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Abstract 

In Norway, landslides in soil represent a significant and escalating threat to infrastructure and 

residential areas, with projections indicating an increase in severity due to climate change. 

This study evaluated the applicability of machine learning algorithms for landslide 

susceptibility mapping (LSM) for the Vestland county in Norway. A dataset of historic 

landslide registries, together with event inventories, were used as the ground truth data for the 

classification task. A selection of fifteen conditioning factors were employed, encompassing 

morphological, geological, land cover-related, hydrological and anthropogenic factors.   

Two different machine learning (ML) approaches was explored; The established Random 

Forest (RF) algorithm and an automated machine learning algorithm (Auto-Sklearn). The 

machine learning process involved feature selection to mitigate multicollinearity and enhance 

model performance, focusing on removing redundant and irrelevant predictors. The two 

models were trained on a training area of 6,478 km² to classify the data samples as landslide 

or non-landslide, treating the ML task as a binary classification and expressing the results in 

the form of a probability in order to produce susceptibility maps. The models were also 

validated through the test data and on an external validation area of 1,798 km² to assess their 

predictive accuracy and generalizability on unseen data.  

Both models demonstrated high accuracy (88%) on test data, with the RF model achieving an 

AUC score of 0.96 and Auto-Sklearn’s multilayer perceptron reaching 0.95. The multilayer 

perceptron model also showed fewer false positives and predicted more actual landslides than 

the RF model. When tested on external validation data to assess generalizability, the RF 

model’s accuracy fell to 76% with an AUC of 0.87, while the multilayer perceptron model 

maintained higher accuracy (81%) and an AUC of 0.9. This suggests that automated machine 

learning can effectively optimize algorithms for specific datasets and outperforms traditional 

models, indicating robustness and the capability of the models to predict landslides across 

varying geographical regions.  

The RF model identified distance to roads, Topographic Ruggedness Index, surficial deposit 

class 130 (bare rock/thin turf cover), average annual precipitation, and Normalized Difference 

Vegetation Index as key variables influencing landslide susceptibility, highlighting a spatial 

bias with an overrepresentation of landslide registries near roads. Despite this, removing road-

associated variables only slightly impacted model effectiveness. A model focusing solely on 

slope, planform curvature, and water contributing area underperformed, underscoring the 
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necessity of incorporating a diverse array of factors for robust prediction. This variable 

importance may not be generalizable to other regions with distinct characteristics. 

The landslide susceptibility map developed in this study demonstrates potential for accurately 

identifying high-risk areas within trained regions, offering a detailed tool for municipal 

planning over existing national maps. However, its utility is limited by the quality of the 

underlying landslide inventory, emphasizing the need for improved data accuracy for 

enhanced prediction accuracy. 

 

 

The entire collection of codes that supports the results reported in this thesis is available in the 

online GitHub repository. This repository contains all the code mentioned throughout this 

study and is essential for replicating the reported results. You can access the repository at: 

https://github.com/ErlendOkland/LSM-Repository.git 
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Sammendrag 

Løsmasseskred representerer en betydelig og økende trussel mot infrastruktur og bebyggelse i 

Norge, med prognoser som indikerer en økning i alvorlighetsgrad grunnet klimaendringer. 

Denne studien har vurdert anvendeligheten av maskinlæringsalgoritmer for kartlegging av 

aktsomhetsområder for løsmasseskred for Vestland fylke i Norge. Et datasett med historiske 

skredregistreringer, samt registreringer fra individuelle skredhendelser, ble brukt som 

grunndata for klassifiseringen. Et utvalg av femten betingende faktorer ble benyttet, som 

omfatter morfologiske, geologiske, arealressurs-relaterte, hydrologiske og antropogene 

faktorer. 

To forskjellige maskinlæringsmetoder ble utforsket; den etablerte Random Forest (RF)-

algoritmen og en automatisert maskinlæringsmodell (Auto-Sklearn). Maskinlæringsprosessen 

inkluderte variabelvalg for å redusere multikollinearitet og forbedre modellens ytelse, med 

fokus på å fjerne overflødige og irrelevante prediktorer. De to modellene ble trent på et 

treningsområde på 6 478 km² for å klassifisere prøvene enten som skredutsatte eller ikke-

skredutsatte. Dette ble definert som en binær klassifisering, hvor resultatene ble uttrykt som 

sannsynlighetsgrad og visualisert gjennom et aktsomhetskart. Modellene ble videre validert 

gjennom testdata og på et eksternt valideringsområde på 1 798 km² for å vurdere deres 

prediktive nøyaktighet og generaliserbarhet på usette data. 

Begge modellene viste høy nøyaktighet (88%) på testdata. RF-modellen oppnådde en AUC-

verdi på 0,96 og Auto-Sklearns flerlags perceptron nevralt nettverk hadde en AUC-verdi på 

0,95. Flerlags perceptron-modellen viste også færre falske positive og predikerte flere faktiske 

skred enn RF-modellen. De to modellene ble testet på eksternt valideringsdata for å vurdere 

generaliserbarhet; RF-modellens nøyaktighet falt til 76% med en AUC-verdi på 0,87, mens 

flerlags perceptron-modellen opprettholdt høyere nøyaktighet (81%) og en AUC-verdi på 0,9. 

Analysene i denne studien viser at automatisert maskinlæring effektivt kan optimalisere en 

algoritme for det spesifikke datasettet brukt i denne studien, og overgikk den tradisjonelle RF-

algoritmen. Algoritmen viser sterk robusthet og evne til å predikere skred utenfor området den 

ble trent på.  
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RF-modellen identifiserte avstand til vei, topografisk ruhet, løsmassetype 130 (Bart fjell / fjell 

med tynt torvdekke), gjennomsnittlig årlig nedbør og vegetasjonsindeksen som de viktigste 

forklaringsvariablene. Dette funnet demonstrerer romlig bias i databasen for registrerte 

skredhendelser, hvor skredregistreringene er overrepresentert langs veinettverket. Fjerning av 

vei-assosierte forklaringsvariabler påvirket imidlertid ikke modellens prediksjonsnøyaktighet 

negativt i stor grad. Videre ble en modell som fokuserte utelukkende på forklaringsvariablene 

skråning, plankurvatur og akkumulert overflatestrømming testet; modellen underpresterte 

betydelig, noe som understreker nødvendigheten av å inkludere et bredt utvalg av relevante 

faktorer for robust prediksjon. Viktigheten av disse variablene må betraktes i sin kontekstuelle 

sammenheng og kan ikke nødvendigvis generaliseres til andre regioner.  

Det resulterende aktsomhetskartet viser potensial for å nøyaktig identifisere områder utsatt for 

skred, spesielt innenfor samme området som modellen ble trent på. Metoden som ble utviklet 

i dette studiet viser størst potensial for prediksjon på lokalt og regionalt nivå, og kan oppnå 

større nøyaktighet i forhold til det det etablerte aktsomhetskartet av NGU. Nytteverdien til 

aktsomhetskartet begrenses imidlertid av kvaliteten på det underliggende skreddataen som er 

tilgjengelig, noe som understreker behovet for bedre datakvalitet for å forbedre prediksjonen. 

 

 

Hele samlingen av koder som støtter resultatene rapportert i denne studien er tilgjengelig i en 

online GitHub-kolleksjon. Denne kolleksjonen inneholder all kode som er nevnt gjennom 

oppgaven og er essensiell for å kunne reprodusere de rapporterte resultatene: 

https://github.com/ErlendOkland/LSM-Repository.git 
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Chapter 1 

 

Introduction 

 

The first part of this thesis will contextualize the utilization of machine learning approaches in 

conjuncture with geographical data to describe the likelihood of landslides occurring in an 

area based on local terrain conditions. In addition, I will elaborate on the motivation behind 

the approach and present the research objectives this thesis aims to achieve. Finally, the 

structure of the remaining chapters is presented.  

 

1.1. Background 

Hydrometeorological phenomena, including mass movements, are one of the most frequent 

and destructive natural hazards that cause a large number of deaths and damage to 

infrastructure around the world (Renza et al., 2021). In Norway, landslides in soil pose a 

considerable threat to infrastructure and dwellings, particularly along rivers, streams, and in 

old alluvial fans (Devoli et al., 2020). To address these challenges, the Norwegian Natural 

Perils Pool was established on January 1, 1980. Governed by the Natural Perils Insurance Act 

and the Pool's rules, it functions as a compulsory insurance mechanism linked to fire 

insurance. Based on data from the Norwegian Natural Perils Pool, landslides that occurred 

between 2013 and 2022 resulted in damages totaling 1 784 million NOK (Finans Norge, 

2022). 

At present, the effects of climate change increase the frequencies of specific extreme weather 

and climate events, such as floods and rainstorms, accelerating the occurrence of landslides 

around the world (Stott, 2016). Norway is expected to experience a warmer, wetter and wilder 

climate in the future, with an increased occurrence of extreme precipitation events and 

increased magnitude of such events.  

To mitigate such influences, landslide susceptibility mapping (LSM) is proposed as a 

reference for planners and policymakers to better meet the Norwegian authority’s goal of 

preparing society to adapt to climate changes. Landslide susceptibility is considered as the 
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likelihood of a landslide occurring in an area based on local terrain and environmental 

conditions (Brabb, 1985).  

Since the mid-1970s, the field of landslide susceptibility has seen a substantial body of 

research. This research primarily focuses on the functional correlation between landslide 

occurrences and geo-environmental factors predisposing to such events. Various statistical 

methods, scales, and mapping units have been employed in these studies (Guzzetti, 2006). 

Among these, two early investigations stand out for their innovative approach and findings; 

Neuland's 1976 study pioneered the use of statistical analysis in landslide research. It 

examined the relationship between various factors - morphometric, geo-mechanical, 

lithological, and structural - and the stability of 250 slopes in south-west Germany. This 

research led to the development of a bivariate discriminant analysis-based model for 

predicting landslide stability and instability. 

Carrara's landmark 1983 study synthesized extensive research on the geological and 

geomorphological determinants of landslides in Calabria, Italy. Carrara employed 

discriminant and multiple regression analyses to predict landslide susceptibility, using an 

extensive dataset of landslides, as well as geological and geomorphological information. 

Notably, (Carrara et al., 1978; Carrara et al., 1977) developed specialized software for 

automated thematic cartography to manage this spatially distributed data. These tools 

represented early iterations of grid-based Geographical Information Systems (GIS), a nascent 

technology at that time (Goodchild, 2010). 

Following these pioneering attempts in the mid-70s and 80s, scholars worldwide published 

hundreds of papers considering different environmental conditions and landslide distribution 

in different regions, using various statistical models (Reichenbach et al., 2018). Statistically-

based landslide susceptibility mapping (SLSM) is now one of the most widely used method 

for landslide susceptibility assessment (Zhao et al., 2023). SLSM is an effective way of 

predicting and identifying areas prone to landslides on the regional scale by building the 

functional relationship between landslide environmental variables and existing landslide 

inventories (Alcántara-Ayala et al., 2022).    

More recently, artificial intelligence represented by machine learning (ML), as well as the 

increased availability of observational data, like remote sensing data, has introduced new 

methods of function expression and data analysis for SLSM. The capability of ML in handling 

large datasets and discovering complex patterns hidden in the data makes it suitable for 
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landslide susceptibility mapping (Tehrani et al., 2022). Henceforth, the focus on SLSM 

research has shifted to the construction and analysis of ML models, striving to develop better 

and more suitable prediction models (Zhao et al., 2023).  

 

1.2. The importance of mapping landslide susceptibility  

Norway is a country dominated by valleys with steep slopes, making it essential to take 

landslide activity into significant consideration when planning and designing new 

infrastructure. In the last 500 years, 3 500 landslide occurrences have been registered, totaling 

over 4 000 dead (Furseth, 2006). Between 1980 and 2023, The Norwegian Natural Perils Pool 

registered 15 410 landslide related damages with a total cost of 3 871 million NOK. 

Furthermore, data from the NASK database indicates a rising trend in the cost associated with 

each landslide-related incident 1. The increase could be attributed to either a higher frequency 

of landslide events, an escalation in the cost per event, or a combination of both factors. 

Hence, the data suggests that costs have increased and will likely increase exponentially over 

 
1 The NASK database contains statistics on number of reported damages related to natural disasters and total 

insurance costs. The statistics are all taken from the Norwegian Natural Damage Pool. 

https://nask.finansnorge.no/default.aspx 

Figure 1: The graph shows the total damage cost and cost per landslide event between 1980 and 2023. The 

numbers are adjusted for inflation. An exponential graph is plotted based on the cost per landslide event and total 

damage cost which gives an indication of future costs. Source: https://nask.finansnorge.no/ 

 

https://nask.finansnorge.no/default.aspx
https://nask.finansnorge.no/
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the years as a result of both more frequent and more expensive landslide related events 

(Bruland et al., 2023) (Figure 1). 

To prepare for this trend and reduce the risk associated with landslides, numerous measures 

and significant investments are required. For these to gain societal acceptance and be feasible 

within given financial constraints, it is necessary to find the most socially optimal solutions. 

These solutions should offer the best cost/benefit ratio while also being sustainable in terms of 

the environment and other societal interests. This requires holistic thinking and difficult 

prioritizations (Bruland et al., 2023).  

 

1.2.1. Systematic mapping of landslides in Norway 

Systematic Mapping of landslides under state management has been ongoing since around 

1980. Since 2009, the Norwegian Water Resources and Energy Directorate (NVE) has 

managed the state's landslide mapping, allocating funds to the Geological Survey of Norway 

(NGU). The Ministry of Petroleum and Energy defined the direction for the state`s work in 

managing risk associated with landslides (Meld.St.15, 2012). Landslide susceptibility maps 

and hazard maps were given particular importance as it provides knowledge about which 

areas are vulnerable and what consequences landslides can entail. The white paper makes a 

distinction between susceptibility and hazard maps, where susceptibility maps is defined as a 

map that shows areas prone to landslides, while hazard maps divide zones based on a given 

probability of a landslide event occurring (Meld.St.15, 2012). In the literature, confusion 

exists between the two terms landslide “susceptibility” and landslide “hazard”; They are often 

used as synonyms despite the two words expressing different concepts (Fell et al., 2008). In 

their review article on statistically-based landslide susceptibility models, (Reichenbach et al., 

2018, p.61) makes the distinction between the two terms by considering landslide 

susceptibility as: “the likelihood of a landslide occurring in an area on the basis of the local 

terrain and environmental conditions” (Brabb, 1985), and landslide hazard as “the probability 

that a landslide of a given magnitude will occur in a given period and in a given area” 

(Reichenbach et al., 2018, p.61). 

The Geological Survey of Norway developed the nationwide landslide susceptibility map on 

behalf of NVE. Created in 2014, the map encompasses types of landslides such as debris flow, 

debris slide and small to medium-sized debris floods. The map does not cover quick clay 

slides, shallow planar soil slides or large debris floods in gentle river courses (NVE, 2021). 
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The nationwide map highlights areas where caution must be exercised for the above-

mentioned landslides. It delineates potential release and runout areas by first identifying the 

release points of the landslide, then the runout zone of the release points. For the identification 

of the potential release areas, an index-based approach based on empirical threshold values of 

the three topographic properties slope angle, planform curvature and water-contributing area 

were used. An area is only defined as a potential release point for a landslide when the 

threshold is exceeded on all three properties (see figure 2) (Fischer et al., 2014). 

 

 

 

 

 

 

 

 

 

 

The index-based method used for the susceptibility mapping by NGU is partly based on the 

work by (Blahut et al., 2010). This approach utilizes GIS-based models and susceptibility 

maps, integrating spatial and temporal probabilities to assess debris flow hazards. However, it 

has several disadvantages, including the tendency to oversimplify by not accounting for local 

geological and climatic variations (Blahut et al., 2010).  

The established NGU method for landslide susceptibility mapping (LSM) in Norway employs 

expert knowledge, field observations and regional adaptations, making it a robust method that 

shows relevant susceptible areas without being too conservative (Fischer et al., 2014). 

However, its reliance on manual calibration, limited automation, and its simplicity might 

result in a model that does not capture susceptible areas on a smaller scale. While not 

claiming to supersede the traditional nation-wide method, this thesis explores an alternative 

approach by employing machine learning techniques, specifically Random Forest and 

Figure 2: Simplified scheme for the index-based combination of the three topographic properties 

for the identification of release areas. A cell is considered a starting cell when the index for all three 

input datasets is 1 (Fischer et al., 2014). 
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Automated Machine Learning (AutoML). These methods are chosen for their ability to handle 

large datasets, integrating numerous influencing factors and extensive records of landslides to 

potentially enhance prediction accuracy on a regional scale. This approach aims to leverage 

the strengths of machine learning to address some of the limitations of the NGU method.  

While working on this master’s thesis, the Norwegian government is in the process of 

preparing a new white paper on floods and landslides following several serious flood and 

landslide incidents in 2020 and 2023, specifically the quick-clay slide in Gjerdrum December 

30, 2020 and the extreme weather event (Hans) of august 2023. The Norwegian Ministry of 

Petroleum and Energy has received input from a multitude of institutions to help shape the 

country’s future plan regarding floods and landslides. The Norwegian University of Science 

and Technology (NTNU) makes it clear that in order to understand the magnitude that 

landslides pose, mapping is fundamental. Mapping is essential for understanding the natural 

processes that trigger landslide events and where such events happen. The adaptation of 

statistical models, emerging from the international literature, are beginning to be effective and 

can predict where landslide events may occur (Bruland et al., 2023). 

 

1.3. Main Objectives and Research Questions 

The main objective of this thesis is to explore the effectiveness of state-of-the-art machine 

learning methods in predicting landslides in soil within a regional context in Norway. This 

culminates in answering the following research questions:      

 

(i) How effectively can machine learning, trained on historical landslide registries and 

incorporating morphological, geological, land cover, and hydrological data, predict 

landslides in soil within Vestland county? 

(ii) How does the generalizability of a machine learning model, trained on morphological, 

geological, land cover, and hydrological data from one Vestland region, impact its 

landslide prediction accuracy in another Vestland region? 

(iii) Does automated machine learning outperform the established Random Forest 

algorithm when it comes to the predictive performance on training data and external 

validation data?  

(iv) How well can the Random Forest algorithm statistically evaluate which local terrain 

conditions contribute to landslide in soil formation? 
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Research Question (i) aims to thoroughly assess the effectiveness of comprehensive landslide 

susceptibility mapping for predicting landslides in soil within a specific region of Norway. 

Motivated by the methodology used by NGU to create the current nationwide susceptibility 

map—which necessitates dividing Norway into distinct zones because of its varied 

topography, geomorphology, geology, climate, and surficial deposit coverage—research 

question (ii) seeks to understand how machine learning can handle these disparities. 

Furthermore, state-of-the-art AutoML techniques will be employed to determine whether a 

model that automatically identifies the best algorithm and optimizes its hyperparameters can 

outperform the traditional Random Forest algorithm. The final research question explores 

another application of machine learning: using the Random Forest (RF) algorithm to assess 

the importance of geoenvironmental factors in the classification task and thereby elucidating 

their role in landslide formation.  
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1.4. Outline   

The remainder of this thesis is organized into the following chapters: Theoretical background, 

Data preparation & data processing, Methodology, Results & discussion, and Conclusion. 

Chapter 2 – Theoretical Background, describes the conceptual foundations necessary to 

understand the process of predicting landslides with machine learning. This include what kind 

of landslides it is possible predict, what kind of prediction method to use and what kind of 

metrics that should be used to measure the predictive performance of the LSM. This chapter 

also presents earlier studies that have used machine learning for LSM.  

Chapter 3 – Data Preparation and Data Processing, presents how the landslide inventory was 

prepared, the justification for selecting the specific influencing factors, as well as the data 

processing phase. Data processing includes the choice of mapping units, sampling ratio and 

training/testing ratio. These decisions are based on previous approaches in the field.   

Chapter 4 – Methodology, outlines the complete workflow of the study. It begins by defining 

the study area for both training and external validation. Landslide and non-landslide point 

data are created and mapped with influencing factors serving as independent variables for the 

binary classification task. Feature selection is employed to address cases of multicollinearity 

and redundancy. The dataset is then used to train both a Random Forest classifier and an 

AutoML classifier, which are also tested on an independent dataset. Finally, these models are 

utilized to generate a landslide susceptibility map for the region. 

Chapter 5 – Result and Discussion, presents the results obtained from the analysis. Various 

performance metrics were utilized to evaluate the performance of the Random Forest model 

and the AutoML model. Furthermore, the results are discussed and compared with the 

established susceptibility map provided by NGU. Lastly, the importance of the influencing 

factors is explored and discussed.    

Chapter 6 – Conclusion, concludes on the main findings and presents ideas for future work. 
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Chapter 2 

 

Theoretical Background 

 

2.1. Landslides 

Over 90% of landscapes that are not currently glaciated consists of hillslopes, the remainder 

consisting of river channels and their floodplains (Holden, 2017). We can therefore say that all 

the landforms on earth have slopes as a kind of least common multiple. The processes where 

parent material is broken down and transported to the streams are vital in understanding how 

the catchment functions as a geomorphological system (Holden, 2017).   

Slope processes can be systemized into two broad types: (i) weathering processes and (ii) 

transport processes. In a "transport limited" transport process, the rate of transport is 

constrained by the capacity of the process that moves the material. This occurs when there is 

an abundant supply of material, but the process responsible for moving it can only transport a 

limited amount over a short distance, thereby limiting the overall transport rate. Other 

processes are limited, not by the capacity to transport, but the supply of suitable material to 

transport, defined as supply limited (Holden, 2017). Mass movements fall under the category 

of supply-limited slope processes. 

