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Abstract

The continuous development and expansion of applications increases the com-
plexity of software supply chains. Threat actors leverage these supply chains and
the trust between suppliers and customers to compromise suppliers and target
their customers and users. By inserting malicious code into benign software and
distributing it through benign updates or installers, the attack can be challenging
to detect. In this project we present an automated approach, using existing tools,
to identify behavior and capabilities in software updates and generate a mali-
cious score based on these features. We also determine how the identified behav-
iors can be used with machine learning methods for classification. Results show
that we can identify the new and modified functions between software versions
in benign and malicious updates, using binary differentiation, and identify the
behaviors and capabilities in these functions. We compared the behaviors identi-
fied in benign software updates to those found in malicious updates and propose
a set of behaviors and capabilities that on average have a higher prevalence in
malicious updates than benign. The behaviors and capabilities are mapped to the
standardized formats of MITRE ATT&CK® techniques and Malware Behavior Cat-
alog (MBC) identifiers, presenting an advantage in further interoperability and
reporting. Classification showed relatively low detection rates but also low false
positives. Thus, presenting a possible addition to existing malware detection but
not applicable as a primary detection method. This research covers the imple-
mentation and performance of behavior identification in software updates and
the evaluation of the identified behaviors as attributes for detecting closed-source
software supply chain attacks.
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Sammendrag

Den kontinuerlige utviklingen av applikasjoner øker kompleksiteten i programvare-
leverandørkjeder. Trusselaktører utnytter disse leverandørkjedene og tilliten mel-
lom bruker og leverandør for å kompromittere kunder gjennom leverandørene.
Ved å introdusere skadelig kode i legitim programvare og distribuere det gjen-
nom vanlige oppdateringer eller installasjonsfiler, kan angrepet være utfordrende
å oppdage. I denne oppgaven presenterer vi en automatisert tilnærming, ved bruk
av eksiterende verktøy, for å identifisere oppførsel og kapabilitet i programvare-
oppdateringer og genererer en verdi på hvor skadelig oppdateringen er, basert på
oppførselen. Vi viser også hvordan oppførsel can brukes med maskinlæringsme-
toder for klassifisering. Resultatene viser at tilnærmingen klarer å identifisere nye
og endrede funksjoner mellom programvareoppdateringer, i legitime og skadelige
oppdateringer, ved bruk av binær differensiering, samt identifisere oppførsel og
kapabilitet i disse funksjonene. Vi sammenliknet oppførselen identifisert i legit-
ime og skadelige programvareoppdateringer, og presenterer et utvalg oppførsler
og kapabiliteter som forekommer oftere i skadelige oppdateringer. Oppførsel og
kapabilteter kobles til de standardiserte formatene til MITRE ATT&CK og Mal-
ware Behavior Catalog (MBC), som kan være en fordel ved integrasjon av vår
tilnærming i andre rammeverk og rapportering. Klassifisering resulterte i lave de-
teksjonsrater men også lave antall falske positive. Noe som tilsier at metoden har
potensiale for å utvide eksisterende deteksjonsmetoder, men ikke vil være effek-
tiv som en primærmetode for deteksjon av skadelige oppdateringer. Denne opp-
gaven tar for seg implementasjon og utførelse av tilnærmingen for å identifisere
oppførsel i programvareoppdateringer og evalueringen av disse som attributter
for deteksjon av skadelige oppdateringer i leverandørkjedeangrep.
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Chapter 1

Introduction

1.1 Topics covered

A significant part of our lives involves the use of software and applications. We
use applications on our phones, smartwatches, and computers to communicate
with friends and family, track activity, administer finances, and much more. Gov-
ernments, businesses, and organizations are highly dependent on a wide range of
software to conduct business and operations successfully. Most applications have
several external dependencies to other applications created by third parties. These
chains of application dependencies are part of the software supply chain and can
become large and complex. The increase in software and the continuous develop-
ment of existing software to expand functionality further increases the complexity.
The attack surface increases along with the software supply chain because each
software component or the supplier themselves can have vulnerabilities or weak-
nesses that can be exploited by attackers [1]. Thus, making it more difficult to
maintain control of the attack surface, which is critical in defending against cyber
threats.

Attacks on software supply chains have impacted many companies and are
estimated to cause increased costs over the next years [1]. Software supply chain
attacks (SSCA) have provided nation-state actors with access to critical infrastruc-
ture and enterprise networks in several sectors, facilitating for disruption and es-
pionage [2]. In a software supply chain attack, a software supplier is attacked with
the intent of further compromising their customers or users, taking advantage of
the trust established between them [1]. Attackers can exploit vulnerabilities in the
software supply chain to stage an attack on a target, or they can compromise the
supplier and insert malicious code in their software which compromises users [2].

The attacks on SolarWinds [3], CCleaner [4], and M.E.Doc [5] show how state
actors have successfully performed sophisticated SSCAs through update hijacking
of closed-source software [2]. In update hijacking, the threat actor gains access to
the software development or distribution environment and inserts malicious code
in the software, delivering malware with a legitimate program update or installer,
often with valid code signatures [1, 2].

1
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To reduce the threat from software supply chain vulnerabilities, the cyber se-
curity community and industry use methods to identify vulnerabilities in software
[6]. Binary code differential analysis is used to find code differences between soft-
ware updates, decreasing the amount of code needed to be analyzed for vulnera-
bilities. This is also used by malware analysts to find similarities and differences in
malware samples, used for classification and tracking malware development [7].
To further reduce the workload on researchers, automated malware analysis tools
have also been created to identify malicious behaviors and capabilities in software
[8]. Thus, these techniques are relevant for application in analyzing closed-source
software supply chain attacks.

1.2 Keywords

Closed-source software supply chain attacks, trojanized updates, binary differen-
tiation, malware behavior, malware detection.

1.3 Problem description

Research on software supply chain attacks has mainly focused on open-source
software, including the detection of vulnerabilities and malicious code in open-
source repositories and package managers [9, 10]. Despite the demonstrated im-
pact and threat posed by closed-source SSCAs, the amount of research on this topic
is low. However, recent research on closed-source software supply chains has con-
tributed knowledge and approaches to improve defences against such attacks. The
methods rely on finding malicious indicators in a benign and a malicious version
of closed-source SSCAs using basic static and dynamic tools and techniques and
conducting differential analysis on the results [11, 12]. They require the setup
of several dynamic and static analysis tools and the knowledge to interpret the
results from each tool. Dynamic analysis can be difficult, particularly when ex-
ecuting software components that are part of a larger application, as they may
require certain settings or other dependencies to run.

One method has been proposed with a proof-of-concept to detect trojanized
binaries in software supply chains based on general malware indicators. Validation
of the methods is challenging due to the low number of known closed-source
software supply chain attacks, however, comparing them to indicators found in a
larger set of benign updates could provide knowledge about which indicators are
useful for detection.

Furthermore, reporting the malicious indicators in a standardized format could
present an improvement to existing methods by facilitating integration with ex-
isting defence methods and threat reporting.

