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Abstract

We introduce the important concept of a Grothendieck fibration using the notion
of a cartesian morphism with respect to a given functor. Then, we define the
Grothendieck construction associated to a presheaf valued in categories, and use
this to sketch a proof of the equivalence between Grothendieck fibrations and such
presheaves. Finally, we define the free Grothendieck fibration on a functor, which
provides a universal method of turning an arbitrary functor into a fibration.

Sammendrag

Vi introduserer det viktige konseptet grothendieckfibrasjon ved hjelp av kartesiske
morfier med hensyn p̊a en gitt funktor. S̊a definerer vi grothendieckkonstruksjo-
nen assosiert til en preknippe med verdier i kategorier, og bruker dette til å skissere
et bevis av ekvivalensen mellom grothendieckfibrasjoner og slike preknipper. Til
slutt definer vi den frie grothendieckfibrasjonen p̊a en funktor, som gir en uni-
versell metode for å gjøre om en vilk̊arlig funktor til en fibrasjon.
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A reflection over the sustainability relevance of this thesis

It has been decided that all bachelor and master theses written in certain study
programs at NTNU must include a reflection over their sustainability relevance
based on the United Nations’ sustainable development goals, starting from spring
2024. Readers wishing to get started on the mathematical content of this work
may safely skip over the remaining text on this page; it is there merely to fulfill
a formal requirement.

As this is a thesis in abstract mathematics, and particularly in category theory,
it would be accurate to say that the subject matter presented here has no imme-
diate sustainability relevance whatsoever. This is not something specific to this
particular thesis, but is common to all sufficiently abstract works in mathematics.
Does this mean that we have committed a sin by not taking sustainability into
consideration when choosing and writing about this topic? We certainly do not
think so, and hope the reader will agree with us. We believe that the value of a
work of science, literature or art should not be reduced to its practical applications.

That being said, it is not impossible that this thesis will one day be relevant for
the United Nations’ sustainability goals. But it is highly doubtful that this will
happen anytime soon. Therefore, we wish future generations the best of luck
in finding practical applications of Grothendieck fibrations for the purposes of
sustainable development.
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Preface

Grothendieck fibrations and related concepts have become a foundational, indispensable tool in the
category theorist’s toolbox. Numerous generalizations and variations of the notion of a fibration
have been put forth, and especially in higher category theory, they have proved to be extremely help-
ful when attempting to generalize classical notions in category theory to the higher setting. In this
thesis, we will stick to the well-trodden world of ordinary category theory, discussing Grothendieck
fibrations and related concepts in the context of 1-categories. The structure of this thesis is as
follows:

First, we give a quick overview of some basic concepts in 2-category theory in Section 1. Even
though we stick to the classical 1-categorical theory of Grothendieck fibrations, some 2-categorical
concepts are nearly impossible to avoid. This is by no means a suitable introduction to the vast
theory of 2-categories, it is instead intended to be just enough to get us by.

In Section 2 we introduce the main concept of this thesis: Grothendieck fibrations. These are to
be thought of as functors satisfying a certain “lifting property”, or simply functors that are well-
behaved “projections”. The lifting property will be made precise using the concept of a cartesian
morphism, which we will introduce beforehand. After the main definitions, we move on to basic
results and consequences of the definitions. At the end, we give a few examples of Grothendieck
fibrations.

Afterwards, we continue by stating what is arguably the most important result of this thesis: the
equivalence between Cat-valued presheaves and Grothendieck fibrations. Section 3 begins by con-
sidering a simpler, decategorified version of the equivalence for the case of sets and functions. We
then discuss how we can categorify this to the general case of categories and functors. A key part of
this generalization is the Grothendieck construction, which can be seen as categorification of taking
the disjoint union of an indexed family of sets. Finally, we sketch a proof of the aforementioned
equivalence.

The last section of this thesis is dedicated to the question of how to turn an arbitrary functor into
a Grothendieck fibration. We answer this by constructing the free fibration on a given functor,
which will be the value of a 2-categorical left adjoint to a forgetful functor. In order to motivate
our construction of the free fibration, we begin Section 4 by using an analogy with topological
fibrations in homotopy theory.

The reader is expected to have a working knowledge of basic category theory, including categories,
functors, natural transformations, adjunctions, and equivalences of categories. We also use some
examples and analogies from basic topology and homotopy theory, but these are not integral to the
understanding of the main material and can be skipped if needed.
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1 A quick primer on 2-categories

We will not make heavy use of 2-categories in this thesis, but we will need some basic facts,
particularly in Section 4. Therefore, we will give a quick rundown of basic definitions. A much
more comprehensive account can be found in [JY20, Ch. 2].

Definition 1.0.1. A (strict) 2-category C consists of:

• a collection of objects ob(C)

• for all objects a, b ∈ ob(C), a category HomC(a, b), called a hom-category, whose objects will
be called 1-morphisms denoted as

a b
f

,

and whose morphisms will be called 2-morphisms and denoted as

a b

f

g

η .

Composition in HomC(a, b) of 2-morphisms will be called vertical composition and will be
denoted as

a b a b

f

g

h

f

h

η

ε

ε·η .

• for all objects a, b, c ∈ ob(C), a functor ◦ : HomC(a, b)×HomC(b, c) → HomC(a, c). Its action
on objects 1-morphisms will simply called composition, and its action 2-morphisms will be
called horizontal composition. They are denoted as

a b c a c
f g g◦f

a b c a c

f

h

g

k

g◦f

k◦h

η ε ε◦η .

We require the functors ◦ to be strictly associative in the sense that for all objects a, b, c, d ∈ ob(C),
the two composite functors in the diagram

HomC(a, b)×HomC(b, c)×HomC(c, d) HomC(a, c)×HomC(c, d)

HomC(a, b)×HomC(b, d) HomC(a, d)

◦×id

id×◦ ◦

◦

1



are equal. We also require ◦ to be strictly unital in the sense that for all objects b ∈ ob(C) we
are given a specified 1-morphism idb ∈ HomC(b, b) such that for all objects a, c ∈ ob(C) the two
diagrams below commute.

HomC(a, b) HomC(a, b)×HomC(b, b) HomC(b, b)×HomC(b, c) HomC(b, c)

HomC(a, b) HomC(b, c)

f 7→(f,idb)

id
◦ ◦

(idb,g)←[g

id

Notice that the commutativity of the diagrams imply in particular that both composition of 1-
morphisms and horizontal composition of 2-morphisms are strictly associative. We do not need to
require that vertical composition of 2-morphisms be associative, as that composition takes place in
a category, where associativity is already required.

We list three examples of 2-categories which will be relevant for us.

Example 1.0.2. The category of all categories, Cat, is the prototypical example of a 2-category.
Objects are categories, 1-morphisms are functors, and 2-morphisms are natural transformations.

Remark 1.0.3. Of course, in order to avoid foundational issues, objects of Cat should really be
small categories, relative to some universe. We will (fortunately) keep ignoring foundational issues
in this thesis.

Example 1.0.4. Similarly to how a set can be considered as a discrete category, any category C can
be given the structure of a 2-category by letting its morphisms be 1-morphisms, and letting the
2-morphisms be trivial. In other words, HomC(a, b) is discrete category for all objects a, b ∈ C.

Example 1.0.5. Let B be a fixed category, and consider the slice category Cat/B, whose objects
are tuples (A,F ) where A is a category and F : A → B is a functor, and whose morphisms from
(A,F ) to (C,G) are functors H : A→ C such that the triangle of functors

A C

B

H

F G

◦

strictly commutes. We make this into a 2-category by letting the 2-morphisms from functors H to
K be natural transformations η : H ⇒ K such that Gη = idF , in other words, for all objects a ∈ A,
G(ηa) = idF (a). Such natural transformations are called vertical.

