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ABSTRACT

In this thesis, we investigate the relation between the commencement of medication
at an acute psychiatric department and the clinical assessment tool PANSS-EC.
Explainable Boosting Machine (EBM) is used to model the probability of the com-
mencement of medication and evaluate its performance by comparing the results
to the two benchmark models Generalized Additive Model (GAM) and General-
ized Linear Model (GLM). The performance measure used is the area under the
receiver operating characteristic curve (AUC). Simulation studies are performed to
analyze the model performance on known underlying relations to further provide
a basis for the analyses of the real data.

Our results on simulated and real data indicate that the EBM model is not no-
tably better than GAM and GLM in terms of general performance, but has clear
strengths in inherently detecting interactions and discontinuities in the data. Non-
linear relations between the commencement of benzodiazepines, mood stabilizers,
and PANSS-EC were identified.

The contributions of this thesis include a comprehensive presentation and com-
parison of models to analyze small binary classification datasets from medical
research, an up-to-date explanation of the theory behind the EBM model, a thor-
ough evaluation of the use of the EBM model in suicide research data and useful
insight into the underlying relations between the commencement of medication
and PANSS-EC at an acute psychiatric department.
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SAMANDRAG

I denne avhandlinga undersøkjer vi samanhengen mellom oppstart av medisinar
ved ein akutt psykiatrisk avdeling og det kliniske vurderingsverktøyet for uro,
PANSS-EC. Vi bruker Explainable Boosting Machine (EBM) for å modellere
sannsynet for oppstart av medisinering og vurderer prestasjonen til modellen ved
å samanlikne resultata med referansemodellane Generaliserte Additive Modellar
(GAM) og Generaliserte Lineære Modellar (GLM). Prestasjonen til modellane vert
målt ved bruk er arealet under "receiver operating characteristic" kurva (AUC).
Simuleringstudier er utført for å analysere modellprestasjonen på kjende underlig-
gjande relasjonar. Dette vart gjort for å ytterlegare underbygge analysane av den
verkelege dataa.

Resultata våre tilseier at EBM-modellen ikkje er vesentleg betre enn GAM og
GLM i høve til generell prestasjon, men har klare styrker i å påvise interaksjonar og
diskontinuitetar i dataa. Ikkje-lineære samanhengar mellom oppstart av benzodi-
azepinar og PANSS-EC, samt mellom oppstart av stemningsstabiliserande middel
og PANSS-EC vart identifiserte og presentert.

Hovudbidraga frå denne avhandlinga inkluderer ei grundig framstilling og saman-
likning av modellar for å analysere små binære klassifiseringsdatasett frå medisinsk
forsking, ein grundig vurdering av bruken av EBM-modellen i denne forskinga
knytt til sjølvmord og nyttig innsikt i dei underliggjande relasjonane mellom opp-
start av medisinar og PANSS-EC ved ein akutt psykiatrisk avdeling.

ii



PREFACE

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) in the field of statistical learning and inference. It was written at the
Department of Mathematical Sciences during the spring of 2024 in collaboration
with St. Olav Hospital, Clinic for Mental Health Care. This master’s thesis aims to
investigate the commencement of medication at an acute psychiatric department
using EBM, focusing on the relation to the clinical assessment tool PANSS-EC.
Some parts of this thesis are extensions of a previous project thesis by the same
author, written in collaboration with the same department and people. I want
to thank Linde Melby (NTNU) for her insight in mental health and medicine.
Thanks to

∫
-boys for making physics and mathematics endurable. I thank my

friends, family and Emilie for being there for me throughout these five years. I
hope you know how much it has meant to me. I would also like to express my
utmost gratitude to my supervisor, Professor Mette Langaas (NTNU). Her help
with this thesis has been invaluable, and I would not nearly have been able to
complete it without her guidance and support. I feel truly lucky to have had
the pleasure of getting to know her, working with her, and finishing five years of
studies with her as my supervisor.

iii



CONTENTS

Abstract i

Samandrag ii

Preface iii

List of Figures vi

List of Tables viii

1 Introduction 2

2 Theory 5
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Binary Classification Problem . . . . . . . . . . . . . . . . . . . . . 6
2.3 Generalized Linear Model . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 7
2.4 Generalized Additive Model . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Shape Functions . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Explainable Boosting Machine . . . . . . . . . . . . . . . . . . . . . 14
2.6 Receiver Operating Characteristic . . . . . . . . . . . . . . . . . . . 16

2.6.1 Conventional Definition . . . . . . . . . . . . . . . . . . . . 16
2.6.2 Hand and Till Definition . . . . . . . . . . . . . . . . . . . . 17

2.7 Area Under ROC Curve . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7.1 Confidence Interval for θ . . . . . . . . . . . . . . . . . . . . 19

2.8 Comparing Two or More ROC Curves . . . . . . . . . . . . . . . . . 20

3 Data 21
3.1 Medication Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Clinical Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Positive and Negative Syndrome Scale . . . . . . . . . . . . . . . . 26
3.4 The Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . 27

iv



CONTENTS v

4 Simulation Studies 29
4.1 Generating Data and Workflow . . . . . . . . . . . . . . . . . . . . 29
4.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Results from the Simulation Studies . . . . . . . . . . . . . . . . . . 32

4.3.1 Simulation Study 1 . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Simulation Study 2 . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.3 Simulation Study 3 . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.4 Simulation Study 4 . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Results 45
5.1 Aim of the Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Overview of the Analyses . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.1 ROC Curves and AUCs for All Analyses . . . . . . . . . . . 47
5.4.2 1000 Train-Test Splits . . . . . . . . . . . . . . . . . . . . . 48

5.5 Benzodiazepines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5.1 Variable Importance . . . . . . . . . . . . . . . . . . . . . . 51
5.5.2 Shape Functions and Coefficients . . . . . . . . . . . . . . . 52
5.5.3 GAM and GLM . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5.4 PANSS-EC Score . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Mood Stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6.1 Variable Importance . . . . . . . . . . . . . . . . . . . . . . 56
5.6.2 Shape Functions and Coefficients . . . . . . . . . . . . . . . 57
5.6.3 GAM and GLM . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6.4 PANSS-EC Score . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Discussion & Further work 63
6.1 Performance of the Models . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 PANS-EC Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Contributions and Further Work . . . . . . . . . . . . . . . . . . . . 66

7 Conclusions 67

References 69

Appendices 72

A Medication Data Comparison Study of AA and GAP 73
A.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.2.1 Odds Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2.2 Fisher’s Exact Test . . . . . . . . . . . . . . . . . . . . . . . 74
A.2.3 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . 75

A.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B Results for the Antipsychotics and Hypnotics Datasets 77



vi CONTENTS

B.1 Antipsychotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.1.1 Variable Importance . . . . . . . . . . . . . . . . . . . . . . 77
B.1.2 Shape Functions and Coefficients . . . . . . . . . . . . . . . 77
B.1.3 GAM and GLM . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.2 Hypnotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.2.1 Variable Importance . . . . . . . . . . . . . . . . . . . . . . 82
B.2.2 Shape Functions and Coefficients . . . . . . . . . . . . . . . 82
B.2.3 GAM and GLM . . . . . . . . . . . . . . . . . . . . . . . . . 84

C Examples from Simulation Studies 87



LIST OF FIGURES

1 Missing data patterns in the medication data for the four com-
mencement variables. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Number of missing observations in clinical data. . . . . . . . . . . . 24
3 Plots of the correlation coefficients between pairs of clinical vari-

ables, expect the variable for diagnosis categories, before imputa-
tion in each of the four datasets. . . . . . . . . . . . . . . . . . . . . 28

4 Violin plot for the AUCs on the test set for the 1000 simulations
for each of the four simulation studies. . . . . . . . . . . . . . . . . 33

5 Bland-Altman plot for the AUC from EBM, GAM and GLM from
the 1000 simulations for Simulation Study 1-4. Note that the axes
are different between the simulation studies. . . . . . . . . . . . . . 33

6 Comparison of the shape functions of GLM, GAM and EBM in
Simulation Study 1, with a barplot showing the distribution of X2

across various intervals. . . . . . . . . . . . . . . . . . . . . . . . . . 35
7 Step function, f2, used in Simulation Study 2. . . . . . . . . . . . . 36
8 Comparison of the shape functions of GLM, GAM and EBM in

Simulation Study 2, with a barplot showing the distribution of X2

across various intervals. . . . . . . . . . . . . . . . . . . . . . . . . . 37
9 Interaction function, f3, used in Simulation Study 3. . . . . . . . . . 38
10 Comparison of the shape functions of GLM, GAM and EBM in

Simulation Study 3, with a barplot showing the distribution of X2

across various intervals. The shape function for the interaction term
from EBM is seen at the bottom. . . . . . . . . . . . . . . . . . . . 39

11 Comparison of the shape functions of GLM, GAM and EBM in
Simulation Study 4, including the shape function for the interaction
term from EBM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

12 Flowchart of the analysis for each of the four datasets. . . . . . . . 46
13 ROC Plots of GLM, GAM and EBM for the original train-test split

for the four datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
14 AUC density plots for the 1000 train-test splits for all three models

on the four datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 49
15 Bland-Altman plot for the AUC from EBM, GAM and GLM from

the 1000 train-test splits for all 4 datasets. Note that the axes are
not the same for all plots. . . . . . . . . . . . . . . . . . . . . . . . 50

vii



viii LIST OF FIGURES

16 Shape functions for variables for PANSS-EC score and age from
EBM for the Benzodiazepines dataset. . . . . . . . . . . . . . . . . 52

17 Shape functions for variables for PANSS-EC score and age from
GAM for Benzodiazepines dataset. . . . . . . . . . . . . . . . . . . 54

18 Shape functions for the variables for PANSS-EC score and age from
EBM for the Mood Stabilizers dataset. . . . . . . . . . . . . . . . . 58

19 Shape functions for the interaction between age and gender, and age
and PANSS-EC score from EBM for the Mood Stabilizers dataset. . 59

20 Shape functions for PANSS-EC score and age from GAM for Mood
Stabilizers dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

21 Shape functions for PANSS-EC score and age from EBM for An-
tipsychotics dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

22 Shape functions for PANSS-EC score and age from GAM for An-
tipsychotics dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

23 Shape functions for PANSS-EC score and age from EBM for Hyp-
notics dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

24 Shape functions for the variables for PANSS-EC score and age from
GAM for Hypnotics dataset. . . . . . . . . . . . . . . . . . . . . . . 85

25 Comparison of the shape functions of GLM, GAM and EBM in
Simulation Study 1 for another train-test split. . . . . . . . . . . . . 87

26 Comparison of the shape functions of GLM, GAM and EBM in
Simulation Study 2 for another train-test split. . . . . . . . . . . . . 88

27 Comparison of the shape functions of GLM, GAM and EBM in
Simulation Study 3, including the shape function for the interaction
term from EBM, for another train-test split. . . . . . . . . . . . . . 89

28 Comparison of the shape functions of GLM, GAM and EBM in
Simulation Study 4, including the shape function for the interaction
term from EBM, for another train-test split. . . . . . . . . . . . . . 90



LIST OF TABLES

1 Link and response functions for typical distributions from the ex-
ponential family. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Description of the commencement of medication variables, after the
time of admission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Recategorization of diagnosis factors into four diagnosis categories. . 23
4 Description of clinical variables adapted from Ludvigsen (2023). . . 25
5 The number of possible candidates for the commencement of med-

ication (Usage0), i.e., patients who don’t have registered usage of
the medication at admission, the number of patients with missing
values for the commencement of the medication for the possible
candidates (CommencementNA), the total number of patients and
the case ratio for each of the four datasets. . . . . . . . . . . . . . . 27

6 Average coefficients and standard deviations over the 1000 simula-
tions for the three models in the four simulation studies. . . . . . . 32

7 Average AUC with standard deviations over the 1000 simulations
for the three models in the four simulation studies. . . . . . . . . . 32

8 Variable importance from the last simulation (Imp) with the cor-
responding average importance (Avg Imp) and standard deviation
(SD) over the 1000 simulations from the EBM model in Simulation
Study 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9 Variable importance from the last simulation (Imp) with the cor-
responding average importance (Avg Imp) and standard deviation
(SD) from the EBM model in Simulation Study 2. . . . . . . . . . . 36

10 Variable importance from the last simulation with the correspond-
ing average importance and standard deviation from the EBM model
in Simulation 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11 Importance (Imp) from the last simulation, average importance
(Avg Imp), standard deviation (SD) and inclusion count in over
the 1000 simulations from EBM in Simulation Study 4. . . . . . . . 41

12 P -values for the last simulation and count of p-values below 0.05
over the 1000 simulations for GLM and GAM in Simulation Study 4. 42

13 P -values from the DeLong test on the different models for all four
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



LIST OF TABLES 1

14 Variable importance (Imp), from EBM for our training set from the
original train-test split, including average importance (Avg Imp),
standard deviation (SD) and inclusion count from the 1000 train-
test splits of the Benzodiazepines dataset. . . . . . . . . . . . . . . 51

15 Scores for binary variables (top) and diagnosis category (bottom)
from EBM for the Benzodiazepines dataset. . . . . . . . . . . . . . 53

16 Summary of GLM results for the Benzodiazepines dataset. . . . . . 55
17 Summary of GAM results (top) and ANOVA (bottom) from the

Benzodiazepines dataset. . . . . . . . . . . . . . . . . . . . . . . . . 55
18 Variable importance (Imp) from EBM for our training set in the

original train-test split, including average importance (Avg Imp),
standard deviation (SD), and inclusion count, derived from the 1000
train-test splits of the Mood Stabilizers dataset. . . . . . . . . . . . 56

19 Top 15 terms with regard to average importance from EBM for the
Mood Stabilizers dataset. . . . . . . . . . . . . . . . . . . . . . . . . 57

20 Scores for binary variables (top) and the diagnosis categories (bot-
tom) from EBM for the Mood Stabilizers dataset. . . . . . . . . . . 59

21 Summary of GLM results for Mood Stabilizers dataset. . . . . . . . 61
22 Summary of GAM results (top) and ANOVA (bottom) from the

Mood Stabilizers dataset. . . . . . . . . . . . . . . . . . . . . . . . . 61

23 Number of patients with 0, 1 and missing value (NA) for all medi-
cation usage and commencement variables in the two studies. . . . . 74

24 Contingency table for medication variable Xi. . . . . . . . . . . . . 74
25 Odds ratios, confidence intervals and p-values from Fisher’s exact

test and logistic regression. . . . . . . . . . . . . . . . . . . . . . . . 76

26 Variable importance (Imp), from EBM for our training set from the
original train-test split, including average importance (Avg Imp),
standard deviation (SD) and inclusion count from the 1000 train-
test splits of the Antipsychotics dataset. . . . . . . . . . . . . . . . 78

27 Scores for binary variables (top) and diagnosis category (bottom)
from EBM for the Antipsychotics dataset. . . . . . . . . . . . . . . 80

28 Summary of GLM results for Antipsychotics dataset. . . . . . . . . 81
29 Summary of GAM results (top) and ANOVA (bottom) from the

Antipsychotics dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 81
30 Variable importance (Imp), from EBM for our training set from the

original train-test split, including average importance (Avg Imp),
standard deviation (SD) and inclusion count from the 1000 train-
test splits of the Hypnotics dataset. . . . . . . . . . . . . . . . . . . 82

31 Scores for binary variables (top) and diagnosis category (bottom)
from EBM for the Hypnotics dataset. . . . . . . . . . . . . . . . . . 84

32 Summary of GLM results for the Hypnotics dataset. . . . . . . . . . 85
33 Summary of GAM results (top) and ANOVA (bottom) from the

Hypnotics dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



CHAPTER

ONE

INTRODUCTION

Suicide is a significant public health issue worldwide. Despite this, a lack of
knowledge of the root causes remains elusive. A more precise understanding of
the relations of underlying factors of patients admitted to acute psychiatric de-
partments is crucial in providing correct treatment for patients and enhancing
important knowledge about general mental health issues.

New statistical models within machine learning allow for an unprecedented per-
formance when it comes to predicting outcomes based on complex and high-
dimensional data. In analysis within medicine, the understanding of the underly-
ing processes in models is of importance. Therefore, the new wave of explainable
artificial intelligence has proved very useful in this field.

In this thesis, we aim to investigate the relation between a clinical assessment
tool measuring psychotic symptoms severity and the commencement of medica-
tion at an acute psychiatric department. Given our focus on understanding the
relationship rather than merely its significance, interpretability and overall pre-
dictive performance are crucial. We will therefore use a relatively new machine
learning model called Explainable Boosting Machine (EBM), which is known for
its interpretability but has also shown to have as good performance, if not better,
than other state-of-the-art full complexity machine learning methods (Nori et al.
2019a). The use of this model on the data presented in this thesis is evaluated
and compared to the benchmark models, the Generalized Additive Model (GAM),
and the Generalized Linear Model (GLM).

This thesis contributes to the field by enhancing our understanding of medication
impacts within acute psychiatric departments, potentially leading to improved
patient care and knowledge about mental health issues. This is in accordance
with the United Nations sustainability goals, where the third goal is to “ensure
healthy lives and promote well-being for all at all ages” (United Nations 2023).

This thesis is crafted with an emphasis on being interpretable by researchers at
St. Olavs Hospital, Clinic for Mental Health Care, particularly in the presentation
of the results, discussion and conclusions from our analyses. We have consciously
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CHAPTER 1. INTRODUCTION 3

employed terminology and provided explanations accessible to a broad audience,
not exclusively statisticians. This approach ensures that the findings are compre-
hensible and applicable clinically.

Parts of the work in this thesis are a continuation of previous work done in Engelsen
(2024), a project thesis written in the winter of 2024 in collaboration with the same
departments and people. Section 2.6, 2.7 and 2.8 in Chapter 2 are in large parts
similar to the project thesis, with minor modifications to notation. The data
presented in Chapter 3 is partly from the same studies as in the project thesis
and, therefore, holds similarities in the presentation of the data used.

The thesis is structured in the following manner. We begin Chapter 2 by presenting
the theoretical background that will be used in later analyses. This is mainly
focused on the three models, GLM, GAM, and EBM, and the inference metrics
used for the models. In Chapter 3, we present the data used in the analyses
and the feature engineering done. Further, in Chapter 4, four simulation studies
comparing the three models on synthetic datasets are presented. The synthetic
datasets are meant to mimic variables of particular interest in the real dataset and
will provide insight into the models. In Chapter 5, we present the results from the
analyses using the data in Chapter 3. We end the thesis by discussing the results
obtained and drawing conclusions in Chapter 6 and 7, respectively.
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CHAPTER

TWO

THEORY

In this chapter, the theoretical background of the thesis analyses is presented.
Pertinent terminology is specified before the problem is defined and presented,
along with the relevant underlying theory of the models used. Lastly, the theory
behind the performance measures and tests used for evaluating the models is
thoroughly deduced.

2.1 Terminology

Interpretability, explainability and intelligibility are words that differ little in lit-
eral meaning but are often used to describe different characteristics of models in
machine learning. Following the terminology of Nori et al. (2019a), one can di-
vide machine learning models into two categories, glass box models and black box
models. Glass box models are models that are directly interpretable due to their
structure, while black box models are more difficult to understand due to their
complexity. When using black box models, there is in general a need to use post-
hoc methods to further explain the results, while in glass box models, the results
are directly interpretable. The term explainability is often used while describing
the ability to understand or explain black box models, while the term intelligibil-
ity is used when describing the ability to understand glass box models. Following
Oxford Learner’s Dictionaries intelligibility is defined as "the fact of being able to
be easily understood" (Oxford University Press n.d.). In this thesis, we will use
the term intelligibility when describing the ability to understand a model, as we
are working with glass box models.