In mass movements, a block of rock or soil moves as a single unit. The movement of the 

block is primarily governed by forces acting on it as a whole. The individual rock or soil 

fragments within the block maintain close contact, resulting in their collective movement. 

Mass movements vary in their rates; those driven by large water flows are typically faster than 

movements in drier conditions. Furthermore, these rapid movements often transport material 

over greater distances and are usually limited by the available supply of material (Holden, 

2017). In rapid mass movements, there is an important distinction between slides and flows. 

For slides, the moving mass moves as a block, while in flows, different parts of the mass 

move over each other with differential movements or shear. 

Characterized by a range of processes, landslides involve the downward and outward 

displacement of slope-forming materials, including natural rocks, soil, artificial fill, or their 

combinations. The movement of these masses can manifest in several forms—falling, 

toppling, sliding, spreading, and flowing, or a combination thereof. While gravity serves as 
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the primary driving force behind landslides, its effect is often compounded by the presence of 

water (Sidle & Ochiai, 2006). In their 2006 book, Landslides – processes, Prediction and 

Land Use, Sidle & Ochiai (2006) included debris flows as they represent a special type of 

failure that can initiate either on hillslopes or within channels when augmented by an 

accumulation of pore water. 

 

2.1.1. Classification of landslides  

The aim of this study is to conduct a landslide susceptibility mapping of a region in Vestland 

county in Norway. A landslide susceptibility mapping depends on a landslide inventory – a 

comprehensive database detailing the occurrence and characteristics of past landslides in a 

specific area (Liu et al., 2023). The accuracy of the landslide inventory plays a crucial role in 

Landslide Susceptibility Mapping (LSM); It directly influences the quality and effectiveness 

of the samples extracted, which are essential for training and testing machine learning models 

(Liu et al., 2023). As the landslide inventory is derived from the NVE database for landslide 

occurrences, it is important to establish connections between English and Norwegian 

expressions and classify the different landslide types accordingly. 

Landslides can be distinguished by the rate of the slope movement. Rates of movement range 

from less than 15 cm per year to more than 150 cm per second according to Cruden and 

Varnes (1992, as cited in Xie, 2014). Another method of classifying landslides involves 

characterizing the movement within the displaced mass, focusing on the kinematics of 

landslides. For the classification used in this study, the "The Varnes Classification System” 

(Varnes, 1978) is utilized, derived from the updated article written by (Hungr et al., 2014). 

The widely used classification scheme developed by Varnes (1978) distinguishes five 

kinematically distinct types of landslide movements: (a) falls; (b) topples; (c) slides; (d) 

spreads; (e) flows), plus a combination of these movements. The classification is coupled with 

the type of material present in the movement (bedrock, coarse soils and predominately fine 

soils) as well as the speed of movement (Sidle & Ochiai, 2006).  

Hungr et al. (2014) proposed modifications to the Varnes classification system to more 

accurately represent contemporary advancements in the understanding of landslide 

phenomena, including the materials and mechanisms involved. A landslide is a physical 

system developed through several stages. As reviewed by Skempton and Hutchinson (1969), 

the evolution of mass movements comprises pre-failure deformations, failure itself and post-
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failure displacement. In addition to this, many landslides exhibit many different movement 

episodes, often separated by periods of standstill. A landslide is a complex process that might 

develop through different stages, each individual stage being described differently. Hungr et 

al. (2014) points out the fact that all landslides are complex and we should be able to apply 

simple traditional terms to whole scenario. Otherwise, a classification of such an event would 

need to be torn into fragments. Hungr et al. (2014) proposes the simple term assigned to a 

given landslide type should reflect the particular focus of the researcher.  

The concern of this research is to map potential areas susceptible to landslides, specifically 

landslides in soil. Hungr et al. (2014) categorizes landslides by geological material types 

classified by origin, where soil and rock are the two main classes. Similarly, NVE cites 

international terminology in the report on landslide hazard mapping in Norway (Cruden & 

Varnes, 1996, as cited in (Øydvin. et al., 2011). The report refers to a need to adopt a more 

general and simplified terminology, adapted to Norwegian natural conditions as well as the 

language. Landslides are grouped by geological material: (a) rock; (b) loose material; (c) 

snow. Hence, “loose material” is defined as all types of loose material residing on top of the 

bedrock. NVE uses the term “Løsmasseskred”, translated as “Landslides in soils” for all 

landslides in loose materials. Furthermore, landslides in soil are divided into debris slide, 

debris flow, debris flood and quick-clay landslides. The terms debris slides, debris flows and 

debris floods are often used interchangeably, and will in this study be defined as “Landslides 

in soil” and used to define the landslide types for the landslide inventory, as shown in table 1. 
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2.2. Landslide Susceptibility Mapping 

Landslide Susceptibility Mapping is the process of predicting “where” landslides are likely to 

occur. Several methods and approaches have been proposed and tested to ascertain landslide 

susceptibility, including analysis of landslide inventories, heuristic terrain zoning, 

geomorphological mapping, numerical modeling and statistically- based classification 

methods (Reichenbach et al., 2018). All the proposed methods are based upon a select few, 

widely accepted set of assumptions (Xie, 2014): 

(1) Slope failures leave discernible morphological features; most of them can be 

recognized, classified, and mapped. 

(2) A landslide is controlled by mechanical laws that can be determined empirically, 

statistically or in deterministic way. Conditions that cause landslides directly or 

indirectly linked to slope failure, can be mapped and used to predict landslide 

occurrence in the future. 

Table 1: Proposed modifications to the Varnes classification system. Red boxes indicate the landslide types proposed 

by NVE as synonyms to the Norwegian terms for landslide types under the common term “landslides in soil”.   
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(3) The past and present are keys to the future. This principle implies that slope failures in 

the future will likely occur under the conditions which led to past and present slope 

instability. 

(4) Landslide occurrence in space and time, can be inferred from heuristic investigation, 

computed through the analysis of environmental information, or inferred from 

physical models. Therefore, a territory can be zoned into hazard classes ranked 

according to different probabilities. 

 

Ideally, the assessment and mapping of landslide hazards should be based on all these 

assumptions. Not adhering to these principles can limit the usefulness of any hazard 

evaluation, regardless of method or the objective of the study (Xie, 2014).  

Landslide susceptibility methods can be broadly categorized as either quantitative or 

qualitative, which can be further classified into knowledge-driven, data-driven and 

deterministic physical model methods (Yong et al., 2022). Knowledge-driven methods 

leverage expert insights (Sujatha & Rajamanickam, 2011). Yet, this approach is inherently 

subjective, and expert opinions might not always be accurate. On the other hand, data-driven 

approaches rely predominantly on statistical theories (Chen et al., 2020; Guo et al., 2023). 

These methods streamline the influencing and controlling factors of geological disasters but 

omit detailed examination of the mechanisms triggering these disasters. The accuracy of these 

models heavily depends on the quality of the data, with any errors in the input leading to 

significant discrepancies in the outcomes.  

Deterministic physical models (Gao and Wang, 2019), which utilize mechanical equations to 

describe physical processes, are typically reserved for situations with homogenous landslide 

types and physical characteristics. They are most effective for in-depth studies of smaller 

regions. Although this technique can pinpoint key factors based on physical principles, it 

demands precise parameter information and is generally constrained to smaller-scale studies 

(Yong et al., 2022). 

 

 

 

 



14 

 

2.3. Statistically based landslide susceptibility mapping 

Among the three previously descibed methods, the data-driven method is the most commonly 

used method in landslide susceptibility mapping (Yong et al., 2022). The data-driven approach 

can be roughly divided into binary and multivariate statistical methods.  

Binary statistical methods evaluate individual factors, such as slope or lithology, in isolation. 

This approach overlays each factor onto a landslide inventory map to assign a weight score 

based on how closely the factor correlates with landslide events. Prominent models within this 

methodology include the information quantity model and the frequency ratio model (Umar et 

al., 2014). The binary approach does not account for the interplay among factors.  

To bridge this gap, multivariate statistical methods, synonymous with machine learning in this 

context, concurrently analyze multiple factors (Yong et al., 2022). The model calculates how 

different factors relate to landslides, allowing for the assessment of each factor's significance. 

This helps identify key contributors to landslide risk, aiding in the management and 

prevention of such disasters. Techniques such as logistic regression, artificial neural networks, 

and random forests are commonly used (Reichenbach et al., 2018).  

Reichenbach et al. (2018) emphasizes how models used in the literature employs one of the 

following six main groups of classification methods:  

(i) Classical statistics (e.g., logistic regression) 

(ii) Index-based (e.g., weight-of-evidence) 

(iii) Multi criteria decision analysis 

(iv) Machine learning (e.g., fuzzy logic, support vector machines, random forest) 

(v) Neural networks 

(vi) Other statistics  

For reference, only (ii) Index-based, can be defined as a binary statistical method, while the 

other five would be considered multivariate statistical approaches.    

 

2.3.1   Logistic regression for LSM 

Logistic regression can be seen as an extension of multiple linear regression in situation 

where the dependent variable, in this case the presence or absence of landslides, is not a 

continuous parameter. The outcome of the logistic regression is a probability, ranging from 0 

to 1 (Nefeslioglu et al., 2008). The general purpose of a logistic regression method in to 
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determine the best fitting model to describe the relationship between the dependent variable 

and a set of independent variables.   

Kavzoglu et al. (2014) used a logistic regression model to assess the shallow landslide 

susceptibility of the Trabzon province in Turkey. The logistic regression method was 

compared to a machine learning approach and a multi criteria decision method. The logistic 

regression model was used as a benchmark method because of its popularity and ease of use. 

The logistic regression method resulted in a classification with an accuracy of 62 percent 

compared to an accuracy of 75 and 77 percent for the machine learning approach and a multi 

criteria decision method, respectively. Compared to the logistic regression model, the multi 

criteria decision method and the machine learning method was shown to have several 

advantages, including handling complex and non-linear data (Kavzoglu et al., 2014).  

 

2.3.2   Weight-of-evidence for LSM 

The weight-of-evidence method is an index-based approach used to combine datasets to 

predict the location of a target variable. Neuhäuser and Terhorst (2007) described how 

overlaying landslide locations with conditioning factors allows for the statistical evaluation of 

their significance in past landslide occurrences. Conversely, the Weight of Evidence model 

calculates the influence of each predictive factor by determining positive (X+) and negative 

(X-) weights, based on the presence or absence of landslides within the study area. A positive 

weight indicates that the predictive variable is present at the landslide location and the 

magnitude of the weight is an indication of the correlation between the predictive variable and 

the landslides. Concurrently, a negative weight indicates the absence of the predictive variable 

and shows the magnitude of the negative correlation (Regmi et al., 2014).  

Regmi et al. (2014) investigated the application of the weights-of-evidence method and 

compared it to other index-based approaches for landslide susceptibility mapping of a road 

section in central Nepal. Validation results showed that all three methods show equal 

performance. The weights-of-evidence method had a success rate of 75%.      

 

2.3.3   Multi criteria decision analysis for LSM 

A multi-criteria decision analysis (MCDA) approach is a type of decision analysis in which 

decision alternatives are evaluated in terms of explicitly stated criteria (Stewart, 1992). Kamp 
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et al. (2008) used a multi-criterion evaluation to determine the significance of event-

controlling parameters in triggering of the landslides. The study used a multi-criteria 

Evaluation (MCE) technique. The word “decision” in this context refers to a choice between a 

set of factors (conditioning factors that explain landslides). These factors are evaluated and 

weighted to generate criterions. The MCE combines these criteria to construct a single 

composite that can be used for decision making. Kamp et al. (2008) used a weighting system 

developed by collecting expert opinion obtained from field work, implying some element of 

subjectivity.    

 

2.3.4   Machine Learning for LSM 

Compared to alternative methods, machine learning techniques excel at mitigating overfitting, 

capturing the complex non-linear interactions among variables affecting landslide 

susceptibility and automatically generating the best features and context to achieve high 

prediction accuracy (Reichenbach et al., 2018). Machine learning methods are also well suited 

to handle large amount of data, making it especially suitable for classification tasks associated 

with predicting landslide occurrences. Machine learning can produce repeatable and highly 

accurate results through continuous learning (Ado et al., 2022). Huang et al. (2020) compared 

the performance of heuristic, general statistical and machine learning models for landslide 

susceptibility assessment. The study inferred that machine learning models have higher 

predictive performance than general statistical and heuristic models. General statistical 

models were shown to be limited by its linear analysis and heuristic models limited by the 

subjective weighting process (Huang et al., 2020). 

Many machine learning-based models are used in the field by different authors; Ado et al. 

(2022) points to the random forest (RF), Support Vector Machine (SVM), Linear Logistic 

Regression (LR) and Artificial Neural Network (ANN) as the most popular models. Liu et al. 

(2023) looked at data from the Web of Science and found 572 publications between 2009 and 

2022 that utilized machine learning with landslide susceptibility mapping. They found that 

RF, ANN and SVM where the three most prevalent methods applied in the field. Most recent 

research have compared the performance of different models; Huang and Zhao (2018) 

compared the performance of SVM with analytic hierarchy process (AHP), logistic regression 

(LR), ANN and RF. They concluded that the quality and quantity of the data was the most 

important factor. 
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Ado et al. (2022) also discussed the recent advancement of hybrid and ensemble methods. 

Hybrid methods combine multiple machine learning models with optimization and feature 

selection techniques. Ensemble methods combines several weak machine learning models and 

uses a voting system to derive the result of the model. Based on results from many studies, 

Ado et al. (2022) concluded that there is a noticeable improvement in the prediction accuracy 

with hybrid and ensemble methods. This is because hybrid methods can overcome limitations 

of conventional machine learning (Ado et al., 2022). Similarly, Liu et al. (2023) compared 

multiple methods to predict landslide susceptibility in the landslide-prone county of Yunyang 

in China. The ensemble technique Extreme Gradient Boosting (XGBoost) and random forest 

(RF) proved much better performance than the others, especially on the training, but also on 

the testing phase. Liu et al. (2023) concluded that the tree-based methods (XGBoost and RF) 

showed better performance, especially for larger areas where the training suffers from limited 

data points. 

Ageenko et al. (2022) conducted the first landslide susceptibility mapping in Denmark; by 

testing three established machine learning algorithms – RF, SVM and LR. Training data, 

testing data and external validation data were used to predict landslides. The RF model 

showed superior accuracy, especially on the external validation data. The RF model was 

shown to have the robustness and potential to be used for landslide susceptibility mapping of 

Denmark. In their comprehensive review, Liu et al. (2023) examined machine learning-based 

approaches for Landslide Susceptibility Mapping. They found that traditional machine 

learning techniques can create reliable susceptibility maps, provided there is access to high-

quality data samples. Furthermore, the study highlighted that employing sophisticated 

ensemble models typically enhances the accuracy of these predictions. 

 

2.4. Machine Learning 

Machine learning falls under the umbrella of artificial intelligence (AI) and can be described 

as computational techniques using past experiences to enhance performance or to generate 

precise predictions (Mohri et al., 2018). Arthur Lee Samuel, a professor and pioneer of 

machine learning, defined it as the field of study that allows computers to learn without being 

explicitly programmed (Aurélien, 2019).  

Common for the definitions is that machine learning consists of designing a prediction 

algorithm. This algorithm attempts to discover patterns in data, referred to as “experience”. 
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Mohri et al. (2018) emphasizes that in this context, “experience” pertains to previously 

gathered information accessible to the algorithm, usually existing as electronic data prepared 

for examination. This experience, the so called “previously gathered information” can be 

structured in different ways, which affects the machine learning task.  

Machine learning systems can be classified based on the amount, and type of supervision they 

get during the training process. If all data points used in the training have their corresponding 

ground truth values, the machine learning is defined as supervised learning. In the context of 

landslide susceptibility, supervised learning occurs when a training set includes labels 

indicating whether a landslide is present or absent—essentially providing the desired solution 

to the analysis. Conversely, unsupervised learning uses data points that lack ground truth 

values, enabling the model to learn “without a teacher.” (Aurélien, 2019).  

A typical supervised learning task is classification. Supervised classification is used when the 

target value belongs to a finite set of classes. Another common task is to predict a target 

numerical value, such as the price of a house based on a set of features called predictors. This 

method is called supervised regression. Some regression algorithms can be used for 

classification and vice versa. Logistic regression is an effective algorithm that can be used for 

classification tasks. This is because it can output a value that corresponds to the probability of 

belonging to a given class, for example 50% chance of a landslide occurring (Aurélien, 2019). 

As discussed in chapter 2.3.4, machine learning has been extensively used in the field of 

landslide susceptibility. This is treated as a supervised classification task for two main 

reasons: (1) it involves supervised learning, as the method relies on ground truth data to 

determine the presence or absence of landslides, and (2) it is a classification task, as the model 

predicts whether the outcome falls into one of two categories: landslide present or landslide 

absent. 

 

2.4.1   Supervised classification         

In supervised classification methods, the objective is to identify or predict predefined classes 

and label new objects as a member of a specific class (Dinov, 2023). This classification 

algorithm learns from a set of training data to categorize new data points and predicts the 

class of new entries based on their attributes, which are critical parameters for creating a 

precise model. Classification tasks can be binary, involving two outcomes such as predicting 

landslide/ non-landslide, or multi-label, where outcomes exceed two. Additionally, samples 
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can also be mapped to more than one label (Mandal & Bhattacharya, 2019). Constructing a 

classification model involves multiple steps; first (1), a data set need to be collected and 

preprocessed. Second, (2) the classifier model needs to be initialized. Third (3), the dataset is 

split into training data and testing data and the classifier is fed with the training data. Fourth, 

(4) the trained classifier is used to predict the class of new observations. Last, (5) the model's 

performance is assessed by evaluating its error rate on a separate test dataset (See figure 3) 

(Mandal & Bhattacharya, 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Flowchart showing the workflow of a typical supervised classification task. Source: 

(Mandal & Bhattacharya, 2019) 
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2.4.2   Binary Classification 

Binary classification is a fundamental concept within machine learning, where the goal is to 

categorize entities into one of two distinct groups based on a set of features. We can think of 

these outcomes as positive (1) or negative (0); this exemplification works especially well in 

the context of LSM where we want to predict an area prone to landslides (1) and areas not 

prone (0), based on various geographical and environmental features. 

Many metrics can be used to measure the performance of a binary classifier. The accuracy of 

a model is a metric that measures how often the model correctly predicts the outcome. A 

higher value usually means better model performance (Liu et al., 2023). When using cross 

validation – a method for assessing how the result of a statistical analysis will generalize to an 

independent dataset – the accuracy score can often be misleading (Aurélien, 2019). Using an 

extreme example illustrates an import point: if a dataset is skewed with only 10% of the data 

representing class 1 (landslide occurring) and 90% being class 0 (landslide not occurring), an 

accuracy score of 90% can be obtained merely by always guessing the outcome to be 0. In 

other words, the accuracy score treats all classes as equally important and quantifies all 

correct predictions. In the field of information retrieval, precision and recall are preferred as 

metrics for model performance (Aurélien, 2019). A confusion matrix is a way to define the 

performance of a classification algorithm. Given a binary classification of a dataset, there are 

four basic combinations of actual data and assigned category: (1) true positive (correct 

positive assignment), (2) true negative (correct negative assignment), (3) false positive 

(incorrect positive assignment) and (4) false negative (incorrect negative assignment). These 

four possibilities can be arranged as a table where rows correspond to the actual class and 

columns corresponds to predicted class (see table 2). 

 

Table 2: Confusion matrix for binary classification. 

 

Eight basic ratios exist from the confusion matrix which comes in four complementary pairs, 

each pair summing to 1. By selecting one ratio from each of the pairs, one can concisely 

describe a model's performance across different dimensions, providing a balanced view of its 

                         Assigned 

Actual 
Test outcome positive Test outcome negative 

Condition positive True positive False negative 

Condition negative False positive True negative 
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predictive capabilities and areas for improvement. This approach offers a nuanced 

understanding of model accuracy beyond a single metric, allowing for a more comprehensive 

evaluation of its performance in binary classification tasks (Aurélien, 2019).  

The accuracy score of the positive prediction, called precision is a measure of the number of 

true positive divided by the amount of true positive plus false positives (Aurélien, 2019). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Precision alone cannot be used as a comprehensive metric because it does not account for the 

entirety of relevant instances, potentially ignoring a significant number of true positives 

beyond the single instance it correctly identifies. Precision is therefore typically used 

alongside another metric called recall. This is a measure of the true positive rate and is the 

ratio of positive instances that are correctly detected by the classifier, described with the 

following formula: 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 − 𝐹𝑁
 

 

The precision and recall metrics can be combined into a single metric, called the F1 score. 

The F1 computes a “harmonic mean” of the two but puts more to weight to low values. The 

F1 score therefore only rises when both precision and recall have high values (Aurélien, 

2019).   

F1 =  
𝑇𝑃

𝑇𝑃 + 
𝐹𝑁 + 𝐹𝑃

2

 

As the F1 score favors classification that have similar recall and precision, a problem arises; 

in practice, achieving high precision and high recall is challenging due to the inverse 

relationship between precision and recall in many classification tasks. Increasing precision 

typically means being more conservative about labeling an instance as positive, which can 

lead to missing out on true positives, thus lowering recall. On the other hand, increasing recall 

means striving to identify as many true positives as possible, which can lead to mistakenly 

labeling more negatives as positives, thus lowering precision (Aurélien, 2019). 