Andreoli et al. [13]manually identified advanced static features by reverse en-
gineering the malicious functions in closed-source SSCA and used these features’
presence to classify other types of malware successfully. This research shows that
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the malicious code in SSCAs share at least some malicious behaviors with other
types of malware. Thus, existing malware behavior identifiers may be applicable
to SSCAs. However, the method of finding the malicious functions was based on
existing reports and cannot be leveraged for identifying malicious functions in
undisclosed SSCAs.

Based on the existing research on closed-source SSCA and the existence of
automated analysis tools and techniques that are easily integrated with existing
workflow, we believe there are unexplored methods of detecting trojanized soft-
ware updates and update hijacking in closed-source SSCAs.

In this project, we apply automated binary code differential analysis and auto-
mated behavior identification from static analysis to compare malicious behavior
and capabilities between benign and malicious software updates. The aim is to
contribute more knowledge on behavior in closed-source SSCAs and develop a
method for identifying malicious behavior in software updates to detect update
hijacking in closed-source SSCAs, reducing the workload on malware analysts and
cyber security researchers.

1.4 Justification, motivation, and benefits

Closed-source software supply chain attacks using update hijacking are not the
most common type of cyber attacks but have been successfully used by nation-
states in sophisticated cyber operations [2]. The potential impact and how chal-
lenging they are to detect make this an important topic for research to provide
knowledge on how we can defend against them.

There are few such disclosed attacks, but they are often devastating due to the
ability to target offline systems or compromise many entities simultaneously. With
the amount of software and underlying components existing in our digital infras-
tructure, manual analysis to detect malicious updates is not feasible. Therefore, it
is necessary to study ways of improving the analysis efficiency and identification
of malicious behavior in software updates.

Using existing methods and tools, we develop an automated approach for
identifying behavior and capabilities in software updates in a standardized for-
mat. This approach is further leveraged to present behavior differences in benign
updates and malicious updates from closed-source SSCAs. The lack of research
in this area is an important motivational factor for writing this thesis. Generating
more knowledge and data that can be further studied or applied are steps towards
improved cyber security.

1.5 Research questions

The main goal of this project is to improve the overall understanding and technical
ability to combat the threat posed by closed-source SSCAs. To achieve this, we
propose an approach using methods from similar problems; vulnerability research
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and malware behavior identification. We believe that identifying behavior from
new and modified code can be used to detect closed-source software supply chain
attacks.

The research questions are defined as follows:

1. How can program behavior be extracted from the changes introduced in
program updates?

2. Which behaviors are prominent in benign software updates and how do they
differ from malicious updates?

3. To what extent can extracted behaviors be used to identify software supply
chain attacks?

4. How can identified behaviors provide a malicious score that can be used to
detect malicious software updates?

1.6 Scope and contributions

The main contribution of this thesis is a novel approach for automated software
behavior identification in software updates by leveraging existing tools and tech-
niques. The approach aims to present new knowledge within the domain of closed-
source software supply chain attacks and how we can mitigate the threat through
detection. This includes the use of binary differential analysis for finding the up-
dated software functions in combination with software behavior identification and
reporting in standardized behavior format. We also believe that our automated
approach can contribute to improving the workflow and workload for analysts.

An important contribution of this project is identifying common behavior in
benign software updates, which, to our knowledge, has not been done before.
Therefore, we are able to compare this to malicious update behavior and deter-
mine behavior patterns that are more likely to occur in malicious and benign up-
dates.

We also test one possible approach for calculating a malicious score and per-
form classification using machine learning methods to determine if we can detect
update hijacking based on identified behaviors in updates.

The focus of this thesis is on the customer side of closed-source supply chain
attacks where the attack vector is update hijacking. Therefore, the datasets are
created with compiled binaries of closely related versions. Due to the small num-
ber of such disclosed attacks, the number of malicious binaries is low. Also, as the
best-known and most advanced attacks are SolarWinds and M.E.Doc, which are
written in C# using the .Net runtime, the benign software updates analyzed in
this thesis are all .NET binaries. The main advantage of this is that .NET requires
less processing resources during differentiation and behavior identification than
samples written and compiled in C/C++. The potential downside is that we do not
account for the majority of software, which are not C# .NET binaries. To increase
the sample size, the malicious dataset includes eight C/C++ compiled binaries
because there only were two examples of update hijacking of .NET software.
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1.7 Ethical and legal considerations

This research uses methods for finding behavioral changes and additions to pro-
prietary software but does not present information not already publicly reported
or information about how functionality is implemented. For the benign dataset,
the combined overall results are presented, not revealing the source software.
For the malicious dataset, the identified capabilities and the function names are
compared to existing analysis to evaluate the methods. The capabilities identified
are based on the rules and signatures of Mandiant’s Capa tool [14], designed to
identify techniques associated with malicious behavior.

1.8 Thesis outline

This thesis consists of six chapters, including this introduction. Following this
chapter is a background, presenting relevant previous work and theory for this
thesis. Chapter 3 describes the methodology used, including experiment setup,
dataset generation and usage, and the analysis process. Chapter 4 presents the
results from the experiments and the findings from the analysis. Discussion of the
results and findings leading up to answering the research questions are presented
in chapter 5. Finally, chapter 6 presents the conclusion and future work. The ap-
pendix will include the code generated and used in this project.





Chapter 2

Background

In this background chapter we will present existing knowledge, theory, and ap-
proaches pertaining to malware analysis and software supply chain attacks.

2.1 Malware analysis

Malware analysis is the structured way of finding out how malicious software
behaves, which actions the software can take, and how it can be detected and
mitigated [15]. It is often divided into static and dynamic analysis, examining
the malware without executing it or while executing and analyzing its interaction
with the target system [15].

Zeltser [16] describes three stages of malware analysis; behavioral, code, and
memory analysis. Typically, a behavioral analysis is done first to gain an overview
of the sample’s behavior; also called basic dynamic analysis. This stage aims to
identify capabilities and characteristics by monitoring how the malware interacts
on a target system or in a specific environment. The second stage is code analy-
sis which involves advanced static and dynamic analysis of the program’s code.
Reverse engineering is performed in static analysis of the disassembled program
to understand how the program’s capabilities and behavior are implemented. De-
bugging can further be used to step through each code instruction to observe the
low-level behavior. This second stage can be very time-consuming but allows for
detailed insight of malware behavior. The last stage involves investigating how
the malware uses memory. Runtime artifacts can easier be identified compared to
code analysis. Using all three stages can provide an efficient way of analyzing mal-
ware by examining the program behavior from different views. The stages do not
have to be performed sequentially and can be used simultaneously to complement
each other [16].

There are many different techniques and tools for analysis and they can aid
in different stages of analysis and for different types of malware. In the following
subsections, we will cover a few techniques and tools for malware analysis to
provide background for the methodology used in this thesis.

7
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2.1.1 Static malware analysis

Static analysis can be further broken down into basic and advanced analysis.

Basic static analysis

Basic static analysis uses the information that can be found by examining the data
from the file header and existing strings or byte sequences.

