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Abstract

Integrating service robots in elderly care facilities is a potential solution to the strain on
healthcare systems caused by an aging population. A robot designed for this purpose
is the mobile assistive robot, Lio, by F&P Robotics AG in Switzerland. Lio consists of
a six-axis anthropomorphic robot arm mounted on top of a two-axis differential drive
mobile platform, currently controlled as two uncoupled kinematic systems. In this thesis,
an eight-axis kinematic model of Lio is developed to better utilize the advantage of the
redundant degrees of freedom in various nursing home tasks.

Various redundancy techniques were explored to satisfy different secondary tasks beneficial
in a nursing home environment. First, the extended task space method was implemen-
ted, augmenting the task vector with the mobile platform’s configuration as a constraint.
This approach exploited the redundant degrees of freedom through configuration control,
ensuring predictable robot poses. Next, two optimization-based methods were developed,
treating the redundancy as a nonlinear optimization problem. These methods aimed to
solve automatic platform positioning, useful in task planning and autonomous operations,
by finding configurations that minimize platform movement and maximize manipulability.
The first optimization strategy solved the inverse kinematics by first optimizing a set of
redundancy parameters to determine the platform configuration and then exploiting the
robot arm’s analytic inverse kinematic solution. The second optimization strategy solved
the eight-axis inverse kinematics problem numerically while maximizing manipulability
as a secondary task. Both optimization methods showed promising results for utilizing
redundancy in autonomous operations. These control strategies demonstrated solutions
for a better and more flexible motion control and task programming of the Lio service
robot.
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Sammendrag

Innføring av serviceroboter i eldreomsorgen er et tiltak som kan bidra til at helsevesenet
kan h̊andtere den kommende ”eldrebølgen” bedre. Lio er et eksempel p̊a en slik service-
robot, designet for å lette arbeidsbyrden for helsepersonell p̊a sykehjem samt bidra til økt
pasientvelferd. Lio, fra F&P Robotics AG i Sveits, er en seks-akset, antropomorf robotarm
som er festet p̊a toppen av en to-akset mobil robotplattform. Fram til n̊a har roboten og
plattformen blitt styrt som to uavhengige, dekoblede kinematiske systemer, noe som gjør
Lio lite brukervennlig, og utnytter robotens arbeidsomr̊ade i begrenset grad. Denne op-
pgaven utvikler derfor en komplett åtte-akset kinematisk modell for Lio slik at den kan
utnyttes fullt ut til sine oppgaver p̊a sykehjemmene.

Tre strategier er presentert, implementert og testet for å demonstrere hvordan disse kan
bidra til å utnytte alle Lio sine frihetsgrader i forskjellige anvendelser. Den første met-
oden, utvidelse av oppgaverommet (extended task space), inkluderte plattformens fri-
hetsgrader i robotens positur. Denne strategien utnyttet de overtallige frihetsgradene
gjennom konfigurasjonsstyring, som kan benyttes til å sikre forutsigbare robotpositurer.
Deretter ble to optimaliseringsbaserte metoder utviklet, der robotens redundante inver-
skinematikk ble formulert som et ulineært optimaliseringsproblem. Disse metodene hadde
som m̊al å løse automatisk plattformposisjonering, som er nyttig b̊ade i forbindelse med
planlegging og programmering av oppgaven, samt under automatisk kjøring. Den første
optimaliseringsstrategien løste inverskinematikken ved å først optimalisere et sett med re-
dundansparametere for å bestemme plattformens posisjon, for deretter å benytte den ana-
lytiske inverskinematikk-modellen av robotarmen, til å finne robotens leddpositur. Den
andre optimaliseringsstrategien løste inverskinematikken numerisk med maksimering av
manipulerbarhet som sekundæroppgave. De eksperimentelle resultatene verifiserte at alle
løsningene var korrekt implementert samt demonstrerte lovende resultater med tanke p̊a
å fordelaktig kunne utnytte overtallige frihetsgrader til en mer effektiv og fleksibel bruk
av serviceroboten, Lio.
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Chapter 1

Introduction

Section 1.1 and 1.2 are derived from, the specialization project (Grøtterud, 2023).

1.1 Motivation

The rapid increase in the elderly population in Norway is an undeniable reality. According
to Statisticks Norway (2020), in less than ten years, the number of elderly individuals
will surpass both children and adults. By the year 2060, the population over the age
of 70 is projected to double. This demographic shift underscores the critical need for
swift and innovative transformations within the healthcare sector. Incorporating advanced
technologies, such as service robots for nursing homes, might be a crucial part of the
solution. These service robots are intended to assist healthcare workers with routine
tasks like walking assistance and the transfer of linen, waste, and food, thereby giving
healthcare workers more time for clinical tasks and meaningful engagements with patients.
The deployment of service robots aligns with the United Nations Sustainable Development
Goals (SDGs) in addressing the challenges posed by the aging population (United Nations,
2012). The development of service robots contributes to the realization of SDG 3, ”Good
Health and Well-being,” by potentially enhancing the quality and efficiency of healthcare
services.

A robot designed for this purpose is Lio, a mobile assistive robot developed by F&P Ro-
botics AG in Switzerland. Lio consists of a six-axis anthropomorphic robot arm mounted
on top of a two-axis differential drive mobile platform, currently controlled as two un-
coupled kinematic systems. This setup enables the robot to navigate autonomously and
execute tasks such as grabbing, moving, and retrieving objects. As of today, Lio performs
all its manipulation tasks through pre-programmed instructions. Consequently, Lio has
difficulties with completing tasks efficiently in dynamic and unpredictable environments,
such as nursing homes. For instance, imagine Lio is serving a glass of water to a patient.
Lio would first drive the mobile platform to a pre-programmed position beside the table
and then place the glass at a pre-determined location. If an obstacle blocks the desired

1



CHAPTER 1. INTRODUCTION

position of the platform, say the patient is sitting at an unexpected location, the entire
task must be reprogrammed.

However, by connecting the platform and the arm to form a complete eight-axis kinematic
model, Lio is able to relocate the platform without changing the gripper’s position. This
ability to perform internal joint motions without changing the end effector’s pose, is a
characteristic of redundant robots. Redundant robots have more degrees of freedom than
what is required to perform a specific task. These robots are known for their flexible and
high dexterity behavior because they can utilize their redundant degrees of freedom to
perform secondary tasks. Achievable secondary tasks are, for example, posture control
and obstacle avoidance, which are highly beneficial when operating in a nursing home
environment. Hence, the objective of this thesis is to create a redundant kinematic model
for the service robot Lio to achieve better and more flexible motion control and task
programming.

Figure 1.1: The service robot, Lio, interacting with a nursing home resident.
Image source: (F&P Robotics AG, 2022)

2



CHAPTER 1. INTRODUCTION

1.2 About Lio

Lio is a service robot for autonomous operation in healthcare facilities and home care.
A combination of visual, audio, laser, ultrasound, and mechanical sensors allows Lio to
map its surroundings and safely navigate and interact with the environment (Mǐseikis
et al., 2020). The robot consists of an anthropomorphic robot arm mounted on a mobile
platform, which enables the robot to handle and manipulate objects. Additionally, the
robot has built-in AI algorithms for, amongst others, task planning, body pose estimation,
and face- and object detection. Lio has been deployed in several healthcare institutions,
completing tasks like delivering mail, moving blood samples, and entertaining patients.

Lio has been carefully designed to fulfill the particular requirements following the operation
in a nursing home environment. Lio complies with ISO13482 - Safety requirements for
personal care robots, so the robot is approved for testing and deployment in care facilities
(Mǐseikis et al., 2020). Processing of visual and navigation information is performed locally
to ensure data privacy. Furthermore, Lio has several features that ease interaction with
sick or old residents. For example, its dimensions are set so the gripper is reachable and
the robot appears non-threatening for wheelchair users. Moreover, the robot is equipped
with lights indicating its direction of motion, making its movements more predictable.
Safe human-robot interaction is also ensured with a soft leather fabric covering the robot
arm and a PE controller securing soft motion behavior.

Figure 1.2: Overview of Lio hardware and sensors.
Image source: (Mǐseikis et al., 2020)

3



CHAPTER 1. INTRODUCTION

1.3 Problem statement

The aim of this thesis is to develop a new eight-axis kinematic model that allows the service
robot Lio to exploit its redundant degrees of freedom in various nursing home tasks. In
order to achieve this objective, the work in this thesis concern the following tasks.

• Introductory literature study about service robots in healthcare and methods for
redundancy resolution of mobile manipulators.

• Investigation of Lio’s current control strategy.

• Development of a strategy for redundancy resolution based on an eight-axis kin-
ematic model.

• Implementation of the new kinematic model on Lio.

• Testing and verification of the new kinematic model in the laboratory through various
tasks that demonstrate its advantages.

1.4 Contributions

The main contributions of the work presented in this thesis are as follows.

• Development of an eight-axis kinematic model for Lio, completed during the spe-
cialization project (Grøtterud, 2023).

• Implementation of the new kinematic model as an object-oriented class in Python
communicating with the robot control software through ROS.

• Development and implementation of a redundancy strategy using extended task
space with configuration control.

• Experimental validation of the extended task space method through various tests in
PPM’s Nursing home lab.

• Development of two optimization-based redundancy strategies enabling automatic
platform positioning.

1.5 Outline

The master thesis is structured as follows.

Chapter 1 describes the motivation, scope, and outline of the report as well as presents
the basic functionality and features of the robot of interest, Lio.

4



CHAPTER 1. INTRODUCTION

Chapter 2 presents some background material concerning the implementation of robots
in healthcare facilities. Furthermore, it introduces the concept of redundancy and
presents redundancy resolution methods for mobile manipulators.

Chapter 3 presents a selection of theory concerning robot modeling, rigid motions and
conventional redundancy resolutions.

Chapter 4 derives the forward and inverse kinematics of the eight-axis kinematic model.

Chapter 5 derives three methods for redundancy resolution on Lio: extended task space
with configuration control, optimization of redundancy parameters and maximiza-
tion of manipulability.

Chapter 6 describes the implementation of the kinematic model and redundancy resol-
utions, and the ROS communication with the Lio robot.

Chapter 7 describes the experimental test setup and results of the extended task space
method and test parameters and results for the optimization-based methods.

Chapter 8 evaluates the results from Chapter 7, discusses the advantages and drawbacks
of the implemented redundancy resolution strategies, and presents suggestions for
future work.

Chapter 9 draws a conclusion based on the results in Chapter 7 and the following
discussion in Chapter 8.
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Chapter 2

Background

The background chapter provides an introduction to healthcare robots and redundancy
resolution for mobile manipulators. Special considerations need to be taken when working
on robots designed to operate around vulnerable groups. Therefore, it is essential to
have a basic understanding of the challenges that can occur when implementing robots in
healthcare. The first part of the background chapter defines different types of healthcare
robots and presents an overview of some of the latest healthcare robots with manipulation
capabilities. Lastly, it covers special safety requirements and stakeholder acceptance.
The second part introduces the concept of redundancy and how it can be utilized to
benefit robots in nursing home tasks. Finally, it presents some examples of how common
redundancy resolution schemes have been adapted to work for mobile manipulators in
recent research.

Section 2.1.1-2.1.3, 2.2.1 and 2.2.2 are derived from the specialization project (Grøtterud,
2023).

2.1 Healthcare robots

Healthcare robots are designed to work closely with vulnerable groups, such as residents
of nursing homes. They are, therefore, subject to stricter requirements than other col-
laborative industrial robots. According to Servaty et al. (2020), many robotic systems
that function correctly in laboratory environments have failed when implemented in the
real world due to underestimating the complexity of their implementation. Successful in-
tegration of service robots in nursing homes depends on several factors, including ethical
considerations, data privacy, perceived safety, and stakeholder acceptance. This section
provides a brief overview of the various types of healthcare robots available on the market.
Safety requirements and barriers to the implementation of robotics in healthcare are also
addressed because understanding these parameters is crucial for successfully integrating
robots in nursing homes.
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CHAPTER 2. BACKGROUND

(a) A demonstration of the lifting robot, Hug,
assisting in lifting a person from the bed.
Image source: (FUJI CORPORATION, 2024)

(b) The social companion robot, Pepper, lead-
ing an exercise for patients in a Japanese day-
care facility.
Image source: (Cavendish, 2018)

2.1.1 Types and features of healthcare robots

Healthcare robots are defined as ”autonomous or semi-autonomous machines with a certain
degree of intelligence that performs various complex tasks in various healthcare contexts”
(Huang, 2022). The classification of healthcare robots varies in literature by distinguishing
on either function, task, target user or medical context. This report uses the categorization
proposed by Huang (2022), which divides healthcare robots into three main groups: robots
as functional tools, social companions, and service assistants.

Healthcare robots as functional tools are characterized by a mechanical appearance,
and their purpose is typically to perform repetitive medical tasks. Hence, it has no social
capabilities or ability to learn from its environment. Examples of healthcare robots as
functional tools are robotic skeletons for rehabilitation and training like Hocoma Lokomat
(Hocoma, 2024) and the lifting robot, Hug (Figure 2.1a), for assisting with sit-to-stand
movements.

Healthcare robots as social companions commonly have either a humanoid or animal-
like appearance. Their purpose is to entertain, provide companionship or engage residents
in physical or educational activities. As their primary function is interaction with voice
or expression, most of the robots in this category do not have the ability to move around
independently or manipulate objects despite having robot arms. Examples of robots within
this classification are the pet seal, Paro (Paro, 2024), and the humanoid, Pepper (Figure
2.1b).

Healthcare robots as service assistants combine the capabilities of the healthcare
robots as functional tools and social companions. These robots are typically designed
to aid healthcare personnel by handling auxiliary tasks, allowing staff to focus on their
primary responsibilities (Huang, 2022). Examples of these tasks include walking assistance
and transferring or fetching daily items. To perform these duties effectively, assistive
service robots must be capable of reacting to the environment, manipulate objects, plan
tasks, and exhibit basic social capabilities.

7



CHAPTER 2. BACKGROUND

Healthcare robots as service assistants are one of the least researched categories, possibly
because of their complexity. According to Morgan et al. (2022), robots within the category
”socially assistive” or ”delivery transport” accounted for only 17 percent of the research
done on robots in a medical environment.

2.1.2 Healthcare service robots with manipulating capabilities

Table 2.1 shows some existing healthcare service robots with manipulation capabilities. As
most of these robots are commercial products, extensive details concerning robot control
are not accessible. Therefore, Table 2.1 is merely a brief overview of their assumed cap-
abilities. Moxi, Care-o-bot and TIAGo are examples of redundant mobile manipulators.
However, their redundancy presumably stems from the robot arms having seven degrees
of freedom, and not because their mobile platforms and robotic arms are kinematically
connected.
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CHAPTER 2. BACKGROUND

2.1.3 Safety requirements and ethical considerations

During the design process, commercial robots must consider the ISO10218 - Safety re-
quirements for industrial robots. Additionally, all robots with the intended use as mobile
servants, physical assistants, or personal carriers in healthcare facilities must also comply
with ISO13482 - Safety requirements for personal care robots. The latter standard under-
lines that the risk assessment of robots in healthcare facilities, amongst others, must pay
particular concern to:

b) different levels of knowledge, experience and physical condition of users and other
exposed persons (ISO 13482:2014);

c) unexpected movement of humans (ISO 13482:2014);

d) normal but unexpected movement of the personal care robot (ISO 13482:2014);

e) unintended movement of the personal care robot (ISO 13482:2014);

These concerns are of specific importance in nursing homes where residents often suffer
from frailty and or impaired cognitive skills. Unexpected robot behavior can cause surprise,
loss of balance, and falls, leading to severe injuries. Besides physical harm, robot behavior
causing fear and discomfort significantly decreases perceived safety and trust (Akalin et al.,
2022). Perceived safety and trust are crucial parameters in stakeholder acceptance, one of
the most significant barriers to implementing robots in healthcare facilities (Christoforou
et al., 2020).

2.1.4 Benefits of redundancy for healthcare robots

The extra demands on safety and predictable behavior in healthcare robots can be effect-
ively addressed by using redundant robots. A redundant robot has more degrees of freedom
(DOF) than required to perform a specific task (Patel and Shadpey, 2005). With redund-
ant DOF, infinite feasible configurations exist for a given task. These additional DOF can
be exploited to perform a set of user-specific tasks beneficial in a nursing home setting,
such as obstacle avoidance, which simplifies maneuvering in a cluttered and dynamic en-
vironment, and configuration control, which can restrict the robot’s pose to achieve more
predictable behavior.

2.2 Redundancy resolution for mobile manipulators

Redundancy can be established only with respect to a given task (Siciliano, 1990). A
general spatial task for a manipulator is commonly defined as moving to a desired pose or
following an end effector motion trajectory, requiring six degrees of freedom (Chiaverini
et al., 2016). Hence, redundancy can be introduced to a typical six-DOF manipulator by
implementing additional joints or by attaching a mobile platform to the manipulator base.
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The additional DOF can be exploited to avoid singularities, joint limits, and obstacles in
the workspace, achieve or contain specific robot poses, or minimize the energy or velocities
required to solve a task (Chiaverini et al., 2016).

