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ABSTRACT

Fourier Ptychography (FP) is a method of computationally enhanced microscopy based
on iterative recovery of the Fourier spectrum of a complex sample, from a number of
low-resolution intensity images obtained using a standard light microscope under co-
herent illumination at varying angles. Through FP, the benefits of a large field of view
and depth of field obtained by using a low magnification microscope objective may be
maintained, while simultaneously allowing for increased resolution and quantitative
phase recovery. For optimal recovery within the FP framework, the correctness of
the underlying diffraction model used during recovery is important. The main con-
tributions in this thesis are the derivation of a generalized imaging model based on
paraxial optics, the proposal of a system calibration scheme based on the origin of
the bright-field region within the derived imaging model and an initial investigation
into the detrimental effects of imaging through a window. In the derived imaging
model, the placement of the defining aperture of the system was used to define an
effective object to aperture distance. Based on this value, the appearance of a variable
quadratic phase term at the object plane and a spatial variation of the frequency shift
under angled illumination was derived. Upon imaging through a window, it was found
that using a high numerical aperture objective results in severe aberrations. To avoid
the aberrations, a low numerical aperture objective must be used, playing into the
strengths of FP.
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SAMMENDRAG

Fourierptykografi (FP) er en metode for numerisk forbedret mikroskopi basert på it-
erativ rekonstruksjon av Fourier spekteret til en kompleks prøve, fra et antall lav-
oppløste intensitet bilder tatt med et vanlig lys mikroskop under koherent belysning
med variable vinkel. Gjennom FP, beholder man fordelene av et stort synsfelt og stor
dybdeskarphet fra bruken av et mikroskop objektiv med lav forstørrelse, samtidig som
det er mulig å oppnå økt oppløsning og kvantitativ fase-rekonstruksjon. For optimal
rekonstruksjon innenfor FP rammeverket, er korrektheten til den underliggende av-
bildningsmodellen som benyttes under rekonstruksjonen viktig. De hovedbidragene i
denne oppgaven er utledningen av en generell avbildningsmodell basert på paraksial
optikk, presentasjonen av en kalibreringsprosedyre basert på opprinnelsen av direkte-
lys regionen i den utledede modellen og en innledende undersøkelse av de negative
konsekvensene ved å avbilde gjennom et vindu. I den utledede avbildningsmodellen,
benyttes plasseringen av den definerende blenderåpningen i et linsesystem til å definere
en effektiv avstand fra objektet til blenderåpningen. Basert på denne verdien, utledes
behovet for å inkludere et kvadratisk fase-ledd i objekt planet, samtidig som frekvens
skiftet under vinklet belysning blir posisjons avhengig. Ved avbildning gjennom et
vindu, ble det demonstrert at bruken av et objektiv med høy numerisk aperture resul-
terer i kraftige aberrasjoner. For å unngå disse aberrasjonene, må et objektiv med lav
numerisk aperture benyttes, hvilket samsvarer med styrkene til FP.
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CHAPTER 1

INTRODUCTION

The concept of Fourier Ptychography (FP) was proposed in 2013 by Zheng et al.[1],
demonstrating a method of computationally enhanced microscopy through iterative
recovery of the Fourier spectrum of a complex sample, based on a number of low-
resolution intensity images obtained using a standard light microscope while varying
the angle of the sample illumination. Through FP, the benefits of a large Field of
View (FoV) and Depth of Field (DoF) obtained by using a low magnification mi-
croscope objective may be maintained, while simultaneously allowing for increased
resolution and quantitative phase recovery. During the 10 years since its introduction,
the technique has been further enhanced to allow for correction of lens aberrations[2]
and three-dimensional imaging, among numerous other improvements[3]. To date, FP
shows great promise as a technique for a multitude of applications, including but not
limited to, quantitative phase imaging in 2D and 3D, digital pathology and cytometry,
aberration metrology, surface inspection, long-range imaging and x-ray nanoscopy[3].

In the initial article proposing the concept of FP by Zheng et al.[1], three simplifications
are stated in terms of the imaging model. First, the LED illumination is modelled as
coherent and oblique plane waves. Second, the illumination of the complex object
o by an oblique plane wave is assumed to be equivalent to a shift fi of the sample
spectrum S in the Fourier domain, originating from application of the Fourier shift
theorem. Third, the lens is assumed to filter the shifted sample spectrum through
multiplication by a circular pupil, P . Disregarding the magnification of the system,
these assumptions yield an imaging model where the intensity Ii at the detector under
illumination by the i-th LED is given by the relation

Ii(r) = |F {P(f)S(f − fi)} |2 , (1.1)

where the sample spectrum equals the Fourier transform of the complex object as
given by

S(f) = F {o(r)} (1.2)

1



2 CHAPTER 1. INTRODUCTION

for spatial coordinates r and spatial frequencies f . To achieve the inverse of Equa-
tion 1.1 and recover the sample spectrum based on captured intensity images Ici , FP
relies on iterative phase retrieval[1]. This process is based on the idea that for the
recovered spectrum Sr(f), the imaging procedure in Equation 1.1 should produce the
same intensity images as those that were captured, while an overlap of the intensity
images in terms of their frequency content allows for the phase to be recovered.

Improvements upon this model, accounting for the spherical nature of the LED illu-
mination and the derived behavior of a single, thin lens system within the paraxial
approximation, have previously been considered by Konda[4] and others[5, 6]. How-
ever, the preceding project[7] conducted by the author showed that the resulting thin
lens model works poorly for systems where the original assumptions made by Zheng[1]
appear to be upheld. Further, the existence of systems adhering to neither of the two
models was observed.

Four goals will be pursued throughout this thesis. The first goal will be to develop
a generalized imaging model within the confines of the paraxial approximation, con-
sisting of two lenses and a defining aperture, which should be applicable to a wider
span of imaging systems than the existing models. The second goal will be to develop
a calibration scheme from which any inaccuracies in the model parameters may be
corrected for. A secondary purpose for this calibration scheme will additionally be to
verify the validity of the generalized model, and illustrate whether use of the general-
ized model allows for better recovery quality. The third goal will be to investigate the
complications of imaging through a sapphire glass window and the ability of FP to cor-
rect for said complications. If sufficient correction is achieved, this investigation may
open up the door to a number of novel FP based experiments. For instance, it would
be possible to use FP to image into a controlled environment, such as a vacuumized
or pressurized container. Finally, the fourth goal will be to investigate whether it is
possible to perform FP with a camera objective, as compared to the specially designed
microscope objectives and single-lens systems which have been considered in previous
works.

To this extent, chapter 2, chapter 3 and chapter 4 will provide the theoretical founda-
tion for the remainder of the project, including the derivation of a generalized imaging
model within the confines of paraxial optics, an overview of the algorithms and exper-
imental considerations necessary to perform state-of-the-art 2D FP recovery and an
introduction to aberration theory. In chapter 5, a novel calibration scheme based on
a derived expression for the origin of the Bright-Field (BF) region will be presented.
Subsequently, chapter 6 and chapter 7 will respectively describe the experimental im-
plementation and procedures used to obtain the results of this work, which will be
displayed and discussed in chapter 8, chapter 9 and chapter 10. Finally, chapter 11
will cover the conclusions that may be drawn from this thesis and how it may be used
to guide future work.
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1.1 Disclosures

It should be noted that this thesis is a direct continuation of a preparatory project
conducted this previous fall as part of the NTNU course "TFY4520 Nanotechnology,
Specialization Project". As such, certain parts of the project thesis[7] submitted at the
end of that project have been reused in this work. Some sections are reused with mini-
mal changes, while others have been heavily modified to be consistent with the deriva-
tions and experimental work performed in this thesis. Affected sections include parts
of the abstract, the first two paragraphs of the introduction, parts of the theory and
the experimental implementation, and the entirety of Appendix C. In chapter 2, this
is the case for most of section 2.1 and section 2.3 up to and including subsection 2.3.1.
Most of chapter 3 is reused from the preparatory project with minor modifications,
except for section 3.5 and section 3.9. Finally, most of chapter 6 is reused with mi-
nor changes corresponding to various modifications of the microscope setup and the
implementation of the recovery algorithm, with the exception of subsubsection 6.3.1.3
and subsection 6.3.2.

All figures in this thesis were either made in Inkscape or Matplotlib, or, in a few
cases, reused from other works. The reused figures are licensed under various Creative
Commons licenses as referenced in the figure texts, with one exception for which
written permission was obtained.
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CHAPTER 2

DERIVATION OF GENERALIZED IMAGING MODEL

In the following chapter, we shall derive a generalized, theoretical model for the image
formation process within a FP microscope. The imaging system considered in FP
consists of four main components: a LED array providing variable-angle illumination,
a sample, a detector, and a lens system with a defining aperture, which will be referred
to as the Aperture Stop (AS). Moving beyond the simplifications made by Zheng[1]
covered in the introduction, later works[4, 5, 6] have considered the necessary modi-
fications to account for spherical illumination and derived the paraxial behavior of a
thin lens system, consisting of a single lens located in the same plane as the AS. In
addition to the results for the thin lens system, the generalized model derived in this
work will consider how the position of the AS affects single- and two-lens systems. Us-
ing the theoretical foundation presented in section 2.1, the properties of four idealized
lens systems will be generalized in section 2.2 followed by a wave-optical derivation of
the impact of angled illumination in section 2.3. Further, the impact of discretization,
as is necessary for computational treatment, will be considered in section 2.4. Finally,
section 2.5 will place the contributions made in this chapter within the context of
previous works. In general, the derivations will be rooted in the field of Fourier optics
as covered by Goodman in "Introduction to Fourier Optics"[8].

5



6 CHAPTER 2. DERIVATION OF GENERALIZED IMAGING MODEL

2.1 Wave optical foundation of the imaging process

In the following section, the necessary theoretical foundation for the further derivations
will be covered. This includes a description of wave propagation between two parallel
planes in the Fresnel approximation and the transmission models which will be used
to describe the lenses and apertures.

The discussion will be limited to the scalar theory of monochromatic, optical waves.
As such, the waves will be described interchangeably by their frequency f , wavelength
λ = c/f and wavenumber k = 2π/λ, while the optical wavefield for a point r at a time
t is described by[8, p.50]

u(r, t) = Re{U(r) exp[−i2πft]} (2.1)

where U(r) is the complex wavefield which will be considered further. Notably, upon
imaging only the intensity[8, p.77]

I(r) = |U(r)|2 (2.2)

is measured, resulting in a loss of information about the phase.

2.1.1 Wave propagation in the Fresnel approximation

The Fresnel approximation originates from the Huygens-Fresnel principle, which de-
scribes the diffraction between two planes (ζ, η) and (x, y) under illumination along
the positive direction of a z-axis piercing both planes at their origins[8, p.77-78]. If
the planes are separated by a distance z along the z-axis, the relation becomes

U(x, y) =
z

iλ

∫∫
U(ζ, η)

exp{ikr}
r2

dζdη (2.3)

where the distance r is given by

r =
√
z2 + (x− ζ)2 + (y − η)2 (2.4)

and the integral is taken over all space.

To arrive at the Fresnel approximation, the relation in Equation 2.3 is simplified by
applying the Taylor expansion of

√
1 + x ≈ 1 + 1

2
x + ... to Equation 2.4. This yields

the expression[8, p.78-79]

r ≈ z

[
1 +

1

2

(
x− ζ

z

)2

+
1

2

(
y − η

z

)2

+ ...

]
(2.5)

where the higher order terms may be dropped upon making the paraxial approximation
x, y << z. Due to a difference in the susceptibility to small changes between the
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terms 1/r2 and exp(r), it is deemed sufficient to retain only the first term of the
Taylor expansion in the first case, 1/r2, while the first two terms are retained in the
second, exp(r). Inserting these two approximate expressions for r into Equation 2.3
and rewriting, the Fresnel integral[8, p.79]

U(x, y) =
eikz

iλz

∫∫
U(ζ, η) exp

{
ik

2z

[
(x− ζ)2 + (y − η)2

]}
dζdη (2.6)

is obtained.

The Fresnel integral, Equation 2.6, may either be recognized as a convolution relation

U(x, y) =

∫∫
U(ζ, η)h(x− ζ, y − η)dζdη , (2.7a)

h(x, y) =
eikz

iλz
exp

{
ik

2z

[
x2 + y2

]}
(2.7b)

where h(x, y) is the convolution kernel, or rewritten as

U(x, y) =
eikz

iλz
exp

[
ik

2z

(
x2 + y2

)]
F
{
U(ζ, η) exp

[
ik

2z

(
ζ2 + η2

)]}
(2.8)

with the Fourier transform F evaluated at (fx, fy) = (x/λz, y/λz). For the purposes
of the further derivations both the above formulations will be necessary, expressing
the Fresnel integral interchangeably either as a convolution or by means of a Fourier
transform. Notably, these two formulations are equally valid, requiring no additional
approximations.

2.1.2 Wave propagation in the Fraunhofer approximation

A further simplification referred to as the Fraunhofer approximation is obtained when
considering either larger propagation distances or smaller FoVs satisfying

z >>
k(ζ2 + η2)max

2
. (2.9)

To move from the Fresnel approximation to the Fraunhofer approximation, the quadratic
phase factor at the first plane, within the integral, is assumed equal to unity so that
Equation 2.8 becomes[8, p.88-89]

U(x, y) =
eikz

iλz
exp

[
ik

2z

(
x2 + y2

)]
F {U(ζ, η)} (2.10)

with the Fourier transform evaluated at (fx, fy) = (x/λz, y/λz). While this approx-
imation will not be used in this work, it is included here to provide context for the
discussion in section 2.5.
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2.1.3 Apertures and the generalized pupil function

In the sequel, the generalized pupil function P will be used to model the properties of
the most limiting aperture within a lens system. The generalized pupil function P is
defined as[8, p.205]

P(x, y) = P (x, y) exp[ikW (x, y)] (2.11)

and is reliant on the pupil function P and the wavefront aberration function W . The
pupil function describes the finite area from which light is transmitted by the aperture
depending on its radius R and is defined by

P (x, y) =

{
1, x2 + y2 ≤ R2

0, x2 + y2 > R2 .
(2.12)

Conversely, the wavefront aberration function is not a property of an ideal aperture,
but rather an addition to model the presence of optical aberrations as will be covered
further in chapter 4.

2.1.4 Phase shift of a simple lens

Transmission through a lens can be described by a phase change[8, p.158]

L(x, y, fL) = exp

[
− ik

2fL

(
x2 + y2

)]
, (2.13)

where fL is the focal length of the lens, as is valid within the paraxial approximation
and upon ignoring the finite extent of the lens and the global phase shift. Additionally,
one may note that the absence of a lens is equivalent to a lens of focal length fL = ∞
at which point the exponential in Equation 2.13 becomes unity.
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2.2 Image-forming lens systems

In this section, we derive the behavior of four idealized lens systems, each consisting
of a single aperture, the Aperture Stop (AS) and either a single or two lenses. Defin-
ing the object, aperture, and detector planes as the planes containing the respective
components, the further derivations will be performed with the intent of relating the
complex wavefields at four locations U1, U2, U3 and U4 as illustrated in Figure 2.2.1.
For the sake of a generalized treatment, the lens systems will be considered as special
cases of the generalized two-lens system illustrated in Figure 2.2.2.

The generalized two-lens system is defined by propagation through the lens in the front
half of the system relating U1 and U2, transmission through the AS as described by

U3(x, y) = P(x, y)U2(x, y) (2.14)

and propagation through the lens in the back half relating U3 and U4. For the purposes
of FP, an additional requirement is that the field U2 just before the AS must be related
to the field U1 at the object plane by means of a single Fourier transform, and likewise
for the field U3 just after the AS and the field U4 at the detector. This is necessary
to later define an expression for the sample spectrum, which FP aims to recover.
Since only the intensity I = |U4|2 of the complex wavefield at the detector plane U4

contributes to the captured images, any phase terms which are constant or only varying
across the detector plane may be ignored[8, p.170]. For the present purposes, only the
relative intensity is of interest, allowing any constant amplitude scaling factors to be
ignored.

Object plane

Aperture plane

Second lens

First lens

Detector plane

y

x

Aperture
stop

η

ζ

v

u

U1(ζ,η)
U2(x,y)

(before AS) U3(x,y)

(a�er AS)
U4(u,v)

z

Figure 2.2.1: The three planes of interest in the image formation model. Light is
assumed to propagate from left to right along the z-axis. The complex wavefield takes
on the values; U1(ζ, η) in the object plane, U2(x, y) immediately before transmission
through the AS, U3(x, y) immediately after transmission through the AS and U4(u, v)
at the detector plane. Inspired by figure 2 in [6].
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z1 a2a1L1 L2AS z2

Object First lens Aperture stop Second lens Detector

Front half of system Back half of system

Figure 2.2.2: The generalized imaging system which will be considered further,
containing two lenses L1, L2 and an aperture stop AS. The front half of the system
is defined by the first lens L1 whose focal length will be denoted fL1, the distance z1
from the object to the first lens and the distance a1 from the first lens to the AS.
Likewise, the second half of the system is defined by the second lens L2 whose focal
length will be denoted fL2, the distance a2 from the AS to the second lens and the
distance z2 from the second lens to the detector. Note that the indices of the four
propagation distances denote whether the distance is related to the front or back half
of the system.

2.2.1 Propagation through front and back halves

To describe the subsystems corresponding to the front and back halves of the gen-
eralized system in Figure 2.2.2, a single Fourier transform relationship between the
field at a distance d1 in front of a lens and the field at a distance d2 behind said
lens is required. To solve this problem within the Fresnel approximation, one must
account for free space propagation over the first distance, transmission through the
lens as described by Equation 2.13 and propagation over the second distance, with the
two propagation steps being described by the Fresnel integral as outlined in subsec-
tion 2.1.1. Accounting for the fact that the Fresnel integral may be written by means
of either a convolution, Equation 2.7, or a Fourier transform, Equation 2.8, there are
four alternatives as to how the two propagation steps may be performed. However,
only the two alternatives where one of the propagation steps are performed by means
of the convolution formulation of the Fresnel integral, Equation 2.7, and the other is
performed by means of the Fourier transform formulation, Equation 2.8, are consid-
ered further in this work, as the resulting relations then contain only a single Fourier
transform.

A complete derivation of the two relations of interest between the field UF at a distance
d1 in front of a lens and the field UB at a distance d2 behind the lens may be found
in Appendix B, while only the results will be given below. The relations disregard
any constant prefactors and denote the focal length of the lens by f ′

L, with the prime
added solely to distinguish the focal length from other focal lengths considered in
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the following derivations. Applying the Fourier transform formulation of the Fresnel
integral for the first distance and the convolution formulation for the second distance
yields the relation

UB(u, v) = exp

[
ik

2

(
1

d1
− 1

f ′
L

)(
u2 + v2

)]
·

F
{
UF (x, y) exp

[
ik

2

(
1

d1
− d2
d21

)(
x2 + y2

)]}
(2.15)

where the Fourier transform is to be evaluated at (fu, fv) = (u/λd1, u/λd1). Applying
the convolution formulation first and the Fourier transform formulation second yields
the relation

UB(u, v) = exp

[
ik

2

(
1

d2
− d1
d22

)(
u2 + v2

)]
·

F
{
UF (x, y) exp

[
ik

2

(
1

d2
− 1

f ′
L

)(
x2 + y2

)]}
(2.16)

where the Fourier transform is to be evaluated at (fu, fv) = (u/λd2, u/λd2). An
important distinction between these two relations is the scaling of the frequencies
(fu, fv) at which the Fourier transform is evaluated. This is directly related to the
magnification of the system as will be covered in subsection 2.2.3.

2.2.2 Generalized expression relating the wavefields at
the object and detector planes

As each half of the system may be described by either Equation 2.15 or Equation 2.16
there are four alternative expressions which may describe the generalized imaging sys-
tem under consideration. However, the physically interesting combinations may be
limited based on the telecentric properties of the system, as will be considered in sub-
section 2.2.4, and by only considering descriptions of the system which eliminate the
phase terms at the aperture plane, corresponding to the system being at focus. Fur-
thermore, the phase term at the detector plane is ignored according to the previously
presented argument regarding intensity imaging.

Under these assumptions, we will show that the wavefield at the detector for all the
lens systems considered in this work can be reduced to the form

U4(u, v) = F {P(x, y)F {U1(ζ, η)Q(ζ, η)}} , (2.17)

with Q(ζ, η) being a quadratic phase term at the object plane and with the inner and
outer Fourier transforms being evaluated at respectively (fx, fy) = (x/λza, y/λza) and
(fu, fv) = (u/λzb, u/λzb), with za ∈ {z1, a1} and zb ∈ {a2, z2} depending on which of
Equation 2.15 and Equation 2.16 are used for the front and back halves of the system.
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For a further generalization, one may write Q in terms of an effective distance zq such
that

Q(ζ, η) =
1

zq
(ζ2 + η2) , (2.18)

resulting in the behavior of the lens system being defined fully by the distances za, zb
and zq in addition to the AS size R and the aberrations W contained in the generalized
pupil function P according to Equation 2.11. Since the value of zq is given directly
by the object to AS distance for the thin lens system which will be considered in
subsection 2.2.5, it will be referred to as the effective object to AS distance.