Examining the file header, it is possible to identify the imported libraries and
functions from the Import Address Table (IAT) [15]. These imports are used by the
program so that the author does not have to implement the functionality them-
selves. Thus, it can provide valuable information about the behavior of the mal-
ware. For example, the import of wininet.dll and the function HttpSendRequestA1,
indicates that the program can send HTTP requests, possibly for connecting to a
command-and-control (C2) server, downloading data, or extracting data. How-
ever, it is also important to keep in mind that libraries can be statically linked or
imported at runtime and not show up in the IAT. Static linking will include the
library in the binary and it can be harder to identify the imported functions [15].
For runtime linking, the library and function names can sometimes be observed
by examining strings if they are not obfuscated [15].

Extracting the human-readable strings from the program is also a basic task
that can reveal information about software behavior, such as functions imported
at runtime or strings used by functions [15]. Programs with network functional-
ity must specify the destination, which could be an IP address, domain, or URL.
This must be stored somewhere in the binary and can often be found as ASCII or
Unicode strings [15].

Basic static analysis is a simple approach and initial stage to get an overview
of the malware’s purpose and functionality. However, more advanced techniques
are often necessary to fully understand how the malware works.

Advanced static analysis

Advanced static analysis is the approach of analyzing the binary code, where the
goal is to understand what the code does and reveal its functionality. The binary
contains the machine code which represents the instructions executed by the CPU,
and it can be translated into human-readable assembly code using a disassembler
such as IDA Pro2 [15]. Reverse engineering is the analysis of the assembly code
and is a powerful method as it is possible to gain detailed knowledge of exactly
how the program works. It also allows for finding behavior that is not necessarily
shown in dynamic analysis. However, it can be a very time-consuming task when
the binary, especially when the program is large and contains many functions.
Thus, reverse engineering is not feasible when dealing with a large and continuous

1https://learn.microsoft.com/en-us/windows/win32/api/Wininet/nf-wininet-
httpsendrequesta

2https://hex-rays.com
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flow of malware samples, but rather an approach used when analyzing novel or
high-priority binaries.

2.1.2 Dynamic malware analysis

Dynamic malware analysis includes approaches where the malicious software is
executed and the interaction on the system is monitored and examined. Like static
analysis, we have basic and advanced techniques for dynamic analysis.

Basic dynamic analysis

Basic dynamic analysis involves running the software in a controlled environment
where we can capture its actions. In the controlled environment, monitoring tools
run to capture network activity, process activity, file system interaction, registry
interaction [15].

Basic dynamic analysis can be very valuable as it can identify very detailed
information about behavior. However, the amount of information can be very
large and we must know how to run the sample with the correct settings, pa-
rameters, and possibly correct interactions to trigger the different code paths and
have accurate results [15]. Some programs can be challenging to run in an analy-
sis environment because they may rely on other software or specific environment
variables. Basic dynamic analysis is also prone to anti-analysis techniques, which
could cause the program to behave differently when detecting it is running in an
analysis environment [15].

Advanced dynamic analysis

Advanced dynamic analysis is an approach where analysts have more control over
the sample execution. Instead of just running the software and hoping it will show
us its behavior, we can execute the machine code instructions step by step through
debugging. Thus, we can observe what each instruction does and how values in
process memory are used [15]. As with advanced static, advanced dynamic anal-
ysis is powerful but time-consuming.

2.1.3 Malware detection and classification

The behavior of malware can be identified effectively by examining the system
calls performed by the malicious process [17]. The system calls can be enumerated
by dynamic or static analysis. Basic static analysis may not be able to find all calls
due to dynamic loading of functions and obfuscation. Advanced static analysis
may however find all system calls without the need to execute the malware.

Malware detection is generally based on signatures or heuristics [18]. Signature-
based detection relies on finding certain patterns found in previously seen mal-
ware. These patterns can be specific byte sequences, strings, values, or artifacts
found in the binary. Signature-based detection is efficient for detecting known
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malware but is less capable of finding new types. Heuristic-based detection looks
for behavior or characteristics uncommon for benign programs but typical for mal-
ware. This has the advantage of detecting previously unseen malware, for which
we do not have a signature, but is more prone to false positives.

Machine learning methods are frequently used to create malware classifiers.
These classifiers are trained on large amounts of data from known malware and
benign programs to create as accurate classifiers as possible. The training data
consists of a defined set of attributes suitable for classification and can be based
on features or patterns found in the binaries. A classifier essentially represents
a function that is learned from the training data [19]. Some common classifiers
include decision trees, support vector machines, naive Bayes, and artificial neural
networks [19], which represent the classifier function in different ways.

Classification based on machine learning methods can help quickly detect mal-
ware based on many patterns or patterns that are challenging to distinguish in
manual analysis. Thus, reducing the workload on malware analysts.

2.2 Software supply chain attacks

Most applications have several external dependencies to other applications cre-
ated by third parties. External dependencies are software components that soft-
ware applications use to behave properly or perform some action [20]. These com-
ponents can be libraries, functions, application programming interfaces (API), or
frameworks that are created by a third party and can be open-source or closed-
source [20]. For example, the Windows API is used by programs to run on and
interact with the Windows operating system. Dependencies can be either direct
or transitive, i.e., directly used by the application or indirectly used through other
dependencies [20].

These chains of application dependencies are part of the software supply chain
and can become quite large and complex. The increase in software and the contin-
uous development of existing software to expand functionality further increases
the complexity. The attack surface increases along with the software supply chain
because each software component or the supplier themselves can have vulnera-
bilities or weaknesses that can be exploited by attackers [1]. Thus, making it more
difficult to maintain control of the attack surface, which is important in defending
against cyber threats.

Software supply chain attacks can target all stages in a software life cycle (fig-
ure 2.1); from the design phase throughout maintenance until it is retired [21].
Typically, the development and deployment phases are compromised. Adversaries
may modify the software as it is developed, either through direct access to the
development servers or through compromising external dependencies [21]. Com-
promising the deployment stage can allow attackers to alter the software hosted
on trusted distribution servers.

A supply chain attack can be defined as a compromise of a supplier that facili-
tates an attack on a customer [1]. The first target is a supplier delivering software
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Figure 2.1: A simplified representation of the software life cycle [21]

to its customers or users, who are the intended target(s) of the attack [1]. There
are several types of software supply chain attacks and they mainly differ in how
the supplier is compromised.

In the following subsections, we present some types of SSCAs before we de-
scribe examples of update hijacking which is the main focus of this thesis.

2.2.1 Software supply chain vulnerabilities

Certain software vulnerabilities can allow attackers to execute malicious code on
systems that use the vulnerable software. A software supply chain attack can there-
fore arise from vulnerabilities that exist in the software supply chain.

Log4Shell is a vulnerability that existed in the Apache Log4J library which
was used by many Java applications for logging [22]. The vulnerability allowed
attackers to run malicious code and gain control of the systems that used this
library [22]. A few disclosed software supply chain attacks from this vulnerability
include an attack on the Belgian Ministry of Defence and academic institutions in
the USA [23].

This is only one example, but exploitation of software vulnerabilities is ob-
served as one of the most used techniques for initial access in cyber attacks and it
has increased in recent years [24].