Robots consisting of a manipulator mounted on top of a mobile platform are called mobile
manipulators. These robots have become increasingly popular due to the combination of
the manipulator’s dexterity with the increased workspace of the mobile base. Redund-
ancy resolutions were first explored on redundant manipulators, resulting in redundancy
schemes such as extended task space, null space projection, and the pseudoinverse (Sicili-
ano, 1990). These methods can also be applied to solve the inverse kinematics on redund-
ant mobile manipulators. However, compared to conventional redundant manipulators
with a fixed base, additional considerations are necessary to address the kinematics of the
mobile platform. For example, the mobile base often has lower motion control accuracy
due to factors like wheel slippage or lack of absolute positioning capabilities (Sorour et al.,
2019). Furthermore, differential drive platforms are subject to nonholonomic constraints,
whereas the constraints on the manipulator joints are holonomic. The following sections
present examples of how redundancy resolutions have been adapted to suit different types
of mobile manipulators.

2.2.1 Extended task space with configuration control

Seraji (1998) addresses planar motion control of a 2-link manipulator mounted on a rover.
He proposes to combine the non-holonomic base constraint, the desired end-effector mo-
tion, and the user-specified redundancy resolution goals to form a set of augmented dif-
ferential kinematics equations. The result is an extended Jacobian on the formJr(q)

Jm(q)
Jc(q)

 q̇ =

 0

Ẋd

Żd


where Jr(q)q̇ = 0 represents the non-holonomic rover constraint, Jm(q)q̇ = Ẋd is the
holonomic manipulator constraint and Jc(q)q̇ = Żd is the additional task variables in
velocity form. Suggestions of additional task variables, z(q), are given, such as controlling
the tool orientation and manipulator elbow angle. The inverse kinematics can now be
solved as

q̇ = J−1Ẋd

To correct for task-space trajectory drift that can occur, Seraji modifies q̇ by subtracting
the actual configuration vector, X, as

q̇ = J−1[Ẋd +K(Xd −X)]

2.2.2 Optimization of redundancy parameters

Ancona (2017) presents a general approach for redundancy modeling based on optimization
of redundancy parameters. The paper considers a nine-DOF mobile manipulator composed
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of a six-DOF manipulator mounted on a three-DOF omnidirectional mobile platform.
Ancona suggests a closed inverse kinematics formulation[

qa

qb

]
=

[
Ia(Pee)
I(ρ)

]
where qa is the arm joints vector, Pee is the end effector pose and Ia is a known, numeric
or analytic, inverse kinematics solution for the manipulator. qb represents the position and
orientation of the base and relies on the redundancy parameters ρ = [ρ1, ρ2, ρ3]. The three
redundancy parameters describe the angular displacement between the mobile platform
and the robot arm, the robotic arm extension, and the angular displacement between the
tool approach direction and the arm, respectively (Ancona, 2017).

Determining fitting values for the redundancy parameters is achieved by solving the general
optimization problem:

max
ρ

g(Pee,ρ)

s.t c(Pee,ρ) ≤ 0

where g(Pee,ρ) characterize the desired redundant behaviour and c(Pee,ρ) is the physical
joint limits of the manipulator. Ancona suggests designing the objective function as the
product of weighted metric functions, gi, describing a desired redundant behavior.

g(Pee,ρ) =

ng∏
i=1

gγii (Pee,ρ)

s.t 0 < gi(Pee) < 1 ∀ 1 ≤ I ≤ ng
γi > 0 ∀ 1 ≤ I ≤ ng

He proposes the following traits as desired behaviors: 1) increased dexterity, evaluated
by the manipulability index, 2) obstacle avoidance, realized with sensor inputs and the
Kineostatic Danger Field potential function, 3) improved end effector stability, obtained
by minimizing the mobile platform movements.

2.2.3 Pose control with three operation modes based on the weighted
pseudoinverse

(Sorour et al., 2019) concerns redundancy resolution on a steerable wheeled mobile robot
(SWMR). The SWMR base lacks a direct kinematic mapping between its configuration-
and task space, leading to low precision in motion control of the base. To address the
issue of low accuracy in the base, Sorour et al. (2019) developed a redundancy resolution
algorithm that alternates responsibility between the arm and the base for completing the
motion task. The task sharing is organized in three different modes depending on the
robot’s distance from the desired pose (Figure 2.2). The three modes are

• Gross motion: Only the base contributes to the main task while the arm is kept in
a predetermined, flexible pose.

12
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Figure 2.2: Illustration of the workspace of the three operating modes.
Image source: (Sorour et al., 2019) Copyright © 2019, IEEE

• Mobile manipulation: Both the arm and the base are responsible for the robot’s
motion.

• Fine manipulation: The manipulator is the main participator in the motion task.
The motion of the mobile base is minimal.

The joint velocity vector of the SWMR is given as

q̇ =

[
q̇b

q̇a

]
where q̇b ∈ Rnb is the joint velocity of the base and q̇a ∈ Rna is the joint velocity of the
robot arm. The joint space velocity q̇ref maps to the task space velocity ṗref through the

Moore-Penrose pseudoinverse of the mobile manipulator Jacobian, J†
mm, as

q̇ref = J†
mmṗref

Since this solution always results in simultaneous arm and base motion, a task-sharing
redundancy resolution was proposed, formulated as

q̇ref = J†W
mm(d)ṗref + λdex(I6+na − J†

mmJmm)zdex,

with zdex as an arbitrary optimization term and J†W
mm(d) as the weighted, damped pseu-

doinverse of Jmm given by

J†W
mm(d) = W−1JT

mm[JmmW−1JT
mm + ρ2Inb

]−1

where ρ is the damping factor and W is the weight matrix

W =

[
(1− ψ)Inb

0nb×na

0nb×na ψIna

]
.

ψ ∈ [0, 1] is the task sharing factor. The parameter is set to either 1 (fine manipulation),
0.5 (mobile manipulation) or 0 (gross manipulation) based on the distance from the current
to the desired pose as illustrated in Figure 2.2.

13
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The optimization term zdex was defined as

zdex =

[
0nb×1

−(qa − qa(dex))

]
This choice of zdex forces the current arm pose towards a predetermined dexterous pose,
qa(dex), as a secondary task (Sorour et al., 2019).

2.2.4 Inverse kinematics of mobile manipulators with metaheuristic al-
gorithms

In (Lopez-Franco et al., 2018), the authors aimed to develop a redundancy strategy that
avoided singularities and was generalizable for a range of mobile manipulators. The pro-
posed solution formulated the inverse kinematics as an optimization problem and solved it
with various metaheuristic algorithms where the population-based algorithm ”Differential
evolution” showed the best results. The cost function was formulated as

f ′(qold, q̂) = f(qold, q̂) + γ

n∑
j=0

g(q̂j), (2.1)

where f(qold, q̂) is an error function taking the weighted sum of deviation from the desired
pose, Terror and deviation from the current joint configuration, qerror

f(qold, q̂) = αTerror + βqerror (2.2)

The term γ
∑n

j=0 g(q̂j) is a penalty function ensuring the solution stays within the physical
joint limits. This formulation avoided singularities by only using the forward kinematics
in the error function. The mobile base was modeled as two virtual joints for differential
drive platforms and three virtual joints for omnidirectional mobile platforms. Modeling
the platform with virtual joints enabled the forward kinematics to be solved similarly to
a fixed base manipulator with the Denavit-Hartenberg convention.
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Chapter 3

Theory

This chapter presents a small selection of theory from the fields of robotics, geometry,
kinematics and optimization theory needed to follow the derivation of the proposed re-
dundancy strategies derived in Chapter 5. Additionally, three fundamental redundancy
resolution methods are presented, and important concepts in redundant inverse kinemat-
ics, such as the Jacobian and singularities, are discussed.

Section 3.2.1, 3.3, 3.5 and 3.7 are derived from the specialization project (Grøtterud,
2023).

3.1 Mathematical modeling of robots

3.1.1 Configuration space and degrees of freedom

A robot manipulator is modeled as an open kinematic chain consisting of robot links
connected by typically revolute and prismatic joints. The specific location of all the points
of the manipulator is called a configuration. The set of all possible configurations for the
robot is known as the configuration space. The links of the robot are typically assumed to
be rigid bodies and the base of the manipulator is assumed fixed. Therfore, a configuration
of a robot with n joints is represented only by the joint variables q = [q1, q2, ..., qn] (Spong
et al., 2019).

The minimal number needed to specify a robot’s configuration is known as the robot’s
degrees of freedom (DOF). A manipulator’s DOF is determined by its number and types
of joints and equals the configuration space. A rigid body in space is defined by 3 position
parameters and three rotation parameters, resulting in six DOF. Therefore, a manipulator
needs at least six DOF to reach an arbitrary pose in three-dimensional space (Spong et al.,
2019).
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3.1.2 Task- and workspace

The workspace is the set of all the points reachable by the end effector (Spong et al., 2019).
It is determined by the robot’s mechanical structure and joint limits. The task space is a
subset of the workspace and defines the space where the robot performs its primary tasks.
The task space and workspace are usually described in cartesian coordinates and have
dimensions smaller than or equal to the configuration space.

3.1.3 Representing position and rotation

The homogeneous transformation matrix

For a manipulator operating in a six-dimensional task space, a task is typically to move
the end effector to a desired pose. A pose is commonly represented as a coordinate frame
with a specific position and orientation in space. The homogenous transformation matrix

Tab =

[
R p
0T 1

]
∈ SE(3), with R ∈ SO(3), p ∈ R3 (3.1)

describes the orientation and position of frame b relative to frame a (Egeland and Gravdahl,
2003). In addition to representing the configuration of a frame, the homogenous trans-
formation matrix (hereby referred to only as transformation matrix) can also be used to
change the reference frame in which a frame is represented (Lynch and Park, 2017):

Tac = TabTbc. (3.2)

Another useful property of the transformation matrix is that its inverse is the same as its
transpose and results in an opposite change of reference frame

T−1
ab = TT

ab = Tba (3.3)

{a}

{b}

{c}

𝑇𝑎𝑏

𝑇𝑏𝑐

𝑇𝑎𝑐

Figure 3.1: Changing reference frame of a configuration.
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XYZ-fixed angles

In this thesis, the desired task is sometimes represented as the 6-dimensional task vector,

t = [xt, yt, zt, ϕt, θt, ψt]
T (3.4)

where (xt, yt, zt) is the position of the end effector and the angles (ϕt, θt, ψt) represent the
orientation of the end effector with the XY Z-fixed angles convention. This convention
corresponds to a rotation ψt about the fixed x axis, θt about a fixed y axis and ϕt about
the fixed z axis, resulting in the equivalent rotation matrix (Waldron and Schmiedeler,
2016)

R(ϕ, θ, ψ) =

cosϕ cos θ cosϕ sin θ sinψ − sinϕ cosψ sinϕ sinψ + cosϕ sin θ cosψ
cos θ sinϕ cosϕ cosψ + sinϕ sin θ sinψ sinϕ sin θ cosψ − cosϕ sinψ
− sin θ cos θ sinψ cos θ cosψ


(3.5)

Quaternions

Quaternions provide a compact way of describing rotations as a normalized vector with
four scalars, and are used in this thesis to compare rotations. Defining a rotation as a
single rotation θ about the unit vector v = [vx, vy, vz], the corresponding unit quaternion
is

Q = [w, x, y, z] = [cos(
θ

2
), vxsin(

θ

2
), vysin(

θ

2
), vzsin(

θ

2
)] (3.6)

where Q satisfies ||Q|| = 1 (Kuffner, 2004). The inner product of two unit quaternions

λ = Q1 ·Q2 = w1w2 + x1x2 + y1y2 + z1z2 (3.7)

range from [−1, 1] depending on the distance between the quaternions. In this thesis, a
rotation distance component Qerr, suggested by Kuffner (2004),

Qerr = 1− ||λ|| (3.8)

is used as a distance metric when evaluating the similarity of two configurations. The
smaller Qerr ∈ [0, 1] is the smaller the distance between the two rotations.

3.2 Forward kinematics

A robot’s forward kinematics refers to the process of calculating the pose of its end-effector
frame given its joint coordinates q. The forward kinematics can be described in terms of
a nonlinear vector function, f , mapping from joint space to task space,

t = f(q) (3.9)

Here, q = [θ1, ..., θn] is the joint angle vector and t = [p, r] is the task vector representing
the position and orientation of the end effector in the task space. The forward kinematics
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can also be represented as a transformation matrix from the base of the arm, {a}, to the
end effector, commonly denoted tool frame, {t},

Tat(q) = Ta1(θ1)T12(θ2)T23(θ3)...Tnt(θn). (3.10)

Here, Tat is the product of all the consecutive link transformation matrices of the manip-
ulator.

Several different schemes exist for computing the forward kinematics of open-chain robots.
The most common representation is the Denavit-Hartenberg parameters (DH-parameters),
which use a minimal set of four parameters to describe the transformation between link
frames (Hartenberg and Denavit, 1964). Another common method for kinematic modeling
is the Product of Exponentials (PoE), which builds on geometrical concepts like screws,
twists and wrenches (Lynch and Park, 2017).

This thesis uses both the PoE and the DH-parameters to model Lio’s forward kinemat-
ics. During the implementation of the kinematic model in the specialization project
(Grøtterud, 2023), the PoE method was chosen because it is accompanied by the open-
source software package, Modern Robotics (Weng and Lynch, 2018). The development
of the optimization-based methods (Section 5.2) required a symbolic expression of the
forward kinematics, which was derived with DH-paramters.

3.2.1 Product of Exponentials formula

The key concept of the PoE formula is to regard each joint as applying a screw motion
to all the outward links of the robot (Lynch and Park, 2017). When analyzing the screw
motion induced by each joint, there is no requirement to establish reference frames for all
links, as is necessary with DH-parameters. The only frames that need to be defined are
the space frame, {s}, chosen at a fixed point in space, and the tool frame {t}, chosen at
the tool center point (TCP) of the end effector.

The transformation matrix, Tst(θ), describes the end-effector configuration relative to the
space frame. When all joints are in their zero position, the transformation is called the
home configuration, M, of the robot,

Tst(0) = M ∈ SE(3) (3.11)

Figure 3.2 shows an n-link robot where joint n is displaced to a joint value θn. The screw
motion corresponding to rotating about joint n can be expressed in the {s} frame as the
screw axes Sn,

Sn = [ωn vn] (3.12)

If joint n is a revolute joint, then ωn is a unit vector in the positive direction of joint
axis n. vn = −ωn × qn where qn is a point on joint axis n written in the coordinates of
the fixed frame {s}. If joint n is prismatic, then ωn = 0 and vn is a unit vector in the
direction of positive translation.
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Assume that the joints {1, ..., n} are displaced to some joint angles {θ1, ..., θn}. The end-
effector frame then undergoes a displacement from the home configuration, M, and the
new pose can be described by the transform

Tst = e[S1]θ1 ... e[Sn−1]θn−1e[Sn]θnM (3.13)

𝑴

𝑒[𝑺𝑛]𝜃𝑛𝑴

𝑒[𝑺𝑛−1]𝜃𝑛−1𝑒[𝑺𝑛]𝜃𝑛𝑴

𝑒 𝑺𝑛−2 𝜃𝑛−2𝑒[𝑺𝑛−1]𝜃𝑛−1𝑒[𝑺𝑛]𝜃𝑛𝑴

𝜃1

𝜃𝑛

𝜃𝑛−1

𝜃𝑛−2

{s}

{1}

Figure 3.2: PoE formula for an n-link robot arm.

3.2.2 Denavit-Hartenberg convention

The Denavit-Hartenberg convention enables a transformation between two links to be
described with a minimal set of four parameters: the link length, ri, the joint twist, αi,
the link offset, di, and the joint angle θi. This representation is achieved through a set of
rules determining the location of the link frame origins and the axis of rotation (Waldron
and Schmiedeler, 2016). Various forms of the convention for locating coordinate frames
exist, this thesis employs the classic (distal) DH-parameters.

When assigning coordinate frames the following rules must be applied

1. Axis Zi must be either the axis of rotation or the direction of motion of jointi,
depending on if jointi is a revolute or prismatic joint, respectively.

2. Axis Xi must be perpendicular to both the Zi- and the Zi−1-axis, and intersect with
axis Zi−1.
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3. Axis Yi must be determined according to the right-hand rule.

Once the link frame locations are established, the four DH-parameters can be defined as

ri: the distance from Zi−1 to Zi along Xi.

αi: the angle from Zi−1 to Zi about Xi.

di: the distance from Xi−1 to Xi along Zi−1.

θi: the angle from Xi−1 to Xi about Zi−1.