The receiver operating characteristic (ROC) curve is another tool used to assess the usefulness 

of a classifier. The ROC curve plots the true positive rate (Recall) against the false positive 
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rate (FPR). The FPR is the ratio of negative instances incorrectly classified as positive. The 

ROC curve gives a clear visualization of a model's ability to differentiate between two classes 

at any point along a scale from 0 to 1, which represents the full range of possible cut-off 

points a model can use to decide whether an instance belongs to one class or the other 

(Aurélien, 2019).    

Several algorithms can perform binary classification tasks, including logistic regression, 

decisions trees, random forest, support vector machine and gradient boosting algorithms like 

XGBoost. Random Forests and XGBoost are among the most effective algorithms for binary 

classification. Random Forests, introduced by Leo Breiman and Adele Cutler in 2001, 

leverage an ensemble of decision trees to improve prediction accuracy and control overfitting 

(Breiman, 2001). By averaging the predictions of numerous trees, each trained on a subset of 

the data, Random Forests provide robustness and reduce the risk of errors from individual 

trees. This method has been widely adopted for its simplicity and effectiveness across various 

domains.  

 

2.4.3   Automated Machine Learning 

Automated machine learning (AutoML) addresses the fundamental difficulties when applying 

machine learning to solve real life problems. Every effective machine learning task needs to 

decide which machine learning algorithm to use on a given dataset, decide how to preprocess 

its features and how to set up the hyperparameters (Feuer et. al., 2015). As of today, there is 

no such thing as a perfect machine learning model; no algorithm exist that will guarantee to 

select the best model for a particular task. AutoML approaches this problem by providing 

methods and processes to make machine learning available for non-ML experts and to 

improve efficiency of machine learning.  

Auto-Sklearn is one such AutoML framework. Built around the scikit-learn machine learning 

library for python, auto-sklearn automatically searches for the right learning algorithm for a 

new machine learning dataset and optimizes its hyperparameters (Feurer et al., 2022). In 

addition to the performance assessment of different machine learning models, the auto-sklearn 

includes a stacked ensemble of the tested models. The ensemble utilizes multiple algorithms 

for the prediction, possibly resulting in improved performance compared to only using one 

algorithm (Feurer et al., 2022). 
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Chapter 3 

 

Data Preparation and Data Processing 

 

As the foundation of creating effective machine learning models, the process of data 

preparation is the most important part. Within the field of landslide susceptibility mapping 

(LSM), this task emerges as particularly intricate, encompassing both the acquisition of 

precise landslide inventories as well as the careful selection of relevant conditioning factors 

(Liu et al., 2023).  

This chapter will present the data on landslide locations (landslide inventory), data used for 

generating the predictive variables, the selection process of the predictive variables, as well as 

a detailed look into the data processing. Data processing includes the choice of mapping units, 

sampling ratio and training/testing ratio. In addition to highlighting these key aspects of the 

study, the decisions will be contextualized by comparing them with previous methods in the 

field. 

 

3.1.   Landslide Inventory Map 

The landslide inventory refers to a database containing records of the location, extent, and 

often the types of landslides in a certain area (Yong et al., 2022). This dataset is the basis for 

landslides susceptibility mapping, acting as the ground truth needed for a supervised machine 

learning task. Therefore, the completeness of the landslide inventory is directly related to the 

accuracy and usefulness of the final susceptibility map. There are multiple methods for 

obtaining a landslide inventory. Among the most commonly used approaches documented in 

the literature are field investigations, satellite imagery analysis, Google Earth interpretation, 

and aerial photograph analysis (Liu et al., 2023).  

Field investigation is generally regarded as the most precise method to create a landslide 

inventory map. The process involves studying an affected area and thoroughly investigating 

and measuring each potential slope failure. Field surveys for documenting landslides are time-

consuming and sometimes impractical due to inaccessibility and high costs. Additionally, 
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human error can affect the accuracy of data collection (Liu et al., 2023). These factors 

highlight the need for alternative, more efficient methods. 

A remote sensing (RS) approach has the advantage of full coverage of remote sensing images 

and a strong interpretation capability for small and medium-sized landslides. The remote 

sensing image survey method can stem from multiple sources, including unarmed aerial 

vehicles, photogrammetry, aerial photos, satellite images, interferometric synthetic aperture 

radar (InSAR) and laser imaging, detection and ranging (LiDAR) (Yong et al., 2022). More 

recently, machine learning has been used to identify landslides. Kreuzer and Damm (2020) 

developed an automated method using machine learning to filter and classify digital data for 

landslide inventories, successfully reducing irrelevant data by 91% through a keyword alert 

system. However, such methods are very complex and the degree of applicability is 

questionable. These methods are thus usually not introduced in practice as a replacement for 

traditional and professionally recorded inventory maps (Smith et al., 2021).  

In this study, a database containing landslide locations were prepared based on the Norwegian 

landslide database (NSDB). The Norwegian Water Resources and Energy Directorate (NVE) 

is responsible for state management tasks regarding preventative measures related to flood 

and landslide events. NVE are responsible for maintaining a reliable and updated registry 

system for landslides and floods. Historical landslide events are registered in the NSDB 

database and consist of over 70 000 separate landslide registrations from multiple sources, 

including The Norwegian Public Roads Administration (SVV), The Norwegian National Rail 

Administration (JBV), Norwegian Geotechnical Institute (NGI), The Geological Survey of 

Norway (NGU), NVE and unaffiliated people through different websites for natural hazard 

observations2. However, the credibility and accuracy of these registrations vary significantly, 

with many lacking precise information regarding location, initiation time, landslide type, as 

well as spatial bias in the mapping. According to Fischer et al. (2014), many of the registries 

mapped by SVV and JBV are mapped on, or very close to the road and railroad network. This 

variability in data quality directly affects hazard and risk assessment accuracy. 

In their 2020 report, NVE presented a recommendation for quality control of registered 

historical landslide events. The quality of landslide data was categorized into a grading 

 
2 Unaffiliated people can register landslide events through websites like Regobs: 

https://www.regobs.no/?SelectedNumberOfDays=3&&NWLat=71.7739410364347&NWLon=-

15.996093750000009&SELat=56.43820369358167&SELon=67.6318359375 

 

https://www.regobs.no/?SelectedNumberOfDays=3&&NWLat=71.7739410364347&NWLon=-15.996093750000009&SELat=56.43820369358167&SELon=67.6318359375
https://www.regobs.no/?SelectedNumberOfDays=3&&NWLat=71.7739410364347&NWLon=-15.996093750000009&SELat=56.43820369358167&SELon=67.6318359375
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system ranging from A to D, based on the accuracy of their location, time, and landslide type 

(Devoli et al., 2020). Given the critical importance of high-quality landslide inventory for 

LSM, only records that satisfied the spatial accuracy and landslide type certainty of grade A 

were utilized (see table 3). Because LSM is not capable, nor intended to predict the temporal 

occurrence of a landslide, the criteria regarding temporal accuracy in the NSDB database 

could be ignored. As a result, a collection of landslide events with a high degree of spatial 

accuracy (≤ 10 meter) and a certainty of the landslide type were collected using the software 

ArcGIS Pro 3.2.0 with SQL expressions on the raw dataset.  

 

Table 3: Table showing the criteria defining the quality grade for historic landslide mapping in the NSDB 

database. Source: (Devoli et al., 2020). 

A B C D 

Location: Have to be confirmed 

from available documentation 

Location: Have to be 

confirmed from available 

documentation 

Location: Have to be 

confirmed from available 

documentation 

Location: Unsure (no estimate 

for the uncertainty of the 

location is defined) 

Spreading area:  

• Landslide point and 

landslide initiation 

point have a spatial 

accuracy +/- 10 meters 

or more 

• Landslide initiation 

area and runout area as 

a polygon     

Spreading area:  

• Landslide point and 

landslide initiation 

point have a spatial 

accuracy +/- 50 

meters or more  

Spreading area:  

• Landslide point 

have spatial 

accuracy > 50. (No 

registered accuracy 

is not accepted).   

Both landslide events that are 

quality controlled and which 

is not quality controlled 

can have this quality grade. 

Date and time: Correct date, time 

+/- 3 hours or better 

Date and time: Date +/- 1 day, 

unknown time of day 

Date and time: Date unsure 

(temporal accuracy > 2 days).  

 

Landslide type: Correct (easy to 

interpret from available 

information 

Landslide type: Correct (easy 

to interpret from available 

information 

Landslide type: Unsure, or 

unspecified 

 

No duplicates: (Inside quality 

grade A or B) 

No duplicates: (Inside quality 

grade A or B) 

  

 

 

3.2.   Conditioning Factors for LSM 

In addition to landslide data (the “dependent” variable, also called target variable), landslide 

susceptibility mapping requires information on geoenvironmental factors, called 

“conditioning factors”. The conditioning factors in LSM act as the explanatory variables in a 

supervised machine learning task. The conditioning factors are used to explain the target 

variable by analyzing the relationship between the conditioning factors and the target variable. 

As one of the keys to create effective prediction models, selecting the conditioning factors is 
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another important step in landslide susceptibility mapping. According to Reichenbach et al. 

(2018), 596 such conditioning factors exist. It is unrealistic for this study to take them all into 

consideration; A select group of variables will be used.  

The selection of conditioning factors for this study was guided by prior research, particularly 

the work of Reichenbach et al. (2018). This foundational study identified topographical, 

hydrological, geological, land cover, and anthropogenic factors as significant contributors to 

landslide susceptibility. The choice also reflects the availability of data for the region and the 

feasibility to produce such data. A more detailed discussion on this topic will be provided in 

Chapter 4.  

Reichenbach et al. (2018) classified variables into five classes: 

(i) Morphological 

(ii) Geological 

(iii) Land cover 

(iv) Hydrological 

(v) Other variables 

 

3.2.1   Morphological Variables 

In LSM, morphological variables are obtained by processing terrain elevation data, often in 

the form of a digital elevation model (DEM) (Reichenbach et al., 2018). A DEM is a raster 

representation of a three-dimensional modeling of the Earth’s topography (Saleem et al., 

2019). For this study, a DEM was downloaded based on elevation data from the project 

“Nasjonal detaljert høgdemodell” – a detailed mapping of elevation in every square meter of 

Norway, carried out between 2016 and 2022. The data was downloaded in the GeoTIFF 

format with a resolution of 5 meters3.  

DEM derivatives have proven particularly effective for predicting the spatial distribution of 

landslides. Although results from LSM vary based on differences in local triggering factor and 

quality of available data, the importance of DEM derivatives for LSM is unquestionable. 

Fabbri et al. (2003) showed how a predictive model that used DEM derivatives, including 

elevation, aspect and slope, performed much better than a model using geological, 

 
3 The DEM was resampled to a spatial resolution of 5 meters to better capture the surface characteristics 

contributing to landslide in soil formation. The DEM was downloaded from hoydedata.no: 

https://hoydedata.no/LaserInnsyn2/ 

https://hoydedata.no/LaserInnsyn2/
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depositional and land use data, and slightly better than a model that combined the variables. 

According to Reichenbach et al. (2018), simple and direct measures of the Earth’s surface is 

the most used conditioning factors. This is in part because they can be generated using a DEM 

and because there exist theoretical reasonings to justify their use. The following paragraphs 

describe the morphological variables used in this study. 

The raw product of a DEM is an elevation representation of the surface. Elevation is often 

used in LSM as it functions as a proxy for variability in slope gradient, lithology, weathering, 

precipitation, ground motion, soil thickness and land use (Sidle & Ochiai, 2006). Reichenbach 

et al. (2018) report that numerous studies have established significant statistical correlations 

between elevation and landslide frequency. However, elevation alone does not provide a 

direct physical explanation for landslides. Despite this, elevation remains a popular variable, 

frequently utilized as a direct measure of terrain morphology (Reichenbach et al., 2018).    

The gradient of a slope is considered as an essential conditioning factor for determining slope 

instability (Ado et al., 2022). The slope gradient represents the quantitative measure of the 

steepness of the terrain and has a direct control on the balance of the retaining and 

destabilizing forces that acts on a slope. Sidle & Ochiai (2006) points out that although slope 

gradient is important related to landslide initiation, the wide range in the lower limit of slope 

gradients known to trigger different types of landslides shows that other geomorphic, as well 

as hydrological and geological factors are often equally important determinants of slope 

stability.  

In addition to the gradient of the slope, the shape of the slope exerts a strong influence on the 

slope stability in steep terrain by concentrating or dispersing surface and primarily subsurface 

water in the landscape (Sidle & Ochiai, 2006). Part of a surface can be concave, convex or 

planar (straight). Profile curvature, aligning with the slope's direction, influences flow 

acceleration or deceleration on the surface. An upward convex shape will generally decelerate 

the flow, while upward concavity accelerates the flow across the surface. Planform curvature 

align perpendicular with the slope direction and affects flow convergence or divergence 

across a surface. According to Sidle & Ochiai (2006), laterally and upward convex landforms 

are most stable in steep terrain, followed by planar landforms and concave landforms (least 

stable) (see figure 4). For laterally convex slopes, water is dispersed while concave slopes 

tend to concentrate water into small areas of the slope, generating rapid pore water pressure. 
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Neither slope nor elevation alone exerts a dominant control on slope stability, although these 

variables interact with other factors to influence landslide susceptibility. Slope aspect is a 

representation of the direction of the downhill slope, expressed as the compass direction the 

surface faces. According to Sidle & Ochiai (2006), slope aspect affects hydrological processes 

via evapotranspiration, thus affecting weathering processes, vegetation and root development. 

Moreover, on the Northern Hemisphere, north-facing slopes receive higher and less variable 

moisture compared to south-facing slopes, resulting in greater weathering and thus increase in 

landslide susceptibility (Sidle & Ochiai, 2006). However, the use of slope aspect as an 

influencing factor is less justified compared to other metrics, and may be controlled by local 

conditions. While aspect characteristics have been shown to influence landslide susceptibility 

in some areas, other areas don’t (Sidle & Ochiai, 2006).  

Other more complex morphological variables that captures the overall morphology of the 

entire slope or sub-catchments are also shown to be good predictors for slope instability. The 

expression of the roughness of the surface is such metric; computed by the standard deviation 

of elevation or slope, high roughness is expected to be larger in areas susceptible to landslides 

(Reichenbach et al., 2018). In their 2008 study, García-Rodríguez et al. (2008) used logistic 

regression to evaluate probability of landslides for El Salvador. The results of the study 

illustrate the importance of terrain roughness for LMS.  

Another variable that is extensively used to express terrain roughness is the Terrain 

Ruggedness Index (TRI). TRI can be extracted from a DEM and serves as a measurement of 

the land surface condition, characterizing terrain by its smoothness or ruggedness. It captures 

the local variations in curvatures and gradients (Saleem et al., 2019). The usability of surface 

Figure 4: Curvatures where both profile and planforms curvatures are combined. The 

columns show planform curvature and rows show the profile curve. Orange square show what 

Sidle & Ochiai (2006) describes as the most unstable landforms. Source: (Esri, n.d-f). 
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roughness to delineate surface morphological units has been invigorated because of high 

resolution topographical data. It is wildly used in LSM, for example by Ageenko et al. (2022) 

to map landslide susceptibility in Denmark. In the case study, using a random forest 

classification model, TRI was shown to be the most important influencing factor, contributing 

more to the model’s decision making than any other factor. 

A DEM can also be utilized to distinguish topographic features in the terrain, such as hilltops, 

valley bottoms, exposed ridges, flat plains and upper and lower slopes. The Topographic 

position index (TPI) was introduced by Weiss (2001) and has been applied to a number of 

landslide susceptibility studies. TPI is computed as the difference between the cell elevation 

and the mean elevation of neighboring cells. The TPI factor is considered a geomorphological 

landslide conditioning parameter because landslide initiation events usually take place on 

ridges (Saleem et al., 2019). TPI have been extensively used in previous research. Ageenko et 

al. (2022) used TPI in conjunction with other factors to predict landslides in Denmark.  

TPI is expressed as a continuous raster where positive cell values represent a cell that lays 

higher in the terrain than its surrounding cells and a negative value represents sunken features 

in the terrain (Weiss, 2001). The range of TPI values depends not only on elevation 

differences, but also the predetermined radius of which the mean elevation of neighboring 

cells is calculated. Weiss (2001) used this fact by using the parameters from two 

neighborhood sizes (300 and 2000 meters) and combining them in order to identify complex 

landscape features. More recently, De Reu et al. (2013) also employed TPI to distinguish 

features from deeply incised streams to open flat areas. 

 

3.2.2   Geological Variables 

Geological variables are extensively used in LSM. According to Reichenbach et al. (2018), 

the most common geological information is the type of rock present in the area. The 

justification for employing this variable remains ambiguous since geological maps 

predominantly depict the bedrock, detailing chronostratigraphic units and formations. These 

aspects may not directly correlate with the mechanical characteristics of the materials 

implicated in landslide initiation (Reichenbach et al., 2018). Studies have also used data on 

rock structure and bedding attitude for LSM. Sidle & Ochiai (2006) summarized the most 

important geological factors for landslide initiation as weathering of regolith, bedrock 

structure and tectonics.  
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As this study deals with landslides in soils / loose materials, data on surficial deposits were 

used as an influencing factor. Landslides have been associated with different geological 

materials around the world. For the generation of a nation-wide susceptibility map of Norway, 

Fischer et al. (2014) classified the surficial deposits in Norway based on how sensitive the 

respective surficial deposits generally are to the triggering of landslides. However, as this 

study uses a machine learning approach for LSM, such weighting was not used. Nevertheless, 

the dataset provided by NGU for surficial deposits cover, was employed in this study4.  

Furthermore, Fischer et al. (2014) found it impractical to incorporate bedrock geology into the 

LSM model due to the significant variations in bedrock geology across Norway. 

Consequently, data on bedrock geology were not utilized in this study 

Soil conditions are relevant to the field of landslide susceptibility for several reasons, 

including water infiltration, soil sheer strength and stability of slopes (Sidle & Ochiai, 2006). 

As the influencing factor describing soil condition, data from the Norwegian Institute of 

Bioeconomy Research (NIBIO) were used5. Encompassed under the “Geovekst”-cooperation, 

NIBIOs detailed data on the soil thickness, soil type and soil cover prevalence are used 

(NIBIO, 2020). The classification system categorizes the land based on soil depth, organic 

soil layer thickness, and human impact. Organic layers (1) thicker than 30 cm in peat and 

forests, and 20 cm in agricultural land, differentiate areas for cultivation, peatlands, and bogs. 

Soil-covered areas (2) have more than 50% of the land with soil depth over 30 cm, while 

shallow-soiled lands (3) have more than 50% of the area with less than 30 cm depth but are 

not classified as bare rock. Bare rock areas (4) are predominantly exposed rock, block fields 

(5) consist mainly of stone blocks from various origins, and constructed grounds (6) are 

significantly altered by human activities, indicating low biological productivity.  

 

3.2.3   Land Cover related Variables 

Land use activities and disturbances related to land cover affect the magnitude, frequency and 

type of landslide (Sidle & Ochiai, 2006). The major widespread land use activities that 

influence mass wasting events include timber harvesting, forest conversion, grazing, 

recreation, as well as concentrated human activities like building of roads, urban development 

 
4 The dataset can be downloaded from the National surficial deposits database: 

https://geo.ngu.no/kart/losmasse_mobil/ 
5 More information on the dataset can be found from the NIBIO website: 

https://www.nibio.no/tema/jord/arealressurser/arealressurskart-ar5/grunnforhold  

https://geo.ngu.no/kart/losmasse_mobil/
https://www.nibio.no/tema/jord/arealressurser/arealressurskart-ar5/grunnforhold
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(Sidle & Ochiai, 2006). In the context of LSM, the majority of studies have used 

combinations of vegetation, land cover and land use data derived from existing maps or data 

processed by satellite imagery (Reichenbach et al., 2018).  

Data on land cover information is widely used is LSM, its theoretical rationale being that land 

cover conditions slope stability. However, varied local conditions makes it difficult to 

understand the functional link between land use and landslides. Promper et al. (2014) found 

that development of new building areas in Austria resulted in landslide risk hotspots. Carrera 

et al. (1991) showed that a land cover of forests was a good predictor for slope stability. Yet, 

previous studies from the same area in Italy showed contradicting results. Nevertheless, land 

cover data is a commonly used in the field and will also be used as an influencing factor in 

this study. Encompassed under the “Geovekst”-cooperation, NIBIOs dataset on land use types 

shows the main types of land use classes, including built-up areas, agricultural land, forests, 

barren land, peatland, snow/ice cover and freshwater6. This dataset is used as a representation 

on the land cover for this study. 

Measurements of the physical characteristics of the vegetation cover is also extensively used 

in LSM. Vegetation cover contributes to slope stability, primarily through the water uptake 

capabilities of plants, which result in vegetated slopes being, on average, 12.84% drier and 

exhibiting matric suctions that are threefold higher compared to fallow slopes (Liu et al., 

2023). Therefore, the normalized difference vegetation index (NDVI) is considered as one of 

the main land cover factors, despite lack of a clear relationship between vegetation cover and 

slope instability (Reichenbach et al., 2018). NDVI is used to quantify vegetation density by 

observing the rate of absorption and reflection of visible and near infrared sunlight. NDVI 

was obtained using Google Earth Engine and sentinel 2 satellite data from 2022. Methodology 

will be discussed further in chapter 4. 