2.2.3 Magnification

Following a more extensive argument by Goodman[8, p.170-172], under the assumption
that neither Q(ζ, η) nor P(x, y) substantially impact the image formation process over
a small region, the magnification may be found as the negative of the ratio between the
scaling factors of the frequencies at which the two Fourier transforms in Equation 2.17
are evaluated. That is, the magnification is given by K = −|K| and

|K| = λzb
λza

=
zb
za

(2.19)

with the minus sign implying that the image is inverted as compared to the object,
originating from the duality property of the Fourier transform according to

F {F {U(x, y)}} = F
{
F−1 {U(−x,−y)}

}
= U(−x,−y) (2.20)

as shown at unity magnification.

2.2.4 Telecentricity

Defining the properties of object-side and image-side telecentricity as invariance of
the magnification upon a change in the location of the object and detector planes[9],
one would expect that the properties are dependent on whether Equation 2.15 or
Equation 2.16 are used for respectively the front and back half of the lens system.
In terms of the generalized lens system in Figure 2.2.2, this would affect whether the
evaluation frequencies of the Fourier transform used in the description of the front half
of the system depends on a1 rather than z1 and whether the evaluation frequencies of
the Fourier transform used in the description of the back half of the system depends on
a2 rather than z2. Based on whether a system is expected to display telecentricity, this
may serve to guide the choice between application of Equation 2.15 or Equation 2.16
for each half of the generalized imaging system. According to Born and Wolf[10, p.186-
187], object-side telecentricity is expected when the defining AS is at the back focal
plane of the preceding subsystem, that is a1 = fL1, while image-side telecentricity is
expected if the defining AS is at the front focal plane of the succeeding subsystem,
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that is a2 = fL2. Systems which are both object-side and image-side telecentric are
referred to as bi-telecentric.
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2.2.5 Single-lens system with the aperture stop at the lens

The first lens system which will be considered is illustrated in Figure 2.2.3, and is de-
fined by a single lens of focal length fL in the same plane as the AS and the distances
z1 and z2 from the AS to respectively the object and detector planes. Convention-
ally, the system may be analyzed by modeling the two free space propagation steps
with the Fourier transform formulation of the Fresnel integral, Equation 2.8, and the
transmission through the AS and lens by multiplication with P(x, y) and L(x, y) as
respectively defined by Equation 2.11 and Equation 2.13. This procedure is covered
by for instance Goodman[8, p.168-174], Hazanzade[6] and was considered in the pre-
ceding project conducted by the author[7]. This system will be referred to as a thin
lens system.

z1 z2

Object Aperture stop and lens Detector

Figure 2.2.3: Illustration of a single lens system with the AS at the same plane as
the lens. In terms of the generalized lens system in Figure 2.2.2, the system may be
described by the parameters a1 = a2 = 0, and by attributing the entirety of the lens
to one half of the system. If the lens is attributed to the front half of the system, the
behavior of the back half may equivalently be described Equation 2.16 and by free
space propagation over the distance z2 utilizing the Fourier transform formulation of
the Fresnel integral.

To arrive at the same result within the confines of the generalized two-lens system
illustrated in Figure 2.2.2, one may set a1 = a2 = 0 and attribute the entirety of the
lens to one half of the system. For instance, one may set fL1 = fL and fL2 = ∞, the
latter of which is synonymous with the absence of a focusing element. Considering the
back half of the system, inserting the values of a2 and fL2 = ∞ into Equation 2.16
reduces the equation to be identical to free space propagation as described by the
Fourier transform formulation of the Fresnel integral, that is Equation 2.8.

To describe the front half of the system one may then insert d1 = z1, f ′
L = fL1 and

d2 = a1 = 0 into Equation 2.15 yielding the relation

U2(x, y) = exp

[
ik

2

(
1

z1
− 1

fL1

)(
x2 + y2

)]
·

F
{
U1(ζ, η) exp

[
ik

2z1

(
ζ2 + η2

)]}
(2.21)
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where the Fourier transform is to be evaluated at (fx, fy) = (x/λz1, y/λz1).

For the back half, applying either Equation 2.8 to describe free space propagation over
the distance z2 or Equation 2.16 with d1 = a2 = 0, f ′

L = fL2 = ∞ and d2 = z2 would
equivalently yield the relation

U4(u, v) = exp

[
ik

2z2

(
u2 + v2

)]
F
{
U3(x, y) exp

[
ik

2z2

(
x2 + y2

)]}
(2.22)

where the Fourier transform is to be evaluated at (fu, fv) = (u/λz2, u/λz2).

For the phase terms at the aperture plane to cancel, that is the terms depending on
(x, y), one may observe that the values of z1 and z2 must satisfy the thin lens equation
from geometrical optics[8, p.170]

1

fL
=

1

z1
+

1

z2
. (2.23)

If this relation is not satisfied the system would be out of focus, with the ideal focus
being defined by the cancellation of the quadratic phase at the aperture plane, which
would otherwise have a blurring effect on the final image[8, p.170].

Combining the above equations with Equation 2.14, relating U2 and U3, and ignoring
the phase at the detector yields the final result

U4(u, v) = F
{
P(x, y)F

{
U1(ζ, η) exp

[
ik

2z1

(
ζ2 + η2

)]}}
(2.24)

with the inner and outer Fourier transforms evaluated at respectively (fx, fy) =
(x/λz1, y/λz1) and (fu, fv) = (u/λz2, u/λz2). This derivation yields the same result as
the derivation performed by Goodman[8, p.168-174].

For the generalized expression in Equation 2.17, the three defining distances become

za = z1, zb = z2, zq = z1 (2.25)

from which the magnification of the system can be found as

|K| = z2
z1

(2.26)

by applying Equation 2.19. Additionally, for a given magnification |K| and focal length
fL, the required values of z1 and z2 are given by

z1 = fL(1 + 1/|K|) (2.27a)

z2 = fL(1 + |K|) (2.27b)

as found by application of Equation 2.23 and Equation 2.26.



16 CHAPTER 2. DERIVATION OF GENERALIZED IMAGING MODEL

2.2.6 Object-side telecentric single-lens system

The second lens system we will consider is illustrated in Figure 2.2.4, and differs from
the previously considered system in subsection 2.2.5 by the fact that the AS is placed
in the back focal plane of the lens, rather than at the lens. Following the discussion
in subsection 2.2.4, one expects this system to exhibit the property of object-side
telecentricity. In relation to the generalized two-lens system, Figure 2.2.2, this system
may be modelled by setting fL1 = a1 = fL, a2 = 0 and fL2 = ∞.

fLz1 z2

Object Aperture stopLens Detector

Figure 2.2.4: Illustration of a single lens system with the AS at the back focal plane
of the lens. In terms of the generalized lens system in Figure 2.2.2, the system may
be described by the parameters fL1 = a1 = fL, a2 = 0 and fL2 = ∞.

Applying Equation 2.16 to describe the front half of the system in line with the ex-
pected object side telecentricity then yields the relation

U2(x, y) = exp

[
ik

2

(
1

fL
− z1
f 2
L

)(
x2 + y2

)]
F {U1(ζ, η)} (2.28)

where the Fourier transform is to be evaluated at (fx, fy) = (x/λfL, y/λfL).

As for the previous system, applying either Equation 2.8 to describe free space prop-
agation over the distance z2 or Equation 2.16 with d1 = a2 = 0, f ′

L = fL2 = ∞ and
d2 = z2 would equivalently yield the relation

U4(u, v) = exp

[
ik

2z2

(
u2 + v2

)]
F
{
U3(x, y) exp

[
ik

2z2

(
x2 + y2

)]}
(2.29)

where the Fourier transform is to be evaluated at (fu, fv) = (u/λz2, u/λz2).

For the quadratic phase at the aperture plane to disappear at focus, the requirement
1

fL
+

1

z2
=
z1
f 2
L

(2.30)

must be imposed on z1 and z2.

Combining the above equations with Equation 2.14 and ignoring the phase at the
detector then yields the final result

U4(u, v) = F {P(x, y)F {U1(ζ, η)}} (2.31)
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with the inner and outer Fourier transforms evaluated at respectively (fx, fy) =
(x/λfL, y/λfL) and (fu, fv) = (u/λz2, u/λz2), noting that Q(ζ, η) is equal to unity
and thus vanishes.

In the generalized expression, Equation 2.17, the three defining distances become

za = fL, zb = z2, zq = ∞ (2.32)

based on the evaluation frequencies of the two Fourier transforms and the fact that the
quadratic phase term vanishes. Recognizing that zq was given directly by the distance
from the objective plane to the AS for the simpler preceding system, one may consider
the value of zq = ∞ to be in line with the argumentation by Born and Wolf[10, p.186-
187] stating that the effective distance from the object plane to the AS is infinite for
an object-side telecentric system.

Applying Equation 2.19 yields
|K| = z2

fL
(2.33)

from which one may note that the object side telecentric nature of the system is
reflected in that the magnification is independent of z1. Further, by combining Equa-
tion 2.30 and Equation 2.33 the required values of z1 and z2 may be found as

z1 = fL(1 + 1/|K|) (2.34a)

z2 = fL|K| (2.34b)

for a given magnification |K| and focal length fL.
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2.2.7 Bi-telecentric 4f-system

The third lens system to be considered is illustrated in Figure 2.2.5, and may be defined
by two lenses of focal lengths fL1 and fL2 with the propagation distances equal to the
focal lengths of the lenses. This places the object in the front focal plane of the first
lens, the detector in the back focal plane of the second lens, and the AS simultaneously
in both the back focal plane of the first lens and the front focal plane of the second
lens. For an alternative derivation of the behavior of this system, the interested reader
may consult Gaskill[11, p.474] or Mertz[12, p.59-61]. Conventionally, this system is
often referred to as a 4f-system[12, 13, 14] and has previously been proposed as a
model system for infinity-corrected microscope systems within the context of FP[13].
In line with the discussion of telecentricity in subsection 2.2.4, the system would be
expected to be both object- and image-side telecentric.

fL1 fL2fL1 fL2

Object First lens Aperture stop Second lens Detector

Figure 2.2.5: Illustration of a two-lens system with all distances corresponding to
the focal lengths of the lenses, which for respectively the first and second lenses are
given as fL1 and fL2. In terms of the generalized lens system in Figure 2.2.2, the
system may be described by the parameters z1 = a1 = fL1, z2 = a2 = fL2.

Within the confines of the generalized two-lens system in Figure 2.2.2 the system may
be described by setting z1 = a1 = fL1, z2 = a2 = fL2. At focus, both halves of the
system may be equivalently considered through either Equation 2.15 or Equation 2.16
with d1 = d2 = f ′

L, at which point both equations reduce to precise Fourier transform
relations

UB(u, v) = F {UF (x, y)} (2.35)

evaluated at (fu, fv) = (u/λf ′
L, v/λf

′
L).

For the front half of the system, the evaluation of the Fourier transform may be
considered to be dependent on the distance a1 rather than z1, in line with the expected
object-side telecentricity. The front half of the system is then described by

U2(x, y) = F {U1(ζ, η)} (2.36)

where the Fourier transform is to be evaluated at (fx, fy) = (x/λfL1, y/λfL1).

For the back half of the system, the evaluation of the Fourier transform may similarly
be considered to be dependent on the distance a2 rather than z2, in line with the
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expected image-side telecentricity. The back half of the system is then described by

U4(u, v) = F {U3(x, y)} (2.37)

where the Fourier transform is to be evaluated at (fu, fv) = (u/λfL2, v/λfL2).

Combining the two above equations with Equation 2.14 and ignoring the phase at the
detector yields the final result

U4(u, v) = F {P(x, y)F {U1(ζ, η)}} (2.38)

with the inner and outer Fourier transforms evaluated at respectively (fx, fy) =
(x/λfL1, y/λfL1) and (fu, fv) = (u/λfL2, u/λfL2).

In terms of the generalized model, the system is defined by

za = a1 = fL1, zb = a2 = fL2, zq = ∞ (2.39)

consistent with the system being bi-telecentric and having a magnification

|K| = fL2
fL1

(2.40)

as given by application of Equation 2.19.
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2.2.8 Two-lens system with arbitrary aperture stop placement

The fourth and final lens system which will be considered is illustrated in Figure 2.2.6,
and will serve to demonstrate the need to account for a variable zq. The system is
similar to the previously considered 4f-system, except that the location of the AS is
allowed to vary. Notably, the object is assumed to be in the front focal plane of the
first lens, while the image is assumed to be formed at the back focal plane of the
second lens. With the variable AS placement, this would generally be consistent with
the system being non-telecentric.

fL1 a2a1 fL2

Object First lens Aperture stop Second lens Detector

Figure 2.2.6: Illustration of a two-lens system with an arbitrarily located AS and
the object and detector at the front and back focal planes of respectively the first and
second lenses. In terms of the generalized lens system in Figure 2.2.2, the system may
be described by the parameters z1 = fL1, z2 = fL2 while a1 and a2 are allowed to vary
freely.

the generalized two-lens system in Figure 2.2.2 may be adapted by setting z1 = fL1,
z2 = fL2. Starting out, the non-telecentric case will be analyzed, at which point the
front half of the system is described by

U2(x, y) = F
{
U1(ζ, η) exp

[
ik

2

(
1

fL1
− a1
f 2
L1

)(
ζ2 + η2

)]}
(2.41)

where the Fourier transform is to be evaluated at (fu, fv) = (u/λz1, u/λz1) and the
back half is described by

U4(u, v) = exp

[
ik

2

(
1

fL2
− a2
f 2
L2

)(
u2 + v2

)]
F {U3(x, y)} (2.42)

where the Fourier transform is to be evaluated at (fu, fv) = (u/λz2, u/λz2).

Combining the two above equations with Equation 2.14 and ignoring the phase at the
detector yields the final result

U4(u, v) = F
{
P(x, y)F

{
U1(ζ, η) exp

[
ik

2

(
1

fL1
− a1
f 2
L1

)(
ζ2 + η2

)]}}
(2.43)

with the inner and outer Fourier transforms evaluated at respectively (fx, fy) =
(x/λz1, y/λz1) and (fu, fv) = (u/λz2, u/λz2).
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In terms of the generalized model, the system is defined by

za = z1 = fL1, zb = z2 = fL2, zq =

(
1

fL1
− a1
f 2
L1

)−1

(2.44)

yielding a non-telecentric system of magnification

|K| = z2
z1

=
fL2
fL1

(2.45)

as given by application of Equation 2.19.

Four special cases of interest are when either a1 = a2 = 0, a1 = fL1, a2 = fL2 or both
a1 = fL2 and a2 = fL2. In the first case, one may observe that the system becomes
equivalent to the thin lens system considered in subsection 2.2.5. The remaining three
cases will be covered in the subsequent paragraphs.

Considering the back half of the system, one may notice that upon ignoring the phase
at the detector plane, the relation between U3 and U4 is reduced to a perfect Fourier
transform as in Equation 2.37, with the only difference being that the evaluation is
dependent on z2 = fL2 rather than on a2 = fL2. As such, the behavior of the system
may be seen to be independent of the value of a2 if the system is assumed to not
be image-side telecentric. When used as a model system for an infinity-corrected
microscope system, this independence from the value of a2 would serve to explain
why the so called infinity-space[15] is allowed to vary within reason without affecting
the behavior of the imaging system. Further, in the special case where a2 = fL2,
Equation 2.37 used for the 4f-system may be applied instead of the above equation
relating U3 and U4, at which point the behavior of the system remains unchanged
except that it additionally becomes image-side telecentric.

Considering the front half of the system, the impact of a1 may be found in the expres-
sion for zq. As a1 increases from zero, the magnitude of zq may be seen to increase from
zq = z1 = fL1 to zq = ∞ when a1 = fL1, at which point the quadratic phase at the
object plane may be seen to disappear. Once a1 becomes larger than fL1, zq increases
from zq = −∞ towards zero. Notably, the value of 1/zq, and thus the quadratic phase
at the object plane, is continuous at a1 = fL1, while zq shifts from positive to negative
infinity. For the particular case a1 = fL1 when the quadratic phase disappears, the re-
lation between U1 and U2 is reduced to a perfect Fourier transform, as in Equation 2.36.
In this case, the derived behavior of the system may be retained under the additional
assumption that it is object-side telecentric. At this point, the behavior reduces to be
identical to the previously considered two-lens system considered in subsection 2.2.7,
except for the fact that the system would not be image-side telecentric and that the
behavior would be independent of a2. In the case where a2 = fL2 as well, the system
would be identical to the bi-telecentric 4f-system.
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2.2.9 Summary and ray optical visualization

Summarizing the above sections, we have demonstrated the reduction of the considered
single and two lens systems to the form

U4(u, v) = F {P(x, y)F {U1(ζ, η)Q(ζ, η)}} (2.46)

with
Q(ζ, η) =

1

zq
(ζ2 + η2) . (2.47)

Importantly, in addition to the AS size R and aberrations W contained in the gener-
alized pupil function P , the derivations imply that the ideal behavior of an arbitrary
single- or two-lens imaging system may be described fully by the distances za and zb,
defining the magnification and the scaling of the Fourier transforms, and the effective
object to AS distance zq, defining the quadratic phase at the object plane. Considering
the fact that most microscope objectives are quite complex and essentially operate as
black boxes[8, p.186-189], this generalization may prove useful when it comes to more
accurately evaluating and correcting for the behavior of such unknown imaging sys-
tems. Based on the above derivations, zq can take on any real value, depending on the
distance a1 from the lens element in the front half of the lens system and the defining
AS. Particularly, a consequence of object-side telecentricity is that zq becomes infinite.
Comparatively, the value of a2 and whether an objective is image-side telecentric, does
not impact the final imaging equation due to the phase at the detector vanishing upon
intensity imaging.

To further illustrate the behavior of the imaging systems covered in this section, Fig-
ure 2.2.7 and Figure 2.2.8 show how the systems behave from a ray optical perspective.
To calculate the points at which the rays are transmitted through the lenses based on
the known points at the object and aperture plane, the paraxial ray trace equations
were used[16, p.33].

From the perspective of geometrical optics, the value of zq appears to coincide with
the axial location of the Entrance Pupil (EnP). The EnP is defined as the image of
the AS formed by the front half of the system[16, p.55]. Notably, the axial location
of the EnP is defined by the z value, relative to the object plane, where the chief rays
would intersect the optical axis if they were not focused by the lens[16, p.46-47]. As
illustrated in Figure 2.2.9, this is consistent with the value of zq for the considered lens
systems where z1 = fL1 is assumed. Whether this is the case for an arbitrarily defined
multi-lens system should be considered further in future works.

From the figures, one may further note the relation between the value of zq and the
angle of the chief ray for off-center points. Since the zeroth diffraction order is scattered
parallel to the optical axis under non-angled plane wave illumination, the angle of the
chief ray may be understood as a frequency shift of the local Fourier spectrum. While
the ray optical interpretation of the frequency shift will not be pursued further, a
wave optical derivation explaining the relation between zq and the frequency shift for
off-axis regions will be made in subsection 2.3.2.
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fL(1 + 1/K) fL(1 + K)

AS

(a) Thin lens system

fL(1 + 1/K) fL(1 + K)fL1

AS

(b) Object-side telecentric single-lens system

fL1 fL2fL1 fL2

AS

(c) Bi-telecentric 4f-system

Figure 2.2.7: Visualization of image formation based on ray tracing for the thin
lens, object-side telecentric single-lens and bi-telecentric 4f lens systems. Notably, the
chief rays for the telecentric system halves may be seen to be parallel to the optical
axis. Conversely, the chief rays of the off-axis points are angled for the non-telecentric
system halves.
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fL1 fL2fL1/2 fL2/2

AS

(a) Generalized two lens system (a1 < fL1)

fL1 fL2fL1 fL2/2

AS

(b) Generalized two lens system (a1 = fL1)

fL1 fL22fL1 fL2/2

AS

(c) Generalized two lens system (a1 > fL1)

Figure 2.2.8: Visualization of image formation based on ray tracing for three two-
lens systems with varying AS placement. The systems are ordered by increasing values
of a1. (a) A system where a1 < fL1, corresponding to a finite and positive value of
zq. (b) A system where a1 = fL1, consistent with a object-side telecentric system
with zq = ∞. (c) A system where a1 > fL1, corresponding to a finite and negative
value of zq. Notably, the value of zq appears to be related to the angle of the chief
ray for off-axis points. While only three examples are presented here, one should note
that the model allows for any AS placement at or in between the two lenses. Further,
one may observe that the rays for the off-axis points for increasing values of a1 are
transmitted through the lens at increasing distances from the optical axis. As the AS
to lens distance increases, or for a farther off-axis point, one would thus eventually
expect vignetting to become an issue. Correspondingly, to avoid vignetting within
the desired FoV, the lenses are required to be significantly larger than the defining
AS. While the focus of this figure is to demonstrate the effects of changing a1, the
symmetry of the two system halves dictate that changing a2 would yield comparable
behavior for the second half of the system.
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fL1

zq = fL1
AS/EnP

(a) a1 = 0

fL1 fL1/2

zq = 2fL1
EnPAS

(b) a1 = fL1/2

fL1 fL1

zq =
EnPAS

(c) a1 = fL1

fL1 2fL1

zq = fL1
EnP AS

(d) a1 = 2fL1

Figure 2.2.9: The front half of the considered imaging system for different values of
a1. The value which has been referred to as the effective object to AS distance, zq,
coincides with where the chief rays would intersect the optical axis if they were not
focused by the lens. This is consistent with the definition of the axial position of the
Entrance Pupil (EnP) in geometrical optics[16, p.46-47].
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2.3 LED illumination model

Another aspect of the imaging system which will be considered is how the image for-
mation is modified by illumination from the individual LEDs of a LED array placed
in the illumination plane. To this extent, the definition of two additional wavefields
Ui and ULED will be required in line with the illustration in Figure 2.3.1. Specifically,
Ui(ζ, η) is defined as the complex wavefield at the object plane just before transmis-
sion through a complex object o(ζ, η) that is to be imaged, while ULED is defined as
the complex wavefield at the illumination plane directly corresponding to the LED
source. These two fields are related by propagation over the distance z0 between the
illumination and object planes, while they are related to the imaging model described
earlier through

U1(ζ, η) = o(ζ, η)Ui(ζ, η). (2.48)

Figure 2.3.1: The planes and complex fields of interest in the illumination model.
Each individual LED results in a corresponding complex field ULED(χ, ψ) at the illu-
mination plane which is propagated to the object plane. This results in complex fields
Ui(ζ, η) and U1(ζ, η) just before and just after transmission through a complex object
o(ζ, η) at the object plane.