With this convention, the link frame i can be determined relative to frame i− 1 through
a series of transformations: a rotation θi about axis Zi−1, a displacement di along axis
Zi−1, a displacement ri along axis Xi and a rotation αi along axis Xi. Multiplying the
individual transformation matrices

RotZi−1(θi)TransZi−1(di)TransX(ri)RotX(αi) (3.14)

the homogeneous transformation matrix describing the transformation from frame i − 1
to frame i is defined as

Ti−1,i =


cos(θi) −sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 1 0
0 0 0 1



1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1



1 0 0 ri
0 1 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 cos(αi) −sin(αi) 0
0 sin(αi) cos(αi) 0
0 0 0 1



=


cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) ricos(θi)
sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) risin(θi)

0 sin(αi) cos(αi) di
0 0 0 1

 (3.15)

𝑗𝑜𝑖𝑛𝑡𝑖

𝑗𝑜𝑖𝑛𝑡𝑖−1

𝑗𝑜𝑖𝑛𝑡𝑖+1

𝑋𝑖

𝜽𝒊

𝑍𝑖

𝑋𝑖−1

𝑍𝑖−1

𝜶𝒊

𝒅𝒊

𝒓𝒊

Figure 3.3: The four DH-parameters following the classic convention.
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The overall transformation from the base frame to the end effector frame of a robot with
n joints can then be described as

T0n = T01T12 ... Tn−1,n (3.16)

3.3 Inverse kinematics

The objective of the inverse kinematics problem is to find the joint angles that yield a
specific Cartesian position and orientation of the end effector (Nakamura, 1990). Assuming
a known forward kinematics mapping, Tst(θ) ∈ SE(3), the inverse kinematics problem is
to find the θs that solves

Tst(θ) = X (3.17)

where X ∈ SE(3) is a desired end effector pose. The inverse kinematic problem can also
be formulated as the inverse of 3.9 as

q = f−1(t) (3.18)

If
dim(q) = n ≤ dim(t) = m,

a finite set of unique solutions exists. Pieper (1969) proved that a general 6R open-chain
robot can have up to 16 solutions. Solving the inverse kinematic problem generally involves
advanced nonlinear algebraic computations. However, an analytic solution exists for 6R
robots with a spherical wrist (Nakamura, 1990). The analytic inverse kinematics solution
to Lio’s six-DOF manipulator is derived in chapter 4.2 and is therefore not included in
this section. If n > m, the manipulator is said to be kinematically redundant with degree
r = n −m. The different methods for solving the redundant inverse kinematic problem
are called redundancy resolution and were covered in Section 3.5.

3.4 Task Jacobian and geometric Jacobian

Evaluating the first-order differential kinematics introduces an important concept in kin-
ematic modeling, the Jacobian matrix. Differentiating equation (3.9) results in the first
order forward kinematics

ṫ = Jt(q)q̇ (3.19)

where ṫ is the task space velocity vector and q̇ is the joint space velocity vector and

Jt =
∂f(q)

∂q
(3.20)

is the (m × n) task Jacobian or analytic Jacobian (Chiaverini et al., 2016). Here, ṫ does
not represent the velocity of the end effector, but rather the rate of change of the minimal
representation of the end effector orientation.
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The actual velocity of the end effector can be described with the spatial velocity vector

ν = [v,ω]T (3.21)

where v is the translational velocity vector and ω is the angular velocity vector of the end
effector. The spatial velocity vector can be related to the task space velocities ṫ as

ṫ = T(t)ν (3.22)

where T(t) is a (M × 6) transformation matrix depending on t (?).

The mapping from joint velocities to actual end-effector velocities can now be defined by
the geometric Jacobian, J

ν = J(q)q̇ (3.23)

By combining the equations (3.19), (3.22) and (3.4) the relation between the geometric
Jacobiand and the analytic Jacobian can be described as

Jt = T(t)J (3.24)

3.4.1 Singularities

Equation 3.19 indicates that the task space velocities, ṫ are a linear combination of the
columns of the task Jacobian, Jt

ṫ = Jt1q̇1 + Jt2q̇2 + ... + Jt6q̇6 (3.25)

From this expression, it is easy to see that Jt needs to have six linearly independent
columns for the end effector to be able to generate any arbitrary velocity (Spong et al.,
2019). If Jt has less than n = 6 linearly independent columns, in other words, Jt is rank
deficient, the corresponding configuration q is called singular.

Looking at the relation between the task Jacobian and the geometric Jacobian (3.24) it
becomes clear that a singularity Jt can be caused by rank-deficiency in both the trans-
formation matrix T and/or the geometric Jacobian J. Rank deficiency in the two matrices
gives rise to two types of singularities: representation singularities, for rank deficiency of
T, and kinematic singularities, for rank deficiency of J (Chiaverini et al., 2016). The
representation singularity is related to the mathematical representation of the end effector
orientation, while the kinematic singularities are directly related to infeasible end effector
velocities.

Avoiding singular configurations is desirable for numerous reasons. First, singularities
represent configurations where it is impossible to generate end-effector velocities in certain
directions, making the robot unable to solve the given task. Moreover, bounded end-
effector velocities may lead to unbounded joint velocities, resulting in control issues and
high mechanical stress on the robot’s components.
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3.4.2 Manipulability

A singularity is a binary parameter - a configuration is either singular or not. However,
the effect of singularities can also be present in nonsingular configurations ”close” to a
singularity. The manipulability ellipsoid is a geometrical property describing the directions
in which the end-effector’s ability to move is diminished (Lynch and Park, 2017). A
common metric used to characterize the distance from a singularity is the manipulability
measure (Yoshikawa, 1985)

µ =
√
det(JtJT

t ) (3.26)

where µ corresponds to the product of the lengths of the manipulability ellipsoid’s principal
semi-axis.

3.5 Redundancy resolution

The different methods for solving the inverse kinematics problem of redundant manipu-
lators are called redundancy resolution. The redundancy problem can be established at
the position, velocity or acceleration level. In this thesis, the inverse kinematics is solved
at the position level to exploit the analytic solution of the manipulator and avoid dealing
with drift that can occur from differential kinematic schemes. However, most of the fun-
damental redundancy resolution methods in the literature are described at the velocity
level in order to include discussion about the Jacobian (Chiaverini et al., 2016). Hence,
the redundancy resolution methods in this section are described in terms of the first-order
kinematics.

3.5.1 Analysis of redundancy

The task Jacobian Jt (3.19) can be viewed as a linear transformation mapping the vector
q̇ ∈ Rn into ṫ ∈ Rm. The null space, ℵ(Jt), and the range space, ℜ(Jt), shown in Figure
3.4, are fundamental subspaces associated with the linear mapping (Patel and Shadpey,
2005).

ℵ(Jt) = {q̇ ∈ Rn | Jt(q)q̇ = 0} (3.27)

ℜ(Jt) = {q̇ ∈ Rn | q̇ ∈ Rn} (3.28)

The range space of Jt represents the subspace of task velocities that the joint velocities
can generate. The null space of Jt represents the subspace of joint velocities that does
not affect the task space velocities. If the Jacobian matrix Jt(q) has full column rank,
the dimension of the null space, ℵ(Jt), is equal to the degree of redundancy, r. If the
Jacobian has a rank of m′ < m, the dimension of the null space increases to n − m′

(Fahimi, 2009). The existence of the null space is what causes the infinite solutions to the
inverse kinematics problem that characterizes redundant manipulators.
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Figure 3.4: Mapping between joint velocity and end effector velocity.

3.5.2 Pseudoinverse Jacobian

On the assumption that n ≥ m, the exact solution to the differential inverse kinematics
problem relies on the pseudoinverse of Jt, denoted, J

†
t .

q̇ = J†
t ṫ (3.29)

The pseudoinverse provides the least squares solution to 3.19 as

min
q̇

||ṫ− Jtq̇|| (3.30)

The main advantage of the pseudoinverse Jacobian is that it provides a meaningful solu-
tion to 3.19 regardless of whether the analytic Jacobian, Jt, is rectangular or square (Patel
and Shadpey, 2005). However, the solution does not guarantee avoiding singular config-
urations. Singular configurations are related to rank deficiencies of Jt and result in cases
where certain end effector velocities cannot be generated with joint velocities commands
(Chiaverini et al., 2016). Another drawback with the pseudoinverse solution is that it does
not allow the robot to satisfy user-specified tasks and exploit its additional DOF.

3.5.3 Null-space projection

One method for utilizing the extra DOF is to add velocities belonging to the null space of
Jt, q̇ℵ.

q̇ = q̇p + q̇ℵ (3.31)

Here, the subscript p to q̇p, indicates that it is the primary solution to a desired task ṫd,

ṫd = Jtq̇p (3.32)

From the definition of the null space (3.27), it is evident that additional nullspace velocities
do not affect the desired task because

Jt(q̇d + q̇ℵ) = Jtq̇d + 0 = ṫd (3.33)
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Instead, q̇ℵ generates internal joint motions. These internal motions can be utilized to
improve dexterity and satisfy additional requirements, like obstacle avoidance, without
disturbing the primary task.

The null space velocity vector, q̇ℵ, can be obtained by projecting a vector ν to the null
space of the Jacobian

q̇ℵ = (I− J†
tJt)ν (3.34)

Using the standard Project Gradient method, ν can be selected as

ν = −α∇Φ(q) = −α[ ∂Φ
∂q1

... ...
∂Φ

∂qn
]T (3.35)

where Φ(q) is a cost function whose optimal value ensures the desired additional tasks
and α > 0 is a scalar representing a step in the gradient direction. A drawback with the
Project Gradient method is that the objective function defining the secondary tasks needs
to be differentiable and it generally does not guarantee the convergence of the solution
(Ancona, 2017).

3.5.4 Extended task space

Another approach to the redundant inverse kinematics problem is known as extended task
space (Egeland and Balchen, 1987). With this method, the task vector is extended to
include r number of secondary tasks to be fulfilled along with the original end-effector
task. The new task vector is denoted the augmented task vector, ta,

ta =

[
t
tc

]
(3.36)

with tc as the vector for secondary tasks, called the constraint-task vector. The differential
kinematics equation can now be defined as

ṫa = Ja(q)q̇ (3.37)

where the matrix

Ja =

[
Jt

Jc

]
(3.38)

is known as the augmented Jacobian. Jc is the Jacobian related to the constraint task
vector and is of dimension (r × n), which implies that Ja has dimension (n× n) and the
differential inverse kinematics formulation

q̇ = J−1
a ṫa (3.39)

is on closed form. The additional tasks in tc are often represented as inequality constraints
or as parts of a kinematic cost function (Ancona, 2017). The additional tasks can be chosen
to specify desired kinematic characteristics such as posture control, joint limits or obstacle
avoidance.
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3.6 General optimization problem

A general optimization problem is formulated as

min
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

(3.40)

where f(x) is the objective function, x is the optimization variables or decision variables
and ci(x) is the constraint function subject to the space of equality constraints, E , or
inequality constraints, I (Jorge Nocedal, 2006). The goal of an optimization problem is
to find the variables x that minimize the objective function, f , which can be selected as
any quantitative measure of a system. If the objective function f and/or the constraint
function ci are non-linear, the optimization problem becomes non-linear. A non-linear
optimization problem is commonly abbreviated as NLP.

3.6.1 Numerical inverse kinematics as an optimization problem

Numerical methods for solving the inverse kinematics problem are useful if a closed-form
solution doesn’t exist or the manipulator is redundant (Spong et al., 2019). An intuitive
approach is to iterate over a range of joint values and minimize the error between the
desired end effector pose and the output of the forward kinematics. This method can be
formulated as a nonlinear optimization problem on the form

min
q

1

2
(f(q)− t)T (f(q)− t)

s.t. qlower ≤ q ≤ qupper

(3.41)

where t is the task vector representing the desired end effector pose and f(q) is the
forward kinematics function. The inequality constraint qlower ≤ q ≤ qupper ensures that
the solution stays with the robot’s physical joint limits.

3.7 Differential drive systems

Lio’s platform has a differential drive system with two independently actuated wheels in
the front and two caster wheels in the back. The configuration of a differential drive
system can be expressed with the state qp = [xp yp θp] where (xp, yp) is the origin of
the platform frame, {p}. The frame origin is defined at the midpoint of the axis between
the two actuated front wheels (Figure 3.5). θp denotes the platform’s heading direction
and the platform frame’s orientation. The pose of the platform relative to a fixed space
frame, {s}, can be described by the transformation matrix
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Tsp(qp) =


cosθp −sinθp 0 xp
sinθp cosθp 0 yp
0 0 1 zp
0 0 0 1

 (3.42)

where zp is a constant indicating the platform frame’s height above the ground. Denoting
the radius of the wheels as r, and the translational and angular velocity of the left and
right wheel as (vL, vR) and (ωL, ωR), the translational velocity of the platform (ẋp, ẏp) can
be described in terms of the wheel velocities as

v =
vL + vR

2
, vL = ωLr vR = ωRr (3.43)

ẋp = vx = vcosθp =
r

2
cosθp(ωL + ωR) (3.44)

ẏp = vx = vsinθp =
r

2
sinθp(ωL + ωR) (3.45)

𝑥𝑠

𝜃𝑝

𝑣

𝑦𝑠
{p}

{s}

Figure 3.5: Model of differential drive system.

Denoting the distance between the wheel and the reference point as d (Figure 3.5), and
defining positive θp against the clock, the angular velocity of the platform around the
origin of frame {p} can be expressed as

θ̇p =
vR − vL

2d
=

r

2d
(ωR − ωL) (3.46)

Assuming the angular velocities of each wheel are the control parameters, the differential
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kinematic equations can be expressed in the canonical form

q̇ = G(q)u =

ẋpẏp
θ̇p

 =

 r
2cosθp

r
2cosθp

r
2sinθp

r
2sinθp

−r
2d

r
2d

[uL
uR

]
(3.47)

The canonical model (3.47) shows that there is a 2-dimensional set of velocities for a
3-DOF system. Rewriting (3.44) and (3.45) as

ẋp = vcosθp (3.48)

ẏp = vsinθp (3.49)

demonstrates that the system (3.47) is subject to the nonholonomic constraint A(q).

A(q)q̇ = [sinθp − cosθp 0]q̇ = ẋpsinθp − ẏpcosθp = 0 (3.50)

A nonholonomic constraint reduces the dimension of the system’s achievable velocities,
but does not reduce the dimension of the reachable configuration space (Lynch and Park,
2017). The constraint reflects the fact that the platform can not move sideways, but must
move in the direction of its main axis of symmetry. Hence, it is important to consider this
constraint when modeling the differential kinematics of a mobile manipulator.
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Chapter 4

Kinematic modeling of Lio

This chapter derives Lio’s forward kinematics and the inverse analytic solution of Lio’s
robot arm. First, the robot’s forward kinematics is derived from the Product of Exponen-
tials method. Then, the Denavit-Hartenberg parameters of the robot are presented before
the analytic inverse kinematics solution of the manipulator is derived with a geometric
approach.

Section 4.1 and 4.2 is derived from the specialization project (Grøtterud, 2023).

Figure 4.1: Joint figure of the mobile manipulator with marked reference frames for the
platform {p}, the base of the arm {a} and the TCP {t}.
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4.1 Forward kinematics with Product of Exponentials

This section derives the forward kinematics of the mobile manipulator. First, the forward
kinematics of the robot arm is derived with the PoE formula. Next, the mobile platform
is modeled as a set of virtual joints, and its forward kinematics are derived. Finally, the
transformation between the space frame, mobile platform and manipulator is presented to
form a forward kinematics model for the mobile manipulator.

In the kinematic model of Lio, the frame at the end effector is called the tool frame,
denoted as {t}. The frame of the manipulator base is referred to as the platform frame,
{p}. The frame at the base of the manipulator arm is designated as {a} (Figure 4.1). The
frame at the base of the robot arm was labeled {a} instead of the more commonly used
{b} to avoid confusion with the mobile platform, sometimes called the mobile base.

4.1.1 Forward kinematics of manipulator

To simplify the following computations, Lio’s zero-configuration, M, is defined as shown
in Figure 4.2, with the end effector frame, {t}, aligned with the base frame, {a}, and a
90-degree bend in the elbow joint, θ3. The offset from the manufacturer’s zero joint state
is considered in the implementation in chapter 6.3.

Using the PoE formula, the transformation from the base of the robot arm, {a}, to the
TCP, {t}, can be expressed as

Tat = e[S1]θ1e[S2]θ2e[S3]θ3e[S4]θ4e[S5]θ5e[S6]θ6M (4.1)

𝜃1

𝜃2

𝜃3

𝜃4

𝜃5

𝜃6

𝐿1

𝐿2

𝐿3

𝐿6𝐿5
𝐿4

𝐿𝐺

{a}

{t}

𝐿𝑏

𝑧𝑎

𝑦𝑎 𝑥𝑎

Figure 4.2: Joint representation of Lio’s manipulator arm in the home configuration.
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where the home configuration, M, is

Ma =


1 0 0 L3 + L4 + L5 + L6 + LG

0 1 0 0
0 0 1 Lb + L1 + L2

0 0 0 1

 (4.2)

and the screw axes, Sai = [ωai vai], is shown in Table 4.1.

Frame ω q v = −ω × q

Sa1 [0 0 1] [0 0 Lb] [0 0 0]

Sa2 [0 1 0] [0 0 (Lb + L1)] [−(Lb + L1) 0 0]

Sa3 [0 1 0] [0 0 (Lb + L1 + L2)] [−(Lb + L1 + L2) 0 0]

Sa4 [1 0 0] [L3 0 (Lb + L1 + L2)] [0 (Lb + L1 + L2) 0]

Sa5 [0 1 0] [(L3 + L4) 0 (Lb + L1 + L2)] [−(Lb + L1 + L2) 0 (L3 + L4)]

Sa6 [1 0 0] [(L3 + L4 + L5) 0 (Lb + L1 + L2)] [0 (Lb + L1 + L2) 0]

Table 4.1: Table of components of screw axes to all robot joints

4.1.2 Modeling of the mobile platform

The movement of the mobile platform is modeled as a virtual revolute joint, θ∗p, and a
virtual prismatic joint, x∗p, as shown in Figure 4.1. The virtual joints are denoted with
a star to separate them from the actual joints of the manipulator and the pose of the
platform frame represented by [xp, yp, θp]. This representation takes into account the non-
holonomic constraint without altering the platform’s reachable workspace. The virtual
joints restrict the platform to performing separate rotational and translational movements.
This is a reasonable simplification as Lio typically operates with sequential rotational and
translational movements.