The loss of forest cover has also been shown to have an effect on slope stability. According to 

Sidle & Ochiai (2006), deforestation in steep terrain can reduce site stability by causing root 

strength deterioration and increasing soil water due to lower evapotranspiration. In their 2020 

report, Nordrum et al. (2020) looked at stabilizing effects of vegetation cover in Norway. 

Including the effects mentioned by Sidle & Ochiai (2006), interception of water was shown to 

be over 50% of the annual precipitation in dense forests and 30% in more open areas with 

 
6 The dataset was downloaded from Geonorge.no. Access is restricted to only the partners of the Geovekst 

corporation. https://kartkatalog.geonorge.no/metadata/arealressurskart-fkb-ar5/243751e8-5803-4627-898c-

d0ddabe82056 

https://kartkatalog.geonorge.no/metadata/arealressurskart-fkb-ar5/243751e8-5803-4627-898c-d0ddabe82056
https://kartkatalog.geonorge.no/metadata/arealressurskart-fkb-ar5/243751e8-5803-4627-898c-d0ddabe82056
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scarce vegetation cover. In areas of timber harvest, the root strength deteriorates dramatically 

some years after the deforestation and then increases as a function of new growth (Nordrum et 

al., 2020). This presents a problem: the temporal discrepancy between the available forest loss 

data, which summarize net changes over extended periods, and the specific timing of 

landslides in localized areas. This discrepancy makes it difficult to assess the immediate 

impact of forest loss on slope stability for individual landslide events, obscuring the direct 

temporal relationship between deforestation and landslide occurrence in any specific location. 

The machine learning methodology employed in this study will include steps to check for 

irrelevant features to remove possible variables that acts as “noise” in the prediction. 

Consequently, data on forest loss will be used. The “Hansen global forest change” dataset was 

used in this study. By using Landsat images between 2000 and 2022, forest loss was 

quantified based on vegetation cover 5 meter or taller (Hansen et al., 2013). The methodology 

is described in more detail in chapter 4.  

 

3.2.4   Hydrological Variables  

Hillslope hydrology is another crucial factor to consider as it exerts a major control on 

landslide initiation. According to Sidle & Ochicai (2006), hillslope hydrology effects 

landslides through precipitation, water recharge into soils (potential for overland flow), 

movement of water within the regolith and evapotranspiration and interception of water. All 

these factors help control the amount of groundwater in different parts of a hillslope, thus 

controlling the potential for slope failure. As an influencing factor for LSM, Liu et al. (2023) 

points to data on aridity, the topographic wetness index (TWI), the index of moisture and data 

that describes long-term erosion effects in the terrain as the most important hydrological 

factors used in LSM.  

The Topographic Wetness Index (TWI) is a commonly used variable to predict the amount of 

soil moisture at the catchment scale and measures where water traverses and how much 

accumulates in different spots (Saleem et al., 2019). The TWI was originally developed by 

Beven & Kirkby in 1979 and is computed using the local upslope area draining through a cell 

and the local slope. Many researchers have incorporated TWI as a factor in LSM. Notably, 

Ageenko et al. (2022) identified TWI as one of the most critical variables in their landslide 

susceptibility study in Denmark. Hong et al. (2018) used TWI alongside other commonly used 

influencing factors to predict landslides in China. The TWI was shown to have one of the 

highest predictive weights associated with landslide in the region.  



33 

 

The Stream Power Index (SPI) is another commonly used conditioning factor that can be 

derived from a DEM. The SPI also uses the local upslope drainage area and slope angle for 

the computation, but unlike TWI, SPI utilizes the amount of water accumulation and the slope 

to predict the potential for the erosive power of flowing water on the terrain (Saleem et al., 

2019). The SPI parameter is also widely used in LSM (Reichenbach et al., 2018).  

Because of the erosive effects of rivers, the distance from rivers is shown to have a great 

influence on landslide formation (Liu et al., 2023). Distance from rivers can be expressed as 

the distance allocation for each cell to the provided river source, which typically is some 

vector representation of the river system for the area. For this study, a representation of the 

river network was downloaded from the ELVIS river network database, provided by NVE7.     

A number of researchers have used distance to rivers as an influencing factor. According to 

Reichenbach et al. (2018), the “distance from river” variable has strong a theoretical rationale; 

the distance captures hydrological conditions that negatively affect the slope stability towards 

a river or stream due to the concentration of groundwater flow and the destabilizing effect of 

river incision.    

         

3.2.5   Other Variables 

In addition to the abovementioned variables that can be easily categorized into classes, other 

factors fall outside this division. Based on the classification by Reichenbach et al. (2018) and 

similar classification done by Liu et al. (2023), natural factors and human-related factors is 

accommodated in this section. 

Spatial patterns of precipitation are closely associated with landslide initiation (Sidle & 

Ochiai, 2006). This is particularly relevant for landslide initiation in Norway where the most 

common triggering mechanism are related to a buildup of pore water pressure in loose 

materials, often due to precipitation and/or snowmelt in the spring and heavy rainfall in the 

autumn (NVE, 2014). Furthermore, total rainfall and short-term intensity of rainfall are 

rainfall attributes that strongly affect the buildup of pore water pressure in unstable hillslopes. 

Consequently, annual mean rainfall is usually used in LSM (Liu et al., 2023). For this study, 

 
7 The ELVIS database represents all catchment related elements, notably rivers and smaller stream as vector 

polylines. Downloaded from the NVE Atlas: https://atlas.nve.no/Html5Viewer/index.html?viewer=nveatlas#  

https://atlas.nve.no/Html5Viewer/index.html?viewer=nveatlas


34 

 

data on mean annual rainfall between 1991 and 2020 from The Norwegian Meteorological 

Institute (MET) were used8. 

Temperature has also been shown to have an effect on landslide formation because the 

resistance of soils on hillslopes weakens at cooler temperatures. Liu et al. (2023) recommends 

using annual temperature as an influencing factor, a practice exemplified by Ageenko et al. 

2022 and Yao et al. (2023). For this study, data on mean annual temperature between 1991 

and 2020 from The Norwegian Meteorological Institute (MET) were used9.  

Anthropogenic influences are another major factor in landslide initiation. As one of the major 

transformations of nature caused by humans, road networks directly destabilize hillslopes 

(Sidle & Ochiai, 2006). Roads affect slope stability by altering natural pathways where water 

runs and where water accumulates, undercutting unstable slopes and by overloading and 

oversteepening the fill slope (the inclined slope extending from the outside edge of the road 

shoulder). Furthermore, studies have demonstrated that areas with unimproved roads, 

particularly forest roads, experience an increase in landslide erosion by approximately two 

orders of magnitude compared to undisturbed forest land, and by one order of magnitude 

relative to deforested areas (Sidle & Ochiai, 2006). Nevertheless, using the distance from 

roads as an influencing factor for LSM is shown to have questionable validity (Reichenbach 

et al., 2018). Also, the presence of a road on a hillslope has different effects on the slope 

above and belove the road; distance accumulation does not take this into account 

(Reichenbach et al., 2018). Still, distance from roads is commonly used and will be used in 

this study as well. For this study, a representation of the road network was downloaded from 

the FKB-Veg road network dataset, provided by The Joint Geospatial Database (FKB)10. 

 

 

 

 

 
8 Data on mean annual precipitation between 1990 and 2020 can be downloaded from the thredds server: 

https://thredds.met.no/thredds/catalog/KSS/Gridded_climate_normals_1991-2020/precipitation/catalog.html 
9 Data on mean annual temperature between 1990 and 2020 can be downloaded from the thredds server: 

https://thredds.met.no/thredds/catalog/KSS/Gridded_climate_normals_1991-2020/temperature/catalog.html 
10 FKB-Veg contains detailed information about all public and private road network for Norway. The dataset can 

be downloaded from Geonorge.no: https://kartkatalog.geonorge.no/metadata/fkb-veg/4920b452-75cc-45f2-964c-

3378204c3517?search=veg 

https://thredds.met.no/thredds/catalog/KSS/Gridded_climate_normals_1991-2020/precipitation/catalog.html
https://thredds.met.no/thredds/catalog/KSS/Gridded_climate_normals_1991-2020/temperature/catalog.html
https://kartkatalog.geonorge.no/metadata/fkb-veg/4920b452-75cc-45f2-964c-3378204c3517?search=veg
https://kartkatalog.geonorge.no/metadata/fkb-veg/4920b452-75cc-45f2-964c-3378204c3517?search=veg
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Table 4: Overview of the influencing factors used in this study. 

 

Category Variables Type 
Spatial 

Resolution 
Source 

Geomorphological 

 

Elevation, from DEM Continuous  5 m NMA 

Slope, from DEM Continuous 5 m - 

Profile curvature, from 

DEM 

Continuous 5 m 
- 

Aspect, from DEM Continuous 5 m - 

Roughness, from DEM Continuous 5 m - 

TPI, from DEM Continuous 5 m - 

TRI, from DEM Continuous 5 m - 

Landforms, from DEM Categorical  5 m - 

Hydrological 

TWI, from DEM Continuous 5 m - 

SPI, from DEM Continuous 5 m - 

Distance to rivers Continuous 5 m NVE 

Geological 

Surficial deposits 

(Quaternary deposits) 

Categorical 1:50 000 NGU 

Soil condition Categorical 1:1000 NIBIO 

Land Cover 

Land use, from FKB AR5 Categorical 1:1000 NIBIO 

NDVI Continuous 30 m GEE 

Forestless Categorical 30 m GEE 

Other 

(Anthropogenic, 

climatic) 

Average annual 

temperature 

Continuous 30 m MET 

Average annual 

precipitation 

Continuous 30 m MET 

Distance to roads Continuous 5 m NMA 
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3.3.   Data processing 

Constructing the landslide inventory database and choosing the influencing factors for LSM 

can be described as data preparation. After the data is prepared, the next step involves 

processing the data.     

   

3.3.1   Mapping units 

Using landslide inventories and influencing factors to evaluate the likelihood of a landslide 

occurring in an area requires the selection of a suitable mapping unit (Guzzetti, 2006). In 

LSM, choosing a mapping unit is crucial because the model's output segments the land by 

susceptibility levels, and when utilizing multiple predictive raster factors, these values must 

be assigned within a defined framework that partitions the map accordingly. Based on the 

concept of distinct and clearly definable mapping units, Guzzetti (2006) summed all methods 

in the literature as either: (i) grid cells, (ii) terrain units, (iii) unique condition units, (iv) slope 

units, (v) geo-hydrological units, (vi) topographic units, and (vii) political or administrative 

units. 

According to Reichenbach et al. (2018), grid cells (i.e. “pixels”) are the most common type of 

mapping unit (see Figure 5b). Grid cells divides the land into regular drawing cells of the 

same size which become the mapping unit of reference. Grid cells are favored for raster-based 

GIS applications in landslide susceptibility mapping. They allow each cell to hold values for 

the various influencing factors. Despite the challenge of accurately representing continuous 

landscapes and features within discrete cells, advancements in computing power have 

significantly mitigated this issue, enabling the use of smaller grid cells that more accurately 

reflect terrain characteristics (Guzzetti, 2006).   

An alternative to grid-cells is slope units; Slope units partition the land into hydrological 

regions bounded by drainage and divide lines (Guzzetti, 2006) as shown in Figure 5a. Slope 

units help solve some of the drawbacks when using grid-cells. Since landslides occur 

primarily on hillslopes, slope units are in theory well suited for LSM. Slope units can 

correspond to an individual slope, many adjacent slopes or a small catchment. In contrast to 

grid-cells, conditioning factors obtained for individual slope units do not reflect the value for 

one cell. Instead, the value refers to the entire terrain subdivision, providing more meaningful 

results. As an example, descriptive statistics (e.g. mean) of continuous conditioning factors 

(e.g. slope) in a slope unit are better predictors of landslide presence compared to the same 
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indices computed for a single cell in a DEM. However, slope units are difficult to prepare, the 

process is prone to errors and the size of the slope unit directly influence what kinds of 

landslides will be mapped, necessitating tailoring the size to the known landslide in the study 

area. Slope units have therefore rarely been used in LSM (Reichenbach et al., 2018).  

Alvioli et al. (2016) proposed a tool for automatic delineation of slope units. The software is 

written in python for the GRASS GIS software and requires a digital elevation model (DEM) 

and a set of user-defined input parameters. The tool works by dividing the landscape into 

large half basins based on hydrological and terrain aspects, then iteratively subdividing these 

into smaller, more defined slope units that reflect the natural terrain divisions. This process is 

fine-tuned through user-defined parameters, where the most important ones are (1) the 

minimum area of a slope unit and (2), how much variation in terrain aspect is allowed within 

one slope unit (Alvioli et al., 2016). For this study, slope units were made for the study area 

using a minimum slope area of 10 000 m2 and a low variation in terrain aspect (0.1). Figure 5 

shows a comparison between grid cells and slope units11. 

For this master study, grid cells were chosen as the preferred mapping unit. In addition to 

being the most used method, grid cells have the advantage of being simple to process at 

different resolutions. GIS also make it easy to use cell-based (raster) data, for instance terrain 

elevation data that can be used to compute further derivatives (Guzzetti, 2006). It should be 

stated that the grid cell approach also has some clear disadvantages. Firstly, there is no 

physical relationship between dividing the map based on grid-cells and landslides. Second, 

the majority of models that adopt grid-cells as the mapping unit uses cells having the same 

spatial resolution as the DEM. This can be problematic because the size (resolution) of the 

grid cells determine what kinds of landslides characteristics can be captured. Reichenbach et 

al. (2018) emphasizes how small grid cells (<5m) allows for the capture of small, shallow 

landslides but might have little or no correlative significance for larger, deep-seated landslides 

whose signature is better captured by larger grid cells. Lastly, the use of grid-cells can often 

result in zonations that is difficult to use in the real world because cells within a small 

geographical area might have very different susceptibility scores. 

Slope units were also considered. However, despite the automated approach proposed by 

Alvioli et al. (2016), the delineation still necessitates fine-tuning. It is also much more time-

 
11 A description if the Slope Unit delineation software can be found here: 

https://geomorphology.irpi.cnr.it/tools/slope-units 

 

https://geomorphology.irpi.cnr.it/tools/slope-units
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consuming to calculate statistical values for entire slope unit polygons compared to extracting 

single cell values from raster data. However, it should be noted that the use of slope units has 

been demonstrated to yield better assessment results than using grid cells, as exemplified by 

Ba et al. (2018). Comparing results between grid cells and slope units was considered beyond 

the scope of this thesis. 

 

 

 

 

 

 

 

  

 

 

3.3.1   Sampling ratio and training/testing ratio 

The sampling ratio (ratio of landslide samples and non-landslide samples) plays an important 

role on the outcome of the modelling. According to Liu et al. (2023), a sampling ratio of 1:1 

(same amount of landslide and non-landslide samples) is commonly adopted by researchers. 

However, research has shown that different datasets and models usually have an optimal 

sampling ratio that can improve the accuracy of the LSM. Yang et al. (2023) explored this 

aspect of LSM by testing different machine learning algorithms on different sampling ratios. 

They tested sampling ratios of 1:1, 1:2, 1:4, 1:6, 1:8 and the result showed that a slight change 

in the ratio caused a visible change in the distribution of different susceptibility areas. For the 

random forest model, optimizing the sampling ratio resulted in more areas described as highly 

susceptible and improved the overall accuracy of the model by 1,3% (Yang et al., 2023). 

Implementing the method developed by Yang et al. (2023) is time-consuming and similar 

methods are seldom used by other researchers. Because of the space constraints associated 

with this study, a sampling ratio of 1:1 was used for this study. 

A B 

Figure 5: A snippet from the study area showing generated slope units (A) and grid cells (B). The slope units were 

created using the Alvioli et al. (2016) method, with a minimum slope unit size of 10 000 m2. The grid cells have a size 

of 5 x 5 meters, the same size as the resolution of the influencing factors but are enlarged in the figure for better 

visualization. 
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Another important decision arises after the data is fully processed and prepared; the data need 

to be randomly split into two separate datasets, one for training the data and one for testing 

the accuracy of the trained classifier. This ratio can affect the performance of the model. Sahin 

et al. (2020) analyzed the effect of different training/testing ratios, more specifically the ratios 

10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10. Using the random forest 

algorithm, Sahin et al. (2020) used different evaluation methods to conclude that splitting the 

landslide inventory data into 70% for training and 30% for testing showed the best results. 

This 70/30 ratio is commonly used. However, randomly splitting the samples into a training 

set and a testing set cannot guarantee that both the training and testing sets contain a 

proportionate representation of landslide and non-landslide samples (Liu et al., 2023). 

Ageenko et al. (2022) improved this 70/30 ratio by ensuring a comparably equal number of 

landslide and non-landslide samples in both the training and testing datasets through stratified 

splitting based on the presence or absence of landslides. Similar method was utilized in this 

study; splitting training and testing in 70/30 ratio using stratification to prevent bias in the 

model training and testing. 
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Chapter 4  

 

Methodology  

 

Figure 6 presents a general overview of the methodological framework for this thesis. First, 

the area of interest (AOI) is defined for both training and external validation. Data was 

collected from multiple sources. Factors influencing landslide formation were created, some 

are DEM derivatives, others are from other sources. Point data representing landslide 

locations and non-landslide locations were then created. Landslide data were extracted from 

the NVE landslide database and refined to ensure high spatial accuracy. Non-landslide data 

were randomly generated in the study area to facilitate the binary classifier. The influencing 

factors were then mapped onto the landslide/non-landslide point data to act as the independent 

variables for the binary classification. Feature selection was then used to refine the dataset and 

resolve issues of multicollinearity. Variance Inflation Factor (VIF) and Pearson correlation 

coefficient (PCC) were used to check for multicollinearity and remove several sets of 

correlated variables. 

The preparatory phase sets the stage for the application of the machine learning classifier. The 

dataset containing landslide and non-landslide points with their related independent variables 

is used to train the RF and the AutoML model. A subsection of the data is used for prediction. 

An independent dataset outside the AOI is used to test the predictive power of the two models, 

ensuring the model's generalizability and reliability. Finally, the trained RF model is applied 

on the entire stack of influencing feature raster data to create a landslide susceptibility map 

where the output for each pixel is a probability score between 0 (very little chance of 

landslide occurring) and 1 (very high chance of landslide occurring). 
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4.1.   Presentation of the analyzed areas 

The susceptibility mapping was carried out for a region in the middle of Vestland county in 

the westernmost part of Norway. An area was chosen for the training and predicting of the 

machine learning model, another smaller area was chosen for external validation. The chosen 

area of interest (AOI) used for the training and prediction, shown in Figure 7, covers 

approximately 6 478 km2 and is located between Haugesund in the south, The Sognefjord in 

the north and the county border in the east. The chosen AOI used for external validation 

covers approximately 1 798 km2 and is located just North of the AOI for training, north of 

The Sognefjord between Florø in the west and Jostedalsbreen glacier in the east. 

The choosing of the AOI represents a balance between the desire to include many historic 

landslide registries and the need to maintain the computational demands and data storage 

requirements of the influencing factor raster data. Furthermore, Vestland emerges as a 

particularly relevant study location for landslides in soil; Vestland is dominated by steep 

hillslopes with loose deposits, making it particularly prone to landslides. Vestland also receive 

most precipitation in Norway. According to Sidle (2006), total rainfall and short-term rainfall 

intensity strongly influence landslide initiation, both of which have been shown to have 

increased by between 15 to 20% for certain regions in Vestland (Øydvin. et al., 2011). 

For clarity throughout this chapter, the term “AOI” will refer to both the area of interest 

utilized for training/prediction as well as the area used for external validation. Selecting the 

appropriate AOI is crucial for the effectiveness of the machine learning model in applying 

Figure 6: Methodological framework for the thesis. 
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predictive variables and identifying the landslide inventory. Given the vastness of Vestland 

county, using the entire area as the AOI would be impractical due to high computational and 

data storage demands. A balanced approach was employed by initially considering the entire 

Vestland county, which was then segmented into areas for training and external validation. By 

utilizing The Joint Geospatial Database (FKB) standards, the focus was narrowed to FKB-A 

and FKB-B areas. These subcategories represent urban and developing areas with a high 

degree of utilization, which are of particular interest due to their higher population density and 

infrastructure significance—factors that amplify the risk and impact of landslides (Geovekst, 

2016). In contrast, FKB-C and FKB-D areas represent rural, cultivated, mountainous, forested 

land, areas with a low land value (see figure 7).    

This applied strategy effectively narrows the study's scope to areas where landslide 

vulnerability is highest while also optimizing computational resources and ensuring data 

quality. As a result, the AOI is approximately 40% the size of the original area but keeps 75% 

of the landslide registries. 

 

 

  

Figure 7: Figure showing how Vestland county was subdivided into two appropriate areas, one for training / 

prediction and one for external validation. For both areas, only what is defined as FKB-A and B areas was 

selected to be the final AOIs. 
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4.2.   Data Preparation 

The data preparation phase includes cleaning, transforming and organizing the raw data into a 

format that the machine learning algorithm can understand and use to predict landside 

susceptible locations. For this study, two primary types of data are used; raster data for 

influencing factors and vector point data for the landslide inventory.   