For a complete treatment starting at the Fresnel-Huygens principle, Ui(ζ, η) may be
found using Equation 2.3 yielding

Ui(ζ, η) =

∫∫
U(χ, ψ)

exp{ikr}
r2

dχdψ (2.49)

ignoring the constant prefactor z0/iλ and where the distance r is given by

r =
√
z20 + (ζ − χ)2 + (η − ψ)2 (2.50)

in accordance with Equation 2.4. However, to arrive at the model commonly used in
Fourier Ptychography [1, 2, 5, 6] further simplifications are necessary.
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The first approximation is to model the LEDs as point sources, neglecting their finite
extent[5]. For the i-th LED located at (χi, ψi) in the illumination plane, the point
source approximation allows the complex field to be expressed as a delta function
ULED = δ(χi, ψi), yielding

Ui(ζ, η) =
exp{ikr}

r2
(2.51)

with r evaluated at (χi, ψi).

The second approximation is to ignore the term 1/r2, which is an intensity scaling
factor that varies across the field of view in the object plane and between LED sources.
Recognizing that the illumination distance z0 will commonly be substantially larger
than the FOV[1, 5], one would not expect the assumption of constant illumination
intensity across the whole object plane to have substantial impact. However, since the
ratios χi/z0 and ψi/z0 may take on values approaching or surpassing unity to achieve
large illumination angles, a non-negligible intensity variation between LED sources
may be ignored through this approximation.

Finally, the Taylor expansion used for the Fresnel approximation as given in Equa-
tion 2.5 is used[5] while including the first two terms. This yields the final result

Ui(ζ, η) = exp

[
ik

2z0

(
ζ2 + η2

)
− ik

z0
(ζχi + ηψi)

]
(2.52)

where the terms ikz0 and ik (χ2
i + ψ2

i ) /2z0 have been removed from the exponent as
they are constant for a given LED and thus removed during intensity imaging.

2.3.1 Impact of LED illumination for an on-axis region

The impact of LED illumination may be seen most easily through examination of the
wavefield U2 at the aperture plane just before transmission through the AS. Combining
the generalized model considered in section 2.2 with Equation 2.48 and Equation 2.52,
U2 may be expressed as the Fourier transform of

o(ζ, η)Qc(ζ, η) exp

[
−ik
z0

(ζχi + ηψi)

]
(2.53)

evaluated at (fx, fy) = (x/λza, y/λza), where Qc is a combined quadratic phase term

Qc(ζ, η) = exp

[
ik

2z0

(
ζ2 + η2

)
+

ik

2zq

(
ζ2 + η2

)]
(2.54)

= exp

[
ik

2

(
1

z0
+

1

zq

)(
ζ2 + η2

)]
(2.55)

including the terms originating from the spherical illumination and the quadratic
phase term at the object plane inherent to the generalized imaging system consid-
ered throughout section 2.2.
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When compared to direct illumination, the final term may be seen as a spatial shift of
the wavefield at the aperture plane. Defining the Fourier transform of Equation 2.53
at direct illumination as the object spectrum S yields a relation

U2(x, y) = S(fx, fy) = F {o(ζ, η)Qc(ζ, η)} (2.56)

with the implicit evaluation of the Fourier transform. To observe the impact of angled
illumination, one may rewrite the final term of Equation 2.53 as

exp

[
−ik
z0

(ζχi + ηψi)

]
= exp

[
− i2π
λz0

(ζχi + ηψi)

]
(2.57)

and use the Fourier shift theorem to arrive at

U2(x, y) = S(fx − fxi, fy − fyi) (2.58)

where (fxi, fyi) = (−χi/λz0,−ψi/λz0)[5]. As the AS is centered at the optical axis, the
impact of angled illumination is such that the image obtained at the detector plane
corresponds to a shifted region of the object spectrum, as illustrated in Figure 2.3.2.

Figure 2.3.2: The impact of an il-
lumination source at an angle θ com-
pared to the optical axis. The an-
gle depends on the distance z0 and
the position ri = (χi, ψi) of the il-
lumination source within the illumi-
nation plane. At the aperture plane,
the angled illumination results in a
shift fi = ki/2π of the object spec-
trum zero frequency. At the aper-
ture plane, only the light within a re-
gion close to the optical axis passes
through the AS and is propagated to
the detector. At angled illumination,
the image at the detector thus corre-
sponds to a different part of the ob-
ject spectrum as compared to direct
illumination. Modified version of fig-
ure 1 in [5], licensed under CC BY
4.0.
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2.3.2 Impact of LED illumination for an off-axis region

The above derivation assumes that the region under consideration is centered at the
optical axis, a condition which is not necessarily satisfied for the purposes of FP[1]. In
this section, a novel derivation of the frequency shift based on a wave-optical treatment
within the Fresnel approximation will be provided.

Staying within the confines of the model considered so far, the impact of changing the
center of the region of interest away from the optical axis where (ζ, η) = (0, 0), may
be expressed through a coordinate change

ζ = ζ ′ + ζc (2.59a)

η = η′ + ηc (2.59b)

with (ζ ′, η′) defining the new coordinate system based on which the Fourier transform
is to be performed and (ζc, ηc) defining the center of the region of interest relative the
optical axis. This coordinate change may be found to change the frequency shift of
the object spectrum.

Starting with the impact on the frequency shift calculated in the previous section,
(fxi, fyi) = (−χi/λz0,−ψi/λz0), one may note that the shift is independent of ζ and η.
Implicitly, the contribution from the exponential term in Equation 2.53 is expected to
be unchanged. For a proper derivation, one may consider the change in the exponential
term in Equation 2.53 upon the aforementioned coordinate change, yielding

exp

[
−ik
z0

(ζχi + ηψi)

]
= exp

[
−ik
z0

(ζ ′χi + η′ψi)

]
· exp

[
−ik
z0

(ζcχi + ηcψi)

]
(2.60)

where the final exponential may be ignored as it is constant for a given center shift
(xc, yc) and LED position (χi, ψi) and thus vanishes upon intensity imaging. Applying
the Fourier shift theorem as for Equation 2.57 then yields the expected frequency shift
(fxi, fyi) = (−χi/λz0,−ψi/λz0), which is unchanged as compared to an on-axis region.

Considering the impact on the combined quadratic phase, one may find that the co-
ordinate change gives rise to an additional frequency shift. Applying the coordinate
change to Equation 2.55 yields

Qc(ζ, η) = exp

[
ik

2

(
1

z0
+

1

zq

)(
ζ2 + η2

)]
(2.61)

= exp

[
ik

2

(
1

z0
+

1

zq

)(
(ζ ′ + ζc)

2 + (η′ + ηc)
2
)]

(2.62)

= exp

[
ik

2

(
1

z0
+

1

zq

)(
ζ ′2 + 2ζ ′ζc + ζ2c + η′2 + 2η′ηc + η2c

)]
(2.63)

= Qc(ζ
′, η′) ·Qc(ζc, ηc) · exp

[
ik

(
1

z0
+

1

zq

)
(ζ ′ζc + η′ηc)

]
(2.64)
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where the final line contains the original quadratic phase term redefined to the new co-
ordinate system Qc(ζ

′, η′), a constant which vanishes upon intensity imaging Qc(ζc, ηc)
and an exponential

exp

[
ik

(
1

z0
+

1

zq

)
(ζ ′ζc + η′ηc)

]
which will give rise to a frequency shift. Applying the Fourier shift theorem to the
above exponential and combining the result with the shift from the position of the
illumination source yields a final frequency shift expression

fxi =
1

λ

[
ζc − χi

z0
+
ζc
zq

]
(2.65a)

fyi =
1

λ

[
ηc − ψi

z0
+
ηc
zq

]
(2.65b)

accounting for the impact of evaluating an off-center region.

2.3.3 Comparison with the literature

In the literature, two separate methods have been employed to determine the shift of
the object spectrum under angled illumination. In the original article pioneering the
concept of FP by Zheng et al.[1], the frequency shift was expressed as

fxi =
1

λ

ζc − χi√
(ζc − χi)2 + (ηc − ψi)2 + z20

(2.66a)

fyi =
1

λ

ηc − ψi√
(ζc − χi)2 + (ηc − ψi)2 + z20

(2.66b)

found by viewing the incident light as a plane wave and determining the in plane
frequency components. Later, an alternative shift calculation formula[4, 6]

fxi =
1

λ

[
ζc − χi

z0
+
ζc
z1

]
(2.67a)

fyi =
1

λ

[
ηc − ψi

z0
+
ηc
z1

]
(2.67b)

has been proposed by Konda[4] based on a geometrical analysis of the thin lens system
covered in subsection 2.2.5.

Comparing the latter with Equation 2.65 as found in this work, one may note that the
two expressions are highly similar, with the only difference being that zq is substituted
with z1. This may easily be explained by the more general nature of the expression
found in this work, as zq = z1 would be correct for the specific system considered by
Konda according to the derivations in subsection 2.2.5. Importantly, this demonstrates
that the geometric approach made by Konda and the wave-optics based approach



CHAPTER 2. DERIVATION OF GENERALIZED IMAGING MODEL 31

considered in this work are consistent with each other. Further, the derivation provided
in this work demonstrates a direct connection between the presence of a quadratic
phase at the object plane and the frequency shift for an off-axis patch.

Compared to the former frequency shift formula by Zheng et al., the differences are
more substantial. In particular, one may note the absence of the zq dependent term
and the fact that the denominator is given by the length

√
(ζc − χi)2 + (ηc − ψi)2 + z20

rather than only z0. For the two formulas to coincide, the system under consideration
would have to be such that zq = ∞ as for the lens systems considered in subsection 2.2.6
and subsection 2.2.7 while also satisfying (ζc − χi), (ηc − ψi) << z0 corresponding to
small illumination angles. With the added zq dependency in the formula presented
in this work, the new formula may be considered more general. However, as the
derivations performed in this work assumes small angles, there is an open question as
to which of the two formulas are more correct at larger illumination angles given that
the system under consideration satisfies zq ≈ ∞. If the approach made by Zheng et
al. is more correct at high illumination angles, an investigation into how the model
derived in this work may be modified to be more correct is warranted and desirable.
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2.4 Discretization of the imaging system

For the purposes of numerical recovery through FP, it will also be necessary to consider
the impact of discretization upon the lens system and illumination models considered
previously. While the complex field at the detector plane as given by Equation 2.17 is
continuous and defined for all u, v ∈ (−∞,∞), the images captured by the detector
are limited by the detector pixels. In this project, the detector will be assumed to be
symmetrical in both spatial directions so that the detector is defined by an M ×M
matrix of pixels whose centers are separated by a distance δdetector. Additionally, for
the purposes of the FP recovery algorithm, it is common to upscale the pixel counts on
the object side of the lens by an integer factor p in each direction[17]. By also taking
the magnification |K| = zb/za as given by Equation 2.19 into account, the object will
then be defined by a pM × pM matrix with pixel size[6]

δobject =
δdetector
p|K|

(2.68)

while at the aperture plane, the correct pixel size in terms of spatial values is given by

δaperture =
λzb

Mδdetector
=

λza
pMδobject

(2.69)

for both the pM × pM and M ×M matrix sizes[6].

However, the convention that is prevalent in the broader literature[1, 2, 5, 14, 17, 18,
19] is to treat the aperture plane in terms of the object’s spatial frequencies (fx, fy) =
(x/λza, y/λza) yielding a pixel size

δfreq =
1

pMδobject
=

|K|
Mδdetector

(2.70)

or in terms of the corresponding wavevectors. Beneficially, this removes the za and zb
dependency. In particular, this becomes relevant when discretizing the pupil function
and the object spectrum frequency shift at angled illumination. In the case of the
pupil function, the alternative definition becomes

P (fx, fy) =

{
1, f 2

x + f 2
y ≤ f 2

c

0, f 2
x + f 2

y > f 2
c

(2.71)

where the cutoff frequency is defined by fc = R/λza which may be rewritten in terms
of a numerical aperture NA = sin θ ≈ tan θ = R/za as is valid for small angles. In
terms of the frequency shifts, working with spatial frequencies allows Equation 2.65 to
be applied directly. Alternatively, to express these shifts in terms of spatial coordinates
of the lens plane, Equation 2.65 may be multiplied by λza, while a division by the pixel
size as given by Equation 2.70 allows it to be expressed in terms of pixels. Notably,
working in spatial frequencies means that the need to know the values of za, zb and R
is replaced by a need to know only the magnification |K| and the Numerical Aperture
(NA), both of which are more readily available for commercial microscope objectives.
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2.5 Contributions and place within the current state
of lens modelling for Fourier Ptychography

In this chapter, an imaging model was presented from which intensity imaging under
angled illumination is summarized through

Ii(u, v) = Ii(−|K|ζ,−|K|η) = |F {P(fx, fy)S(fx − fxi, fy − fyi)} |2 (2.72)

where the object spectrum is given by

S(fx, fy) = F {Qc(ζ, η)o(ζ, η)} (2.73)

corresponding to the Fourier transform of the complex object o(ζ, η) multiplied with
a quadratic phase factor

Qc(ζ, η) = exp

[
ik

2

(
1

z0
+

1

zq

)
(ζ2 + η2)

]
(2.74)

and with
fxi =

1

λ

[
ζc − χi

z0
+
ζc
zq

]
(2.75a)

fyi =
1

λ

[
ηc − ψi

z0
+
ηc
zq

]
(2.75b)

defining the illumination frequency shifts. Of particular importance is the effective
object to AS distance zq, which may be seen to impact both the quadratic phase
factor at the object plane and the illumination frequency shifts.

When considering the thin lens system in subsection 2.2.5, as has been done previously
within the FP literature[4, 5, 6], the generalized expression may be adapted by setting
zq = z1. Compared to the previous works, the main contribution provided by this work
is the wave optical derivation of the frequency shift for an off-axis region covered in
subsection 2.3.2. This derivation is consistent with the geometrical approach provided
by Konda[4], while additionally establishing the connection between the quadratic
phase and the frequency shift for off-axis regions. Importantly, the application of this
Fresnel propagation-based model for a thin lens has been shown to be a requirement for
recovery of large or off-axis regions for thin lens systems, and systems of comparative
behavior[4, 5, 6].

Further, Aidukas et al.[5] state that the contribution to the quadratic phase term from
the lens should vanish for a telecentric lens, citing a derivation[12, p.59-61] for the
bi-telecentric 4f-system considered in subsection 2.2.7. This is consistent with zq = ∞
as obtained through the derivations in section 2.2, though the results obtained in this
thesis add additional nuance. Specifically, it has been shown that zq = ∞ is consistent
with the property of object-side telecentricity, requiring the AS to be in the back focal
plane of the first lens element. Conversely, the image-side properties in general, and
specifically whether the system is image-side telecentric, has been shown to not impact
the imaging equation since the phase at the detector vanishes upon intensity imaging.
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For an object-side telecentric lens, one may further note that the necessary simplifi-
cations to arrive at the original imaging relation considered by Zheng, Equation 1.1,
would only be that of plane wave illumination. This is in contrast to the thin lens
system, for which one would have to model the propagation from the object to the
AS within the Fraunhofer approximation to arrive at Zheng’s model. Importantly,
the derivations made in this thesis show that the Fresnel-based derivation made for
the thin lens system, yields an improved model for precisely a thin lens system, or
any system of comparative behavior. Specifically, applying the thin lens model to an
object-side telecentric lens system would expectedly degrade the recovery quality. This
is both due to the differing quadratic phase terms and due to the differing frequency
shifts for off-axis regions.

Finally, adding to the existing models, this work has demonstrated that it is possible
to construct two-lens imaging systems with arbitrary AS placements, as covered by
subsection 2.2.8. For these systems, the value of zq becomes dependent on the distance
from the first lens to the AS a1 according to

zq =

(
1

fL1
− a1
f 2
L1

)−1

(2.76)

allowing both positive, negative and infinite values for zq.



CHAPTER 3

RECOVERY THROUGH FOURIER PTYCHOGRAPHY

This chapter will provide an overview of how Fourier Ptychography (FP) may be used
to recover a highly resolved, complex image of an object. The chapter will start with
a review of the initial FP algorithm in section 3.1, followed by the coverage of sev-
eral modifications considered in later works. Particularly, this includes the necessary
modifications to account for a quadratic phase at the object plane and to additionally
correct for lens aberrations through recovery of the generalized pupil function. Finally,
experimental considerations including system alignment and calibration, noise and the
sampling requirements of the system will be covered.
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3.1 The original Fourier Ptychography algorithm

As covered in the introduction, the assumptions made by Zheng et al.[1] in the initial
article proposing the concept of FP correspond to the intensity Ii at the detector under
illumination by the i-th LED being given by the relation

Ii(r) = |F {P(f)S(f − fi)} |2 (3.1)

with the object spectrum given by

S(f) = F {o(r)} (3.2)

differing from the model considered in chapter 2 by the absence of the quadratic phase
at the object plane as defined by Equation 2.55. While the necessary correction to
account for the presence of a quadratic phase will be covered in section 3.3, it will be
omitted from the initial coverage of the FP recovery algorithm below. Additionally,
one should note that the frequency shift fi upon angled illumination depends on the
behavior of the imaging system in question, as covered in section 2.3.

The recovery algorithm proposed by Zheng et al.[1] aims to achieve the inverse of
Equation 3.1 and recover the object spectrum S(f) based on captured intensity images
Ici . For this purpose, FP relies on iterative phase retrieval[1], based on the idea that for
the recovered spectrum Sr(f), the imaging procedure in Equation 3.1 should produce
the same intensity images as those that were captured, while an overlap of the intensity
images in terms of their frequency content allows for the phase to be recovered. This
is achieved through the following process:

1. Initialize the recovered spectrum Sr(f)

2. For each illumination angle i

(a) Calculate the complex field just after transmission through the generalized
pupil function based on the current recovered spectrum

UP = PSr(f − fi)

(b) Calculate the complex field at the detector

UD = F {UP}

(c) Update the amplitude to coincide with the corresponding captured intensity
image

Unew
D =

√
Ici · arg(UD)

(d) Calculate the corresponding complex field just after transmission through
the generalized pupil function

Unew
P = F−1 {Unew

D }
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(e) Update the recovered spectrum Sr in accordance with the relation

PSnew
r (f − fi) = Unew

P

3. Repeat step 2 until convergence or for N iterations

To finalize the procedure, the recovered object or(r) is then retrieved according to

or(r) = F−1 {Sr(f)} . (3.3)

3.2 Update order and initialization

The order through which the images are used to update the sample spectrum and the
initialization must further be defined. Barring prior information about the aberrations
in the system, the initialization may be done by setting the initial guess for the gener-
alized pupil function equal to the pupil function while the recovered object spectrum
is initialized as

Sinit(f) = F {oinit(r)} (3.4)

where oinit is an upsampled version of the intensity image corresponding to illumination
by the central LED[2]. In terms of update order, it has been shown that ordering the
images in terms of decreasing intensity or increasing illumination angle provides the
best results[20].