The prismatic joint is connected to the midpoint of the front wheel axis while θ∗p is located
at the origin of the space frame. When x∗p is zero, there is no offset between θ∗p and x∗p.
Hence, the home configuration can be described as the identity matrix

Mp =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.3)

The Screw axes for each joint is

Spr = [0 0 1 0 0 0] (4.4)

Spp = [0 0 0 1 0 0] (4.5)

(4.6)

Using the PoE formula, the forward kinematics of the mobile platform can be described
as

Tsp(θ
∗
p, x

∗
p) = e[Spr]θ∗pe[Spp]x∗

pMp (4.7)

31



CHAPTER 4. KINEMATIC MODELING OF LIO

4.1.3 Forward kinematics of mobile manipulator

The complete forward kinematics of the mobile manipulator, Tst, is simply the product of
all subsequent transformation matrices from the space frame, {s}, to the tool frame, {t}.

Tst(θ
∗
p, x

∗
p, θ1, ..., θ6) = Tsp(θ

∗
p, x

∗
p)TpaTat(θ1, ..., θ6) (4.8)

where Tpa is the fixed offset between the frame of the platform, {p}, and the frame at the
base of the arm, {a},

Tpa =


1 0 0 −113
0 1 0 0
0 0 1 265.5
0 0 0 1

 (4.9)

with the displacement along the x and z axis given in [mm]. A joint representation of the
mobile manipulator with the mentioned reference frames is depicted in Figure 4.1.

4.2 Analytic inverse kinematics of Lio arm

This chapter aims to derive the expression for the joint values of the robot arm θ1, ..., θ6
given a desired end effector transformation X.The inverse kinematics of Lio’s arm can be
solved analytically since the last three joints have rotation axes that intersect orthogonally.
In other words, θ4, θ5 and θ6 form a spherical wrist with wrist center in θ5. The position
of the wrist center, pw, in different poses can be seen in Figure 4.3.

It can be seen from Figure 4.3 that the wrist position only depends on the first three joints
while the orientation of the end effector depends on the last three joints. Therefore, the
inverse kinematics problem can be decoupled into two subproblems; determining position
and orientation.

Figure 4.3: The position of the wrist center pw in different poses.
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4.2.1 Inverse position of wrist

Given a desired end effector pose, X,

X = Tat(θ1, ..., θ6) =

[
Rd pd

0 1

]
(4.10)

the rotation and translational displacement from the base of the arm to the TCP are, Rd,
and, pd, respectively.

The distance from the wrist center to the tool frame in the robot’s zero position is l =
[L4 + L6 + Lg 0 0]T . Since the orientation of the end effector only depends on the last
three joints, the wrist center position pw = [px py pz]

T (Figure 4.3) can be found with

pw = pd −Rd ∗ l (4.11)

Knowing the wrist center coordinates, pw, θ1 can easily be derived by evaluating Figure
4.4.

θ1 = atan2(py, px) or θ1 = atan2(py, px) + π (4.12)

where the different solutions determine if it is the back or the front of the robot, respect-
ively, that faces the end effector. The second solution, ”back solution”, θ1 = atan2(py, px)+
π, is only valid when the original value for θ2 is swapped for π−θ2 (Lynch and Park, 2017).

Analyzing the arm in the plane spanned by r and s, finding θ2 and θ3 is reduced to solving
the inverse kinematics of the planar 2-link arm shown in Figure 4.5. The parameters r
and s are defined as

r =
√
p2x + p2y, s = L1 − pz

Using the law of cosine, the relation between θ3 and the links can be written as

r2 + s2 = L2
2 + (L3 + L4)

2 − 2L2(L3 + L4)cos(β)

Figure 4.4: Inverse position of Lio’s wrist.
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Rearranging the equation, cos(β) can be written as

cos(β) =
L2
2 + (L3 + L4)

2 − (r2 + s2)

2L2(L3 + L4)

From Figure 4.5 we see that β = π − θ3 which implies cos(β) = cos(π − β) = −cos(θ3).
Using this relation, cos(θ3) can be described as

cos(θ3) =
(r2 + s2)− L2

2 + (L3 + L4)
2

2L2(L3 + L4)
:= cθ3 (4.13)

Expressing the joint values with atan2 rather than arcsin or arccos is preferable because
atan2 keeps track of the angle’s quadrant (kilde). Using the trigonometric identity

cos(θ) = b =⇒ θ = atan2(±
√

1− b2, b)

θ3 can be expressed as

θ3 = atan2(±
√

1− c2θ3 , cθ3) (4.14)

where cθ3 is defined as in (4.13). The negative and positive roots represent the elbow-down
and elbow-up solutions.

Looking at Figure 4.5, the angle θ2 + α can be expressed as

θ2 + α = atan2(s, r)

Considering α as a part of the right triangle marked in blue on Figure 4.5, it can easily
be derived with atan2 as

α = atan2(sin(θ3)(L3 + L4), L2 + cos(θ3)(L3 + L4))

Expressing θ2 as θ2 = θ2 + α− α results in the following expression

θ2 = atan2(s, r)− atan2(sin(θ3)(L3 + L4), L2 + cos(θ3)(L3 + L4)) (4.15)

Figure 4.5: Inverse position of Lio’s robot arm.
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4.2.2 Inverse orientation

The three remaining joint angles θ4, θ5 and θ6 define the orientation of the end effector. If
we know a desired end effector frame X we can use the forward kinematics from Chapter
4.1.3. Denoting T(θ) = X we get

X = e[S1]θ1e[S2]θ2e[S3]θ3e[S4]θ4e[S5]θ5e[S6]θ6M

Since θ1, θ2 and θ3 is known we can rearrange the equation as follows

e[S4]θ4e[S5]θ5e[S6]θ6 = e−[S3]θ3e−[S2]θ2e−[S1]θ1XM−1

The last three joints have a rotation axis around X,Y , and X, respectively. Therefore,
their impact on the end effector can be described as an XYX-Euler rotation and their
values can be determined as the solution to the equation

Rotx(θ4)Roty(θ5)Rotx(θ6) = R (4.16)

where R = e[S4]θ4e[S5]θ5e[S6]θ6 and the XYX Euler rotation is (Langston, 1976)

Rotx(θ4)Roty(θ5)Rotx(θ6) =

 c5 s5s6 s5c6
s4s5 c4c6 − c5s4s6 −c4s6 − c5s4c6
−c4s5 c6s4 + c5c4s6 c4c5c6 − s4s6



Solving 4.16 we get the following expressions for the last three joints

θ4 = atan2(R21,−R31) (4.17)

θ5 = arccos(R11) = atan2(±
√
1−R2

11,R11) (4.18)

θ6 = atan2(R12,R13) (4.19)

The values (4.18) and (4.19) holds for the positive root of θ5, denoted ”wrist orientation
1”. For the negative root, ”wrist orientation 2”, the sign inside the atan2-functions are
inverted,

θ4 = atan2(−R21,R31) (4.20)

θ6 = atan2(−R12,−R13) (4.21)

To summarize, four solutions were found for positioning the wrist; elbow up and down, and
robot facing front and back. Two solutions were found for orientation; wrist orientation
1 and 2. In total 4 × 2 = 8 configurations yielded the same end effector pose. The eight
different configurations are visualized in Figure 4.6.
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Figure 4.6: Lio’s 8 configurations derived in section 4.2.

(a) C1: Elbow down, facing front, wrist pos 1. (b) C2: Elbow up, facing front, wrist pos 1.

(c) C3: Elbow up, facing back, wrist pos 1. (d) C4: Elbow down, facing back, wrist pos 1.

(e) C5: Elbow down, facing front, wrist pos 2. (f) C6: Elbow up, facing front, wrist pos 2.

(g) C7: Elbow up, facing back, wrist pos 2. (h) C8: Elbow down, facing back, wrist pos 2.
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4.3 Forward kinematics with DH-parameters

Figure 4.7 shows a joint model of the Lio robot with link coordinate frames assigned ac-
cording to the DH-convention. Table 4.2 displays the corresponding DH-parameters. The
parameter dap is the displacement between the platform frame {p} and the arm frame {a}
in the X1-direction and pheight is the displacement in the Z1-direction. Knowing the DH-
parameters, the symbolic forward kinematic expression can be derived by multiplying the
i = 9 transformation matrices defined in Equation 3.15. The symbolic forward kinematics
can be seen in Appendix C and the actual link lengths are given in Appendix D.

Link θ α r d

1 θ∗p 0 0 0

2 −π
2 −π

2 0 0

3 0 π
2 0 x∗p − dap

4 θ1 +
π
2 −π

2 0 l1 + pheight
5 θ2 − π

2 0 l2 0

6 θ3 −π
2 0 0

7 θ4
π
2 0 l3 + l4

8 θ5 −π
2 0 0

9 θ6 0 0 l5 + l6

Table 4.2: DH-parameters
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Figure 4.7: Link coordinate frames for the DH-convention.
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Chapter 5

Redundancy resolution

This chapter introduces three different options for solving the redundant inverse kinematics
problem. First, a solution based on extended task space with configuration control is
presented. Next, two optimization-based approaches are derived with the objectives of
minimizing platform movements and maximizing manipulability.

Section 5.1 is derived from the specialization project (Grøtterud, 2023).

5.1 Extended task space with configuration control

Considering the model shown in Figure 4.1, the inverse kinematics problem of the mobile
manipulator can be formulated as the joint values (θ∗p, x

∗
p, θ1, ..., θ6) that solve

Tst(θ
∗
p, x

∗
p, θ1, ... , θ6) = Td (5.1)

where Tst is the forward kinematics derived in chapter 4.1.3 and Td is the desired end
effector pose relative to the fixed space frame {s}. The mobile manipulator has a redund-
ancy degree of r = 8− 6 = 2. A simple way to exploit the two additional dof is by taking
the state of the platform qp = [θ∗p, x

∗
p] as input. The frame at the base of the arm, {a},

can then be calculated as a function of qp. When the location of the base frame is known,
the new desired transformation from the base to the end effector, X, can be expressed as

X(qp) = T−1
pa T

−1
sp (qp)Tst = Tat (5.2)

This approach equals the extended task space method with the platform configuration as
secondary tasks. Rewriting (5.2) in vector form yields

ta =

[
t
tc

]
= f−1

([qa

qp

])
(5.3)

where t is the desired end effector pose represented by the task vector t = [x, y, z, ϕ, θt, ψ]
T

and tc = qp is the current platform configuration. Since the additional tasks constrain
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CHAPTER 5. REDUNDANCY RESOLUTION

the pose of the platform, this way of using extended task space is called posture control
or configuration control.

A significant advantage of solving the redundancy resolution problem at the position level
is that the analytic inverse kinematic solution, derived in Chapter 4.2, still can be used
to solve the main task t. Denoting the inverse kinematic solution as the function, Ia, the
redundancy resolution with configuration control can be formulated as

ta =

[
t
tc

]
=

[
Ia(qa)
qp

]
(5.4)

Taking the platform state as input closes the inverse kinematic problem. The manipulator
joints work as internal motions, compensating for changes in the platform state so that
the desired end effector pose is maintained despite platform movements. In this way, the
mobile platform acts as a redundant robot while still utilizing the analytic solution derived
in Chapter 4.2.

5.2 Solving the inverse kinematics problem as nonlinear op-
timization problems

This section presents two approaches for solving the redundancy resolution by formulating
a non-linear optimization problem (NLP). For increased readability, these methods are
from here on referred to as NLP1 and NLP2.

5.2.1 NLP1: Minimizing platform movement by optimizing redundancy
parameters

Defining redundancy parameters

The inverse kinematics of the mobile manipulator can be closed by introducing r = 3
redundancy parameters ρ = [ρ1, ρ2, ρ3] that relates the desired pose to the platform con-
figuration. The desired pose, Td, is represented by the task vector,

t = [xt, yt, zt, ϕt, θt, ψt]
T (5.5)

where (xt, yt, zt) is the desired location of the gripper and (ϕt, θt, ψt) is the desired orienta-
tion represented as the XY Z-fixed angles (3.1.3). The platform configuration is represen-
ted by the state vector qp = [xp, yp, θp]. Defining ρ as the ”generalized mobile manipulator
redundancy parameters” presented in (Ancona, 2017), the redundancy parameters describe
the following geometric relations:

ρ1 corresponds to the angular displacement between the mobile platform and the
manipulator

ρ1 = tan−1
( yt − ya
xt − xa

)
−θp (5.6)

39



CHAPTER 5. REDUNDANCY RESOLUTION

where (xt, yt) and (xa, ya) are the position of the tool frame and the arm base frame,
respectively, and θp is the platform’s heading angle.

ρ2 represents the arm extension as the distance in the xy-plane from the base of the
arm to the end effector

ρ2 =
√
(xt − xa)2 + (yt − ya)2. (5.7)

ρ3 describes the angular displacement between the end effector approach angle and
the arm

ρ3 = tan−1
( yt − ya
xt − xa

)
− ψt. (5.8)

Using the redundancy parameters ρ, the relation between the tool position {t} and the
arm base position {a} can now be formulated as[

xt
yt

]
=

[
xa
ya

]
+ ρ2

[
cos(ρ3 + ψt)
sin(ρ3 + ψt)

]
(5.9)

Exploiting the fixed relationship between the platform frame and the base of the arm[
xp
yp

]
=

[
xa
ya

]
+ d

[
cos(tan−1( yt−ya

xt−xa
)− ρ1)

sin(tan−1( yt−ya
xt−xa

)− ρ1)

]
(5.10)

Figure 5.1: Generalized mobile manipulator redundancy parameters, defined by Ancona
(2017), shown on a model of the Lio robot.
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and the similarity

tan−1(
yt − ya
xt − xa

) = ρ1 + θp = ρ3 + ψt, (5.11)

the state of the platform (xp, yp, θp) can be determined solemnly from the desired trans-
formation as xpyp

θp

 =

xt − ρ2cos(ρ3 + ψt) + dcos(ρ3 + ψt − ρ1)
yt − ρ2sin(ρ3 + ψt) + dsin(ρ3 + ψt − ρ1)

ρ3 + ψt − ρ1

 (5.12)

Equation (5.12) defines the pose of the platform. Using the transform Tpa (4.9) the frame
of the base of the arm is determined and can be used in the analytic inverse kinematics
function to find the joint angles of the arm. Hence, the inverse kinematics of the mobile
manipulator is fully constrained on the form

q =

[
qa

qp

]
=

[
Ia(t)
Ip(t,ρ)

]
(5.13)

where Ia is the analytic inverse kinematics of the manipulator (4.2) and Ip is the relation
between the platform state and the redundancy parameters (5.12).

Formulating the NLP

The objective function presented in Equation (5.14) can be designed to determine a wide
range of desired redundant behaviors. In this thesis, the chosen optimization goal is to
minimize platform motions. Reducing platform movements leaves the manipulator with
the main responsibility for solving tasks. Since the platform lacks an accurate motion
controller, minimizing platform motion can be desirable during high-precision tasks to
increase the overall accuracy of the robot.

Finding suitable values for the redundancy parameters can be formulated as a nonlinear
optimization problem on the form

min
ρ

J(ρ, t,qp)

s.t. ρlower ≤ ρ ≤ ρupper

g(ρ, t,qp) ≤ 0

(5.14)

where J(ρ, t,qp) is a cost function that minimizes platform movement as

J(ρ, t,qp) = || p− p ||+ α||θp − θp|| (5.15)

where the first term is the Euclidean distance between the position component of the
current and estimated platform configuration and the second term is the distance between
the current and estimated heading direction, weighted by α. The norm of the state vector
qp is divided into two terms to account for the difference in scale between the position
[mm] and rotation [deg] components. In the implementation of NLP1, α is set to

α = || p− p || (5.16)
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to ensure the position and rotation errors are on approximately the same scale.

The constraint function g(ρ, t,qp) uses the relation between the platform state and the
redundancy parameters (5.12), together with the analytic inverse kinematics function de-
rived in Section 3.3, to ensure that the configuration lies within the robot’s workspace

qlower ≤ g(ρ, t,qp) = qa ≤ qupper (5.17)

The lower and upper bounds of g, {qlower,qupper}, are the physical joint limits of the
manipulator, given in Table 6.1.

The bounds on the decision variable, ρ, are

ρlower = [q1lower, 0, q7lower], ρupper = [q1upper, 950, q7upper] (5.18)

where the bounds on ρ1 and ρ3 are given in [deg] and determined by the geometry in
Figure 5.1 to have the same upper and lower limits as θ1 and θ7, respectively. The bounds
on the planar arm extension, ρ2, are given in [mm]. The upper bound was chosen slightly
below the robot arm’s maximum reach (995mm), to prevent the arm from fully extending
into a singular configuration.