 

4.2.1   Creating point data for landslide / non-landslide 

As stated in chapter 3, the raw data for landslide inventory is downloaded from the NSDB 

database. For the AOI, 21 520 landslide registries are found. The landslide registries are 

divided into two datasets; one dataset encompass registered landslide initiation/runout points 

and the other is a more general database of landslide registries. These registries encompass 

various landslide types, with spatial accuracy ranging from exact locations to a margin of 

error up to 10,000 meters. The database also includes historic records dating back to the year 

1100. Considering the dynamic nature of development and land-use changes, this study chose 

to include only landslide records after and including the year 1980. While other research, such 

as Rød et al. (2012), has considered records dating back to 1650, this approach was deemed 

unnecessary for the current analysis. Between 1650 and 1980, only 16 landslide events 

meeting the selection criteria were recorded, reinforcing the decision to focus on more recent 

data. For the general landslide dataset, an SQL query was used to extract only the records that 

satisfy landslide type 140, 141, 142, 143, 144, 145 and 16012. The selected landslide classes 

represent different types of landslides in soil, similar to the classification method described in 

chapter 2.1 (NVE, 2018). In addition, the records also needed to satisfy a spatial accuracy less 

than or including 10 meters. The dataset for landslide initiation and runout points was further 

filtered to include only landslide initiation points. This adjustment aligns with the study's 

objective to explore areas susceptible to landslides, rather than the pathways landslides travel 

downslope. The resulting SQL query narrowed down to dataset to 743 records for the training 

data and 197 for the external validation area. This dramatic filtering of 96 % is deemed 

necessary, especially regarding the landslide type and the accuracy of the mapping. 

  

 
12 Following the classification scheme provided by NVE; landslide type 140 = landslide in soil (unspecified). 

141 and 143 = landslide in clayley soil. 142 = debris flow/debris flood. 144 and 145 = debris flow/debris 

slide/debris avalanche. 160 = shallow planar soil slide. Source: (NVE, 2018)     
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Table 5: Filtering of the landslide registries based on AOI, data, landslide type, initiation and locational 

accuracy. 

Training Data: 

 

External Validation Data: 

Operation type Filter 
Landslide 

registries 

Landslide 

initiation/runout 

points 

  
Number of 

events 
Number of events 

Select by Location AOI 3795 687 

Select by Attribute Year ≥ 1980 2010 687 

Select by Attribute 
Landslide type (initiation 

points for initiation/runout 

dataset) 

356 66 

Select by Attribute Locational accuracy ≥ 10 m 182 15 

 

 

According to Reichenbach et al. (2018), event inventories (landslides caused by a single 

trigger, e.g., an extreme rainfall event) are the second most used inventory data in the 

literature. Event inventories are good at evaluating the predictive capability of the model. 

However, these records need be used with caution as the geographical distribution and 

abundance depend on the pattern of the trigger, pattern of the geo-environmental variables and 

how detailed the mapping has been carried out (Reichenbach et al., 2018). Keeping this in 

mind, a dataset with 53 landslide registries mapped by Åberg (2021) in the Sunnfjord district 

was included for the AOI used for external validation. In addition, 124 starting points mapped 

Operation type Filter 
Landslide 

registries 

Landslide 

initiation/runout 

points 

  
Number of 

events 
Number of events 

Select by Location AOI 13 083 3955 

Select by Attribute Year ≥ 1980 7410 3955 

Select by Attribute 
Landslide type (initiation 

points for initiation/runout 

dataset) 

1243 653 

Select by Attribute Locational accuracy ≥ 10 m 652 90 
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on the detailed NGU quaternary map by Pullarello (2021) was used for the AOI used for 

training. To address overlapping landslide registries and mitigate road-related bias in the 

landslide inventory, registries that were both located within a 10-meter distance of each other 

and intersecting with roads were excluded. Consequently, the refined landslide inventory for 

the training and external validation datasets contained 699 and 233 records, respectively. 

Generating points to represent non-landslide occurrences, or areas where landslides are 

absent, is an essential step for enabling ML models to distinguish between areas that are 

susceptible to landslides and those that are not. Modeled after the methodology presented in 

the study by Ageenko et al. (2022), a random sample of non-landslide points, matching the 

number of landslide points, was created. By maintaining an equal distribution of landslide and 

non-landslide data points, the model can interpret predicted probabilities without adjustment, 

thereby circumventing the problem of class imbalance and model bias. Such a balanced 

dataset ensures the model is not skewed towards overrepresenting either condition, which is 

important to identify areas at risk of landslides and preventing the misclassification of 

potentially safe zones as hazardous (Ageenko et al., 2022).  

To generate the non-landslide points, a python script was developed. The script uses 

GeoPandas, a python library built upon the pandas library to allow handling of geospatial data 

and tabular data, by introducing geometric types (e.g. point data). First, the landslide 

inventory data is read to a geodataframe, where both the location of the points and additional 

information is stored. To avoid overlapping between landslide and non-landslide points, and 

avoid non-landslide points being generated in water bodies, a fishnet of rectangular cells, 

measuring 40 by 40 meters, was generated in ArcGIS Pro for the AOI. Water bodies were 

excluded by using an erase function to remove parts overlapping lakes, fjords and rivers. A 

120-meter buffer is applied to each landslide point so ensure that no grid cell within this 

distance is selected. A Similar approach was done by Ageenko et al. (2022). As seen in Code 

1, line 12, 13 and 15, the script identifies all the grid cells from the fishnet that do not 

intersect with the buffered landslide zones and randomly selects a number of grid cells equal 

to the amount of landslide records. A visual representation can be seen in figure 8.  
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Next, one point is generated randomly within each of the selected grid cells, ensuring that the 

non-landslide points are dispersed throughout the AOI, not confined to specific locations 

(Code 1, line 17-26). The geodataframe is then saved as a new shapefile. 

To prepare the datasets for further analysis, a new field is made for the original landslide 

inventory shapefile and the newly created non-landslide shapefile. This column represents a 

binary system (presence/absence of landslide), which serves as the basis for the machine 

learning algorithm's predictions, called the target variable. The column, “Landslides”, marked 

as ‘0’ for non-landslide points and ‘1’ for landslide points, respectively (Code 1, line 30-34). 

Finally, the two shapefiles are combined into a single file.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code 1: Code for generating non-landslide point data. 
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4.2.2   Creating influencing factors 

In this chapter, the focus is turned towards the generation of the influencing factor data, which 

serve as the predictor variables in the analysis. Following the establishment of the target 

variable through the script described previously, the derivation of the influencing factors is 

now described. The rationale behind selecting these specific influencing factors was detailed 

in Chapter 3.2.  

In the derivation of influencing factors for the landslide prediction model, Python 3.9 with the 

ArcPy library is utilized for its integration with ArcGIS's spatial data analysis capabilities, 

facilitating the manipulation of geographic information for predictor variables13. The 

methodology is further enhanced with a Python 3.11 scripts that make use of libraries such as 

Rasterio, GDAL, Rioxarray, and RichDEM 14. RichDEM is notable for its efficient processing 

of DEM derivatives, which are vital since they constitute a noteworthy portion of the 

influencing factors. This combination of ArcPy for geographic data management alongside 

ArcGIS Pro with the computational efficiency of specialized libraries streamlines the process. 

For all influencing factors, a cell size of 5 meters was chosen. This is partly because of 

 
13 More information about the ArcGIS Pro Python reference can be found here: https://pro.arcgis.com/en/pro-

app/latest/arcpy/main/arcgis-pro-arcpy-reference.htm 
14 Source to the utilized python libraries can be found here: Rasterio: https://rasterio.readthedocs.io/en/stable/. 

GDAL: https://gdal.org/index.html. Rioxarray: https://corteva.github.io/rioxarray/stable/. RichDEM: 

https://richdem.readthedocs.io/en/latest/ 

Figure 8: A snippet from the AOI showing landslide inventory points, the 

prepared fishnet and randomly selected grid cells. 

https://pro.arcgis.com/en/pro-app/latest/arcpy/main/arcgis-pro-arcpy-reference.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/main/arcgis-pro-arcpy-reference.htm
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computational restrictions, but mainly because 5 meters resolution, especially for DEM 

derivatives, is recommended because at this scale, terrain variabilities that contribute to 

landslide formation is best captured (L. Rubensdotter, personal communication, January 31, 

2024). Similarly, Arnone et al. (2016) compared different resolutions for the influencing 

factors and concluded that the best predictive capabilities were found using medium 

resolution (between 5 and 20 meter), showing that an increase of resolution doesn’t always 

imply an improvement in the susceptibility analysis (Arnone et al., 2016). 

 

4.2.2.1 Aspect  

Aspect raster was generated using the Surface Parameters tool in ArcGIS Pro. The tool 

provides a newer implementation of aspect compared to the older Aspect tool. The Surface 

Parameters tool is recommended as the algorithm used provides a more natural fit to the 

terrain. The output identifies the compass direction the slope faces, expressed in positive 

degrees from 0 to 360, measured clockwise from north (Esri, n.d-a). Aspect is therefore a 

circular parameter. This circular nature can pose a challenge for machine learning models 

because these models don't inherently understand the continuity between the end points of the 

aspect values. For example, an aspect of 359 degrees is very close to 0 degrees in terms of 

direction, but numerically, they appear far apart. This can mislead a model into thinking two 

nearly identical orientations are vastly different, potentially skewing the analysis or 

predictions. Therefore, aspect was decomposed into its sine and cosine component. In this 

way it is possible to represent direction of the slope as a two-dimensional system; one raster 

represents the sine of aspect where north-south slopes have positive and negative values 

between 1 and -1, respectively. The other raster represents the cosine of aspect where east-

west slopes have positive and negative values between 1 and -1, respectively (Ageenko et al., 

2022).  

The script to compute the sine and cosine of the aspect raster is based on the work by 

Ageenko et al. (2022). However, due to the large size of raster files, Dask was used to divide 

the computation into smaller section, called chunks, each of which small enough to fit into 

memory 15. The “dask.array.sin” and “dask.array.cos” functions were used to compute the sine 

and cosine of the original aspect raster, resulting in two raster files shown in figure 9.      

 
15 More information on the Dask library: https://docs.dask.org/en/stable/array.html 

 

https://docs.dask.org/en/stable/array.html
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4.2.2.2 Profile Curvature 

Profile curvature was generated using the Surface Parameters tool in ArcGIS Pro. The output 

measures the terrain's curvature along its slope line. Positive profile curvature indicates 

convex terrain that accelerates surface water flow and erosion. Conversely, negative profile 

curvature shows concave terrain that decelerates water flow. A zero value signifies flat terrain 

with no significant impact on water flow velocity (Esri, n.d-a). Figure 10 displays a small 

snippet of the AOI showing the profile curvature raster, arranged for easier visual 

interpretation. 

Figure 9: The two thematic maps representing the sine and the cosine of the aspect. Aspect raster is computed 

from a digital elevation model (each cell representing altitude) and the Northnerness and Easterness is computed 

from the aspect raster. Inset maps from one area of the AOI is shown for better visualization.   
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4.2.2.2 Stream Power Index 

Introduced by Moore et al. in 1988, SPI uses the upstream contributing area and the slope to 

estimate the erosive power of flowing water. SPI can be computed as follows; 

𝑆𝑃𝐼 = 𝑎 ∗ 𝑡𝑎𝑛𝛽 

 

Where a is the local upstream accumulated flow area and β is the slope angel (Saleem et al., 

2019). The local upstream area is a measure of the area contributing surface runoff to a 

specific point on a landscape. It's essentially an indicator of how much water would flow 

through a point, considering only the water that arrives due to gravity pulling it downhill from 

the immediate landscape. This metric can be generated using ArcGIS Pro with the Flow 

Accumulation tool. The tool creates a raster of accumulated flow into each cell by using a 

flow direction raster where the flow direction from each cell to its downslope neighbor is 

defined. The accumulated flow is thus based on the number of cells whose flow direction is 

interlinked in the downslope flowing of surface water. Cells with high flow accumulation are 

areas of concentrated flow and cells with zero accumulation represent local topographic high 

points (Esri, n.d-b). To calculate the slop angel β, the tool Surface Parameters tool in ArcGIS 

Pro was used. The resulting slope raster in degrees was then converted to slope radians using 

the python script, seen in Code 2: 

Figure 10: Profile Curvature raster 
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For the calculation of SPI, representing slope in radians is preferred compared to slope in 

degrees (Ageenko et al., 2022). The script used to calculate the SPI utilizes the Gdal library 

for geospatial data manipulation and NumPy library for the numerical computation. It 

calculates SPI with the python function, seen in code 3:  

     

 

 

The function uses the flow accumulation raster and slope in radians to calculate SPI, based on 

the method employed by Ageenko et al. (2022). A small constant is introduced to avoid zero 

values. Output SPI values are stored in a new GeoTIFF file, maintaining the original spatial 

properties, as shown in figure 11. 

 

 

 

 

 

 

 

 

 

 

 

Code 2: Code for converting slope in degrees into slope in 

radians 

Code 3: Code for calculating SPI  

Figure 11: Stream Power Index Raster. Positive values indicate areas with higher potential for 

water flow erosion. Negative values represent areas with lower potential for water flow erosion. 
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4.2.2.3 Topographic Position Index 

Introduced by Weiss. (2001), The Topographic Position Index (TPI) is defined as the 

difference between a central cell and the mean of its surrounding cells. TPI is a quantitative 

measure generated using GDALs DEM Processing module, which is part of the GDAL library 

specialized for use on digital elevation models 16. As seen in Code 4, GdalDEM has a built-in 

command that uses a DEM as input to calculate topographic position of each cell by 

comparing the elevation of the cell to the mean elevation of its surrounding cells within a 

specified neighborhood. This measure is calculated for each cell in the input DEM, resulting 

in a TPI raster where each cell’s value reflects its relative position (see figure 12): positive 

values indicate that the cell is higher than its surroundings, suggesting prominent features like 

ridges or hilltops, while negative values indicate cells lower than their surroundings, typical of 

valleys or depressions. A TPI value close to zero suggests flat or uniformly sloping terrain (De 

Reu et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
16 Manual for the gdal library can be found here: https://gdal.org/programs/gdaldem.html 

 

Code 4: gdal command to generate topographic position index based on a DEM 

Figure 12: Topographic Position Index raster. Positive values indicate that the central point is 

located higher than its average surroundings, while negative values indicate a position lower 

than the average. 

https://gdal.org/programs/gdaldem.html
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4.2.2.4 Terrain Ruggedness Index  

Terrain Ruggedness Index (TRI) quantifies the ruggedness of the terrain by measuring the 

difference between a central pixel and its surrounding cells. TRI can be seen as a measure to 

assist in describing the terrain as smooth or rugged by depicting the local variance of 

curvature and gradients (Ageenko et al., 2022). TRI is calculated using the built-in function in 

GdalDEM, as shown in code block 5. The calculation uses the algorithm developed by Riley 

et al. (1999) that calculates the sum change in elevation between a grid cell and its eight 

neighbor grid cells. 

As shown in figure 13, the resulting raster data reflect the elevation differences between cells; 

high values indicate a significant elevation difference between the central pixel and its 

surrounding pixels. Values closer to zero indicate areas of minimal elevation difference 

between a central pixel and its surrounding pixels, meaning a level terrain (Riley et al., 1999). 

The index describes topographic heterogeneity at small scale. If the elevation difference 

between the central pixel and each of its neighbours is minimal or consistent, the terrain 

within that specific 3x3 grid will be considered level or smooth by the TRI, resulting in a low 

ruggedness value. This can happen on a steep slope if the slope is uniform and the elevation 

changes between adjacent pixels are consistent across the 3x3 grid being analyzed. 

Furthermore, TRI is calculated based on the absolute values of the differences in elevation 

and will not distinguish between a small depression and a small hill surrounded by flat terrain; 

it does not differentiate between positive and negative elevation differences (Riley et al., 

1999). 

 

 

 

  

Code: 5: gdal command to generate terrain ruggedness index based on a DEM 
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4.2.2.5 Topographic Wetness Index 

Introduced by Beven & Kirkby. (1979), the Topographic Wetness Index uses the local 

upstream contributing area and the local slope to estimate amount of soil moisture in the 

terrain. SPI can be computed as follows; 

𝑇𝑊𝐼 = 𝑙𝑛 (
𝑎

tan(𝛽)
) 

Where a is the local upstream accumulated flow area and β is the local slope (Saleem et al., 

2019).  As shown in Code block 6, an ArcPy script was used to compute the Topographic 

Wetness Index (TWI) based on the beforementioned formula where a is represented with a 

flow accumulation raster file and β represents a slope raster in radians. The creation of both 

files is discussed in further detail in section 4.2.2.2. The slope raster is slightly adjusted by 

adding a small constant to avoid division by zero errors. These raster values are then fed into 

the Raster Calculator tool of ArcGIS Pro through an expression that applies the logarithm and 

tangent functions as described in the TWI formula. The output is a new raster file providing a 

spatial distribution of wetness potential across the terrain. High values indicate areas with 

greater potential for water to accumulate, typically in depressions or flat areas conducive to 

moisture retention. Conversely, lower values generally represent ridges or steep slopes where 

water is less likely to accumulate and more likely to run off (see figure 14). 

 

Figure 13: Terrain Ruggedness Index raster. High values indicate a significant elevation 

difference between the central pixel and its surrounding pixels. Values closer to zero indicate 

areas of minimal elevation difference. 



55 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

4.2.2.6 Slope 

Slope raster was generated using the Surface Parameters tool in ArcGIS Pro. The output 

measures the terrain's curvature along its slope line. The Surface Parameters tool is 

recommended to use instead of the older slope geoprocessing tools in ArcGIS Pro as it 

provides a newer implementation of slope (Esri, n.d-a); While the older Slope tool calculates 

slope by fitting a flat plane to a small, fixed grid of land cells, which can sometimes 

oversimplify or misrepresent natural land variations, the Surface Parameters tool fits a curved 

surface to a potentially larger area. This method captures the true shape and variations of the 

landscape in a more realistic way, especially on terrain where features like hills, valleys, or 

man-made structures like roads and streams are present (Esri, n.d-a).  

Code 6: ArcPy script to calculate TWI based on the equation given by (Saleem et al., 

2019) 

Figure 14: Topographic Wetness Index raster. Positive values represent areas of high-water 

accumulation and values closer to zero represents areas with low accumulation. 
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The algorithm identifies the gradient from each cell of the DEM raster, as seen in figure 15. 

When slope is expressed in degrees, a value of 0 degrees indicates completely flat terrain, 

while a value of 90 degrees signifies a vertical cliff. 

 

 

 

 

 

 

 

 

 

4.2.2.7 Landform 

The aforementioned topographic position index (TPI) is used to measure topographic slope 

positions but has also been showed to work to classify landform types (De Reu et al., 2013). 

TPI was introduced by Weiss. (2001) and compares the elevation of each cell in a DEM to the 

mean elevation of a specified neighborhood around the cell (Weiss, 2001). By combining TPI 

at small and large scale allows a variety of nested landforms to be distinguished. As 

recommended by Weiss. (2001), a scale factor of 300 and 2000 was used in this study to 

represent small scale and large-scale landforms. When using a cell size of 5 meters the 

following formulas are used to compute TPI at 300- and 2000-meters scales: 

 Tpi300 = int((dem – focalmean(dem, annulus, 30, 60)) + 0.5) 

 Tpi2000 = int((dem – focalmean(dem, annulus, 370, 400)) + 0.5) 

 

To accomplish the calculation, the Focal Statistics tool and the Minus tool in ArcGIS Pro was 

utilized. Focal Statistics calculates the values within a specific neighborhood around each 

input cell (Esri, n.d-c). As recommended by Weiss. (2001), an annulus neighborhood type was 

selected, essentially representing a donut-shaped area around the cell, defined by an inner and 

Figure 15: Slope raster measured in degrees. The output represents the rate of change of elevation 

for each DEM cell. 
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an outer radius. Within this area, the mean elevation was calculated for each cell in the DEM. 

According to the formula, the new focal statistics raster data where then subtracted from the 

original DEM using the Minus tool. In this way the resulting raster data shows the difference 

between the cell’s elevation and the average elevation of its surrounding area. This difference 

highlights whether the cell is situated higher, lower, or at the same level as its surroundings.  

However, to make TPI data comparable at different scales Weiss. (2001) recommends 

standardizing the TPI values. The Raster Calculator tool in ArcGIS Pro was used to 

standardize the two TPI raster data by centering the data around zero by subtracting the mean 

and dividing by the standard deviation to normalize the variance in the data (Weiss, 2001).    

A Python script utilizing the ArcPy library was employed to assign specific classes to each 

landform. The script processes raster layers representing TPI at small and large scale, 

standardized to mean 0 and standard deviation 1, and slope in degrees. It defines conditions 

within a list, where each condition comprises a logical statement that evaluates whether the 

TPI values and slope for each cell fall within a threshold. The specific conditions follow the 

work by Weis. (2001). These conditions are designed to capture distinct topographic features, 

assigning values ranging from 1 to 10, each representing a unique landform type. For 

instance, the condition checking if the TPI values for both scales are greater than – or equal to 

one scaled standard deviation above the average, categorize high ridges, expressed as 

category 10. As seen in figure 16, the results from these evaluations are compiled into a single 

raster output, where each cell’s value corresponds to its classified landform type, generated 

through conditional checks implemented using the Con function from ArcPy (see code 7)17. 

