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Abstract

Triangulated categories are one of the main areas of study in homological algebra, especially
given that there are several important categorical structures appearing in related fields that can
be equipped with a triangulated structure. Stable module categories are found naturally in rep-
resentation theory, and to a certain degree algebraic topology. Derived categories appear most
often in homological algebra itself but are also widely used in algebraic geometry.

In this thesis we will build up the notion of triangulated categories, starting with basic category
theory. We will build on the notion of a category by giving different restrictions and requirements
revealing different categorical structures, before defining triangulated categories. Then we’ll
consider two different types of categories, the stable category of a Frobenius category and the
derived category of an abelian category and prove that they both carry triangulated structures.
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1 Introduction

This thesis serves to function as a quick introduction to triangulated categories, not assuming
any previous background in category theory, but a bit of basic abstract algebra knowledge.
It starts off with introducing the structure of a category, and then introduce several terms and
structures seen in category theory whilst discussing additive, abelian and exact categories. We
will then introduce the notion of a triangulated category, before moving on to Frobenius categories
and Derived categories.
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thesis or a master thesis to implement and reflect on their thesis’ relevance with respect to the
UN sustainable development goals. The idea is all good and fine, but for a quite theoretical
thesis just like this one, there just is not any real relevance. The only real relevance a thesis
about triangulated categories have, is the fact that this thesis is a possible guide for people
to learn some category theory and homological algebra. This again can potentially help with
spread more knowledge about the topics discussed in the thesis, and then potentially play its
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2 Categories

Definition 2.1 (Category [Lan78, Ch. I.2]). A Category has the following:

• A class of objects

• A set of morphisms between every two objects

• Composition of morphisms are well defined, i.e. for morphism f : X → Y and g : Y → Z,
there exist a unique morphism g ◦ f : X → Z, such that the following diagram commutes:

X Y

Z

f

g◦f
g

Remark 2.2. We will use C to denote an arbitrary Category. For the ”set” of all morphisms
between two objects in C, say X,Y , also called the hom-set, we use the notation HomC(X,Y ) =
{f | f in C such that domf = X and cod f = Y } [Lan78, Ch. I.8].
dom and cod stand here for domain and codomain.

Example 2.3 ([Lan78, Ch. I.2]). The following are examples of categories:

• The category of sets, Set

– Objects are sets

– Morphisms are functions

• The category of groups, Grp, and similarly the category of Abelian groups, Ab

– Objects are (Abelian) groups

– Morphisms are group morphisms

• The category of vector spaces over a field K, VectK

– Objects are vector spaces over K

– Morphisms are K-linear maps

Definition 2.4 (Dual). The dual category Cop of a category C is formed by reversing all mor-
phisms in C. The dual can be defined for any structure in this way.

Definition 2.5 (Functor [Lan78, Ch. I.3]). A functor F : C // D is a morphism of cate-

gories. F maps objects, say c ∈ C, to objects F (c) ∈ D, and morphisms, say f : c // d in C,

to morphisms F (f) : F (c) // F (d) .

Functors works as morphisms between categories. Thus one can easily observe that by consider-
ing objects as categories and morphisms as functors, one can define a category of categories.

Functors are often used to show how properties are translated between different categories, as
when defining the quotient category.

Lemma 2.6 (Quotient category [Lan78, Ch. II.8]). For a given category C, let R be a congruence
relation that assigns to each pair of objects X,Y ∈ C a binary relation RX,Y on the hom-set
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HomC(X,Y ), such that it preserves composition. I.e. if fRX,Y f
′ and gRY,Zg

′, then g◦fRX,Zg′◦
g. Then there exists a category C/R and a functor QR : C // C/R such that,

• If fRX,Y f
′ is in C, then QR(f) = QR(f

′);

• If H : C // D is any functor from C for which fRX,Y f
′ implies H(f) = H(f ′) for all

f, f ′, then there is a unique functor H ′ : C/R // D with H ′ ◦QR = H. Moreover the

functor QR is a bijection on objects.

We call C/R a quotient category.

Proof. We prove that the quotient is indeed a category.
By construction, we can see that our quotient category C/R has the same objects as C. Given
construction, we can take our morphisms to be equivalence classes on the hom-set of C. As our
congruence relation preserves composition, the composite is well defined in C/R as it is carried
over by the projection QR : C → C/R.

Definition 2.7 (Natural transformation [Lan78, ch.I.4]). Given two functors S, T : C → B, a

natural transformation τ : S
•−→ T is a function wich assigns to each object c of C, an arrow

τc = τc : Sc → Tc of B in such a way that every arrow f : c → c′ i C yields a diagram

Sc Tc

Sc′ Tc′

τc

Sf Tf

τc′

which is commutative.

Definition 2.8 (Equivalence [Lan78, ch.I.4]). An equivalence between categories C and D is
defined to be a pair of functors S : C → D, T : D → C, together with natural isomorphisms
IC ∼= T ◦ S, ID ∼= S ◦ T .