Next up, we need an appropriate notion of mapping between 2-categories. The naive categorification
of the concept of a functor between categories is that of a 2-functor :

Definition 1.0.6. Let C and D be 2-categories. A 2-functor F : C → D consists of:

• a function F : ob(C) → ob(D),

• for all objects a, b ∈ C, a functor F : HomC(a, b) → HomD(F (a), F (b)),

such that F strictly preserves composition of 1-morphisms, horizontal composition of 2-morphisms,
and identity 1-morphisms.

2



Remark 1.0.7. Once again, we did not have to specify that F preserves vertical composition of
2-morphisms, as this is already encoded in the fact that F is a functor between hom-categories.

This is sufficient for some purposes, including Section 4 of this thesis, but for other purposes,
such as Section 3, a more refined notion is preferred. When we are given a category C and two
morphisms f, g ∈ HomC(a, b), all we can say is whether or not f is equal to g. Since HomC(a, b)
is merely a set, equality is the only form of comparison we have. However, if C is a 2-category, we
have a more refined notion available: we can say whether f and g are isomorphic in the category
HomC(a, b). Translating this into our language, f and g are isomorphic 1-morphisms if there exists
an invertible 2-morphism η : f → g. Taking this into account, one can come to the conclusion that
the preceding notion of 2-functor is too strong: why compare F (g ◦ f) and F (g) ◦F (f) for equality
when we have isomorphism available? This motivates the following definition.

Definition 1.0.8. Let C and D be 2-categories. A pseudofunctor F : C → D consists of:

• a function F : ob(C) → ob(D),

• for all objects a, b ∈ C, a functor F : HomC(a, b) → HomD(F (a), F (b)),

• for all objects a, b, c ∈ C, for all 1-morphisms f : a → b, g : b → c, a specified invertible
2-morphism F (g) ◦ F (f) ⇒ F (g ◦ f),

• for all objects a ∈ C, a specified invertible 2-morphism idF (a) ⇒ F (ida),

such that the specified 2-morphisms satisfy certain coherence conditions, which we will not specify
here.

2-functors are seen as a special case of pseudofunctors by setting the specified 2-morphisms equal
to identities.

Next, we categorify natural transformations between functors. As with the case of functors, there
should be a strict notion and a more relaxed notion. We define both below.

Definition 1.0.9. Let C and D be 2-categories, and F,G : C → D be pseudofunctors. A 2-natural
transformation η : F ⇒ G consists of a collection of 1-morphisms ηc : F (c) → G(c) indexed by
objects c ∈ C, such that for all 1-morphisms f : c→ d in C the square

F (c) F (d)

G(c) G(d)

F (f)

ηc ηd

G(f)

◦

commutes. There is also an addition condition concerning compatibility with respect to 2-morphisms
which we do not specify here.

Definition 1.0.10. Let C and D be 2-categories, and F,G : C → D be pseudofunctors. A pseudo-
natural transformation η : F → G consists of:

• for each object c ∈ C, a 1-morphism ηc : F (c) → G(c),

3



• for each 1-morphism f : c → d in C, a specified invertible 2-morphism between the two
composites of the naturality square as indicated:

F (c) F (d)

G(c) G(d)

F (f)

ηc ηd

G(f)

This data is required to satisfy certain coherence conditions, which we once again omit.

Next up, we would like a notion of adjunction of 2-functors/pseudofunctors. For our purposes, we
will use the following somewhat non-standard definition, but it will be sufficient for us, as it is
exactly the notion we need in Section 4.

Definition 1.0.11. Let C and D be 2-categories and F : C → D, G : D → C be pseudofunctors.
A pseudoadjunction from F to G is a natural equivalence of hom-categories

HomC(F (c), d) ≃ HomD(c,G(d)).

That is, for all objects c ∈ C, d ∈ D we have a specified equivalence of hom-categories as shown,
and the collection of these equivalences should be (strictly) 2-natural, in the sense of Definition
1.0.9.

Remark 1.0.12. The term pseudoadjunction may already have a slightly different meaning, so we
repeat that this is a non-standard definition. In particular, it seems particularly strong to require
2-naturality instead of pseudonaturality.

Finally, we would like a notion of equivalence between 2-categories. What follows will not be a
proper definition, but more of a characterization, in the same vein as “a functor is an equivalence
of categories if it is fully faithful and essentially surjective on objects”. This time we will only focus
on the strict version, as the relaxed version will not be relevant for us. In the following, two objects
a, b in a 2-category C are said to be equivalent if there exist 1-morphisms f : a → b and g : b → a
such that the composites g ◦ f and f ◦ g are isomorphic (via an invertible 2-morphism) to their
respective identity 1-morphisms.

Definition/Proposition 1.0.13. Let C and D be 2-categories, and F : C → D a 2-functor. We
say that F is a 2-equivalence if

• for all objects a, b ∈ C, the functor F : HomC(a, b) → HomD(F (a), F (b)) is an equivalence of
categories,

• F is surjective on equivalence classes of objects of D, in the sense that for each object d ∈ D,
there exists an object c ∈ C such that F (c) is equivalent to d.

2 Cartesian morphisms and Grothendieck fibrations

2.1 Basic definitions

In this thesis, we will often be interpreting a functor of categories as exhibiting the domain category
as being indexed, or fibered over the codomain category, and in some sense lying over it. We

4



introduce some notation for this scenario as follows. Given a functor p : E → B, we will use
diagrams having two layers: a top black layer consisting of a diagram in E, and a bottom grey
layer consisting of a diagram in B.

• •

•

• •

•

◦

◦

A two-layered diagram will be called satisfied if:

1. p takes the drawn objects in E (black vertices) to the objects in B (grey vertices) directly
below them,

2. p takes the drawn morphisms in E (black arrows) to the corresponding morphisms in B (grey
arrows) directly below them,

3. all things which should commute, such as triangles with circles in them, actually commute.

All drawn two-layered diagrams (which will simply be called diagrams) will be assumed to be sat-
isfied.

The first basic concept we will need is a categorical notion of fiber. Recall, that for a function
f : A → B between sets and an element b ∈ B, the (set-theoretic) fiber of f over b is the subset
f−1(b) ⊆ A defined as f−1(b) = {a ∈ A : f(a) = b}. We generalize this to functors as follows:

Definition 2.1.1. Let E, B be categories, and p : E → B a functor. Given an object b ∈ B, we
define a subcategory p−1(b) ⊆ E, called the (category-theoretic) fiber of p over b, as follows:

• objects in p−1(b) are objects e ∈ E such that p(e) = b,

• morphisms in p−1(b) are morphisms t : e→ e′ such that p(t) = idb.

e e e′

b b b

t

idb

Given a morphism t in E, we say that t is vertical if p(t) is an identity morphism. That is, if it
belongs to the fiber p−1(b) over some object b ∈ B.

Next, we introduce the crucial notion of a cartesian morphism, which will be the building block in
the definition of a Grothendieck fibration, and consequently of almost everything in this thesis.

Definition 2.1.2. Let p : E → B be a functor between categories. A morphism t : e → d in E
is called cartesian (with respect to p) if for all partial diagrams as indicated below, there exists a
unique dashed morphism completing and satisfying the diagram.

5



e′

e d

p(e′)

p(e) p(d)

∃!s

t′

t

g

p(t′)

p(t)

◦

◦

More explicitly, for any morphism t′ : e′ → d in E and any morphism g : p(e′) → p(e) in B such
that p(t) ◦ g = p(t′), there should exist a unique morphism s : e′ → e in E such that p(s) = g and
t ◦ s = t′.

We can intuitively think of cartesian morphisms as universal base change morphisms. We will see
later that we can use cartesian morphisms lying over f : a → b to transfer information between
fibers; from p−1(b) to p−1(a). In order for cartesian morphisms to be as useful as possible, we need
a sufficiently large supply of them. A functor having “enough” cartesian morphisms turns out to
be one of the most fundamental concepts in category theory, which we define below.