2.2.2 Open-source software supply chain attacks

Uploading malicious software packages or applications to public repositories is a
method leveraging the dependencies on open-source software, and is frequently
observed [25]. The malicious software can masquerade as benign software by
using a similar name, known as typosquatting, but including malicious code along
with the original benign code [25].
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Attackers can also gain access to the development process, by gaining access to
developer environments or accounts or becoming a contributor to the project [2].
In the recent XZ Utils supply chain attack [26], an adversary became a contributor
to the open-source project, and after a few years of gradually gaining control of the
development, they added a backdoor in the software. The backdoor was included
in some development versions of Linux distributions but was discovered before it
was distributed to production versions of Linux and could affect millions of users
[26].

2.2.3 Undermining code signing

Software is usually signed with a digital signature to assure users that the code
is created and distributed by a trusted party [2]. However, attackers can under-
mine this process by stealing valid certificates or private keys used to sign them
[2]. By signing malware with valid certificates, attackers can exploit the trust in
code signing to bypass security checks and get their malware to execute on target
systems [2]. The abuse of code signing does not include the delivery of malicious
code but takes advantage of the trust between suppliers and customers. It can also
be a part of the other SSCA types, where the malicious code is signed because it
is inserted before the code-signing occurs [2].

2.2.4 Update hijacking

In update hijacking, the attacker trojanizes benign software by inserting malicious
code into the benign program. The threat actor gains access to the software devel-
opment or distribution environment and inserts malicious code in the software,
delivering malware with a benign program update or installer, often with valid
code signatures [1, 2]. If the attackers have access to the development environ-
ment, the malicious code can be included in the benign software by modifying
the code and adding malicious functions. Malicious code can also be included by
adding a library, such as a DLL, along with the benign program or installer.

Furthermore, threat actors can also compromise suppliers to acquire valid cer-
tificates and use this to sign a modified version of the benign program including
malicious code, before distributing it from their servers [2]. Update hijacking is
a widely seen method in closed-source SSCAs such as SolarWinds, CCleaner, and
M.E.Doc [2, 25].

2.2.5 Detecting software supply chain attacks

A system for detecting closed-source supply chain attacks has been presented by
Barr-Smith, et al. [12]. This system uses differential analysis to find malicious
behavior in software builds by comparing extracted static and dynamic features
between two adjacent build versions. The results show that the static features
of obfuscation, packing, entropy, and Original Entry Point (OEP) changes, are the
major contributors to detecting malicious behavior inserted into proprietary code.
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Similar research completed by Refsnes [11], shows the use of basic static anal-
ysis and file features in differential analysis. His research shows that use of simple
tools without high resource requirements or deep technical knowledge of reverse
engineering can aid in the detection of trojanized binaries.

Wang et al. [27] propose a method for detecting closed-source supply chain
attacks by examining command-and-control traffic during the attack. Specifically
detecting exfiltration of data that is abnormal in the network. The method remains
to be empirically validated but presents one possible approach to deal with supply
chain attacks.

2.2.6 Examples of closed-source software supply chain attacks

The number of disclosed closed-source software supply chain attacks is low, but
there are some examples using different techniques to trojanize software that are
interesting to examine further.

SolarWinds

In 2020, the cyber security company FireEye discovered the SolarWinds supply
chain compromise [3]. The attackers trojanized the SolarWinds Orion business
software by inserting a backdoor in one of its components, leading to it being
included in the build process and distributed on software updates [28]. The com-
ponent including the backdoor was SolarWinds.Orion.Core.BusinessLayer.dll, a
signed library loaded by the SolarWinds.BusinessLayerHost.exe, a benign exe-
cutable [3]. The malicious function names and the network activity were tailored
to the SolarWinds application, resembling normal and benign names and activity
[3]. This may have been a reason for the backdoor not being discovered before
months after distribution [28].

The SolarWinds Orion software was used by several companies and organi-
zations worldwide, and those installing the update were compromised with the
backdoor [28].

NotPetya - M.E.Doc

In 2017, attackers gained access to the development servers of the Ukrainian ac-
counting software M.E.Doc and inserted a backdoor into one of its components
ZvitPublishedObjects.dll [29]. The trojanized software was then pushed as software
updates to infect users of the software. The backdoor provided the ability of exe-
cuting commands, gather information, and deliver and execute new malware [5].
It is through this backdoor functionality that the attackers most likely deployed
the destructive NotPetya malware to their targets [5]. The M.E.Doc software was
used by many organizations in Ukraine and companies working there and thus
the attackers were able to compromise several organizations in different sectors,
such as transportation, finance, healthcare, and energy [29]. The Danish global
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shipping company, AP-Moller-Maersk, estimated a cost of over 200 million dollars
due to the disruption of operations from the NotPetya attack [30].

Dragonfly campaign

The dragonfly campaign consists of several infection vectors, including supply
chain attacks through trojanizing benign software [31]. Threat actors compro-
mised the web servers of industrial control system (ICS) suppliers eWON, Mesa
Imaging, and MB Connect Line [32]. The websites provided downloads of the
suppliers’ software and drivers, which the attackers changed to include backdoors
[31]. The eWON software Talk2M eCatcher and eGrabit for remote access to pro-
grammable logic controller (PLC) systems were trojanized with the Havex3 re-
mote access tool (RAT) [32]. The Mesa Imaging driver SwissRanger for camera
interfacing was trojanized with the Sysmain RAT [32].

The software was trojanized by creating a new installer, including the malware
as a DLL and the original installer so the benign program would also run [32].
Thus, this campaign uses a different technique to trojanize software where the
attackers did not alter the source code, but rather add malware to the installer.

SmartPSS

Mandiant [33] discovered a supply chain attack originating from the SmartPSS
software provided by a security camera provider. This supply chain attack is simi-
lar to the Dragonfly campaign described above, by adding malicious functionality
to the installer while executing the original legitimate software. The SmartPSS
installer was trojanized by including a slightly altered legitimate windows appli-
cation mshta.exe and modifying the installer script to execute this application with
a URL as argument [33]. The URL is contacted to download a script that further
downloads and executes a backdoor in memory [33].

3CXDesktopApp

In 2023 the communication software 3CX Desktop App [34] was trojanized and
spread through downloads from the 3CX website [35]. The application is used
by businesses and provides users with communications such as chat, video, and
voice calls [36]. Mandiant [36] found that threat actors had gained access to the
build environment of 3CX through an earlier supply chain attack. The 3CX Desk-
top App installer was trojanized by including two malicious DLLs, ffmpeg.dll and
d3decompiler_47.dll [35]. The ffmpeg.dll was loaded by the application, which in
turn executes the d3decompiler_47.dll and finally, contacts C2 servers to down-
load an information stealer malware [35, 36]. Trend Micro [37] says that the DLLs
were trojanzied or patched to execute the malicious functions, which indicates
that the attackers had access to the software build or deployment environment.

3https://attack.mitre.org/software/S0093/
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CCleaner

Cisco Talos [4] reported on a supply chain attack where a version of the computer
cleaning software CCleaner was distributed with a backdoor. They further men-
tion that the trojanized binary was signed with a valid certificate and included
seemingly benign artifacts from the compilation. This indicated that the attackers
had gained access to the development environment and modified the legitimate
code to include malicious code [4]. For this supply chain attack the attackers mod-
ified a TLS callback function to call a malicious code loader before execution of the
legitimate program [4]. The malicious code loads a malicious DLL which contacts
C2 servers to receive instructions[4]. CCleaner is a very popular software which
claims to have over 2 billion downloads worldwide and Talos’ network traffic anal-
ysis showed a significant number of requests to the potential C2 domains.