3.3 Reintroducing the quadratic phase term

While the original FP algorithm does not consider the presence of a quadratic phase
term at the object plane as given by Equation 2.55, such a phase term has later been
reintroduced upon consideration of the thin lens system covered in subsection 2.2.5[4,
5, 6]. Since the phase term is restricted to the object plane, its reintroduction only
affects the parts of the FP algorithm where the object plane is considered, namely
during initialization and the final retrieval of the recovered object from the recovered
object spectrum. To account for a quadratic phase term, the initialization of the
recovered object spectrum must follow

Sinit(f) = F {oinit(r)Qc(r)} (3.5)

while the recovered object must be retrieved as

or(r) = F−1 {Sr(f)}Q∗
c(r) , (3.6)

rather than using the relations in Equation 3.3 and Equation 3.4.
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3.4 Embedded Pupil Function Recovery

In addition to recovering the spectrum S(f) as described previously, Ou et al.[2] further
enhanced the algorithm to also allow for recovery of an unknown generalized pupil
function P . This enhanced algorithm is called Embedded Pupil Function Recovery
(EPRY) and follows the same scheme as the original algorithm, except in step 2e
where both the recovered spectrum Sr and the recovered pupil Pr are updated rather
than only Sr. This update procedure is given by

Snew
r (f − fi) = Sr(f − fi) + α

P∗

|P|2max

[Unew
P − UP ] (3.7a)

Pnew = P + β
Sr(f − fi)

|Sr(f − fi)|2max

[Unew
P − UP ] (3.7b)

where α ≤ 1 and β ≤ 1 are constants used to adjust the step size. Additionally, as the
above update step for the pupil allows it to take on non-zero values above the cutoff
frequency, these values are suppressed through multiplication by the pupil function.

3.5 Second order update steps

Further improvement upon the algorithm has since been made by instead applying a
second order update step[21, 22] originating from the adjacent field of real space Pty-
chography[23]. Instead of Equation 3.7, the recovered object spectrum and recovered
pupil is then updated according to

Snew
r (f − fi) = Sr(f − fi) + α

|P|P∗

|P|max(|P|2 + δ1)
[Unew

P − UP ] (3.8a)

Pnew = P + β
|Sr(f − fi)|Sr(f − fi)

∗

|Sr(f − fi)|2max

[Unew
P − UP ] (3.8b)

where δ1 and δ2 are regularization constants included to ensure numerical stability[21].
Specific values for the regularization constants which have been used in the literature
are δ1 = 1 and δ2 = 1000[14, 18], which will be used in this work.

3.6 The normalized real space error

One of the error metrics that may be used to quantify the convergence of the algorithm
is the normalized real-space error[24]. The error metric is given by

ε =

∑
i ||

√
Ici − |UD|||2∑

i ||
√
Ici ||2

(3.9)
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where the sums are taken across all illumination angles i and ||.|| denotes the Euclidean
norm. Additionally, for application within the FP algorithm without added compu-
tational cost, the error metric may be approximated by accumulating the sum in the
numerator of Equation 3.9 incrementally during the update step of each individual
illumination angle.
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3.7 System alignment and calibration

For the purposes of FP, proper system alignment is an important factor for high-quality
reconstruction. In the literature, the focus has been on correcting for the placements
of the LED array, either before the main algorithm loop[25, 26] or within it[14, 18, 25,
27]. The multitude of specific system calibration schemes proposed in the literature
will not be considered further in this work.

To describe the placements of the individual LEDs, a rigid body model for the LED
array is commonly employed[14, 18, 26, 27], with the LEDs being assigned indices n
and m forming a grid where (n,m) = (0, 0) denotes the center LED. In the idealized
model, the LED coordinates (xi, yi) are then described by

xi = dn (3.10a)

yi = dm (3.10b)

where d is the spacing between adjacent LEDs in the array and the center LED is
presumed to lie precisely along the optical axis. In the presence of an undesired
rotation θ and translation (∆x,∆y) of the LED array within the illumination plane,
the misaligned positions may be described by

xi = d(n cos θ +m sin θ) + ∆x (3.11a)

yi = d(−n sin θ +m cos θ) + ∆y (3.11b)

which together with the distance z0 are the necessary quantities to calculate the fre-
quency shift at angled illumination using the formula proposed by Zheng et al.[1],
Equation 2.66, and the contribution to the quadratic phase from spherical illumina-
tion, assuming that the magnification, wavelength, and detector pixel size are known.
When considering a thin lens system, the distance z1 is additionally required to calcu-
late the quadratic phase and the frequency shift using the formula proposed by Konda,
Equation 2.67. However, the value of z1 may be obtained from the focal length and
magnification according to Equation 2.27a, posing no additional problems. Finally,
considering the generalized model discussed throughout section 2.2 and an objective
of unknown behavior, it is necessary to determine the value of zq. Since the value
of zq is not considered within existing calibration algorithms, use of the generalized
imaging model justifies the need for a novel calibration procedure, as will be proposed
in chapter 5.
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3.8 Noise

The presence of noise in the captured intensity images may severely degrade the qual-
ity of the recovered object and pupil[19, 24, 28, 29]. In FP, noise may originate from
several sources, including but not limited to LED intensity fluctuations[14, 19], back-
ground noise[28, 30], stray light[28] and inaccuracies of the model at the transition
region from BF to Dark-Field (DF)[29]. To minimize the detrimental impact of these
noise sources, corresponding noise reduction steps have been proposed through im-
age preprocessing, by disregarding the images located at the BF-DF transition region
within the algorithm and by implementation of an adaptive step size.

3.8.1 Adaptive step size

Improvement of the algorithm’s performance in the presence of noise has been observed
through modification of the step-size constants α and β used in Equation 3.7 and
Equation 3.8. In the initial articles introducing FP[1] and EPRY[2], the step-size
constants were set to 1, which is sufficient for perfect reconstruction in the absence
of noise[24]. However, in the presence of noise it has later been shown that smaller
values of α and β result in improved convergence at the cost of convergence rate[24].
To retain the benefits in convergence rate from large values of α and β, while also
improving the convergence, Zuo et al.[24] proposed an adaptive step-size defined by

αk =

{
αk−1 εk−1−εk

εk−1 > η

αk−1/2 else
(3.12)

and likewise for βk. Here, k corresponds to the number of iterations of the algorithm,
η is a constant determining how rapidly the step-size is updated and ε is the real space
error defined by Equation 3.9. In terms of values, η = 0.01, α0 = 1 and β0 = 1/

√
N

where N is the number of low-resolution images, have been proposed as reasonable
choices[24] in combination with the first order update steps considered in section 3.4.
In combination with the second order update step covered in section 3.5, it appears
that setting β0 = 1 may be more suitable[14].
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3.9 Sampling requirements

For the purposes of FP, sampling must be considered in both the frequency and spatial
domains.

In the frequency domain, Dong et al.[31] found that at least a 35% overlap in the
frequency content of images corresponding to illumination by adjacent LEDs is re-
quired. The frequency content for a single LED corresponds to a circle of diameter
D = 2NA/λ, while application of Equation 2.65 yields a difference in the frequency
shift for two adjacent LEDs separated by a distance d as ∆f = d/(λz0). Considering
two circles with the given diameter D and separation ∆f , the overlap O may be found
as[32]

O =

{
2
π

{
arccos(X)−X

√
1−X2

}
, X < 1

0, else
(3.13)

with X = ∆f/D = d/(2z0NA).

In the spatial domain, requirements are placed on both the sampling rate of the detec-
tor and on the sample rate of the recovered object[17, p.2-20]. For the detector, the
Nyquist sampling theorem yields that the detector pixel size must satisfy[17, p.2-20]

δdetector <
|K|λ
2NA

(3.14)

placing restrictions on the ratio between the magnification |K| and the numerical aper-
ture NA for a given detector. For the recovered object, the pixel size must satisfy[17,
p.2-20]

δobject <
λ

4(NA + NAillum)
(3.15)

to sufficiently resolve the recovered intensity, with NAillum being the numerical aper-
ture equivalent of the largest illumination frequency shift,

NAillum =
(
λ
√
f 2
xi + f 2

yi

)
max

. (3.16)

In turn, this places a restriction upon the pixel scale factor

p >
4δdetector(NA + NAillum)

|K|λ
. (3.17)



CHAPTER 4

INTRODUCTION TO ABERRATION THEORY

The aim of this chapter will be to give a brief introduction to the theory of monochro-
matic aberrations. To this extent, a description of the wavefront aberration and the
first order Seidel aberrations will be provided in section 4.1, including spherical aber-
ration, coma, astigmatism, field curvature and distortion. Additionally, the Zernike
polynomials and their applications regarding the description of optical aberrations
will be considered. Further, section 4.2 will provide a derivation of the expected phase
change at the aperture plane upon defocus for the generalized imaging system consid-
ered in chapter 2. Finally, a review of the aberrations and other effects which may
be expected to appear upon imaging through a glass window will be provided in sec-
tion 4.3. In general, the following sections will be based upon the work of Welford as
presented in "Aberrations of optical systems"[33]. To supplement the discussion, the
works of Geary[16], Wyant and Creath[34] and Song et al.[35] will be used.
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4.1 Monochromatic aberration theory

Within the context of the model developed in chapter 2 based on monochromatic wave
optics, aberrations may be described through the phase

ϕ = kW (x, y) (4.1)

of the generalized pupil function as defined in subsection 2.1.3[8, p.205][16, p.82].
This phase is dependent on the wavevector k and the wavefront aberration W , and
may be considered as a deviation of the imaging system from the ideal case where
the phase would be zero. In general, the presence of aberrations results in reduced
image quality, either in the form of point imaging aberrations or by affecting the
image shape[33, p.92]. In the presence of a point imaging aberration, a point at the
object plane would yield a distorted or blurry point at the detector, while retaining its
expected location. This includes several well-known aberrations, including spherical
aberrations, coma, and astigmatism. Conversely, the presence of an aberration which
affects the image shape would alter the location of the image point, which is the case
for the aberrations known as distortion and field curvature. Finally, one may note that
there exist aberrations originating from the wavelength dependency of the refractive
index[33, p.93], referred to as chromatic aberrations, as opposed to monochromatic
aberrations, though these aberrations will not be considered in this work.

4.1.1 Expansion of the wavefront aberration

For a formal treatment of aberrations within the confines of wave optics, Welford con-
siders the expansion of the wavefront aberration as a function of the coordinates (x, y)
and (ζ, η) at respectively the aperture and object planes[33, p.105-108]. Requiring
that the combinations of the four variables (x, y, ζ, η) present in the final expression
are invariant under rotation, the four variables are reduced to three combinations
(x2 + y2, xζ + yη, ζ2 + η2). From this point, the wavefront aberration function may be
expanded directly, as is done by Song et al.[35]. However, to further simplify the ex-
pression, Welford[33, p.106] applies an argument based on the symmetry of the system
to only consider an object point along the η-axis, with ζ = 0, and choose to represent
the system in a way such that W should be zero at the center of the aperture plane.
This yields a final expansion[33, p.107]

W (x, y, η) ≡ W (x2 + y2, yη, η2)

= a1(x
2 + y2) + a2yη

+ b1(x
2 + y2)2 + b2yη(x

2 + y2)

+ b3y
2η2 + b4η

2(x2 + y2) + b5yη
3

+ third and higher order terms

(4.2)

with the constant and (x, y)-independent terms assumed equal to zero.
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The first order terms with coefficients a1 and a2 are not considered to represent proper
imaging aberrations[33, p.107] and will not be considered further here, though the first
term may be recognized as a defocus as will be considered in section 4.2.

The second order terms are referred to as the primary aberrations or the Seidel aberra-
tions[33, p.109.129], and constitute respectively primary spherical aberration, primary
coma, primary astigmatism, field curvature and distortion.

4.1.2 Spatial dependency of the aberration modes

Disregarding the higher order modes, which may be found in [35], one may note that
the different aberrations vary in their dependency on the distance from the optical
axis at the object plane, as given by η. Considering only the terms in Equation 4.2,
the dependency of the spherical aberration term is constant, the coma term is linear,
and the astigmatism term is quadratic. Likewise, the field curvature term may be
recognized as a defocus term scaling with the square of η. As emphasized by Wyant
and Creath[34, p.35], this spatial dependency is lost when the wavefront aberration is
considered only as a function of (x, y) as is the case for the generalized imaging model
considered in chapter 2.

4.1.3 Zernike polynomials

An alternative to the expansion in Equation 4.2, is to expand the phase of the gener-
alized pupil function as a linear combination of Zernike polynomials

kW (x, y) =
∞∑
j=1

ajZj(x, y) (4.3)

with j denoting the indices of the Zernike polynomial terms Zj and the corresponding
expansion coefficients aj, which will be referred to as the Zernike coefficients. Impor-
tantly, the Zernike polynomials are defined such that they form an orthogonal basis
over a unit disk, allowing for easy numerical treatment and making them easily ap-
plicable to the wavefront aberration[36]. For further context, a short review of the
Zernike polynomials is provided in Appendix C.
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4.2 Consequence of an object-side defocus

It may be shown that all the systems considered in section 2.2 have the same expected
behavior in terms of the phase at the aperture plane in response to an object-side
defocus. Defining an object-side defocus as a change in the location of the object
along the optical axis, the quadratic phase at the aperture plane due to an object-side
defocus may be found by comparing the z1 dependent contribution between a value
z1 = z′1 at focus and a value z1 = z′1+∆z1 with ∆z1 denoting the defocus distance. As
will be shown, the necessary derivations differ depending on whether Equation 2.15 or
Equation 2.16 is used for the front half of the generalized system. For the front half,
the values d1 and d2 in the aforementioned equations become respectively z1 and a1.

If Equation 2.16 is used, the difference becomes

D(x, y) = exp

[
ik

2

(
−z

′
1 +∆z1
a21

+
z′1
a21

)(
x2 + y2

)]
= exp

[
ik

2

(
−∆z1
a21

)(
x2 + y2

)]
= exp

[
ikλ2

2
(−∆z1)

(
f 2
x + f 2

y

)]
= exp

[
−iπλ∆z1

(
f 2
x + f 2

y

)]
(4.4)

with the second equality being dependent on the relation (fx, fy) = (u/λa1, u/λa1)
and the third upon the definition k = 2π/λ. This derivation is inspired by and may
be found to be consistent with the derivation performed by Goodman[8, p.207-208].

When considering Equation 2.15, it is additionally necessary to assume that ∆z1 <<
z′1+∆z1 so that the Taylor expansion 1/(z′1+∆z1) = 1/z′1−∆z1/(z

′
1)

2 may be applied.
This yields the difference

D(x, y) = exp

[
ik

2

(
1

z′1 +∆z1
− 1

z′1

)(
x2 + y2

)]
≈ exp

[
ik

2

(
− ∆z1
(z′1)

2

)(
x2 + y2

)]
≈ exp

[
ikλ2

2
(−∆z1)

(
f 2
x + f 2

y

)]
= exp

[
−iπλ∆z1

(
f 2
x + f 2

y

)]
(4.5)

recognizing that (fx, fy) = (u/λz1, u/λz1) ≈ (u/λz′1, u/λz
′
1) for Equation 2.16.

As shown, both the alternatives for propagation between the object and aperture
planes considered in section 2.2 yield the same behavior for a small defocus ∆z1 << z1.
A similar consideration could be made regarding an image-side defocus or for the
quadratic phase terms at the object plane, but will not be considered in this work.
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In terms of the Zernike polynomials, the defocus aberration is primarily contained
within the fourth term[36]

Z4(x, y) =
√
3[2(x̃2 + ỹ2)− 1] (4.6)

with (x̃, ỹ) = (fx/fc, fy/fc) = (fxλ/NA, fyλ/NA) being the normalized coordinates of
the aperture plane such that (x̃2 + ỹ2) ≤ 1 within the area defined by the AS. From
this, the expected Zernike coefficient for a given ∆z1 is

a4 =
−π∆z1NA2

2
√
3λ

(4.7)

and inversely

∆z1 =
−2

√
3λa4

πNA2 (4.8)

given that the Zernike polynomials are used to expand the phase kW (x, y) of the
generalized pupil function P and disregarding any contribution to higher order Zernike
terms on the form x2+y2. Notably, the Zernike coefficient for a given defocus distance
scales with the square of the numerical aperture, corresponding with a decreased DoF
for higher NA lenses.
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4.3 Impact of imaging through a window

As the process of imaging through a window will be considered experimentally later in
this work, a dedicated summary of the expected theoretical behavior will be provided
here. While Welford[33, p.234-235] provides a brief review on windows, the issue is
covered more in-depth by Geary[16, p.253-258] and Wyant and Creath[34, p.40-46]
whose work will be considered further. For the purposes of the following sections,
a window may be defined as a parallel plate of refractive index n and thickness t.
Furthermore, only the case where the propagation media outside of the window is
air will be considered, with any adverse effects originating from refraction at the two
air-material boundaries. In particular, the following expressions describe the impact
of a window upon a converging beam of half angle u.

Assuming that the window and chief ray of the incident wavefield is parallel to the opti-
cal axis, the window may be expected to introduce a defocus and spherical aberration.
The expected defocus may be found such that[16, p.253-255][34, p.41]

∆z =

(
n− 1

n

)
t (4.9)

denotes the effective increase in the distance at which optimal focus is expected to be
achieved. In terms of the spherical aberration, the corresponding wavefront aberration
is expected to be given as[34, p.43]

∆Wsph = −Nu
4t

2
(x̃2 + ỹ2)2 (4.10)

with (x̃, ỹ) being the normalized coordinates of the aperture plane as in the previous
section and with

N =
n2 − 1

n3
(4.11)

containing the dependence on the refractive index. Considering only the (x̃2 + ỹ2)2

dependency of the eleventh Zernike term[36]
√
5(6(x̃2 + ỹ2)2 − 6(x̃2 + ỹ2) + 1) (4.12)

the corresponding Zernike coefficient becomes

a11 = −πu
4Nt

6
√
5λ

(4.13)

given that the Zernike polynomials are used to expand kW (x, y) as in Equation 4.3.

Following Wyant and Creath[34, p.43], one may note that N increases for n <
√
3, is

maximized at n =
√
3 and decreases toward zero for n > 3 as n→ ∞.

Further effects are expected if the window, or the chief ray of the incident wavefield,
has an angle ū as compared to the optical axis. In both cases, additional coma,
astigmatism, and distortion is expected, scaling with respectively Nu3ū, Nu2ū2 and
Nuū3[16, p.257][34, p.44-45]. Additionally, upon a tilt of the window, one would expect
a lateral displacement of the beam approximately equal to ū∆z[34, p.42].
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NOVEL CALIBRATION PROCEDURE

As a part of this thesis, a novel parameter calibration procedure will be proposed.
The procedure will be referred to as Non-linear Bright-Field Localization (NBFL), as
it aims to calibrate the system from the size and location of the Bright-Field (BF)
region by means of non-linear optimization. The procedure innovates upon the work
of Zhang et al.[27], and consists of two main steps: the first being localization of points
along the edge of the BF region and the second being the application of non-linear
optimization to fit said points to a theoretical expression which will be derived in
section 5.1. To account for any offset or rotation of the LED array, the LED positions
will be assumed to follow the rigid body model considered in section 3.7. The procedure
is intended to be applied to FP datasets obtained in the absence of a sample, and may
either be used to calibrate the placement of the LED array as given by the parameters
∆x, ∆y, θ and z0 or to additionally calibrate for the Numerical Aperture (NA) and
the potentially unknown value of the effective object to aperture distance zq.
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5.1 Origin of the Bright-Field region

As the basis for the proposed calibration method, a theoretical derivation explaining
the origin of the BF, the DF and the transition between the two regions will be made.

Within previous works on FP, the connection between a quadratic phase at the detector
plane as given by Equation 2.55 and the appearance of combined BF-DF images have
been covered[4, 29]. In the absence of the quadratic phase term, the images obtained
at angled illumination are explicitly either BF or DF images, determined based on
whether the zero-frequency of the shifted object spectrum passes through the AS of
the lens system[4, p.69-72]. However, following the derivations in subsection 2.3.2,
the presence of a quadratic phase term results in a spatially varying frequency shift.
As such, whether a given region of the FoV is part of the BF is determined based
on whether the locally defined frequency shift is such that the zero-frequency of the
shifted object spectrum passes through the AS, giving rise to a BF circle and creating
mixed BF-DF images[4, p.71].

For a thin lens system, Figure 5.1.1 show how the origin of the BF for each LED
may be illustrated by tracing the rays passing through the AS. For the points at the
object plane, the rays radiating from the LED source locally correspond to the zeroth
diffraction order according to the geometrical frequency shift derivation by Konda[4,
p.71]. If these rays pass through the AS, the corresponding points at the object plane
may thus be expected to be a part of the BF in line with the argument presented
in the previous paragraph. This ray optical approach yields the same results as the
simulations based on Equation 2.17, as demonstrated by comparison of Figure 5.1.1a
and Figure 5.1.1b.

For a derivation based on wave optics, the image coordinates corresponding to the
coordinates (ζ, η) at the object plane are part of the BF if the magnitude of the
locally defined frequency shift is less than the cutoff frequency fc = NA/λ. That is, if

f 2
xi + f 2

yi ≤ f 2
c , (5.1)

with the frequencies being given by Equation 2.65 upon the substitution (ζc, ηc) =
(ζ, η). This yields a relation for the edge of the BF region[

ζ − χi

z0
+
ζ

zq

]2
+

[
η − ψi

z0
+
η

zq

]2
= NA2 , (5.2)

which may be recognized as a circle of center coordinates and radius

ζBF =
χi

1 + z0
zq

, ηBF =
ψi

1 + z0
zq

, RBF =

∣∣∣∣∣ NAz0
1 + z0

zq

∣∣∣∣∣ (5.3)

according to (ζ − ζBF )
2 + (η − ηBF )

2 = R2
BF .