The terms variable, feature and covariate are often used interchangeably in statis-
tics and machine learning. In this thesis, the term variable refers to the properties
of the data and can be divided into the response variable and explanatory vari-
ables. The term covariate refers to the explanatory variables when used to model
the response variable. Much of the literature on the subject also uses the term
feature instead of covariate. The terms explanatory variable, covariate and feature
can be used interchangeably without loss of meaning. To make matters worse, the

5



6 CHAPTER 2. THEORY

word "term" can also be used when referring to a variable used in a model. In
this thesis, term will mostly be used when referring to interactions between two
explanatory variables. On behalf of the statistical community, we apologize for
the ambiguity.

2.2 Binary Classification Problem
A sample of size M , called a training set, and a sample of size N , called a test
set, is randomly drawn from a population of interest. In these samples a response
variable Y and a vector of covariates X = (x1, x2, . . . , xp) are observed. Focusing
on a binary response variable, noting Y = 0 as a negative and Y = 1 as a
positive observation, two groups of observations in the sets, D0 and D1, can be
inferred. For the training set, two groups of size |Dtrain

0 | = m0 and |Dtrain
1 | = m1,

where m0 +m1 = M , are obtained. Similarly, for the test set, two groups of size
|Dtest

0 | = n0 and |Dtest
1 | = n1, where n0 + n1 = N , are obtained.

A binary classification problem aims to construct a classifier that can separate
the two groups D0 and D1 in the best way possible. The training set is used to
construct the classifier, introducing an estimated prediction, p̂(X) = P̂(Y = 1|X),
defined as the estimated probability of an observation being positive as a function
of the covariate vector X. The goodness of the classifier can then be evaluated on
new unseen data using the test set.

The training set of M observations is denoted as Dtrain = {(Xi, Yi)}M1 , where the
observed vector of covariates for observation i is denoted Xi = (xi1, xi2, . . . , xiq)
and the corresponding response variable is denoted Yi.

2.3 Generalized Linear Model
The GLM is a generalization of the standard linear regression model. The model
can be characterized by three key components, the random component, the sys-
tematic component and the link function.

The random component defines the distribution of a response variable Y coming
from the exponential family of probability distributions. The exponential family
is a class of probability distributions where the probability or density functions
can be written in the form

P(Yi|θi) = exp

(
Yiθi − b(θi)

ϕ
wi + c(Yi, ϕ, wi)

)
, (2.1)

where θi is the canonical parameter, ϕ is the dispersion parameter, wi is a weight
function, b(θi) is a known function called the cumulant function and c is a known
function (Dunn & Smyth 2018, p. 212). The exponential family include distribu-
tions such as the normal, Poisson, binomial and gamma distribution.

The systematic component for a GLM is a linear combination of the predictors
xi1, xi2, . . . , xiq and the parameters β0, β1, . . . , βq, written as ηi = β0 + β1xi1 +
β2xi2 + . . .+ βqxiq.
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The link function, denoted as g(·), is a known, monotonic, differentiable function
that relates the expected value of Yi, E[Yi] = µi, to the systematic component and
thus binds the systematic component to the random component,

g(µi) = ηi = β0 + β1xi1 + β2xi2 + . . .+ βqxiq. (2.2)

The link function is canonical if ηi = θi = g(µi), which is highly practical as
it simplifies the estimation of the parameters. The inverse of the link function
is referred to as the response function, denoted h(ηi). In Table 1, some exam-
ples of the canonical link and response functions for different random component
distributions are shown.

Distribution Link function Response function Name
Normal g(µ) = µ h(η) = η Identity
Poisson g(µ) = log(µ) h(η) = eη Log
Binomial g(µ) = log

(
µ

1−µ

)
h(η) = (1 + e−η)−1 Logit

Gamma g(µ) = −µ−1 h(η) = −η−1 Negative inverse

Table 1: Link and response functions for typical distributions from the exponen-
tial family.

Dealing with a binary classification problem, this thesis focuses on responses from
the binomial distribution and employs the logit link function. Denoting pi as the
probability of a positive for observation i with covariate vector Xi, it follows that
E[Yi] = µi = pi and therefore

pi = P(Yi = 1|Xi) =
eηi

1 + eηi
=

1

1 + e−ηi
, (2.3)

deduced from the logit link function and (2.2).

2.3.1 Parameter Estimation

The unknown parameters β0, β1, . . . , βq can be estimated by using maximum like-
lihood estimation (MLE). The likelihood of the parameter vector β is defined as
the probability of observing the training data given the parameters β, L(β) =∏m

i=1 f(Yi|β). Since the natural logarithmic function is monotonic, it is practi-
cal to work with the log-likelihood function. Using the notation from (2.1), the
log-likelihood function is defined as

l(β) =
m∑
i=1

li(β) =
m∑
i=1

1

ϕ
(Yiηi − b(ηi))wi +

m∑
i=1

c(Yi, ϕ, wi).

The score function is defined as the derivative of the log-likelihood function with
respect to the parameters β,

s(β) =
∂l(β)

∂β
.
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This can be written on the matrix form s(β(t)) = XTDΣ(Y − µ), where X is the
design matrix, D is a diagonal matrix with the derivative of the response function
on the diagonal, and Σ is a diagonal matrix with the variance of the response
vector Y on the diagonal.

Further, the observed information matrix is defined as the negative derivative of
the score function with regard to β,

J (β) = −∂s(β)

∂βT
= − ∂2l(β)

∂β∂βT
.

The maximum likelihood estimator of β is denoted as β̂ and is found as the
solution to s(β) = 0. A solution can be found using an iterative technique such as
the Newton-Raphson method. The formula for iteration t+ 1 of this method is

β̂(t+1) = β̂(t) + J (β̂(t))−1s(β̂(t)). (2.4)

Since the observed information matrix is often difficult to compute, the expected
information matrix is used instead, also referred to as the Fisher information
(Dunn & Smyth 2018, p. 186). The Fisher information is defined as the expected
value of the observed information matrix, F(β) = E(J (β)). This can be written
on the matrix form F(β) = XTW(β)X, where W is a diagonal matrix with
elements h′(ηi)

2Var(Yi)
−1 for i = {1, · · · ,M}, referred to as working weights.

Using the Fisher information in (2.4), gives iteration t + 1 of the Fisher scoring
method,

β̂(t+1) = β̂(t) + F(β̂(t))−1s(β̂(t)). (2.5)

It is worth mentioning that for canonical link functions, the observed and expected
information are equal, and the Newton-Rhapson and Fisher scoring methods are
equivalent to each other (McCullagh & Nelder 1989, p. 43). The Fisher scoring
iteration can be written in the matrix form as

β̂(t+1) = (XTW(β̂(t))X)−1XTW(β̂(t))Ỹ(t), (2.6)

where Ỹ is referred to as the working response vector and has elements Ỹ
(t)
i =

ηi + (Yi − h(ηi))h
′(ηi)

−1 for i = {1, · · · ,M} (Dunn & Smyth 2018, p. 246). β̂ is
then normally distributed with mean and variance, β̂ ∼ N (β,J −1).

Running Fisher scoring iterations while updating the working response vector and
the working weights is called the iterated reweighted least squares method (IRLS).
The IRLS method is a fast and efficient method for estimating the parameters of
a GLM and is the method used in the glm() function in the stats package in R
(R Core Team 2023), which is used in the analyses later.

Non-linear transformations and interaction terms can be modeled in GLM, though
this needs to be explicitly specified. This often requires a priori knowledge and
can be a cumbersome process.
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2.4 Generalized Additive Model

GAM is a generalization of GLM created by Hastie and Tibshirani in Hastie &
Tibshirani (1987) and allows for non-linear relationships in the systematic com-
ponent while maintaining additivity (James et al. 2021, p. 307). This is based on
that each covariate xj is modelled using functions fj(xj), resulting in the following
model for the systematic component,

η = β0 + f1(x1) + f2(x2) + . . .+ fq(xq). (2.7)

Following Lou et al. (2012), these functions are called shape functions. GAM
is considered more general than GLM since it, with shape functions, can with-
out explicit specification model non-linear relationships that need to be manually
specified in GLM. The main downside to GAM is that it is limited to maintain-
ing additivity and can, for many covariates, miss important interactions (James
et al. 2021, p. 309). Interaction terms can be added manually, though this can be
cumbersome as there often are many possible interactions to consider for inclusion.

2.4.1 Shape Functions

The shape functions, fj(xj), model a single covariate in the systematic component
and can be functions of a variety of types, such as splines, univariate trees or
univariate ensembles of trees. This flexibility contrasts with GLM, which only
uses linear functions of the covariates by default. However, it is important to note
that in GLM, the linearity refers to the model parameters β, and users have the
option to incorporate non-linear transformations of the covariates.

The most common shape functions used in GAMs are splines and local regression,
though other shape functions using decision trees have laid the foundation for the
EBM model, presented later. The theory behind these shape functions will be
presented in the following sections.

Smoothing Splines

Smoothing splines for regression problems are based on minimizing the residual
sum of squares for some shape function, fj(xj), with a constraint on the smooth-
ness of the function to prevent overfitting. In the case of classification problems,
the same constraint on smoothness is used but with a different likelihood function.
The log-likelihood in a binomial GAM with a logit link function is

l(β) =
M∑
i=1

[Yi log(pi) + (1− Yi) log(1− p(xi))] ,

where pi is the probability from (2.3). For the smoothing spline for a binomial
logit GAM, the log-likelihood to maximize is the penalized log-likelihood criterion
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lpen(β, λ) = l(β)− 1

2

q∑
j=1

λj

∫
f ′′
j (tj)

2dtj.

The optimal fj(xj) is then a finite-dimensional natural spline with knots at the
unique values of xj, defined as fj(xj) =

∑K
k=1 Nk(xj)θkj with K degrees of freedom,

where Nk is the basis function for the i -th natural spline basis function and θkj are
coefficients (Hastie et al. 2009, p. 127). In the analyses later, smoothing splines
will be used as shape functions in the GAM model using the gam package in R
(Hastie 2023). In this package, the degrees of freedom are set to K = 4 by default,
which is the number used in later analyses.

2.4.1.1 Uncertainty

First, consider an additive model with a normal response. After a smoothing
spline has been obtained, one can write the shape function as

f̂(x) = SY,

where S is the smoothing matrix and Y is the response vector. If we assume that
Cov(Y ) = σ2I, where I is an identity matrix, the covariance matrix for the shape
function is

Cov(f̂(x)) = SSTσ2. (2.8)

The pointwise standard errors bands can be calculated as ±1.96
√

diag(Cov(f̂(x)))
and results in a 95% confidence interval (Hastie & Tibshirani 1990, p. 60). This
can be generalized to a logistic regression fitted by backfitting (see Section 2.4.2)
as the final iteration can be seen as a weighted linear regression of an adjusted
dependent variable, see Hastie & Tibshirani (1987) Section 4.4 for more details.

Local Regression

Local regression is based on fitting a regression function only at the nearby ob-
servations for a certain point and doing this over the entire range of observations.
The observations are weighted so that the closest observations are weighted more
than observations further away. One can use different regression functions, such as
constant, linear or quadratic regression. For linear regression, the local regression
function to minimize at x0 is defined as

argminβ0,β1

N∑
i=1

Ki0(yi − β0 − β1xi)
2,

where Ki0 are the weights for the neighboring observations around x0 (James et al.
2021, p. 304). Local regression is the other possibility for shape function in the
gam package in R (Hastie 2023). It will not be used in our analyses later but is
included here for completeness.
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Decision Tree

A decision tree is a non-parametric supervised learning method used for classifi-
cation and regression. For regression problems, decision trees are often called re-
gression trees, where the goal is to divide the covariate space into non-overlapping
regions in order to estimate a response variable. Each leaf node in the regression
tree corresponds to a numerical estimation of the response variable, often being
calculated as the mean of all observations in the leaf node. The division of the
covariate space is done by a splitting criterion in a greedy manner, such as variance
reduction or minimizing the mean squared error (MSE) defined as

MSE =
1

M

M∑
i=1

(Yi − Ŷi)
2,

where Yi is the observed response and Ŷi is the estimated probability response
for observation i. As mentioned above, all shape functions only relate a single
attribute to the target, and decision trees are no exception, even though decision
trees are usually built on multiple covariates.

In the case of a binary classification problem, a decision tree is called a classifi-
cation tree. For classification trees, the goal is to divide the covariate space into
non-overlapping subspaces in order to create a decision rule for predicting class
membership. The division is done by a splitting criterion in a greedy manner, of-
ten using different measures of minimizing node impurity, such as the Gini index
or cross-entropy. These are defined as

G =
K∑
k=1

p̂lk(1− p̂lk)

D = −
K∑
k=1

p̂lk log(p̂lk),

where p̂lk is the proportion of training observations in leaf node l that are from
class k and K = 2 for binary classification (Hastie et al. 2009, p. 271). The overall
misclassification rate remains stable across a reasonable range of splitting rules,
although Gini is often preferred over cross-entropy (Breiman et al. 1984, p. 94,
111). The tree is expanded by adding binary splits until a stopping criterion is
met, such as a minimum number of observations in each leaf node.

Bagged Decision Trees

An ensemble of decision trees can be used to improve the prediction accuracy of
a single decision tree, which in combination with bagging (bootstrap aggregating)
greatly reduces variance (Bauer & Kohavi 1999). Bagging is done by bootstrap
sampling the training data into B bootstrap samples, which means sampling the
data with replacement. A decision tree is then fitted to each sample on each of
the q covariates. After fitting q trees for each of the B samples, we are left with
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B × q trees and can estimate the final prediction for each covariate by taking the
average of the predictions, p̂bj, of all trees for the corresponding covariate,

f̂j(xj) =
1

B

B∑
b=1

p̂bj(xj).

Algorithm 1 Boosted Bagged Trees Algorithm
1: F (x)← 0
2: fj ← 0
3: for b ∈ 1 : B do ▷ Iterate over bootstrap samples
4: for j ∈ 1 : q do ▷ Iterate over covariates
5: Fit tree on variable j on the residuals
6: Update fj by adding new fj
7: Update F (x) with new fj
8: end for
9: end for

Boosted Decision Trees

Gradient boosted trees is a method that builds an ensemble of trees sequentially,
where each tree is fitted to a function of the result of all previous trees. The stan-
dard gradient boosting algorithm was first presented in Friedman (2001), where
the goal is to minimize the expected value of some loss function. The loss function
can be the negative log-likelihood function, which, for our binary logit GAM, is

M∑
i=1

L(Yi, Ŷi) =
M∑
i=1

Yi log (Ŷi) + (1− Yi) log (1− Ŷi),

where Ŷi represents the probability of belonging to class 1 and is obtained through
the sigmoid function,

Ŷi =
1

1 + e−f̂(Xi)
,

where f̂(Xi) =
∑B

b=1

∑q
j=1 δf̂

b
j (xij) being the final model estimation defined as the

sum of all earlier estimations with δ ∈ [0, 1] being the learning rate and f̂ b
j being

the contribution to f̂(Xi) of tree b for covariate j (Midtfjord et al. 2022). After
reaching a maximum number of trees or not improving the loss function, the final
prediction is defined as the sum of all trees, and will result in the shape function.

Boosted Bagged Trees

Combining the methods of boosting and bagging results in a method called boosted
bagged trees. This method is based on using a bagged ensemble of the training data
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in each step of stochastic gradient boosting. This means that instead of sampling
without replacement, as in stochastic gradient boosting, sampling is done with
replacement using bagging. It is shown in Lou et al. (2012) that using gradient
boosting of size-limited bagged trees for the shape functions yields better accuracy
than other methods while still maintaining the intelligibility of GAM. This is,
according to these authors, due to the limitations of spline-based methods, which
tend to underfit the data and miss potentially crucial non-smooth tendencies.

2.4.2 Estimation

Local Scoring Algorithm

Two different methods for fitting additive models are presented. For a binomial
logit GLM, it is shown in Section 2.3.1 how parameter estimation is done using the
IRLS algorithm. The penalized logistic regression with smoothing splines can be
maximized using a "backfitting algorithm within a Newton-Raphson procedure"
(Hastie et al. 2009, p. 261), which is called a local scoring algorithm and is
presented in Algorithm 2. This algorithm is based on Algorithm 9.1 and 9.2 in
Hastie et al. (2009). An important feature of the backfitting algorithm is the
existence and uniqueness of solutions for linear smoothers. A constraint on the
shape function is necessary to ensure that the solution is unique, which is the
sum-to-zero constraint. This constraint is achieved by mean centering the shape
functions so that the expected value of each shape function is zero (Hastie &
Tibshirani 1990, p. 115).

Algorithm 2 Backfitting

1: Compute β̂0 = log ȳ
1−ȳ

, where ȳ = 1
M

∑M
i=1 yi and set fj(xj) = 0,∀j.

2: Define η̂i = β̂0 +
∑p

j=1 fj(xij) and p̂i =
eη̂i

1+eη̂i
.

a) Compute the working response

zi = η̂i +
yi − p̂i

p̂i(1− p̂i)

b) Compute the working weights

wi = p̂i(1− p̂i)

c) Use weighted backfitting to the working response, zi, and weights, wi, that
is:

Iterate:
f̂j ← Fit a smoothing spline with weights, wi to {zi − β̂0 −

∑q
k ̸=j fk(xik)}.

f̂j ← f̂j − 1
m

∑m
i=1 f̂j(xij) (mean centering).

3: Continue step 2, until the change in the functions falls below a prespecified
threshold

Gradient Boosting

Gradient boosting can also be used to fit additive models, but since shape functions
are made for all covariates, the algorithm is modified to sequentially cycle through
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all covariates for each boosting iteration (Lou et al. 2012). The algorithm for
classification problems can be seen in Algorithm 3, which is similar to the one
shown in Algorithm 2 in Lou et al. (2012).

Algorithm 3 Gradient Boosting for Classification
1: fj ← 0, ∀j and F (xi) =

∑q
j=1 fj(xij).

2: for l = 1 to L do
3: for j = 1 to p do
4: ỹi ← eF (xi)

1+eF (xi)

5: Learn {Rkl}Kk=1, a tree with K leaf nodes using {(xij,−yi + ỹi)}Mi=1.
6: γkl ← yi−ỹi

ỹi(1−ỹi)
for k = 1, . . . , K.

7: fj ← fj +
∑K

k=1 γklI(xij ∈ Rkl).
8: Update F (xi) =

∑q
j=1 fj(xij).

9: end for
10: end for
11: return F (xi) =

∑q
j=1 fj(xij).

2.5 Explainable Boosting Machine
A major limitation of standard GAM is that it is not able to handle interactions of
predictors automatically. There are several approaches to detecting interactions in
additive models, however, according to Lou et al. (2013), all these approaches fall
short in terms of complexity, power and correctly identifying interactions compared
to the approach they present. They introduce the GA2M model that adds selected
terms of interactions to the systematic component of the standard GAM model.
This can be written as

η =

q∑
j=1

fj(xj) +
∑

∀j,k,j ̸=k

fjk(xj, xk).