3 Additive and Abelian categories

Definition 3.1 (Bilinearity [Lan78, Ch. I.8]). For arrows f , f ′ : a // b and g, g′ : b // c
from a hom-set, the hom-set is bilinear if

(g + g′) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′

Definition 3.2 (Preadditive category [Lan78, Ch. I.8]). A preadditive category is a category
where

• All hom-sets are additive Abelian groups

• Composition of morphisms is bilinear relative to this addition

Definition 3.3 (Biproduct [Lan78, Ch. VIII.2]). Assume X,Y ∈ A, a preadditive category.
Their biproduct, X ⊕ Y , is an object with morphisms p1, p2, i1, i2 as in the diagram,

X X ⊕ Y Y,
i1

p1 p2

i2
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satisfying
p1 ◦ i1 = idX , p2 ◦ i2 = idY , i1 ◦ p1 + i2 ◦ p2 = idX⊕Y

Remark 3.4. When considering morphisms between biproducts we will be using a matrix notation
to describe these. For a morphism f : X1 ⊕X2 → Y1 ⊕ Y2, we represent it by the matrix

f :=

(
pY1 ◦ f ◦ iX1 pY1 ◦ f ◦ iX2

pY2
◦ f ◦ iX1

pY2
◦ f ◦ iX2

)

Definition 3.5 (Additive category [Lan78, Ch. VIII.2]). We call a preadditive category A

additive if it also satisfies the following:

• A contains a zero object 0, i.e. ∀X ∈ A the hom-sets HomA(X, 0) and HomA(0, X) have
exactly one element.

• Given objects X,Y ∈ A there exists a biproduct X ⊕ Y in A

Example 3.6. The category of finitely generated modules over a non-Noetherian ring is an ex-
ample of an additive category that is not Abelian, something we will discuss later.

Definition 3.7 (Additive functor [Lan78, Ch. I.8]). If A and B are preaddtive categories, a
functor T : A → B is said to be additive when every function T : HomA(a, a

′) → HomB(Ta, Ta
′)

is a homomorphism of abelian groups.

Definition 3.8 (Epimorphism and Monomorphism [Lan78, Ch. I.5]). Consider a morphism
m : a → b. We say m is monic in a category C if for any two parallel arrows f1, f2 : d → a,
m ◦ f1 = m ◦ f2 implies f1 = f2, in other words m is left cancellable.

We say f is epi in C if for any arrows g1, g2 : b → c, g1 ◦m = g2 ◦m implies g1 = g2, in other
words right cancellable.

We often also use the terms monomorphisms and epimorphisms for monics and epis.

Definition 3.9 (Kernel and Cokernel [Rot08]). Given a category C that has a zero object, and

objects X,Y in C, the cokernel of f : X // Y is an arrow u : Y // Z such that the
following diagram commutes:

X
f //

��

Y

u

��
0 // Z

, and that for all morphisms h : Y → T such that h ◦ f is the zero map, there exist a unique
morphism h′ : Z → T such that h′ ◦ u = h.

The object Z is also sometimes called the cokernel of f , written Coker(f).
The kernel of f , written Ker(f) is the dual of the cokernel, with dual definition.

Remark 3.10. The literature will often use slightly different but equivalent diagrams where the use
of the zero object in the diagram is omitted by instead assuming the composition of morphisms
in the diagram is zero.

Definition 3.11 (Abelian category [Lan78, Ch. VIII.3]). An Abelian category is an additive
category where
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• Kernels and cokernels exist for all morphisms.

• Every monomorphism is a kernel, and every epimorphism a cokernel.

Example 3.12. [Lan78, Ch. VIII.3] The category of Abelian groups, Ab, is a classic example. Or
to take up the thread from before, the category of finitely generated modules over a Noetherian
ring is also Abelian.

4 Exact categories

Definition 4.1 (Image). The image of a morphism f : X → Y is a monomorphism m : I → Y
satisfying:

• There exist a morphism e : X → I such that f = m ◦ e

• For any object I’ with morphism e′ : X → I ′ and a monomorphism m′ : I ′ → Y such that
f = m′ ◦ e′, there exist a unique morphism v : I → I ′ such that m = m′

Definition 4.2 (Exact sequence [Lan78, Ch. VIII.3]). A composable pair of morphisms X
f // Y

g // Z
in an abelian category A, is exact at Y if im f is isomorphic to ker g, equivalently if coker f is
isomorphic coimg

Definition 4.3 (Short exact sequence [Lan78, Ch. VIII.3]). A short exact sequence is a sequence

0 // X
f // Y

g // Z // 0

that is exact at X, Y and Z.

Definition 4.4 (Exact category [Kra21, Part One Ch. 2.1, ]). A exact category is a pair (A, S)
consisting of an additive category A and a class S of short exact sequences in A

0 // X
α // Y

β // Z // 0

(We say α is an admissible monomorphism and β is an admissible epimorphism.), closed under
isomorphism satisfying:

(Ex1) The identity morphism is an admissible monomorphism and an admissible epimorphism.

(Ex2) Composites of admissible monomorphisms give admissible monomorphisms, and equiva-
lently with epimorphisms.

(Ex3) Each pair of morphisms X ′ X
ϕoo α // Y with α an admissible monomorphism, can

be completed to a pushout diagram

X Y

X ′ Y ′

α

ϕ

α′

such that α′ is an admissible monomorphism. And each pair of morphisms

Y Z
βoo ψ // Z ′ with β an admissible epimorphism can be completed to a pullback
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diagram

Y ′ Z ′

Y Z

β′

ψ

β

such that β′ is an admissible epimorphism.