Definition 2.1.3. Let p : E → B be a functor. We say that p is a Grothendieck fibration (alter-
natively, cartesian fibration, or simply fibration), if for every morphism f : a → b in B, and any
object d ∈ p−1(b), there exists a cartesian morphism t : e→ d in E with p(t) = f .

e d

a b

t

f

Intuitively, we can think of a Grothendieck fibration as a well-behaved “projection” functor, or a
functor with a specific lifting property concerning cartesian morphisms.

We can form a category Fibcart (B) of Grothendieck fibrations over a given base category B as a
(2)-subcategory of Cat/B: a morphism from p : E → B to q : E′ → B is a functor H making the
triangle

E E′

B

H

p q

◦

commute, and sending cartesian morphisms in E to cartesian morphisms in E′. We call such func-
tors cartesian. Furthermore, Fibcart (B) is naturally a 2-category, whose 2-morphisms are vertical
natural transformations as defined in Example 1.0.5.

Of course, these definitions can be dualized.

6



Definition 2.1.4. Let f : E → B be a functor. A morphism t : d → e in E is called cocartesian
if the corresponding morphism top : e → d in Eop is cartesian for the functor pop : Eop → Bop.
Translating this into a statement about the original functor p : E → B, we get that for all partial
diagrams as below, there should exist a unique dashed morphism s completing and satisfying the
diagram.

e′

d e

p(e′)

p(d) p(e)

t′

t

∃!s

p(t′)

p(t)

g

◦

◦

Definition 2.1.5. Let p : E → B be a functor. We say that p is a Grothendieck opfibration
(alternatively, cocartesian fibration) if the opposite functor pop : Eop → Bop is a Grothendieck
fibration. In other words, for every morphism f : b → c in B and every object d ∈ p−1(b), there
should exist a cocartesian morphism t : d→ e such that p(t) = f :

d e

b c

t

f

Definition 2.1.6. Let p : E → B be a functor. We say that p is a Grothendieck bifibration if it is
both a Grothendieck fibration and a Grothendieck opfibration.

2.2 Basic results concerning Grothendieck fibrations

Here, we record several useful results about (co)cartesian morphisms and Grothendieck (op)fibrations.
We will, for the most part, only state and prove these results for cartesian morphisms and Grothendieck
fibrations, but all of them have dual analogues for cocartesian morphisms and opfibrations, with
equally dual proofs.

First, we notice that cartesian morphisms with a specified codomain and projecting to a specified
morphism in the base category satisfy a universal property. As with all universal properties, we
expect entities exhibiting them to be unique up to a unique, canonical isomorphism. We record
this in the following lemma.

Lemma 2.2.1. Let p : E → B be a functor, and let f : a → b be a morphism in B. Given two
cartesian morphisms t : e → d and t′ : e′ → d such that p(t) = p(t′) = f , there exists a unique
vertical isomorphism α : t→ t′ such that the following diagram is satisfied:

7



e

e′ d

a

a b

∃!α

∼=
t

t′

ida

f

f

◦

◦

Proof. It’s the usual argument. As t′ is cartesian, there exists a morphism α as shown, except that
it’s not necessarily an isomorphism (yet). Similarly, as t is cartesian, we obtain a unique morphism
β : e′ → e satisfying a corresponding diagram. To see that α and β are inverses, we notice that
ide is a vertical morphism factorization of t through itself, satisfying an evident diagram. Because
β ◦ α satisfies the same diagram (as one readily checks), we get that β ◦ α = ide by uniqueness.
Similarly, we get that α ◦ β = ide′ , showing that α is an isomorphism.

Next, we derive an alternative characterization of a morphism being cartesian, and consequently,
of a functor being a Grothendieck fibration, using pullback squares.

Proposition 2.2.2. Let p : E → B be a functor, and t : e → d a morphism in E. Then, t is
cartesian if and only if for all objects e′ ∈ E, the following commutative square is a pullback:

HomE(e
′, e) HomE(e

′, d)

HomB(p(e
′), p(e)) HomB(p(e

′), p(d))

t∗

p p

p(t)∗

Proof. In the above diagram, the horizontal maps are postcompositions, and the vertical maps are
actions of p on morphisms. We will need the following description of pullbacks in Set. Given
diagram of sets

C

A B

g

f

its pullback is given by

A×B C = {(a, c) ∈ A× C : f(a) = g(c)}.

Next, we use the fact that a commutative square is a pullback if and only if the induced map to
any given pullback is an isomorphism. That is, our square is a pullback if and only if the canonical
dashed map is a bijection of sets:

8



HomE(e
′, e)

p.b. HomE(e
′, d)

HomB(p(e
′), p(e)) HomB(p(e

′), p(d))

t∗

p

π1

π2 p

p(t)∗

We calculate:

The dashed map is a bijection

⇐⇒ for all (t′, g) ∈ p.b. such that p(t′) = p(t)∗(g), there exists a unique s ∈ HomE(e
′, e) such

that (t∗(s), p(s)) = (t′, g)

⇐⇒ for all t′ : e′ → d and g : p(e′) → p(e) such that p(t′) = p(t)◦g, there exists a unique s : e′ → e
such that t ◦ s = t′ and p(s) = g

Quantifying this over all e′ ∈ E, we see that this is exactly the condition for t to be cartesian.

Corollary 2.2.3. The composition of two Grothendieck fibrations is a Grothendieck fibration.

Proof. Let p : E → B and q : B → C be Grothendieck fibrations. Pick any morphism f : x → c in
C, and any d ∈ E with (q ◦ p)(d) = c. We will construct a cartesian morphism in E with codomain
d projecting to f via q ◦ p.

As q(p(d)) = c and q is a Grothendieck fibration, there exists a cartesian morphism g : b→ p(d) in
B with q(g) = f . Once again, as p is a fibration, there exists a cartesian morphism t : e → d in E
with p(t) = g.

We claim that t does the job. Clearly (q ◦ p)(t) = f . By the preceding proposition, showing that t
is cartesian amounts to showing that the following square is a pullback for all e′ ∈ E:

HomE(e
′, e) HomE(e

′, d)

HomC((q ◦ p)(e′), (q ◦ p)(e)) HomC((q ◦ p)(e′), (q ◦ p)(d))

t∗

q◦p q◦p

(q◦p)(t)∗

We can factor this square as follows:

9



HomE(e
′, e) HomE(e

′, d)

HomB(p(e
′), p(e)) HomB(p(e

′), p(d))

HomC(q(p(e
′)), q(p(e))) HomC(q(p(e

′)), q(p(d)))

t∗

p p

p(t)∗=g∗

q q

q(g)∗

Now, again by the proposition, the upper and lower squares are pullbacks because p and q are
Grothendieck fibrations, respectively. By a basic categorical result, the composite of two pullback
squares is itself a pullback square, so we are done.

Corollary 2.2.4. Let p : E → B be a functor, and let f : x→ y, g : y → z be composable morphisms
in E.

1. If f and g are cartesian morphisms, then so is g ◦ f .

2. If g and g ◦ f are cartesian morphisms, then so is f .

Proof. Pick any object e ∈ E. We can factor the square

HomE(e, x) HomE(e, z)

HomB(p(e), p(x)) HomB(p(e), p(z))

(g◦f)∗

p p

p(g◦f)∗

as follows:

HomE(e, x) HomE(e, y) HomE(e, z)

HomB(p(e), p(x)) HomB(p(e), p(y)) HomB(p(e), p(z))

f∗

p

g∗

p p

p(f)∗ p(g)∗

Now, a basic categorical result says that given a composite of two squares where the right square is
a pullback, the left square is a pullback if and only if the composite rectangle is a pullback. Using
this and quantifying over all e ∈ E, we are done by the previous proposition.

Next, we characterize cartesian morphisms lying over isomorphisms. They turn out to have a
particularly simple form:

Lemma 2.2.5. Let p : E → B be a functor, and let t : e→ d be a morphism in E such that p(t) is
an isomorphism in B. Then, the following are equivalent:

1. t is cartesian,

10



2. t is an isomorphism.