5.2.2 NLP2: Maximizing manipulability with numeric inverse kinemat-
ics

Using the robot state q = [qa, qp] as the decision variable in the NLP allows for easier
implementation of more complex cost functions, like maximizing the manipulability index.
The manipulability of a robot indicates the range of possible end effector velocities for a
given configuration (Spong et al., 2019). High manipulability means that the robot has
more options in which direction it can move, which is beneficial, for example, in collision
avoidance (Arbo et al., 2019).

The optimization problem is formulated as

min
q

F (q, t)− αM(q)

s.t. qlower ≤ q ≤ qupper

e(q, t) ≤ etol

(5.19)

where F (q, t) describes the primary task of reaching the desired end effector pose

F (q, t) =
1

2
(f(q)− t)T (f(q)− t). (5.20)

Here, f(q) is the forward kinematics derived in Section 3.2 and t is the desired end effector
pose. The secondary taskM(q), weighted by the scaling factor α, is defined as maximizing
the manipulability index

M(q) = µ =
√
det(JtJT

t ) (5.21)
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where Jt is the analytical Jacobian (3.20). The constraint is the error function

e(q, t) =

[
||p(q)− pd||

Qerr

]
(5.22)

ensuring convergence of the position and rotation. The first row takes the Euclidean
distance between the position estimated by the forward kinematics function, p(q) and the
desired position, pd. The second row is the difference in the rotations, specified by the
quaternion distance metric, Qerr, defined in (3.8).

The bounds on the decision variable q are separated into bounds for the manipulator
{qalower

,qaupper} which equals the physical joint limits of the manipulator given in Table
6.1, and the bounds on the platform’s virtual joints

qplower
= [−180,−5000], qpupper = [180, 5000] (5.23)

The bounds on the virtual revolute joint θ∗p allow the platform to rotate 360deg and the
bounds on the virtual prismatic joint x∗p were chosen to provide sufficient range to reach
the desired poses tested in Section 7.4.

Deciding on values for the scaling factor α and the error tolerance etol is a tradeoff between
accuracy and manipulability. A higher α prioritizes maximizing manipulability, enhancing
the robot’s movement options but potentially reducing precision in reaching the desired
pose. Conversely, a lower α ensures accurate positioning at the cost of reduced flexibility.
Similarly, a smaller etol ensures high precision, but may lead to longer computation times
and convergence issues. On the other hand, a larger etol facilitates faster convergence but
at the expense of precision.
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Chapter 6

Implementation

This Chapter describes how the developed kinematic model is implemented on the robot
as a ROS node and how it communicates with the preexisting robot modules. First, each
robot module and its function is described. Then, the program flow of the redundancy
resolution method derived in Section 5.1 is explained, and the limitations of the cur-
rent implementation method are discussed briefly. Lastly, the implementation of the two
optimization-based methods is covered.

The sections 6.1.1, 6.1.3 and 6.3 are derived from the specialization project (Grøtterud,
2023).

6.1 Robot modules

6.1.1 myP

myP is a software framework provided by F&P-robotics to control Lio’s robotic arm and
gripper. The framework has been designed primarily as a web application, but a selection
of its functions can also be accessed through a ROS connection (AG, 2023). In this
project, myP was integrated into a ROS environment to increase scalability and simplify
communication with other modules. The myP-node publishes topics concerning the state
of the robot arm and sensor outputs from the gripper. Some myP functions are available as
ROS services. The topic /lio 1c/joint positions is used to receive the current position
of all arm joints in degrees. Position commands to the arm joints are given through the
service /lio 1c/core/move joint.

6.1.2 Platform workstation and gamepad

Lio’s platform is controlled by a workstation running Ubuntu and ROS. The platform
node subscribes to velocity commands sent on the ROS topic /cmd vel. It publishes the
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Figure 6.1: Communication with Lio through ROS modules.

position and orientation of the robot, relative to its pose at power-up, on the /odom topic.
A gamepad has been integrated as an interface to control the movement of the platform
by publishing linear- and angular velocity commands. The gamepad can be enabled and
disabled during the ”redundancy mode” with the /gamepad lock topic.

6.1.3 Lio kinematics

The Lio kinematics node is the program’s brain and connects all the robot modules.
Its main structure is the kinematic model from Chapter 4 implemented as an object-
oriented class in Python named Lio kinematics(). The class attributes include all di-
mensions of the robot, the transformation matrices derived in Chapter 4.1 and the current
state of the robot arm and the platform. The robot state is updated by the /odom and
/lio 1c/joint positions topics, published by the platform workstation and myP-node.
The class methods are, amongst others, the analytic inverse kinematics derived in Chapter
4.2 and a redundant mode based on the redundancy resolution with configuration control
(Section 5.1). The Lio kinematics() class’s main purpose is to allow for concurrent con-
trol of both the platform and the robot arm and enable the redundant mode described in
the next section.
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6.2 Redundant mode

The extended task space method derived in Section 5.1 is implemented as a redundant mode

activated with the SOUTH WEST gamepad button. When the redundant mode is activated,
the gripper pose is locked while the platform is driveable. The redundant mode enables
the robot to exploit its redundant degrees of freedom as the platform can move freely
within the robot’s workspace while the gripper pose is approximately constant.

When the redundant mode is activated, the robot’s current pose is saved as the desired
pose Td in the form of the transformation matrix from a fixed point in space to the TCP,

Td = Tst.

While the redundancy button is pressed, new joint reference angles, θref , are calculated
by the inverse kinematics(T d) (Algorithm 1) function every 10th millisecond. Next,
θref are sent with a request to the rosservice /lio 1c/core/move joint.

Due to the robot arm’s limited joint velocity of 45deg/s, a platform halt has been added to
avoid temporary deviations from the desired pose. A zero-velocity command is sent to the
platform if the reference angles exceed the current joint values by more than 30deg. The
threshold value of 30deg was determined experimentally as a balance between preventing
the platform from stopping too frequently and avoiding excessive deviations from the
desired pose. The gamepad is disabled with the /gamepad lock topic, and the program is
paused until the arm joints have reached their reference values and the joint motors have
stopped. Figure 6.2 shows a flow diagram of the redundant mode.

Algorithm 1 Decide new joint angles with the analytic inverse kinematics

Input Desired transform Td, current platform state (xp, yp, θp)

X(xp, yp, θp)← T−1
pa T

−1
sp (xp, yp, θp)Td

for every configuration n do
θ1, θ2, θ3 ← inv position(X) ▷ inv position from chapter 4.2.1
θ4, θ5, θ6 ← inv orientation(X, (θ1, θ2, θ3)) ▷ inv orientation from chapter 4.2.2
θn ← (θ1, θ2, θ3, θ4, θ5, θ6)
if every θ in θn is within joint limits then

possible joint configurations← θn
end if

end for

for every θn in possible joint configurations do
euclidean distances← ||θn − current joint values||

end for

joint values← possible joint configurations(argmin(euclidean distances))
return : joint values
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Figure 6.2: Program flow of redundancy function.

The redundant mode is made specifically for when the platform is operated manually with
the gamepad. Therefore, the state of the platform is not restricted to a model of two
virtual joints. Instead, the platform coordinate frame can be updated directly from the
/odom topic with three parameters (xp, yp, θp). Because of the restricted joint limits of the
robot (Table 6.1), the manipulator needs to switch configurations to maintain the gripper
pose as long as possible. Algorithm 1 shows how the extended task space method from
Section 5.1 has been expanded to look for solutions amongst all eight configurations. The
chosen configuration is the one closest to the current joint state that does not violate the
joint limits.

6.3 Offset from manufacturer’s zero configuration

The zero configuration used in the kinematic modeling differs from the zero configuration
determined by F&P. Figure 6.3 shows the manufacturer’s zero configuration on the left,
with its corresponding link reference frames, compared with the zero configuration used
in chapter 4 on the right. The link reference names in the figure relate to the frame names
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used in chapter 4 as

base footprint : The platform frame, {p}.
LIO robot base link : The frame at the base of the arm, {a}.
lio tcp link : The tool frame, {t}.

In the home configuration of this paper’s kinematic model, the arm has a 90deg bend in the
elbow joint, θ3, and all the robot link frames are defined to have the same orientation as the
platform frame, {p} (4.1). In the manufacturer’s zero configuration, frame {a} is rotated
−90deg around the z-axis relative to frame {p} and frame {t} is rotated 180deg relative
to frame {a} (left in Figure 6.3). To compensate for the difference in zero-configuration,
an offset vector,

offset vec = [−90 0 90 0 0]

must be added to joint angles outputted from the inverse kinematics function in
Lio kinematics() so the joint commands yield the desired outcome on the actual robot.
Note that the 180deg rotation of joint6 (shown on the right in Figure 6.3) was omitted
from the offset vec because it exceeds the joint limits (-170, 169). The gripper of the
robot is upside down compared to the model due to the exclusion of the 180deg rotation.
However, this has no practical significance as the gripper is symmetric.

Figure 6.3: Comparison of the robot in the zero position defined by the manufacturers
(left) and the zero position chosen in the kinematic modeling (right).

6.4 Limitations

The provided control software, myP, is designed for ”regular users” and is not suitable
for research projects due to its poor GUI, lack of version control, and limited debugging
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capabilities. Therefore, the implemented code was programmed in a conventional IDE
(Visual Studios Code), and information about the robot’s state and integrated functions
was accessed through ROS as illustrated in Figure 6.1. However, only a limited set of data
and integrated functions are published and available as rosservices.

Another significant limitation was the lack of low-level motion control on the robot plat-
form. As of now, the platform is only controllable through velocity commands on the
/cmd vel topic, published directly with commands from the terminal or through the
gamepad. Velocity commands published to the /cmd vel were found to have a signi-
ficant delay of approximately 1.5s (determined experimentally). This limitation makes
implementing redundancy resolutions that use automatic platform positioning unfeasible.

Joint angle Lower limit [deg] Upper limit [deg]

θ1 −90 260
θ2 −109 110
θ3 −205 25
θ4 −169 170
θ5 −114 114
θ6 −170 169

Table 6.1: Manipulator joint limits relative to the kinematic model’s zero position (right
in Figure 6.3).

6.5 Formulating the NLPs in CasADi with the IPOPT-
solver

The two NLPs were programmed in Python using the CasADi framework. CasADi is an
open-source symbolic framework for automatic differentiation and numerical optimization
(Andersson et al., 2019). This framework was chosen for its ability to efficiently compute
large symbolic expressions, such as the manipulability index, and for its integration with
the IPOPT (Interior Point OPTimizer) solver. The IPOPT solver is a software package
that finds local solutions to nonlinear optimization problems using an interior-point line
search method (Waechter and Laird, 2005). It was chosen for its robust handling of
nonlinear and non-convex objectives and constraints. IPOPT efficiently exploits sparsity
in large-scale problems and uses derivative information effectively, making it suitable for
optimization tasks in robotic redundancy resolution.

Due to the lack of an accurate robot platform controller, these methods were not imple-
mented on the Lio robot. However, they were designed to be included as functions in the
Lio kinematics class to access the current robot state and directly give commands to the
manipulator and platform controller. The main structure of the code for the optimization
problems is included in the appendices A and B.
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6.5.1 Parameters in NLP1

NLP1 is formulated symbolically in Section 5.2.1 as

min
ρ

J(ρ, t,qp) = || p− p ||+ α||θp − θp||

s.t. ρlower ≤ ρ ≤ ρupper

qlower ≤ g(ρ, t,qp) = qa ≤ qupper

(6.1)

where the scaling factor α and the upper and lower bounds on ρ are given in Equations 5.16
and 5.18, respectively, and the bounds on g, {qlower,qupper}, are the physical joint limits
of the manipulator, given in Table 6.1. The desired pose, represented as the task vector,
t, and the current platform configuration, qp, are the parameters in the optimization
problem and are input from the Lio kinematics class.

The choice of initial guess ρ0 is especially important since the IPOPT-solver only guar-
antees convergence to a local optimum. To avoid unnecessary platform movement, the
initial guess first calculates the redundancy parameters with the given task vector t and
current platform configuration qp. If ρ2 exceeds its upper bound, ρ2 > 950, the desired
end effector pose is considered out of reach for the manipulator and platform movement
is required. In this case, the initial guess is set to ρ0 = [0, 700, 0]. These values for ρ01
and ρ03 were chosen because zero displacement between the platform-, manipulator- and
gripper approach angle results in an intuitive robot pose. The value ρ02 = 700 was chosen
because it represents a dexterous manipulator configuration where the arm is neither too
extended nor too constrained. If ρ2 ≤ 950, the calculated values are retained as the initial
guess since the desired pose might be achievable without platform movement.

6.5.2 Parameters in NLP2

NLP2 is formulated symbolically in Section 5.2.2 as

min
q

1

2
(f(q)− t)T (f(q)− t)− α

√
det(JJT )

s.t. qlower ≤ q ≤ qupper[
||p(q)− pd||

Qerr

]
≤ etol

(6.2)

where the first term of the objective function ensures convergence to the desired pose
and the second term maximizes the manipulability index. The bounds on the decision
variable q = [qa,qp] are given in (5.23) for qp. The bounds on qa equals the physical joint
limits of the manipulator given in Table 6.1. The initial guess is set to the robot’s current
configuration to help find a local minimum that requires minimal movement.

The trade-off when choosing values for the scaling factor α and the error tolerance etol
was briefly discussed in Section 5.2.2. These values were experimentally determined as

α = 1× 10−5, etol =

[
0.1

1× 10−8

]
(6.3)

50



CHAPTER 6. IMPLEMENTATION

to strike a balance between maximizing manipulability while maintaining the primary
task’s accuracy without significantly increasing runtime. The value of α needs to be small
to balance the relatively large manipulability index, ranging from 107−109 during testing
in Section 7.4.2. The position error tolerance allows a position deviation of 0.1mm and
a Qerr of 1 × 10−8, corresponding to a rotation difference of < 0.001rad around one axis
in Euler angle representation. Thus, the chosen values for the error tolerance can be
considered practically zero for most applications. However, further tuning to optimize
these parameters is recommended for future work.
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Testing and results

This chapter presents the testing procedures and results for the three redundancy resol-
ution methods derived in Chapter 5. First, the configuration control method was exper-
imentally tested on the Lio robot at PPM Robotics’ nursing home lab. The tests were
conducted with both a static and dynamic base, and with two different platform velo-
cities. The performance was evaluated based on the accuracy of reaching a desired end
effector pose and the ability to maintain a fixed gripper pose during platform movement.
Secondly, the two NLP methods were tested and visualized in Matlab. The evaluation
criteria for these optimization algorithms included their effectiveness in fulfilling second-
ary tasks, such as minimizing platform motion and maximizing manipulability, as well as
their runtime and number of iterations.

Figure 7.1: Lio in its test environment at PPM Robotic’s nursing home lab.
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7.1 Test parameters and evaluation metrics

The primary task in all the tests is to reach a desired end effector pose. The end effector
pose is represented by the transformation matrix introduced in Section 3.1.3,

Tst =

[
R p
0T 1

]
∈ SE(3), with R ∈ SO(3), p ∈ R3 (7.1)

where {s} represents a fixed space frame and {t} is the tool frame of the robot. The
elements of the position vector, p, are given in [mm].

The state of the robot arm is represented by the joint vector

qa = [θ1, θ2, θ3, θ4, θ5, θ6] (7.2)

with the joint values θ given in degrees because that is the measurement unit for the
robot’s joint commands. The state of the platform is represented by the vector

qp = [xp, yp, θp] (7.3)

where (xp, yp) is the position and θp the rotation of the platform frame {p} relative to the
space frame {s}. The platform frame is located at the center of the platform’s front wheel
axis as illustrated in Figure 4.1.

To evaluate the success of reaching the desired end effector pose, the desired pose Td

is compared to the actual pose of the robot Tst. The actual pose, Tst, is found by
inputting the current robot state qmm = [qa,qp] to the forward kinematics derived in
Section 4.1.3. Comparing the transformation matrices of the actual and desired pose is
split into comparing position and orientation. The Euclidean distance is used to measure
deviation in position

perr = ||pd − pst|| (7.4)

To compare the orientation of the poses, the rotation matrices of the actual and desired
transformation matrix, Rst and Rd, were transformed to quaternions. The quaternion
distance metric Qerr, described in Section 3.1.3, is used to measure deviation from the
desired rotation.

Qerr = 1− |Qd ·Qst| (7.5)

The robot’s active and feasible configurations are also evaluated. The eight solutions
of the analytic inverse kinematics, derived in Section 4.2, are represented by an [8 × 7]
configuration matrix. An example of the configuration matrix is shown below,

1 43.2 98.6 −144.5 12.8 61.6 51.5
1 43.2 42.2 −35.5 53.2 14.1 5.2
0 −136.8 −42.2 −144.5 −126.8 14.1 5.2
0 −136.8 −98.6 −35.5 −167.2 61.6 51.5
1 43.2 98.6 −144.5 −167.2 −61.6 −128.5
0 43.2 42.2 −35.5 −126.8 −14.1 −174.8
0 −136.8 −42.2 −144.5 53.2 −14.1 −174.8
0 −136.8 −98.6 −35.5 12.8 −61.6 −128.5


(7.6)

53



CHAPTER 7. TESTING AND RESULTS

where each row of the configuration matrix is on the form

rown =
[
0/1 θ1 θ2 θ3 θ4 θ5 θ6

]
The first column is a boolean value indicating whether the configuration is within joint
limits (1) or validating joint limits (0). Columns 2 − 7 contains the calculated joint
positions for θ1 − θ6 in degrees. The row number 1 − 8 coincides with the configurations
C1-C8 illustrated in Figure 4.6. The example configuration matrix (7.6) represents a case
with three feasible configurations, C1, C2, C5. The blue color highlights the configuration
chosen as the solution to the inverse kinematics problem. The selected configuration is
the one that minimizes the Euclidean distance to the current arm pose, as described in
Algorithm 1.