Remark 4.5. These are the axioms from Keller’s definition. Compared to Quillen’s original
axioms, one is missing, as Keller proved in Chain complexes and stable categories that this
missing axiom can be derived from the other axioms. [Kel90]

Additionally admissible monomorphisms are also sometimes called inflation denoted by ↣, and
admissible epimorphisms are also sometimes called deflation denoted by ↠ in the literature.

Example 4.6. [Kra21, Part One Ch. 2.1] Let A be abelian and S be the class of short exact
sequences. Then (A, S) is exact.

5 Triangulated Categories

Definition 5.1 (Suspended category [Kra21, Part One Ch. 3.1]). A suspended category is a

pair (T,Σ) consisting of an additive category T, and an equivalence automorphism Σ : T
∼ //T

called suspension.

Remark 5.2. The suspension functor is additive, as it is an equivalence between two additive
categories. We will be using this fact from now.

Equivalence of additive categories is an additive functor.

Definition 5.3 (Triangle [Kra21, Part One Ch. 3.1]). A triangle in (T,Σ) is a sequence (α, β, γ)

of morphisms: X
α //Y

β //Z
γ //ΣX , and a morphism between triangles (α, β, γ) and

(α′, β′, γ′) is given by a triple (ϕ1, ϕ2, ϕ3) of morphisms in T making

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

α

ϕ1

β

ϕ2

γ

ϕ3 Σϕ1

α′ β′ γ′

commute.

Definition 5.4 (Triangulated category [Kra21, Part One Ch. 3.1]). A triangulated category is a
triple (T,Σ,E) consisting of a suspended category (T,Σ) and a class E of distinguished triangles
in (T,Σ) satisfying:

(TR0) The triangle X
id // X // 0 // ΣX is distinguished.

(TR1) A triangle isomorphic to an distinguished triangle is distinguished.

(TR2) Given any morphism X
α // Y , there exists a distinguished triangle

X
α //Y

β //Z
γ //ΣX
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(TR3) A triangle (α, β, γ) is distinguished if and only if (β, γ,−Σα) is. In other words, if either

X
α //Y

β //Z
γ //ΣX or Y

β //Z
γ //ΣX

−Σα //ΣY is distinguished, both are.

(TR4) Given two distinguished triangles (α, β, γ) and (α′, β′, γ′), and morphisms
f : X → X ′, g : Y → Y ′, then there is a morphism h : Z → Z ′ making the following
diagram commute:

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

α

f

β

g

γ

h Σf

α′ β′ γ′

(TR5) (The octahedral axiom) Given distinguished triangles (α1, α2, α3), (β1, β2, β3),
and (γ1, γ2, γ3) with γ1 = β1α1, there exist an distinguished triangle (δ1, δ2, δ3) making

X Y U ΣX

X Z V ΣX

W W ΣY

ΣY ΣU

α1 α2 α3

γ1

β1

γ2

δ1

γ3

β2 δ2

β3

Σα1

β3 δ3

Σα2

commute.

Remark 5.5. If T is a triangulated category, then so is its dual Top. We can see this by considering
Σ−1 as the suspension automorphism and by flipping triangles.

Additionally distinguished triangles are sometimes called exact triangles, but we are avoiding
this notion due to potential ambiguity in meaning.

Example 5.6. The category VectK of vector spaces over K can be seen with a triangulated
structure. The shift functor will be ΣX := X for all vector spaces X, and a distinguished
triangle is a sequence X // Y // Z // X of K-linear maps.

Definition 5.7 (Cohomological functor [Kra21, Part One Ch. 3.1]). Given a triangulated cat-
egory T and an Abelian category A, then the functor H : T //A is called a cohomolog-

ical functor if for every distinguished triangle X
α //Y

β //Z
γ //ΣX in T, the sequence

H(X)
H(α) //H(Y )

H(β) //H(Z) is exact in A.

Remark 5.8. If H is a contravariant functor satisfying all the same conditions, then H is said to
be a homological functor.

Proposition 5.9. [Kra21, Part One Ch. 3.1] For each object W ∈ T, the functor HomT(W,−) :
T //Ab is homological.

Proof. Choose a given distinguished triangle in T, X
α //Y

β //Z
γ //ΣX . We would like

to show the exactness of

HomT(W,X)
α◦− // HomT(W,Y )

β◦− // HomT(W,Z) .
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Fix a morphism ϕ : W //Y , and consider;

W W 0 ΣW

X Y Z ΣX

id

ϕ

α β γ

If ϕ factors through α, then (TR4) implies the existence of a morphism 0 //Z making the
diagram commute. Thus β ◦ ϕ = 0.

Now assume β ◦ ϕ = 0. Applying (TR3) and (TR4), we find a morphism W // X making
the diagram commute. Thus ϕ factors through α.

6 Frobenius Categories

Definition 6.1 (Injective and projective [Kra21, Part One Ch.3.3]). An object I of A is called

injective if every exact triple in E of the form I // Y // Z splits; and an object P of A

is called projective if every exact triple in E of the form X // Y // P splits.

Definition 6.2 (Having enough projectives and injectives). A category has enough projec-
tive objects and enough injective objects if ∀ objects X ∈ A ∃ triples from E of the form

X ′ // I // X and X // I ′ // X” where I and I ′ are injective.

Definition 6.3 (Frobenius Category [Kra21, Part One Ch. 3.3]). An exact category (A,E) is
called a Frobenius category if the following holds:

• Projective and injective objects coincide

• The category has enough projective objects and enough injective objects

Remark 6.4. [Wik24] In the next example we’ll use the notion of a group ring. A group ring is a
free module and at the same time a ring, constructed in a natural way from any given ring and
any given group.