Proof. First, assume that t is an isomorphism. We can complete any partial diagram in Definition
2.1.2 as follows:

e′

e d

p(e′)

p(e) p(d)

t−1◦t′

t′

t

g

p(t′)

p(t)

◦

◦

The diagram is satisfied because p(t) ◦ g = p(t′) implies that g = p(t)−1 ◦ p(t′) = p(t−1 ◦ t′). As t is
an isomorphism, the dashed arrow is clearly unique. This shows that t is cartesian.

Conversely, assume that t is cartesian. We create two diagrams; first the left one, and then the
right:

d e

e d d e

p(d) p(e)

p(e) p(d) p(d) p(e)

s

idd

u

ide

t s

p(t)−1

idp(d)

p(t)

idp(e)

p(t) p(t)−1

◦ ◦

◦ ◦

To see that this makes sense, we have to show that the morphism s from the first diagram is
cartesian. Notice that as t ◦ s = idd and idd is cartesian by the other direction of this lemma, we
get that s is cartesian by Corollary 2.2.4. Thus, we can form the diagram on the right, and get a
morphism u as shown. Now, we calculate that t = t ◦ ide = t ◦ s ◦ u = idd ◦u = u. So, s ◦ t and t ◦ s
are identities, and hence t is an isomorphism.

Remark 2.2.6. So far, we have considered being a Grothendieck fibration as a property of a functor.
That is, a functor is a fibration is there exist enough cartesian morphisms. However, in some
situations it is convenient to have the structure of a specified collection of cartesian morphisms.
In more detail, a cleavage for a functor p : E → B is a choice of a cartesian morphism t : e → d
such that p(t) = f , for every morphism f : a → b in B and every object d ∈ p−1(b). A functor
equipped with a cleavage will be called a cloven Grothendieck fibration. Of course, we can turn any
Grothendieck fibration into a cloven fibration by non-canonically choosing cartesian morphisms. We
can always choose an identity morphism to be the chosen cartesian morphism lying over an identity
morphism; a cleavage with this property is called normalized A cleavage is called normalized. We
can also impose a stronger condition on a cleavage, namely that the collection of chosen cartesian
morphisms is closed under composition. Such a cleavage is called split, and a functor having such
a cleavage is called a split Grothendieck fibration. Not all fibrations are split.

11



2.3 Examples of Grothendieck fibrations

Example 2.3.1. Given categories A and B, one can consider the projection functor πB : A×B → B.
This is a cartesian fibration and a cocartesian fibration: for any object (a, b) in A × B and any
morphisms f : b′ → b, or g : b→ b′′, we have the following:

(a, b′) (a, b) (a, b) (a, b′′)

b′ b b b′′

(ida,f) (ida,g)

f g

One can easily check that the top morphisms are cartesian and cocartesian, respectively. This
shows that πB is a Grothendieck bifibration.

Example 2.3.2. Consider a diagram of categories and functors as follows:

A C BF G

In this scenario we can form the comma category F ↓ G, where objects are triples (a, b, h), where a
and b are objects of A and B, respectively, and h : F (a) → G(b) is a morphism in C. A morphism
from (a, b, h) to (a′, b′, h′) is defined to be a pair (f, g), where f : a→ a′ and g : b→ b′ are morphisms
in A and B respectively, such that the following square commutes.

F (a) F (a′)

◦

G(b) G(b′)

F (f)

h h′

G(g)

We have two evident “projection” functors from A ↓ B: the domain projection dom: F ↓ G → A,
and the codomain projection cod: F ↓ G→ B, with the following action on objects and morphisms:

F (a) F (a′)

b b′ a a′

G(b) G(b′)

F (f)

h h′
g cod dom f

G(g)

◦

One can check that dom is a cartesian fibration: given a morphism f : a → a′ in A and an object
h : F (a) → G(b) in dom−1(a′), we have that

12



F (a) F (a′)

G(b) G(b)

a a′

F (f)

h◦F (f) h

G(idb)

f

◦

is a cartesian morphism. Dually, one can show that cod is Grothendieck opfibration.

The case when F is the identity functor going to be important for us later on, so we give it the
special notation C ↓ G, instead of the usual idC ↓ G. Another special case worth mentioning is a
slice category, where F is the identity functor, and B is the terminal category, so that G : ∗ → C
merely picks out an object c ∈ C. In this case we denote the comma category as C/c. We have
already seen a slice category in Example 1.0.5.

Example 2.3.3. This is a very contrived example, but it connects Grothendieck (op)fibrations of
categories with the likely more familiar notion of fibrations in topology.

Let X be a topological space. A classical construction lets us define the fundamental groupoid of
X, to be the category Π(X) with

obΠ(X) = {points of X},

HomΠ(X)(x, y) = {paths from x to y in X}/{homotopy rel. endpoints}.

Composition is induced by the evident composition of paths. As the name suggests, this is a
groupoid, meaning that all morphisms are isomorphisms.

Any continuous map f : X → Y of topological spaces induces a functor Π(f) : Π(X) → Π(Y ) be-
tween fundamental groupoids, which is given by postcomposing paths with f . One can ask when
this induced functor is a Grothendieck (op)fibration. As luck would have it, being a fibration in
the topological sense is sufficient! We recall the definition below:

A continuous function p : E → B of topological spaces is called a Hurewicz fibration, or simply
fibration, if it has the homotopy lifting property with respect to all topological spaces X. Spelled
out, this means the following:

X E

X × I B

f

ι0 pF

H

For any continuous map f : X → E and homotopy H : X × I → B such that p ◦ f = H(−, 0), there
should exist a homotopy F : X × I → E such that F (−, 0) = f and p ◦ F = H.

For the purposes of this example, we actually only need a very weak version of this called the path
lifting property, which means that for any path γ : I → B starting at b ∈ B and any e ∈ p−1(b),
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there should exist a path Γ: I → E starting at e such that p ◦ Γ = γ. By letting X = ∗, the
one-point space, in the diagram above, we see that the homotopy lifting property implies the path
lifting property.

We claim that every Hurewicz fibration f induces a Grothendieck bifibration Π(f).

Because we are dealing with groupoids, Proposition 2.2.5 tells us Π(f) is a Grothendieck fibration as
soon as there merely exists a lift of every morphism in the base with a given codomain. Unwinding
definitions, this amounts to having the path lifting property up to homotopy, i.e. that for a path γ
in B there exists a path Γ in E starting at a given point such that p◦Γ is homotopic (rel. endpoints)
to γ. Clearly the path lifting property implies this! Using a nearly identical argument, we see that
that Π(f) is an opfibration as well.

3 The equivalence of fibrations and pseudofunctors

3.1 The case of sets

Before getting into the general version of what is to follow, let us warm up by considering a decat-
egoried version, where instead of categories and functors, we deal with sets and functions.

Fix a set I, to serve as a “base” set. Consider an I-indexed set {Ai}i∈I . This can be considered
as a functor I → Set, where we treat the set I as a discrete category. For some purposes, indexed
sets are unsatisfactory; for each i ∈ I, we are given a set Ai, but there is no connection between the
different Ai’s, and they do not all live in one common “place”. Is there an alternative viewpoint
we can look at indexed sets from?

The answer is yes. One approach is to “package up” all of the sets Ai into a single set, the disjoint
union

∐
i∈I Ai. This way there is only one set to keep track of: the disjoint union, instead of an

entire family of sets.

Of course, this by itself as a set is not a suitable substitute for indexed sets: with only the disjoint
union available, there is no way to keep track of which Ai an element of

∐
i∈I Ai is a member of (at

least, if we do not assume a particular implementation of disjoint unions in our foundations). The
crucial ingredient is the projection function π :

∐
i∈I Ai → I, sending an element a to the unique

i ∈ I for which a ∈ Ai. From this pair (
∐
i∈I Ai, π), one can recover the indexed set by identifying

Ai with the fiber π−1(i).