For the optimization algorithms, manipulability and changes in the platform state are also
evaluated for the output poses. The manipulability is evaluated with the manipulability
index

m =

√√√√det

(
∂f(q)

∂q

∂f(q)

∂q

T
)

(7.7)

and the change in platform state is evaluated with the Euclidean distance between the
current and proposed platform state

||qp − qp|| (7.8)

The runtime and number of iterations of the solver are also considered.

7.2 Test 1: Configuration control with static base position-
ing

7.2.1 Experimental setup

The first experiment tested the robot’s repeatability with the kinematic model from
Chapter 4. The repeatability was tested by checking if Lio could return to a programmed
end effector pose, Td. The test was performed as follows

1. The manipulator was set in release mode to enable manual guiding of the arm.

2. Lio was moved to a configuration where it pointed at a bottle on the bedside table
(Figure 7.2b).

3. The current pose was saved as the desired pose Tst = Td.

4. The release mode was deactivated.

5. Lio was moved to an arbitrary location where the bottle at the bedside table was
within reach of the manipulator.
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(a) Lio in its home configuration. (b) Lio’s end effector at the desired pose Td.

6. The Lio kinematics node was initialized.

7. The manipulator was moved to its home configuration (Figure 7.2a).

8. The current platform pose and the desired end effector pose were input to the con-
figuration control method (Algorithm 1) to find new joint angles.

Steps 4−8 were repeated, so the configuration control was tested with two different inputs.

The state of the robot platform, qp is determined by the /odom rostopic, which is initiated
when the robot is powered up. Since Lio was turned on at the charging station, the desired
pose Td in Test 1,

Td =


−0.95 −0.12 −0.30 −699.2
0.12 −0.99 0.02 −1994.0
−0.30 −0.02 0.95 529.2
0.00 0.00 0.00 1.00

 (7.9)

is given relative to the {s1} frame modeled in Figure 7.3

Figure 7.3: Illustration of the test environment at PPM nursing home lab with the space
frames {s1} and {s2} for Test 1 and Test 2 respectively.
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7.2.2 Results

Inital pose 1

In the first test, the initial platform pose was

qp = [112.2,−2098.8, 171.1] (7.10)

The configuration matrix from the analytical inverse kinematics showed that configuration
C6 was the only feasible arm configuration.

0.0 1.0 114.8 −143.7 1.0 46.8 −1.8
0.0 1.0 59.1 −36.3 171.6 5.1 −172.9
0.0 −179.0 −59.1 −143.7 −8.4 5.1 −172.9
0.0 −179.0 −114.8 −36.3 −179.0 46.8 −1.8
0.0 1.0 114.8 −143.7 −179.0 −46.8 178.2
1.0 1.0 59.1 −36.3 −8.4 −5.1 7.1
0.0 −179.0 −59.1 −143.7 171.6 −5.1 7.1
0.0 −179.0 −114.8 −36.3 1.0 −46.8 178.2


(7.11)

With the joint command qa = [1.0, 59.1,−36.3,−8.1,−5.1, 6.9], Lio reached the end ef-
fector configuration Ts1t

Ts1t =


−0.94 −0.12 −0.31 −698.9
0.12 −0.99 0.02 −1994.0
−0.31 −0.02 0.95 528.9
0.00 0.00 0.00 1.00

 . (7.12)

The position and orientation error between Ts1t and Td was

perr ≈ 0.5mm
Qerr ≈ 5.57× 10−7 (7.13)

which is approximately 0 for practical applications.

Inital pose 2

In the second test, the initial platform pose was

qp = [−54.6,−2162.6,−163.5] (7.14)

The output from the analytical inverse kinematics showed again that only configuration
C6 was feasible. 

0.0 −30.1 139.9 166.3 6.4 71.6 −5.0
0.0 −30.1 31.4 13.7 167.0 27.9 −171.4
0.0 149.9 −31.4 166.3 −13.0 27.9 −171.4
0.0 149.9 −139.9 13.7 −173.6 71.6 −5.0
0.0 −30.1 139.9 166.3 −173.6 −71.6 175.0
1.0 −30.1 31.4 13.7 −13.0 −27.9 8.6
0.0 149.9 −31.4 166.3 167.0 −27.9 8.6
0.0 149.9 −139.9 13.7 6.4 −71.6 175.0


(7.15)
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With the joint command qa = [−30.1, 31.4, 13.7,−13.0,−27.9, 8.6], the final end effector
configuration was

Ts1t =


−0.95 −0.12 −0.30 −699.0
0.12 −0.99 0.02 −1993.8
−0.30 −0.02 0.95 529.6
0.00 0.00 0.00 1.00

 (7.16)

which is equivalent to a position and orientation error of

perr ≈ 0.5mm
Qerr ≈ 7.26× 10−8 (7.17)

7.3 Test 2: Configuration control with dynamic base posi-
tioning

The second test aimed to assess how well Lio maintained its gripper pose while the platform
was moving. The implemented redundant mode (6.2) allows the platform to be controlled
manually with the gamepad while the gripper pose is fixed. The redundant mode can be
beneficial when operating in narrow spaces and provides a predictable robot behavior. To
emulate a scenario in which the redundant mode could be applicable, Lio was positioned
with a stool as an obstacle between itself and the desired pose. Next, Lio was manually
driven around the obstacle while the redundant mode was active before it reached the
desired pose.

7.3.1 Experimental setup

The test started with the same steps 1 − 4 as Test 1. Then the test was structured as
follows:

5. Lio was moved to a position where the desired pose was out of reach for the ma-
nipulator and a straight path to the goal was obstructed by an obstacle (Figure
7.5a).

6. The manipulator was moved to an outstretched arm configuration,
qa = [15, 40,−45, 0, 2.5, 0].

7. The platform was driven around the obstacle while in redundant mode.

8. When the robot was sufficiently close to the desired pose, the platform was stopped
and the current platform pose and the desired end effector pose were inputted to the
configuration control method (Algorithm 1) to find new joint angles.

57



CHAPTER 7. TESTING AND RESULTS

Due to Lio being powered up at a new location for Test 2, the desired pose Td was given
relative to the space frame {s2} in Figure 7.3.

Td =


0.62 −0.76 0.16 797.0
0.74 0.64 0.19 943.4
−0.25 0.00 0.97 544.4
0.00 0.00 0.00 1.00

 (7.18)

To move around the obstacle, Lio’s platform followed the path illustrated in Figure 7.4
with a linear speed of v = 0.02m/s and an angular speed of θ̇ = 0.05rad/s.

Figure 7.4: Platform movement to avoid obstacle.

7.3.2 Results

Performance in redundant mode

Figure 7.5 shows parts of Lio’s path and configurations during Test 2. The upper left
image shows Lio at its start configuration, the upper right image shows the pose after
rotation, the bottom left image shows the pose after translational movement and the
lower right image shows Lio at the desired pose, Td. One can see that the gripper pose is
approximately maintained in the three first photos when the redundant mode is activated.

The number of feasible configurations is a key factor for the performance in redundant mode.
Figure 7.6 shows how many configurations were available and which configurations were
active during the test. From Section 4.2, eight solutions were derived from the analytic
inverse kinematics problem. However, depending on the pose and due to the restricted
joint limits of the robot, not all configurations are feasible at all times. The bar plot (left
in Figure 7.6) shows that, at most, three configurations were feasible simultaneously. As
the robot moved further away from its start pose, fewer configurations were available. The
scatter plot to the right depicts which configuration was active. The two configurations
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(a) Lio in its home configuration. (b) Lio after rotational movement.

(c) Lio after translational movement (d) Lio’s end effector at the desired pose Td.

Figure 7.5: Lio’s path of obstacle avoidance and reaching the desired pose in Test 2.

that were active during the test were C6 and C2, defined in Figure 4.6. The data gap,
present in the approximate time period 16 − 19s, is caused by the configuration change.
As explained in Section 6.2, the platform stops and waits for the manipulator joints to
reach their reference values if a relative joint command is ≥ 30deg. Such configuration
changes may cause big deviations from the desired end effector pose, visible in Figure 7.7.

Figure 7.7 shows the deviation from the desired gripper position and rotation. Table 7.8
displays the corresponding median, mean and max value in addition to the end pose error
of the gripper position in the x, y and z-direction. The ”end pose error” refers to the error
from the desired position when the platform has stopped moving. These deviations are of
the same size as the errors in the static Test case. The max error in all four plots in Figure
7.7 occurs just after the configuration change (16− 19s), as explained above. Apart from
the time of the configuration change, the deviation from the desired gripper position and
orientation is small (≤ 8.4mm). Comparing the platform path in Figure 7.4 to the error
graphs, it is clear that the error is biggest in the platform’s direction of motion. The error
during the rotational movement is also noticeably bigger than during the translational
movement. When the robot moves forward, there is a small offset in the x-direction but
almost no deviation in the y-direction. The offset in the direction of motion is due to
the arm joints compensating for the platform motion, resulting in a slight lag of about
8.4mm. Since the robot is not moving vertically, there is approximately no deviation in
the z-direction outside the configuration change.

Figure 7.9 shows the joint angle reference, outputted from the configuration control method
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Figure 7.6: Number of feasible configurations (left) and selected configuration (right)
during Test 2. The data gaps in time period 15 − 19s are due to the pause where the
platform stops and waits for the arms joints to catch up with their reference angles.

(Algorithm 1), plotted against the actual joint positions. New angles are calculated every
10th millisecond unless the program is paused to wait for the joint motors after a ≥ 30deg
step in the reference. The 180deg step in the reference for θ4 and θ6 is a result of the
configuration change from C6 to C2. The configuration change is necessary because θ6
approaches its lower joint limit. The plots clearly demonstrate that when there is a large
step in the reference signal, the robot arm is unable to follow the reference at its maximum
velocity of 45deg/s. This justifies the platform stop implemented in the redundant mode

to ensure that arm joints do not fall too far behind their reference. During gradual changes,
the joints track the reference signal effectively.

There is an experimentally determined delay of approximately 1.5s from the moment the
stop command is published to the /cmd vel topic until the platform actually stops. The
program pauses to track the platform position when the stop command is sent. Con-
sequently, when the program resumes calculating new joint angles, the platform may have
moved several cm from its previously registered position. This often results in a significant
difference between the joint reference before and after a platform stop. This difference
is clearly visible for θ4 and θ6 in Figure 7.9 as an approximate 20deg difference in the
reference from t = 16s to t = 19s. The arm joints will move to their last received joint
command before the program resumes, which is observed as the slight overshoot in joint
position at t = 19s.
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Figure 7.7: Deviation from desired gripper position (top) and desired gripper rotation
(bottom).

Median error [mm] Mean error [mm] Max error [mm] End pose error [mm]

x 8.4 11.1 40.6 0.5

y 1.8 4.1 16.3 -0.1

z 0.6 3.12 37.8 0

Figure 7.8: Mean and median values of the gripper position error in the x-, y-, and z-
direction.
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Figure 7.9: Reference joint value plotted against actual joint value for all the arm joints
{θ1, ... , θ6}. Notice the 180deg jump in joint reference for θ4 and θ6 at the configuration
change at t ≈ 15s.

62



CHAPTER 7. TESTING AND RESULTS

Performance in reaching the desired pose

When the redundant mode was deactivated, the platform state was

qp = [273.6, 246.7, 12.1] (7.19)

The analytic inverse kinematics found two feasible configurations C1 and C6.

0 35.6 110.4 −133.5 3.6 37.4 −2.7
1 35.6 65.4 −46.5 154.6 5.1 −154.6
0 −144.4 −65.4 −133.5 −25.4 5.1 −154.6
0 −144.4 −110.4 −46.5 −176.4 37.4 −2.7
0 35.6 110.4 −133.5 −176.4 −37.4 177.3
1 35.6 65.4 −46.5 −25.4 −5.1 25.4
0 −144.4 −65.4 −133.5 154.6 −5.1 25.4
0 −144.4 −110.4 −46.5 3.6 −37.4 177.3


(7.20)

With the joint command qa = [35.6, 65.4,−46.5, 154.7, 5.1,−154.7], the final end effector
configuration was

Ts2t =


0.62 −0.76 0.17 797.0
0.74 0.65 0.18 943.9
−0.25 0.01 0.97 545.7
0.00 0.00 0.00 1.0

 (7.21)

which is equivalent to a position and orientation error of

perr ≈ 1.4mm
Qerr ≈ 1.14× 10−5 (7.22)

7.3.3 Test 3: Dynamic base positioning with double platform velocity

To assess the platform velocity’s impact on the performance of the redundant mode, Test
2 was conducted again with double platform velocity v = 0.04m/s, θ̇ = 0.1rad/s. Apart
from the increased platform velocity, all other parameters, including initial arm pose, plat-
form path, and desired pose, remained unchanged. Only the graphs that show significant
differences from Test 2 are displayed in the following section.

Results

Figure 7.12 and Table 7.13, present the gripper position and rotation error as well as error
statistics for Test 3. The figures indicate that the deviations from the desired pose were
significantly higher with the increased platform speed. The median and mean error in the
x-direction more than doubled. Although the increase in the y and z-directions were not
as big, they were still noticeably higher. The static error remains of the same size order
as in Test 2 which is expected since this measurement was taken when the platform had
stopped.

63



CHAPTER 7. TESTING AND RESULTS

Figure 7.10: Number of feasible configurations (left) and selected configuration (right)
during Test 3. Notice the second data gap not present in Test 2.

The configuration plot (Figure 7.10) shows the same number of feasible configurations and
active configurations as in Test 2. However, there are now two data gaps, indicating that
the platform has stopped twice. The second data gap is not due to a configuration change,
but rather a step in the reference signal of ≥ 30deg for both θ4 and θ6. The big step is
caused by the platform stop delay of ≈ 1.5s. In Test 2 the platform drove slow enough to
avoid a 30deg jump in joint reference. However, with double platform velocity in Test 3,
the platform managed to move far enough offline to trigger another platform stop.
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Figure 7.11: Reference joint value plotted against actual joint position for θ4 and θ6.
Notice the second jump in the reference signal making the platform stop for the second
time.
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Figure 7.12: Deviation from desired gripper position (top) and desired gripper rotation
(bottom) for the dynamic base Test case with double platform velocity.

Median error [mm] Mean error [mm] Max error [mm] End pose error [mm]

x 21.5 24.4 65.2 0.0

y 2.0 7.7 32.0 0.2

z 0.7 4.7 41.0 -0.5

Figure 7.13: Mean and median values of the gripper position error in the x-, y-, and z-
direction for the Test case with double platform velocity.
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7.4 Testing NLP for redundancy resolution

The objective of testing the optimization methods is to demonstrate that the platform’s
pose can be determined automatically, a crucial feature for future autonomous operations.
Due to the current limitations in precise platform motion control accessible through ROS,
these were conducted in simulations rather than experimentally on the robot. The results
of the optimization methods were visualized in Matlab v2023b using a model of the Lio
robot generated from a URDF file. The tests aimed to evaluate whether the optimization
problems could find configurations where Lio achieved its desired pose while also fulfilling
secondary tasks, such as minimizing platform movement and maximizing manipulability.

7.4.1 Test setup

Three tests were run to evaluate how the two optimization problems, referred to as NLP1
(5.2.1) and NLP2 (5.2.2), found different solutions to the inverse kinematics problem. To
facilitate comparison, the tests were run with the same start configuration and a randomly
chosen desired end effector pose, Td

Td =


0.88 0.00 0.48 2100.0
0.40 0.54 −0.74 1100.0
−0.26 0.84 0.47 700.0
0.00 0.00 0.00 1.00

 (7.23)

The selected start configurations can be seen in Table 7.1 where qp0 and virtual joints
[θ∗p, x

∗
p] both represent the platform’s start pose and qa0 is the initial arm joint values.

The start pose is represented both as virtual joint values [θ∗p, x
∗
p] and as position and ori-

entation of the platform frame, [xp, yp, θp] because the NLP2 uses the eight-axis kinematic
model considering the non-holonomic constraint, while the NLP1 method uses position
and orientation of the platform frame directly. The platform’s start pose was chosen such
that the configuration of frame {p} was reachable by one displacement of the virtual joints;
in other words, x∗p = xp and θ∗p = θp. In Case 3 the start pose was chosen so that the
desired pose was within reach of the robot without moving the platform.

Test case qp0 [θ∗
p0,x

∗
p0] qa0

1 [0.0, 1600.0, 90.0] [90, 1600] [-94.7, 0.0 0.0, 0.0, 0.0, 0.0]

2 [242.7, -176.3, -36.0] [-36, 300] [0.0, -90.0, 225.0, 90.0, 60.0, 0.0]

3 [1558.9, 900, 30] [30, 1800] [90.0, 60.0, -22.5, 90.0, 60.0, 0.0]

Table 7.1: The robot’s start pose in the three different tests.
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Test case ρopt qp

1 [-72.1, 950.0, -11.1] [1185.1, 989.9, 85.6]

2 [69.4, 950.0, 7.2] [1382.2, 530.4, -37.6]

3 [-8.1, 688.6, -2.8] [1558.9, 900.0, 30.0]

Table 7.2: Optimal platform configuration found with NLP1.