Using the notation introduced in Lou et al. (2013), let U1 = {{i}|1 ≤ j ≤ q}
be the set of all indices for all covariates, U2 = {{j, l}|1 ≤ j < l ≤ q} be the
set of all indices for all pairs of covariates and U = U1 ∪ U2. Denote xu as the
set of all covariates whose indices are in u ⊆ {1, . . . , q}. For any u ∈ U , let
Hu denote the Hilbert space of Lebesgue measurable functions fu(xu), such that
E[fu(xu)] = 0 and E[fu(xu)

2] < ∞. The Hilbert space is equipped with the
inner product ⟨fu, f ′

u⟩ = E[fuf
′
u]. Further, let H1 =

∑
u∈U1Hu denote the Hilbert

space of shape functions on univariate covariates and H =
∑

u∈U Hu the Hilbert
space of both univariate and bivariate interaction shape functions of the form
F (x) =

∑
u∈U fu(xu). Lou et al. (2013) now formulate the problem to be solved

as

min
F∈H

E[L(y, F (x))], (2.9)

where L(y, F (x)) is some loss function.
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GA2M Framework

The goal is to solve (2.9) and find the best model F ∈ H that minimizes some
expected loss function E[L(y, F (x))]. For regression problems, the loss function
is often the squared error loss, L(y, F (x)) = (y − F (x))2. The general algorithm
for the regression setting in the GA2M framework is seen in Algorithm 4, where
S is the set of selected pairs of covariates, and Z is the set of remaining pairs
of covariates. The algorithm iterates until convergence, where the best additive
model is found by minimizing the expected loss function over H1+

∑
u∈S Hu. For

each pair of covariates u ∈ Z, the shape function Fu is calculated. Then, the best
interaction pair is selected, added to the set of selected pairs S, and removed from
the set of remaining pairs Z. This is done until there is no gain in accuracy.

Algorithm 4 GA2M Framework (Regression setting)
1: S ← ∅
2: Z ← U2

3: while not converge do
4: F ← argminF∈H1+

∑
u∈S Hu

E[L(y, F (x))]

5: R← y − F (x)
6: for all u ∈ Z do
7: Fu ← E[R|xu]
8: end for
9: u∗ ← argminu∈ZE[L(y, F (x))]

10: S ← S ∪ {u∗}
11: Z ← Z − {u∗}
12: end while

Fast Interaction Detection

The general GA2M algorithm above is very computationally expensive for large
datasets, specifically datasets with many covariates, due to the large number of
possible interactions. Lou et al. (2013) presents a computationally efficient method
of ranking all possible pairs of covariate interactions for inclusion in the model.
This method is referred to as Fast Interaction Detection (FAST) and is based on
creating simple estimations of the interaction pairs and ranking the pairs based
on the fit of the model. For regression problems, the residual sum of squares is
used to rank the pairs. For the detailed algorithm and specifications regarding
calculations in the FAST algorithm, see Lou et al. (2013).

Explainable Boosting Machine

The FAST implementation of the GA2M algorithm is referred to as Explainable
Boosting Machine (EBM) and is introduced in the InterpretML framework draft
presented in Nori et al. (2019a). The Explainable Boosting Machine is a glass-box
model and is found to outperform many state-of-the-art black-box models, such as
Random Forest and Boosted Trees while still offering the interpretability of GAM.
An implementation written in Python of the method is available at Nori et al.
(2019b). Here, the two main functions are ExplainableBoostingClassifier()
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and ExplainableBoostingRegressor() for classification and regression prob-
lems, respectively. From these, the corresponding feature importance and shape
functions can be extracted using the explain_global() function.

Variable Importance

The variable importance presented in EBM is a measure of how much each covari-
ate contributes to the final prediction. This is calculated by using the weighted
mean absolute score (WMAS) defined as the average of the absolute contribution
score of each covariate over all observations. It can be written as

WMAS(xj) =
1

M

M∑
i=1

|fj(xij)|. (2.10)

Another possibility is to use the difference between the maximum and minimum
contribution score. In this thesis, WMAS is used, which is also the default setting
for EBM.

An equivalent constraint to the sum-to-zero constraint in GAM is used in EBM,
which results in the shape functions being centered around zero (InterpretML
Team 2020).

Uncertainty

The EBM model builds an ensemble of boosted bagged trees and takes the average
of all bagged ensembles to get the predictions. Each boosting round can be referred
to as an internal bagged EBM model. The uncertainty of the EBM model is
presented as error bars for each interval of the covariate. This is calculated as the
standard deviation of the predictions over all bagged models. This is not the same
as a confidence interval but it gives a good general sense of the uncertainty within
the given interval (InterpretML Team 2021).

2.6 Receiver Operating Characteristic

For binary classification problems, a practical way of evaluating classifiers is by
using receiver operating characteristic curves, referred to as ROC curves. For
a given classifier estimated using a training set, this curve is constructed using a
test set and gives an evaluation of the classifier at all possible classification thresh-
olds. This gives insight into how well the classifier performs on new unseen data.
There are different ways of defining ROC curves, and two different approaches are
presented.

2.6.1 Conventional Definition

The conventional definition of an ROC curve is based on estimating the sensitivity
and specificity for all possible classification thresholds c. The following notation
is introduced for this definition.



CHAPTER 2. THEORY 17

Sensitivity is the probability of a positive observation being predicted as positive.
Consider p̂(X) as the estimated probability that an observation belongs to class
1, which is a random variable since it depends on the response variable. The
sensitivity can then be defined as the probability function P(p̂(X) ≥ c|Y = 1),
for some threshold c ∈ [0, 1]. An unbiased estimator for the sensitivity is the true
positive rate (TPR) and is calculated from the proportion of positive observations
in a test set correctly classified for a given threshold c,

TPR(c) =
1

n1

∑
i∈Dtest

1

I(p̂(Xi) ≥ c),

where I(·) is the indicator function returning 1 if the condition is true and 0
otherwise (Hastie et al. 2009, p. 277).

Specificity is the probability of a negative observation being predicted as negative,
which can be defined as the probability function P(p̂(X) < c|Y = 0). An unbiased
estimator for specificity is called the true negative rate (TNR), defined as the
proportion of negative samples correctly classified for a given threshold c,

TNR(c) =
1

n0

∑
i∈Dtest

0

I(p̂(Xi) < c),

(Hastie et al. 2009, p. 277). The estimated ROC curve is then obtained by plotting
the true positive rate on the y-axis against the false positive rate, FPR = 1−TNR,
on the x-axis for all possible c values ranging in c ∈ [0, 1]. Be aware that different
axes can often be used when plotting the ROC curve. With this definition, the
closer to the upper left corner an ROC curve is, the better the classifier performs.
A perfect classifier will have an ROC curve that goes through the point (0, 1),
while a random guessing classifier will have an expected ROC curve along the
diagonal line and has a 50-50 chance of classifying observations correctly.

2.6.2 Hand and Till Definition

Following the notation and procedure presented in Hand & Till (2001), let q̂ = 1−p̂
be a stochastic variable and the estimated probability of an observation being
negative. Let h(q̂) = h(q̂|Y = 0) be the probability function of the estimated
probability of belonging to D0 for negative observations and let g(q̂) = g(q̂|Y = 1)
be the probability function of the estimated probability for belonging to D0 for
positive observations. Further we let H(q̂) = H(q̂|Y = 0), and G(q̂) = G(q̂|Y = 1)
be the cumulative distribution functions corresponding to h(q̂) and g(q̂) respec-
tively. An ROC curve can then be defined as the plot of G(q̂) on the y-axis versus
H(q̂) on the x-axis for all values of q̂ ∈ [0, 1]. As in the previous section, an
ROC curve that is on the diagonal line, G(q̂) = H(q̂), corresponds to a random
guessing classifier, while a good classifier will have an ROC curve above this line,
G(q̂) > H(q̂).

It is not obvious that these two conventions are equivalent from the definitions
above. The equivalence is shown by the following relations,
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Sensitivity(c) =P(p̂ ≥ c|Y = 1) = P(q̂ < c|Y = 1) =

∫ c

0

g(q̂)dp̂ = G(c)

1− Specificity(c) =1− P(p̂ < c|Y = 0) = P(q̂ < c|Y = 0) =

∫ c

0

h(q̂)dq̂ = H(c)

It is then clear that plotting the estimated Sensitivity(c) versus 1− Specificity(c)
for all c ∈ [0, 1] is equivalent to plotting the estimated G(c) versus H(c) for all
c ∈ [0, 1].

2.7 Area Under ROC Curve

Various classification methods may result in different predictions and, therefore,
different ROC curves on the test set. Comparing the ROC curves of two classifiers
on the same test set is a good way to evaluate the classifier’s performance. One can
also use the area under the ROC curve, AUC, to examine how well the classifier can
separate observations from D0 and D1. The AUC is equivalent to the probability
that a randomly chosen observation from Dtest

0 has a lower prediction, p̂, than a
randomly chosen observation from Dtest

1 . This is shown by using the definition of
the ROC curve from Section 2.6.2,

AUC(p̂) =

∫ 1

0

G(c)dH(c) =

∫ 1

0

G(c)h(c)dc, (2.11)

and the general definition of the area under parametric curves (Hand & Till 2001).
We have that for a specific estimated prediction q̂ = c, the probability that a
randomly chosen sample from Dtest

1 has smaller q̂ than c is G(c). It can then be
deduced that the probability of a randomly chosen observation from Dtest

1 having
a smaller q̂ than a randomly chosen observation from Dtest

0 is
∫
G(c)h(c)dc, which

is equivalent to the AUC in (2.11). Using q̂ = 1− p̂, it is clear that

P(q̂(Xj) ≤ q̂(Xi)) = P(1− p̂(Xj) ≤ 1− p̂(Xi)) = P(p̂(Xi) ≤ p̂(Xj)).

This is the probability that a randomly chosen observation from Dtest
0 will have

smaller p̂ than a random observation from Dtest
1 and is defined as θ = P(p̂(Xi) ≤

p̂(Xj)), for some Xi ∈ Dtest
0 and Xj ∈ Dtest

1 . According to the work of Bamber
(1975), for this to be valid for both continuous and finitely discrete p̂, the following
definition is presented,

θ = P(p̂(Xi) < p̂(Xj)) +
1
2
P(p̂(Xi) = p̂(Xj)).

An unbiased estimator for this probability is
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θ̂(p̂) =
1

n0n1

∑
i∈Dtest

0

∑
j∈Dtest

1

(
I(p̂(Xi) < p̂(Xj)) +

1
2
I(p̂(Xi) = p̂(Xj))

)
. (2.12)

This shows a simple way of calculating the AUC for a given classifier. Another
practical way of calculating the AUC is based on first ranking all samples from
both groups by their prediction, i.e., probability of being positive. The AUC can
then be estimated by summing up all ranks, ri, of the negative observations and
subtracting their rank position, i, with the formula

θ̂(p̂) =
1

n0n1

∑
i∈D0

(ri − i) =
1

n0n1

(∑
i∈D0

ri − 1
2
n0(n0 + 1)

)
.

Here ri is the mid-rank for the i-th negative observation defined as ri = k+(l+1)/2,
where k is the number of observations ranked higher than the i-th negative sample
and l is the number of observations with the same prediction p̂. If there are no ties
present, then l = 1 and ri = k+1, which is just the normal rank. This is equivalent
to (2.12), and can be shown to be equivalent to the Wilcoxon-Mann-Whitney U
test (Hand & Till 2001).

2.7.1 Confidence Interval for θ

From Hanley & McNeil (1982), it is shown that the standard deviation of the
estimated AUC, θ̂, can be calculated as

SD(θ̂) =

√
1

n0n1

(θ(1− θ) + (n0 − 1)(Q1 − θ2) + (n1 − 1)(Q2 − θ2)), (2.13)

where Q1 is equivalent to the probability that two randomly chosen positive ob-
servations have higher predictions than a randomly chosen negative observation
and Q2 is equivalent to the probability that a randomly chosen positive obser-
vation has a higher prediction than two randomly chosen negative observations.
This can be used to construct a confidence interval for θ using the fact that θ̂ is
asymptotically normally distributed under H0 (Mann & Whitney 1947).

Estimating (2.13) by replacing θ with θ̂ and estimating Q1 and Q2 by randomly
sampling from the test data and calculating the proportion of times the condition
is true, ŜD(θ̂) is obtained. A 95% confidence interval for θ can then be constructed
defined as

CIθ,0.05 = θ̂ ± z0.05/2ŜD(θ̂),

where z0.05/2 is the critical value from the standard normal distribution at a 5%
level.
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2.8 Comparing Two or More ROC Curves
As mentioned earlier, an ROC curve is a good tool for evaluating how well different
classifiers work on unseen test data. A statistical way of comparing the AUC of
two different classifiers on the same test set can be deduced following the procedure
of DeLong et al. (1988).

Given two different models, A and B, used on the same set of test data, the
two models produce two different estimated predictor values, p̂A and p̂B, and will
therefore result in two different ROC curves. To evaluate the difference between
area under the ROC curves, the following test hypotheses are introduced,

H0 : θA = θB,

H1 : θA ̸= θB.

These test hypotheses can be generalized using a linear contrast, Lθ⊤, with the
(1× 2) row vectors L = [1 − 1] and θ = [θA θB]. Using this, the following test
statistic is obtained,

T =
Lθ̂⊤

[LSL⊤]
1
2

∼ N(0, 1), (2.14)

where S is the estimated covariance matrix for θ̂ and θ̂ = [θ̂A θ̂B], deduced in
DeLong et al. (1988). The test statistic in (2.14) can be used to test Lθ⊤ = 0 vs
Lθ⊤ ̸= 0 and a p-value of the test may be calculated using

(θ̂ − θ)LT
[
LSLT

]−1
L(θ̂ − θ)T ∼ χ2

l . (2.15)

A p-value, first used in Arbuthnott (1710), is the probability of obtaining results
at least as extreme as the measured results under the assumption that the null
hypothesis is true. In (2.15), l is the rank of LSL⊤ and χ2

l is the chi-squared
distribution with l degrees of freedom. From this, a confidence interval can also
be calculated as

Lθ̂⊤ ± zα/2[LSL
⊤]

1
2 .
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DATA

In this chapter, we present the data used in this thesis. The data is collected in two
cohort studies conducted by the Department of Acute Psychiatry at Østmarka,
St. Olav’s Hospital. The first is the Acute Agitation study (AA) conducted from
September 2011 until May 2012 (Prestmo et al. 2020) and the second is the Genetic
and Affective Prediction study (GAP) conducted from January 2016 until June
2017 (Høyen et al. 2022). The two studies are aggregated into one dataset and
regarded as one study consisting of 710 patients after 17 patients were found to be
present in both datasets and were consequently removed from the GAP dataset.

The combined AA and GAP data were analyzed in Ludvigsen (2023), where the
aim was to identify risk factors for a syndrome called the suicide crisis syndrome.
The combined dataset is also analyzed in Melby (2024), with a focus on describing
the patient data on the suicide crisis syndrome and the correlation to clinical
variables. Data on medication usage at admission and during the stay at the
psychiatric department have recently been collected from the electronic patient
journals for the combined AA and GAP datasets and play a key role in our data
analyses. Medication data were not part of the work done in Ludvigsen (2023)
nor Melby (2024).

In this thesis, the variable names obtained directly from the datasets is used in
figures and tables, as this is deemed more fitting for the further use of the findings
in this thesis. If there is any ambiguity regarding what the variables mean, we
encourage the reader to refer to Table 4, which will be elaborated in Section 3.2.

3.1 Medication Usage

Information about the patients’ current use of medication and commencement of
medication at the time of admission to the acute psychiatric department was col-
lected from the patient journals. The medications of interest are divided into the
four following categories: antipsychotics, benzodiazepines, hypnotics and mood
stabilizers. For medication use up to the time of admission, each category is coded

21
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as 1 for usage and 0 for non-usage, and for the commencement of medication at
the time of admission, each category is coded as 1 for commencement and 0 for
non-commencement. If a patient has registered usage of the specific medication
category at the time of admission, then the patient cannot have registered com-
mencement of the same drug. The variables for the commencement of medication
obtained from the studies are listed with descriptions in Table 2.

In Appendix A, the frequencies of the medication variables in AA and in GAP
are compared. For many of these variables, including the four variables presented
in Table 2, there is a significant difference in usage between AA and GAP. It is
therefore expected that the study indicator will be an important covariate in later
analyses.

Variable Description Type
OPPST_ANTIPSYK Commencement of Antipsychotics Binary
OPPST_BENZO Commencement of Benzodiazepines Binary
OPPST_HYPNOTIKA Commencement of Hypnotics Binary
OPPST_STEMNINGSSTAB Commencement of Mood stabilizers Binary

Table 2: Description of the commencement of medication variables, after the
time of admission.

3.1.1 Missing Data

In Figure 1, a quick overview of the missing data patterns of the commencement
medication variables can be seen. Of the total 710 patients, 110 patients are miss-
ing all four medication commencement variables. The other patterns have much
smaller numbers of missing patients, with a total of 13 patients. Since the com-
mencement of medication is the response variable in this thesis, all patients with
missing observation of these variables will not be a part of the analyses. The fol-
lowing numbers are shown in the bar chart in the lower left part of Figure 1. There
are 111 patients with missing information on the commencement of antipsychotics,
118 on the commencement of benzodiazepines, 121 on the commencement of hyp-
notics and 112 on the commencement of mood stabilizers. Further information on
the size of the four datasets will be given in Section 3.4.

3.2 Clinical Variables

The variables used in Ludvigsen (2023) and Melby (2024) are defined as clinical
variables. These variables are presented in Table 4 reproduced with permission
from Ludvigsen (2023). In this table, some descriptive specifications have been
made, as well as some minor adjustments. The §3.2 and §3.3 categories for referral
and specialist paragraph are merged into a new category of "forced hospitaliza-
tions". The variables associated with diagnosis are recategorized from 11 factors
into the four categories Affective Disorders, Substance Abuse Disorders, Psychosis
Disorders and Other Disorders, shown in Table 3. From a medical point of view,
this is sufficient, and this results in fewer categories and more patients in each
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category. This will potentially improve the fit in the statistical analyses where the
diagnosis category will be a covariate.
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Figure 1: Missing data patterns in the medication data for the four commence-
ment variables.