  

 
17 A more detailed description of the Con function can be found from the Esri website: 

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/con-.htm 

 

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/con-.htm
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Code 7: ArcPy script to delineate landform types based on combinations of TPI at small and large scale and 

slope. Classes represents: 1: Canyons, 2: Valleys, 3: Headwaters, 4: U-valleys, 5: Plains, 6: Open slopes, 7: 

Upper slopes, 8: Ridges, 9: Hills, 10: High ridges 
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4.2.2.8 Distance to roads and rivers 

To calculate the distance to rivers and roads, the Distance Accumulation tool in ArcGIS Pro 

was used. This tool computes the accumulated distance for each cell to defined sources (Esri, 

n.d-d). To determine the distance for each cell in the AOI to the nearest road and river, the 

input source data must represent the road and river networks in the area. For roads, vector 

polygon data from the FKB-Roads dataset were downloaded and imported into ArcGIS Pro. 

For the river system, the nationwide Elvis-River network dataset developed by the Norwegian 

Water Resources and Energy Directorate (NVE) was downloaded and imported into ArcGIS 

Figure 16: TPI raster data at 300- and 2000-meter scale. High values represent areas higher than the average 

terrain surrounding them, calculated using two different annulus sizes. TPI is combined with slope raster to 

delineate landform types as discrete raster. 
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Pro. Both datasets were clipped to the AOI and then used as input source data. To account for 

the actual surface distance across the terrain, an input surface raster (DEM) was used to 

provide an elevation surface for the distance calculation. The two output raster datasets record 

the measured distance in meters from every non-source cell to the closest vector 

representation of roads and rivers, as seen in figure 17. 

 

 

 

  

Figure 17: Distance accumulation raster for road and river network. Each non-source 

cell represents the distance in meters to the closest road and river polyline.   
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4.2.2.9 Surficial deposits, Land use and Soil Condition 

Raster representation of the categorical data for quaternary surficial deposits, land use types 

and soil condition were created in ArcGIS Pro using the Polygon to Raster conversion tool. 

Data on quaternary surficial deposits was downloaded for Vestland county in the shapefile 

format 18. The dataset primarily shows the distribution of unconsolidated sediment types 

covering the rock surface, mostly formed during and after the last ice age. The data represents 

the dominant soil type in the top meters of the surface. The data on the surficial deposit types 

are derived from the content of quaternary geological maps (NGU, n.d).  

For the representation of land use and soil condition, the FKB-AR5 dataset was downloaded 

as Esri file geodatabase format 19. FKB-AR5 is a nationwide detailed land use dataset where 

the land is categorized by land use type, forest quality, tree species, and soil conditions, 

represented as categorical values in four separate columns.  

The FKB-AR5 dataset is managed within a single vector polygon file, represented as a 

multipart feature with discontinuous parts. This makes it possible to represent the four 

abovementioned classes even though they don’t necessarily overlap. Firstly, the value field 

that represents soil conditions in the feature class was used to generate a raster representation 

using the Polygon to Raster tool. Secondly, the tool was employed again to create a raster for 

land use, this time using the value field that denotes the land use class. The same 

methodology was applied to create a raster representation of the surficial deposits dataset, 

utilizing the value field for soil type. The raster files were then clipped to the AOI. Figure 18 

provides a snippet of this area, displaying the surficial deposits, land use, and soil conditions. 

  

 
18 More detailed description of the dataset can be found from the Geonorge website: 

https://kartkatalog.geonorge.no/metadata/loesmasser/3de4ddf6-d6b8-4398-8222-f5c47791a757 
19 More detailed description of the dataset can be found from the Geonorge website: 

https://kartkatalog.geonorge.no/metadata/arealressurskart-fkb-ar5/243751e8-5803-4627-898c-d0ddabe82056 

https://kartkatalog.geonorge.no/metadata/loesmasser/3de4ddf6-d6b8-4398-8222-f5c47791a757
https://kartkatalog.geonorge.no/metadata/arealressurskart-fkb-ar5/243751e8-5803-4627-898c-d0ddabe82056


62 

 

 

Figure 18: Surficial deposits, land use and soil condition raster data. 
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4.2.2.10 NDVI and Forest loss 

The Normalized Difference Vegetation Index (NDVI) is a satellite-derived vegetation index 

calculated using the difference and sum of the near-infrared (NIR) and red (RED) bands of the 

electromagnetic spectrum (Hamel et al., 2009). Google Earth Engine (GEE) was utilized in 

this study to calculate the NDVI. GEE is a cloud-based platform with extensive data 

repositories, accessible through an internet-accessible application programming interface. 

This setup facilitates rapid prototyping and result visualization of satellite data (Qasimi et al., 

2022). 

To compute NDVI, Sentinel 2 satellite data was imported to the GEE script and filtered to 

only include imagery between January and December 2022 with less than 20% cloud cover. 

The command median() was used to reduce the image collection to one image by calculating 

the median of all values at each pixel across the stack of images. NDVI was then calculated 

using the normalizedDifference() command. The command computes the normalized 

difference between two bands, in this case band 4 (Red) and band 8 (NIR) with the following 

calculation: 

(𝑁𝐼𝑅 − 𝑟𝑒𝑑)/ (𝑁𝐼𝑅 + 𝑟𝑒𝑑) 

The resulting raster file roughly reflects the photosynthetic activity occurring at each pixel. 

This is because vegetation reflects light in the near-infrared and absorbs light in the red part of 

the electromagnetic spectrum (Google, n.d). Finaly the resulting imagery was then exported as 

a TIFF file, as shown in figure 19.  

  

 

 

 

 

 

 

 

 Figure 19: Map snippet showing the NDVI. Cell values range from negative (water or non-

vegetated areas), values between 0 and 0.3 indicate barren areas and values between 0.3 and 

0.6 typically indicate sparse vegetation cover 
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To quantify forest loss cover in Norway, the “Hansen global forest change” dataset was 

imported to GEE and filtered to display the band reflecting forest loss between 2000 and 

2023, as shown in figure 20. The particular band quantifies forest loss during the period for 

each pixel, defined as a change from forest to a non-forest state, based on Landsat imagery 

(Hansen et al., 2013). Specifically, the composite imagery are median observations during the 

growing season in four spectral bands (Red, Near infrared, Shortwave infrared 1 and 

Shortwave infrared 2). The Global Land Analysis and Discovery (GLAD) laboratory at the 

University of Maryland, in partnership with Global Forest Watch (GFW), provides annually 

updated version of the dataset 20. 

 

 

 

 

 

 

 

 

 

 

 

4.2.2.11 Average annual temperature and precipitation 

To map the spatial patterns of precipitation and temperature for the AOI, the newest 

climatological normals (CN) for the 30-year period 1991 to 2020 were used. A climatological 

normal refers to the average of weather variables over a period of 30 years (Tveito, 2021). 

The CN for annual temperature and annual precipitation were downloaded from The 

Norwegian Meteorological Institutes THREDDS data server as NetCDF format – a file format 

 
20 Global forest watch website: 

https://data.globalforestwatch.org/documents/941f17325a494ed78c4817f9bb20f33a/explore 

Figure 20: Map snippet showing deforested areas between 2000 and 2023 

https://data.globalforestwatch.org/documents/941f17325a494ed78c4817f9bb20f33a/explore
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for storing multidimensional scientific data21. The multidimensional data was converted to 

TIFF format, resampled to a resolution of 5 meters and clipped to the AOI, as seen in figure 

21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
21 CN for temperature: https://thredds.met.no/thredds/catalog/KSS/Gridded_climate_normals_1991-

2020/temperature/catalog.html 

CN for precipitation: https://thredds.met.no/thredds/catalog/KSS/Gridded_climate_normals_1991-

2020/precipitation/catalog.html 

Figure 21: Mean annual temperature and precipitation raster data 

https://thredds.met.no/thredds/catalog/KSS/Gridded_climate_normals_1991-2020/temperature/catalog.html
https://thredds.met.no/thredds/catalog/KSS/Gridded_climate_normals_1991-2020/temperature/catalog.html
https://thredds.met.no/thredds/catalog/KSS/Gridded_climate_normals_1991-2020/precipitation/catalog.html
https://thredds.met.no/thredds/catalog/KSS/Gridded_climate_normals_1991-2020/precipitation/catalog.html
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4.3. Data Sampling 

Following the generation of the influencing factors and preparing both the landslide inventory 

and non-landslide point data, these elements were combined into tabular data that can be used 

for the machine learning classification. For classification tasks using the Scikit-learn machine 

learning library in Python 22, the classifier has to be fitted with two arrays: one array holding 

the influencing factors, and an array holding the target values, in this case landslide 

presence/absence (Breiman, 2001). This process essentially bridges the preparation phase 

using geospatial data with the machine learning phase that necessitates tabular data.       

In section 4.2.1, a combined feature class is described that contains points labeled as 

landslides and non-landslides, with landslides represented by 1 and non-landslides by 0. To 

include the influencing factors associated with each landslide / non-landslide point in the 

dataset, the cell values for the influencing factors need to be extracted and mapped to the 

corresponding landslide / non-landslide point. This process was carried out using the Extract 

Multi Values To Points geoprocessing tool in ArcGIS Pro, which is designed to extract cell 

values from specified raster data based on the locations of points in a feature class (Esri, n.d-

e). As seen in code block 8, the tool uses the shapefile representing landslides / non-landslides 

as the input point feature class and the collection of all influencing factor raster data to extract 

cell values. A new output field name is given to each new column in the landslide / non-

landslide feature class (see table 6).  Following data extraction, the feature class underwent a 

final transformation into a machine learning-compatible format. By utilizing the GeoPandas 

library in Python, the point feature class was converted to a CSV file. 

 

 

 

 

 

 

 

 
22 Scikit-learn is an open-source library in python for machine learning, including random forest classification. 

https://scikit-learn.org/stable/modules/ensemble.html 

Table 6: A subset of the resulting attribute table to the landslide / non-landslide shapefile after the cell value for 

the corresponding influencing factor is extracted. 

https://scikit-learn.org/stable/modules/ensemble.html
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4.4. Feature Selection 

Following the generation of influencing factors, preparing the landslide inventory and 

combining the two into a machine learning friendly format, one final preprocessing step needs 

to be completed; refining the dataset by analyzing which influencing factors adversely affect 

the machine learning process either through multicollinearity or redundant features. This 

process is called feature selection, where the primary aim is to find the optimal set of relevant 

features without losing the salient characteristics of the data (Büyükkeçeci & Okur, 2022). 

Feature selection is important for this study because it can simplify the model by reducing the 

number of influencing factors, thus decreasing the training time and reducing overfitting 

(Chen et al., 2020). Overfitting is an undesirable machine learning behavior where the model 

gives accurate predictions based on the training data, but not on new data, often as a result of 

large amount of irrelevant data in the training data. According to Yu and Lie, “An optimal 

subset should include all strongly relevant features, none of irrelevant features, and a subset 

of weakly relevant features” (Yu and Lie, 2004, p. 1208).  

Code 8: Code for extracting the corresponding cell value for the influencing factors using the 

Extract Multi Values to Points tool.  
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Building upon the method proposed by Ageenko et al. (2022), the landslide / non-landslide 

dataset was checked for linear relationships between the influencing factors. The concept of 

multicollinearity can be defined as: “a condition where there is an approximately linear 

relationship between two or more independent variables” (Chan et al., 2022, p.2). 

Multicollinearity becomes a problem mainly because it makes the estimates of the model 

unreliable and less precise because the variables affect each other. This also makes it difficult 

to measure the individual effect of a variable. Consequently, the model might not do well with 

new, unseen data because it is overfitted to the data it was trained on (Chan et al., 2022).  

To check the linear relationship between the influencing factors, a correlation matrix was 

plotted for the data (see figure 22). However, as pointed out by Chan et al. (2022), a problem 

with such a measurement of multicollinearity is that the correlations don’t necessarily mean 

multicollinearity. In other words, a correlation matrix measures how strongly two variables 

are related to each other. However, just because two variables have a high correlation, it 

doesn't automatically mean there is multicollinearity. This is because multicollinearity 

involves more than just two variables—it concerns the relationship among all variables in the 

model. High correlations between a couple of variables don't always impact the model in the 

same way that multicollinearity among several variables do (Chan et al., 2022). To address 

this problem, this study also uses the most widely used indicator of multicollinearity, the 

Variation Inflation Factor (VIF). As recommended by Chan et al. (2022), a VIF value of 10 

was used. This threshold indicates that the uncertainty of the expected impact of one 

influencing factor on predicting landslide versus non-landslide outcomes is 10 times greater 

than it would be if the influencing factor were completely uncorrelated with the other 

influencing factors. Theoretically, there is no upper limit to how high a VIF can go. Starting at 

a score of 1, a VIF score lower than 5 usually indicate low multicollinearity, a score between 

5 and 10 indicate moderate multicollinearity and values greater than 10 usually mean a high 

multicollinearity (Chan et al.,2022).   

To compute the correlation matrix, a python script was used. The method is based on the work 

by Ageenko et al. (2022) and uses the python library pandas to load the CSV file for the 

training data into a pandas DataFrame. Initial preprocessing involves removing irrelevant 

columns such as “geometry” and several categorical variables that are not suitable for 

correlation analysis. The correlation matrix is then plotted using the Pearson's correlation 

coefficient and visualized through a heatmap, allowing easy identification of highly correlated 

variables (see figure 22).  



69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As recommended by Ageenko et al. (2022), a correlation threshold of 0.75 was used to 

remove correlated influencing factors. A function was made in python that prints out pairs of 

influencing factors that that exceed this threshold. Once highly correlated pairs are identified, 

the script proceeds to select one influencing factor from each pair to remove, aiming to reduce 

multicollinearity. A total of five correlated pairs were identified: tpi and profile curvature, 

roughness and tri, slope and tri, slope and roughness and average temperature and elevation. 

This makes sense as tpi, profile curvature, slope and roughness are all derivative of a DEM 

that measures elevation differences between cells. As seen in figure 22, temperature and 

elevation show a negative correlation. This is as expected as temperature normally decrease as 

elevation increases. The reduction in multicollinearity is confirmed by plotting a new 

correlation matrix on the new variable where “annual temperature”, “roughness”, “slope”, 

“tpi” have been removed, as seen in figure 23.     

Figure 22: Correlation matrix with the Pearson correlation coefficient. The heatmap's colors 

range from blue (negative correlation) to red (positive correlation), with annotations providing 

the correlation values 
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To investigate the data further for correlated influencing factors, the Variation Inflation Factor 

(VIF) was also used on the training data. The python module “statsmodels” was used, 

specifically the “variance_inflation_factor” tool 23. The prepared python script loads the raw 

training data into a pandas DataFrame. For each column in the dataset, The VIF score is 

calculated. This DataFrame is sorted and printed to show which features have the highest VIF 

values, indicating where multicollinearity is most problematic. The code then enters a loop 

where it continuously recalculates the VIF value as variables are removed. The variable with 

the highest VIF value is removed if it exceeds the threshold of 10. This process repeats until 

no variables exceed this threshold. Based on this method, the script removed the variable 

“roughness” (VIF value of 107). “Average temperature”, “slope” and “average precipitation” 

was also removed, having VIF values of 27, 18 and 13, respectively. Based on these two tests 

for multicollinearity, roughness, average temperature, slope and tpi was ultimately removed 

 
23Further information can be found from the statsmodels 0.14.1 manual: 

https://www.statsmodels.org/stable/generated/statsmodels.stats.outliers_influence.variance_inflation_factor.html 

 

Figure 23: New correlation matrix without highly correlated features. 

https://www.statsmodels.org/stable/generated/statsmodels.stats.outliers_influence.variance_inflation_factor.html
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from the training data. Data on precipitation was kept because it showed very low correlation 

with any other influencing factor in the correlation matrix.   

In addition to the issue of multicollinearity (redundant features), the training data might also 

contain irrelevant features, defined as features that provide no useful information to the 

machine learning model (Büyükkeçecİ & Okur, 2022). Chan et al. (2022) and Ageenko et al. 

(2022) both utilized the Random Forest (RF) algorithm to enhance feature selection in 

classification tasks. Specifically, Chan et al. focused on selecting important features, while 

Ageenko et al. (2022) employed RF to eliminate irrelevant features using the algorithm's 

feature importance method. 

To identify potential irrelevant features, the dataset was divided into training and testing 

subsets (70% as training and 30% for testing). Subsequently, a Random Forest (RF) classifier 

was trained using the training set. Post-training, the feature importance scores were extracted. 

These scores are a measure of each feature's contribution to the accuracy of the model's 

predictions and is provided by the attribute feature_importance_ for the Scikit-Learn Python 

library 24. As seen in figure 24, the derived scores were visualized in a bar chart, allowing for 

an identification of both the most and least influential features. Consequentially, the 

influencing factor “forestloss”, representing the “Hansen global forest change” was removed 

from the training data because it had very little significance for the model. The final tabular 

data is shown in table 7. 

 
24 Manual for feature importance with random forest: https://scikit-

learn.org/stable/auto_examples/ensemble/plot_forest_importances.html 

 

https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
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4.5. Machine Learning  

After completing the data preparation steps, the training data, which includes both the 

influencing factors and the target variable, is now ready to be used for training a machine 

learning model. The Random Forest algorithm is selected based on its robust performance 

characteristics and suitability for handling complex datasets with multiple input features, as 

detailed in section 2.3.4. However, to substantiate the choice and ensure the selection of the 

most effective machine learning technique for our dataset, Auto-sklearn will also be used to 

train on the dataset. Auto-sklearn automatically implements optimal algorithm selection and 

hyperparameter tuning (Feurer et al., 2022). By using the built-in leaderboard function which 

Figure 24: Plot of the feature importance for the training data. The variable 

“forestloss” is removed as it has very little significance for the model. 

Table 7: Subset of the final attribute table after feature selection. The variables: tpi, roughness, annual 

temperature and forest loss have been removed from the original training dataset. 
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facilitates a comparison of all evaluated models, the best performing model type can be 

selected 25(See chapter 2.4.3 for more detail). 

To run the Random Forest workflow, the python-based machine learning library scikit-learn 

was used. Scikit-learn is a free and open-source and features various classification and 

regression algorithms, including Random Forest (Pedregosa et al., 2011). Firstly, the csv file 

including predictor variables and the target variable is imported using pandas. Then, all 

influencing factor raster data are stored as TIFF-files in a list; these raster files are then 

stacked into a single raster object using the PySpatialML library, facilitating the manipulation 

and analysis of multi-band raster data 26.  Because the columns in the tabular training data is 

based on the influencing factors in the raster stack, we can train the model on the tabular data 

and use the trained model to predict on the raster stack (Ageenko et al., 2022). 

Moreover, the tabular data underwent preprocessing where categorical and numerical features 

are handled differently. Categorical features (landforms, surficial deposits, land use and soil 

condition) are transformed so that each categorical class are represented as a new binary 

feature coded presence (1) or absence (2) of the category. This is beneficial because it 

removes any ordinal relationship and treats each class separately 27. Numerical features are 

standardized using a StandardScaler to normalize their distributions, improving the 

performance and stability of the machine learning model 28.  

Next, the landslide prediction model is constructed using a Random Forest Classifier. The 

tabular training data is divided into two arrays: one for the predictor variables and one for the 

target variable. The model utilizes these arrays to learn the relationships between the values in 

the predictor variables and the binary outcomes in the target variable. Furthermore, the data 

was partitioned into a training and a testing subset, containing 70 and 30 % of the data, 

respectively. The splitting was stratified after classes to ensure a balanced representation of 

landslide and non-landslide samples. The result is 977 samples used for training and 419 

samples for testing.     

 
25 The leaderboard gives an overview of all models trained during the search process along with various statistics 

about their training: https://automl.github.io/auto-sklearn/master/api.html 
26 Pyspatialml is a Python module for applying scikit-learn machine learning models to 'stacks' of raster datasets: 

https://pypi.org/project/pyspatialml/ 
27 The sklearn.preprocessing.OneHotEncoder is used: https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html 
28 StandardScaler standardizes features by removing the mean and scaling to unit variance: https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html 

https://automl.github.io/auto-sklearn/master/api.html
https://pypi.org/project/pyspatialml/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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Based on the work by Ageenko et al. (2022), a grid-search cross validation is implemented to 

optimize model performance. According to Liu et al. (2023), choosing the right 

hyperparameters is always helpful to improve performance. The Grid Seach method is the 

easiest and most direct form of hyperparameter optimization and is widely used in LSM (Liu 

et al., 2023). The grid search provided by the GridSearchCV function in the Scikit-learn 

library generates candidates from a grid of parameter values. The grid search explores all 

possible combinations of hyper-parameters to find the best model configuration based on 

accuracy 29. After training, the model’s performance is evaluated on the test subset, 

comprising 30% of the original data. The test set is withheld during the training phase and is 

therefore an unbiased benchmark to evaluate the performance of the model on unseen data.   

According to Reichenbach et al. (2018), evaluating the models prediction performance (the 

ability of the model to predict new landslides) is recommended in contrast to evaluating the 

model fit (the model's ability to describe the known distribution of landslides, assessed by 

comparing its outcomes with the landslide data used for training) (Reichenbach et al., 2018). 

As pointed out by Liu et al. (2023), the most used evaluation methods for classification 

problems include accuracy, precision, recall, F1-score, and ROC_AUC (see section 2.4.2 for 

more detail). As for LSM, the accuracy score and ROC_AUC are one of the recommended 

metrics to evaluate the performance of a trained model (Liu et al., 2023). The accuracy score 

has been shown to be a useful metric for binary classification tasks with balanced 

negative/positive samples (Liu et al., 2023).  