Test case [θ∗
p,x

∗
p] qp

1 [29.0, 1732.1] [1514.5, 840.4, 29.0]

2 [11.8, 2134.0] [2088.8, 436.9, 11.8]

3 [30, 1800] [2088.8, 436.9, 11.8]

Table 7.3: Optimal platform configuration found with NLP2.

7.4.2 Results

The optimal redundancy parameters ρopt = [ρ1, ρ2, ρ3] from NLP1 and the optimal virtual
joints [θ∗p, x

∗
p] from NLP2 determines the platform configuration qp and are shown in Table

7.2 and Table 7.3. Comparing the end poses of the two optimization methods to the initial
pose, it is clear that NLP1 resulted in less displacement from the initial pose than NLP2.
The end poses of NLP1 kept the heading angle close to the initial platform rotation, while
the heading angle from NLP2 appears more arbitrary. Evaluating ρopt one can see that
ρ2, representing the extension of the manipulator in the xy−plane, was maximized in the
two first Test cases where the robot started in a position where the desired end effector
pose was out of reach.

The optimal arm configuration qa found by the two optimization functions are shown in
Table 7.4. NLP2 outputs the optimal arm joint angles directly with the numeric inverse
kinematics, while NLP1 uses the configuration control method, inputting the state of the
platform and using the analytic inverse kinematics solution. The feasible joint configura-
tions from the analytic solution are shown in the configuration matrices (7.24a)-(7.24c).
Figure 7.14 visualizes the optimal robot configurations for the three Test cases. The first
column displays the output from NLP1 and the right column is the output from NLP2.
The transparent robot model represents the start pose and the non-transparent robot rep-
resents the optimal end pose. The coordinate frame illustrates the desired end effector
configuration, Td.

Test case
Final arm joint positions, qa

Analytic solution (NLP1) Numeric solution (NLP2)

1 [-80.0, 60.8, -67.7, 40.8, 28.8, 18.6] [-4.4, 11.8, 7.8, -0.8, -4.6, 61.3]

2 [74.6, 57.4, -61.5, -32.5, 22.6, 94.5] [103.3, 72.1, -89.1, 104.3, -94.7, -45.7]

3 [-12.0, -0.3, 21.3, -47.1, -8.9, 105.6] [103.3, 72.1, -89.1, 104.3, -94.7, -45.7]

Table 7.4: Optimal arm joint values maximizing accuracy and manipulability.
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Figure 7.14 clearly shows that optimization algorithms converged to a solution where the
robot succeeded in reaching its desired end effector pose. The deviation from the desired
pose was

perr ≈ 0.2mm
Qerr ≈ 5.49× 10−8

with the analytic solution and

perr ≈ 0.1mm
Qerr ≈ 2.0× 10−8

with the numeric solution, which is practically zero in both cases. Table 7.5 shows the ma-
nipulability of the configurations as well as the distance from the initial and end platform
pose. The manipulability found from NLP2 was always greater than the one of NLP1.
For Test cases 2 and 3, it seems that NLP2 found the same local minimum since it had
the same manipulability measure and platform pose. Evaluating the distance from the
initial pose, it is clear that the configuration from NLP1 required less platform movement
than from NLP2. For Test case 3, where the desired pose was within reach of the robot’s
start pose, NLP1 found a solution by only moving the manipulator while NLP2 moved
the platform relatively far from the start pose.

The runtime and number of iterations needed for convergence for the two optimization
algorithms are shown in Table 7.6. The analytical solution is much faster and requires far
fewer iterations than the numeric solution. For Test case 3 the NLP1 doesn’t need any
iterations since the initial guess always checks if the current pose is within reach of the
start pose.

Test case
Manipulability ||qb0 − qp||

NLP1 NLP2 NLP1 NLP2

1 2.23× 108 12.37× 108 1332.9 1694.3

2 1.76× 108 64.85× 108 1340.8 1945.3

3 0.62× 108 64.85× 108 0 703.9

Table 7.5: Comparing manipulability of the configuration and platform movement for both
optimization algorithms.

Test case
Runtime [s] Iterations
NLP1 NLP2 NLP1 NLP2

1 0.025 0.523 9 33

2 0.030 1.837 9 107

3 0.002 0.723 0 44

Table 7.6: Comparing the runtime and number of iterations for the two optimization
algorithms.
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Test 1 configuration matrix:

1 −80.0 83.8 −112.3 25.4 47.1 37.7
1 −80.0 60.8 −67.7 40.8 28.8 18.6
1 100.0 −60.8 −112.3 −139.2 28.8 18.6
1 100.0 −83.8 −67.7 −154.6 47.1 37.7
1 −80.0 83.8 −112.3 −154.6 −47.1 −142.3
1 −80.0 60.8 −67.7 −139.2 −28.8 −161.4
1 100.0 −60.8 −112.3 40.8 −28.8 −161.4
1 100.0 −83.8 −67.7 25.4 −47.1 −142.3


(7.24a)

Test 2 configuration matrix:

1 74.6 86.8 −118.5 −16.2 48.0 75.0
1 74.6 57.4 −61.5 −32.5 22.6 94.5
0 −105.4 −57.4 −118.5 147.5 22.6 94.5
0 −105.4 −86.8 −61.5 163.8 48.0 75.0
1 74.6 86.8 −118.5 163.8 −48.0 −105.0
1 74.6 57.4 −61.5 147.5 −22.6 −85.5
0 −105.4 −57.4 −118.5 −32.5 −22.6 −85.5
0 −105.4 −86.8 −61.5 −16.2 −48.0 −105.0


(7.24b)

Test 3 configuration matrix:

0 −12.0 116.6 158.7 6.5 99.7 60.1
1 −12.0 −0.3 21.3 132.9 8.9 −74.4
0 168.0 0.3 158.7 −47.1 8.9 −74.4
0 168.0 −116.6 21.3 −173.5 99.7 60.1
0 −12.0 116.6 158.7 −173.5 −99.7 −119.9
1 −12.0 −0.3 21.3 −47.1 −8.9 105.6
0 168.0 0.3 158.7 132.9 −8.9 105.6
0 168.0 −116.6 21.3 6.5 −99.7 −119.9


(7.24c)
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(a) Test case 1 with NLP1 minimizing platform move-
ment.

(b) Test case 2 with NLP2 maximizing manipulability.

(c) Test case 2 with NLP1 minimizing platform move-
ment.

(d) Test case 2 with NLP2 maximizing manipulability.

(e) Test case 3 with NLP1 minimizing platform move-
ment.

(f) Test case 3 with NLP2 maximizing manipulability.

Figure 7.14: Visualization of the three Test cases with the initial configuration repres-
ented by the transparent robot and the ”optimal” configuration represented by the non-
transparent robot model. The coordinate frame at the robot’s tooltip represents the
location and orientation of the desired end effector pose.
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Chapter 8

Discussion and future work

This chapter discusses the results of the experimental tests and simulations in Chapter 7.
For the experimental tests, the test parameters like the platform speed and the resulting
errors are seen in the context of Lio’s intended operation. The optimization algorithms
are evaluated based on their success in fulfilling secondary tasks and their relevance to
real applications. Next, the system’s limitations are described, and the chosen redundancy
resolution and implementation methods are discussed. Lastly, ideas for future work are
presented.

8.1 Evaluation of experimental test results

8.1.1 Test 1: Configuration control with static base positioning

The purpose of Test 1 was to assess the repeatability of the implemented kinematic ro-
bot model. According to the technical datasheet (F&P Robotics AG, 2022), the P-rob
manipulator boasts a position repeatability of ±0.1mm. The kinematic model’s meas-
ured position repeatability is slightly higher, perr ≈ 0.5mm. The reason for the increased
repeatability error is unknown, but can possibly originate from wear and tear on the hard-
ware. Nonetheless, a repeatability error of 0.5mm remains more than sufficient for Lio’s
intended tasks. In the context of operating within a nursing home environment, navigating
between rooms and handling daily items, this level of precision is more than adequate.

Evaluating the output of Qerr intuitively can be challenging due to its small scale. How-
ever, values on the order of ≤ 10−7 correspond to a rotation difference of about 0.001rad
around one axis in Euler angle representation. Therefore, for practical application, the
rotation error can be considered zero.
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8.1.2 Test 2 and Test 3: Configuration control with dynamic base posi-
tioning

Test 2 aimed to evaluate to which degree the robot managed to keep a fixed end effector
pose while the platform was moving. The characteristic of a redundant robot lies in
its capability to achieve a desired end effector pose through an infinite number of joint
configurations. The results obtained from the previous chapter confirmed that Lio, with
the new kinematics model, operates as a redundant system. This conclusion is drawn
from consistently maintaining the same end effector pose across various joint configura-
tions. The average deviation from the desired pose was relatively low (≤ 8.4mm) with
slow speed. However, the gripper position and rotation error plots in Figure 7.7 and 7.12
show that the end effector exhibited jerky motions. This was especially noticeable during
rotational movements. Jerky motions were predicted already in the specialization pro-
ject (Grøtterud, 2023) because the reduandant mode relies on counteracting the platform
movements. Therefore, the performance depends on factors such as the publicity rate of
the joint state, the computational time of the inverse kinematics function, the joint angle
velocity, and the platform velocity.

Test 3 highlighted the effect of platform velocity, showing a doubling of position error and
an increase to two platform stops. Reducing the number of platform stops is desirable to
achieve smoother robot motion. Increasing the threshold angle that triggers platform stops
could improve performance at higher platform velocities. However, due to Lio’s restricted
joint range (6.1) the platform can not move far without requiring a reconfiguration of the
arm. Nevertheless, Test 3 showed such high average errors that it can be concluded that
the redundant mode is suitable only for lower platform velocities. Fortunately, the robot
is expected to operate at slow speeds while performing tasks in the nursing home.

8.2 Evaluation of NLP test results

The proposed optimization methods were intended as suggestions on how to solve auto-
matic platform positioning. The test runs demonstrated that both algorithms successfully
got Lio to the desired pose. Furthermore, in the two first Test cases, the NLP1 found solu-
tions that maximized the redundancy parameter ρ2, representing the robot arm extension
in the xy-plane. Keeping the arm in such an extended position required a minimum of
platform movements, which was the desired objective. On the other hand, NLP2 found
configurations with more dexterous arm poses requiring bigger platform movements.

The IPOPT solver does not guarantee convergence to the global optimum. Therefore one
could see that the NLP2 found different solutions with different initial guesses despite not
including a relation to the initial arm pose in the cost function. A good initial guess can,
however, increase the performance of the solvers. This was visible for Test case 3 when the
desired pose was already within the reach of the manipulator. Here, the NLP1 found the
global optimal solution of zero platform movement because its initial guess accounts for the
scenario where the desired pose is within reach. The NLP2, on the other hand, converged
to the same solution for Test case 2 and Test case 3. However, it would be preferable
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to avoid unnecessary platform movements when the desired pose is already within reach.
This could be accounted for by including the analytic inverse kinematic solution in the
initial guess.

NLP1 had a significantly shorter runtime and required fewer iterations than NLP2. This is
because the inverse kinematics and optimization solutions are separated. The optimization
problem is only used to determine a platform pose which is then used to determine the
robot arm’s analytic inverse kinematics problem. Since the analytic inverse has a unique
set of solutions, no iterations are needed to solve the joint angles of the arm. This is
essentially the same approach as the configuration control method, only now the platform
pose is found ”automatically” and not determined by manual movement or navigation.
NLP2, on the other hand, solves the inverse kinematics of the arm numerically and,
therefore, has to iterate over both possible joint angle solutions and the cost of maximizing
manipulability. Hence, it is no surprise that NLP2 is more computationally expensive than
NLP1.

8.2.1 Advantages and drawbacks of the current problem formulations

As mentioned above, a great advantage of NLP1 is its computational efficiency following
the use of the analytic inverse kinematics. However, incorporating more complex cost
functions involving the arm joints qa while using only ρ as a decision variable in the
optimization problem, was proven difficult with the Casadi framework. This restriction
limits the types of secondary tasks that can be added to the system, at least to the author’s
knowledge. This limitation led to the implementation of NLP2, as the manipulability
expression could not be included in the cost without making qa a decision variable.

Additionally, NLP1 does not consider the nonholonomic constraint that prevents the plat-
form from moving sideways. Consequently, NLP1 may propose platform configurations
that can not be reached by a single joint displacement of the virtual platform joints. This
can possibly be solved by adding more constraints on the redundancy parameters ρ. How-
ever, the nonholonomic constraint only reduces the dimensions of the system’s achievable
velocities, keeping the platform’s configuration space three-dimensional. Therefore, an-
other solution can be to develop a platform controller responsible for moving the robot
to the desired platform pose generated by NLP1. Nevertheless, the problem formulation
should likely be adjusted to avoid the platform having a difficult and jerky path to the
desired platform pose.

A significant advantage of NLP2 is that it allows for easier implementation of secondary
tasks that depend on the arm joints, like the manipulability index. Maximizing manip-
ulability is a useful feature in, for example, collision avoidance because high manipulability
means that the robot has more options as to which direction it can move to avoid obstacles
(Arbo et al., 2019). The numeric inverse uses the eight-axis forward kinematic model de-
rived in Section 4.3 to find the joint angles qa. Hence, it accounts for the platform’s
differential drive system by using the virtual joint representation to determine the plat-
form pose. However, with the current formulation, only solutions that are within the reach
of a single displacement of the virtual joints can be found. A method that allows for a
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sequence of virtual joint displacements, moving the space frame {s} to the location of the
previous platform frame {pprev}, would allow NLP2 to search amongst all the possible
platform configurations.

Ideally, the two optimization methods could be used in real-time autonomous operations
in the future. At the moment, NLP2 has too high runtime for real-time applications.
Factors that could decrease the runtime include a better initial guess and increasing the
acceptable error margins for the objective function. A useful initial guess could be, for
example, to choose a platform location where the desired pose is within the manipulator’s
reach and then find the arm joints with the manipulator’s analytic inverse kinematics
solution. Moreover, the cost function should consider distance to the current configuration
to avoid unnecessarily big movements like in Test case 3 and decrease the space of possible
solutions. This can, for example, be implemented by multiplying the manipulability index
with a scaling factor that punishes configurations far away from the current joint positions.

8.3 Limitations and notes on the chosen redundancy resol-
utions

8.3.1 Redundancy resolution at position level

The arm joints of the Lio robot were controllable only at the position level through the ROS
connection, leading the inverse kinematics to be solved at the position level as well. The re-
dundancy resolution could still be solved at the velocity level, with the joint displacements
being derived from numerical integration. However, it was found more practical to exploit
the analytic inverse kinematics function which directly computes joint displacements.

In (Siciliano, 1990), it was argued that the extended task space method, incorporating the
analytic inverse kinematics when possible, was beneficial over other conventional redund-
ancy resolutions such as the pseudoinverse and null space projection because it allows for
the integration of user-specific secondary tasks. However, the lack of accurate motion con-
trol of the platform restricted the options for these secondary tasks. Despite the inability
to control the platform precisely, the data concerning the platform’s position and orient-
ation was sufficiently accurate. Therefore, configuration control was deemed the most
suitable approach for implementing a redundancy resolution method on the robot that
could be tested experimentally and perform adequately. If access to the platform encoders
had been available, more sophisticated redundancy resolution methods could have been
explored. Moreover, in redundant mode, the platform position could have been adjusted
to enable the arm to reconfigure while maintaining a fixed end effector pose.

8.3.2 Challenges of limited motion control access

The lack of low-level motion control access, particularly on the platform, was the most
significant limitation of this project. The provided control software for the Lio robot is
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a web-based scripting environment for Python called myP. Designed for ”regular users”,
myP is not suitable for research projects due to its poor GUI, lack of version control and
limited debugging capabilities. Originally, access to a real-time low-level motion control
module was anticipated, but ultimately not granted. Therefore, it was decided early on,
after a discussion with a software developer from PPM Robotics, that programming in an
IDE like VSCode and communicating with the robot control software through ROS was
the best option for this project. However, the robot data and myP functions available
through a ROS connection were very limited.

The Lio robot features advanced functionalities such as mapping the environment for
autonomous navigation and bumper and floor sensors for collision avoidance, described in
Section 1.2. Unfortunately, none of the sensor data or navigation functions were accessible
through a ROS connection. Having access to a broader range of integrated robot func-
tionalities could have enhanced the performance of the redundancy strategies developed in
this thesis. However, there is a trade-off between having better control over the structure,
debugging, and software architecture in a traditional IDE and accessing more integrated
robot functions by programming in the web interface. This trade-off should be recon-
sidered and evaluated in future work.

8.4 Future work

This thesis has demonstrated the potential of implementing more advanced methods for
utilizing a service robot with eight degrees of freedom. However, the performance of the
implemented method could be improved by experimenting with different angle thresholds
in the redundant mode and exploring other options for secondary tasks in the extended
task space method. Furthermore, the optimization methods need to be adjusted in order to
be applicable in real-time control. Additionally, a robust and accurate platform controller
must be developed to allow the implementation of redundancy resolution methods that
use automatic platform positioning. To summarize, five topics are highlighted for future
work.