We can also go the other way. Given any pair (E, p) where E is a set and p : E → I is a function,
we can define an indexed set {Xi}i∈I by setting Xi = p−1(i).

These two constructions can be seen as a blueprint for an equivalence of categories between I-
indexed sets and functions with codomain I. Of course, we need to describe the morphisms in these
two categories. A morphism of I-indexed sets {Ai}i∈I → {Ci}i∈I is simply a natural transformation
of the corresponding Set-valued functors, in other words an I-indexed family of functions ηi : Ai →
Ci. So one of the categories is Func(I,Set). A morphism of tuples (E, p) → (E′, q) is defined to
be a function f : E → E′ such that the triangle
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E E′

I

f

p q

◦

commutes, i.e. such that p = q ◦ f . This definition is set up such that f restricts to a well-defined
function between fibers p−1(i) → q−1(i), and hence gives a natural transformation between the
corresponding I-indexed sets. In other words, the second category is the slice category Set/I (see
Example 2.3.2). Now we can state the result:

Proposition 3.1.1. Let I be a set. Then there is an equivalence of categories of I-indexed sets
and functions with codomain I:

Set/I ≃ Func(I,Set).

3.2 The Grothendieck construction and the case of categories

We will now generalize the preceding discussion to categories. Let us first attempt to naively
“categorify” every item in Proposition 3.1.1. Instead of a set I, we should have a base category B.
The slice category Set/I becomes the slice category Cat/B. And for the functor category, we get
Func(B,Cat), consisting of strict Cat-valued functors. One might then hope that the proposition
remains true when categorified, i.e. we have an equivalence of categories

Cat/B ≃ Func(B,Cat).

This turns out not to be true. We highlight the main problems, and what can be done to solve
them:

1. Not all functors with codomain B will give rise to Cat-valued functors. The difficulty lies in
the fact that there may be nontrivial morphisms in B, which we did not have in the case of
sets. Even if we could define a functor F : B → Cat on objects by setting F (b) equal to an
appropriate notion of fiber over b as in the case of sets, we still have to define F on morphisms
as well, and there is no natural way to do this in general. Luckily, if our functor p : E → B is
a Grothendieck fibration, we can use the existence of enough cartesian morphisms to define
the Cat-valued functor on morphisms.

2. We have to take the 2-categorical nature of Cat into account. Instead of working with strict
Cat-valued functors, we should use pseudofunctors instead. We view B as a 2-category with
trivial 2-morphisms in order for this to make sense. Furthermore, one can show that the
collection of pseudofunctors forms a 2-category, and by Example 1.0.5, so does the slice cate-
gory in question. With this in mind, we should ask for an appropriate notion of equivalence
between 2-categories.

3. For reasons which will become clear during our proof, we should work with functors from
the opposite category Bop if we start with a Grothendieck fibration. A set considered as a
category is equal to its opposite, so the distinction was invisible when we were in the case of
sets. Alternatively, we can use Grothendieck opfibrations instead of fibrations in order to not
have to take the opposite category of B.
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It turns out that taking these three points into account, we do in fact get a generalization of 3.1.1
which reads as follows:

Theorem 3.2.1. Let B be a category. Then, there is a 2-equivalence of 2-categories (see Definition

1.0.13)

S : Fibcart (B) ≃ PsFunc(Bop,Cat).

As a first step towards this theorem, let us focus on a key step: a categorification of the process
of turning a functor A : I → Set (an I-indexed family of sets) into a function π :

∐
i∈I Ai → I.

For categories and functors, this is known as the Grothendieck construction associated to a pseud-
ofunctor F : Bop → Cat. For simplicity, we only consider the case where F is a 2-functor; in this
situation F can be seen as an ordinary functor where Cat has forgotten its 2-categorical structure.

Definition 3.2.2. Let F : Bop → Cat be a 2-functor. The Grothendieck construction of S is the
category

∫
B F determined by the following data:

• objects are pairs (b, x) where b is an object of B and x is an object of F (b),

• morphisms from (b, x) to (b′, x′) are pairs (f, g) where f : b → b′ is a morphism in B and
g : x→ F (f)(x′) is a morphism in F (b),

• composition of a composable pair of morphisms (f, g) : (b, x) → (b′, x′) and (f ′, g′) : (b′, x′) →
(b′′, x′′) is defined as (f ′, g′) ◦ (f, g) = (f ′ ◦ f, F (f)(g′) ◦ g).

The composition operation makes sense because F (f)(g′) has codomain F (f)(F (f ′)(x′′)) = (F (f)◦
F (f ′))(x′′) = F (f ′ ◦ f)(x′′), where we used that F was a strict functor. One readily checks that
composition is associative and that identities are given by id(b,x) = (idb, idx). Thus this is a well-
defined category.

Furthermore, there is an evident projection functor π :
∫
B F → B with the following action on

objects and morphisms:

(b, x) (b′, x′) b b′
(f,g) π f

As one would hope from the name, this is indeed a fibration.

Proposition 3.2.3. Let F : Bop → Cat be a (strict) functor. Then π :
∫
B F → B is a (split)

Grothendieck fibration.

Proof. Pick a morphism f : b → c in the base category B, and any any object (c, x) lying in the
fiber π−1(c). We want to find a cartesian morphism (b, y) → (c, x) lying over f . This amounts to
a morphism y → F (f)(x) in F (b). We simply choose idF (f)(x) : F (f)(x) → F (f)(x). To show it is
cartesian, consider a diagram as follows:

16



(a, y)

(b, F (f)(x)) (c, x)

a

b c

(h,s)

(f,idF (f)(x))

k

h

f

◦
◦

Finding a dashed arrow in the diagram amounts to finding a morphism y → F (k)(F (f)(x)). We
see that F (k)(F (f)(x)) = (F (k)◦F (f))(x) = F (f ◦k)(x) = F (h)(x). So, we can use the morphism
s : y → F (h)(x) for this purpose. It is easily seen that (k, s) satisfies the diagram. To see that
it is the unique such morphism, let (k, t) : (a, y) → (b, F (f)(x)) be another morphism making the
diagram commute. Then s = F (k)(idF (f)(x)) ◦ t = idF (k)(F (f)(x)) ◦t = idF (h)(x) ◦t = t. So, it is
unique. Hence (f, idF (f)(x)) is cartesian.

It is also clear from the definition of these cartesian morphisms that they are closed under compo-
sition and include the identities. Hence, π is a split Grothendieck fibration.

Remark 3.2.4. If one starts with a pseudofunctor F , the Grothendieck construction still works
with one minor change: the second component of the composition (f ′, g′) ◦ (f, g) is defined to be
F (f)(g′) ◦ g postcomposed with a component of the natural isomorphism F (f ′ ◦ f) ∼= F (f) ◦ F (f ′)
given as part of the data of a pseudofunctor. One can check that

∫
B F is still a category in the usual

sense, but this time it involves using the coherence conditions on the pseudofunctor, rather than be-
ing a simple verification. Furthermore, the projection functor π :

∫
B F → B is still a Grothendieck

fibration, but no longer necessarily split.

Now, let us continue onwards to proving Theorem 3.2.1. A full proof of this theorem unfortunately
involves more 2-categorical constructions and verifications than we are willing to explore. Reference
for such proofs include [Bor94, Vol. 2, Sect. 8.3] and [JY20, Ch. 10]. For our purposes, we will
provide a proof sketch that attempts to balance providing enough insight about Grothendieck
fibrations, while avoiding unnecessary 2-categorical complications.

Proof sketch of Theorem 3.2.1. We begin by listing the reasons why this will merely be a proof
sketch:

1. On objects, we will only define S on functors p which are split, cloven Grothendieck fibrations.
This will ensure that S(p) is a strict functor. On 1-morphisms, that is Cartesian functors,
we will only define S in the case where the Cartesian functor H in question sends the chosen
cleavage in the domain to the chosen cleavage in the codomain. By doing this, S(H) will be
a (strict) 2-natural transformation, instead of a pseudonatural transformation.