2.3 Binary code differentiation

Binary code differentiation, also called binary similarity analysis, is used to deter-
mine differences and similarities in code [7]. These techniques can be used for
different purposes, such as tracking changes to software, or malware, versions
over time. The code changes between versions can be examined to find vulnera-
bilities or new functionality without the need to examine the entire program every
time.

2.3.1 Methods

Similarity analysis can be divided into three categories: Syntax, semantics, and
structural matching. Haq and Caballero [7] describe the methods in their binary
code similarity survey. Syntax concerns the representation of data making up the
objects to be compared. For binary differentiation, this could be the machine code
or the assembly instructions making up the basic blocks and functions in the pro-
gram. Syntax-based matching will look at similarities in these representations.
Different compilers and optimizations can produce different machine and assem-
bly instructions for the same program. Thus, syntax-based matching can fail to
identify similar functions across different compilations [7].

Semantics represent the functionality of an instruction or set of instructions.
Comparing semantics between binaries can therefore solve the issues with syn-
tactic matching. However, comparing semantics for whole executable programs is
too difficult and resource-heavy, but it can be possible to approximate matching
by looking at the semantics of smaller parts of code [7].

Structural matching is a widely adopted approach in binary code differentia-
tion because it is more dependable than syntax-based matching, but more com-
putationally feasible than semantics [7]. Creating a structure of the data in each
compared object and then examining the structural differences, can mitigate the
problem of syntactic matching while retaining lower computational requirements
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than semantics. Flake [38] presents a structural method of comparing executable
programs, by representing the functions of the program as graphs, called control
flow graphs (CFGs). The whole executable is further represented as a call graph
consisting of the relationship between the function control flow graphs. Flake de-
scribes each CFG as having only one point of entry, but may have multiple points
of exit. In the CFG there are basic blocks, or nodes, which consist of assembly
instructions that are grouped together by dependency and sequential execution,
and split by branching instructions such as jumps [38]. Structural matching will,
however, not be able to account for changes to code structure optimizations [7].

A disassembler is needed to generate the CFGs based on basic blocks and in-
structions. However, software written in interpreted languages, such as C# and
.NET, will not be represented by assembly but rather an intermediate represen-
tation called bytecode which is translated to machine code by the interpreter at
runtime[15]. The bytecode can be decompiled back to source code, not necessar-
ily the same as the original, but often very similar [39]. The IDA Pro disassembler
does not decompile the bytecode but is able to generate control flow graphs for
.NET bytecode, showing how the code flow is for the software. Thus, making it
possible to use structural-based matching from CFGs on .NET binaries.

2.3.2 Binary differentiation tools

Some of the practical approaches in binary code differentiation include BinDiff
[40], QBinDiff [41], Ghidriff [6], DeepBinDiff [42], and Diaphora [43].

BinDiff is an open-source program for finding differences and similarities be-
tween executable files using the disassembled code [40]. It provides the ability to
examine patches from vendor software, where the code is unavailable, and eases
the tracking of changes to software [40]. BinDiff uses the disassembled code to
generate call graphs and control flow graphs to conduct structure-based matching
[38, 44]. Thus, a disassembler such as IDA Pro, Binary Ninja, or Ghidra is required
to generate the disassembly code [40].

Ghidriff [6] is a tool for comparing binaries using Ghidra as a disassembler
and for displaying results in a way that is easy to share. It is based on the built-in
version tracking capability in Ghidra and custom function matching algorithms,
including some similarities with BinDiff [6].

QBinDiff is similar to the other diffing tools but aims to create a more modular
framework that can be fitted to specific scenarios [41]. Graph-based structural
matching is combined with graph node attributes, and used in a machine learning
algorithm to calculate a mapping between the binaries’ structure [41]. QBinDiff
is more resource-demanding than BinDiff and is considered an experimental tool
that requires more knowledge for optimal usage [41].

DeepBinDiff [42] is a prototype binary diffing framework using machine learn-
ing and an unsupervised neural network algorithm. Like QBinDiff, it leverages a
structural matching of control flow graphs and semantic information from the
basic blocks as the attributes for training the model [42].
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Diaphora [43] is another open-source tool for binary differentiation using
syntax and structural matching, and is considered the industry standard accord-
ing to [45]. For syntax matching, Diaphora compares several hashes generated
from bytes, instructions, and names, as well as mnemonics, assembly code, and
constants [43]. Structural-based matching uses control flow graphs, similar to
the previous approaches. Diaphora also has pseudo-code diffing and heuristics
to leverage decompilation features in tools such as IDA Pro, where the assem-
bly code is translated to a C-like pseudo-code [43]. Diaphora first finds all exact
matches before finding partial matches and calculating similarity ratios [45]. The
ease of automating the binary differentiation process and interacting with the
results presents an advantage with Diaphora as it enables easier integration in
binary analysis processes.

2.4 Malware behavior and capabilities

The Pyramid of Pain [46] emphasizes the effectiveness of responding to threat
actors’ tactics, techniques, and procedures (TTP). TTPs are more challenging to
change than indicators such as hashes, IP addresses, and domains, but also more
challenging to identify. Identifying behaviors and techniques in software could
therefore be an effective way of identifying maliciousness and detecting malicious
code in updates and legitimate software.

MITRE ATT&CK® is a widely used cyber threat modeling framework and knowl-
edge base, originally intended as a structured way of emulating threat actors in
exercises [47]. ATT&CK has other use cases as well, such as categorizing and label-
ing activity in cyber attacks and malicious behavior in systems through behavior
analysis [47]. Behavior can be categorized as techniques used as part of a tactic to
achieve an objective [48]. Using data sources in systems and networks to monitor
behavior and categorizing them using ATT&CK, could aid in detecting malware
and intrusions [47].

The Malware Behavior Catalog (MBC) [49] is based on MITRE ATT&CK, but is
designed specifically for malware analysis. It is similarly structured, using objec-
tives, behaviors, and methods, instead of tactics, techniques, and sub-techniques
[49]. The MBC behaviors and objectives are more specified towards malware be-
havior, for example, the objective "anti-static analysis" includes a behavior "exe-
cutable code obfuscation". One use case mentioned in [49], is similarity analysis,
which is highly relevant for this thesis.

In 2020 the Mandiant FLARE team released the open-source malware anal-
ysis tool called Capa [14]. Capa identifies program capabilities through feature
extraction and rule matching in PE, ELF, and .NET executables [8, 50, 51]. The
features are derived from basic and advanced static analysis and include; strings,
file header information, imported libraries, exported functions, section names,
disassembly API calls, instruction mnemonics, and code references [8]. For .NET
files, Capa extracts features such as; namespace, class, api, import, function-name,
number, and string [51].
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Capa uses a set of rules and signatures to associate program features with
known techniques and behavior. Many of the rules and signatures are associated
with the MITRE ATT&CK framework and the Malware Behavior Catalog (MBC)
but may identify more capabilities due to the rules not being mapped. One Capa
rule may also map to both ATT&CK and MBC. The Capa rules are defined by
features and logical combinations of their values. The rule scope defines whether
to match on basic block level, function level, or file level. [50]

Library functions included in the binary are matched using the same method
as Hex-Rays’ IDA Pro FLIRT signatures [50, 52]. The Capa rules can then match
on library functions but the analysis will not be run on those matched functions
[50].