Example 6.5. [Kel96] The category of modules over a unital ring R is an exact category that has
enough projectives and injectives. Projectives and injectives coincide as well if for example R is
the group ring of a finite group over a field.

Lemma 6.6 (Stable Category [Hap88]). Let (B,E) be a Frobenius category. For objects X
and Y in B let Inj(X,Y ) denote those morphisms from X to Y which factor through some
injective object. The stable category B of the Frobenius category (B,E) has the same objects as
B; the morphisms are equivalence classes of morphisms modulo those factoring through injective
objects, i.e.

HomA(X,Y ) := Hom(X,Y ) = HomA(X,Y )/Inj(X,Y )

Proof. We prove that the stable category is indeed a category.

In 2.5 we already proved that the quotient category is indeed a category, so we only need to
show that Inj preserves composition. Assume we have f : X → Y factoring an injective I(X)
and g : Y → Z factoring through an injective I(Y ). We can then define the map from I(X) to
I(Y ) which will evidently factor through an injective. Thus Inj preserves composition.
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Definition 6.7 (Proper monomorphism). A morphism u : X → Y in B is called a proper

monomorphism if there exists an exact sequence 0 //X
u //Y //Z //0 in E.

Definition 6.8 (E-injective). An object I in B is called E-injective if for all proper monomor-
phisms u : X → Y and morphisms f : X → I in B there exists g : Y → I such that f = g ◦ u.

The following lemma is given without proof.

Lemma 6.9. Say we have two short exact sequences 0 // X
µ(X)// I(X)

π(X) // S(X) // 0

and 0 // X
µ′(X)// I ′(X)

π′(X) // S′(X) // 0 , with morphisms 0 : 0 → 0, idX : X → X and

fx : I(x) → I ′(X), then there exist as morphism from S(X) to S′(X).

Lemma 6.10. [Hap88, chapter I.2.2] Let (B,E) be a Frobenius category,

0 //X
µ′
//I ′

π′
//X ′ //0 and 0 //X

µ′′
//I ′′

π′′
//X ′′ //0 be in E such that I ′, I ′′

are E-injective. Then X ′ and X ′′ are isomorphic in B.

Proof. Since µ′ and µ′′ are proper monomorphisms and I ′ and I ′′ are E-injective, we obtain the
following commutative diagram such that the rows belong to E:

0 X I ′ X ′ 0

0 X I ′′ X ′′ 0

0 X I ′ X ′ 0

µ′
π′

f g

µ′
π′′

f ′ g′

µ′
π′

Thus (f ′ ◦f − idI′)◦µ′ = 0. So there exists h : X ′ → I ′ such that h◦π′ = f ◦f ′− idI′ . Therefore
π′ ◦ h ◦ π′ = π′ ◦ (f ′ ◦ f − idI′) = g′ ◦ g ◦ π′ − π′ = (g′ ◦ g − idX′) ◦ π′. Thus we have that
g′ ◦g− idX′ = π′ ◦h. In other words, g′ ◦g = idX′ . Similarly, we can show that g ◦g′ = idX′′ .

Let X ∈ B. We denote by [X] the isomorphism class of X in B. Moreover let

0 // X // I(X) // X ′ // 0 be in E such that I(X) is E-injective. We assume that

for all X ∈ B there is a bijection γX : [X] → [X ′]. The preceding lemma shows that this
assumption does not depend on the choice of 0 → X → I(X) → X ′ → 0. It is easily seen that
this assumption is satisfied in all our applications.

For all X ∈ B, we now choose elements 0 // X
µ(X)// I(X)

π(X) // ΣX // 0 in B, with

I(X) an E-injective such that ΣX = γX(X). Let f : X → Y be a morphism in B. Since
µ(X) is a proper monomorphism and I(Y ) is E-injective, we obtain a morphism Σ(f) such that
Σ(f)◦π(X) = π(Y )◦I(f). It is easily seen that the residue class of Σ(f) in B does not depend on
the choice of I(f). Thus we may consider Σ as a functor from B to B. The following commuting
diagram illustrates the above:

0 X I(X) ΣX 0

0 Y I(Y ) ΣY 0

µ(X)

f

π(X)

I(f) µ(f)◦I(f) ∃!Σ(f)

µ(Y )

π(X)
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Lemma 6.11. [Hap88, Ch. I.2.2] The morphism Σ is a well-defined automorphism in the stable
category B.

Proof. We may choose for X ∈ B elements 0 → X → I(X) → S(X) → 0 in E with I(x) an
E-injective. The same construction as above then yields that S may be considered a functor on
B. This time providing us with a self-equivalence. We claim that any two such choices yield
isomorphic functors. In fact, suppose that two such assignments have been made. So we have
for all X ∈ B elements

0 // X
µ(X)// I(X)

π(X) // S(X) // 0 and 0 // X
µ′(X)// I ′(X)

π′(X) // S′(X) // 0 in

E such that I(X) and I ′(X) are E-injective. Since µ(X) is a proper monomorphism and I ′(X) is
E-injective, we obtain fX : I(x) → I ′(X) such that fX ◦ µ(X) = µ′(X). This induces by lemma
6.9. a morphism α(X) : S(X) → S′(X) such that α(X)◦π(X) = π′(X)◦fX . We know that α(X)
is an isomorphism. Thus it remains to be seen that this assignment is a natural transformation.
In fact, let f : X → Y . This induces the following two commutative diagrams:

0 0 0 0

X Y X Y

I(X) I(Y ) I ′(X) I ′(Y )

S(X) S(Y ) S′(X) S′(Y )

0 0 0 0

f

µ(X) µ(X)

f

µ′(X) µ′(Y )

I(f)

π(X) π(Y )

I′(X)

π′(X) π′(Y )

S(f) S′(f)

We have morphisms fX : I(X) → I ′(X) and fY : I(Y ) → I ′(Y ) such that fX ◦ µ(X) = µ′(X)
and fY ◦ µ(Y ) = µ′(Y ). Moreover we have morphisms α(X) : S(X) → S′(X) and α(Y ) :
S(Y ) → S′(Y ) such that α(X) ◦ π(X) = π′(X) ◦ fX and α(Y ) ◦ π(Y ) = π′(Y ) ◦ fY . We claim
that α(Y ) ◦ S(f) = S′(f) ◦ α(X). We show that α(Y ) ◦ S(f) − S′(f) ◦ α(X) factors over an

E-injective. Observe that (fY ◦I(f)−I ′(f)◦fX)◦µ(X) = 0. Thus there exists g : S(X) → I ′(Y )
such that g ◦ π(X) = fY ◦ I(f)− I ′(f) ◦ fX . Now

π′(Y ) ◦ g ◦ π(X) = π′(Y ) ◦ (fY ◦ I(f)− I ′(f) ◦ fX)

= π′(Y ) ◦ fY ◦ I(f)− π′(Y ) ◦ I ′(f) ◦ fX
= α(Y ) ◦ π(Y ) ◦ I(f)− S′(f) ◦ π′(X) ◦ fX
= α(Y ) ◦ S(f) ◦ π(X)− S′(f) ◦ α(X) ◦ π(X)

= (α(Y ) ◦ S(f)− S′(f) ◦ α(X)) ◦ π(X).

In particular π′(Y ) ◦ g = α(Y ) ◦ S(f) − S′(f) ◦ α(X). This can also be represented as in the
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following commuting diagram:

0

��

0

��
0

��

X f 55

µ(X)

��

0

��

Y

µ(Y )

��
X

µ′(X)

��

f 66I(X)

fX{{
π(X)
��

I(f) 44Y

µ′(Y )
��

I(Y )

fY{{
π′(Y )

��
I ′(X)

π′(X)

��

I′(f) 44S(X)

α(X){{ ��

S(f) 44I ′(Y )

π′(Y )
��

S(Y )

α(Y ){{ ��
S′(X)

��
S′(f)

440 S′(Y )

��

0

0 0

Theorem 6.12. [Hap88, chap.I.2.6] Let (B,E) be a Frobenius category. With the above suspen-
sion functor Σ and the collection of distinguished triangles just as defined, the stable category
B is a triangulated category.

Proof. [Hap88] Let B be the stable of our Frobenius. We define a set T of sextuples in B. Let
X,Y ∈ B and u ∈ HomB(X,Y ). Consider the following diagram in B:

X Y

I(X) Cu

ΣX ΣX

u

x v

u

x w

where 0 //X
x //I(X)

x //ΣX //0 is in E and I(X) is E-injective. Cu is the pushout
of u and x.

Since B is closed under extensions in some abelian category A, the pushout Cu in B coincides

with the pushout in A. A standard is a sextuple of the form X
u //Y

v //Cu
w //ΣX and

it’s image in B.

A sextuple X
u //Y

v //Z
w //ΣX of objects and morphisms in B lies in T if it is isomorphic

in B to a standard sextuplet.

Let us now show that T is a triangulated structure of B:

(TR0) Clearly the sextuple X
1X //X

0 //0
0 //ΣX lies in T .

13



(TR1) T is closed under isomorphisms by definition, thus a triangle isomorphic to a distin-
guished triangle is as well.

(TR2) Every morphism can also by definition be embedded into a triangle.

(TR3) It easily seen that it suffices to consider the case of a standard triangle. Suppose that

X
u //Y

v //Cu
w //ΣX is a standard triangle. Let 0 //Y

y //I(Y )
y //ΣY //0

be in E with I(Y ) being E-injective. There exists Iu such that Iu ◦ x = y ◦ u and there
exists Σu such that y ◦ Iu = Σu ◦ x. Define f : Cu → I(Y ) by using the pushout property:

X Y

I(X) Cn

I(Y )

u

x v

yu

In
f

thus y = f ◦ v, Iu = f ◦ u. Since y ◦ f ◦ v = y ◦ y = 0 = Σu ◦w ◦ v, and y ◦ f ◦ u = y ◦ Iu =
Σu ◦ x = Σu ◦ w ◦ u, we infer that y ◦ f = Σu ◦ w, for a pushout Cu.

In this way, we obtain the following commutative diagram:

0 0

0 Y Cu ΣX 0

0 I(Y ) I(Y )⊕ ΣX ΣX 0

ΣY ΣY

0 0

v

y

w

(f,w)

(1,0)

y

0

1


 y

−Tu



The upper two rows are exact, therefore the middle one is the induced exact sequence of the
upper one, in particular the left upper square is a pushout. Therefore,

Y
v //Cu

(f,w) //I(Y )⊕ ΣX

(
y

−Σu

)
//ΣY is a standard sextuplet, which is obviously isomor-

phic in B to Y
v //Cu

w //ΣX
−Σu //ΣY .