2. We will not define S on 2-morphisms, being vertical natural transformations. This is be-
cause S applied to a vertical natural transformation would have to be a modification between
pseudonatural transformations of pseudofunctors. In other words, a 2-morphism in the cate-
gory of pseudofunctors, which is something we will not go into. Modifications are explained
in [JY20, Ch. 4.4].
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3. Because of the preceding item, we will not show that S induces equivalences of hom-categories,
as we will not have defined S on their morphisms. We will merely show that S is essentially
surjective on objects that are strict Cat-valued presheaves, in the sense that for every strict
presheaf there is some split Grothendieck fibration such that applying S to it gives a presheaf
that is 2-naturally isomorphic to it.

We feel that these simplifications do not take away from too much of the understanding of the
equivalence. However, it is understandable that some readers will be left unsatisfied with so many
missing details. To accommodate for this, we have sprinkled in some remarks in the course of the
proof sketch indicating how one can remove these simplifications. With all that said, let us begin.

We define the functor S on (our choice of) objects as follows. Given a split fibration p : E → B in
Fibsplitcart (B), we must produce a functor S(p) : Bop → Cat.

Taking inspiration from the analogous construction for sets, we set S(p)(b) = p−1(b), the fiber of
p over the object b ∈ B as in Definition 2.1.1. The action of S(p) on morphisms is more elaborate.
Given a morphism f : b → c in B, S(p)(f) must itself be a functor from p−1(c) to p−1(b). This is
where we use the fact that p is a Grothendieck fibration. By assumption we can find a cartesian
morphism as shown:

Σf,d d

b c

σf,d

f

Furthermore, as p is a split fibration, we can assume that the collection of all these cartesian mor-
phisms assemble into a split cleavage. We define S(p)(f)(d) = Σf,d, the domain of the chosen
cartesian morphism.

Given a morphism g : d→ d′ in p−1(c), we can form the diagram below:

Σf,d d

Σf,d′ d′

b c

b c

σf,d

τf,g

g

σf,d′

f

idb

idc

f

◦

◦

This diagram makes sense since g, being in p−1(c), is vertical. The morphism τf,g satisfying the
diagram exists and is unique because σf,d′ is cartesian. We define S(p)(f)(g) = τf,g. This assign-
ment turns S(p)(f) into a functor: by uniqueness in the diagram above, it is easy to see that it
respects identities and composition.

Next, we show that S(p) is a functor. Pick objects a, b, c and composable morphisms f : a → b,
g : b→ c in B. We will show that S(p)(g ◦ f) = S(p)(f) ◦S(p)(g) using the following two diagrams,
where h : d→ d′ is an arbitrary morphism in p−1(c):
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Σg◦f,d d Σf,(Σg,d) Σg,d d

Σg◦f,d′ d′ Σf,(Σg,d′ )
Σg,d′ d′

a c a b c

a c a b c

σg◦f,d

τg◦f,h

h

σf,(σg,d)

τf,(τg,h)

σg,d

τg,h
h

σg◦f,d′ σf,(σg,d′ )
σg,d′

g◦f

ida

idc
f

ida

g

idb
idc

g◦f f g

◦ ◦ ◦

◦ ◦ ◦

By unwinding definitions, we see that

1. Σg◦f,d = S(p)(g ◦ f)(d) and Σf,(Σg,d) = S(p)(f)(S(p)(g)(d)) = (S(p)(f) ◦ S(p)(g))(d),

2. τg◦f,h = S(p)(g ◦ f)(h) and τf,(τg,h) = S(p)(f)(S(p)(g)(h)) = (S(p)(f) ◦ S(p)(g))(h).

Because we specifically chose a split cleavage, the two objects in the first point are equal. For the
same reason, the two morphisms in the second point are equal. So these functors agree on objects
and on morphisms, and so they are the same, as wanted. Thus S(p) respects composition. The
proof that it preserves identities is an easier version of the preceding argument using the same
techniques, so we omit it.

Remark 3.2.5. If we do not want to restrict ourselves to split fibrations, we can do the following.
First, we notice that both morphisms σg,d ◦ σf,(Σg,d) and σg◦f,d are cartesian by Lemma 2.2.4, and
they project to the same morphism in B. By Lemma 2.2.1, there is a canonical vertical isomor-
phism Σf,(Σg,d)

∼= Σg◦f,d. One then shows that the collection of these isomorphisms assemble into
a natural isomorphism S(p)(g ◦ f) ∼= S(p)(f) ◦ S(p)(g). Similarly one obtains a canonical natural
isomorphism S(p)(idb) ∼= idS(p)(b). After checking that these isomorphisms satisfy the relevant co-
herence conditions, one deduces that S(p) is a pseudofunctor.

Next, we will define S on (1)-morphisms. Pick a morphism H in Fibsplitcart (B). This is a cartesian
functor, so in particular the diagram below commutes.

E E′

B

H

p q

◦

We will define a 2-natural transformation S(H) : S(p) ⇒ S(q) (pseudonatural transformations are
the 1-morphisms in the category of pseudofunctors). This amounts to a natural family of functors
S(H)b : p

−1(b) → q−1(b), parameterized by objects b ∈ B. Notice that if e is an object in p−1(b),
then q(H(e)) = p(e) = b, so H(e) ∈ q−1(b). Similarly, H sends morphisms in p−1(b) to morphisms
in q−1(b). This means that we can define S(H)b simply by restricting the domain and codomain of
H to p−1(b) and q−1(b), respectively. This definition makes it clear that S(H)b is a functor.
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All that remains to show is 2-naturality of S(H). Choose a morphism f : b′ → b in B. The
naturality square is:

p−1(b) p−1(b′)

q−1(b) q−1(b′)

S(p)(f)

S(H)b S(H)b′

S(q)(f)

This is a diagram of functors, so we check its commutativity on objects and morphisms. Let d, d′ be
objects, and t : d → d′ be a morphism in p−1(b′). Consider the following diagrams, where we have
labeled the chosen cartesian morphisms with superscripts indicating which fibration they belong
to:

Σqf,H(d) H(d) H(Σpf,d) H(d)

Σqf,H(d′) H(d′) H(Σpf,d′) H(d′)

b′ b b′ b

b′ b b′ b

σq
f,H(d)

τq
f,H(t)

H(t)

H(σp
f,d)

H(τpf,t)

H(t)

σq
f,H(d)

H(σp

f,d′ )

f

idb′

idb
f

idb′

idb

f f

◦ ◦

◦ ◦

We once again make two observations:

1. Σqf,H(d) and H(Σpf,d) are the two composite functors of the naturality square applied to d,

2. τ qf,H(t) and H(τpf,t) are the two composite functors applied to t.

We use our assumption that H sends the chosen cleavage of p to the chosen cleavage of q to conclude
that the two objects in the first point are equal, and that the top horizontal morphisms of the black
squares are equal to each other, similarly for the bottom horizontal morphisms. This means that
the two black squares are identical except possibly at the left diagonal morphisms, being the mor-
phisms in the second point. But these are both vertical morphisms making the squares commute,
and σqf,H(d) is cartesian, so they are equal. This shows that the two composite functors are equal

on objects and on morphisms. Thus S(H) is 2-natural (we still technically have to check that the
hidden condition in Definition 1.0.9 is satisfied, but we omit this).

Remark 3.2.6. What if we do not assume that H sends cleavages to cleavages on the nose?
Notice that since H is a cartesian functor, H(σpf,d) is a cartesian morphism. It has the same

codomain and projects down to the same morphism as σqf,H(d). Thus, we once again obtain a

canonical vertical isomorphism H(Σpf,d)
∼= Σqf,H(d). These assemble into a natural isomorphism

S(H)b′ ◦ S(p)(f) ∼= S(p)(f) ◦ S(H)b. Finally, the collection of these natural isomorphisms make
S(H) into a pseudonatural transformation S(H) : S(p) ⇒ S(q), which one verifies by checking the
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coherence conditions.