Diagnosis Categories Original Diagnosis Factors
Affective Disorders 1. Behavioural and emotional disorders with onset

usually occurring in childhood and adolescence
Substance Abuse Disorders 5. Mental and behavioural disorders due to psychoac-

tive substance use
Psychosis Disorders 9. Organic, including symptomatic, mental disorders

10. Schizophrenia, schizotypal and delusional disor-
ders

Other Disorders 2. Behavioural syndromes associated with physiolog-
ical disturbances and physical factors
3. Disorders of adult personality and behaviour
4. Disorders of psychological development
6. Mental retardation
7. Mood [affective] disorders
8. Neurotic, stress-related and somatoform disorders
11. Uncertain mental disorder

Table 3: Recategorization of diagnosis factors into four diagnosis categories.
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3.2.1 Missing Data

Figure 2 shows the number of missing observations for the clinical variables. From
this, the variables associated with loss of self-esteem, lack of network, recent in-
somnia and if the patient has recently lost a relationship were concluded not to be
suitable for further analysis due to high numbers of missing data. Assuming that
the missing data is missing completely at random (MCAR), single imputation can
be performed on all missing values. This means that all observations are assumed
to have the same probability of being missing and that the missing mechanism
is not dependent on other observed and unobserved variables. For categorical
variables, this is done by taking the most frequently observed value and inserting
it for the corresponding missing values, while for continuous variables, the mean
value is used. The PANSS Exited Component (PANSS-EC) score, is defined as
the sum of 5 other clinical variables and is therefore not necessary to impute after
the other variables are imputed. More information on this variable is in the next
section.

age
diagnosis

duration_of_stay
from_study

gender
referral_paragraph

prior_admit
specialist_paragraph

panss_a
panss_d
panss_e

suic_rel_for_ref
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panss_ec_score
suic_thoughts_recent
intake_suicide_assess

substance_abuse_recent
suic_attempts_recent

insomnia_recent
lack_of_network

broke_relationship
loss_of_self_esteem
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V
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Figure 2: Number of missing observations in clinical data.
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Variable Description Type of variable
from_study which study the patient is from binary (AA/GAP)
age age of the patient integer
gender gender of the patient binary (man/-

woman)
prior_admit has the patient been admitted to

the psychiatric department before
binary (yes/no)

duration_of_stay for how long was the patient ad-
mitted to the psychiatric depart-
ment

integer

suic_rel_for_ref was suicide relevant for the refer-
ral of the patient for the psychi-
atric department

binary (yes/no)

intake_suicide_assess was the suicide risk high or low for
the patient at admission as eval-
uated by the doctor on duty

binary (high/low)

referral_paragraph the referral paragraph at admis-
sion given by the doctor that re-
ferred the patient. §2.1: voluntar-
ily admission, §3.2: forced hospi-
talization without known diagno-
sis and §3.3: forced hospitaliza-
tion with diagnosis

binary (§2.1 / §3.2
or §3.3)

specialist_paragraph the specialist paragraph at ad-
mission given by the doctor on
duty. §2.1: voluntarily admission,
§3.2: forced hospitalization with-
out known diagnosis and §3.3:
forced hospitalization with diag-
nosis

binary (§2.1/ §3.2
or §3.3)

panss_ec PANSS-EC, standardized ques-
tionnaire. Items A to E

ordinal(1-7)

panss_ec_score sum of the PANSS-EC score integer
suic_thoughts_recent has the patient had suicidal

thoughts recently (one month
prior to the time of admission)

binary (yes/no)

suic_attempts_recent has the patient had any suicidal
attempts recently

binary (yes/no)

insomnia_recent has the patient had insomnia re-
cently

binary (yes/no)

broke_relationship had the patient lost a relationship binary (yes/no)
lack_of_network has the patient a lack of network binary (yes/no)
loss_of_self_esteem has the patient lost their self-

esteem
binary (yes/no)

substance_abuse_recent has the patient abused some sub-
stance recently

binary (yes/no)

diagnosis_category the patient main diagnosis cate-
gory at discharge

factor (4 different
categories)

Table 4: Description of clinical variables adapted from Ludvigsen (2023).
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3.3 Positive and Negative Syndrome Scale
The Positive and Negative Syndrome Scale (PANSS) is a standardized question-
naire used to assess the severity of symptoms in patients with schizophrenia and
was published in Kay et al. (1987). PANSS is also widely used to assess gen-
eral psychopathology in patients. The most common structure to PANSS is the
five-factor solution consisting of the components Positive, Negative, Disorganized,
Excited and Anxiety/Depression.

The exited factor in PANSS is referred to as the PANSS Excited Component,
referred to as PANSS-EC, and is considered to be one of the most simple and
intuitive scales to assess agitation in patients (Montoya et al. 2011). Only the
PANSS-EC is used in this thesis. It consists of 5 the subfactors excitement, tension,
hostility, uncooperativeness and poor impulse control, which all are given a score
ranging from 1 (not present) to 7 (extremely severe), seen as the variable panss_ec
in Table 4. The evaluation is performed by trained medical doctors. The total
score of a PANSS-EC evaluation ranges between 5 and 35, and can be seen in
Table 4 as panss_ec_score.

3.4 The Datasets
The clinical and medication data are combined into one dataset. This is done
using the unique patient numbers as key. The combined dataset consists of 710
patients and 17 variables. Since the commencement of medication will be the
response variable and the inference between the commencement of different med-
ications is not of interest, the other commencement variables are consequently
removed when analyzing each of them separately. This results in four different
datasets, one for each of the four commencement variables, which each consists
of 13 clinical variables, as well as the relevant commencement variable. For each
commencement variable, all patients with registered usage (at admission) of the
corresponding drug are not included. This is due to the fact that only the pa-
tients who have the possibility to commence on a new drug are of interest. The
sample sizes of the final datasets are presented in Table 5. The column Usage0
shows the number of patients who don’t have registered usage of the medication
at admission and are then the possible candidates for the commencement of the
medication. The column CommencementNA shows the number of patients with
missing values for the commencement of the medication for the possible candi-
dates. Removing the number of patients with missing medication commencement
from the possible candidates gives the total number of patients in each dataset in
the column Patients. The column Case Ratio shows the ratio between the number
of patients who commence a medication and the total number of patients in the
dataset. This is used later when splitting the datasets into training and test sets.

From the initial 710 patients, the dataset has been refined to four distinct datasets
seen in Table 5. Each dataset consists of 13 variables, where ten are binary, two
are continuous, and one is nominal. The variables can be seen in Table 4, where
all except the variables associated with PANSS-EC (not PANSS-EC score), recent
loss of a relationship, lack of network, loss of self-esteem and recent insomnia are
included in the datasets.
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Usage0 CommencementNA Patients Case Ratio

Antipsychotics 529 76 453 0.296
Benzodiazepines 641 99 542 0.382
Hypnotics 638 102 536 0.267
Mood Stabilizers 620 95 525 0.065

Table 5: The number of possible candidates for the commencement of medica-
tion (Usage0), i.e., patients who don’t have registered usage of the medication at
admission, the number of patients with missing values for the commencement of
the medication for the possible candidates (CommencementNA), the total number
of patients and the case ratio for each of the four datasets.

3.4.1 Correlation Analysis

Correlations between the clinical variables on the dataset before imputations in
each of the four datasets are calculated using the Pearson correlation, both for
binary and continuous variables. The nominal variable for diagnosis category is
removed from the correlation analysis since it is not suitable to include with our
correlation measure. It should be noted that a correlation is expected between the
diagnosis category Substance Abuse Disorders and the variable associated with
recent substance abuse; however, this has not been further investigated.

Correlation plots for each of the datasets are shown in Figure 3. It is clear that
there is little difference between the datasets, with the correlation coefficients not
differing more than ±0.1 for any of the variables. The correlation plots can then
be discussed jointly. Most variables are weakly correlated (less or equal to |0.3|),
with the exception of one moderate correlation and two strong correlations. The
correlation between PANSS-EC and the referral paragraph is 0.4 in the Hypnotics
dataset, but is less than 0.3 in the other datasets and is therefore considered a
weak correlation. The moderate correlations are between the PANSS-EC score
and the specialist paragraph, with a correlation of 0.4 and 0.5. The two strong
correlations are between the variables for recent suicide thoughts and if suicide
was relevant for the referral, and between the specialist paragraph and referral
paragraph, with a correlation 0.7. Looking at Table 4, it is understandable that
these two correlations are present. The first strong correlation may be due to the
fact that if a patient’s referral to the psychiatric department was due to suicidal
relevance, this would then naturally correlate with recent suicidal thoughts. It
should be noted that for suicidal thoughts, a lot of patients tend to hold back
information, which may be the reason for difference in the two variables. The last
strong correlation is due to the fact that the paragraph given by the doctor who
referred the patient often will be the same as the paragraph created by the doctor
on duty at admission.
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Figure 3: Plots of the correlation coefficients between pairs of clinical variables,
expect the variable for diagnosis categories, before imputation in each of the four
datasets.



CHAPTER

FOUR

SIMULATION STUDIES

In this section, simulation studies are conducted to better understand how the
three models GLM, GAM, and EBM, described in Chapter 2, perform on data
resembling the data presented in Chapter 3. This is done by generating data
from known distributions, splitting the data into a training and test set and then
fitting the models to the training set. The models are evaluated on the test set and
compared knowing the underlying true model. The results from the simulation
studies can then give insight into the models’ performance, which can be of use
when analyzing the real data from Chapter 3, later in Chapter 5.

4.1 Generating Data and Workflow
The simulation studies are based on modeling a binary response variable, Y , us-
ing two predictors, X1 and X2. X1 is a binary variable drawn from a binomial
distribution with probability 0.5, meant to mimic a typical binary variable pre-
sented in Chapter 3. X2 is a continuous variable drawn from a truncated normal
distribution meant to mimic the PANSS-EC score from Section 3.3.

For each simulation study, 500 observations are drawn for each variable, with X1

and X2 being drawn independently of each other. The data generating is seeded
to make the results reproducible. The models’ performance is evaluated when the
true underlying model has linear, non-linear and interaction effects in the covari-
ates and noise variables are present. Four different true systematic components,
η, are then defined. The formulas for the true η’s are presented at the start of
each simulation study.

For each simulation study, the observed systematic components are calculated
from the generated X1, X2, and the corresponding η formula. The η’s can be
transformed to probabilities, p, using the inverse logit function, also called the
sigmoid function, seen in (2.3),

log
p

1− p
= η ⇐⇒ p =

1

1 + e−η
.

29
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The probabilities are used to draw the binary response variable Y from a binomial
distribution. The data is then split into a training and a test set of size 350
(70%) and 150 (30%), respectively, stratified on the response variable using the
createDataPartition() function from the caret package in R (Kuhn 2023). This
ensures the case ratio is approximately the same in the training and test set. The
training set is used to fit models (presented in the next section), and the test set
is used to evaluate the models. The size of the datasets is chosen to mimic the
size of the datasets presented in Chapter 3.

This process is repeated 1000 times, and for each repetition, referred to as a
simulation, the models are fitted to the training set and evaluated on the test set.
The resulting predictions from the models on the test set are used to evaluate
the models. The evaluation of performance is done using the AUC from Section
2.7, using the pROC package in R (Robin et al. 2023). The AUC of each model
prediction from each simulation is saved, and the AUC from all simulations is
used to compare the three models using violin plots with the ggplot2 package in
Wickham (2016). A violin plot is a combination of a boxplot and a kernel density
plot, which shows the distribution of the data over all quantiles, not just the
quartiles as in boxplot. Bland-Altman plots are used to evaluate the agreement
between the models, where the difference between the AUCs of the two models
is plotted against the average of the AUCs for each of the 1000 train/test splits.
The blue dots each represent a train-test split, the purple dotted line is the mean
difference between the AUCs and the black dotted lines are the 95% limits of
agreement defined as the mean difference ±1.96×SD (Bland & Altman 1986).

For the last of the 1000 simulations, the corresponding shape functions for the
three models are extracted and presented. For GLM, β̂2X2 is simply plotted over
the range of X2, which is the information that corresponds to the shape functions
of GAM and EBM. The uncertainty of the shape functions is also plotted along
with the shape functions. For GLM, this is the 95% confidence interval of the
estimated coefficient multiplied by X2, over the range of X2. For GAM, this
is the confidence interval calculated from the smoothing matrix similar to what
seen in (2.8), and for EBM, this is the standard deviation of the predictions from
the bagged models explained at the end of Section 2.5. The flowchart for each
simulation study is similar to the one seen in the left part of Figure 12, in Chapter
5.
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4.2 Models

Generalized Linear Model

The GLM model is run using the glm() function from the stats package in R
(R Core Team 2023). The family parameter is set to binomial, and the rest
of the parameters are set to default values. Confidence intervals for the coeffi-
cients are calculated using the confint() function, and the model predictions
are obtained by using the predict() function from the same R package, stats.
Regression coefficients with standard errors and test results are obtained from the
summary.glm() function from the same package.

For Simulation Study 1-3, the model is only given X1 and X2, while for Simulation
Study 4, linear terms in the noise variables Noise1 − Noise10 (see below) are also
present in the model formula. Interaction terms and non-linear transformations
are not specified to the GLM model formula in any of the simulation studies.

Generalized Additive Model

The GAM model is run using the gam() function from the gam package in R (Hastie
2023). This package was chosen as it is the original GAM implementation. Please
note that the R package mgcv is more common and, in most cases, more practical
to use (Wood 2023). The model is run with smoothing splines with 4 degrees of
freedom for the continuous variables and the family parameter is set to binomial.
The rest of the parameters are set to default values. The model predictions are
obtained by using the predict() function from the stats package in R (R Core
Team 2023). Regression coefficients with standard errors and test results are
obtained from the summary.glm() function from the same package.

For Simulation Study 1-3, the model is given X1 and s(X2, 4), while for Simula-
tion Study 4, linear terms in the noise variables Noise1 − Noise10 (see below) are
also present in the model formula. Interaction terms and discontinuities are not
specified to the GAM model formula in any of the simulations.

Explainable Boosting Machine

The EBM model is run from the interpret library in Python with the
ExplainableBoostingClassifier() function (Nori et al. 2019b). The model is
run with default parameters, the most notable being the total number of boosting
rounds, set to 5000, and the learning rate, set to 0.01. Default early stopping
is employed so that if no improvement in the loss function is obtained within
50 rounds, then the model fitting algorithm stops. The training data is fitted
using the fit() function and the test data predictions are obtained by using the
predict_proba() function, both from the same library.

For all four simulation studies, all training data are presented to the EBM model.
For Simulation Study 1-3, the model is only given X1 and X2, while for Simula-
tion Study 4, the noise variables Noise1 − Noise10 are also added. Non-linearity
and interactions are not specified in the model formula, as the model inherently
captures these.
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4.3 Results from the Simulation Studies
The results from the four simulation studies will now be presented. For each
simulation study, the shape functions for X2 is presented for GLM, GAM and EBM
with the corresponding barplot of the distribution of X2 for different intervals from
EBM. For Simulation Study 3 and 4 the shape function for the interaction term
is included. Violin plots showing the distribution of AUCs for the three models
are presented for each simulation study in Figure 4, and Bland-Altman plots can
be seen in Figure 15. The average AUCs over all 1000 simulations for the four
simulation studies are presented along with corresponding standard deviations in
Table 7. The average coefficient estimates with standard deviations for the three
models are calculated for each simulation study and presented in Table 6. For
EBM, this is only the coefficient for the variable X1, which is centered around 0,
in contrast to the estimates from the GAM and GLM.

Following the terminology used in the EBM model, the word score is used to
describe the contribution to the probability of a positive response variable. This
is not to be confused with the score function or the PANSS-EC score presented in
earlier chapters.

GLM GAM
β̂0 β̂1 β̂2 β̂0 β̂1 β̂2

Sim1 -2.34±2.17 5.41±2.12 -0.20±0.04 -2.37±1.88 5.41±1.84 -0.20±0.04
Sim2 -2.45±0.56 4.92±0.46 -0.05±0.04 -2.54±0.63 5.12±0.50 -0.06±0.05
Sim3 -1.45±0.56 -2.18±2.47 -0.06±0.06 -1.47±0.54 -2.15±2.19 -0.05±0.05
Sim4 -1.58±0.66 -1.60±0.66 -2.24±2.19 -2.24±1.98 -0.06±0.07 0.01±0.25

EBM
Score0 Score1

Sim1 -2.08 ± 0.32 2.09 ± 0.33
Sim2 -2.12 ± 0.25 2.13 ± 0.25
Sim3 0.59 ± 0.24 -0.60 ± 0.25
Sim4 0.40 ± 0.18 -0.39 ± 0.18

Table 6: Average coefficients and standard deviations over the 1000 simulations
for the three models in the four simulation studies.

GLM GAM EBM

Sim1 0.920 ± 0.022 0.919 ± 0.023 0.916 ± 0.024
Sim2 0.922 ± 0.026 0.929 ± 0.023 0.928 ± 0.023
Sim3 0.707 ± 0.073 0.705 ± 0.070 0.716 ± 0.063
Sim4 0.670 ± 0.081 0.672 ± 0.079 0.655 ± 0.085

Table 7: Average AUC with standard deviations over the 1000 simulations for
the three models in the four simulation studies.
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Figure 4: Violin plot for the AUCs on the test set for the 1000 simulations for
each of the four simulation studies.
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Figure 5: Bland-Altman plot for the AUC from EBM, GAM and GLM from
the 1000 simulations for Simulation Study 1-4. Note that the axes are different
between the simulation studies.
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4.3.1 Simulation Study 1

True Model

In the first simulation study, the true systematic component is

η = β0 + β1X1 + β2X2,

where β0 = −2, β1 = 5 and β2 = −0.2. This is a simple linear GLM with a logit
link function and a binary response. The resulting shape functions can be seen in
Figure 6. Since the true model is linear all three models are expected to perform
well, but it is of interest to investigate to which degree the flexible GAM and EBM
models may overfit the data.

Results

Based on the estimated shape function from X2 in Figure 6, it is clear that both
GAM and EBM fit a non-linear function and seem to capture an increase in score
for X2 larger than 20. This is likely due to outliers since there are very few
observations in this interval, as seen in the barplot in Figure 6. GAM is forced
to use 4 degrees of freedom in the smoothing spline, which may be too flexible.
The EBM model seems to be more optimistic of the variance in the data for high
values of X2 compared to GAM.

From Table 8, it can be seen that the EBM adds significant importance to the
interaction term in the last train-test split, which is not in accordance with the
average importance over all 1000 simulations. Since the true model doesn’t include
any interaction, this shows that the EBM model overfits the data. The interac-
tion term was included in all simulations and, therefore, deemed to increase the
performance of the model in all simulations.

The violin plot in Figure 4 shows that all models perform excellent, according to
the classification of AUC in Hosmer et al. (2013, p. 177), with all median AUCs
above 0.9. The EBM performs slightly worse than the other two models, but the
difference is small. The AUC results of Table 7 complement the violin plot. The
Bland-Altman plot in Figure 15 doesn’t show any trends in the agreement between
the models.

Variables Imp Avg Imp SD

X1 1.923 2.081 0.301
X2 0.517 0.571 0.162

X1 & X2 1.248 0.313 0.257

Table 8: Variable importance from the last simulation (Imp) with the corre-
sponding average importance (Avg Imp) and standard deviation (SD) over the
1000 simulations from the EBM model in Simulation Study 1.
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Figure 6: Comparison of the shape functions of GLM, GAM and EBM in Sim-
ulation Study 1, with a barplot showing the distribution of X2 across various
intervals.

4.3.2 Simulation Study 2

True Model

In the second simulation study, the true systematic component is

η = β0 + β1X1 + β2f2(X2),

where f2(X) is a non-linear step function seen in Figure 7 and β0, β1 and β2 have
the same values as in Simulation Study 1. We expect the GLM to perform poorly
since it will only use a linear term in X2, while GAM and EBM should perform
well due to their ability to capture non-linear effects. Since the step function used
is non-smooth, we expect the EBM to perform better than the GAM model due
to the GAM model’s smoothing characteristic. Note that β2 = −0.2, which means
that the true shape function for X2 is an inverted and scaled version of the step
function.