The results of a simple simulation verifying the above expression may be found in
Figure 5.1.2.
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(a) Formation of the BF region for a thin lens system
z0=200 mm
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(b) Corresponding simulated BF
images

Figure 5.1.1: (a) provides a ray optical illustra-
tion of the formation of the BF region for a thin
lens imaging system. The drawn system corre-
sponds to parameters |K| = 2, NA = 0.05, fL =
60mm and a detector FoV of 7.8mm×7.8mm il-
lustrated by the black region at the image plane.
Notably, the y- and z-axes are not to scale. The
imaging system is drawn thrice, and show the
BF regions formed under spherical illumination by
each of three LEDs at different illumination dis-
tances z0. The green LED is located at the optical
axis, while the red and blue LEDs are respectively
placed 6 and 12mm away from the optical axis.
(b) show corresponding simulations of the BF re-
gion performed according to Equation 2.17. The
ray diagrams and the simulations yield consistent
results.
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Figure 5.1.2: A simulation of the BF region in the presence of a quadratic phase
with the dotted red line corresponding to the BF edge, as given by Equation 5.3. The
simulation is performed according to Equation 2.17 with parameters corresponding to
a lens with |K| = 2, NA = 0.05 and zq = 90mm, and a 7.8mm×7.8mm detector FoV.
This is the same system as is considered in Figure 5.1.1. The 25 images correspond
to spherical illumination from LEDs in a square grid of 6mm spacing centered at the
optical axis at a distance z0 = 200mm from the object plane. For this particular
case, the central LED may be seen to produce an image entirely inside the BF region,
while a circular BF region may be observed in the remaining images. As predicted by
Equation 5.3 the BF region is of constant radius, with the center moving away from
the optical axis corresponding to the positions of the illumination sources.
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Combining the expressions for the radius and center of the BF circle as given by
Equation 5.3 with the rigid body model for calculating the LED positions as given by
Equation 3.11, the equations

ζi,BF =
d(n cos θ +m sin θ) + ∆x

1 + z0
zq

(5.4a)

ηi,BF =
d(−n sin θ +m cos θ) + ∆y

1 + z0
zq

(5.4b)

RBF =

∣∣∣∣∣ NAz0
1 + z0

zq

∣∣∣∣∣ (5.4c)

are obtained, with i denoting the image in question and being assumed to map to
corresponding values of n and m. Through this equation, the BF circle is defined by
the intrinsic properties of the LED array through n, m and d, its placement through
∆x, ∆y, θ and z0 and the properties of the imaging system through the numerical
aperture NA and the value of zq. Additionally, the magnification of the system and
the pixel size of the detector is required to establish and convert between image and
object space coordinates. For the purposes of the proposed calibration procedure, the
magnification of the imaging system, the pixel size of the detector and the intrinsic
properties of the LED array will be assumed known. Under these assumptions, the
shape and size of the BF region in the captured intensity images depends solely on the
values ∆x, ∆y, θ, z0, NA and zq, which the proposed calibration procedure will aim
to retrieve.

Original image Detected edge points

Otsu threshold and binarization

Canny algorithm edge detection

Conversion to individual points

Figure 5.1.3: Figure illustrating the scheme used to localize points along the BF
edge, as applied to one of the images from Figure 5.1.2. The scheme starts with a raw
FP dataset obtained in the absence of a sample, leaving only the BF region. The Otsu
algorithm is then applied to determine a suitable threshold, which is used to binarize
the images. Using the Canny algorithm, an image corresponding to the edge between
the bright and dark regions of the binarized image is found, which is then converted to
an array of individual points. As illustrated, the located edge points are in agreement
with the visually observed BF edge.
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5.2 Localization of points along the Bright-Field edge

The first main step of the proposed calibration algorithm is the localization of the BF
edge. Following Zhang et al.[27] this may be done through application of the Otsu
algorithm to binarize the image, followed by edge detection by means of the Canny
algorithm. The result of this procedure is displayed in Figure 5.1.3 as applied to one
of the images of the simulated BF dataset shown in Figure 5.1.2.

5.3 Parameter estimation procedure by Zhang et al.

While the parameter estimation procedure which will be proposed in this work devi-
ates substantially from the original work by Zhang et al.[27], a short review of their
procedure may be of interest. The procedure aims to calibrate the placement of the
LED array through the parameters ∆x, ∆y, θ and z0, to which extent it applies the
Particle Swarm Optimization (PSO) and Random Sample Consensus (RANSAC) al-
gorithms. The application of PSO corresponds to an outer loop optimizing the value
of θ, for each value of which the edge points are projected to a shared plane where
they for the correct θ are expected to form an ideal circle. Based on this projection,
an inner loop based on RANSAC optimizes ∆x, ∆y, and z0. In the inner loop, guesses
for the center and radius of the circle which best fits the projected edge points are
found based on the circles defined by random selections of three edge points. Each
guess is then assigned a score based on the number of edge points located within a
certain distance from the circumference of the guessed circle, from which the optimal
parameter values are found based on maximization of the score. However, in light of
the generalized imaging system as presented in chapter 2 the approach by Zhang et al.
becomes insufficient as it makes assumptions which equate to setting zq as infinity.

5.4 Non-linear Bright-Field Localization

The alternative procedure proposed in this thesis approaches the issue of parameter
estimation through the application of non-linear optimization. Since the edge points
located from the raw images are known to be at the circumference of the BF circle,
one may establish a cost function

C(∆x,∆y, θ, z0, zq,NA) =
∑
i

Ei∑
e=1

∣∣∣√(ζi,e − ζi,BF )2 + (ηi,e − ηi,BF )2 −RBF

∣∣∣2
Ei

(5.5)

with i running over the BF images to which the procedure is applied, e running over the
Ei edge points found for each image and (ζi,e, ηi,e) being the object space coordinates
corresponding to each edge point. To some extent, this cost function is an empiric
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Edge point localization

Non-linear optimization

Calibration dataset

With the optimized
parameter values
yielding a precise

description of
the BF edge

Figure 5.4.1: Overview of the proposed calibration procedure. The procedure may
be used for parameter estimation based on a single calibration dataset obtained in the
absence of a sample, including all the images which contain a part of the BF region.
The parameter estimation is achieved by first locating the points along the BF edge,
after which non-linear optimization is applied to optimize the parameters through
minimization of the cost function given by Equation 5.5. If a precise estimate for the
calibration parameters is obtained, the calibrated parameters should yield a precise
description of the BF edge.

fabrication, both in terms of deciding to summarize the square of the distance from
the circumference and the normalization by the number of edge points per image. In
particular, the latter is intended to ensure that all images are weighted equally despite
a large variance in the number of detected edge points based on how the FoV and
the BF circle overlaps. Notably, any images where no edge points are found are not
included in the summation. Combining the cost function with the edge points found
through the edge point localization scheme covered in section 5.2, one may apply a
non-linear optimization algorithm to determine the optimal values of the parameters
in question, as illustrated in Figure 5.4.1. Additionally, it will be necessary to define
the term calibration dataset, which will be used to refer to the complete set of images
containing a part of the BF region, when imaging is performed with no sample placed
in the object plane. Finally, one should note that NA, zq and z0 are not independent
of each other in terms of how they affect the center and radius of the BF circle.

5.4.1 Calibration of LED array placement

If one assumes that NA and zq are known, the aforementioned problem is avoided,
and the non-linear optimization may be applied to optimize solely the placement of
the LED array through the parameters ∆x, ∆y, θ and z0. This application requires
only a single calibration dataset obtained in the absence of a sample. By obtaining the
calibration dataset immediately after obtaining a dataset of a sample, the calibrated
parameters may be used to correct for misalignment of the LED array during recovery
of the sample dataset. Through this application, the calibration procedure may be
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used as an alternative to other calibration schemes, with the important distinction
being that it is applicable for systems with any value of zq, given that it is known.

5.4.2 Calibration of lens parameters

Alternatively, the procedure may be applied for calibration of the numerical aperture
NA and the effective object to AS distance zq for a given objective lens. For this
application, one must address the dependency between the parameters z0, NA and zq
in terms of how they affect Equation 5.4. One potential solution, which will be used in
this work, is to combine the parameters into two dependent parameters (z0, zq,NA) →
(NAz0, z0/zq). Using the dependent parameters, the non-linear optimization may be
applied to optimize the values of ∆x, ∆y, θ, NAz0 and z0/zq for each of several
calibration datasets obtained at known relative values of z0. Since both the dependent
parameters are linear with z0, the original parameters may be retrieved from the slopes
and intercepts of the dependent parameters as obtained through linear regression.
Specifically, defining the unknown value of z0 for one of several measurements as z′
and assuming that each measurement corresponds to a known translation z from said
measurement, the two dependent parameters are expected to follow the linear relations

(NAz0) = NA(z′ + z) = NA · z + NA · z′ (5.6a)(
1

zq
z0

)
=

1

zq
(z′ + z) =

1

zq
· z + 1

zq
· z′ , (5.6b)

both of which are on the form
f(z) = az + b (5.7)

with a being the slope and b being the intercept. Further, recognizing that either
the edge detection algorithm may fail to locate the correct edge or that the non-
linear optimization may fail to converge, additional filtering may be prudent before
linear regression is performed. This may be done by comparing the value of the
cost function between measurements, assuming that measurements where the edge
detection or optimization fails would have comparatively high costs.



CHAPTER 6

EXPERIMENTAL IMPLEMENTATION

This chapter will provide a short review of the experimental implementation used to
generate the results which will be covered in chapter 8, chapter 9 and chapter 10. To
this extent, section 6.1 and section 6.2 will describe respectively the microscope setup
and samples considered in this thesis, while section 6.3 will consider the computational
implementations of a FP processing pipeline and the calibration scheme proposed in
chapter 5.
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6.1 Microscope setup

The microscope setup used in this project is illustrated in Figure 6.1.1, with the main
components being a LED array, a camera, an objective lens and a sample holder. The
objective lens was connected to the camera using an extension tube, ensuring correct
alignment between the lens and the detector plane, as well as ensuring a correct value
for the detector to lens distance z2. Both the camera and the attached objective
lens were placed on a translation stage, allowing manual translation orthogonal to the
optical axis and motorized control along the optical axis for alignment and focusing
purposes. The entire microscope setup was mounted on an optical table, allowing
the LED array to object distance z0 to be changed easily. For this project, a IDS
U3-31J0CP-M-GL Rev.2.2 industrial camera[37] and a RGB LED board (SparkFun,
part #14646) controlled by an Arduino Due were used, with the relevant parameters
summarized in Table 6.1.1. The setup was controlled from a control computer through
a LabView program, allowing for the capture of images corresponding to illumination
by the individual LEDs of the LED array. Additionally, the setup allows for different
acquisition times for BF and DF images in line with a prior implementation by Tian
and Waller[38]. For the purposes of this thesis, the LabView program was modified to
work with the camera in question.

Figure 6.1.1: Illustration of the microscope setup used in this thesis. Taken from
[39] with permission.
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Table 6.1.1: Relevant specifications for the camera and LED array.

Parameter Value
Camera pixel count 2856 × 2848
Camera pixel size 2.74 µm
Camera detector area 7.825mm × 7.804mm
LED spacing 6mm
LED wavelength (green) 520 nm

Table 6.1.2: Parameters for the employed microscope objective as given by Edmund
Optics[40, 41, 42]. Notably, the focal length given for the infinity corrected objective
only pertains to the objective itself, and not the complete lens system including the
tube lens.

Lens Magnification NA WD (mm) DoF (µm) FL (mm)
Compact 2X 2X 0.06 92 76 60.33
Telecentric 3X 3X 0.09 77 34 58.51
Infinity Corrected 10X 10X 0.28 34 3.50 20

Table 6.1.3: Overview of the maximal detector pixel sizes for the employed micro-
scope objectives, as given by Equation 3.14. Max DPS refers to the maximal detector
pixel size, while the DPS ratio column show the ratio as compared to the pixel size of
the detector used in this thesis.

Lens Max DPS (µm) DPS ratio
Compact 2X 8.67 3.16
Telecentric 3X 8.67 3.16
Infinity Corrected 10x 9.23 3.39
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6.1.1 Physical lens systems

Throughout this thesis, four physical lens systems will be considered, including three
microscope objectives and a camera objective.

The three microscope objectives which will be considered are a 2X Mitutoyo Compact
Objective[40], a 3X Mitutoyo Telecentric Objective[41] and a 10X Mitutoyo Plan Apo
Infinity Corrected Long WD Objective[42], which will respectively be referred to as the
compact 2X, telecentric 3X and infinity corrected 10X objectives or lenses. For all three
objectives, an extension tube of 152.5mm was used in accordance with the product
specifications, while the infinity corrected objective required an additional tube lens
of 1X magnification and 200mm focal length inserted between the extension tube and
the objective lens. For this purpose, a MT-4 Accessory Tube Lens was used with an
AS diameter of 11.2mm. To minimize the impact of stray light, the extension tube
was modified with a non-reflective inlay. Relevant parameters for the three microscope
objectives may be found in Table 6.1.2. Notably, all three microscope objectives are
designed for a maximum sensor format of 2/3” corresponding to the size of the camera
used in this thesis. Table 6.1.3 provide a comparison between the required pixels sizes
for the three objectives and the pixel size of the detector.

The camera objective is a Fujinon HF1618-12M[43] camera objective. The objective
has a focal length of 16mm, is designed to be mounted directly onto the camera
with no intermediate extension tube and allows for manual adjustment of the working
distance and AS size. The working distance may be adjusted between 100mm and
infinity while the AS size may be adjusted between an F-number fL/2R of 1.8 to 22.
Notably, the manual adjustment results in a large amount of uncertainty in terms of
the necessary model parameters, being the magnification, the numerical aperture NA
and the effective object to AS distance zq.

6.1.2 Sapphire window

For parts of this thesis, the microscope was used with a sapphire window inserted be-
tween the object and lens orthogonal to the optical axis. The sapphire window[44] has
a diameter of 25.4mm, a thickness of 5mm and a refractive index of 1.77. Additionally,
the window has an anti-reflective coating to minimize surface reflections.



CHAPTER 6. EXPERIMENTAL IMPLEMENTATION 61

6.1.3 Manual alignment and focusing

This section will cover the manual procedures used to align and focus the microscope
before imaging.

The alignment procedure aimed to align the optical axis of the system to be orthogonal
to the detector, lens, sample, and LED array while simultaneously placing the central
LED of the LED array along said optical axis and keeping the sample in focus across
the entire field of view. Since the alignment of the lens and detector was ensured
through the use of an extension tube, the degrees of freedom that needed to be aligned
were the placement of the sample and LED array relative to the optical axis formed
by the detector and lens. To this extent, careful positioning of the sample and LED
array was used to achieve a rough alignment, while fine-tuning was performed using
the translation stages attached to the detector and lens, in the absence of a sample.
To align the position of the central LED with the optical axis, four LEDs which
individually yielded images containing the BF edge and with symmetrical offsets from
the central LED were lit simultaneously. Using the fact that the obtained image should
be symmetrical around the center of the FoV, the detector and lens were translated
orthogonally to the optical axis using the manual translation stages until symmetry was
obtained. Additionally, to verify that there was no substantial tilt of the elements with
respect to the optical axis, it was observed that the illumination remained symmetrical
when the detector and lens were translated along the optical axis. An illustration of
the desired illumination symmetry is given in Figure 6.1.2.

Figure 6.1.2: Illustration of symmetrical illumination
for the aligned microscope. The image is taken with the
compact 2X lens, under illumination by four symmet-
rically offset LEDs. The microscope is focused on the
plane 200mm in front of the LED array. A high level of
symmetry may be observed, which would have been bro-
ken if the microscope had been translated orthogonally
to the optical axis.

The focusing procedure consisted of visual inspection, aiming to optimize the sharpness
of edges in the sample. Between inspections, the detector and lens were translated in
steps of 1 µm to 10 µm dependent on the lens in question along the optical axis using
the motorized translation stage.
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6.2 Experimental samples

The two samples which were used are a 2"×2" positive USAF 1951 high-resolution
target and a Fixed Frequency Grid distortion target as supplied by Edmund Optics[45,
46]. Both targets consist of chromium metal deposited on 1.5mm thick float glass,
resulting in opaque regions where the chromium is present and transparent regions
elsewhere.

The USAF 1951 resolution target is illustrated in Figure 6.2.1a, and consists of vertical
and horizontal line patterns of decreasing separation distances. The line patterns are
denoted by a group number and an element number, with the separation distance
being given as

2(Group#+Element#−1
6 ) .

In particular, the smallest features of the USAF target used in this project correspond
to group 9, element 3, yielding a maximal resolution of 654 lines/mm or 1.55 µm in
terms of the separation distance between the centers of the adjacent opaque lines.

The Fixed Frequency Grid is illustrated in Figure 6.2.1b, and consists of circular dots
of diameter (65±2) µm forming a square lattice with lattice spacing (125±2)µm. For
brevity, this sample will be referred to as the dot array.

(a) USAF 1951 (b) Fixed Frequency Grid

Figure 6.2.1: Illustrations of the two samples that are used in this project. As
compared to the illustration, the real USAF 1951 target contains a greater number of
groups of decreasing size located at the center, while the real Fixed Frequency Grid
contains a total of 200×200 dots. The USAF 1951 illustration is created by Itzhak
Baum[47] and licensed under CC BY-SA 3.0.
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6.3 Computational implementations

All computational implementations in this project were done in the Python Program-
ming Language[48]. When not otherwise stated, the mathematical implementations
make use of the libraries NumPy[49], SciPy[50] and Numba[51]. A GitHub repos-
itory containing the code developed for this thesis is available through the link in
Appendix A.

6.3.1 Fourier Ptychography pipeline

A major part of this thesis, and the preceding project[7], has been the implementation
of a FP processing pipeline. In addition to the FP recovery algorithm, this includes
implementations dealing with the Zernike polynomials, data preprocessing and noise
reduction.

6.3.1.1 Recovery algorithm

The implementation of the FP recovery algorithm is in line with the theory covered in
chapter 3 as applied to the generalized imaging system described in chapter 2. This
implies the use of the second order step covered section 3.5 modified with an adaptive
step size as covered in subsection 3.8.1, and that the implementation accounts for the
quadratic phase at the object plane as covered in section 3.3. In terms of the LED
positions and the object spectrum shift, the values are calculated based on respectively
the rigid body model described in section 3.7 and the frequency shift found as part
of this thesis in subsection 2.3.2. Further, the generalized pupil function is initialized
from the pupil function, with the added option of providing a prior estimate for the
pupil phase. Finally, the object is initialized based on the lowest frequency shift image,
while the LED images are used to update the object spectrum in order of ascending
frequency shifts, as illustrated in Figure 6.3.1.

6.3.1.2 Zernike polynomials

The implementation of the Zernike polynomials used in this project is illustrated in
Figure 6.3.2 and follows the Noll indexation scheme as described in subsection 4.1.3.
Notably, the implementation is applied directly to the pupil phase kW (x, y) as defined
in Equation 2.11, while any potential phase wrapping is handled using the phase
unwrapping function provided by scikit-image[52].
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6.3.1.3 Data preprocessing and noise reduction measures

To decrease the impact of noise, three preprocessing measures are included in the
implementation. The first measure is the ability to have different acquisition times
for the BF and DF images. While this is initially implemented in the data acquisition
software, it is necessary to compensate for this difference during preprocessing. To this
extent, the image intensity values are divided by their respective, relative acquisition
times. Secondly, pixel binning is implemented by combining groups of k × k adjacent
pixels into larger pixels, with the values of the combined pixels determined by the
means of the original pixel groups. The value of k is limited by the pixel size of the
combined pixels, which must be lower than the maximal pixel size allowed by the
Nyquist sampling theorem, as given by Equation 3.14. The third and final measure is
a background noise reduction scheme[21, 30] based on the calculation and subtraction
of an individual noise threshold from each image. As implemented, two regions of the
FoV are selected, from which a noise threshold is calculated as the mean intensity
across the two regions and subtracted from the corresponding image. To account for
BF and mixed BF-DF images, an upper threshold is set such that if a noise threshold
is found to be larger than the upper threshold, it is replaced by the noise threshold
value found for a neighboring image. Finally, any negative values after the subtraction
of the noise threshold are set to zero.