• Implementing an interface to the internal position controllers of the platform, which
has a higher sampling frequency related to the position references and the encoder
measurements.

• The extended task space method can be further developed by testing other secondary
tasks than configuration control. Potential secondary tasks can be, for example,
controlling gripper orientation or the manipulator elbow position.

• The current optimization methods should be optimized for real-time control. The
NLP1 should be modified to account for the nonholonomic constraint to ensure that
the proposed configurations are feasible. NLP2 needs to decrease runtime which can
be addressed by improving the initial guess and further tuning of the convergence
criteria etol. Moreover, the cost function can be adjusted to find more practical
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robot poses by tuning the scaling factor α and accounting for the deviation from the
current robot configuration.

• Obstacle avoidance is a feature that would be highly beneficial in task planning
and autonomous operations in nursing homes. This can be efficiently implemented
by including known obstacles as constraints in the optimization problem. Avoiding
dynamic obstacles in real-time could be solved by accessing Lio’s ultrasonic sensor
and implementing a potential field as part of the cost functions.

• Gaining access to more of the robot’s integrated sensors and functions could signific-
antly improve the performance of the implemented redundancy resolutions. There-
fore, further investigation is needed to explore options for accessing these features.
Alternatively, a thorough reevaluation of the advantages and limitations of pro-
gramming within the provided web interface compared to a traditional IDE should
be conducted.
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Chapter 9

Conclusion

In this thesis, an eight-axis kinematic model of the Lio robot has been derived, enabling
the robot controller to utilize its redundant degrees of freedom. The kinematic model was
validated through experimental testing, demonstrating minimal repeatability error. This
accurate kinematic model has laid the groundwork for implementing redundancy resolution
methods on the robot. Various approaches for solving the redundancy were explored,
including extended task space with configuration control, optimization of redundancy
parameters and maximizing manipulability with numerical inverse. The extended task
space method with configuration control was deemed the most suitable given the current
motion control limitations of the system.

To enable the robot to use more sophisticated redundancy resolution methods, an accur-
ate platform controller is an absolute necessity. Therefore, accessing low-level control of
the platform should be the first priority in future research. Once this is achieved, more
options for secondary tasks in the extended task space formulation can be explored and
the presented optimization methods can be implemented and tested on the robot. How-
ever, for the optimization methods to be ready for real-time applications, adjustments like
accounting for the nonholonomic constraint in NLP1 and decreasing the runtime of NLP2
need to be considered.

In conclusion, with an accurate platform controller in place, the redundancy resolution
methods that were modeled, implemented, and experimentally tested in this thesis:

Extended task space with configuration control,

Optimization of redundancy parameters for minimizing platform movement,

Maximizing manipulability with numerical inverse kinematics

demonstrated a significant potential for better utilizing redundancy in task programming
and task execution in applications for service robotics in nursing homes.
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Appendix

A NLP1: minimizing platform movement with optimization of redund-
ancy parameters

The code snippet below illustrates how the main functionality of NLP1 (5.2.1) was imple-
mented in CasADi.

1 def init_guess(task_vec , q_p_current ,):

2 d = 113

3 x_p , y_p , th_p = q_p_current [0], q_p_current [1], q_p_current [2]

4 x_t , y_t = task_vec [0], task_vec [1]

5 psi_t = task_vec [5]

6 x_a = x_p -d*ca.cos(th_p)

7 y_a = y_p -d*ca.sin(th_p)

8

9 rho1 = ca.atan2 ((y_t -y_a) ,(x_t -x_a))-th_p

10 rho2 = ca.sqrt((x_t -x_a)**2+(y_t -y_a)**2)

11 rho3 = ca.atan2 ((y_t -y_a) ,(x_t -x_a)) - psi_t

12

13 # Check if desired pose is within reach

14 if rho2 > 950:

15 rho2 = 900

16 rho1 = 0

17 rho3 = 0

18

19 return ca.vertcat(rho1 , rho2 , rho3)

20

21 # Objective function minimizing platform movement

22 def obj(rho , task_vec , q_p_current):

23

24 rho_1 = rho[0]

25 rho_2 = rho[1]

26 rho_3 = rho[2]

27

28 x_t , y_t , z_t = task_vec [0], task_vec [1], task_vec [2]

29 psi_t = task_vec [5]

30

31 d = 113

32

33 x_p = x_t - rho_2 *ca.cos(rho_3+psi_t)+d*ca.cos(rho_3+psi_t -rho_1)

34 y_p = y_t - rho_2 *ca.sin(rho_3+psi_t)+d*ca.sin(rho_3+psi_t -rho_1)

35 phi_p = rho_3+psi_t -rho_1

36

37 alpha = ca.norm_2(ca.vertcat(q_p_current [0], \

38 q_p_current [1])-ca.vertcat(x_t , y_t))

39

40 return ca.norm_2(ca.vertcat(q_p_current [0], q_p_current [1], \

41 alpha*q_p_current [2])-ca.vertcat(x_p , y_p ,

alpha*phi_p))

42

43 # Symbolic representation of variables

44 rho = ca.MX.sym('rho', 3)

45 task_vec = ca.MX.sym('task_vec ', 6)
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46 q_p_current = ca.MX.sym("q_p_current", 3)

47 theta_arm = ca.MX.sym('theta_arm ', 6)

48

49 p = ca.vertcat(task_vec , q_p_current)

50 inv_kin = ca.Function('f', [rho , task_vec], [inverse_kinematics(rho ,

task_vec)],\

51 ['rho', 'task_vec '], ['theta_arm '])
52 g = inv_kin(rho , task_vec)

53

54 prob = {'f': obj(rho , task_vec , q_p_current), 'x': rho , 'p': p, 'g': g}

55 solver = ca.nlpsol('solver ', 'ipopt ', prob)

56

57 p = [*task_vec , *q_p_current]

58 rho0 = init_guess(task_vec , q_p_current)

59

60 # Bounds on the redundancy parameters

61 lbx = [ca.pi/180* -80, 0, ca.pi /180* -114]

62 ubx = [ca.pi/180*260 , 950, ca.pi /180*114]

63

64 # Joint limits

65 lbg = [ca.pi/180* -80, ca.pi/180* -109 , ca.pi/180* -205 , \

66 ca.pi/180* -169 , ca.pi/180* -114 , ca.pi/180* -170]

67 ubg = [ca.pi/180*260 , ca.pi/180*110 , ca.pi/180*25 , \

68 ca.pi/180*170 , ca.pi/180*114 , ca.pi /180*169]

69

70 solution = solver(x0=rho0 , lbx = lbx , ubx = ubx , p = p, lbg = lbg , ubg =

ubg)
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B NLP2: maximizing manipulability and solving the inverse kinematics
numerically

The code snippet below illustrates how the main functionality of NLP2 (5.2.2) was im-
plemented in CasADi. CasAdi does not yet have functionality for calculating the de-
terminant of a symbolic matrix. Therefore the determinant was computed with Laplace
extension with the functions minor(matrix, i,j) and determinant(matrix) The pack-
age spatial-casadi (Mower, 2023) was used to manipulate spatial transformation inside
the pose err function.

1 def minor(matrix , i, j):

2 n = matrix.size1()

3 assert matrix.size1 () == matrix.size2 ()

4

5 minor_matrix = ca.MX.zeros(n-1, n-1)

6

7 minor_row = 0

8 for row in range(n):

9 if row == i:

10 continue

11 minor_col = 0

12 for col in range(n):

13 if col == j:

14 continue

15 minor_matrix[minor_row , minor_col] = matrix[row , col]

16 minor_col += 1

17 minor_row += 1

18 return minor_matrix

19

20 def determinant(matrix):

21 n = matrix.size1()

22 assert matrix.size1 () == matrix.size2 ()

23

24 if n == 2:

25 return matrix[0, 0]* matrix[1, 1] - matrix[0, 1]* matrix[1, 0]

26

27 det = 0

28 for col in range(n):

29 cofactor = ((-1)**col) * matrix[0, col] * determinant(minor(matrix ,

0, col))

30 det += cofactor

31 return det

32

33 def M(th):

34 J = ca.jacobian(fkin(th),th)

35 man = J@ca.transpose(J)

36

37 # Compute the determinant using the Laplace expansion

38 det = determinant(man)

39 return -ca.sqrt(det)

40

41 # Objective function minimizing platform movement

42 def obj(th ,task_vec):

43 fq = fkin(th)

44 alpha = 0.00001
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45 return 1/2*ca.transpose(fq-task_vec)@(fq-task_vec) + alpha*M(th)

46

47 def pose_err(th , task_vec):

48 fq = fkin(th)

49 pos_err = ca.norm_2(fq[0:3]- task_vec [0:3])

50 fkin_quat = R.from_euler("xyz", ca.vertcat(fq[3], fq[4], fq[5])).

as_quat ()

51 task_quat = R.from_euler("xyz", ca.vertcat(task_vec [3], task_vec [4],

task_vec [5])).as_quat ()

52 q_err = 1-ca.fabs(ca.dot(fkin_quat , task_quat))

53 return ca.vertcat(pos_err , q_err)

54

55 # Symbolic representation of variables

56 th = ca.MX.sym("th", 8)

57 task_vec = ca.MX.sym("task_vec", 6)

58 q_mm_current = ca.MX.sym("q_mm_current", 8)

59

60 p = task_vec

61 g = pose_err(th , task_vec)

62

63 prob = {'f': obj(th , task_vec), 'x': th, 'p': p, 'g': g}

64 solver = ca.nlpsol('solver ', 'ipopt ', prob)

65

66 lbx = [-ca.pi , -5000, ca.pi/180*-80, ca.pi/180* -109 , ca.pi/180* -205 , \

67 ca.pi/180* -169 , ca.pi/180* -114 , ca.pi/180* -170]

68 ubx = [ca.pi , 5000, ca.pi/180*260 , ca.pi/180*110 , ca.pi/180*25 , \

69 ca.pi/180*170 , ca.pi/180*114 , ca.pi /180*169]

70

71 lbg = [0, 0]

72 ubg = [0.1, 0.00000001]

73

74 p = task_vec

75 th0 = q_mm_current

76 solution = solver(x0=th0 , lbx = lbx , ubx = ubx , p=p, lbg=lbg , ubg=ubg)
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C Symbolic forward kinematics of the eight-axis kinematic model

This section shows the symbolic expression of Lio’s eight-axis forward kinematics where
{x, y, z} correspond to the position of the end effector and {ϕ, θ, ψ} corresponds to the
XY Z-fixed angle representation of the end effector’s orientation.

{θ1, ..., θ6} is the manipulator joints and {θ∗p, x∗p} is the platform’s virtual joints.

x = (l5 + l6)

(
sin(θ5)

(
cos(θ∗p + θ1 +

π

2
) sin(θ4)− cos(θ2 + θ3 −

π

2
) sin(θ∗p + θ1 +

π

2
) cos(θ4)

)
− sin(θ∗p + θ1 +

π

2
) sin(θ2 + θ3 −

π

2
) cos(θ5)

)
− cos(θ∗p)(dap − x∗p)

+ l2 sin(θ
∗
p + θ1 +

π

2
) cos(θ2 −

π

2
)− sin(θ∗p + θ1 +

π

2
) sin(θ2 + θ3 −

π

2
)(l3 + l4)

y = (l5 + l6)

(
sin(θ5)

(
sin(θ∗p + θ1 +

π

2
) sin(θ4) + cos(θ∗p + θ1 +

π

2
) cos(θ2 + θ3 −

π

2
) cos(θ4)

)
+ cos(θ∗p + θ1 +

π

2
) sin(θ2 + θ3 −

π

2
) cos(θ5)

)
− sin(θ∗p)(dap − x∗p)

− l2 cos(θ∗p + θ1 +
π

2
) cos(θ2 −

π

2
) + cos(θ∗p + θ1 +

π

2
) sin(θ2 + θ3 −

π

2
)(l3 + l4)

z = l1 + pheight − l2 sin(θ2 −
π

2
)− cos(θ2 + θ3 −

π

2
)(l3 + l4)

−
(
cos(θ2 + θ3 −

π

2
) cos(θ5)− sin(θ2 + θ3 −

π

2
) cos(θ4) sin(θ5)

)
(l5 + l6)

ϕ = arctan 2

(
cos(θ6)

(
cos(θ5)

(
sin(θ∗p + θ1 +

π

2
) sin(θ4) + cos(θ∗p + θ1 +

π

2
) cos(θ2 + θ3 −

π

2
) cos(θ4)

)
− cos(θ∗p + θ1 +

π

2
) sin(θ2 + θ3 −

π

2
) sin(θ5)
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+ sin(θ6)

(
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π

2
) cos(θ4)
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π

2
) cos(θ2 + θ3 −

π

2
) sin(θ4)

)
, sin(θ2 + θ3 −

π

2
) sin(θ4) sin(θ6)

− cos(θ6)

(
cos(θ2 + θ3 −

π

2
) sin(θ5) + sin(θ2 + θ3 −

π

2
) cos(θ4) cos(θ5)
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θ = − arcsin

(
cos(θ6)

(
cos(θ5)

(
cos(θ∗p + θ1 +

π

2
) sin(θ4)− cos(θ2 + θ3 −

π

2
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π

2
) cos(θ4)

)
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2
) sin(θ2 + θ3 −

π

2
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)
+ sin(θ6)

(
cos(θ∗p + θ1 +
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2
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ψ = arctan 2

(
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π

2
) cos(θ4)

)
+ sin(θ∗p + θ1 +
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2
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)
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(
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π

2
) cos(θ4)

+ cos(θ2 + θ3 −
π

2
) sin(θ∗p + θ1 +

π

2
) sin(θ4)

)
, sin(θ5)

(
cos(θ∗p + θ1 +

π

2
) sin(θ4)

− cos(θ2 + θ3 −
π

2
) sin(θ∗p + θ1 +

π

2
) cos(θ4)

)
− sin(θ∗p + θ1 +

π

2
) sin(θ2 + θ3 −

π

2
) cos(θ5)

)

D Robot link dimensions

The link dimensions were extracted from the robot URDF file.

Parameter Length [mm]

lb 212
l1 150.5
l2 290
l3 164.5
l4 145.5
l5 129
l6 46
lg 241
dap 113

pheight 265.5

88




	Abstract
	Sammendrag
	Preface
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	About Lio
	Problem statement
	Contributions
	Outline

	Background
	Healthcare robots
	Types and features of healthcare robots
	Healthcare service robots with manipulating capabilities
	Safety requirements and ethical considerations
	Benefits of redundancy for healthcare robots

	Redundancy resolution for mobile manipulators
	Extended task space with configuration control
	Optimization of redundancy parameters
	Pose control with three operation modes based on the weighted pseudoinverse
	Inverse kinematics of mobile manipulators with metaheuristic algorithms


	Theory
	Mathematical modeling of robots
	Configuration space and degrees of freedom
	Task- and workspace
	Representing position and rotation

	Forward kinematics
	Product of Exponentials formula
	Denavit-Hartenberg convention

	Inverse kinematics
	Task Jacobian and geometric Jacobian
	Singularities
	Manipulability

	Redundancy resolution
	Analysis of redundancy
	Pseudoinverse Jacobian
	Null-space projection
	Extended task space

	General optimization problem
	Numerical inverse kinematics as an optimization problem

	Differential drive systems

	Kinematic modeling of Lio
	Forward kinematics with Product of Exponentials
	Forward kinematics of manipulator
	Modeling of the mobile platform
	Forward kinematics of mobile manipulator

	Analytic inverse kinematics of Lio arm
	Inverse position of wrist
	Inverse orientation

	Forward kinematics with DH-parameters

	Redundancy resolution 
	Extended task space with configuration control
	Solving the inverse kinematics problem as nonlinear optimization problems
	NLP1: Minimizing platform movement by optimizing redundancy parameters
	NLP2: Maximizing manipulability with numeric inverse kinematics


	Implementation
	Robot modules
	myP
	Platform workstation and gamepad
	Lio_kinematics

	Redundant mode
	Offset from manufacturer's zero configuration
	Limitations
	Formulating the NLPs in CasADi with the IPOPT-solver
	Parameters in NLP1
	Parameters in NLP2


	Testing and results
	Test parameters and evaluation metrics
	Test 1: Configuration control with static base positioning
	Experimental setup
	Results

	Test 2: Configuration control with dynamic base positioning
	Experimental setup
	Results
	Test 3: Dynamic base positioning with double platform velocity

	Testing NLP for redundancy resolution
	Test setup
	Results


	Discussion and future work
	Evaluation of experimental test results
	Test 1: Configuration control with static base positioning
	Test 2 and Test 3: Configuration control with dynamic base positioning

	Evaluation of NLP test results
	Advantages and drawbacks of the current problem formulations

	Limitations and notes on the chosen redundancy resolutions
	Redundancy resolution at position level
	Challenges of limited motion control access

	Future work

	Conclusion
	Bibliography
	Appendix
	NLP1: minimizing platform movement with optimization of redundancy parameters
	NLP2: maximizing manipulability and solving the inverse kinematics numerically
	Symbolic forward kinematics of the eight-axis kinematic model
	Robot link dimensions