Results

The shape functions from Simulation Study 2 can be seen in Figure 8. It can be
seen that the GAM and EBM models capture the non-linearity of the true model,
while the GLM model fails to do so. The GAM model reports a much larger
uncertainty in the upper tail of the X2 variable than the EBM model. The EBM
model gives the same uncertainty for X2 values around 7, 13 and 22 in contrast to
the GAM model. This indicates that the EBM model is not just more optimistic
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Figure 7: Step function, f2, used in Simulation Study 2.

than GAM in general but gives different uncertainty estimates as well.

From Table 9 we see that the EBM importance from the last simulation is in
line with the average importances over all 1000 simulations. The most important
variable is by far X1, with an average importance of 2.117. The variables X2 and
the interaction term are less important, with average importances of 0.300 and
0.172, respectively.

In the violin plot for Simulation Study 2 in Figure 4, EBM and GAM seem to
perform equally well, while the GLM model performs slightly worse and has a
larger span than the other two models. The AUC results of Table 7 complement
the results in the violin plot. The Bland-Altman plot for Simulation Study 2 in
Figure 15 shows no trends in the agreement between the models, other than that
for low AUCs, the EBM outperforms GLM, which is tobe expectedt looking at
the violin plot.

Variables Imp Avg Imp SD

X1 2.076 2.117 0.219
X2 0.355 0.300 0.126

X1 & X2 0.101 0.172 0.135

Table 9: Variable importance from the last simulation (Imp) with the corre-
sponding average importance (Avg Imp) and standard deviation (SD) from the
EBM model in Simulation Study 2.
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Figure 8: Comparison of the shape functions of GLM, GAM and EBM in Sim-
ulation Study 2, with a barplot showing the distribution of X2 across various
intervals.

4.3.3 Simulation Study 3

True Model

In the third simulation study, the true systematic component is

η = β0 + β1X1 + β2f3(X1, X2),

where f3(X1, X2) = X1X
2
2 and β0, β1 and β2 have the same values as in Simulation

Study 1 and 2. Note that there is no term for X2 alone. f3(X1, X2) can be seen
in Figure 9. In this simulation study, we expect EBM to perform better than
the other models due to the interaction term, which is not explicitly specified in
GAM and GLM. We also expect the EBM to have a shape function for X2 that is
approximately constant since the interaction term should pick up the non-linear
effect of X2. It is unknown how GLM and GAM will estimate the shape function
for X2. As in Simulation Study 2, note that β2 = −0.2, which means that the
true shape function for X2 is an inverted and scaled version of Figure 9.

Results

The shape function for the three models can be seen in Figure 10, this time
including the interaction shape function. The shape functions from GAM and
EBM have the same shape only with GAM not capturing the same drastic drop
in score for X2 values around 18 due to its smoothing characteristic. Both models
seem to have an approximately constant shape around zero, but not for large
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Figure 9: Interaction function, f3, used in Simulation Study 3.

values of X2. The uncertainty in both models also increases drastically for these
values of X2, though the GAM model seem to estimate a much larger uncertainty
than EBM. In the shape function for the interaction term we see that the EBM
model captures the interaction term well.

From Table 10, it is clear that the interaction term is by far the most important
variable in the last simulation. This is in line with the average importance over
all 1000 simulations, though the interaction does it a little better and X1 a little
worse in the last simulation compared to the average importance.

The violin plot in Figure 4 shows that all models now perform considerably worse
than in the previous simulation studies. All models have a median AUC of around
0.7, with the EBM model performing slightly better than the other two models.
The AUC results of Table 7 complement the violin plot. The Bland-Altman plot
in Figure 15 shows no clear trends in the agreement between the models.

Variables Imp Avg Imp SD

X1 & X2 1.878 1.230 0.557
X1 0.281 0.592 0.241
X2 0.326 0.375 0.313

Table 10: Variable importance from the last simulation with the corresponding
average importance and standard deviation from the EBM model in Simulation 3.
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Figure 10: Comparison of the shape functions of GLM, GAM and EBM in
Simulation Study 3, with a barplot showing the distribution of X2 across various
intervals. The shape function for the interaction term from EBM is seen at the
bottom.

4.3.4 Simulation Study 4

True Model

In the fourth simulation study, the true systematic component is the same as in
Simulation Study 3. Ten noise variables with mean 0 and standard deviation 1 are
added to the data so that each model now has ten noise variables they are using
when predicting Y in addition to X1 and X2. Note that the ten noise variables
are not included in the true systematic component. This is done to see how the
models handles additional variables that are not related to the response variable.
We expect the EBM model to overfit the noise variables with interaction terms,
while GAM and GLM should perform similarly to Simulation Study 3, only a little
worse due to the noise variables.
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Results

The resulting shape functions can be seen in Figure 11, also including the shape
function for the interaction term between X1 and X2 in EBM. The shape function
for GLM is approximately zero, which is to be expected since the true model
doesn’t include X2. The shape functions of GAM and EBM are similar in shape,
and both seem to have low importance around zero, though both increase for
high values of X2. The uncertainty for both GAM and EBM grows drastically
for high values of X2. The shape function for the interaction term in EBM shows
that the model is far less capable of capturing the interaction term than it was in
Simulation Study 3.

In Table 11, the importance of all variables in the EBM model, including the noise
variables, can be seen. X1 is the most important variable, followed by the three
noise variables before the interaction between X1 and X2. We see that although
some noise variables are deemed important in the last simulation, all of them has
an average importance over the 1000 simulations considerably lower, around 0.086.
Most notably is that the true interaction between X1 and X2 is only included in
the model in 567 of the 1000 simulations.

In Table 12, we have included the p-values for the coefficients in the GLM and
GAM models for the last simulation, along with the number of times the p-value of
the coefficient is less than 0.05 over the 1000 simulations. We see that the p-values
for the coefficients for the noise variables, on average, have a count of around 50.
If we repeat an experiment where the null hypothesis is true 1000 times and count
the number of times the p-value is below 0.05, we would assume on average that
the count is around 50 for an exact test.

The violin plot for Simulation Study 4 in Figure 4 shows that the span of the
AUC of all models is large, with AUCs ranging from 0.4 to 0.9. The EBM model
performs slightly worse than the other two models considering the medians in the
violin plot. Table 7 shows that this difference is even greater when looking at the
average AUCs over all 1000 simulations.

The Bland-Altman plot in Figure 15 shows no clear trends in the differences be-
tween the models.
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Figure 11: Comparison of the shape functions of GLM, GAM and EBM in
Simulation Study 4, including the shape function for the interaction term from
EBM.

Variables Imp Avg Imp SD Inclusion Count

X1 0.560 0.393 0.181 1000
Noise2 0.203 0.086 0.054 1000
Noise8 0.176 0.086 0.052 1000
Noise6 0.174 0.087 0.052 1000
X1 & X2 0.145 0.212 0.108 567
Noise5 0.142 0.085 0.054 1000
X1 & Noise5 0.130 0.142 0.067 62
Noise4 0.119 0.085 0.051 1000
X1 & Noise6 0.109 0.115 0.058 63
Noise9 0.105 0.086 0.056 1000

Table 11: Importance (Imp) from the last simulation, average importance (Avg
Imp), standard deviation (SD) and inclusion count in over the 1000 simulations
from EBM in Simulation Study 4.
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GLM GAM
p-value Count < 0.05 p-value Count < 0.05

(Intercept) 0.001 741 0.237 769
X1 0.000 939 0.003 938
X2 0.896 206 0.010 176
Noise1 0.956 57 0.158 50
Noise2 0.054 49 0.733 62
Noise3 0.997 49 0.327 53
Noise4 0.927 40 0.584 46
Noise5 0.368 38 0.723 43
Noise6 0.109 60 0.380 66
Noise7 0.904 49 0.520 52
Noise8 0.157 49 0.464 54
Noise9 0.145 53 0.735 54
Noise10 0.291 53 0.883 50

Table 12: P -values for the last simulation and count of p-values below 0.05 over
the 1000 simulations for GLM and GAM in Simulation Study 4.

4.4 Discussion

From the results above, we have observed that the EBM and GAM models both
tend to overfit the data for regions with few observations. This is seen clearly
in Simulation Study 1, where both models fail to capture the linearity of the
true model for high values of X2 where there are few observations. Through all
simulation studies, the EBM model seems to be more optimistic than the GAM
model, which is seen in the uncertainty estimates. This probably comes from
the fact that EBM presents error bars for each interval used for the variable,
calculated from the standard deviation of all bagged models. The low number of
observations will then most likely not affect the uncertainty estimates as much as
in the GAM model, where the uncertainty is calculated from a smoothing matrix
similar to what is seen in (2.8). This is seen in all simulation studies but especially
in Simulation Study 3 and 4, where the uncertainty for high values of X2 is much
larger for GAM than for EBM.

When only one possible interaction is present, EBM will always include the inter-
action term in its prediction. This is also the case even when it is not part of the
true model, as seen in Simulation Study 1 and 2. Although the EBM model over
the 1000 simulations, in general, sets a low importance to the interaction term
in these simulation studies, it also sometimes gives a relatively high importance,
which is seen in the last simulation presented in Simulation Study 1. The inclusion
of an interaction term in the model, when it is not part of the true systematic
component, indicates overfitting.

Comparing the estimation of coefficients from GLM and GAM in Table 6. We
see that both models on average give the same estimates with approximately the
same variability between the simulations. The scores for variable X1 from the EBM
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model can be seen in the same table. Here, the scores are centered around 0, which
means that we have to look at the difference between the scores to compare them
to the coefficients from GLM and GAM. The scores for X1 are in the same range
as the coefficients from GLM and GAM, though in general a little lower. This
may be due to the interaction term that is included in the EBM model, which
potentially makes the model less dependent on the variable X1.

When adding noise variables to the data, the general performance of all models
decreases, which is as expected. The span of the AUCs is also much larger when
the noise variables are added. This can be seen in Figure 14 and in Table 7. We
see that the EBM model is not able to capture the true interaction between the
variables X1 and X2 in Simulation Study 4, as it does very well in Simulation Study
3. It only includes the interaction term in 567 of the 1000 simulations, which is
a clear sign of fitting the wrong model. This shows that adding noise variables
to the dataset can have a large impact on the EBM model’s performance. This
is contrary to the GLM and GAM, where the noise variables are not found to be
significant (on the level expected for true null hypotheses).

Another train-test split is chosen randomly from the 1000 simulations, and the
corresponding shape functions are presented in Appendix C. This is to compare
the shape functions from the last simulation with another randomly chosen train-
test split.

Comparing the shape functions in this chapter to the shape functions seen in
Appendix C, we see that for a different train-test split the shape functions are
similar, but with some clear differences. For Simulation Study 1, we see that
the shape functions for both GAM and EBM in the appendix catch the linearity
better due to the data not having the same outliers as in the last train-test split.
In Simulation Study 2, we see a little difference in the shape of the functions,
most notably for EBM with regard to shape and uncertainty. First comparing
the univariate shape function, for Simulation Study 3, the uncertainty for GAM
is much lower in the appendix, but the shape is similar. For the EBM model,
the uncertainty is much larger in the appendix and the shape is also different. In
Simulation Study 4, the shape of the functions are similar, but the uncertainty is
smaller for the GAM model in the appendix. The EBM model results in similar
shapes and relatively similar uncertainty. Comparing the shape functions for the
interaction term, we see that the EBM in Simulation Study 3 fails to capture
the interaction in the appendix, while the EBM in Simulation Study 4 is able to
capture it. This shows how sensitive the shape functions are to change in the data,
which is important to keep in mind when analyzing the real data later.

This is useful insight that will be taken into consideration when analyzing the real
data in Chapter 5.
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CHAPTER

FIVE

RESULTS

This chapter now turns to the data presented in Chapter 3 for statistical analyses.
The aim of the analyses is presented with an overview of the process along with
specifications regarding the three models used. The results from a single train-test
split is presented, followed by the results from 1000 train-test splits. The results
from the Benzodiazepines and Mood Stabilizers datasets are further investigated
with regard to variable importance, shape functions and coefficients. The results
for the Antipsychotics and Hypnotics datasets are presented in Appendix B.

5.1 Aim of the Analyses
The aim of the analysis is to identify the importance of clinical variables in pre-
dicting the commencement of medication at the time of admission. This is done by
evaluating the three different models, EBM, GAM and GLM, on the four datasets
Antipsychotics, Benzodiazepines, Hypnotics and Mood Stabilizers from Section 3.4.
The models are evaluated by their predictive performance, measured by AUC. The
relation between the variable for PANSS-EC score and the commencement of med-
ication is of particular interest.

5.2 Overview of the Analyses
A flowchart of the data analysis for each dataset is presented in Figure 12. The
dataset is divided into a training and a test set of size 70% and 30%, respec-
tively stratified on the response with the createDataPartition() function from
the caret package in R (Kuhn 2023). All data splitting is seeded to ensure re-
producibility. The training set is used to fit the models GLM, GAM and EBM,
which allows for the shape functions, variable importances and coefficients to be
extracted for each of the models. The fitted model is then used on the new un-
known data in the test set, which then allows for the ROC curves for each model
to be plotted using the pROC package in R (Robin et al. 2023). The DeLong test
from Section 2.8, is used to compare the three ROC curves pairwise in each dataset

45
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with the roc.test() function from the same package. From the ROC curves, the
AUC is obtained. This process is repeated 1000 times with different train-test
splits, and the AUCs for each model are saved for each repetition. In the same
way as in the simulation studies in Chapter 4, the AUC densities for each model
can be plotted, as well as the Bland-Altman plots of the AUC values to compare
the models performance. For EBM, the average and standard deviation of the
1000 variable importances for each variable are presented.

Dataset

Training Set Test Set

EBM GAM GLM

Fitted Model ROC

Shape Functions Coefficients

Variable Importance AUC

×1000

EBM

Average
Variable

Importance
AUC-Density

Bland-Altman
Plots

70% 30%

Figure 12: Flowchart of the analysis for each of the four datasets.

5.3 Models

Details about the models fitted will now be presented. All available covariates,
ten binary, two continuous and one nominal with four categories, are included
in the systematic component of the models. Looking at Table 4 these are all
variables except the ones associated with PANSS-EC (not the total PANSS-EC
score), broken relationship, lack of network, loss of self-esteem and recent insomnia.
The models are used with the same functions, packages and settings as presented
in Chapter 4, using data presented in Chapter 3. See Section 4.2 for further details
on the models.

For the GLM, no non-linear transformations are specified and neither GLM nor
GAM have any interaction terms included in the model. For the covariates in
GAM where a smoothing spline is used, the anova.GAM() function from the gam
package is used to test the null hypothesis that a linear term in the covariate is
sufficient. This is done using a score-type test, according to the documentation of
anovaGam. The p-value from this test is then a measure of the non-linearity of the
variable, while the estimate from summary.glm() measures the effect the spline
term has on the response.
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5.4 Results

5.4.1 ROC Curves and AUCs for All Analyses

The ROC curves for the test set of three models on the four training datasets may
be seen in Figure 13. This will be referred to as the original train-test split.
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Figure 13: ROC Plots of GLM, GAM and EBM for the original train-test split
for the four datasets.

In the plot for the Antipsychotics dataset in Figure 13, the GAM model performs
better than GLM, which in turn outperforms EBM, but the general performance is
poor with AUCs below 0.7. For the Benzodiazepines dataset, the EBM and GAM
model outperform the GLM model, with an acceptable performance of AUCs above
0.7 (0.699 for GLM). For the Hypnotics dataset, EBM outperforms the other two
models with an AUC of 0.621, while the GLM model results in an AUC of 0.591.
This is not a good performance, but much better than the GAM model, which
resulted in an AUC of 0.445, which is considered worse than a random guessing
classifier. For the Mood Stabilizers dataset, the three models perform well with
AUCs around 0.8. In this dataset, the GLM model has the highest AUC, ahead
of the EBM and GAM models.

Using the DeLong test introduced in Section 2.8, the ROC curves of two models
can be compared. The null hypothesis of the test is that the two models have
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the same AUC. The p-values from the DeLong test for the three models on the
four datasets are presented in Table 13. The only two models that are deemed
significantly different at a level of 95% are the EBM and the GLM model and the
GAM vs GLM model in the Benzodiazepines dataset.

Antipsychotics Benzodiazepines Hypnotics Mood Stabilizers

EBM - GAM 0.143 0.637 0.056 0.422
EBM - GLM 0.256 0.047 0.293 0.628
GAM - GLM 0.765 0.021 0.121 0.252

Table 13: P -values from the DeLong test on the different models for all four
datasets.

5.4.2 1000 Train-Test Splits

As explained in the flowchart in Figure 12, the process above is repeated 1000
times with different train-test splits, and the AUC for each split is saved for all
three models. The distribution of the AUCs for each model is plotted in a violin
plot, along with boxplots showing quartiles and the median value using ggplot2
(Wickham 2016). The violin plots are found in Figure 14. For the Antipsychotics
dataset, the EBM model has the lowest median AUC of 0.595, while GAM and
GLM have 0.633 and 0.635, respectively. The span of the AUCs seems to be
similar between the models, although GLM has some outliers with very low AUC
compared to its AUC density. For the Benzodiazepines dataset the three models
seem to perform equally well with similar AUC densities, though having a differ-
ence in AUC density in accordance to the difference in medians. For the Hypnotics
dataset, the three models seem to perform poorly with an AUC of around 0.56,
with the GLM model seeming to outperform the other two models slightly. For
the Mood Stabilizers dataset, the three models perform well with a median AUC
of around 0.8. The GLM has a slightly higher median AUC than the other two
models, but has a substantially larger span with one outlier scoring an AUC as low
as 0.4. The GAM model also has a large span but with the lowest value slightly
below 0.5. The EBM model has the smallest span and seems to outperform the
two other models based on this.

Although the AUC density plots are a nice way of comparing the three models, we
are also interested in the agreement between the models. The Bland-Altman plot
is used to show the agreement and can visualize trends in the differences in AUC
between two models. The results may be seen in Figure 15. The zero-difference line
is outlined in black. When assessing a Bland-Altman plot, we want to evaluate the
agreement between the two models, that is, to observe if the differences between
the AUC of the two models are consistent across the range of train-test splits and
to identify any systematic bias or trends. The mean difference between the models,
referred to as the bias, is also evaluated. If one model’s AUC is consistently higher
or lower than the other, the bias will be different from zero. Trends in the data,
as well as outliers, will also be assessed.

For the Antipsychotics dataset, we see that the agreement between the EBM vs
the the other models, is much lower than for GLM vs GAM. This is in line with
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Figure 14: AUC density plots for the 1000 train-test splits for all three models
on the four datasets.

the results seen in Figure 14, as the EBM model has an AUC density lower than
the two others. This indicates that the AUC of EBM model is consistently lower
than the two others. Considering GLM vs GAM, there doesn’t seem to be any
notable trends, except for a few outliers.

For the Benzodiazepines dataset, the agreement between the models is high com-
pared to the other datasets. There are no notable signs of trends or outliers.

For the Hypnotics dataset, the agreement between the models is relatively low
and of a similar degree to what we see in the Antipsychotics dataset. There is a
tendency in the data that for an average AUC around 0.5, that the models differ
substantially more than for the other values of average AUC. This may be due
to the low AUCs for the models in the dataset in general and the fact that for
train/test splits where the AUC is higher, the models differ less.