An additional noise reduction measure is implemented as a modification of the recovery
algorithm to account for any inconsistency between the theoretical model and the cap-
tured intensity images at the BF edge. To limit the impact of any such inconsistency,
a masking scheme inspired by the sparsely sampled FP algorithm by Dong et al.[31] is
implemented. Based on the description of the BF-edge as found in section 5.1, a mask
Mi is found for each captured intensity image as the pixels where the corresponding
off-axis frequency shift as given by Equation 2.65 lies within 0.85 to 1.15 times the
cutoff frequency. Within the recovery algorithm, this mask is applied when updating
the amplitude of the simulated complex field at the detector during step 2c of the FP
algorithm as described in section 3.1, and when calculating the normalized real space
error. In both these cases, the amplitude of the captured intensity images

√
Ici are

replaced with √
Ici →

√
Ici (1−Mi) + |UD|Mi , (6.1)

meaning that only the unmasked pixels are updated while the masked pixels retain the
amplitude of the calculated wavefield UD. Empirically, it appears that the masking
yields better results if it is not applied from the first iteration, allowing the algorithm
to first converge towards the unmasked intensity. As such, the masking is enabled from
the 10th iteration. Since any inconsistency near the BF edge may yield a substantial
contribution to the normalized real space error, the application of the adaptive step
size is similarly delayed to avoid a decrease in the step size due to error fluctuations
during the initial iterations.
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Figure 6.3.1: Illustration of the update order.
The LED images are ordered by increasing val-
ues of the calculated frequency shift, yielding a
radially increasing pattern. The LED indices
(n,m) follow the definition given in section 3.7
with (0, 0) corresponding to the central LED. For
an off-center patch, the LED with the lowest fre-
quency shift is not necessarily the central LED at
(0, 0), meaning that the entire pattern would be
shifted.
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Figure 6.3.2: Example illustrating the synthesis and decomposition of a pupil func-
tion using Zernike polynomials. The pupil phase is synthesized from the original
Zernike coefficients, chosen as random numbers of a sufficient magnitude to introduce
phase wrapping. As can be seen from the recovered Zernike coefficients, the imple-
mentation is able to precisely recover the original Zernike coefficients. Notably, the
coefficient of the first mode is only recovered down to a factor of 2π and is not included
as it corresponds to a constant phase term which may be ignored for the purposes of
this project. While the chosen Zernike coefficients in this example are large so as to
induce phase wrapping, a similar accuracy is obtained for lower coefficient values as
well. The fact that only the 25 first modes are considered in this example is an arbi-
trary choice, rather than a limitation of the implementation. For a practical use case,
the number of included modes should be considered more carefully during decompo-
sition, for instance by considering the degree to which the standard deviation of the
aberration function is accounted for by the included modes in line with Equation C.6.
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6.3.2 Calibration procedure

This section will consider the computational implementation of the NBFL calibration
procedure proposed in chapter 5. This consists of two main parts, being the imple-
mentation of the edge point localization scheme through application of the Otsu and
Canny algorithms, and the subsequent estimation of the parameters ∆x, ∆y, θ, z0,
NA and zq based on non-linear optimization and linear regression.

When implementing the procedure for locating points at the BF edge, several practical
decisions were made. Starting with the two algorithms, the implementations provided
by the scikit-image python package[52] were used. Empirically, it was found that ap-
plying the Otsu threshold to the image intensities raised to some system dependent
power between 0.5− 2 was necessary to yield a binarization of the images in line with
the desired result. Similarly, the Canny algorithm as implemented by scikit-image
applies a Gaussian filter as part of the algorithm, whose standard deviation may be
set manually. If the default value of one pixel was used, a number of less pronounced
edges elsewhere in the image were additionally found. Comparatively, setting a larger
value for the standard deviation made it possible to only locate points at the desired
edge. Since the Canny algorithm was observed to yield varying results near the im-
age boundary, any points within a distance to the image boundary corresponding to
the aforementioned standard deviation were additionally discarded. Furthermore, for
the purposes of computational efficiency, the data was downsampled twice; initially
through binning of the raw images and by downsampling the final array of located edge
points. To some degree, this downsampling may be expected to impact the precision
of the algorithm, though any such impact appeared to be minor if the downsampling
was not too aggressive. Finally, one should note that these empiric parameters depend
on each other and upon the setup in question, implying that slight modifications may
be necessary if the procedure is to be applied to a new setup or lens.

For all the lenses, the standard deviation used in the Canny algorithm was set to 10
pixels and the final edges were downsampled by a factor 10. For the three microscope
objectives, the pixels were binned by a factor of 4 and the Otsu threshold was found
based on the squared intensity of the raw images. For the Fujinon objective, no
binning was performed while the Otsu threshold was applied to the amplitude of the
raw images. Additionally, the FoV was limited to the central 1400 × 1400 pixels for
the Fujinon objective.

The parameter estimation procedure was implemented twice, corresponding to the
applications covered in section 5.4. For respectively the non-linear optimization and
linear regression steps, SciPy’s minimize and linregress were applied.



CHAPTER 7

EXPERIMENTAL PROCEDURE

In this chapter, the experiments conducted as a part of this thesis will be described. For
all the experiments, the imaging was performed using the microscope setup described in
section 6.1 with the LED array placed at varying distances from the sample. Between
imaging operations, the lens systems and the samples were interchanged, as specified
for the individual experiments below. Before any imaging operation was performed, the
setup was manually aligned and focused as described in subsection 6.1.3 and suitable
exposure times were selected so that no pixels in any of the captured images reached
saturation.
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7.1 Calibration and lens modelling

The first experiment aimed to verify the effectiveness of the proposed NBFL calibration
procedure, as applied to calibrate the NA and zq for the compact 2X lens. For each
of five separate placements of the LED array, FP datasets with no sample placed in
the object plane were captured at 26 increments of 2mm. Applying the calibration
algorithm to each individual dataset with the parameters ∆x, ∆y, θ, NAz0 and z0/zq,
and utilizing linear regression in accordance with Equation 5.6, allowed five estimates
for the numerical aperture and zq to be obtained while additionally yielding the optimal
values of ∆x, ∆y and θ for each individual dataset. No realignment was performed
after movement of the LED array, though the holes of the optical table upon which
the microscope was placed served as rough guides. Starting at approximately 85mm
and with approximately 25mm between the placements of the LED array, the effective
range of LED distances ranged between 85mm to 235mm.

The above steps were repeated once for the telecentric 3X and infinity corrected 10X
lenses, with initial placements of the LED array at respectively 185mm and 40mm.
Additionally, datasets of the BF region were captured for all three lenses with the LED
array placed at 100mm.

To verify whether use of the calibrated values yield any substantive improvement for
the purposes of FP recovery, two FP datasets were captured with the USAF resolution
target in the object plane using the compact 2X lens. For the two datasets, the small-
est features of the USAF target were placed at the center and near the corner of the
FoV. Additionally, corresponding calibration datasets with no sample were obtained,
to which the NBFL algorithm was applied for calibration of z0, ∆x, ∆y and θ. For
comparison, recovery was performed with and without the calibrated LED array place-
ment, and with the calibrated and uncalibrated values of the numerical aperture and
zq. The uncalibrated value of zq was obtained by modelling the system as a single-lens
system with the AS at the lens according to subsection 2.2.5.

7.2 Fujinon camera objective

The second experiment aimed to investigate whether FP would be possible with the
Fujinon camera objective. For this investigation, the working distance and F-number
of the camera objective were both minimized. In addition to uncertainty regarding
the NA and zq, the magnification of the objective was unknown and had to be deter-
mined. To this extent, an image of the dot array sample was captured under coherent
illumination, from which the magnification was estimated by comparison between the
periodicity of the image in pixels and the known periodicity of the sample in terms of
physical distance. Further, for application of the NBFL procedure, FP datasets were
captured at 26 increments of 2mm with no sample placed in the object plane and
with the LED array placed approximately 320mm from the object plane of the initial
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dataset. To investigate the impact of tuning the F-number of the lens, images were
obtained under illumination by a single LED at F-number values of 1.8, 4, 8 and 16.

7.3 Imaging through a glass window

The third experiment aimed to investigate the impact of imaging through a sapphire
window, viewed in light of the theoretical coverage in section 4.3.

As an initial investigation, images were captured with the USAF sample in the object
plane for all three microscope objectives. For each objective, the captured images cor-
responded to the best obtainable focus without the sapphire window inserted into the
beam path and the best obtainable focus after insertion of the window. Additionally,
the necessary translation of the microscope along the optical axis for the refocusing
procedure was noted.

Further, FP datasets of the USAF sample were obtained with z0 ≃ 200mm for each
of the three objectives at focus with and without the sapphire window inserted into
the beam path, along with corresponding calibration datasets. After calibration with
the NBFL algorithm to determine z0, ∆x, ∆y and θ, recovery was performed for each
dataset to allow for comparison of the recovered values for the intensity, phase and
pupil function.

7.4 Number of LEDs used

For all recovered datasets, 120 LEDs were used, corresponding to a circle 13 LEDs in
diameter. For the NBFL procedure, the LEDs corresponding to the smallest possible
squares containing all BF and partial BF images were considered.
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CHAPTER 8

R&D - CALIBRATION PROCEDURE

In this chapter, the results from the experiments related to calibration and lens mod-
elling will be displayed and discussed. This includes the results from the application
of NBFL, in section 8.1, and the recovery of a central and off-center patch, with and
without the calibrated parameters, in section 8.2.

8.1 Application of the calibration procedure

The experimental results from application of the NBFL calibration procedure to the
compact 2X lens are shown in Figure 8.1.1, with the calibrated values of NA and zq for
each of the five datasets reported in Table 8.1.1. Only the data points where the final
value of the cost function are below a set limit as shown in Figure 8.1.2 are included
in the analysis.

Based on the values reported in Table 8.1.1 and the visual confirmation provided by
Figure 8.1.1, one may observe that the behavior of the BF region appears consistent
across the entire span of probed LED distances from 85mm to 235mm. From the
linear regression results, the calibrated values for NA and zq are found as NA = 0.060
and zq = (107± 1)mm. The values for the initial LED distances for each dataset, as
found from the intercepts obtained during linear regression, are similarly consistent
within 1mm to 2mm within each dataset, and vary between datasets in line with
the LED array being moved 25mm farther away from the object for each dataset.
Notably, the calibrated value for NA corresponds precisely to the value provided by
the supplier, while the expected value of zq from modelling the objective as a thin lens
would be zq = z1 = 90.5mm from application of Equation 2.27a.

Figure 8.1.4 illustrates the effectiveness of the calibration procedure, showing the BF
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region as well as the expected BF edge corresponding to the calibrated and thin lens
values for zq. From the figure, one may observe that the calibrated value yields a
substantially better prediction of the BF edge. However, as shown in greater detail
in Figure 8.1.3, one may note the presence of a region just outside the BF edge with
a slightly increased illumination intensity and the presence of ripples related to the
coherent nature of the system[8, p.219-220]. Considering these two features as poten-
tial sources of noise, the selected region to which the masking scheme described in
subsubsection 6.3.1.3 is applied may be justified.

The obtained values for ∆x, ∆y and the rotation of the LED array are similarly con-
sistent within each dataset and between datasets. For the rotation and ∆y, the LED
distance dependency may be observed to be near constant, with the observable shift in
the average ∆y between datasets being easily explained by the manual repositioning
of the LED array between datasets. Further, a potential explanation for the linear
dependency of ∆x on the LED distance may be that the LED array is placed at a
slight angle as compared to the optical axis defined by the lens and detector. As the
LED distance increases by movement of the lens and detector using the motorized
stage, the intercept between the optical axis and the LED array would be translated
in space. While the LED array is technically stationary, this translation as observed
by the detector and lens would be indiscernible from a translation of the LED array
as described by ∆x. Following this line of reasoning, the calibration procedure may be
employed to indirectly measure the presence of a tilt along the two rotational degrees
of freedom not included in the rigid body model for the LED positions considered
throughout this work, as initially presented in section 3.7.

Alternatively, the rigid body model could be expanded to include the two additional
rotational degrees of freedom. To achieve this, the LED positions in Equation 3.11
would instead have to be expressed asxiyi

zi

 = R(α, β, γ)

ndmd
0

+

∆x∆y
z0

 (8.1)

with R(α, β, γ) being a 3D rotation matrix with corresponding rotation angles α, β
and γ and zi being the distance from the object plane to the i-th LED along the optical
axis. As compared to Equation 3.11 and assuming small angles, the main difference
would be that each LED would have a separate distance zi from the object plane along
the optical axis, while there would be little change in the values along x and y. For the
purposes of the BF region, the major consequence would be that the radius of the BF
circle would differ between LEDs. These additional rotational degrees of freedom have
not been included in the work conducted throughout this thesis for two main reasons.
Firstly, differing values of zi between LEDs are not accounted for by the imaging
model considered in this work nor in the reintroduction of the quadratic phase for the
purposes of FP as considered in section 3.3. Secondly, it would no longer be possible
to combine the parameters (z0, zq,NA) → (NAz0, z0/zq) on which the calibration of
NA and zq is based.
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Table 8.1.1: Table displaying the calibrated values for the numerical aperture NA
and the effective object to AS distance zq for the compact 2X lens. Also displayed are
the values z′NA and z′zq corresponding to the LED distance z0 at the first step of each
dataset.

Dataset No. NA z′NA zq z′zq
1 0.060 87 107 88
2 0.060 112 107 112
3 0.060 137 106 136
4 0.060 162 107 163
5 0.060 187 108 189

Mean 0.060 107
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Figure 8.1.1: Calibration results for the compact 2X microscope objective. The
expected linear behavior is observed for both NA · z and z/zq. The found values
for ∆x, ∆y and the rotation may be observed to be internally consistent within each
dataset. Notably, the value of ∆x display a seemingly linear dependency on the relative
LED distance.
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Figure 8.1.2: The cost function values for each of the datasets to which the calibra-
tion procedure was applied. All values above a set threshold indicated by the dashed
line were excluded from the further analysis. These points correspond to cases where
the optimization algorithm has not converged properly. For the included points, the
cost function may be observed to differ between the datasets, consistent with the num-
ber of images containing a part of the BF edge.

(a) BF only (b) USAF target

Figure 8.1.3: BF edge without and with a sample in the object plane. Without,
one may observe the presence of ripples just inside the edge and a region of increased
illumination intensity just outside the edge. With the USAF sample, the ripples
become less well-defined. The yellow line defines the expected location of the BF
edge, while the area between the two red lines corresponds to the area ignored during
recovery through the masking scheme described in subsubsection 6.3.1.3.
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Figure 8.1.4: Images of the BF corresponding to the 5 × 5 central LEDs as ob-
tained with the compact 2X lens with the LED array 200mm behind the object. The
yellow and red curves correspond to the predicted location of the BF edge based on
Equation 5.4 for respectively the calibrated (yellow) and thin lens (red) values of the
effective object to AS distance zq. The calibrated value may be observed to yield an
improved fit for half the images, while both values yield similar fits for the remaining
images.
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(a) Infinity corrected 10X

(b) Compact 2X

(c) Telecentric 3X

Figure 8.1.5: Images of the BF corresponding for each of the three microscope objec-
tives with the LED array 100mm behind the object. The yellow curves correspond to
the predicted location of the BF edge based on Equation 5.4 for the calibrated values
of zq and NA. For the infinity corrected 10X and telecentric 3X lenses, the calibration
was done manually, with the red curves for the telecentric 3X lens corresponding to the
unmodified value of NA. Of particular note is the fact that for the infinity corrected
10X lens, the BF in the mixed BF-DF is on the opposite side of the BF edge as com-
pared to the other two lenses. The images additionally demonstrate two challenges
encountered when applying the calibration procedure for the three lenses; The first
being the occasional appearance of images with significantly increased intensity, as in
(b), and the second being related to the differences in how the BF region is affected by
changes in the magnification |K|, the numerical aperture NA and the effective object
to AS distance zq.

8.1.1 Manual calibration of the telecentric 3X and infinity cor-
rected 10X objectives

Figure 8.1.5 shows the BF region with z0 = 100mm for each of the three lenses. For
the compact 2X lens, the expected BF edge corresponding to the calibrated value of zq
found in section 8.1 is shown. For the telecentric 3X and infinity corrected 10X lenses,
the calibration procedure was not applied due to the limitations of the procedure, as
will be covered in subsection 8.1.2. Instead, suitable modifications to NA and zq were
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made manually. For the telecentric 3X lens, the BF edge was found to be consistent
with NA = 0.0865, rather than NA = 0.09 as stated by the supplier, retaining zq = ∞
as expected for a telecentric lens. For the infinity corrected 10X lens, fitting the BF
edge required a slight modification of the numerical aperture and a major modification
of zq. For the numerical aperture, an optimal value of NA = 0.2917 was found, as
compared to the supplied value NA = 0.28, related by 0.2917 = tan(arcsin(0.28)).
This difference may be recognized as a violation of the small angle approximation,
which is crucial to the derivations made in this thesis, warranting further investigation
in future works. Considering the value of zq, one may observe that the BF in the mixed
BF-DF images for the infinity corrected 10X lens in Figure 8.1.5a is on the opposite
side of the edge as compared to the two other lenses. For this to occur within the
confines of the derived expression for the BF-edge, Equation 5.3, the requirement is a
negative value of z0/zq < −1. To arrive at the BF-edge in Figure 8.1.5a, the value of
zq was found as −23mm. While a negative value of zq may appear unexpected, it is
possible within the scope of the derivations in section 2.2, requiring only that a1 > z1
for a non-telecentric configuration. Notably, this is an example of an infinity corrected
lens which does not exhibit object telecentric behavior. While the assumption of object
telecentricity may be valid for some infinity corrected lenses, this result suggests that
it is not true in all cases.

8.1.2 Limitations

Considering the application of the calibration procedure, two main limitations will be
considered.

Firstly, examination of the detected BF edge points for the discarded values revealed
that the edge detection is prone to failure due to LED intensity fluctuations. Either,
the intensity fluctuations may alter the threshold found by the Otsu algorithm or yield
poor edge detection after application of said threshold for images with intensities far
from the mean. The presence of LED intensity fluctuations may be observed in the
varying shades of green present in Figure 8.1.4, though the LED intensity fluctuations
present in the shown images were not large enough to be detrimental. An especially
severe case of LED intensity fluctuation is present in Figure 8.1.5b, where one image
has twice the BF intensity as compared to the remainder. Notably, this degree of
intensity fluctuation is likely an artifact of some problem specific to the microscope
used in this thesis, rather than an expected occurrence.

Secondly, the size of the FoV at the object plane as compared to the size of the BF
region appears to be a limiting factor. For a smaller field of view or a comparatively
larger BF region, two potentially detrimental effects may be observed, as the number
of images containing a part of the BF edge is reduced and the fraction of the BF edge
present in the individual images becomes smaller. The first effect is problematic due to
the reduction in the unique images based on which the optimal calibration parameters
may be found. The second effect may be understood through the relationship between
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the curvature, radius, and center of a circle. In particular, as the fraction of the BF
edge present in each image becomes smaller, and thus increasingly flat, the optimal
radius and center of the circle which best fits the BF edge becomes less easily defined
in the presence of measurement noise.

Once ∆x, ∆y and the rotation of the LED array are corrected for, the information
based on which z0/zq and NAz0 may be determined is limited by the fourfold rotation
and mirror plane symmetry of the system. This greatly limits the effective number
of images containing unique information. Considering the 25 images in Figure 8.1.4,
where 24 of the images contain part of the BF edge, the symmetry of the system
yields a reduction to six unique image types after accounting for fourfold rotation
and a further reduction to only five unique image types after mirror plane symmetry.
Considering the datasets in Figure 8.1.5, the images taken with the infinity corrected
10X, compact 2X and telecentric 3X lenses, respectively only display three, two and
one unique image types. Conclusively, the effective amount of unique images based on
which the values of z0/zq and NAz0 may be optimized is low.

With few unique images, the curvature of the BF region becomes increasingly impor-
tant as a source of information for determining z0/zq and NAz0. Considering Equa-
tion 5.4 defining the BF edge, stating that both the centers and shared radius of the
circles defining the BF edge for each image are inversely dependent on (1 + z0/zq),
while the radius are additionally linear with NAz0. Implicitly, if only a single unique
image type is considered, any change in zq/z0 may be offset by a change in NAz0 such
that the only observable impact for a small circle segment would be a change in the
curvature. Under these conditions, there would be little differentiating the evaluated
values of the cost function. This would be the case for the dataset obtained with
the telecentric 3X lens in Figure 8.1.5c. With multiple unique images, this issue is
avoided, as the value of zq/z0 must be the same for all the images. While the change
in the radius for different values of zq/z0 is the same for all the LEDs, the change in
the centers differ. As such, the aforementioned compensation would require different
changes in NAz0 for each unique image, disconnecting the two variables.

Another case where the curvature becomes a limiting factor for the determination of
zq/z0 may be observed in the 12 images where the calibrated and thin lens values of zq
both yield similar fits to the BF edge in Figure 8.1.4. As shown visually in the figure,
the two values of zq yield nearly identical fits, mainly differentiated through a very
slight difference in the curvature of the predicted BF edge. Particularly, the displayed
similarity for different values of zq becomes an issue when the BF edge contains a
point close to the center of the FoV. Since the frequency shift at the optical axis is
independent of zq, as seen from Equation 2.57, the state of the center as either part
of the BF or DF is independent of zq. Implicitly, if the center is precisely at the edge
of the BF, it is at the edge for all values of zq. In this state, only the curvature of the
edge changes with zq, an effect which is observed to be minor.

In general, whether the aforementioned limitation is an issue depends on the size
of the FoV at the object plane, the values of z0 under consideration and the lens
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in question through the values of zq, NA, and the magnification. Considering the
ratio between the size of the BF region and the FoV at the object plane, it may be
found to increase for higher magnification objectives, which tend to also have higher
numerical apertures. As given by Equation 5.4c, the radius of the BF region at the
object plane is given by RBF = |NAz0/(1 + z0/zq)|. Conversely, the FoV at the object
plane is inversely proportional to the magnification for a given detector size. For the
three microscope objectives considered in this thesis, the numerical apertures increase
approximately linearly with the magnification, yielding a ratio RBF/FoV proportional
to the magnification squared. Considering the contribution from zq, it may be seen
that the radius of the BF region decreases for larger values of |1 + z0/zq|.