The performance evaluation began with the generation of a classification report using the 

classification_report function from scikit-learn sklearn.metrics-module. This report computes 

the precision, recall, and F1-score for each class (“landslide” and “non-landslide”). 

Additionally, the overall accuracy of the model was calculated using the accuracy_score 

function. To further visually assess the model's performance, a confusion matrix was plotted 

using ConfusionMatrixDisplay.from_predictions, illustrating the counts of true positive, false 

positive, true negative, and false negative predictions. Furthermore, as recommended by Liu 

et al. (2023), The Receiver Operating Characteristic (ROC) curve was generated to evaluate 

the model’s diagnostic ability. By plotting the true positive rate against the false positive rate 

at various threshold settings, this curve provides a graphical representation of the trade-off 

 
29https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_se

lection.GridSearchCV 

https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
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between sensitivity and specificity. The ROC was plotted with RocCurveDisplay function 

from sklearn.metrics module. 

The auto-sklearn workflow was run on a Linux operating system, through a Windows 

Subsystem for Linux (WSL) 30. The workflow for auto-sklearn is similar to that of Random 

Forest, as auto-sklearn is built around the scikit-learn library. However, as auto-sklearn 

automatically searches for the right learning algorithm and optimizes its hyperparameters, no 

preprocessing is necessary. The training data was imported using pandas, split into training 

and testing sets, and fitted to the autosklearn classifier, as shown in code block 9. A 

classification report, including overall accuracy, precision, recall and F1-score was computed, 

as well as a confusion matrix and ROC_AUC curve 31. Finaly, the trained auto-sklearn 

classifier is tested on the external validation data.  

 

 

 

 

 

4.6. External Validation 

During the development of the nationwide landslide susceptibility mapping of Norway, 

Fischer et al. (2014) used different threshold values to define susceptible start zones for 

landslides in different regions. Due to the highly varying topography, geomorphology, 

geology, surficial sediment cover, and climate in Norway, a model trained on data from one 

region in the country is not expected to have the same predictive accuracy when fitted to 

unseen data in a different region (Fischer et al., 2014). Subsequently, when selecting model 

hyperparameters, the risk of overfitting (overlearning the relationship between the predictor 

variables and the landslide/non-landslide class in the training data) can become a problem; 

Over-learning the patterns in the training data results in the degradation of the model’s 

predictive ability, when exposed to new data (Ageenko et al., 2022). To avoid this, and to 

explore how well the model can generalize on data from a different geographical region, the 

 
30 The full system requirements for Auto-Sklearn can be found here: https://automl.github.io/auto-

sklearn/master/installation.html 
31 Auto-sklearn uses the same functions to compute the accuracy metrics as the scikit-learn library. 

Code 9: The auto-sklearn classifier fitted to the training data. The classifier 

was run for two hours on all 8 of the computer’s CPU cores. 

https://automl.github.io/auto-sklearn/master/installation.html
https://automl.github.io/auto-sklearn/master/installation.html
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model with the tuned hyperparameters is validated on external data. Crucially, the external 

data has not been used in the training of the model or tuning of the hyperparameters.  

As shown in figure 25, a dataset outside of the AOI is used for this purpose, as described in 

section 4.1, with a total of 466 landslide points, with an equal distribution of landslide 

registries and randomly generated non-landslide points, as described in section 4.2.1. The 

process for generating external validation data follows a similar workflow to that of the 

training data. First, the AOI is defined. Then, point data for landslides is generated using the 

same SQL query, and point data for non-landslides is created using the same Python script, as 

outlined in section 4.2.1. New influencing factors are generated for the external validation 

area, using the same Python scripts employed for the training data (see figure 26). However, 

the input data are adjusted to reflect the new AOI. This adaptation involves using a different 

DEM and updating data sets for rivers, roads, surficial deposits, land use, precipitation, and 

Sentinel 2 satellite imagery specific to the new geographical area. Because the external 

validation is used to validate the trained RF-model, we do not want to introduce new 

predictive variables. Hence, the influencing factors removed during the feature selection 

process is similarly ignored for the external validation. The appropriate raster data is then 

mapped onto the landslide / non-landslide point data using the code described in section 4.3.  

For the machine learning task, the external dataset is prepared by splitting it into predictive 

variables and the target variable, mirroring the data preparation done for the training dataset. 

This ensures that the RF model is tested under consistent conditions. Using this external 

validation set, the model predicts landslide locations, and the results are analyzed using the 

same performance metrics. This approach provides a direct comparison between the 

performance of the model on the training dataset and its effectiveness in a new region in 

Norway. This will be discussed in chapter 5. 
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Figure 25: Area for external validation, including the 250 landslide points and the 250 randomly generated non-

landslide points. 
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Figure 26: Conditioning factors for the external validation area. 
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4.7. Landslide susceptibility map 

To gain an understanding of which areas are vulnerable to landslides, the trained machine 

learning model alone is not sufficient. We need a visual representation of landslide 

susceptibility, a landslide susceptibility map. A landslide susceptibility map serves the purpose 

of showing users and planners which areas are most susceptible to landslides, aiding 

policymakers and planners in developing proactive measures to mitigate the risks associated 

with landslides (Reichenbach et al., 2018).  

To produce the LSM, the trained RF model is used to predicts the probability of a landslide 

for each cell in the stack of influencing factor raster data. This is possible because the 

columns in the training data align with the order of the raster data in the stack. The Python 

library pyspatialml is specifically designed for applying a fitted machine learning model to 

make predictions across pixels in a raster stack. Unlike Python’s numpy module, which 

requires data to be held in memory, pyspatialml can operate directly on raster datasets stored 

on disk 32. This capability is particularly useful for handling large datasets. As a result, the 

probability score was calculated for each cell in the raster stack using the predict_proba 

method as shown in code 12 33. 

 

  

 
32 More detailed description of pyspatialml: https://pypi.org/project/pyspatialml/ 
33 The predict_proba method outputs the class probability as a multi-band raster (a band for each class 

probability). 

Code 10: Code to predict landslide probability scores on the raster stack, 

based on the trained Random Forest model, called “model_rf” in the script. 

https://pypi.org/project/pyspatialml/
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According to Reichenbach et al. (2018), landslide susceptibility maps often face challenges in 

practical application due to several key reasons. Non-specialists often find the resulting maps 

difficult to interpret, as they use descriptive terms without quantitative measures; 

Susceptibility levels are commonly displayed in descriptive terms (very high, high, medium, 

low, and very low) but areas defined as having “very low” susceptibility can still receive 

landslides. Similarly, the outputs of statistical classification models, such as probability values 

around 0.5 (in the range from 0 to 1), are commonly misunderstood; this value does not 

necessarily mean that the area has a moderate risk of landslides; rather, it indicates that the 

model is unsure about the outcome of the prediction (landslide or non-landslide area).  

Taking this into consideration, the output LSM raster data is classified to get a prediction 

pattern for better visualization. The LSM is classified based on the equal-interval method, 

where the range of all the pixel values is divided into several equal intervals with identical 

range (Chung & Fabbri, 2003). The classification is set to five intervals, breaking based on 

the value range (0 to 1) and visualized with red colors for susceptible areas, green colors for 

non-susceptible areas and yellow for areas where the model is uncertain in its prediction.        
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Chapter 5 

 

Results and Discussion 

 

The previously described methodology was applied to the presented area to map the 

likelihood of landslides in soil occurring on the basis of the proposed influencing factors and 

the obtained landslide data. To address the research questions, a random forest model was 

used to test how well machine learning performs for LSM in Vestland county. The random 

forest algorithm was applied on the data to evaluate the feature importance of the influencing 

factors. Additionally, the performance of the Random Forest algorithm was compared with 

that of the top-performing auto-sklearn algorithm to determine whether automated machine 

learning can surpass traditional approaches in this context. Finally, both machine learning 

strategies was tested using an external validation dataset to assess their predictive accuracy in 

identifying landslide-prone areas across a different geographical region.  

 

5.1. Machine learning for Landslide Susceptibility Mapping  

The nature of machine learning, fundamentally detached from specific scientific disciplines, is 

to optimize the prediction accuracy based on the patterns discerned from data. This process is 

less about adhering to the established physical or geological laws and more about recognizing 

and leveraging statistical correlations that the data presents (Langley, 1988). For supervised 

learning, the trial-and-error method is mainly used (Aurélien, 2019). In other words, an 

experimental approach. There are an endless amount of possible variable interactions and 

correlations that can explain the formation of landslides; the goal of machine learning is to 

best attempt to capture this structure. The job of the machine learning algorithm is not to 

discover why landslides occur. Rather, its role is to optimize a function that predicts the 

likelihood of a landslide occurring, based on the data provided.  

There is no standard guideline for selecting the right influencing factors, and the importance 

of influencing factors differs from one study area to another (Ado et al., 2022). Similarly, 

advanced models generated with ensemble techniques have been shown to improve the 

mapping accuracy of LSM. However, there is no existing series of standards to determine 
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what type of machine learning-based methods should be used on a specific task (Liu et al., 

2023; Reichenbach et al., 2018).     

The research in this thesis addresses several questions: Firstly, can machine learning be 

effectively used to predict landslides in the distinct geological context of Vestland county? 

Secondly, to explore whether a model trained on this localized dataset can extend its 

predictive capabilities to another geographical region, thus examining the generalizability of 

the machine learning model. Thirdly, the thesis compared the performance of automated 

machine learning against the traditional random forest algorithm to explore whether state of 

the art methods can improve the predictions. Lastly, the random forest model was used to 

explore which local terrain conditions contribute to landslide formation.   

 

5.2. Landslide Susceptibility Mapping using Random Forest  

As discussed in chapter 2.3.4, the random forest algorithm, together with other ensemble 

techniques, have been proven to be one of the best performing algorithms for LSM (Ado et 

al., 2022; Ageenko et al. 2022; Liu et al., 2023). However, no such guarantee exists when 

predicting landslides in a new geographical area with an unproven landslide inventory and a 

new set of influencing factors. To evaluate the performance of the model, multiple 

performance metrics was used (see chapter 2.4.2). Overall accuracy reflects how often the 

model correctly predicts the outcome. A confusion matrix represents the accuracy of model 

performance by displaying true positives, false positives, true negatives, and false negatives in 

a table format. Precision is the accuracy score of the positive prediction. Recall is the ratio of 

positive instances that are correctly classified. The F1 score is the harmonic mean of precision 

and recall. The receiver operating characteristic curve (ROC) plots the true positive rate 

against the false positive rate to visualize the ability of the model to differentiate between 

classes. According to Ado et al. (2022), a ROC curve can represent the summary of overall 

performance and is the most popular method to evaluate performance for LSM. 

The accuracy metrics is seen in table 8. The accuracy metrics are plotted using the 

classification_report function for the scikit-learn python library 34. The confusion matrix is 

 
34 Creates a text report showing the main classification metrics. https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.classification_report.html 

 

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
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plotted using the ConfusionMatrixDisplay function and the ROC curve is plotted using the 

RocCurveDisplay function 35. 

Table 8: Overall accuracy, precision, recall and F1-score for the Random Forest model on the test set. 

 

 

The random forest classifier distinguished well between the landslide-class and the non-

landslide class. Out of 419 cases in the test set (30% of the training data), 180 were true 

negatives, 189 were true positives, 29 were false positives and 21 were false negatives (see 

figure 27). This means that 189 real landslide records were correctly classified and 180 false 

landslide records were correctly classified as such. However, the classifier was not perfect. 21 

real landslide records were incorrectly classified as landslides and 29 non-landslide records 

were incorrectly classified as landslides. From these values, the overall accuracy was 

computed to approximately 88,07%. This metric indicates a high level of accuracy in the 

model’s ability to distinguish between landslide and non-landslide instances.  

  

 
35 Confusion matrix from scikit-learn: https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.ConfusionMatrixDisplay.html#sklearn.metrics.ConfusionMat

rixDisplay.from_predictions 

 

 
Model 

Overall 

accuracy 
Precision Recall F1-score 

Random 

Forest 
0,88 0,87 0,90 0,88 

Figure 27: Confusion matrix for the random forest classifier on the test set. 

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.ConfusionMatrixDisplay.html#sklearn.metrics.ConfusionMatrixDisplay.from_predictions
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.ConfusionMatrixDisplay.html#sklearn.metrics.ConfusionMatrixDisplay.from_predictions
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.ConfusionMatrixDisplay.html#sklearn.metrics.ConfusionMatrixDisplay.from_predictions
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The overall accuracy is a valuable metric given that the distribution of landslide and non-

landslide classes are balanced in the dataset (Liu et al., 2023). The accuracy compares 

relatively well with similar studies, namely the Danish case study form 2022 that had an 

overall accuracy score of 91% for the RF model (Ageenko et al., 2022). Case studies have 

shown varying predictive accuracies for RF models: Sun et al. (2020) reported slightly better 

accuracy at 92%, while Kavzoglu & Teke (2022) documented a lower accuracy of 81%. 

Furthermore, as shown in Table 6, the model achieved a precision score of 0,87. This high 

precision indicates that when the model predicts a landslide event, it is likely to be correct 

87% of the time. This is particularly important in LSM where false positives can lead to an 

exaggerated amount of highly susceptible areas. Similarly, a recall of 90% is also significant 

because it shows that the model is highly effective at identifying most of the actual landslide 

events. In practical terms, this means the model misses very few actual landslides.   

The ROC curve displays the recall (true positive rate) on the Y-axis and the false positive rate 

(FPR) on the X-axis across various threshold settings. Essentially, the curve shows how well 

the model distinguishes between landslide and non-landslide events. The threshold settings 

represent cut-off values used to determine whether a prediction is positive or negative. A 

binary classification model returns a number from 0 to 1 for each record. A landslide record 

can have a value of 0.2, 0.7, 0.99, or any other number. At which probability a record is 

converted to a label (landslide / non-landslide) represents the threshold used for the ROC-

curve. The function varies the threshold from 0 to 1 and calculates the true positive rate and 

false positive rate for each threshold. These rates are then plotted on the ROC curve, 

providing a visual representation of the trade-offs between detecting true positives and 

avoiding false positives (Aurélien, 2019).  

As presented in figure 28, the sharp rise along the y-axis at lower threshold values of FPR 

suggest that the model quickly reaches a high recall with a minimal increase in false positives. 

At a threshold around 0.6, further increase in recall (true positive rate) requires an increase in 

FPR. However, it is quite steady up to a threshold of 0.8 where further increase in recall 

significantly increases the FPR. The AUC is the area under the ROC curve and is used to 

evaluate the performance of classification problems (Aurélien, 2019). AUC measures the 

capability of ML model in distinguishing the classes. An AUC value greater than 0.7 is 

generally considered to indicate good accuracy, and it is not uncommon for machine learning 

models to achieve values above 0.9 (Ado et al., 2022). 
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As seen in figure 28, the ROC curve is way above the “random guessing line” with a score of 

0.96, indicating that the model distinguishes very well between the landslide and the non-

landslide class. This result compares well with the Danish study that showed an AUC score of 

0,98 for the RF model (Ageenko et al., 2022).  

The ROC plot illustrates the trade-off between correctly predicting landslides and incorrectly 

predicting landslides at different thresholds. When the recall increases, the more false 

positives the classifier produces (Aurélien, 2019). As shown in figure 28, at higher threshold 

values, the model becomes more conservative in assigning the true label, but the recall 

decreases. Lowering the threshold the model becomes less strict in assigning the true label, 

thus the recall increases. However, the model now makes more false positive predictions. This 

trade-off represents a dilemma; should the model have as high of a recall as possible in order 

to predict as many landslides as possible while consequently accepting that a substantial 

amount of these predictions are false positives, or should the model be conservative in its 

prediction? This is a question deemed outside the scope of this thesis; however, it is an 

important decision that affects the resulting susceptibility map. The balanced threshold of 0,5 

was chosen for this study. As shown in figure 29, threshold values of 0.3 and 0.5 results in 

more correct landslide predictions but more non-landslide record incorrectly labelled as 

landslide. In contrast, high threshold values of 0.7 and 0.9 almost removes all false positive 

Figure 28: Plot of the ROC curve for the RF model and the corresponding AUC 

value of 0.96. The diagonal line represents a score of 0.5 (random guess) and the 

green line represents a score of 1 (perfect prediction)    
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but now the amount of correct landslide prediction goes down, as well as false negatives 

going up dramatically.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.1. External Validation 

The inclusion of external validation is proposed as a way to explore the generalizability of the 

machine learning model. This method was used to evaluate if the random forest algorithm, 

trained on data in one geographical region, is capable of predicting landslides in another 

region. The overall accuracy of the model on the external validation dataset is 76%, which, 

while indicating a decrease, still represents a reasonable level of prediction accuracy (see 

table 7). The ROC curve demonstrates that the false positive rate increases more at lower 

classification thresholds. The AUC score also drops from 0.96 to 0.87 (see Figure 31). Despite 

this decrease, the AUC score is still considered good, surpassing the threshold of 0.7 

indicating good predictive accuracy (Ado et al., 2022). 

  

Threshold 0,3 

Threshold 0,9 Threshold 0,7 

Threshold 0,5 

Figure 29: Confusion matrix for the RF model with classification thresholds of 0.3, 0.5, 0.7 

and 0.9. 
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Table 9: Overall accuracy, precision, recall and F1-score for the Random Forest model on the external validation 

data set. 

 

 

 

 

As seen in figure 30, out of 466 cases (100% of the external validation data), 195 were true 

negatives, 160 were true positives, 39 were false positives and 72 were false negatives. The 

classifier is now worse at correctly predicting landslides with 72 actual landslide records 

incorrectly labelled as “non-landslide”. This can be attributed to overfitting and to the 

different spatial distribution of the surficial deposit classes. Class 30 (lake deposits), 72-73 

(type of weathering materials) and 100 (thin peat cover) are present in the external validation 

data but not in the training data. Furthermore, classes 70 (weathering material) and 81 

(landslide material) are characterized by an overweighting of landslide points in the training 

AOI. However, in the external validation area, these classes predominantly contain non-

landslide points, or the classes themselves are rare. Only 50 out of a total of 232 landslide 

points are found inside these classes. For the external validation area, the classes 11 and 12 

(thick and thin moraine material, respectively) contain most of the landslide points. However, 

for the training data, only 191 out of the 699 total landslide points are found inside these 

classes. A similar problem was reported by Ageenko et al. (2022), but the random forest 

method showed better generalizability on the external validation. This could be because of 

higher quality landslide inventory or because regions within Vestland county in Norway 

possibly exhibit a more varied and distinct geology, climate, and topography compared to 

different regions in Jutland, Denmark.   

  

Model 
Overall 

accuracy 
Precision Recall F1-score 

Random 

Forest 
0,76 0,80 0,69 0,74 
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5.2.2. Susceptibility Map 

The accuracy of any machine learning model hinges on the quality of the input data. ‘Garbage 

in, garbage out’ is a classic saying in any data modelling, including machine learning. The 

phrase expresses how problematic input data will produce problematic outputs (Geiger et al., 

2021). Even though the RF model used in this study showed good predictive accuracy for the 

Figure 30: Confusion matrix for the random forest classifier on the external 

validation dataset. 

Figure 31: Plot of the ROC curve for the external validation dataset with the 

corresponding AUC value of 0,87. The diagonal line represents a score of 0,5 (random 

guess) and the green line represents a score of 1 (perfect prediction).     
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training area, it does not inherently validate the correctness of the predictions. Instead, this 

accuracy reflects the model's proficiency in identifying patterns and trends within the specific 

dataset it has been trained on. Hence, if the training data, such as a landslide inventory, 

contains inaccuracies or biases - due to uneven mapping of landslide occurrences or other data 

collection inconsistencies - these imperfections will be mirrored in the output of the landslide 

susceptibility map. The predictive power of the machine learning model is fundamentally tied 

to the quality of its training data; it can only predict accurately based on what it has been 

taught. 

As seen in figure 32 (b), the susceptibility map shows high and very high probabilities of 

landslide along large roads and forests roads and on steep valley sides. The probability values 

reflect the model’s certainty in labelling a cell as either “landslide” or “non-landslide”. Thus, 

values close to 0.5 does not necessarily reflect moderate landslide risk; rather, it indicates that 

the model is unsure about the outcome of the prediction. Nevertheless, the high and very high 

probability values (between 0.6 and 1) indicate areas where the model is confident in 

assigning the “landslide” label. Areas defined as very low and low probability values 

(between 0 and 0,4) indicate high confidence in assigning the “non-landslide” label.   

Furthermore, many of the highly susceptible areas are found within the surficial deposits class 

81 and 12 (landslide material and moraine material, respectively). Additionally, as the RF 

model is trained on a landslide inventory where 61% of the landslide registries are either 

mapped by the Norwegian Public Roads Administration (SVV) or the Norwegian Railroad 

Administration (JBV), there is a bias in the distribution of landslide registries across the AOI. 