In order to prove essential surjectivity on (our choice of) objects, we will use the Grothendieck
construction (Definition 3.2.2). Pick any 2-functor F : Bop → Cat. We claim that S(

∫
B F ) is

2-naturally isomorphic to F .

A 2-natural isomorphism, in this context, consists of family of functors, each being isomorphisms
of categories, indexed by objects b ∈ B. We will define these natural isomorphisms componentwise,
as usual. Pick an object b ∈ B. One can easily check that the assignment

x y (b, x) (b, y)
g (idb,g)

defines a functor F (b) → π−1(b) = S(
∫
B F )(b), which is bijective on objects and on all hom-sets,

and hence is an isomorphism of categories. This is the component of the 2-natural isomorphism at b.

It remains to show 2-naturality. Pick a morphism f : b→ b′ in B. The relevant naturality square is

F (b) F (b′)

S(
∫
B F )(b) S(

∫
B F )(b

′)

F (f)

∼= ∼=

S(
∫
B F )(f)

where the vertical arrows are the functors we just defined. This is a diagram of functors, so we
must show that the composites are equal on objects and on morphisms. So, pick objects x, y and a
morphism g : x→ y in F (b). A quick calculation shows that the right-then-down composite applied
to this is (idb′ , F (f)(g)) : (b

′, F (f)(x)) → (b′, F (f)(y)). The down-then-right composite applied to
the same thing is defined to be the unique dashed arrow in the following diagram:

(b′, F (f)(x)) (b, x)

(b′, F (f)(y)) (b, y)

b′ b

b′ b

(f,idF (f)(x))

S(
∫
B F )(f)((idb,g))

(idb,g)

(f,idF (f)(y))

f

idb′

idb

f

◦

◦

Here we are using the split cleavage for π provided by Proposition 3.2.3. We immediately see
that the two composite functors agree on objects. Next, we see that setting the dashed arrow
equal to (idb′ , F (f)(g)) satisfies the diagram above, hence by uniqueness the two composites also
agree on morphisms. So, they are equal, and hence (after forgetting about the hidden compatibility
condition in the definition of the 2-natural transformation) the family of isomorphisms of categories
assembles into a 2-natural isomorphism F ∼= S(

∫
B F ). Hence, S is essentially surjective on (some)

objects.
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Remark 3.2.7. If F is a merely a pseudofunctor, we have remarked that π is not necessarily a split
fibration. Still, we can use similar arguments to the ones found in the previous remarks to see
that we obtain natural isomorphisms between the two composite functors in the naturality square,
which assemble into a pseudonatural isomorphism F ∼= S(

∫
B F ).

4 The free Grothendieck fibration

4.1 Motivation

In the previous section, we have seen (or sketched) how to turn a Grothendieck fibration p : E → B
into a pseudofunctor S(p) : Bop → Cat. Looking back, we see that our construction relied heavily
on the fact that p is a fibration. Without this property, it is unclear how to define the pseudofunctor
S(p) on morphisms of B.

Still, suppose that we wanted to turn an arbitrary functor F : A→ B into a Cat-valued presheaf.
Is this dream unattainable? Not quite! One can do the following: first, replace the functor F by
a suitable Grothendieck fibration pF , and then apply the construction of the previous section to
the replacement pF . If this process of replacement is done in a sufficiently canonical and controlled
way, the results may be satisfactory.

This situation also pops up in homotopy theory, where it may be more familiar. Given a continuous
map of topological spaces f : X → Y , some constructions in the field require f to be a fibration,
as defined in Example 2.3.3, for best results. There is a systematic way of replacing the function f
with a fibration: the replacement is the projection of the mapping path space Pf associated to f .
As a set, Pf consist of triples (y, x, γ) where y ∈ Y , x ∈ X and γ : I → Y is a path in Y from y to
f(x). The projection π : Pf → Y is given by sending (y, x, γ) to y, and this can be shown to be a
fibration and a suitable replacement for f .

Let’s now try to do something analogous for a functor of categories F : A → B. By interpreting
paths as morphisms, our analogue of a mapping path space should be a category whose objects are
triples (b, a, k) where a ∈ A and b ∈ B are objects, and k is a morphism in B from b to F (a). It
just so happens that we already know of a category like this: the comma category B ↓ F , whose
objects and morphisms are

b b b′

F (a) F (a) F (a′)

k

f

k k′

F (g)

◦

This intuition turns out to be correct! But first, we must specify precisely what we mean when
we say “controlled and specified replacement”. For us, it will be the free fibration on F , in
the sense of being the value of a left adjoint of the forgetful functor (subcategory inclusion)
U : Fibcart (B) → Cat/B.
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...well, not quite. The notion of an ordinary left adjoint to U turns out to be too strong. Luckily,
we have seen that both Cat/B and Fibcart (B) are 2-categories, and it is easily verified that U is a
2-functor. So, instead, we can ask for a left pseudoadjoint to U , as in Definition 1.0.11.

Taking all this into account, below, we will construct a 2-functor

Free : Cat/B → Fibcart (B) ,

together with a 2-natural transformation

η : idCat/B ⇒ U ◦ Free,
such that precomposition with η induces a natural equivalence of hom-categories

HomFibcart(B)(Free(−),−) ≃ HomCat/B(−, U(−)).

4.2 Construction of free functor and unit

Let’s get started. First, the action on objects: given a functor F : A → B in Cat/B, the free
fibration is defined to be dom: B ↓ F → B, as indicated in the previous discussion. By Example
2.3.2 this is a Grothendieck fibration. Next, the action on 1-morphisms. We need to transform
commutative triangles on the left to commutative triangles on the right of the following diagram:

A C B ↓ F B ↓ G

• •

B B

H

F G

Free(H)

dom dom

Free
◦ ◦

Of course, Free(H) is to be a functor itself, so we must specify its action on objects and morphisms
in B ↓ F , which we define below.

b b′ b b′

F (a) F (a′) G(H(a)) G(H(a′))

f

k k′

f

k k′
Free(H)

F (g)

G(H(g))

◦ ◦

Notice, we haven’t really done anything; only used the fact that F = G◦H. This evidently respects
composition and identities, so it is functorial. It also clearly commutes with the domain projections.

The last thing we need to check for Free(H) to be a morphism in Fibcart (B) is that it is a cartesian
functor. It is enough to check Free(H) sends all cartesian morphisms in the cleavage of Example
2.3.2 to cartesian morphisms; looking at how they are defined, it is clear that Free(H) sends them
to morphisms of the same form, hence to cartesian morphisms.

Finally, we need to define the action of Free on 2-morphisms:
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A • C B ↓ F B ↓ G

• • •

I

J

Free

Free(I)

Free(J)

α Free(α)

So, suppose we are given a vertical natural transformation α between two functors I and J in
HomCat/B (A,C). We define Free(α) : Free(I) ⇒ Free(J) as follows: given an object k : b → F (a)
in B ↓ F , Free(α)k is the square

b b

G(I(a)) G(J(a))

idb

k k

G(αa)

◦

This makes sense: as α is vertical and I and J commute with F and G, we get that G(αa) =
idF (a) = idG(I(a)) = idG(J(a)), so the square is commutative. We omit checking that Free(α) is a
natural transformation, but this follows straightforwardly from the fact that α is natural. Clearly
Free(α) is vertical.

We also omit the verification that Free respects the two types of compositions of natural transfor-
mations; this is a lengthy but routine verification. Thus, we see that Free is a 2-functor.