The differences in the ratio RBF/FoV for the three microscope objectives is observed
in Figure 8.1.5. In order of magnification, the three objectives display increasingly
larger ratios RBF/FoV , with relative values of 1 : 4 : 14. For the telecentric 3X and
infinity corrected 10X lenses, only small, near straight parts of the BF edge are con-
tained in each of the images to which the calibration procedure is applied, impeding
its effectiveness. This ratio may be lowered by decreasing the LED array distance z0.
However, the smaller FoV at larger magnifications then becomes a greater problem as
most of the images will be either fully BF or fully DF, with few images containing
the edge. Considering the experimental setup used in this thesis, it appears that the
above limitations are not substantial enough to hinder application of the calibration
procedure to the compact 2X lens, as illustrated by the results presented at the start of
this chapter. However, the small FoV as compared to the size of the BF region appears
to inhibit the effectiveness of the calibration procedure if applied to the telecentric 3X
and infinity corrected 10X lenses. While this will not be considered further, the impli-
cation is that a camera with a larger FoV would be required for effective calibration
of the telecentric 3X and infinity corrected 10X lenses.
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8.2 Recovery with calibrated parameters

To investigate whether the calibration yielded any substantial improvements in recov-
ery quality, recovery was performed using the compact 2X lens with the USAF sample
placed at the optical axis and near the corner of the FoV. For both cases, recovery was
performed for a region of 512 × 512 pixels (701 µm × 701 µm) centered at the finest
details of the USAF sample, with the center of the corner region being located 2mm
from the center of the FoV. Considering that the calibration procedure may either be
applied to calibrate the values of zq and NA as considered in the previous section or to
calibrate the placement of the LED array through ∆x, ∆y, θ and z0, each dataset was
recovered under four separate conditions. Either with or without calibration of the
lens parameters and with or without calibration of the LED array placement. To cal-
ibrate the LED array placement, the calibration procedure was applied to calibration
datasets where the sample had been removed before image acquisition, yielding the
calibrated parameters in Table 8.2.1. While the recovery was performed for a larger
region, only the recovered intensity for the 70 µm× 70 µm region corresponding to the
smallest details of the USAF sample will be considered further. The recovered intensity
images for this region are displayed in Figure 8.2.2 and Figure 8.2.3, for respectively
the central and corner placements of the USAF sample.

Figure 8.2.2 shows that the calibration procedure yields minimal improvement in res-
olution near the optical axis. Considering the calibration of the LED array placement,
the results imply that the misalignment was not large enough to be detrimental to
recovery. To explain the negligible difference between the calibrated and uncalibrated
values of zq, one must consider the impact of zq in the imaging model covered in chap-
ter 2. The value of zq appears in two ways, for calculation of the quadratic phase and
in calculating the frequency shift for an off-axis patch. Since the patch in question
is located near the optical axis, the change in the frequency shift for off-axis patches
is not expected to impact the recovery quality. Considering the quadratic phase, the
impact from a slight modification of zq may be seen to be minor, as shown in Fig-
ure 8.2.1. Additionally, the displayed region corresponds to the center of the recovered
patch, where the difference in the quadratic phase is at its lowest.

Figure 8.2.3 shows that the calibration procedure yields a marginal improvement far
from the optical axis. In particular, the recovery quality is visibly reduced in Fig-
ure 8.2.3b, where neither the calibrated value for zq nor the calibrated LED placement
values are used. Neglecting the impact on the quadratic phase, the expected impact
of both calibrations are improvements in the calculated frequency shifts. Consider-
ing the error in the calculated frequency shift to be cumulative, the reduced recovery
quality for the uncalibrated case and the similarities in quality when either or both
calibrations are applied would be explained. Based on the results, one may conclude
that performing either of the two calibrations individually improves recovery quality.
However, the results are inconclusive in terms of illustrating that applying both cali-
brations simultaneously is beneficial. To properly conclude that the calibrated value
of zq yields an improvement, further experimentation would be required. In particular,
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the impact of a difference in zq would be expected to increase with the distance from
the optical axis, though this would require the use of a different camera than the one
used in this thesis.

Table 8.2.1: Table displaying the assumed and calibrated values for the LED array
placement for the recovery performed with the compact 2X lens.

z0 [mm] ∆x [µm] ∆y [µm] θ [deg]
Assumed 200.0 0 0 0

Calibrated (center) 201.5 -12.4 -12.7 -0.001
Calibrated (corner) 201.9 -27.8 -8.6 -0.008

(a) Uncalibrated (b) Calibrated (c) Difference
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Figure 8.2.1: Illustration of the total quadratic phase term, including contributions
from spherical illumination and Fresnel propagation, for a patch of 512× 512 pixels as
imaged by the compact 2X lens with z0 = 201.5mm. (a) and (b) respectively assume
the uncalibrated and calibrated values of zq, while (c) shows the difference between
the two cases.
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(a) Illustration of recovered and displayed region

(b) Uncalibrated (c) Calibrated (LED only)

(d) Calibrated (Lens only) (e) Calibrated (Both)

Figure 8.2.2: Recovered intensity for recovery of a central patch with the calibrated
and uncalibrated values of zq and the LED array placement. The recovery was per-
formed for the larger inset in (a), while (b-e) only show the recovered intensity for the
smaller inset. No substantial differences in recovery quality may be observed based on
whether the calibrated values are used.
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(a) Illustration of recovered and displayed region

(b) Uncalibrated (c) Calibrated (LED only)

(d) Calibrated (Lens only) (e) Calibrated (Both)

Figure 8.2.3: Recovered intensity for recovery for an off-axis patch with the cali-
brated and uncalibrated values of zq and the LED array placement. The recovery was
performed for the larger inset in (a), while (b-e) only show the recovered intensity
for the smaller inset. No substantial differences in recovery quality may be observed
between (c-e), while (c-e) all show a visible improvement when compared with (b)
where neither calibration is applied.
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CHAPTER 9

R&D - FUJINON CAMERA OBJECTIVE

In this chapter, the results from the investigation into the Fujinon camera objective
will be considered.

9.1 Calibration of the Fujinon camera objective

Based on the image of the dot array sample obtained under incoherent illumination,
the magnification was determined to be 0.177X when the adjustable working distance
is minimized. As shown in Figure 9.2.1, this value for the magnification is consistent
with the known spacing of the dot array sample. Upon increasing the working dis-
tance, a decrease in the magnification was observed, increasing the size of the FoV,
though this will not be considered further. Leaving the working distance at its mini-
mal value, the NBFL calibration procedure was applied, yielding calibrated values of
NA = 0.044 and zq = 95mm. These values were obtained with the AS in its most
open state, maximizing NA through minimization of the adjustable F-number. Con-
sidering Figure 9.2.3, showing the size and shape of the BF region as the F-number is
increased, one may note that the BF region initially only covers a small fraction of the
FoV and that it becomes smaller and hexagonal as the F-number increases. Consider-
ing the BF region as a projection of the AS, the decreasing size is expected since the
F-number is inversely proportional to the AS radius and thus inversely proportional
to the numerical aperture. Likewise, the hexagonal shape of the BF region implies a
hexagonal AS shape, implying that the AS size is controlled through a shutter with
six blades. Further, one may note that the artifacts near the BF edge remain equally
large regardless of the F-number, covering an increasingly large fraction of the BF
region.
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9.2 Challenges for the purposes of Fourier Ptychog-
raphy recovery

For the purposes of FP, the objective poses several challenges. For the maximal value
of the numerical aperture, NA = 0.044, and a magnification of 0.177X, the maximal
detector pixel size according to the sampling requirement given by Equation 3.14 is
1.04 µm, a factor 0.38 as compared to the IDS U3 camera pixel size. Recovery under
these conditions is not possible with the FP implementation considered in this thesis,
though it may be possible by utilizing the sub-sampled FP scheme proposed by Dong
et al.[31]. Alternatively, the simplest solution would be to decrease the numerical
aperture by a factor of ∼ 3. However, this would be equivalent to a corresponding
increase in the F-number, requiring further work accounting for a non-circular pupil
shape before FP recovery would be possible. Further, the small size of the BF region
may also be problematic, as it is optimal to initialize the recovered object based on
a BF image and due to the increasing presence of BF edge artifacts with increasing
F-number. Comparatively, the BF region would increase in diameter by a factor
1+z0/zq ∼ 4.5 for a telecentric lens with zq = ∞. Finally, a purely practical challenge
is the fact that with increasingly small values of NA, increasingly large values of z0
are required to retain sufficient overlap in the frequency domain for a given spacing
between the LEDs of the LED array.

Figure 9.2.1: The magnification of the Fujinon objective is 0.177X for the given
working distance. At this magnification, the imaged dot array spacing coincides with
the known value (red dots). The image correspond to a 512×512 pixel (8mm×8mm)
patch of the FoV.
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Figure 9.2.2: Calibration result for the Fujinon objective. The expected linear
behavior is displayed, yielding NA = 0.044 and zq = 95mm.

f#=1.8
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f#=8

f#=16

Figure 9.2.3: Image of the BF region when tuning the AS size of the Fujinon objec-
tive, under illumination by the central LED. The BF region can be seen to initially
only cover a small part of the FoV, and becomes smaller and hexagonal as the F-
number is increased.
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CHAPTER 10

R&D - IMAGING THROUGH A SAPPHIRE WINDOW

In this chapter, the results from the experiments related to imaging through the sap-
phire window will be displayed and discussed.

10.1 Impact on low resolution images

Figure 10.2.1 shows the low-resolution intensity images of the USAF sample, for each
of the three lenses, before and after inserting of the window between the object and
the lens. For the compact 2X and telecentric 3X lenses, inserting the window had
minimal impact on the resolution and image quality. For the infinity corrected 10X
lens, the window may be observed to cause a significant blurring. For all three lenses,
it was necessary to increase the sample to lens distance by 2.15mm to 2.19mm after
inserting the window, compared to a value of 2.17mm predicted by Equation 4.9.
Additionally, inserting the window yielded small shifts in the FoV, corresponding either
to the window being slightly tilted as compared to the optical axis or an unintended
movement of the sample upon insertion of the window. While attempts were made at
avoiding the latter, the possibility should not be discarded, as the window mount used
in the setup was attached to the sample holder.

10.2 Impact on the recovered intensity and phase

Figure 10.2.2 and Figure 10.2.3 respectively show the recovered intensity and phase
for each of the three lenses. For the compact 2X and telecentric 3X lenses, inserting
the window had minimal impact on recovery quality. For the infinity corrected 10X
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lens, recovery without the window yielded substantial higher quality as compared to
recovery with the window. In particular, the recovered intensity became blurred after
inserting the window, while the phase does not appear to have converged properly.

(a) Compact 2X (b) Compact 2X (window)

(c) Telecentric 3X (d) Telecentric 3X (window)

(e) Infinity corrected 10X (f) Infinity corrected 10X (window)

Figure 10.2.1: Low-resolution intensity images of the USAF sample for each of the
three lenses, before and after inserting the window between the object and the lens.
The images correspond to the 512 × 512 pixel patches located near the optical axis
for which the recovery was performed. The insets display the 70 µm × 70 µm regions
containing the smallest features of the USAF sample, which will be considered further.
(a-b) and (c-d) show that minimal differences were induced by inserting the window.
Comparing (e-f), a significant blur may be observed after inserting the window.
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Recovered intensity

(a) Compact 2X (b) Compact 2X
(window)

(c) Telecentric 3X (d) Telecentric 3X
(window)

(e) Infinity
corrected 10X

(f) Infinity corrected
10X (window)

Figure 10.2.2: Recovered intensity for the
smallest features of the USAF sample for
each of the three lenses under considera-
tion, before and after inserting the window
between the sample and lens. The results
for the compact 2X lens in (a-b) show no
noticeable impact from inserting the win-
dow. The results for the telecentric 3X lens
in (c-d) show no difference in resolution,
though the recovery performed after insert-
ing the window displays a slightly less flat
background. The results for the infinity-
corrected 10X lens in (e-f) show no reduc-
tion in resolution, though the recovery per-
formed after inserting of the window ap-
pears to be noticeably affected by the win-
dow’s presence.

Recovered phase

(a) Compact
2X

(b)
Telecentric 3X

(c) Infinity
corrected 10X

(d) Compact
2X (window)

(e)
Telecentric 3X

(window)

(f) Infinity
corrected 10X

(window)

Figure 10.2.3: Recovered phase for the
smallest features of the USAF sample for
each of the three lenses under considera-
tion, before and after inserting the win-
dow between the sample and lens. While
the phase is not properly defined for the
opaque regions of the sample with mini-
mal transmission, the recovered phase ap-
pears well-behaved for (a-e). For (f), the
phase does not appear to have converged
properly.
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10.3 Impact on the recovered pupil

The impact of the window upon the recovered pupil is displayed in Figure 10.3.1.
Analysis of the Zernike modes in terms of the equivalent Seidel aberrations is based
on table 16 by Niu et al.[36].

For the compact 2X lens, inserting the window yielded minimal change. Considering
Figure 10.3.1a, the recovered pupil amplitude and phase show no substantial visual
change. Comparing the Zernike coefficients of the recovered phase, all the displayed
modes show minimal change, except for mode 4 corresponding to defocus. Otherwise,
the main aberrations appear to be contained in modes 7, 8, 11 and 22, corresponding to
primary x and y coma and the primary and secondary spherical aberrations. Applying
Equation 4.8 the recovered defocus coefficients correspond to respectively 17.5 µm and
10.5 µm defocus without and with the window.

Based on Figure 10.3.1b for the telecentric 3X lens, inserting the window yielded min-
imal visual change in the recovered amplitude and moderate change in the recovered
phase. Comparing the Zernike coefficients of the recovered phase, non-insignificant
differences may be observed in modes 4, 7 and 11 corresponding to defocus, primary y
coma and primary spherical aberration. Otherwise, the main aberrations appear to be
contained in modes 5, 8, and 17, corresponding to 45◦ primary astigmatism, primary x
coma and secondary y coma. From the defocus coefficients, the defocus is found as re-
spectively 0.3 µm and 2.4 µm without and with the window. Interestingly, the Zernike
coefficient values imply that a lesser degree of aberrations is present after inserting of
the window, particularly noticeable for the two largest modes. This may be interpreted
in two ways, either the window is beneficial and counteracts the aberrations inherent
in the lens, which would be explained by the aberrations caused by the window having
opposite signs compared to the pre-existing aberrations. Alternatively, the presence
of the window decreases the convergence properties of the recovery procedure, thus
inhibiting the ability of the EPRY algorithm to recover the true value of the pupil
phase. This could either be a consequence of an increased level of aberrations, or be
caused by the dataset captured after inserting the window being less precisely aligned
due to the observed shift of the FoV potentially originating from a slight tilt of the
window.

Considering Figure 10.3.1b for the infinity corrected 10X lens, significant differences
may be observed in both the recovered amplitude and phase before and after insert-
ing the window. Based on the Zernike coefficients, the most significant aberrations
without the window are contained in mode 4, 5, 6, 8, 11, 13 and 22, corresponding
to defocus, 45◦ and 0◦ primary astigmatism, primary x coma, primary spherical aber-
ration, 45◦ secondary astigmatism and secondary spherical aberration. Notably, the
defocus and 45◦ primary astigmatism terms are significantly larger than the remaining
terms, with the defocus term corresponding to a distance of 1.6 µm. Comparatively,
only a defocus of 0.1 µm is corrected for in the recovered pupil after inserting the win-
dow, with the largest Zernike coefficients being in mode 8, 11 and 22, corresponding
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to primary x coma and the primary and secondary spherical aberrations. For all three
modes, the coefficient amplitudes differ significantly compared to before inserting the
window. Concerning the recovered pupil amplitudes, they are noticeably different be-
fore and after inserting the window. Notably, one may observe that they share similar
features as their phase counterparts. While this could be indicative of the true pupil
amplitude, one should also consider that it could be a result of poor convergence,
seeing that bleeding between the intensity and phase has been commonly observed
for the recovered object in the presence of noise, misalignment and poor aberration
correction[14, 19, 24, 31, 32].
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Figure 10.3.1: Recovered pupils for each of the three lenses under consideration,
before and after inserting the window between the sample and lens. The images show
the pupil amplitudes and phases, while the bar plots show the Zernike coefficients
corresponding to the 25 first modes as obtained from decomposition of the pupil phase.
For the compact 2X lens, the main difference before and after inserting the window
is accounted for by the defocus term (mode 4). For the telecentric 3X and infinity
corrected 10X lenses, more significant differences are observed. For the telecentric 3X
lens, the differences are mainly present within the recovered pupil phase, while the
infinity corrected 10X lens displays differences in both the recovered pupil amplitude
and phase.
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10.4 Implications and basis in aberration theory

The results covered in this chapter imply that FP imaging through the window is
unproblematic for the compact 2X and telecentric 3X lenses, while it leads to a sig-
nificant reduction in quality for the infinity corrected 10X lens. These results may be
considered in light of the theoretical model presented in section 4.3. However, before
further application of the model, the fact that the model derives the impact of a win-
dow on a converging beam of half angle u, as compared to the more complex case of
a lens-based imaging system should not be ignored. Rather than a single converging
beam, the light scattered by each point of the sample may be considered as spherically
diverging waves. Assuming that this is a valid interpretation, one may expect the half
angle to be given by the numerical aperture of the lens, u = NA. Further, the follow-
ing discussion will assume that the impact of the window is similar for converging and
diverging waves.

First, one may observe that Equation 4.9 accurately predicted the necessary refocusing
distance after inserting the window. For all three lenses considered in this work, the
defocus was observed to cause the largest immediate decrease in image quality after
inserting the window. However, the defocus is easily addressed by a refocusing of the
system. Notably, the refocusing distance as given by Equation 4.9 is solely a function
of the refractive index and thickness of the window, meaning that it should be the
same for all lens systems.

Under the assumption that u = NA, the theoretical model predicts a spherical aber-
ration scaling with Ntu4 = NtNA4 upon insertion of the window. Considering the
numerical apertures of the three lenses; 0.06 for the compact 2X lens, 0.09 for the tele-
centric 3x lens and 0.28 for the infinity corrected 10X lens, the corresponding ratios of
NA4 are 1 : 5 : 474. Further, the numerical aperture should be reasonably larger than
any unintended tilt of the window. Likewise, the same should hold for the angles of
the chief rays for all points within the FoV. Thus, only the spherical aberration term
should be of any significant magnitude.

Applying Equation 4.13, the expected change in the Zernike coefficients of the primary
spherical aberration term (mode 11) may be calculated. For the compact 2X, telecen-
tric 3X and infinity corrected 10X lenses, the eleventh mode is predicted to change by
respectively −0.011 and −0.057 and −5.32. For the compact 2X lens, the predicted
value is consistent with the minimal change observed for mode 11 in Figure 10.3.1a.
Similarly, the predicted value for the telecentric 3X lens may be seen to correspond to
the decrease in the eleventh mode in Figure 10.3.1b. Considering the infinity corrected
10X lens, the predicted value is several ten-fold times larger than the coefficients of
the other recovered modes, and would correspond to a pupil phase containing several
phase wraps. As such, the failure of the recovery algorithm to fully converge is un-
surprising. However, if the recovered pupil is indicative of its true value, one should
additionally note the observed changes in the secondary spherical aberration (mode
22) and in the recovered pupil amplitude. Neither of these two changes are predicted
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by the theoretical model, indicating that they either are consequences of poor con-
vergence or that the theoretical model is insufficient to fully describe the impact of
imaging through a window for a high numerical aperture system.

Viable approaches to address the challenges with recovery for the infinity corrected 10X
lens may be to either improve the initialization of the pupil or reduce the magnitude
of the aberrations caused by imaging through the window. For the former, one should
note that the improved initialization would not fully remove the impact of having
severely aberrated raw images. In particular, the blurring caused by an increase in
aberrations smears out the information contained in the captured images, lowering the
signal-to-noise ratio. To reduce the degree of aberration, the principal avenue is to
reduce the thickness t, though this is limited by the physical requirements of a given
application. Theoretically, one may also aim to reduce the value of N , though this
would yield minimal benefit as it lies within 5% of its maximal value for refractive
index values between 1.5 to 2.1 and within 10% between 1.4 to 2.4, containing most
optical glasses.