Capa can be used as a standalone program to generate reports of identified ca-
pabilities and behaviors in analyzed executable files, or it can be used as a Python
library as part of a workflow. Recently, the possibility of integrating a malware
sandbox to get features from basic dynamic analysis has also been implemented
[53].

2.5 Malware scoring

A malware score, also called severity or malice score, represents a value or scale
that attempts to determine the threat of potential malware [54, 55]. It can aid
analysts and defenders in threat assessment and incident response by providing
a way of prioritizing actions and analysis resources [54]. Automated malware
analysis tools, such as sandboxes which execute programs in a safe environment
and report on the behavior, often provide a severity score based on the behaviors
observed [54].

Existing research [54–56] addresses the limitations and flaws of existing scor-
ing methods, and proposes improvements and new methods. They argue that ex-
isting methods mainly depend on the frequency of observed indicators and behav-
iors defined by signatures. These signatures define a severity score and, in some
cases, a confidence score for the observed indicator or behavior, and are most of-
ten defined manually by researchers and domain experts [55]. Rohini et al. [54]
presents an approach for scoring malware behavior by leveraging contextual in-
formation about behaviors occurring in relation to each other. Walker et al [56]
emphasizes the potential of using threat intelligence sources to provide better con-
fidence to the severity scores and signatures. They argue that indicators linked to
previously reported attacks or threat actors could be leveraged to generate more
robust and accurate malware scores.

MITRE Engenuity Center for Threat Informed Defense [57, 58] has published
a framework for prioritizing ATT&CK techniques, intended as a systematic method
for defenders to determine which techniques are most relevant to focus on. Es-
sentially, it is a calculator where users define their network and systems, and
which monitoring coverage is available to identify techniques [57]. The calculator
also takes into account technique prevalence and choke points when calculating
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the weight for each technique [58]. Prevalence is based on the MITRE Engenuity
Sightings Ecosystem [59], providing a database consisting of techniques observed
over time based on reporting and community contributions [58]. Choke points
are determined by examining technique relationships and finding the bottlenecks
where many techniques lead to or techniques that are precursors for many others
[58]. This project is not designed to provide a malware score but does present
a weight for ATT&CK techniques indicating its prevalence and potential impact,
taking into account some context of other related techniques [58]. Thus, it could
present a possible improvement to existing malware scoring methods.





Chapter 3

Methodology

The goal of this thesis was to create a new approach for identifying malicious
behavior in software updates from closed-source software supply chain attacks
and determine if we could detect these attacks. The approach is based on existing
tools and techniques to create an automated method of achieving our goal and
thereby improving detection and reducing workload for analysts. Our method uses
binary differentiation to find the new and updated code in software updates before
we attempt to identify malicious behavior in this code. The identified behavior is
further used to calculate a malicious score and train and test machine learning
models for classification.

To perform the experiment, we created a dataset consisting of samples from
disclosed closed-source software supply chain attacks and benign software sam-
ples. Because we are examining software updates, each element in the dataset
consisted of two different versions of the same program, which we call a sam-
pleset. Thus, for the malicious samplesets (closed-source software supply chain
attacks), a benign version was grouped with the trojanized sample. The dataset
creation is further described in detail in section 3.6.

This chapter presents the methodology and describes how the experiments
were conducted and how the datasets were generated. First, an overview and
description of the overall experiment is presented before we describe each stage
in detail. Finally, we present the datasets used in the experiments and how they
were created.

3.1 Experiment description

The experiment consisted of four stages and was performed on each sampleset in
the dataset:

1. Binary differentiation: Perform automated binary differentiation to find
the new and modified functions in each sampleset.

2. Behavior identification: Identify behaviors and capabilities from the func-
tions that are not identical, for each sampleset.

21



22 E. Frankrig: Closed-Source SSCA Detection Using Behavior Identification

3. Malicious scoring: Calculate a malicious score for each sampleset based on
the extracted behaviors.

4. Classification: Use the identified behaviors as attributes in machine learn-
ing classification, to determine their usability in classification of malicious
updates.

The stages are visualized in figure 3.1 below:

Figure 3.1: Method used in the thesis experiment

Stage 1 and 2 aims to answer the first research question, about how program
capabilities can be identified from the changes introduced in program updates.
Binary differentiation (stage 1) was used to find the changes in software up-
dates. Taking two versions of the same program as input and finding the functions
that differ. Behavior identification (stage 2) was completed in two parts. First, we
found behaviors and capabilities for all functions in the second (newest) sample.
Then, the functions that were equal were filtered out so we were left with only
the functions that differed and the behavior found in them.

After performing the experiment on the whole dataset, the resulting data from
stage 2 included all identified behaviors and capabilities for each sampleset. Thus,
providing the results to discuss and answer the second research question, about
the difference in prominent capabilities in benign and malicious updates. For the
malicious samplesets, we examine the results from binary differentiation and be-
havior identification in more detail and discuss how they relate to existing report-
ing.

Stage 3 aimed to provide results for answering the fourth research question.
The behaviors and capabilities identified for the new and modified functions were
used to calculate a malicious score. The malicious score was calculated using
weights for each capability that was mapped to a MITRE ATT&CK technique. This
is covered in more detail in section 3.4.

The last stage used the identified behaviors as attributes in machine learning
classification. Three attribute evaluation metrics were tested and three different
classifiers were used to determine to which extent the behaviors and capabilities
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were able to classify malicious updates. The results from this stage would aid in
answering the third research question.

3.2 Stage 1: Binary differentiation

To find the differences between the samples in each sampleset, we used binary
differentiation. This provided the ability to find code differences and implemen-
tations to determine which functions are modified or novel in a program update.

The binary differentiation tool, Diaphora [43], was used to conduct the bi-
nary differentiation. It relies on Hex-Rays IDA Pro disassembler to generate the
disassembly and function call graphs. We tested other disassemblers and binary
diffing tools on the SolarWinds sample but found them lacking in the ability to
disassemble .NET files, or more challenging to work with the result databases and
integrate into the experiment workflow.

Diaphora creates an SQLite database for each of the samples with the informa-
tion from the disassembler and then runs several matching strategies and heuris-
tics using these databases. The output of this step was a new database (Diaphora
file) consisting of one table listing the unmatched functions, i.e., new functions
that are not present in the other binary. The other table of interest is the "results"
table, containing the functions that are partial matches and their similarity ra-
tio. The similarity ratio is a number between zero and one, where the value one
indicates a complete match.

The database tables were queried to extract the new and modified functions.
If the similarity ratio was less than one, indicating an unequal function, and it
contained more than one single basic block, the function was labeled as modified.
Functions with only one single basic block and a high similarity ratio yielded very
minor differences, which were not of interest in this research.

To conduct the binary differentiation, we created the script presented in code
listing A.2.