For the Mood Stabilizers dataset, the agreement is by far the worst, which is to be
expected from the large span in AUC densities seen in Figure 14. In the plot for
GLM vs EBM and GAM vs EBM, there is a clear trend in the data, where for low
average AUCs, the EBM model outperforms the other two models. This is seen by
the multiple outliers in the lower left corner of the plots. For the higher average
AUCs, the agreement between the models is far better. This is in line with the
results seen in Figure 14, where the EBM model has a lower span in AUCs, but a
similar median value compared to the other models.
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Figure 15: Bland-Altman plot for the AUC from EBM, GAM and GLM from
the 1000 train-test splits for all 4 datasets. Note that the axes are not the same
for all plots.

To summarize the results from Figure 14 and Figure 15, the Mood Stabilizer
dataset gave the highest AUC of the four datasets, with a median AUC over the
1000 train/test splits of 0.797 for EBM, 0.782 for GAM and 0.801 for GLM. Follow-
ing the rule of thumb, presented in Hosmer et al. (2013, p. 177), the performance
of a classifier is considered poor if the AUC is between 0.5 and 0.7, acceptable if
the AUC is between 0.7 and 0.8, excellent if the AUC is between 0.8 and 0.9 and
outstanding if the AUC is above 0.9. The Mood Stabilizers dataset results in an
acceptable/excellent AUC. For the Benzodiazepine dataset, the median AUCs for
the model were all around 0.73 which is considered acceptable. The two remaining
datasets, Antipsychotics and Hypnotics, both had median values below 0.7 for all
models, which is considered a poor performance, not much better than random
guessing. The Bland-Altman plots in Figure 15, further supports these results,
where there is no clear trends that contradicts the inference made from the AUC
densities.

We wish to further investigate the results for the datasets that perform well. The
focus is then on the Benzodiazepines and Mood Stabilizers datasets since these are
the two datasets with the highest overall performance with regard to AUC. The
Mood Stabilizers dataset has a very low case ratio compared to the other three
datasets, which can be a challenge for the models as the number of cases compared
to the number of covariates can be low. With a low case ratio, AUC may not be the
best measure of performance since it is sensitive to class imbalance. The results
for the Antipsychotics and Hypnotics datasets are presented in Appendix B.
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5.5 Benzodiazepines

We will now do a deeper dive into the results for the Benzodiazepines dataset and
investigate the variable importance, shape functions and coefficients for the three
models.

5.5.1 Variable Importance

From the EBM model, the variable importance for the 10 most important variables
(including interactions) is extracted. The variable importance is defined as the
weighted mean absolute score, seen in (2.10). We wish to compare these results
with the 1000 other different train-test splits, so the average importance over the
1000 fitted models is calculated, along with the corresponding standard deviations
for each variable. Since EBM estimates the interaction between all variables and
then only includes those that increase the performance of the model, the number of
times a variable is included in the model out of the 1000 train-test splits is counted.
This is due to the fact that an interaction can be included with relatively high
importance but only in a few fitted models. This will result in a high average
importance, which is misleading without the insight of the inclusion count. The
results are shown in Table 14.

All variables display a consistency in importance between the original train-test
split and the average importance from the 1000 train-test splits. There are no
interaction terms present among the top 10 variables, which makes the inclusion
count redundant since all univariate terms are automatically included in the EBM
model. The variable for study is clearly the most important variable, which is to
expect following the analysis in Appendix A, where we see that the commencement
of Benzodiazepines is significantly different between the two studies.

Variable Imp Avg Imp SD Inclusion Count

from_study 0.509 0.536 0.069 1000
diagnosis_category 0.281 0.235 0.044 1000
suic_rel_for_ref 0.209 0.256 0.045 1000
intake_suicide_assess 0.186 0.127 0.044 1000
panss_ec_score 0.154 0.201 0.049 1000
age 0.141 0.218 0.056 1000
substance_abuse_recent 0.101 0.073 0.042 1000
gender 0.093 0.082 0.046 1000
suic_thoughts_recent 0.085 0.069 0.037 1000
suic_attempts_recent 0.057 0.037 0.026 1000

Table 14: Variable importance (Imp), from EBM for our training set from the
original train-test split, including average importance (Avg Imp), standard devia-
tion (SD) and inclusion count from the 1000 train-test splits of the Benzodiazepines
dataset.
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5.5.2 Shape Functions and Coefficients

The shape functions for the two continuous variables for PANSS-EC score and
age are extracted from the EBM model. These are presented with a barplot
showing the distribution of observations in the range of the variable for different
intervals. The shape functions are shown in Figure 16. Following the terminology
used in EBM, the contribution of the shape function to the systematic component
is referred to as the score, not to be confused with the PANSS-EC score. Note
that score on the y-axis of the plots is here the contribution to the systematic
component, not to be confused with the PANSS-EC score. The shape function
for PANSS-EC score begins at -0.27 before increasing to a score around 0.30 for
PANSS-EC scores of 10 to 20. For PANSS-EC scores from 20 to 25, the score
decreases to around 0 before increasing to 0.80 at around 30. The uncertainty
increases with the value of the PANSS-EC score. The shape function for age
starts at a little below -0.5 and steadily increases to a peak at around 0.3 for ages
between 40 and 50. After this, the score decreases to around 0 for ages 55 to 70
before decreasing drastically to a score of -1 for age 85. The uncertainty increases
considerably for those of age above 70.

For the categorical variables, the variable scores are extracted from the EBM model
and shown in Table 15. For the binary variables, the Score0 is the contribution to
the systematic component of the model when the variable is equal to 0 and the
Score1 is the contribution when the variable is equal to 1. When it comes to the
variable for diagnosis category, the scores are the contribution to the systematic
component of the model for each of the four categories.

Figure 16: Shape functions for variables for PANSS-EC score and age from EBM
for the Benzodiazepines dataset.

Table 15 shows the variables that contribute to an increased probability of com-
mencing benzodiazepines. These include being part of the GAP study, being male,
having prior admissions, being referred for reasons not related to suicide, being
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Variable Score0 Score1
from_study -0.532 0.489
gender 0.096 -0.090
prior_admit -0.069 0.044
suic_rel_for_ref 0.436 -0.137
intake_suicide_assess -0.128 0.339
referral_paragraph 0.022 -0.096
specialist_paragraph -0.029 0.288
suic_attempts_recent -0.034 0.169
suic_thoughts_recent 0.162 -0.057
substance_abuse_recent -0.077 0.148

Variable Affective Other Psychosis Substance Abuse

diagnosis_category 0.131 -0.503 0.216 0.294

Table 15: Scores for binary variables (top) and diagnosis category (bottom) from
EBM for the Benzodiazepines dataset.

assessed as high suicide risk, and having a referral for voluntary hospitalization.
Other contributing factors are forced hospitalization, as noted by the specialist,
recent suicidal attempts, absence of recent suicidal thoughts, and recent substance
abuse.

5.5.3 GAM and GLM
The shape functions for the two continuous variables for PANSS-EC score and age
are extracted from the GAM model and shown in Figure 17. The shape functions
are similar to the ones from EBM seen in Figure 16, though the GAM model
doesn’t seem to catch the same patterns as EBM does as it is smoothed. This
is to be expected as GAM uses smoothing splines and EBM uses a maximum
of 5000 decision trees for each shape function. As seen in Chapter 4, the EBM
claims to have a smaller uncertainty in the shape function than GAM, which is
more pessimistic.

The p-values, testing if each of the model coefficients is different from 0 for the vari-
ables in the GLM and GAM models on the benzodiazepine dataset, are extracted
and sorted from lowest to highest. The results are shown in Table 16 and Table 17.
The p-values are not a direct measure of importance, but can nevertheless be used
when comparing the models. For the continuous variables in the GAM model, the
p-value presented in the top table in Table 17 is the p-value from summary.glm(),
while the p-value in the bottom table is the p-value from the ANOVA test. See
Section 5.3 for further details. Comparing the results from the GLM and GAM
models, we see that all variables have the same direction of the estimate for both
models, except for the variable regarding suicidal thoughts recently, which also
has the highest p-value in the GLM and GAM. Comparing to the direction of
the estimates from the EBM model, which is the difference between the estimates
for Score1 and Score0 in Table 15, we see that the direction is the same for all
variables except for the variable for suicide thought recently where it has the same
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Figure 17: Shape functions for variables for PANSS-EC score and age from GAM
for Benzodiazepines dataset.

direction as the GLM model. The p-values are similar for GAM and GLM, with
little difference in the ranking of the variables between them. Comparing these
two to the EBM model, we see that there is little difference, other than the GLM
ranking the variable age low compared to the two other models.

5.5.4 PANSS-EC Score

In the EBM model, the PANSS-EC score is ranked as the 5th most important
variable with an importance of 0.154, seen in Table 14. This is a little below,
but in line with, the average importance from the 1000 train-test splits which is
0.201. This indicates that the train-test split used in Figure 13 is representative
and implies that inference can be made from the shape function of the PANSS-EC
score in Figure 16. Comparing Figure 16 and Figure 17, the shape functions for
PANSS-EC score are similar with the greatest difference being larger uncertainty
in GAM. This also implies that the inference made from the EBM model is re-
liable, though conclusions regarding the high values of PANSS-EC score should
be made with caution. It should be noted that the GAM model does not con-
sider the spline for PANSS-EC score to be significant as a 4-degree spline and the
ANOVA test shows that the non-parametric additions to an additive term are not
significant. This might imply that a linear term in PANSS-EC would be more
suitable. For the GLM model the PANSS-EC score is deemed significant with a
positive coefficient. The shape function in Figure 16 implies that patients with
a PANSS-EC score between 10 and 20, and over 25, have a higher probability of
commencing benzodiazepines than those with a score lower than 10 or between 20
and 25.
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Estimate Std. Error z value Pr(>|z|)
from_studyGAP 1.579 0.267 5.922 3.19e-09
diagnosis_category_Other -1.309 0.335 -3.914 9.09e-05
intake_suicide_assess 0.724 0.287 2.528 0.0115
suic_rel_for_refyes -0.848 0.386 -2.194 0.0282
panss_ec_score 0.055 0.027 2.055 0.0399
referral_paragraph -0.612 0.488 -1.255 0.209
(Intercept) -1.446 1.179 -1.227 0.220
suic_attempts_recentyes 0.420 0.349 1.202 0.229
diagnosis_category_Psychosis 0.411 0.386 1.063 0.288
specialist_paragraph 0.611 0.637 0.960 0.337
substance_abuse_recentyes 0.251 0.317 0.794 0.427
genderWoman -0.203 0.257 -0.791 0.429
diagnosis_category_Substance_Abuse 0.219 0.397 0.553 0.580
age 0.004 0.008 0.457 0.647
prior_admityes 0.097 0.262 0.369 0.712
suic_thoughts_recentyes -0.069 0.391 -0.177 0.859

Table 16: Summary of GLM results for the Benzodiazepines dataset.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.900 1.207 -1.574 0.116
from_studyGAP 1.692 0.270 6.256 3.95e-10
diagnosis_category_Other -1.300 0.339 -3.840 0.000123
intake_suicide_assess 0.778 0.294 2.647 0.00812
suic_rel_for_refyes -0.942 0.393 -2.398 0.0165
s(panss_ec_score, 4) 0.048 0.027 1.791 0.0733
suic_attempts_recentyes 0.467 0.354 1.320 0.187
specialist_paragraph 0.841 0.648 1.298 0.194
referral_paragraph -0.627 0.495 -1.267 0.205
diagnosis_category_Psychosis 0.397 0.396 1.003 0.316
substance_abuse_recentyes 0.246 0.324 0.760 0.447
genderWoman -0.167 0.260 -0.641 0.521
s(age, 4) 0.004 0.009 0.481 0.630
diagnosis_category_Substance_Abuse 0.188 0.405 0.465 0.642
prior_admityes 0.034 0.267 0.127 0.899
suic_thoughts_recentyes 0.018 0.398 0.046 0.964

Npar Df Npar Chisq P(Chi)

s(panss_ec_score, 4) 3.000 3.346 0.341
s(age, 4) 3.000 11.457 0.009

Table 17: Summary of GAM results (top) and ANOVA (bottom) from the Ben-
zodiazepines dataset.
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5.6 Mood Stabilizers
We perform the same inference as in 5.5 for the Mood Stabilizers dataset. This
dataset resulted in the highest AUC for all three models, but it stands out from
the other datasets as the case rate is only 0.065.

5.6.1 Variable Importance

As done in Section 5.5, the variable importance for the ten most important regres-
sion terms in the EBM model is extracted along with the corresponding average
importance, standard deviation and inclusion count over the 1000 train-test splits.
The results are presented in Table 18. There are five univariate terms and five
interactions in the top ten terms. The univariate terms all have an average impor-
tance in agreement with the average importance from the 1000 train-test splits,
and is included in all 1000 models. The term with the highest average impor-
tance, of 0.483, is the variable for diagnosis category. The interaction term with
the highest importance is between prior admits and diagnosis category and has an
importance of 0.227. It is included in 375 of the 1000 models, which implies that
it is not a consistently important term in the EBM model. The same goes for the
two other interactions ranked 9th and 10th in the table. These are only included
in 269 and 133 of the 1000 models. The two remaining interactions are between
age and the PANSS-EC score, and age and diagnosis category. These have an im-
portance of 0.182 and 0.160, and are included in 999 and 969 of the 1000 models.
This implies that these interactions are consistently important terms in the EBM
model over the 1000 train-test splits.

Variable Imp Avg Imp SD Inclusion Count

from_study 0.373 0.339 0.099 1000
diagnosis_category 0.353 0.483 0.162 1000
substance_abuse_recent 0.290 0.313 0.089 1000
prior_admit&diagnosis_category 0.227 0.162 0.058 375
specialist_paragraph 0.199 0.160 0.040 1000
age & panss_ec_score 0.182 0.118 0.085 999
intake_suicide_assess 0.179 0.139 0.090 1000
age & diagnosis_category 0.160 0.113 0.056 969
from_study & age 0.159 0.090 0.038 269
from_study&suic_thoughts_recent 0.159 0.116 0.039 133

Table 18: Variable importance (Imp) from EBM for our training set in the orig-
inal train-test split, including average importance (Avg Imp), standard deviation
(SD), and inclusion count, derived from the 1000 train-test splits of the Mood
Stabilizers dataset.

Due to the multiple non-consistent interaction terms in the top ten terms in Table
18, we wish to investigate the average importance further and extract the 15
terms with the highest average importance. The results are shown in Table 19.
All interaction terms that have an inclusion count below 500 are deemed not
consistently important and are excluded from this table. This number is chosen
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from the analysis in Section 4.3.4. We see that when only considering the average
importance, the top ten variables change considerably, as expected due to the
interaction terms with low inclusion count in Table 18. The only interaction term
that qualifies for the top ten is then the interaction between age and gender, which
has an inclusion count of 784. The interaction between age and PANSS-EC score
is only ranked 14th in the table, which is a big difference from the 6th place in
Table 18. Most notably the PANSS-EC score didn’t make the table in Table 18
and is ranked 5th in Table 19 with an average importance of 0.245, however, the
interaction between PANSS-EC score and age made the list.

Variable Avg Imp SD Inclusion Count

diagnosis_category 0.483 0.162 1000
from_study 0.339 0.099 1000
substance_abuse_recent 0.313 0.089 1000
age 0.263 0.130 1000
panss_ec_score 0.245 0.132 1000
gender 0.207 0.097 1000
prior_admit 0.192 0.102 1000
suic_rel_for_ref 0.172 0.066 1000
age&gender 0.162 0.101 784
specialist_paragraph 0.160 0.040 1000
suic_rel_for_ref&diagnosis_category 0.140 0.044 910
intake_suicide_assess 0.139 0.090 1000
suic_thoughts_recent&diagnosis_category 0.124 0.034 806
age&panss_ec_score 0.118 0.085 999
age&diagnosis_category 0.113 0.056 969

Table 19: Top 15 terms with regard to average importance from EBM for the
Mood Stabilizers dataset.

5.6.2 Shape Functions and Coefficients

As shown in Figure 18, the shape functions for the two continuous variables,
PANSS-EC score and age, are extracted from the EBM model. We see that the
PANSS-EC score has a shape function that starts negative before increasing to
two small peaks at a PANSS-EC score of about 10 and 20 and then increasing to
a peak of a score of 1 with a PANSS-EC score of above 30.

The age variable has a shape function that starts at a slightly negative score and
increases steadily to a peak at age around 60, with a score of a little under 0.5.
After this the score decreases to a score of approximately -0.3 around age 80. For
both shape functions the uncertainty increases with the value of the variable.

The shape functions of the interaction between age and gender, and age and
PANSS-EC score is also of interest to investigate due to their relatively high aver-
age importance in Table 19. The shape functions are shown in Figure 19. These
shape functions imply that the probability of commencing mood stabilizers is the
opposite for men and women, with the score increasing with age for women, and
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Figure 18: Shape functions for the variables for PANSS-EC score and age from
EBM for the Mood Stabilizers dataset.

decreasing for men. The interaction between age and PANSS-EC score is more
complex, with PANSS-EC scores over 10 the score is high for age around 20, and
then decreasing as the age approaches 80. For PANSS-EC scores below 10 the
score is negative for ages around 20, and then increases with age. The contribu-
tions in these should be valuated in light of the variable importances from Table
18 and Table 19, and the fact that these plots are presented without uncertainty.

Additionally, the variable scores for the categorical variables are shown in Table
20. This shows the variables that contribute to an increased probability of com-
mencing mood stabilizers. These include the estimates with positive direction as
being part of the GAP study, having prior admissions, having a referral for forced
hospitalization, having a specialist referral for forced hospitalization, recent suici-
dal attempts and recent substance abuse. The estimates with negative direction
are being a man, suicide was not relevant for the referral, being assessed at low
suicide risk and no recent suicidal thoughts.
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Figure 19: Shape functions for the interaction between age and gender, and age
and PANSS-EC score from EBM for the Mood Stabilizers dataset.

Variable Score0 Score1
from_study -0.381 0.365
gender 0.116 -0.111
prior_admit -0.130 0.082
suic_rel_for_ref 0.268 -0.096
intake_suicide_assess 0.124 -0.323
referral_paragraph -0.073 0.304
specialist_paragraph -0.113 0.830
suic_attempts_recent -0.088 0.451
suic_thoughts_recent 0.159 -0.060
substance_abuse_recent -0.226 0.404

Variable Affective Other Psychosis Substance Abuse

diagnosis_category 0.155 -0.415 -0.420 0.584

Table 20: Scores for binary variables (top) and the diagnosis categories (bottom)
from EBM for the Mood Stabilizers dataset.
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5.6.3 GAM and GLM

The shape functions for the continuous variables from GAM are extracted and
shown in Figure 20. The shape functions are similar to the ones from EBM seen
in Figure 18, though the GAM model doesn’t seem to catch the same local patterns
as EBM does, which is to expect from the smoothing splines used in GAM. As seen
in Chapter 4 and in Section 5.5, the EBM claims to have a smaller uncertainty in
the shape function than GAM, which is more pessimistic.
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Figure 20: Shape functions for PANSS-EC score and age from GAM for Mood
Stabilizers dataset.