Next up, we define the unit η : idCat/B ⇒ U ◦ Free. Given an object F : A → B in Cat/B, ηF
should be a 1-morphism in Cat/B from F to U(Free(F )). In other words, ηF should be a functor
such that the following triangle commutes:

A B ↓ F

B

ηF

F dom

◦

Its action on objects and morphisms in A is straightforward:

F (a) F (c)

a c • • ◦

F (a) F (c)

F (f)

idF (a) idF (c)
f ηF

F (f)

This is clearly functorial and makes the above triangle commute. We omit checking that η is a
2-natural transformation, as this is unenlightening, but it is once again a routine verification.
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4.3 Showing adjointness

Pick objects F : A → B and p : E → B in Cat/B and Fibcart (B), respectively. We will show
precomposition by ηF induces an equivalence of hom-categories as shown:

ηF
∗ : HomFibcart(B)(Free(F ), p) ≃ HomCat/B(F,U(p)).

Before we start, we should mention the action of ηF
∗ on natural transformations (morphisms

in the hom-categories). It is given by whiskering : given a natural transformation α, we get
ηF
∗(α)a = αηF (a) for all objects a ∈ A.

We will omit checking 2-naturality of this precomposition map . The reason is that it follows for-
mally from the fact that η is a 2-natural transformation. In other words, it is simply a 2-categorical
result that would not help us understand the subject matter at hand.

We begin with faithfulness. Pick cartesian functors, and parallel vertical natural transformations
as shown:

B ↓ F E

I

J

α β

Assume ηF
∗(α) = ηF

∗(β). Then αηF (a) = βηF (a) for all a ∈ A. We must show that α = β. To this
end, pick any object k : b→ F (a) in B ↓ F . Notice that

b F (a)

F (a) F (a)

k

k idF (a)

F (ida)

◦

is a cartesian morphism in B ↓ F , by Example 2.3.2. We will denote it by φ : k → idF (a).

As J is a cartesian functor, J(φ) is a cartesian morphism in E. Now, by naturality we get
that αηF (a) ◦ I(φ) = J(φ) ◦ αk and βηF (a) ◦ I(φ) = J(φ) ◦ βk. By assumption we get that
J(φ) ◦ αk = J(φ) ◦ βk, and we also have that p(αk) = p(βk) = idb by verticality of the natu-
ral transformations. Hence, we deduce that αk = βk. As k was an arbitrary object in B ↓ F , we
get that α = β, like we wanted to show.

Next, we show fullness. Pick any cartesian functors I and J , and an arbitrary vertical natural
transformation as shown:

A E

ηF
∗(I)

ηF
∗(J)

γ
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We must produce a vertical natural transformation α : I ⇒ J such that ηF
∗(α) = γ. We will define

α componentwise as follows. Pick any object k : b → F (a) in B ↓ F . We will make use of the
morphism φ from before, but we will write it as φk to indicate the dependence on k. We define αk
to be the unique morphsim such that the following diagram is satisfied:

I(k) I(ηF (a))

J(k) J(ηF (a))

b F (a)

b F (a)

I(φk)

αk

γa

J(φk)

k

idb

idF (a)

k

◦

◦

This works because J is a cartesian functor, so J(φk) is a cartesian morphism, hence there is a
unique dashed morphism as shown.

We need to show that α is natural. Verticality is clear from the definition. Pick any morphism

b b′

F (a) F (a′)

f

k k′

F (g)

◦

in B ↓ F , and denote it by ψ. We will show that αk′ ◦ I(ψ) = J(ψ) ◦ αk, by contemplating the
following magical cube:

I(k) I(ηF (a))

I(k′) • I(ηF (a
′))

J(k) • J(ηF (a))

J(k′) J(ηF (a
′))

I(φk)

I(ψ)

αk

γa
I(ηF (g))

I(φk′ )

αk′ γa′

J(ψ)

J(φk)

J(ηF (g))

J(φk′ )

First, notice that the back and front faces are the same ones as in the definition of α, hence they
commute by definition. The top and bottom faces commute by the fact that the square defining ψ
is commutative and by functoriality of I and J . And, the right face commutes by naturality of γ.
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The remaining face is precisely the relevant naturality square for α. By chasing the cube around,
we see that the left face commutes after postcomposing with J(φk′). A quick calculation yields
that p(J(φ) ◦αk) = p(αk′ ◦ I(φ)) = f . As J is a cartesian functor and φk′ is a cartesian morphism,
we get that J(φk′) is a cartesian morphism. Thus, we conclude that the left face commutes. As ψ
was an arbitrary morphism in B ↓ F , we deduce that α is a vertical natural transformation.

Finally, we show that precomposing α with the unit gives us what we sought. For any a ∈ A,
consider the following commutative square:

F (a) F (a)

F (a) F (a)

idF (a)

idF (a) idF (a)

F (ida)

◦

This is an identity morphism in B ↓ F , and so by definition

I(ηF (a)) I(ηF (a))

J(ηF (a)) J(ηF (a))

idI(ηF (a))

αηF (a) γa

idJ(ηF (a))

◦

commutes, showing that αηF (a) = γa. As a ∈ A was arbitrary, we get that ηF
∗(α) = γ. Hence, ηF

∗

is full.

Lastly, we will show that ηF is essentially surjective on objects. In fact, we will show the slightly
stronger statement that ηF is strictly surjective on objects.

Pick any object H ∈ HomCat/B (F,U(p)). This is simply a functor such that the following triangle
commutes:

A E

B

H

F p

◦

We will construct a cartesian functor Φ ∈ HomFibcart(B)(Free(F ), p) such that ηF
∗(Φ) = H. This

amounts to factoring the above triangle as below:

A B ↓ F E

B

ηF

F

Φ

dom p

◦ ◦
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We begin by defining Φ on objects. Pick k : b→ F (a) in B ↓ F . We will once again make use of the
morphism φk : k → ηF (a) defined earlier. As we have seen, φk is a cartesian morphism, so if Φ is to
be a cartesian functor, Φ(φk) must be a cartesian morphism. Also, from the relations H = Φ ◦ ηF
and p ◦ Φ = dom, we must have H(a) = Φ(ηF (a)) and p(Φ(k)) = b. In addition, we know that E
is a cartesian fibration. Therefore, we can pick a cartesian morphism as indicated:

Φ(k) H(a)

b F (a)

σk

k

In other words, we define Φ(k) to be the domain of a cartesian morphism σk with codomain H(a)
that projects to k. We make sure that whenever the grey morphism k is an identity, so is σk. This
ensures that Φ(ηF (a)) = H(a).

The action on morphisms is as follows: given a morphism

b b′

F (a) F (a′)

f

k k′

F (g)

◦

in B ↓ F , which we will again denote by ψ, we define Φ(ψ) to be the unique morphism satisfying
the diagram below:

Φ(k) H(a)

Φ(k′) H(a′)

b F (a)

b′ F (a′)

σk

Φ(ψ)

H(g)

σk′

k

f

F (g)

k′

◦

◦

As σk′ is cartesian, this is well-defined. By the uniqueness of this morphism, it is easy to see that
this assignment is functorial. It also easily follows that p ◦ Φ = dom and Φ ◦ ηF = H.

All that remains is to show that Φ is a cartesian functor. As we have already mentioned, it’s enough
to check that morphisms in the cleavage given in Example 2.3.2 get sent to cartesian morphisms
by Φ. Applying Φ to such a morphism ψ (which will be the bottom grey square below), we get:
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Φ(k ◦ f) H(a)

Φ(k) H(a)

c F (a)

b F (a)

σk◦f

Φ(ψ)

idH(a)

σk

k◦f

f

F (ida)

k

◦

◦

Now, by definition σk and σk◦f = σk ◦Φ(ψ) are cartesian, so by Proposition 2.2.4, Φ(ψ) is cartesian.
So, Φ is a cartesian functor, and thus we have shown that ηF is surjective on objects, making it an
equivalence of hom-categories.

This concludes the proof that the unit η gives rise to a pseudoadjunction between arbitrary functors
and Grothendieck fibrations.
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