3.3 Stage 2: Behavior identification

Behavior identification was conducted using Mandiant’s Capa library [14]. The
Capa GitHub repository[14] provides a script for showing capabilities by func-
tion. By modifying this script, we were able to extract the capabilities for the last
sample in each dataset and filtered out the functions that were not found to be
new or modified by the previous binary differentiation stage. The modified script is
provided in listing A.5. The results were written to the Diaphora database of each
sampleset, creating a table for each behavior framework; ATT&CK techniques,
MBC identifiers, and Capa capabilities. These tables were used to perform fre-
quency analysis of the extracted capabilities to determine if they can provide more
knowledge about SSCA. Examining the distribution of behaviors, techniques, and
capabilities for the software updates, provided the foundation for answering the
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second research question. The ATT&CK table was additionally used to generate a
malicious score, which we describe in the following section below.

3.4 Stage 3: Malicious scoring

We wanted to find out to what extent we could use identified behaviors to cre-
ate a score indicating whether the software update was malicious or benign. To
achieve this, we used the MITRE Engeneuity Top ATT&CK Techniques framework
[58]. This experiment used the technique weights defined by prevalence score
and a choke point score from the methodology that was provided in their pub-
lic dataset [58]. The weights were used to score the significance of the extracted
behaviors, making it possible to calculate a score indicating the maliciousness of
the software update. To conduct the scoring, we used the spreadsheet provided by
MITRE [59] without adjusting the weights for detection coverage. This provided
weights for the techniques, ranging from 0 to 2.91. The complete table of weights
are presented in appendix C.

For each sampleset, the techniques extracted in Stage 2 were summarized and
multiplied by the weights from the spreadsheet. Finally, summarizing all the tech-
nique scores provided the final malicious score for the sampleset. The malicious
score for each sampleset is defined as follows:

S =
N
∑

i=1

nt ·wt

Where N is the number of identified techniques, nt is the number of occurrences
for a given identified technique t, and wt is the weight value for that technique.

The malicious scoring results were also stored in the Diaphora database for
each sampleset. One table for the score and another consisting of the identified
techniques, their occurrence, and their weight. Thus, providing a way of examin-
ing how the score was generated. To answer research question 4, we examined the
distribution of malicious scores across both datasets. Thus, determining whether
the SSCA samplesets were significantly different from the benign dataset, based
on the scores.

3.5 Stage 4: Classification

The experiment results are presented in digital databases, providing the follow-
ing data for each sampleset: Number of functions, file size, MITRE ATT&CK tech-
niques, MBC identifiers, Capa rules capability descriptions, scoring table, and the
final malicious score.

To answer the research questions and contribute more knowledge to the do-
main of closed-source software supply chain attacks and malware analysis and de-
tection, some statistical and machine learning measures were applied to the exper-
iment results. A comparison of ATT&CK, MBC and the Capa capabilities was done
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to acquire knowledge of which framework and behaviors may be better suited for
classifying updates as malicious or benign. The file size and the number of func-
tions for each sampleset were also analyzed to determine the influence it could
have on the amount of extracted capabilities or the malicious score.

3.5.1 Attribute evaluation

To determine the quality of the extracted capabilities and how they perform in
classifying software updates as malicious or benign, we performed some attribute
measures. Each extracted ATT&CK technique, MBC identifier, and capability rep-
resent an attribute. The class, or label, is represented by the samples’ type, i.e.,
benign or malicious classification. To conduct these measures, the data analysis
tools WEKA [60, 61] and RapidMiner1 are used. The measures used are:

1. Correlation feature ranking using WEKA.
2. Attribute relevance using Chi-square, information gain, and correlation in

RapidMiner.

Correlation feature ranking calculates Pearson’s correlation between the at-
tribute (technique) and the class (benign or malicious label). Chi-square statistic
calculates a match between the observed frequencies of the attribute to a the-
oretical expected frequency. Information gain is a measure based on entropy to
determine how much information each attribute holds. This is a standard mea-
sure and may weigh attributes with several unique values very high. Normalizing
these weights would counter the bias but may then create a new bias to attributes
with lower entropy [19].

3.5.2 Classification and validation

To evaluate whether the identified behaviors are suitable for classifying software
updates as malicious or benign, we conducted three classifications using WEKA:

1. Naive Bayes
2. Multi-layered perceptron (MLP)
3. Random forest

All classifications were tested using 10-fold cross-validation due to the low number
of samples. Cross-validation is often used when the dataset is small and dividing
the dataset into a training and testing dataset is not suitable [19]. For 10-fold
cross-validation, the dataset is divided into 10 subsets. A classification model is
built for each subset and tested against the combined set of the other subsets [19].
The average from the 10 classification tests presents the final classification results.

Naive Bayes is a classifier using the principles of probability, but assuming
the conditional independence of attributes [19]. In the learning stage, the overall
probability of each class is calculated as the prior probability and the conditional
class probabilities are calculated for each attribute conditional to the class [62].

1https://altair.com/altair-rapidminer
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Thus, each attribute will have a calculated probability of being present for each
class, making the Naive Bayes algorithm simple and fast [62].

Random forest is a type of decision tree algorithm where several decision trees
are generated using the dataset and a random selection of attributes [19]. When
testing the Random forest model, each decision tree gives a vote for the classifica-
tion which together results in a final classification [19]. Random forest improves
normal decision trees as the variance is decreased and mitigates the problem de-
cision trees have with being too specific to the data used to train it [19].

Multi-layered perceptron is a feed-forward artificial neural network with mul-
tiple hidden layers of neurons [19]. In the learning phase, it starts with random
weights for the layers but adjusts these weights through back-propagation for each
learning iteration [19]. Thus, ending up with a model that has suitable weights
for each layer to make as accurate predictions as possible.

The classifications were completed using each of the capability frameworks as
attributes in WEKA. Three datasets were created, one for each of ATT&CK, MBC,
and Capa capabilities. All three were populated with all samplesets, providing
their type as a classification label, indicating if it was malicious or benign. The
datasets were further populated with each of the capabilities and the frequency
per sampleset. The names for the extracted capabilities represented the attributes
in the dataset.

The Naive Bayes classifier was run with default settings in WEKA.
The random forest classification was run in WEKA with the following scheme:
weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001
-S 1
The MLP classification was run in WEKA with the following scheme:
weka.classifiers.functions.MultilayerPerceptron -L 0.1 -M 0.2 -N 500 -V 0 -S 0 -E 20
-H a. The number of hidden layers is set automatically based on the number of
attributes and classes la yers = (at t ributes+ classes)/2.

3.6 Datasets

The dataset generation and considerations are presented in detail in this section.
In this thesis, two datasets were created, combined, and used as input for the ex-
periment. One malicious dataset, which consisted of samples from known closed-
source software supply chain attacks, and one dataset with only benign software
updates. Each element in the datasets consisted of two binaries from the same
program, but different versions. These elements are called samplesets. The sam-
plesets in the malicious dataset consisted of a benign version of the program that
was trojanized in the supply chain attack and the trojanized version. The sample-
sets in the benign dataset consisted of two benign versions of the same program,
but different versions. Figure 3.2 below illustrates the dataset composition.
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Figure 3.2: Dataset composition

3.6.1 Malicious SSCA dataset

The SolarWinds and M.E.Doc closed-source software supply chain attacks were
part of the initial motivation for this thesis, due to their sophistication and impact.
Thus, our malicious dataset was created with these and similar closed-source soft-
ware supply chain attacks. M.E.Doc and SolarWinds are software written in C#
.NET, however, we did not find other closed-source software supply chain attacks
written in C# .NET. Therefore, the rest of the samples in the malicious dataset
were C/C++ binaries.