The p-values for the variables in the GLM and GAM models on the Mood Stabi-
lizers dataset are extracted and sorted from most significant to least significant.
The results are shown in Table 21 and Table 22.

All variables have the same direction of the estimates in all three models. Looking
at the p-values from the GLM and GAM model, we see that the seven most
significant variables, not counting the intercept, are the same for both models.
Most notably, the variable for which study is the most significant variable in
GAM and GLM and is also the variable with the highest importance in the EBM
model, though the variable for diagnosis category has a higher average importance
in the EBM model. It is difficult to compare the lower ranks of the variables, as
the EBM model has interaction terms that are not present in the GLM and GAM
models.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.490 2.279 -4.603 4.17e-06
from_studyGAP 1.691 0.619 2.731 0.00631
specialist_paragraph 3.680 1.444 2.549 0.0108
diagnosis_category_Psychosis -2.453 1.191 -2.060 0.0394
suic_attempts_recentyes 1.413 0.736 1.919 0.055
intake_suicide_assess -1.274 0.855 -1.491 0.136
diagnosis_category_Substance_Abuse 0.940 0.762 1.233 0.218
panss_ec_score 0.065 0.055 1.199 0.230
diagnosis_category_Other -1.347 1.128 -1.194 0.232
substance_abuse_recentyes 0.945 0.814 1.161 0.246
referral_paragraph -1.211 1.299 -0.932 0.351
suic_rel_for_refyes -0.631 0.777 -0.813 0.416
genderWoman -0.447 0.581 -0.770 0.441
age 0.013 0.018 0.742 0.458
suic_thoughts_recentyes -0.512 0.811 -0.631 0.528
prior_admityes 0.364 0.601 0.605 0.545

Table 21: Summary of GLM results for Mood Stabilizers dataset.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.103 2.421 -4.998 5.78e-07
from_studyGAP 2.225 0.675 3.295 0.000984
specialist_paragraph 4.804 1.550 3.100 0.00194
diagnosis_category_Psychosis -2.789 1.228 -2.271 0.0231
suic_attempts_recentyes 1.763 0.802 2.200 0.0278
intake_suicide_assess -1.481 0.922 -1.606 0.108
diagnosis_category_Substance_Abuse 1.212 0.801 1.514 0.13
s(panss_ec_score, 4) 0.076 0.056 1.346 0.178
referral_paragraph -1.749 1.382 -1.265 0.206
suic_thoughts_recentyes -0.999 0.828 -1.206 0.228
diagnosis_category_Other -1.237 1.150 -1.076 0.282
s(age, 4) 0.020 0.021 0.957 0.338
genderWoman -0.515 0.620 -0.832 0.406
suic_rel_for_refyes -0.666 0.808 -0.825 0.41
substance_abuse_recentyes 0.523 0.822 0.636 0.525
prior_admityes 0.390 0.630 0.620 0.536

Npar Df Npar Chisq P(Chi)

s(panss_ec_score, 4) 3.000 4.101 0.251
s(age, 4) 3.000 6.165 0.104

Table 22: Summary of GAM results (top) and ANOVA (bottom) from the Mood
Stabilizers dataset.
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5.6.4 PANSS-EC Score

In the EBM model, the interaction between age and PANSS-EC score is ranked
as the 6th most important variable, with an importance of 0.182 seen in Table 18
and an average importance of 0.118 seen in Table 19. This difference should be
taken into account when interpreting the corresponding shape function in Figure
19. This shape function implies most notably that the probability of commencing
mood stabilizers is higher for patients with a PANSS-EC score over 10 and an
age around 20, than for those with a PANSS-EC score over 10 and an older age.
The opposite applies for the PANSS-EC score below 10. The PANSS-EC score is
itself not a part of the most important variables in this table, despite it having a
considerably higher average importance seen in Table 19. This should be taken
into consideration when making inferences from the shape function for PANSS-EC
score in Figure 18. This shape function is similar to the one from GAM seen in
Figure 20, though as we have seen before, the GAM model is more pessimistic
in the uncertainty of the shape function. The shape function from EBM implies,
in short, that patients with a low PANSS-EC score have a lower probability of
commencing mood stabilizers than those with a higher score.
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SIX

DISCUSSION & FURTHER WORK

We will in this section discuss the results from Chapter 5. The performance of
EBM is evaluated in comparison to the benchmark models GLM and GAM, across
the four datasets. Before performing any of the analyses, we would expect the
EBM to outperform GAM and GLM. This is partly due to the results presented
in (Nori et al. 2019a) and Lou et al. (2013), where EBM is shown to outperform
other methods for a variety of datasets. In addition to this, EBM will inherently
consider all possible interactions, while no interactions are explicitly included in
the other two models. We would also expect the EBM and GAM to outperform
GLM due to allowing for non-linear relations in the continuous variables. We will
also discuss the PANSS-EC score’s relation to the different medications and how
the shape functions can be used to interpret this relationship.

6.1 Performance of the Models
In Chapter 5, we saw that the only two datasets that resulted in acceptable perfor-
mance with regard to AUC are the Benzodiazepines and Mood Stabilizers datasets.

The Benzodiazepines dataset resulted in the second-best performance where there
is little difference between the models, though GAM has a slightly higher AUC
than EBM, which in turn has a slightly higher AUC than GLM. Looking at the
variable importances, there doesn’t seem to be any interaction terms of notable
importance in the EBM model. This is likely the reason for EBM not outperform-
ing GAM in this dataset, and may also be the reason the EBM model performs
slightly worse than the GAM model, since EBM is prone to overfitting interaction
terms as seen in Chapter 4. From the results seen in 5.5, we see that the two con-
tinuous variables are not given a particularly high importance in the EBM model,
ranking in as number 5 and 6. For GAM, we see that the age variable is deemed
significant in the ANOVA test, indicating a non-linear relationship between age
and the commencement of benzodiazepines, though the coefficient seen from the
summary.glm() function shows that the age variable is not significant. This is
consistent with the GLM model, where the linear coefficient for the age variable
is not deemed significant either. Due to the two continuous variables not showing
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clear non-linear properties as well as not being of particular importance, it is not
surprising that the GLM model is not considerably outperformed by the EBM and
GAM models.

The Mood Stabilizers dataset had the best performance of the datasets, where
even though the median performance is close between the models, the EBM model
seems to outperform the other two models due to the more consistent results seen
in the small span of the AUCs in the violin plots in Figure 14. For the EBM model,
there are several interaction terms of consistent importance, which likely explains
the better performance of the EBM model. The variables for age and PANSS-EC
both have high importance in the EBM model, ranking as number 4 and 5 over
the 1000 train-test splits. These variables are deemed much less important in the
GAM and GLM models, since they are not considered to significantly contribute
to the model, although this is compared to the original train-test split where these
variables also were not of significant importance in the EBM model. It would
be of interest to study more closely the results from GAM and GLM for all 1000
train-test splits and compare them to EBM. As seen in the results from Simulation
Study 4 in Chapter 4, the EBM model is very prone to overfitting, especially when
there are numerous variables in the model that don’t have an underlying relation
to the response. This may result in true underlying relations being missed and
not being included in the model consistently. This is likely the reason why EBM
is not outperforming GAM and GLM more clearly.

The Antipsychotics and Hypnotics dataset resulted in all models having an average
AUC well below 0.7 and have, out of the 1000 train-test splits, both a considerable
number of splits where the AUC is less than 0.5. From this we conclude that reli-
able inference cannot be made regarding the underlying relations in these datasets.
Despite all models performing badly for these datasets, it is of interest that EBM
performs in general worse than the GAM and GLM in the Antipsychotics dataset.
This stands in contrast to our expectation that EBM should outperform GAM
and especially GLM.

Regarding performance, there is little from our analyses that implies that the
EBM model should be preferred over the GAM and GLM models for our data.
Both GAM and GLM are here only used as benchmark models, and have not
been optimized in any way with regard to variable selection, interaction terms or
hyperparameters. It is likely that the performance of the GAM and GLM models
could be improved by including interaction terms and non-linear transformations
of the continuous variables. In the gam package used for modeling GAM, one
needs to specify constant degrees of freedom for the spline terms for the continuous
variables. It would be interesting to estimate this for each variable, as this would
avoid overfitting. This can be done in the mgcv package in R (Wood 2023), which
would be of interest to use instead of the gam package. This gives the possibility
to, by default, let all continuous variables have smoothing spline terms, since the
degrees of freedom are estimated.

It should be noted that with the small datasets used in this thesis, there are
large variations in the performance of all models, and it is therefore questionable
whether the results from a single train-test split are suitable for reliable inference.
Especially in the case of the Hypnotics dataset is this the case, where the original
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train-test split resulted in a terrifying AUC of 0.445 for GAM. This split is an
outlier in the general performance of the model, and using another train-test split
would likely result in more representative results. We are not aware of to which
extent it is common in publications within the field of medicine to present results
from several train-test splits, although we know that many analyses in the field
of medicine do not involve a test set at all. More examples of the shape functions
and variable importances from different train-test splits would be of interest to
see, but have not been included in this thesis.

When it comes to intelligibility, both EBM and GAM can catch non-linearity in the
data and visualize these. The EBM tends to be more optimistic in its uncertainty
estimates, which is a feature that one should be aware of when using the model.
A clear advantage that EBM has over GAM is that it can inherently handle
discontinuities in the shape function, while this needs to be explicitly specified
in GAM. Especially in the case of intelligibility is this a clear advantage, as this
could reveal important patterns in the data that would otherwise be missed using
GAM and GLM. It should be noted that the mgcv package in R provides different
possibilities for splines that can be used to more easily model discontinuities in
the data.

With regard to interaction, it is an advantage that EBM inherently handles all pos-
sible interactions, while these need to be explicitly specified in GAM and GLM.
Although when specified, can be used in GAM similarly as in EBM. The mgcv
package in R supplies numerous ways to visualize these interactions, which is lim-
ited in the current version of EBM.

A possible usage of the EBM model could be to use it as a first step in a modeling
process. We then propose that the EBM model could be used to search for inter-
actions and discontinuities, which then could be included in a GAM or a GLM
model. This would be a way to combine the advantages of EBM with the advan-
tages of the GAM and GLM models. With small datasets like the ones used in this
thesis, it may be important to perform many train-test splits. For larger datasets,
one may divide the data into three, where one part is used for model selection,
one part is used for model training, and one part is used for model testing. The
model selection may then include the EBM model, and GAM may be used with
the discovered interactions and discontinuities for the model training.

6.2 PANS-EC Score
For the Benzodiazepine dataset, the evaluation of the PANSS-EC score’s variable
importance and the performance of the EBM model implies that inference can be
made from the shape function for the PANSS-EC score. The shape function shows
as mentioned a clear increase in probability of commencement of benzodiazepines
for PANSS-EC scores around 17 and over 25, with a decrease in between. The
prediction of the shape functions in areas with few observations is highly uncertain
and should be interpreted with caution, as seen in Chapter 4.

The same goes for the viability of the Mood Stabilizers dataset, where the shape
function of the PANSS-EC score and the interaction between PANSS-EC score and
age is of interest. The shape function for PANSS-EC score shows an increase in
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the probability of commencement of mood stabilizers with PANSS-EC scores of up
to 19, where the probability remains stable for higher levels. As mentioned for the
Benzodiazepines dataset, there are very few observations for the higher PANSS-EC
scores, making the prediction of the shape function highly uncertain. The shape
function for the interaction term shows an interesting relationship between the
PANSS-EC score, age and the probability of commencement of mood stabilizers.
For patients around age 20, the probability of commencement of mood stabilizers
is much higher for patients with PANSS-EC scores above 12, than for patients
with lower PANSS-EC scores. This relation changes with age and seems to be the
opposite for patients older than 50, though not as obvious. This is a relationship
that should be further investigated.

For the Antipsychotics and the Hypnotics dataset, we choose not to make any
inference from the shape function of the PANSS-EC score, due to the poor per-
formance of the models, and relatively low variable importance of the PANSS-EC
score.

6.3 Theory
The EBM model is a relatively new model, and the published theory behind
the model in several areas is scarce or difficult to find detailed descriptions of.
Many theoretical aspects of the model could not be found in the documentation
provided in publications, but had to be inferred from the code and issues on the
GitHub repository. It should be mentioned that the creators of the model are very
active on the GitHub repository and seem to have been very helpful in answering
questions and providing guidance for users of the EBM, although these questions
could be avoided with more thorough documentation. We have tried to contact
the authors directly to confer about specific parts of the model, but have not
succeeded in getting a response.

6.4 Contributions and Further Work
This thesis’s contributions consist of a thorough evaluation of the usage of the
EBM model in small medical datasets. We reveal strengths and weaknesses with
EBM in comparison to the benchmark models GAM and GLM, which is of interest
for the continuation of research on the topic of suicide prevention research. The
up-to-date presentation of the EBM model is also a clear contribution of this
thesis.

Information regarding the relation between the PANSS-EC score and the com-
mencement of the relevant medication is obtained, seen in light of the viability
of the models used on the datasets. This will hopefully prove useful in future
research on the suicide prevention data used in this thesis.

In the future it would be of interest to examine the performance of other state-
of-the-art machine learning models on the datasets to see if better performance
can be obtained. The relations between the PANSS-EC score and the different
medications should be further investigated, as there may be interesting underlying
reasons for the relationships found.
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CONCLUSIONS

This thesis aimed to model the probability of the commencement of medication
at an acute psychiatric department, using clinical data from suicide prevention
research, and provide insights into the relation between the commencement of
medication and the clinical assessment tool PANSS-EC. This was done using the
Explainable Boosting Machine model (EBM), a new highly interpretable machine
learning model. The EBM model was evaluated with regard to performance mea-
sured in area under the receiver operating characteristic, compared to the bench-
mark models Generalized Additive Models (GAM) and Generalized Linear Models
(GLM). Simulation studies were performed to analyze the model performance on
known underlying relations and further provide a basis for the analyses of the real
data.

Our analyses found that the performance of the EBM model was not considerably
better than that of GAM and GLM, although the model proves useful in inter-
action detection and uncovering of discontinuities in the data. The performance
of all three models was varying between the medication studied. Meaningful re-
lations between the commencement of medication and PANSS-EC was found for
the medications where the performance of the model were deemed adequate.

Theoretical contributions of this thesis consist of a comprehensive presentation
and comparison of models to analyze small binary classification data sets from
medical research, a detailed up-to-date description of the existing literature on the
subject and insight into the relations between the commencement of medication
and PANSS-EC.
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APPENDIX

A

MEDICATION DATA COMPARISON STUDY OF AA
AND GAP

A.1 Data
In Melby (2024), the AA and GAP studies are compared with respect to their
clinical variables. Here, we will compare the two studies in terms of the medi-
cation variables. It is of special interest to see if the usage and prescription of
medication are different between the two studies since they were conducted five
years apart. The number of 0, 1 and missing values for all medication usage and
commencement variables in the two studies are presented in Table 23. There are
seven medication usage variables and five medication commencement variables in
the dataset. The corresponding usage and commencement variables have the same
name, but with the prefix INN for usage and OPPST for commencement. The vari-
ables INN_SSRI and INN_ANTIDEP have no corresponding commencement variables
and are together with INN_OPIOIDER and OPPST_OPIOIDER, the only variables not
being used in the rest of the thesis.

A.2 Methods

A.2.1 Odds Ratio

The odds ratio is the ratio between two odds. In our case, this is the odds of
medication usage in study AA compared to the odds of medication usage in study
GAP. The odds ratio is calculated as

OR =
OddsAA

OddsGAP
=

pAA/(1− pAA)

pGAP/(1− pGAP)
, (A.1)

denoting pAA as the probability of medication usage in AA and pGAP as the prob-
ability of medication usage in GAP. An odds ratio of less than one indicates that
the probability of medication usage for a patient in study AA is lower than the
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AA GAP
Variable 0 1 NA 0 1 NA

INN_ANTIDEP 274 103 3 235 95 0
INN_SSRI 317 60 3 274 56 0
INN_ANTIPSYK 279 97 4 250 80 0
INN_STEMNINGSSTAB 329 47 4 291 39 0
INN_BENZO 341 36 3 300 29 1
INN_HYPNOTIKA 349 28 3 289 39 2
INN_OPIOIDER 370 7 3 309 19 2
OPPST_ANTIPSYK 223 63 94 208 105 17
OPPST_STEMNINGSSTAB 275 10 95 285 28 17
OPPST_BENZO 213 67 100 160 152 18
OPPST_HYPNOTIKA 221 57 102 222 89 19
OPPST_OPIOIDER 276 4 100 302 8 20

Table 23: Number of patients with 0, 1 and missing value (NA) for all medication
usage and commencement variables in the two studies.

probability of medication usage for a patient in study GAP. The opposite applies
for an odds ratio greater than one, while an odds ratio equal to one indicates that
the odds of medication usage are equal between the two studies. The intuition
behind this is that if the two study groups can be considered as random samples
from the same population, the odds ratio should be equal to one.

A.2.2 Fisher’s Exact Test

Fisher’s exact is a non-parametric test used to test, in our case, the odds of a
medication variable being different between the two study groups AA and GAP.
Removing all missing values (NA) for each medication variable in Table 23, a
contingency table is created for each medication variable. The contingency table
for medication variable Xi has the form

AA GAP

Xi = 1 a b
Xi = 0 c d

Table 24: Contingency table for medication variable Xi.

From this table, the odds ratio is calculated as

OR =
ad

bc
, (A.2)

where a and b are the number of patients from study AA and GAP respectively
with medication usage, while c and d are the number of patients from study AA
and GAP respectively without medication usage (Sprent & Smeeton 2012, p. 172).
The function fisher.test() in the stats package in R (R Core Team 2023) is
used to run the Fisher’s exact test and calculate the odds ratio. The corresponding
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confidence intervals and p-value are obtained directly from the same function using
the central hypergeometric distribution. See Section A.3 for the results.

A.2.3 Logistic Regression

One can also use GLM to test if the medication usage is different between the two
studies. This is done by using the medication variable as the response variable
and using the variable from_study as the only covariate. from_study is a binary
variable indicating if the patient is from study GAP (Xfrom_study = 1) or AA
(Xfrom_study = 0). The logistic regression model is then

g(µ) = β0 + β1Xfrom_study, (A.3)

where we have that g(µ) = log( µ
1−µ

) and µ is equal to the probability of medication
usage. The odds of a patient with medication, Medi, from study GAP is then

Odds(YMedi |Xfrom_study = 1) = eg(µ) = eβ0+β1 , (A.4)

and for a patient from study AA the odds is

Odds(YMedi |Xfrom_study = 0) = eβ0 , (A.5)

due to the fact that Xfrom_study is binary. The odds ratio can then be calculated
from

ORi =
Odds(YMedi |Xfrom_study = 1)

Odds(YMedi |Xfrom_study = 0)
=

eβ0+β1

eβ0
= eβ1 , (A.6)

where β0 is the intercept and β1 is the coefficient for Xfrom_study. The coefficients
β0 and β1 are obtained from the glm() function in R along with the corresponding
p-values. The odds ratio is then calculated from A.6. The corresponding 95% con-
fidence intervals are obtained using the confint() function in the stats package
in R (R Core Team 2023). The confidence intervals for the odds ratio are cal-
culated by taking the exponential of the confidence intervals for the coefficients.
The results are presented in the following section.

