Future research (master theses) with limited resources

The above proposed future research requires extensive resources (computing and field

work costs) and time, making it challenging for master’s students. Instead, students could

explore testing deep-learning or hybrid methods – experimenting with several and con-

tinuing with the best-performing model – within the study area described in this thesis

or in other areas with extensive landslide inventories. They should use both new and

perhaps some existing input parameters as used in this study, but also attempt to imple-

ment the different types of landslides that occur in the respective areas. This study was

not able to implement the different types of landslides, and evaluated every landslide as
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the same. For a well-performing generalization model that can distinguish between dif-

ferent geographical areas, the ability to differentiate between types of landslides are of

high importance. The differentiation enhances resource allocation and addresses the fact

that different types of landslides occur throughout Norway (NVE 2023a). Taalab et al.

(2018) attempted this, and the results show that there is significant scope to develop a

joint classification-susceptibility model.

Here follows some proposed questions for future studies, that could aid in the generaliza-

tion process of models:

Are models able to predict not only landslide susceptibility, but also what types of land-

slides that might occur? Is, for instance, the landslide susceptibility predicted by ML

models different in the three till-layers mentioned earlier (Section 3)?

How can we quickly and precisely gather a landslide inventory, which includes informa-

tion on release areas and the date and time of landslides, to utilize it in a spatio-temporal

landslide investigation?

87



7 Conclusion

Norway is expected to experience more intense precipitation and higher temperatures in

a changing climate. Hans could thus be considered a “normal” storm in future scenarios,

but is such weather even “normal” today? The year 2023 was the most expensive year

concerning weather and natural disaster damages so far, reaching 7.4 billion Norwegian

Kroner in total (Ruth 2024). The costs related to increased landslide activity in the future

is also expected to rise.

This study have investigated different forest parameters to gain a deeper understanding

of the forest’s role in landslide triggering. Additionally, two different machine learning

(ML) models, Logistic Regression (LR) and Random Forest (RF), was utilized to explore

the predictive abilities regarding landslides and to allow for a comparison between the two

models. The implementation of dynamic parameters such as rainfall and soil saturation in

the RF algorithm was additionally carried out, providing a proposed method of generating

spatio-temporal landslide susceptibility maps. Based on this study an attempt to answer

the research questions are as follows.

• Is it possible to identify whether certain forests or forest parameters are com-

mon for landslide triggering?

It is widely known (or perhaps assumed) that trees and roots contribute to the slope

stability by reducing the amount of water in the soil and providing additional lateral

reinforcement. In this study it is shown that landslide frequency was higher in areas

where the forest was larger, thicker and denser. The predominance of landslides

initiating in forested regions is most likely because of the additional weight from

the forests in combination with a commonly thin soil layer, and high pore pressures

during the extreme weather event Hans.

The fact that the birch forest covers a relatively large area, grows shallow roots,

has leaves, and is potentially older and therefore containing dead trees, could be

reasons for more landslides initiating in this type of forest compared to spruce and

pine forests. There are however a lot of uncertainty, and further investigation/field

work needs to be conducted to conclude on this.

88



• Can machine learning models create efficient, spatio-temporal landslide sus-

ceptibility maps?

The models in this study show promising results with respect to performance and

could therefore be suitable to predict the spatio-temporal distribution of landslides

over a large area. On the other hand, several factors necessitate caution when inter-

preting the results of this study. These include (i) data quality and resolution, (ii)

the use of single pixels instead of the actual release areas, (iii) the choice of input

parameters, models and ratios as they always vary differently, (iv) the influence of

user decisions on feature importance in the models, and (v) the insufficient data

on the timing of landslide initiation. It is essential to consider these factors when

interpreting the generated spatial and spatio-temporal susceptibility maps.

• Can machine learning models be utilized for other areas or storm events in

Norway to predict landslides?

The input parameters in this study are highly site-specific. For areas characterized

by the same type of climate, geology and vegetation as the study area, the models

could likely generate susceptibility maps for a large region. In a different region,

such as the western part of Norway, it is probable that the models would not gener-

ate accurate maps. This discrepancy arises from variations in geographical features

and corresponding input parameters. If the model was presented to other storm

events, it might overestimate or underestimate the probability zoning if the rainfall

significantly exceeds or falls short of the levels experienced during the Hans storm.