Finally, one should note the implications of the obtained results within the broader con-
text of FP. In accordance with the theoretical model, the aberrations caused by imag-
ing through a glass window have been observed to scale with the numerical aperture
of the imaging lens. As observed when comparing Figure 10.2.1e and Figure 10.2.1f,
direct application of a high numerical aperture objective results in substantial aber-
rations. However, as illustrated by the minimal changes in recovery quality for the
compact 2X and telecentric 3X lenses after inserting the window, this challenge may
be overcome through the application of FP. Due to the nature of FP as a synthetic
aperture technique, the acquired images inherit the beneficial properties of having a
low magnification and low numerical aperture lens. In addition to the normally el-
evated benefits of having a large FoV and DoF, the results presented in this thesis
demonstrate an additional benefit, being the minimization of the aberrations caused
by imaging through a window.
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CHAPTER 11

CONCLUSIONS

This thesis has considered the modelling, calibration and aberrations of imaging sys-
tems for the purposes of Fourier Ptychography (FP). This was done through combined
application of theoretical, numerical and experimental methods. The main contribu-
tions in this thesis are the derivation of a generalized imaging model based on paraxial
optics, the proposal of a system calibration scheme based on the origin of the Bright-
Field (BF) region within the derived imaging model and an initial investigation into
the detrimental effects of imaging through a window.

In previous works, models describing single-lens systems with the Aperture Stop (AS)
at the lens and object-side telecentric systems for which the AS is located in the first
lens’ back focal plane have been derived. In this work, these models were reviewed
and placed in the context of a generalized imaging model, additionally allowing for
two-lens imaging systems with arbitrary distances between the AS and the lenses.
This yielded an imaging model with a variable quadratic phase at the object plane,
which may either be positive, negative or vanish based on the placement of the AS.
This quadratic phase was found to be dependent on an effective object to AS distance.
Conversely, the distance from the AS to the image-side lens was shown to not influence
the intensity imaging process. Based on the effective objective to AS distance, and
accounting for spherical LED illumination, a wave optical derivation of the frequency
shift for off-center regions was performed. Conclusively, it was shown that imaging
systems with varying AS placements requires different treatments for the purposes of
FP recovery, with the necessary considerations being summarized.

To calibrate the system parameters of an unknown or misaligned system, a calibration
scheme based on the origin of the BF region was proposed. Experimentally, four lens
systems were considered, including three microscope objectives and a camera objec-
tive. Application of the calibration procedure to calibrate the effective objective to AS
distance and the numerical aperture for the four lens systems, was successful for the
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2X compact microscope objective and for the camera objective. These results serve
to demonstrate the validity of the generalized imaging model. For the calibration of
the 3X telecentric and 10X infinity corrected microscope objectives, the increasing
ratio between the size of the BF region and the object Field of View (FoV) for higher
magnification objectives was found to be a limiting factor. When recovery was per-
formed to illustrate whether the calibrated effective objective to AS distance yielded
improved recovery quality for the compact 2X lens, minimal improvement was ob-
served. While the camera objective was found to follow the expected imaging model,
the ratio between its numerical aperture and magnification was such that the sampling
requirements for FP were broken, hindering its application for FP recovery.

Finally, it was found that inserting a window into the optical path of a microscope
yields aberration limited imaging for high numerical aperture objectives, while low
numerical aperture objectives are minimally affected. This may be explained from a
theoretical perspective by the appearance of aberrations scaling rapidly with the nu-
merical aperture. Importantly, these aberrations may become too large to be corrected
for within the recovery algorithm, as exemplified by the poor convergence results for
the infinity corrected 10X lens in chapter 10.

11.1 Practical application of modelling results

The derivations made in this work demonstrate that imaging systems will exhibit vary-
ing behavior based on the placement of the AS. Within the context of FP, this behavior
affects the recovery algorithm through the quadratic phase at the object plane, which
in turn influences the frequency shift for off-axis regions. As such, correct calculation
of these values requires the AS placement to be determined when dealing with an
objective of unknown behavior. In this work, it was demonstrated that the AS place-
ment, as defined through the effective object to AS distance, may be determined based
on the edge of the BF region. While this thesis implemented an automated calibration
scheme for this purpose, a manual calibration may be more easily implemented in
other projects under the condition that the illumination distance is known precisely.

11.2 Lens selection

Concerning lens selection for FP systems, several considerations may be elevated based
on the work performed while writing this thesis.

Starting with the AS placement, it may be seen to further affect the image formation
through the size and location of the BF region and the telecentricity of the imaging
system. These properties are present and should be considered, even if the effective
object to AS distance is determined precisely. While the benefits of telecentricity have
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not been emphasized in this work, it should still be considered during lens selection.
In particular, one may expect that object-side telecentricity would be particularly
important when the microscope is required to be used away from the optimal focus,
such as for the multislice 3D FP scheme by Tian and Waller[38]. Considering the BF
region, one may note that its size is maximized for an object-side telecentric lens. This
may be beneficial under the assumption that the BF has a lower degree of noise as
compared to the Dark-Field (DF), and if the region near the BF edge which does not
adhere to the imaging model is of constant size. For a given illumination distance, one
may further observe that it would be possible to construct a lens system such that
the quadratic phases from the spherical illumination and the lens system would cancel.
Such a configuration would make each captured image either entirely BF or DF, which
could be beneficial from a noise perspective. However, this would also remove a major
source of information about the system alignment, and would not be advised.

Further, one should consider the presence of aberrations and other imaging artifacts.
Ideally, any detrimental effects caused by the presence of aberrations would be cor-
rected for through recovery of the generalized pupil function within the recovery algo-
rithm. However, this may not always be the case. Considering point-imaging aberra-
tions, one should ensure that they are not too severe, in which case they may hinder
the convergence of the FP algorithm, as was observed when imaging through the win-
dow with the infinity corrected 10X lens. Further, the presence of aberrations affecting
the image shape, such as field curvature and distortion, should be avoided, as it has
not been investigated whether the recovered pupil can correct for these aberrations. In
terms of other imaging effects, the presence of stray light caused by internal reflections
within the microscope and intensity variations across the FoV should be avoided. In
this project, the amount of internal reflections were reduced through the insertion of
a non-reflecting inlay. However, stray-light was still observed at large illumination
angles, limiting the number of LEDs which could be used without introducing sub-
stantial noise. For the latter, the presence of intensity fluctuations across the FoV
was particularly noticeable for the compact 2X objective, as may be observed on close
inspection of Figure 8.1.4. While not covered in this thesis, these intensity fluctuations
were observed to cause artifacts in the recovered phase, though only for regions where
no other intensity information was present, such as between the larger features of the
USAF target.

Finally, a low numerical aperture objective should be chosen for the purposes of per-
forming FP recovery through a window. Based on the results in chapter 10, both the
compact 2X and telecentric 3X objectives were minimally affected by the window. As
these objectives have numerical apertures of respectively 0.06 and 0.09, microscope
objectives of comparable numerical aperture values should be viable. Conversely, a
numerical aperture value of 0.28, as for the 10X infinity corrected objective, appears
to be too large. While the aberrations are additionally dependent on the thickness and
refractive index of the window, the maximal viable numerical aperture for a given win-
dow may be assumed to be on the lower side. Importantly, the ability of FP to achieve
high-resolution imaging despite the use of a low numerical aperture lens, provides a
solution to this issue. This is an additional benefit provided by FP as an imaging
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method not covered in prior works. In addition to the possibility of imaging into a
container which motivated this investigation, this may also be a beneficial property
for the application of FP to biological systems where glass cover slips are often used.

11.3 Model improvements and further verification

To further the theoretical understanding of the intensity imaging process upon which
FP is based, future works may investigate the effects of moving away from the paraxial
approximation and whether the derived model accounts for varying degrees of telecen-
tricity. Additionally, the relation between the axial location of the Entrance Pupil
(EnP) and the effective object to AS distance should be considered further. Finally,
to further validate the generalized imaging model derived in this thesis, it would be of
interest to use a larger FoV camera to recover a region farther from the optical axis.
In this case, the benefits from calculating the off-axis frequency shift based on the
calibrated effective objective to AS distance would be emphasized.

Considering the effects of leaving the paraxial approximation, three directions of in-
quiry may be considered in future works. The first direction would be to consider
whether it is feasible to avoid making the Fresnel-approximation when describing the
propagation between the different planes of the imaging system. This could potentially
be done through application of the angular spectrum method[8, p.83-84]. The second
direction would be to consider the differences between the frequency shift for off-axis
regions as calculated by Zheng and as found in this work for an object telecentric
system within the paraxial approximation. Finally, the third direction would be to
consider the implications of the Abbe sine condition, which states that a compound
lens should be designed such that its principal planes are curved, rather than plane[53].

Concerning telecentricity, the ray optical visualizations of imaging systems considered
in subsection 2.2.9 suggest that the imaging systems may yield varying changes in
magnification for a sample placed outside of the object plane. This may mainly be
observed based on the varying angles of the chief rays. As this angle is directly related
to the AS placement, through the effective object to AS distance, it would be inter-
esting to investigate how the quadratic phase and a defocus aberration in conjunction
impacts the centers and shapes of on- and off-axis object points. Notably, the pre-
ceding project[7] performed simulations of the dot array sample, which demonstrated
the existence of the proposed interaction between pupil aberrations and a quadratic
phase at the object plane. However, this line of inquiry was not pursued further in
this thesis due to time constraints. As such, future works may consider a quantitative
investigation on this topic.
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APPENDIX A

GITHUB REPOSITORY

The following link leads to a GitHub repository containing the code developed through-
out this thesis and the preceding project[7].

https://github.com/erlenhjo/pyFPM
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APPENDIX B

PROPAGATION THROUGH A SINGLE-LENS SYSTEM
BY MEANS OF A SINGLE FOURIER TRANSFORM

For the derivations performed in this thesis, it is necessary to establish how a field at
a plane in front of a lens may be related to a field at a plane behind the lens by means
of only a single Fourier transform. To solve this problem, the propagation from the
first plane to the lens, transmission through the lens and propagation from the lens to
the second plane must be considered.

The system of interest is displayed in Figure B.0.1. The goal of the following derivation
will be to relate the field UF at a distance d1 in front of the lens to the field UB at a
distance d2 behind the lens. To this extent, it will additionally be helpful to define the
complex wavefields UFL and UBL just in front and just behind the lens. To differentiate
the focal length of the system considered here from focal lengths elsewhere in the
thesis, it will be denoted by f ′

L. Since either of the two free space propagation steps
may be performed either by means of Equation 2.7 or Equation 2.8, being respectively
the convolution and Fourier transform formulations of the Fresnel integral, there are
four equally valid approaches to relate the two fields. However, only the approaches
where each propagation equation is used only once will be considered, so that the final
expression contains only a single Fourier transform. Additionally, the derivations will
neglect the finite extent of the lens.

While the following derivation will pertain to a more general case, it is inspired by the
derivations by Goodman[8, p.164-166] performed for the explicit system where d2 = f ′

L

and where the propagation steps are performed in order by means of respectively the
convolution and Fourier transform formulations of the Fresnel integral.
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Figure B.0.1: The system of interest when eval-
uating propagation through a single-lens system
by means of only a single Fourier transform. The
field at the first plane may be related to the field
at the second plane by means of free space prop-
agation over a distance d1, transmission through
the lens and free space propagation over a dis-
tance d2. For the fields to be related by a sin-
gle Fourier transform, one of the two propaga-
tion steps must be calculated using the convolu-
tion formulation of the Fresnel integral, while the
other must be calculated using the Fourier trans-
form formulation.

B.1 Forward and inverse Fourier transform of the
Fresnel integral convolution kernel

For the below derivations, it will be necessary to consider the Fourier transform and
inverse Fourier transform of the kernel of the convolution formulation of Fresnel integral
as defined by Equation 2.7. To reiterate Equation 2.7b, the convolution core is given
as

h(x, y, z) =
eikz

iλz
exp

{
ik

2z

[
x2 + y2

]}
. (B.1)

In the following derivation, the Fourier transform is assumed to be evaluated at (fu, fv).

By means of the Fourier relation[8, p.17]

F
{
exp[iπ(a2x2 + b2y2)]

}
=

1

|ab|
exp

[
−iπ

(
f 2
u

a2
+
f 2
v

b2

)]
(B.2)

the relation

F {h(x, y, z)} = F
{
eikz

iλz
exp

[
ik

2z

[
x2 + y2

]]}
= −ieikz exp

[
−iπλz

(
f 2
u + f 2

u

)]
(B.3)

may be obtained by inserting a2 = b2 = |ab| = 1/λz and k = 2π/λ. Similarly, applying
the duality property of the Fourier transform

F {g(r)} = G(f) ⇐⇒ F−1 {g(f)} = G(−r) (B.4)

yields the inverse Fourier transform of h as

F−1 {h(u, v, z)} = F−1

{
eikz

iλz
exp

[
ik

2z

[
u2 + v2

]]}
= −ieikz exp

[
−iπλz

(
f 2
x + f 2

y

)]
(B.5)

with (fx, fy) given by (fu, fv) evaluated at (u, v) = (x, y)
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B.2 Convolution followed by Fourier transform

The subsequent derivation will consider the more general version of the system ana-
lyzed by Goodman[8, p.164-166], where the first propagation over a distance d1 from
the first plane to the lens is performed by means of the convolution formulation of the
Fresnel integral, and the second propagation over a distance d2 is performed by means
of the Fourier transform formulation.

Using the convolution formulation of the Fresnel integral as given in Equation 2.7 and
inserting the propagation distance d1, the field just in front of the lens is given by

UFL(x, y) = UF (x, y) ∗ h(x, y, d1) (B.6)

which after transmission through the lens becomes

UBL(x, y) = [UF (x, y) ∗ h(x, y, d1)] · exp
[
− ik

2f ′
L

(
x2 + y2

)]
(B.7)

according to Equation 2.13. Relating the field just behind the lens to the field at the
second plane by means of Equation 2.8 over a distance d2 yields the relation

UB(u, v) =
eikd2

iλd2
exp

[
ik

2d2

(
u2 + v2

)]
F
{
UBL(x, y) exp

[
ik

2d2

(
x2 + y2

)]}
(B.8)

with the Fourier transform evaluated at (fu, fv) = (u/λd2, v/λd2). The complete
relation then becomes

UB(u, v) =
eikd2

iλd2
exp

[
ik

2d2

(
u2 + v2

)]
·

F
{
UF (x, y) ∗ h(x, y, d1) exp

[
ik

2

(
1

d2
− 1

f ′
L

)(
x2 + y2

)]}
, (B.9)

which may be further simplified by removing the convolution by means of the convo-
lution theorem and Equation B.3 according to

F {U ∗ h} = F {U} · F {h} (B.10)

with
U(x, y) = UF (x, y) exp

[
ik

2

(
1

d2
− 1

f ′
L

)(
x2 + y2

)]
, (B.11a)

F {h} = −ieikd1 exp
[
−iπλd1

(
f 2
u + f 2

v

)]
= −ieikd1

[
−ikd1
d22

(
u2 + v2

)]
(B.11b)

after evaluation of F {h} at (fu, fv) = (u/λd2, u/λd2). Finally, combining the above
equations and disregarding the constant prefactors yields the final equation

UB(u, v) = exp

[
ik

2

(
1

d2
− d1
d22

)(
u2 + v2

)]
·

F
{
UF (x, y) exp

[
ik

2

(
1

d2
− 1

f ′
L

)(
x2 + y2

)]}
(B.12)

where the Fourier transform is to be evaluated at (fu, fv) = (u/λd2, u/λd2).
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B.3 Fourier transform followed by convolution

For the alternative approach, the propagation over the distance d1 from the first plane
to the lens may be performed by means of the Fourier transform formulation of the
Fresnel integral and the second propagation over the distance d2 may be performed
using the convolution formulation.

Performing the first propagation by means of Equation 2.8 yields the relation

UFL(u, v) =
eikd1

iλd1
exp

[
ik

2d1

(
u2 + v2

)]
F
{
UF (x, y) exp

[
ik

2d1

(
x2 + y2

)]}
(B.13)

with the Fourier transform evaluated at (fu, fv) = (u/λd1, v/λd1). Further, transmis-
sion through the lens by means of Equation 2.13 gives

UBL(x, y) = UFL(x, y) exp

[
− ik

2f ′
L

(
x2 + y2

)]
(B.14)

while the field at the second plane is obtained as

UB(u, v) = UBL(u, v) ∗ h(u, v, d2) (B.15)

after propagation by means of the convolution formulation of the Fresnel integral.
Combining the three above equations yields the complete relation

UB(u, v) =
eikd1

iλd1
exp

[
ik

2

(
1

d1
− 1

f ′
L

)(
u2 + v2

)]
·

F
{
UF (x, y) exp

[
ik

2d1

(
x2 + y2

)]}
∗ h(u, v, d2) , (B.16)

at which point the convolution may be removed by means of the relation

F {U} ∗ h = F {U} ∗ F
{
F−1 {h}

}
= F

{
U · F−1 {h}

}
(B.17)

derived from the convolution theorem with

U(x, y) = UF (x, y) exp

[
ik

2f ′
L

(
x2 + y2

)]
(B.18a)

F−1 {h} = −ieikd2 exp
[
−iπλd2

(
f 2
x + f 2

y

)]
= −ieikd2

[
−ikd2
d21

(
x2 + y2

)]
(B.18b)

after evaluation of Equation B.5 at (fx, fy) = (x/λd1, y/λd1). Disregarding the con-
stant prefactors, the final equation then becomes

UB(u, v) = exp

[
ik

2

(
1

d1
− 1

f ′
L

)(
u2 + v2

)]
·

F
{
UF (x, y) exp

[
ik

2

(
1

d1
− d2
d21

)(
x2 + y2

)]}
(B.19)

where the Fourier transform is to be evaluated at (fu, fv) = (u/λd1, u/λd1).
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APPENDIX C

ZERNIKE POLYNOMIALS

The Zernike polynomials are a set of 2D polynomials that form an orthogonal basis over
a unit disk. Since their introduction in 1934[54], they have seen use within the field of
optics to describe the aberration function present in lens-based imaging systems[36,
55]. Notably, there exists a number of different indexing schemes[36]. To conform
with the initial article introducing the Embedded Pupil Function Recovery (EPRY)
algorithm[2] covered in section 3.4, the Noll indexation scheme will be considered. In
this work, the Zernike polynomials will be applied to the phase of the generalized pupil
function kW (x, y) as defined in Equation 4.3.

In the Noll indexation scheme, the polynomials are primarily ordered with an index
j ∈ N and are expressed in radial coordinates (ρ, θ) as[36]

Zj(ρ, θ) = Zm
n (ρ, θ) =


√

2(n+ 1)Rm
n (ρ) cosmθ, m ̸= 0, j is even√

2(n+ 1)Rm
n (ρ) sinmθ, m ̸= 0, j is odd√

n+ 1Rm
n (ρ), m = 0

(C.1)

consisting of a normalization term, a radial term and an azimuthal term. The radial
polynomials Rm

n (ρ) are defined as

Rm
n (ρ) =

(n−m)/2∑
s=0

(−1)s(n− s)!

s!(n+m
2

− s)!(n−m
2

− s)!
ρn−2s (C.2)

where the secondary indices n, representing the degree of the radial polynomials, and
m, representing the azimuthal frequency, are derived from j according to the relations

n = ⌊(
√

2j − 1 + 1/2)− 1⌋ (C.3a)

m =

{
2× ⌊2j+1−n(n+1)

4
⌋, n is even

2× ⌊2j+2−n(n+1)
4

⌋ − 1, n is odd.
(C.3b)
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For use with Cartesian coordinates (x, y) the transformations x = ρ cos θ and y =
ρ sin θ may be applied.

Due to the Zernike polynomials forming an orthogonal basis over a unit disk, they
allow for both synthesis and decomposition of any arbitrary aberration function nor-
malized to be defined on a unit disk. Using the expansion coefficients aj, synthesis
and decomposition may be done using the respective relations

kW (ρ, θ) =
∞∑
j=1

ajZj(ρ, θ) (C.4a)

aj = π−1

∫ 1

0

∫ 2π

0

kW (ρ, θ)Zj(ρ, θ)ρdθdρ . (C.4b)

Transformed to Cartesian coordinates, these relations become

kW (x, y) =
∞∑
j=1

ajZj(x, y) (C.5a)

aj = π−1

∫∫
x2+y2≤1

kW (x, y)Zj(x, y)dxdy (C.5b)

assuming that the Zernike polynomials Zj are written in their Cartesian forms. Fur-
ther, one should note that the different terms of the Zernike polynomials can be related
to classical aberrations such as tilt, defocus, astigmatism, coma and spherical aber-
rations[36, 55]. As such, the expansion coefficients aj may be used to quantify the
presence of specific aberration types. Moreover, within the Noll indexation scheme
presented above, the squares of the expansion coefficients a2j represents the contribu-
tion to the standard deviation of the aberration function from the j-th term starting
from j = 2[55]. This yields a relation for the standard deviation of the the aberration
function

σ2
W = ⟨kW 2(ρ, θ)⟩ − ⟨kW (ρ, θ)⟩2 = ⟨kW 2(x, y)⟩ − ⟨kW (x, y)⟩2 =

∞∑
j=2

a2j . (C.6)

Figure C.0.1 illustrates the first 36 Zernike polynomials in the Noll indexation scheme,
while a list of the first 37 Zernike polynomials including indices j, n and m, their radial
and Cartesian expressions as well as their related optical aberrations may be found in
the work of Niu et al.[36, p.9].
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Figure C.0.1: Pyramid of the non-normalized Zernike circle polynomials up to the
sixth degree under the Noll indexing scheme. Taken from [36], licensed under CC BY
4.0..
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