(TR4) Let us first consider the case of standard triangles. Consider the following two standard
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sextuplets:

X Y X ′ Y ′

I(X) Cu I(X ′) Cu′

ΣX ΣX ΣX ′ ΣX ′

u

x v

u′

x′ v′

u

x w

u′

x′ w′

and two morphisms f, g such that u′ ◦ f = g ◦ u in B. Then there exists α : I(X) → Y ′

such that g ◦ u = u′ ◦ f + α ◦ x. We have morphisms If : I(X) → I(X ′) such that
x′ ◦ f = If ◦x and Σf : ΣX → ΣX ′ such that x′ ◦ If = Σf ◦x. Thus we obtain morphisms
v′ ◦g : Y → Cu′ and u′ ◦If +v′ ◦α : I(X) → Cu′ such that v′ ◦g ◦u = v′ ◦u′ ◦f+v′ ◦α◦x =
u′ ◦x′ ◦ f + v′ ◦α ◦x = (u′ ◦ If + v′ ◦α) ◦x. This yields a morphism h : Cu → Cu′ such that
h ◦ v = v′ ◦ g and h ◦ u = u′ ◦ If + v′ ◦α, for a pushout Cu. We claim that w′ ◦ h = Σf ◦w.
For this it is enough to show that w′ ◦h◦ v = Σf ◦w ◦ v and w′ ◦h◦u = Σf ◦w ◦u. For the
first, observe that Σf ◦ w ◦ v = 0 and w′ ◦ h ◦ v = w′ ◦ v′ ◦ g = 0. For the second, we have
Σf◦w◦u = Σf◦x = x′◦If = w◦u′◦If = w′◦u′◦If+w′◦v′◦α = w′◦(u′◦If+v′◦α) = w′◦h◦u.
Thus (f, g, h) is a morphism of triangles, or in other words there exists a unique morphism
h as described in (TR4).

The general case is easily deduced from the previous one. In fact, let (X,Y, Z, u, v, w)
and (X ′, Y ′, Z ′, u′, v′, w′) be arbitrary elements in T and f, g two morphisms such that
u′ ◦ f = g ◦ u in B. Then we have isomorphisms to the corresponding standard triangles.
Using the first part, we obtain the following commutative diagram, where the rows are in
T and h1, h2 are isomorphisms:

X Y Z ΣX

X Y Cu ΣX

X ′ Y ′ Cu′ ΣX ′

X ′ Y ′ Z ′ ΣX ′

u v w

h1

u

f

ṽ

g

w̃

h Σf

u′ ṽ′ w̃′

u′ v′

h2

w′

Then (f, g, h−1
2 ◦ h ◦ h1) is a morphism of triangles. In fact, h−1

2 ◦ h ◦ h1 ◦ v = h−1
2 ◦ h ◦ ṽ =

h−1
2 ◦ ṽ′ ◦ g = v′ ◦ g and w′ ◦ h−1

2 ◦ h ◦ h1 = w̃′ ◦ h ◦ h1 = Σf ◦ w̃ ◦ h1 = Σf ◦ w. Thus in

general h−1
2 ◦h ◦h1 is our unique completion of the corresponding diagram given in (TR4).

(TR5) Again it is enough to consider the case of standard triangles. Suppose we are given
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three standard sextuplets:

X Y Y Z X Z

I(X) Z ′ I(Y ) X ′ I(X) Y ′

ΣX ΣX ΣY ΣY ΣX ΣX

u

x i

v

y j

w

x k

u

x i′

v

y j′

w

x k′

with w = v ◦ u.

Let us replace I(Y ),ΣY, y, y as follows: Assume we have the sequence

0 //Y
i //Z ′ //ΣX //0 in E, and consider a sequence

0 //Z ′ //I(Z ′)
l //ΣZ ′ //0 in E with I(Z ′) being E-injective. Consider the

following commutative diagram of exact sequences in A:

0 0

0 Y Z ′ ΣX 0

0 Y I(Z ′) M 0

ΣZ ′ ΣZ ′

0 0

i

l

l◦i

Since B is closed under extensions in A, we infer that the second row belongs to E. Thus

instead of 0 //Y
y //I(Y )

y //ΣY //0, we may take

0 //Y
i //I(Z ′) //M //0.

Changing the notation, we may assume that I(Y ) = I(Z ′) and y = l ◦ i. Since y ◦ u =
l ◦ i ◦ u = l ◦ x, we denote l ◦ u by Iu, and define by Σu ◦ x = y ◦ Iu = y ◦ l ◦ u. The identity
map I(Y ) = I(Z ′) can be denoted by Ii, for l◦ i = idZ′ ◦y = Ii ◦y, and there is the induced
map Σi : ΣY → ΣZ ′ such that l = l ◦ Ii = Σi ◦ y. Since w ◦ x = k ◦ w = k ◦ v ◦ u, there
exists f : Z ′ → Y ′ such that f ◦ u = w and f ◦ i = k ◦ v, using the pushout property of Z’.
Similarly, j ◦ w = j ◦ v ◦ u = v ◦ y ◦ u = v ◦ l ◦ i ◦ u = v ◦ l ◦ u ◦ x, shows that there exists
g : Y ′ → X ′ such that g ◦w = v ◦ l ◦ u and g ◦ k = j, using this time the pushout property
of Y ′.