The majority of the landslides mapped by SVV and JBV are mapped on, or very close to the 

road and railroad network (Ganerød et al., 2023). This is because SVV often map landslides if 

there has been an incident that has affected their road operations. This results in a lack of 

registrations of the actual trigger area for the event, but rather a point along a road that is 

located down in the valley (Fischer et al., 2014). Figure 32(a) illustrates an example of this 

bias, where areas highly susceptible to landslides are shown running parallel to roads. While 

road networks can directly destabilize hillslopes (Sidle & Ochiai, 2006), it is likely that the 

overrepresentation of landslide registries along these roads contributes to this trend, rather 

than proximity to roads being the primary causative factor for landslides. 
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Figure 32: LSM of the training AOI using the random forest classifier. Cell values represent the probability score by 

the classifier; Between 0 and 1. 
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5.3. Landslide Susceptibility Mapping using Auto-Sklearn 

To investigate whether automated machine learning can surpass the established random forest 

algorithm, based on predictive performance on the training data and on the external validation 

data, an Auto-sklearn classifier was run on the same training and external validation data as 

the RF model, described in chapter 4.5. However, due to the automated nature of Auto-

sklearn, the training data only need to be split into a training subset (70% of the data) and 

testing subset (30% of the data). There is no need to preprocess the data; Auto-Sklearn 

automatically searches for the right algorithm and optimizes its hyperparameters based on the 

data it is trained on (Feurer et al., 2022). The process was executed using the 

AutoSklearn2Classifier function, running for 2 hours36. Results were visualized on a 

leaderboard showcasing the top-performing algorithms. For the training dataset, the best-

performing model was a multilayer perceptron (MLP), a type of artificial neural network. 

Notably, MLPs have been previously applied in landslide susceptibility modelling (LSM), as 

demonstrated by Azarafza et al. (2021), who compared various deep learning methods for 

LSM. 

The MLP approach used the same performance metrics as the RF approach. The MLP model, 

fine-tuned by Auto-Sklearn for optimal performance, excelled at correctly predicting landslide 

records with a total of 198 true positives, surpassing the RF model's 189. However, the MLP 

model identified fewer non-landslide records correctly, with only 171 compared to the RF 

model's 180. Additionally, the MLP model had fewer false positives but slightly more false 

negatives, as shown in figure 33. The overall accuracy score of 88% was identical to the RF 

mode (see table 10). Furthermore, the MLP showed an AUC score of 0.95, indicating that the 

model distinguishes very well between landslide and non-landslide events. The AUC score is 

very similar to the RF model.  

 

Table 10: Overall accuracy, precision, recall and F1-score for the Multilayer perceptron artificial neural network 

model on the test set. 

 

Model 
Overall 

accuracy 
Precision Recall F1-score 

MLP 0.88 0.89 0.88 0.89 

 
36 Manual for Auto-Sklearn 2.0: https://automl.github.io/auto-sklearn/master/manual.html 

 

https://automl.github.io/auto-sklearn/master/manual.html
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5.3.1 External validation: 

The multilayer perceptron model was also tested on external validation data. This approach 

allowed for a comparison of the two models not only on the training data but also in 

Figure 34: Confusion matrix for the multilayer perceptron model 

on the test set. 

Figure 34: Plot of the ROC curve for the multilayer perceptron model and the 

corresponding AUC value of 0.95. The diagonal line represents a score of 0.5 (random 

guess) and the green line represents a score of 1 (perfect prediction). 
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predicting landslides in a different geographical region, using unseen data. The overall 

accuracy of the MLP model on the external validation dataset was 81% which indicates better 

performance compared to the RF model. As seen in table 9, F1 score was significantly better 

for the MLP model; 0.81 compared to 0.74.   

 

Table 11: Overall accuracy, precision, recall and F1-score for the Multilayer perceptron artificial neural network 

model on the external validation data. 

Model 
Overall 

accuracy 
Precision Recall F1-score 

MLP 0.81 0.80 0.81 0.81 

 

As shown in Figure 35, out of 466 cases, there were 187 true negatives, 189 true positives, 47 

false positives, and 43 false negatives. Although the MLP model's predictions were less 

accurate compared to its performance on the training data, it demonstrated significantly better 

generalization on unseen data - especially in correctly identifying landslides - compared to the 

RF model. The MLP model yielded more true positives and fewer false negatives. Its AUC 

score was also higher at 0.9, compared to 0.87 for the RF model. This underscores the 

effectiveness of automated machine learning in selecting and optimizing the ideal algorithm 

for specific datasets (Feurer et al., 2022). Interestingly, Azarafza et al. (2021) reported very 

low AUC score of 0.51 using an MLP approach for a case study in Iran, highlighting that 

there is no standard method for determining the most suitable machine learning-based 

approach for a specific task. 

 

 

 

  

Figure 35: Confusion matrix for the multilayer perceptron model 

on the external validation data. 
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5.3. Comparing machine learning and NGU’s method for landslide 

susceptibility mapping.   

 

To investigate how well machine learning can predict landslide-susceptible areas in Vestland 

county, this study compares the susceptibility map created by the RF model to the established 

nationwide susceptibility map for Norway, developed by NGU in 201437. The NGU approach 

identifies potential release areas and delineates the downslope runout area for these points 

(Fischer et al., 2014). In contrast, the machine learning approach used in this study predicts 

landslide-susceptible areas by learning from the patterns of ‘ground truth’ landslide points, 

retrieved from the NSDB database. This prediction reflects the spatial bias in the landslide 

inventory; some points are release points, others are mapped within the entire landslide 

release zone, and many registries are located along the road network (Ganerød et al., 2023). 

Ganerød et al. (2023) concluded that the limitations in locational and qualitative accuracy 

rendered the landslide inventory unsuitable for statistical methods, leading them to develop a 

 
37 The nation-wide LSM for landslides in soil can be found from the NVE atlas: 

https://temakart.nve.no/tema/jordflomskredaktsomhet 

Figure 36: Plot of the ROC curve for the multilayer perceptron model and the 

corresponding AUC value of 0.9. The diagonal line represents a score of 0.5 (random 

guess) and the green line represents a score of 1 (perfect prediction). 

https://temakart.nve.no/tema/jordflomskredaktsomhet
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continuous landslide detection system using satellite data. However, statistical based landslide 

susceptibility mapping is a widely used method to estimate where landslides are likely to 

occur (Reichenbach et al., 2018). Comparing results is still interesting and can help shed light 

on the strengths and weaknesses of both methods.    

As shown in Table 12, the susceptible landslide zones from the NGU susceptibility map cover 

816 km² of the total AOI of 6046 km². In comparison, the zones from the RF model, which 

include areas with a probability score of 0.6 or higher, cover 500 km². Within the AOI, the 

NGU susceptibility zones encompass 43% of the total landslide registries for the region, while 

the zones from the RF model contain 94% of the registries. This suggests that the RF model's 

susceptibility map is more conservative in assigning susceptible areas, yet captures a greater 

portion of areas that have actually experienced a registered landslide. However, the 

acknowledged limitations of the landslide inventory reduce the significance of these findings 

for real-world applications, but shows the potential for the ML approach.  

 

Table 12: Coverage of susceptibility zones and percentage of landslide records intersecting with NGU LSM and 

RF LSM, illustrating mapping accuracy of both methods. 

 

 Area (km2) 
Percentage of landslide records within 

LSM zones 
 

NGU - LSM 816 43%  

RF - LSM 500 94%  

 

The similarities and differences between the two methods are visible in Figure 37. Figure 

37(c) demonstrates how NGU’s method classifies most steep valley sides as susceptible areas, 

while the RF model is more conservative, assigning a high probability of landslides based on 

the intricate relationships between the landslide registries and the influencing factors in the 

region. Figure 37(b) shows an example where the RF model has defined an area as highly 

susceptible that is not included in NGU’s susceptibility map. Due to the unpredictable nature 

of landslide initiation, it is difficult to determine which of the two models is more accurate. 

However, it is interesting to observe the differences between the two methodologies and the 

possibilities of a machine learning approach with a landslide inventory devoid of locational 

and qualitative limitations.  
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5.4. Exploring the importance of the influencing factors for prediction 

accuracy 

Exploring the statistical relationships between the landslide inventory and topographical, 

geological, hydrological, vegetation and meteorological factors, not only makes it possible to 

predict landslide susceptible areas, but also to evaluate the importance of the features for the 

prediction (Ageenko et al., 2022). Chen et al. (2020) concluded that random forest methods 

are extremely useful and efficient in selecting the important features for a classification task.   

Figure 37: Comparison between the NGU LSM and the RF LSM. The zones from the RF model include all 

areas with a probability score of 0.6 or greater. Landslide registries are added to better illustrate the relationship 

between the predictions and the ‘ground truth’. 
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As shown in figure 38, the variable “d_roads”, representing the distance to nearest road, is 

most important to the model, with a score of 0,14. This score represents the normalized 

importance score, scaled so that they all sum up to 1 (Chen et al., 2020). Following closely is 

the variable “tri” (Topographic Ruggedness Index) with a score of approximately 0,11. 

Subsequently, variables such as “losmasse” (surficial deposits), “a_perc” (average annual 

precipitation) and “ndvi” (Normalized Difference Vegetation Index) exhibit similar 

importance scores, at around 0.06. Other variables demonstrate importance scores ranging 

between 0.06 and 0.03.  

 

These results further demonstrate some of the spatial bias in the landslide inventory. Firstly, 

distance to roads is shown to have the most affect in predicting landslides. This is likely due 

to the overrepresentation of landslide registries along roads, not necessarily because proximity 

to roads is the primary causative factor for landslides. Furthermore, the high importance of 

land use class 1 can also be attributed to the spatial bias in the landslide inventory as land use 

class 1 represents transport infrastructure. Additionally, the surficial deposits class 130 (bare 

rock) is identified as the fourth most important feature (see Figure 38). According to Fischer 

et al. (2014), landslides occur in soils with varying surficial deposit thicknesses. The emphasis 

on class 130 by the Random Forest (RF) model can be attributed to the coarse mapping of 

these deposits by NGU, where class 130 encompasses not only bare rock but also vegetated 

areas and other surficial deposits. 

Furthermore, terrain ruggedness is highlighted as a significant factor in landslide formation. 

The Topographic Ruggedness Index (TRI) describes terrain heterogeneity, reflecting elevation 

differences between cells (Riley et al., 1999). The Topographic Position Index (TPI) strongly 

correlates with slope and is thus expected to be one of the models most critical features. The 

"ndvi" feature, ranking third in importance, represents vegetation cover by quantifying 

vegetation density. Vegetation cover enhances slope stability by removing soil moisture 

through evapotranspiration and providing root cohesion to the soil mantle (Sidle & Ochiai, 

2006, p.89). Sidle & Ochiai (2006) also emphasize negative effects of vegetation on slope 

stability, like surcharge of tree cover increasing the normal and downhill force components. 

The average Normalized Difference Vegetation Index (NDVI) for the susceptibility zones is 

0.4, which is relatively high given the range of -0.19 to 0.6 for the AOI. This indicates that 
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landslides in soil typically occur in vegetated areas within the AOI. Vegetation cover could 

serve as a proxy for other environmental variables, or it might simply reflect correlations 

identified by the RF model that do not necessarily imply causation. 

In addition, average annual precipitation and elevation is also one of the most important 

features for the RF model. According to Sidle and Ochiai (2006), the special patterns of 

rainfall are closely associated with landslide initiation with higher mountain elevations 

typically experiencing larger volumes of precipitation. However, total rainfall is only one 

rainfall attribute; short-term intensity, antecedent storm precipitation and storm duration also 

influence landslides (Sidle & Ochiai, 2006). For the AOI, the annual mean precipitation 

recorded between 1991 and 2020 ranges from 586 to 5,359 mm/year. Within zones of high 

landslide susceptibility (defined by a probability score of 0.6 or greater), the mean annual 

precipitation is 2,355 mm. Similarly, the mean annual precipitation recorded in landslide 

registries within the AOI is 2,267 mm. These findings suggesting some correlation between 

landslide initiation and high precipitation in the region. 

 

 

  

Figure 38: The feature importance of all the features used by the RF model.   
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5.4.1 Assessing the Performance of the random forest model with Targeted Topographic 

Factors 

 

The NGU approach identifies potential release areas for landslides in soil using an index-

based approach where thresholds for the three topographic factors slope, planform curvature 

and water contributing area are used in combination (Fischer et al., 2014). To test how well 

these three influencing factors can predict landslides using a machine learning approach, the 

random forest model was tested on the landslide inventory, but only using raster data 

representing slope in degrees, planar curvature and water contributing area as influencing 

factors38. This test, unlike the expert-based NGU method, did not require selecting specific 

threshold values and was designed to evaluate the effectiveness of the focused topographic 

inputs. However, when compared to the comprehensive method employed primarily in this 

study, which utilizes a broader set of influencing factors, the predictive power of this focused 

model decreased significantly, particularly for the external validation dataset. Overall 

accuracy for the training data dropped from 88% to 72%, and for external validation, it 

decreased from 81% to 59% (see table 13).  

 

Table 13: Overall accuracy, precision, recall and F1-score for the RF model only trained on the influencing 

factors used by the NGU approach: slope, planform curvature and water contributing area. 

 

 

 

 

 

 

Furthermore, AUC scores also saw a notable reduction; the score for the training dataset fell 

from 0.96 to 0.8, and for the external validation area, it plummeted from 0.9 to 0.62, as 

detailed in Figure 39. This outcome is somewhat surprising, considering that these three 

influencing factors were specifically utilized by NGU to identify starting points for landslides 

in soil. One might expect more consistent results between the training area and the external 

 
38 To represent water contributing area, a flow accumulation raster was generated with a similar method 

described in section 4.2.2.2 

 
Overall 

accuracy 
Precision Recall F1-score 

RF - Training 0,72 0,69 0,79 0,73 

RF – External 

Validation 
0,59 0,60 0,51 0,55 
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validation dataset. However, the NGU method employs these factors in combination, using 

different thresholds values for different regions in Norway; the findings suggest that when 

used separately, these factors do not predict landslides effectively. This underscores the 

complexity of interactions among influencing factors in landslide prediction. 

 

 

 

 

 

 

 

 

 

A visual representation of the comparative results is shown in figure 40. The RF model 

trained on only slope, planform curvature and water contributing area covers a much larger 

and arbitrary area, likely because of underfitting. Underfitting occurs because the model was 

trained on a limited set of factors, leading it to not capture the complex patterns in the data, 

hence predicting larger areas as susceptible due to its inability to differentiate effectively 

(Cunningham & Delany., 2021). 

 

 

 

 

 

 

 

 

Figure 39: Plot of the ROC curve for the RF model, trained only on the influencing 

factors slope, planar curvature and water contributing area. 
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5.4.2 Exploring spatial bias in the landslide inventory. 

To further demonstrate the spatial bias in the landslide inventory, the Random Forest model 

was fitted to both the training and external validation datasets with specific influencing factors 

removed. These factors include “d_roads,” which measures proximity to the road network, 

and “landuse,” which include a land use class representing transport infrastructure (see section 

5.4). The performance metrics for this test is presented in table 14. 

  

Figure 40: A snippet of the AOI, showing a comparison between LSM derived from the RF model 

trained on the targeted topographic factors used by NGU, and the comprehensive method employed 

primarily in this thesis. Both LSM include all areas with a probability score greater or equal to 0.6. 
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Table 14: Overall accuracy, precision, recall and F1-score for the RF model where the influencing factors 

“d_roads” and “landuse” are removed from training. 

Compared to the primary method, removing the features “d_roads” and “landuse” negatively 

affect the performance of prediction. For the training data, the overall accuracy dropped from 

88% to 82%. Recall dropped from 0.9 to 0.86 and the AUC score dropped from 0.96 to 0.92. 

These changes are not massive however. An accuracy decreases of 6%, while notable, does 

not suggest a catastrophic degradation in model performance. It points to some dependency 

on these features, but the model still retains a good level of accuracy without them. Similarly, 

for the external validation, the overall accuracy drops from 76% to 73%. Recall is identical at 

0.69, but the AUC score drops from 0.87 to 0.81 (see figure 41). The ROC curve, presented in 

figure 41, shows that even at low threshold values, further increase in recall (true positive 

rate) requires an increase in FPR. Nevertheless, the AUC score of 0.81 still indicate a good 

performing model that distinguishes well between the two classes. An AUC value greater than 

0.7 is generally considered to indicate good accuracy (Ado et al., 2022). These findings, while 

indicating some spatial bias, thus underscores the robustness of the model when relying on 

other geographical and environmental factors.      

 
Overall 

accuracy Precision Recall F1-score 

RF - Training 0,82 0,80 0,86 0,83 

RF – External 

Validation 0,73 0,80 0,69 0,74 

 

Figure 41: Plot of the ROC curve for the RF model where the influencing factors 

“d_roads” and “landuse” are removed from training. 
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Chapter 6 

 

 

Conclusion and future work 

 

In this thesis, the feasibility of using machine learning to predict areas susceptible to 

landslides in soil for Vestland county in Norway was investigated. An area covering 6 478 

km2 was used for training/prediction. Another area, covering 1 798 km2 was used for external 

validation. A dataset of historic landslide registries, based on the NSDB database, together 

with event inventories, were used as the landslide inventory. Multiple conditioning factors 

was used as the explanatory variables for the classification task. Feature selection was 

conducted to understand the relationship between the influencing factors. A correlation matrix 

and Variance Inflation Factor was used to ultimately remove the variables “roughness”, 

“average annual temperature”, “slope” and “topographic position index”, because of 

multicollinearity. In addition, Random Forest was used to evaluate the feature importance; 

checking for irrelevant features, ultimately removing the variable “forest loss” as it had very 

little significance for the model.  

Two different machine learning approaches was explored; The established RF algorithm and 

an AutoML algorithm Auto-Sklearn. For evaluation of the predictive accuracy of the models, 

accuracy, precision, recall, F1-score and ROC_AUC was used. An independent dataset was 

used to assess the model’s generalizability on unseen data. The trained random forest 

classifier was fitted to the entire raster stack of influencing factors to produce a landslide 

susceptibility map for the AOI.  

The use of the two ML algorithms showed promising results for landslide susceptibility 

mapping in the region of Vestland county. The two classifiers (RF and Auto-Sklearn) trained 

in this study and then tested on the test data both showed a high overall accuracy of 88%. The 

RF model showed an AUC score of 0.96. Auto-Sklearn, whose best performing algorithm was 

a multilayer perceptron feedforward artificial neural network, had an AUC score of 0.95, 

indicating that both models distinguish very well between the landslide and non-landslide 

classes. For the test data, the multilayer perceptron model predicted more actual landslides 

and had fewer false positives, compared to the RF model.  
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To evaluate the generalizability of the ML method, the models were tested on the external 

validation area. For the RF model, the overall accuracy dropped to 76% and the AUC dropped 

to 0.87. For the multilayer perceptron model, the overall accuracy dropped to 81% and the 

AUC dropped to 0.9. This underscores the effectiveness of AutoML in selecting and 

optimizing the ideal algorithm for specific datasets. The AutoML method conclusively 

outperforms the established random forest model in this case. Furthermore, even though the 

predictive accuracy drops for both models when the classifiers are exposed to data in a 

different geographical region, the retention of good predictive accuracy indicates a robust 

model that can predict landslides across different regions. 

The RF model allows for a variable importance analysis, where it was found that the most 

significant variable related to landslides was distance to roads, followed by Topographic 

Ruggedness Index, surficial deposit class 130 (bare rock/thin turf cover), average annual 

precipitation and NDVI. These results demonstrate undeniable spatial bias in the landslide 

inventory with an overrepresentation of landslide registries along roads, rather than proximity 

to roads being a primary causative factor for landslides in soil. This spatial bias was further 

explored by training the RF model without road-associated variables, which resulted in a 

slight performance degradation. However, the models still performed well, especially on the 

test data. Furthermore, the RF model trained solely with slope, planform curvature, and water 

contributing area underperformed significantly in predicting landslides, underscoring that 

incorporating a broader selection of diverse and relevant influencing factors is crucial for 

predictive performance. The variable importance should be assessed in the context of the 

given case study and is not necessarily generalizable to other regions as anthropogenic 

activities, topography, and geological characteristics are not identical.  

The susceptibility map developed in this thesis shows strong potential for accurately 

predicting landslide-prone areas, particularly within the regions where the machine learning 

models were trained. This could make it a valuable tool for municipalities needing detailed, 

region-specific landslide susceptibility assessments, offering a more detailed and area-specific 

result than the current nationwide susceptibility map available for Norway. However, the 

usefulness of the LSM is limited by the spatial biases in the landslide data. Better landslide 

inventory is thus of paramount importance for better statistical landslide prediction.  
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6.1 Future Work 

 

To enhance the generalizability and precision of machine learning models for landslide 

susceptibility mapping across Norway, future studies should consider employing a more 

diverse set of external validation areas. This approach would not only help in understanding 

the machine learning models' adaptability nationwide but also illuminate the regional 

variations in geoenvironmental factors influencing landslide formation.  

Future studies should consider applying the methodology outlined in this thesis using slope 

units as the mapping unit, instead of the grid cells utilized in this study. Given that landslides 

predominantly occur on hillslopes, the use of slope units could theoretically enhance the 

precision and relevance of the LSM. 

Finally, recent advancements in machine learning for continuous landslide detection present 

an opportunity to develop a more realistic and comprehensive landslide inventory. This 

updated database could serve as a refined input for more accurate LSM, ensuring that the 

models are working with the best available data. Furthermore, if improved data can be 

collected specifically for landslide initiation areas, machine learning models could be 

deployed to pinpoint these high-risk areas. Coupling this with modeling techniques for the 

runout zones could make for an integrated approach that could significantly advance the 

capabilities of LSM for Norway. 
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