Overall, the most important results of this study are that forest characteristics play an im-

portant role in landslide susceptibility. Moreover, ML models are useful tools for creating

site-specific and storm-specific susceptibility maps over a large region. They are therefore

capable of producing a guide for general planning and assessment purposes. Future work

should continue to focus on the potential of utilizing hybrid methods based on supervised,

deep-learning, physically-based, heuristic or other statistical methods. Such models po-

tentially offer new possibilities for data management and analysis that could play a crucial

role in future landslide susceptibility mapping.
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8 Appendix

Figures from the “Engineering geology, Specialization Project”, TGB 4575 are placed

here in the Appendix in addition to more frequency and landslide plots. This is because

the figures are relevant for this study as well, but not directly corresponding to answering

the research questions. Further information regarding the figures is found in Hågensen

(2023).

8.1 Study area with 4 points

Figure 27: Map of the study area. The study area is in Ottadalen, indicated by the red

square. The brown dots are release points of landslides. North arrow and scale bar is

added to both maps. Vågåmo, Otta and point 1-4 is marked with a red star. This is

because the locations and points are used later in the report. The background map is the

OpenStreetMap from ArcGIS.
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8.2 Analysis of landslide inventory data and terrain conditions

Table 18: Different landslide types that initiated inside the study area. The landslide

types and amount was extracted from the landslide inventory. The landslide types are also

classified in Hungr et al. (2013).

Landslide types Amount

Debris flow 134

Debris slide 48

Debris avalanche 23

Debris flood 4

Landslide, unspecified 21

Total 230

II



(a)

(b)

Figure 28: Stack bar showing amount and type of landslides based on slope aspect or

slope angle. Abbreviations: DFd - debris flood, DFw - debris flow, DS - debris slide.

Overview of aspect division is found in Table 7.
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(a)

(b)

Figure 29: Stack bar showing amount and type of landslides based on soil type or area

type. Abbreviations: DFd - debris flood, DFw - debris flow, DS - debris slide, WM -

weathered material, MMD - mass movement deposits, Thin veg. cover - thin vegetation

cover.
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Figure 30: Stack bar showing amount and type of landslides based on forest type. Abbre-

viations: DFd - debris flood, DFw - debris flow, DS - debris slide, Mix P & S - mix of

pine and spruce.

Table 19 is showing the frequency of landslides and is generated from Equation 6. “Class

1” and “Area 1” in Equation 6 refers to the different rows under column “LULC”, “Soil

type” or “Forest type” in Table 19. Equation 7 gives an example of the determination of

landslide frequency in thick till.

Frequency =

(
113
230

)
(

1222.34
3070.85

) = 1.23 (7)
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Table 19: The frequency of landslides is shown for LULC, soil type and forest type.

LULC; Frequency Soil type; Frequency Forest type; Frequency

Forest; 2.53 Till, thick; 1.23 Deciduous; 4.48

Thin vegetation cover; 0.29 Till, thin; 0.75 Pine; 1.12

Agriculture; 1.96 Bedrock; 0.91 Spruce; 2.05

Urbanized; 0.88 Weathered material; 5.33 Mix of all; 3.48

Glacifluvial; 0.32 Mix of pine and spruce; 1.17

Fluvial; 0.36

Mass movement deposits; 1.49
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Figure 31: Graphs showing landslide amount and landslide frequencies of soil type and

tree basal area at breast height. Blue bars are showing the amount of landslides and the

red line is showing the frequency of the landslides.
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Figure 32: Graphs showing landslide amount and landslide frequencies of slope aspect,

slope angle and flow accumulation. Blue bars are showing the amount of landslides and

the red line is showing the frequency of the landslides.
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8.3 Analysis of the hydrometeorological conditions leading to land-

slides

Figure 33: Figure showing the 100 year return period for a duration of 24 hours in the

study area. The four NGI points and Vågåmo is marked as red dots and can also be seen

in Figure 27. The red square is the study area. Northing and easting are shown on the y-

and x- axis, respectively. Amount of precipitation [mm] is shown in the colorbar.
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(a)

(b)

Figure 34: Figure showing precipitation in mm as histograms, soil saturation degree in %

as orange line and the T = 100 years as a red, dotted line which indicates the 100 year

return period for the specific point. The time period is starting from 1 July and going until

16 August 2023 at 24 hours. Time is spanning from 00:00 until 24:00 for each day. The

plots are representing points 1 and 2 from Figure 33.
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(a)

(b)

Figure 35: Figure showing precipitation in mm as histograms, soil saturation degree in %

as orange line and the T = 100 years as a red, dotted line which indicates the 100 year

return period for the specific point. The time period is starting from 1 July and going until

16 August 2023. Time is spanning from 00:00 until 24:00 for each day. The plots are

representing points 3 and 4 from Figure 33.
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Figure 36: Soil legend from NGU part 1
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Figure 37: Soil legend from NGU part 2
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