A.3 Results
In Table 25, the corresponding odds ratios, 95% confidence intervals and p-values
from Fisher’s exact test and logistic regression are presented. As we see, the two
tests give almost the same results. The variables INN_HYPNOTIKA, INN_OPIOIDER,
OPPST_ANTIPSYK, OPPST_STEMNINGSSTAB, OPPST_BENZO and OPPST_HYPNOTIKA all
have a p-value less than 0.05, indicating that the medication usage is different
between the two studies. The remaining variables have a p-value that indicates
that the medication usage is not different between the two studies. When analyzing
the medication commencement in Chapter 5 the results from this analysis imply
that we would expect the variable from_study to be an important covariate.
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Fisher’s Exact Test Logistic Regression
Variable OR CI p-value OR CI p-value

INN_ANTIDEP 1.075 0.763-1.514 0.675 1.075 0.774-1.494 0.665
INN_SSRI 1.080 0.710-1.640 0.760 1.080 0.724-1.609 0.706
INN_ANTIPSYK 0.921 0.644-1.314 0.664 0.920 0.653-1.295 0.634
INN_STEMNINGSSTAB 0.938 0.580-1.512 0.818 0.938 0.594-1.474 0.782
INN_BENZO 0.916 0.528-1.577 0.795 0.916 0.545-1.527 0.736
INN_HYPNOTIKA 1.681 0.981-2.911 0.053 1.682 1.014-2.823 0.046
INN_OPIOIDER 3.245 1.285-9.257 0.008 3.250 1.408-8.413 0.009
OPPST_ANTIPSYK 1.785 1.222-2.622 0.002 1.787 1.244-2.583 0.002
OPPST_STEMNINGSSTAB 2.698 1.243-6.347 0.007 2.702 1.329-5.945 0.009
OPPST_BENZO 3.014 2.092-4.373 <0.001 3.020 2.129-4.317 <0.001
OPPST_HYPNOTIKA 1.553 1.044-2.323 0.028 1.554 1.064-2.284 0.023
OPPST_OPIOIDER 1.826 0.483-8.380 0.390 1.828 0.569-6.910 0.329

Table 25: Odds ratios, confidence intervals and p-values from Fisher’s exact test
and logistic regression.
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B

RESULTS FOR THE ANTIPSYCHOTICS AND
HYPNOTICS DATASETS

B.1 Antipsychotics

We wish to perform the same inference as in 5.5 and 5.6 for the Antipsychotics
dataset. This dataset resulted in a median AUC of 0.595 for EBM, 0.633 for GAM
and 0.635 for GLM. All three models have similar AUC densities, though the GLM
model seems to have lower outliers than the other two models.

B.1.1 Variable Importance

The variable importance for the 10 most important variables in the EBM model
is extracted along with the corresponding average importance, standard deviation
and inclusion count over the 1000 train-test splits. The results are presented
in Table 26. All variables in the top ten are univariate variables, which makes
the inclusion count redundant. The variable with the highest importance is the
variable regarding recent substance abuse, with an importance of 0.058. This is in
line with the corresponding average importance of 0.075, but significantly lower
than the average importance of the diagnosis categories, which is 0.153. The
variables regarding age and study also seem to be misrepresented in our model, as
they also have a much higher average importance. The general low importance of
the variables in the EBM model is in line with the low AUC of the model, which
indicates that the model is not able to capture any clear underlying patterns in
the data.

B.1.2 Shape Functions and Coefficients

The shape functions for the two continuous variables PANSS-EC and age are
extracted from the EBM model. The shape functions are shown in Figure 21.
The shape function for PANSS-EC score begins slightly negative and increases
to a Score barely above 0 for PANSS-EC scores from 15 to 20. The Score then
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Variable Imp Avg Imp SD Inclusion Count

substance_abuse_recent 0.058 0.075 0.039 1000
intake_suicide_assess 0.048 0.085 0.038 1000
prior_admit 0.044 0.084 0.041 1000
diagnosis_category 0.041 0.153 0.059 1000
age 0.030 0.102 0.056 1000
from_study 0.028 0.121 0.050 1000
suic_rel_for_ref 0.026 0.090 0.041 1000
referral_paragraph 0.023 0.076 0.035 1000
panss_ec_score 0.020 0.063 0.033 1000
specialist_paragraph 0.012 0.029 0.022 1000

Table 26: Variable importance (Imp), from EBM for our training set from the
original train-test split, including average importance (Avg Imp), standard devia-
tion (SD) and inclusion count from the 1000 train-test splits of the Antipsychotics
dataset.

decreases to around -0.1 for PANSS-EC scores from 25 to 30. The uncertainty
increases with the value of the PANSS-EC score, but is especially large compared
to the other datasets. The shape function for age starts at 0 before dropping to a
score of -0.05 for ages around 20. The Score then increases to 0.05 for ages 40 to
60 before decreasing to a score slightly negative for ages over 70. The uncertainty
is very large for all ages except for ages 30 and 65.

For the categorical variables, the variable scores are extracted from the EBM model
and shown in Table 15. For the binary variables, the Score0 is the contribution to
the systematic component of the model when the variable is equal to 0, and the
Score1 is the contribution when the variable is equal to 1. When it comes to the
variable for diagnosis categories, the scores are the contribution to the systematic
component of the model for each of the four categories.

The PANSS-EC score is ranked 9th in both importance and average importance
in Table 26. Together with the low AUC of the EBM model, it is questionable
whether reliable inferences can be made from the shape function for the PANSS-
EC score.

B.1.3 GAM and GLM

The shape functions for the two continuous variables PANSS-EC and age are
extracted from the GAM model and shown in Figure 22. The shape functions are
similar to the ones from EBM seen in Figure 16, though the GAM model doesn’t
seem to catch the same patterns as EBM does as it is smoothed, as expected.
The uncertainty seems to be more similar between the two models than what we
have seen for the Benzodiazepines and Mood Stabilizers datasets, even though the
uncertainty is still larger for the GAM model.

The p-values for the variables in the GLM and GAM models on the Antipsychotics
dataset are extracted and sorted from most significant to least significant. The
results are shown in Table 28 and Table 29. For the continuous variables in the
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Figure 21: Shape functions for PANSS-EC score and age from EBM for Antipsy-
chotics dataset.

GAM model, the p-value presented in the top table in Table 17 is the p-value
from summary.glm(), while the p-value in the bottom table is the p-value from
the ANOVA test. Comparing the results from the GLM and GAM models, we see
that all variables have the same direction of the estimate, except for the variable
for suicide attempt, which is ranked amongst the last anyway. The variable for the
diagnosis categories is the most significant variable in both models. Most notably,
the study variable is only ranked 6th as is not considered to be significant, which
stands in contrast to the results seen in Appendix A, where the commencement
of antipsychotics was found to be significantly different between the two studies.
Comparing to the direction of the estimates from the EBM model, which is the
difference between the estimates for Score1 and Score0 in Table 15, we see that the
direction is the same for all variables except for the variable for suicide attempts
recently, where the direction is the same as GAM. The ranking of variables between
EBM and GAM/GLM is similar for many variables but differs enough with regard
to both importance and average importance to conclude that they are considerably
different.
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Variable Score0 Score1
from_study -0.029 0.026
gender 0.002 -0.002
prior_admit 0.048 -0.040
suic_rel_for_ref 0.055 -0.017
intake_suicide_assess -0.032 0.095
referral_paragraph 0.014 -0.060
specialist_paragraph 0.007 -0.053
suic_attempts_recent -0.002 0.011
suic_thoughts_recent -0.019 0.007
substance_abuse_recent 0.046 -0.081

Variable Affective Other Psychosis Substance Abuse

diagnosis_category 0.043 -0.074 0.031 0.002

Table 27: Scores for binary variables (top) and diagnosis category (bottom) from
EBM for the Antipsychotics dataset.
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Figure 22: Shape functions for PANSS-EC score and age from GAM for An-
tipsychotics dataset.
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Estimate Std. Error z value Pr(>|z|)
diagnosis_category_Other -0.935 0.349 -2.681 0.00734
intake_suicide_assess 0.716 0.312 2.292 0.0219
substance_abuse_recentyes -0.814 0.390 -2.089 0.0367
suic_rel_for_refyes -0.798 0.417 -1.913 0.0558
prior_admityes -0.389 0.274 -1.420 0.156
suic_thoughts_recentyes 0.554 0.413 1.342 0.18
from_studyGAP 0.343 0.273 1.254 0.21
panss_ec_score 0.039 0.034 1.162 0.245
(Intercept) 1.238 1.287 0.962 0.336
referral_paragraph -0.547 0.625 -0.876 0.381
age 0.007 0.009 0.838 0.402
specialist_paragraph -0.486 0.792 -0.614 0.539
diagnosis_category_Substance_Abuse 0.197 0.438 0.450 0.652
diagnosis_category_Psychosis 0.163 0.483 0.338 0.735
genderWoman -0.074 0.280 -0.266 0.79
suic_attempts_recentyes -0.044 0.365 -0.121 0.904

Table 28: Summary of GLM results for Antipsychotics dataset.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.911 1.298 0.702 0.483
diagnosis_category_Other -0.903 0.352 -2.563 0.0104
intake_suicide_assess 0.733 0.315 2.327 0.0199
substance_abuse_recentyes -0.857 0.392 -2.188 0.0286
suic_rel_for_refyes -0.828 0.419 -1.978 0.0479
prior_admityes -0.412 0.277 -1.488 0.137
from_studyGAP 0.385 0.276 1.395 0.163
suic_thoughts_recentyes 0.558 0.414 1.349 0.177
s(panss_ec_score, 4) 0.036 0.035 1.038 0.299
referral_paragraph -0.593 0.625 -0.948 0.343
s(age, 4) 0.008 0.009 0.879 0.379
diagnosis_category_Psychosis 0.280 0.492 0.569 0.57
diagnosis_category_Substance_Abuse 0.165 0.438 0.377 0.706
specialist_paragraph -0.292 0.787 -0.371 0.711
suic_attempts_recentyes 0.077 0.367 0.211 0.833
genderWoman -0.057 0.284 -0.201 0.841

Npar Df Npar Chisq P(Chi)

s(panss_ec_score, 4) 3.000 2.369 0.499
s(age, 4) 3.000 5.852 0.119

Table 29: Summary of GAM results (top) and ANOVA (bottom) from the An-
tipsychotics dataset.
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B.2 Hypnotics
Following the procedure used in the other datasets, we wish to perform inference
for the Hypnotics dataset. This dataset resulted in the lowest AUCs for all models,
with a median AUC of below 0.6. The train-test split used in 13 and in our analysis
resulted in the horrendous result of an AUC of 0.445 for the GAM model, while
the EBM and GLM model had an AUC of 0.621 and 0.591, respectively.

B.2.1 Variable Importance

The variable importance for the ten most important variables in the EBM model
is extracted along with the corresponding average importance, standard deviation
and inclusion count over the 1000 train-test splits. The results are presented in
Table 30. The variable importance is, in general, very low, which is in line with
the low AUCs and poor performance of the model. The most essential variable
in terms of importance and average importance is the variable regarding study,
with an importance of 0.098. This is in agreement with the results from appendix
A, where the commencement of hypnotics was found to be significantly different
between the two studies. There is little difference in the importance of the other
variables, indicating that the model is not able to capture any clear underlying
patterns in the data. There are four interaction terms in the top ten, where
only one can be considered to be consistently included in the model, which is the
interaction between gender and PANSS-EC score included 929 times.

Variable Imp Avg Imp SD Inclusion Count

from_study 0.098 0.081 0.036 1000
intake_suicide_assess 0.060 0.027 0.019 1000
diagnosis_category 0.048 0.051 0.026 1000
suic_attempts_recent 0.047 0.020 0.016 1000
from_study&gender 0.045 0.054 0.021 135
intake_suicide_assess&diagnosis_category 0.039 0.056 0.021 564
age 0.038 0.064 0.035 1000
prior_admit 0.037 0.050 0.029 1000
gender&panss_ec_score 0.035 0.050 0.027 929
from_study&diagnosis_category 0.034 0.042 0.016 171

Table 30: Variable importance (Imp), from EBM for our training set from the
original train-test split, including average importance (Avg Imp), standard devi-
ation (SD) and inclusion count from the 1000 train-test splits of the Hypnotics
dataset.

B.2.2 Shape Functions and Coefficients

The shape functions for the two continuous variables PANSS-EC and age are
extracted from the EBM model. The shape functions are shown in Figure 23.
The shape function for PANSS-EC score has a Score of 0 for PANSS-EC scores
from 5 to 20, before decreasing to a Score of -0.5 for PANSS-EC scores around 30.
The uncertainty is very low up to PANSS-EC scores of 20, where it drastically
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increases as the PANSS-EC score increases. The shape function for age has a
similar shape, with a Score of 0 for ages 20 to 55 before decreasing to a Score of
-0.2 for ages around 80. The uncertainty is similar to the PANSS-EC score, with
a low uncertainty for ages up to 55, before increasing as the age increases. The
uncertainty for the patients of ages 18 to 20 is also considerably larger than for
the other ages, but not close to as large as for ages above 55.

Figure 23: Shape functions for PANSS-EC score and age from EBM for Hyp-
notics dataset.

For the categorical variables, the variable scores are extracted from the EBM model
and shown in Table 31. For the binary variables, the Score0 is the contribution to
the systematic component of the model when the variable is equal to 0 and the
Score1 is the contribution when the variable is equal to 1. When it comes to the
variable for diagnosis category, the scores are the contribution to the systematic
component of the model for each of the four categories.

The PANSS-EC score is not amongst the top 10 in Table 26. Together with the
low performance of the model, it is questionable whether reliable inference can be
made from the shape function for PANSS-EC score.
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Variable Score0 Score1
from_study -0.100 0.096
gender -0.021 0.021
prior_admit 0.047 -0.031
suic_rel_for_ref 0.035 -0.013
intake_suicide_assess -0.041 0.113
referral_paragraph 0.008 -0.040
specialist_paragraph 0.011 -0.111
suic_attempts_recent -0.029 0.132
suic_thoughts_recent -0.022 0.008
substance_abuse_recent -0.015 0.031

Variable Affective Other Psychosis Substance Abuse

diagnosis_category 0.067 -0.014 -0.043 -0.068

Table 31: Scores for binary variables (top) and diagnosis category (bottom) from
EBM for the Hypnotics dataset.

B.2.3 GAM and GLM

The shape functions for the two continuous variables PANSS-EC and age are
extracted from the GAM model and shown in Figure 24. The shape functions are
similar to the ones from EBM seen in Figure 23, though the GAM model doesn’t
seem to catch the same patterns as EBM does as it is smoothed, as expected.
The uncertainty seems to be more similar between the two models than what we
have seen for the Benzodiazepines and Mood Stabilizers datasets, even though the
uncertainty is still larger for the GAM model.

P -values for the variables in the GLM and GAM models on the Hypnotics dataset
are extracted and sorted from lowest to highest value. The results are shown in
Table 32 and Table 33. For the continuous variables in the GAM model, the p-value
presented in the top table in Table 17 is the p-value from summary.glm(), while
the p-value in the bottom table is the p-value from the ANOVA test. Comparing
the results from the GLM and GAM models, we see that all variables have the
same direction of the estimate and that there is little difference in the ranking
of the variables. The variable for study is the most significant variable in both
models, which is in agreement with the results from appendix A. Compared to the
direction of the estimates from the EBM model, which is the difference between
the estimates for Score1 and Score0 in Table 15, we see that the direction is the
same for all variables. The ranking of variables between EBM and GAM/GLM is
similar with regard to the univariate variables.
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Figure 24: Shape functions for the variables for PANSS-EC score and age from
GAM for Hypnotics dataset.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.771 1.416 0.545 0.586
from_studyGAP 0.550 0.253 2.170 0.030
suic_attempts_recentyes 0.599 0.321 1.868 0.0618
diagnosis_category_Substance_Abuse -0.700 0.428 -1.636 0.102
intake_suicide_assess 0.395 0.273 1.449 0.147
diagnosis_category_Other -0.423 0.303 -1.398 0.162
age -0.012 0.009 -1.369 0.171
substance_abuse_recentyes 0.377 0.326 1.158 0.247
panss_ec_score -0.035 0.033 -1.081 0.280
prior_admityes -0.238 0.261 -0.913 0.361
suic_rel_for_refyes -0.292 0.371 -0.787 0.431
specialist_paragraph -0.527 0.761 -0.692 0.489
diagnosis_category_Psychosis -0.248 0.408 -0.607 0.544
genderWoman 0.130 0.260 0.500 0.617
suic_thoughts_recentyes 0.116 0.384 0.301 0.764
referral_paragraph -0.015 0.515 -0.029 0.977

Table 32: Summary of GLM results for the Hypnotics dataset.
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Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.449 1.436 0.312 0.755
from_studyGAP 0.562 0.253 2.219 0.0265
suic_attempts_recentyes 0.619 0.322 1.924 0.0543
diagnosis_category_Substance_Abuse -0.722 0.431 -1.673 0.0943
intake_suicide_assess 0.399 0.273 1.461 0.144
diagnosis_category_Other -0.421 0.303 -1.392 0.164
s(age, 4) -0.011 0.009 -1.230 0.219
substance_abuse_recentyes 0.386 0.329 1.175 0.240
prior_admityes -0.249 0.262 -0.954 0.340
s(panss_ec_score, 4) -0.030 0.035 -0.853 0.394
suic_rel_for_refyes -0.265 0.367 -0.723 0.470
diagnosis_category_Psychosis -0.256 0.410 -0.623 0.533
genderWoman 0.144 0.262 0.552 0.581
specialist_paragraph -0.409 0.764 -0.535 0.592
suic_thoughts_recentyes 0.090 0.381 0.236 0.813
referral_paragraph -0.019 0.515 -0.038 0.970

Npar Df Npar Chisq P(Chi)

s(panss_ec_score, 4) 3.000 1.748 0.626
s(age, 4) 3.000 3.661 0.301

Table 33: Summary of GAM results (top) and ANOVA (bottom) from the Hyp-
notics dataset.
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C

EXAMPLES FROM SIMULATION STUDIES

In this appendix, the results from a different iteration of the simulation studies
are presented for Simulation Study 1-4, than the one presented in Chapter 4. The
results are seen in Figures 25 - 28. The resulting shape functions are similar to
the ones seen in 4, but with less variance on the right edge of the shape functions,
which might imply that outliers are present in the datasets used in 4.
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Figure 25: Comparison of the shape functions of GLM, GAM and EBM in
Simulation Study 1 for another train-test split.

87



88 APPENDIX C. EXAMPLES FROM SIMULATION STUDIES

GLM

X2

β 2
X

2

5 10 15 20

−
4

−
2

0
1

2
3

GAM

X2

f(X
2)

5 10 15 20

−4
−2

0
1

2
3

EBM

Figure 26: Comparison of the shape functions of GLM, GAM and EBM in
Simulation Study 2 for another train-test split.
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Figure 27: Comparison of the shape functions of GLM, GAM and EBM in
Simulation Study 3, including the shape function for the interaction term from
EBM, for another train-test split.
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Figure 28: Comparison of the shape functions of GLM, GAM and EBM in
Simulation Study 4, including the shape function for the interaction term from
EBM, for another train-test split.
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