We claim that g ◦ f = v ◦ l. For this it is enough to show that g ◦ f ◦ i = v ◦ l ◦ i and
g ◦ f ◦ u = v ◦ l ◦ u. In fact, g ◦ f ◦ i = g ◦ k ◦ v = j ◦ v = v ◦ y = v ◦ l ◦ i, and
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g ◦ f ◦ u = g ◦ w = v ◦ l ◦ u. Altogether, we obtain the following commutative diagram:

X Y Z

I(X) Z ′ Y ′

ΣX I(Z ′) X ′

ΣY ΣZ ′

u

x

v

i k

u

x

f

l g

Tu

v

y

with f ◦ u = w, l ◦ i = y and g ◦ k = j.

Let us first check the various relations to be satisfied. By construction f ◦ i = k ◦ v and
g ◦ k = j.

Let us show next that k′ ◦ f = i′. For this it is enough to show that k′ ◦ f ◦ i = i′ ◦ i and
k′ ◦ f ◦u = i′ ◦u using the pushout property of Z ′. In fact, k′ ◦ f ◦ i = k′ ◦ k ◦ v = 0 = i′ ◦ i,
and k′ ◦ f ◦ u = k′ ◦ w = x = i′ ◦ u.

Finally let us show that Σu◦k′ = j′◦g. For this it is enough to show that Σu◦k′◦k = j′◦g◦k,
and Σu ◦k′ ◦w = j′ ◦ g ◦w using this time the pushout property of Y ′. In fact Σu ◦k′ ◦k =
0 = j′◦j = j′◦g◦k, and j′◦g◦w = j′◦g◦f ◦u◦ = j′◦v◦l◦u = y◦l◦u = Σu◦x = Σu◦k′◦w.

It remains to be seen that Z ′ f //Y ′ g //X ′ Σi◦j′ //ΣZ ′ is a standard sextuplet. Since X ′

is a pushout of l ◦ i and v, and Y’ is a pushout of i and v, it follows that the following
diagram is a pushout:

Z ′ Y ′

I(Z ′) X ′

f

l g

v

Recall that l = Σi ◦ y, thus l = Σi ◦ y = Σi ◦ j′ ◦ v. Therefore we obtain the following
commutative diagram with columns in E:

Z ′ Y ′

I(Z ′) X ′

ΣZ ′ ΣZ ′

f

l g

v

l Σi◦j′

Hence (Z ′, Y ′, X ′, f, g,Σi ◦ j′) is a standard sextuplet.

Thus we have now showed that T is a triangulation of B.

Let us now show that the elements of E does indeed give rise to triangles in B.
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Consider the following two exact sequences 0 //X
y //Y

v //Z //0 and

0 //Y
y //I(Y )

y //ΣY //0 in E, with I(Y ) being E-injective. They induce the following
commutative diagram with exact rows:

0 X Y Z 0

0 X I(Y ) ΣX 0

u v

y w

y◦u p

Let us now show that X
u //Y

v //Z
−w //ΣX belongs to T .

By construction the following square is a pullback:

Y Z

I(Y ) ΣX

v

y w

p

This induces the following diagram with exact rows and columns:

0 0

0 X Y Z 0

0 I(Y ) Z ⊕ I(Y ) Z 0

ΣX ΣX

0 0

u

y◦u

v

(v,i)

(0,1)

p

0

1


−w

p



The assertion now follows as in the proof of (TR2).

Thus B is a triangulated category.

7 Derived Categories

Definition 7.1 (Category of complexes [Kra21, Ch. 4.1]). A cochain complex (or simply a
complex) in A, an Abelian category, is a sequence of morphisms

· · · // Xn−1 dn−1
// Xn dn // Xn+1 // · · ·

such that dn ◦ dn−1 = 0,∀n ∈ Z. We think of a complex X as a graded object with differential d,
and refer to n as the degree. We denote by C(A) the category of complexes, where a morphism

ϕ : X // Y between complexes consists of morphisms ϕn : Xn // Y n with dnY ◦ ϕn =
ϕn+1 ◦ dnX ,∀n ∈ Z.
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Definition 7.2 (Null-homotopic [Kra21, Ch. 4.1]). A morphism ϕ : X // Y is null-

homotopic if there are morphisms ρn : Xn // Y n−1 such that ϕn = dn−1
Y ◦ ρn + ρn+1 ◦ dnX

for all n ∈ Z
The null-homotopic morphisms form an ideal I in C(A).

Definition 7.3. [Kra21, chap. 4.1] The homotopy category K(A) is the quotient of C(A) with
respect to this ideal. Thus

HomK(A)(X,Y ) = HomC(A)(X,Y )/I(X,Y )

Definition 7.4 (Mapping cone [Ste98, Ch.2.3]). Let X,Y ∈ C(A) and f : X → Y in C(A).
The mapping cone of f is the following complex in C(A): For each n ∈ Z, we define

M(f)n := Xn+1 ⊕ Y n and dnM(f) :=

(
(−1)ndn+1

X 0
fn+1 (−1)ndnY

)
.

We can identify the relation between the mapping cone M(f) and X,Y by defining α(f) : Y →

M(f) by α(f) :=

(
0

idY n

)
and β(f) : M(f) → ΣX by β(f)n :=

(
idXn+1 0

)
.

The following lemma is given without proof.

Lemma 7.5. K(A) with a class of distinguished triangles of the form

X
f //Y

α(f)//M(f)
β(f) //ΣX is a triangulated category.

Definition 7.6 (Acyclic complex [Chr24]). A acyclic complex is a complex where it’s nth ho-
mology group, is trivial, i.e. the quotient group
Hn(X) := ker(dn)/im(dn−1) has only one element for all n ≥ 0.

Definition 7.7 (Quasi-isomorphism [Kra21, Ch.4.1] [Ste98, Ch.2.5]). We denote by Ac(A) the
full subcategory of complexes in C(A) that are isomorphic to an acyclic complex in K(A). A
morphism of complexes is a quasi-isomorphism if its mapping cone is in Ac(A), and we write
Qis for the class of all quasi-isomorphism with its mapping cone is in C(A).
Equivalently, we call a morphism f : X → Y a quasi-isomorphism if Hn(f) : Hn(X) → Hn(Y )
is an isomorphism in A for all integers n.

Definition 7.8 (Derived category of an Abelian category [HJ10] [Kra21, chap. 4.1]). The derived
category D(A) of A, an Abelian category, is obtained from K(A) by quotienting out all exact
complexes.

Definition 7.9 (Roofs [Ste98]). The morphisms of a derived category can be seen as roofs. A
roof for example from X to Y, is represented by a triple:

U

X Y

t g

with t : U → X a quasi-isomorphism and g : U → Y any morphism. We write g · t−1 for these
roofs.
Composition of roofs are given such:
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Say we have g · t−1 : X → Y and h ·u−1 : Y → Z. Then by completing g and u to a pullback, we
get a roof g′ ·u′ : U → V . By this construction we get that (h ·u−1)◦ (g · t−1) = (h◦g′) · (t◦u′)−1.
This can be illustrated by the diagram:

U ′

U V

X Y Z

u′ g′

t g u h

Theorem 7.10. D(A) is triangulated.

Proof. Let’s first show that D(A) is actually a category.
The objects are complexes by definition, where all exact complexes from K(A) have been mapped
to the zero complex in D(A).
The morphisms are roofs as described above.
It’s easily seen that composition is preserved under the collection of exact complexes in K(A),
and that this collection constitutes an equivalence class. Using the fact that the quotient category
is a category, we get that D(A) is indeed a category.

Now let’s show the triangulated structure.
We claim that D(A) with a class of distinguished triangles consisting of all triangles isomorphic

to distinguished triangles X
f //Y //M(f) //ΣX , is a triangulated category.

Given that we know K(A) is triangulated, we will inherit the shift functor from our construction
there. Observe that the shift of a quasi-isomorphism is then also an quasi-isomorphism.

Now we check for the axioms of distinguished triangles.

(TR0) The statement follows from the homotopy category K(A) being triangulated.

(TR1) Is evident by construction.

(TR2) We can complete a given g to a distinguished triangle as it lives in K(A), then we
alter it by t.

(TR3) Say we have a distinguished triangle (f, α(f), β(f)). We know for K(A) that
(α(f), β(f),−Σf) is isomorphic to it, and thus also a distinguished triangle. Therefore the
same holds in D(A) as well.

(TR4) Assume we have distinguished triangles (f, α(f), β(f)) and (e, α(e), β(e)) with roofs
g · t−1 : X → Z and h · u−1 : Y → W . Now complete f and u to a pullback giving the roof
f ′ · u′−1 : X → V , and then do the same for h and e giving the roof h′ · e′−1 : V → X ′.
Then repeat, giving u′′ · t′−1 : U → X ′ for t and u′, and g′ · h′′−1 : U → V ′ for g and
h′. Now do it a last time for u′′ and h′′ giving u′′′ · h′′′−1 : X ′′ → U ′. This gives us the
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following commuting diagram:

X
f // Y

X ′

u′
>>

f ′

��

X ′′

t′
==

u′′
!!

X ′′′

h′′′
<<

u′′′
""

U

t

II

g

��

V

u

II

h

��

U ′

h′′
==

g′ !!
V ′

e′

FF

h′
  
Z

e // W

Observe that we get the roof (g′ ◦ e′) · h′′−1
: U → V . Now complete (g′ ◦ e′) to a triangle

((g′ ◦ e′), α((g′ ◦ e′)), β((g′ ◦ e′))). Applying the shift functor to the morphism h′′ gives a
morphism Σh′′ : ΣU ′ → ΣU . As a distinguished triangle in D(A) is distinguished in K(A),
we can use (TR4) from the K(A) to find morphisms v and i making the following diagram
commute:

X
f // Y

α(f) // M(f)
β(f) // ΣX

U

t

??

g

��

ΣU

Σt

<<

Σg

��

U ′

h′′
??

g′◦e′
// V

u

CC

α(g′◦e′)//

h

$$

M(g′ ◦ e′)

v

BB

β(g′◦e′)//

i

%%

ΣU ′

Σh′′
;;

Z
e

// W
α(e)

// M(e)
β(e)

// ΣZ

It can then be showed that since u and h′′ ◦ t are quasi-isomorphisms, then v is such as
well. This gives us the roof i · v−1 : M(f) → M(e).

(TR5) The same argument can be made as in (TR3) as all the distinguished triangles in
question lie in K(A), and follows thus from the octahedral axiom in K(A).
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