The rest of the sample selection is based on the previous work of [11] and [12],
and the publication from The Atlantic Council [63]which provides a description of
250 software supply chain attacks and disclosures. We aimed to find samples that
were similar to SolarWinds and M.E.Doc using three criteria: The type of system
that was targeted, the distribution vector, and type of software origin or type of
codebase. The target system is the Windows operating system. The distribution
vector is update hijacking. The software origin or codebase is third-party closed-
source applications. The availability of samples was also a factor restricting the
number of samplesets in the malicious dataset.

Filtering this dataset based on the criteria above and availability of samples,
the dataset for this thesis consists of the software supply chain attack samples and
a similar benign version shown in 3.1.

The SSCA samples are gathered from Recorded Future Triage sandbox [64]
and malware database and VirusTotal [65] with the help from CrossPoint Labs.
The main challenge in creating this database was finding suitable benign versions
preceding the malicious updated binary. The attempt to find correct versions was
aided by Intezer [66], which can present related samples based on automated
analysis. Without an enterprise subscription, not all related samples where visible
and very limited information was presented. However, we were able to leverage
this to find relevant benign versions for some samplesets. Finding the immediately
preceding version was not possible for all samplesets, and therefore some are
either a few versions prior or behind the malicious.

The trojanized SmartPSS binary uses a slightly modified legitimate Windows
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Table 3.1: The benign and malicious samples in the malicious SSCA dataset

Benign versions
Software Version MD5 Hash
CCleaner 5.32.00.6129 68ddcb629a7f2c5a3d2392f8177a3cd0
M.E.Doc 1.0.0.01 23fdc5d07b0a7d743137cce040345ba2
SolarWinds 2019.4.5200.9045 6b5f205d79a647b275500597975314a5
SwissRanger in-
staller

1.0.14.706 6120d14f8bb27b469724333947d5717e

eGrabit installer 3.1.0.852 8a6783a0b5cff2932b35b8c58925f5ab
eCatcher installer 4.3.0.155312 877848de6f2135e2dbc7d036f6804528
SmartPSS installer V2.002.0000009

.0.R.1904262
51ebe0db8fabace8ebc9d005b3c6cdec

SmartPSS
mshta.exe

11.00.14393.2007 5ced5d5b469724d9992f5e8117ecefb5

3CX ffmpeg 18.11.1213 f459ce9af5091bc1e450eb753f6eb0b7
3CX d3decompiler 18.11.1213 cb9807f6cf55ad799e920b7e0f97df99

Malicious versions
Software Version MD5 Hash
CCleaner 5.33.00.6162 ef694b89ad7addb9a16bb6f26f1efaf7
M.E.Doc 01.188-10.01.189 3efe62f6cb7285153114f888900a0962
SolarWinds 2019.4.5200.9083 b91ce2fa41029f6955bff20079468448
SwissRanger 1.0.14.706 e027d4395d9ac9cc980d6a91122d2d83
eGrabit 3.0.0.82 1080e27b83c37dfeaa0daaa619bdf478
eCatcher 4.0.0.13073 eb0dacdc8b346f44c8c370408bad4306
SmartPSS installer V2.002.0000007

.0.R.181023
1430291f2db13c3d94181ada91681408

SmartPSS
mshta.exe

11.00.14393.2007 c180f493ce2e609c92f4a66de9f02ed6

3CX Desktop App
ffmpeg

18.12.416 74bc2d0b6680faa1a5a76b27e5479cbc

3CX Desktop App
d3decompiler

18.12.416 82187ad3f0c6c225e2fba0c867280cc9

1 Version defined in ZvitPublishedObjects.dll, unknown MeDoc version
2 Benign version is a later version than the malicious
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executable "mstha.exe" [33]. The benign, unmodified version was collected from
The Windows Binaries Index [67].

Regarding the 3CX Desktop App, the malicious dataset includes the two tro-
janized DLLs modified in the installer, ffmpeg.dll and d3decompiler_47.dll [36].
From the Dragonfly campaign [32], the installers for eGrabit, eCatcher, and Swis-
sRanger are included in the dataset. The malware inserted in these installers are
not modified legitimate files, but rather standalone malware [32]. Thus, only the
installers are included, which facilitate for the execution of the malware.

3.6.2 Benign dataset

The second dataset consists of a large number of Windows executable files devel-
oped with the .NET Framework [68]. The dataset is chosen based on its availabil-
ity and the much faster processing of .Net binaries compared to other low-level
programming languages such as C/C++. The main focus in the malicious dataset
were the .NET files of SolarWinds and M.E.Doc, which also contributed to the
choice of using .NET programs in the benign dataset.

This dataset [69] is derived from GitHub and labeled as benign. However, al-
though it is labeled as benign, the repository owner does not provide explicit detail
on sources or how they are classified as benign. Analyzing the dataset, it seems to
be sourced from SourceForge, CNET, Microsoft and Softonic. Therefore, it is not
guaranteed that the binaries are not malicious or contain adware. As a counter-
measure the dataset was scanned with Microsoft Defender, yielding no malicious
files. Furthermore, the VirusTotal verdicts for each file in the final dataset were
collected, resulting in only four samplesets in the benign dataset being eliminated
from the results. Thus, the remaining dataset consisted of samplesets detected by
seven or less anti-virus engines on VirusTotal, most with zero or one detection.
None were tagged as suspicious. See code listing A.4 for the script used to gather
the VirusTotal information.

The benign dataset was created by finding binaries with the same program
name but with different content and version description. This process was com-
pleted in the following steps:

1. Extract original program name, version and SHA256 hash from every binary.
2. Group together the files with the same program name and remove dupli-

cates by hash.
3. Sort by version.
4. Create a list of tuples consisting of two consecutive files; one program ver-

sion and the next in the list.

The script for creating the dataset is presented in listing A.1
Each of these tuples are referred to as a sampleset, with all samplesets mak-

ing up the total dataset. Binary differentiation was conducted on each sampleset
as part of the experiment, creating one similarity database per sampleset. This
database consists of the binary differentiation results, made up of tables of un-
matched (new) functions and matched functions. The matched functions table
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consists of a ratio from zero to one, indicating the similarity where one indicates
an identical match. The dataset is further filtered by removing the samplesets were
there are no matches, indicating that they were not versions of the same program.
The filtering process is completed using the script in listing A.3. From the origi-
nal dataset of 14397 samples, the final dataset consists of 420 samplesets after
sampleset creation and filtering.

Using a dataset consisting of only .NET binaries has the downside of exclud-
ing a large number of existing software written in other programming languages.
However, due to the large difference in processing time and hardware resource
requirements, it provides a benefit in making it feasible to conduct this experi-
ment on a fairly large dataset. A disadvantage of this dataset generation method
is that creating samplesets based on program name and version description from
the files’ header data, does not guarantee that the versions are directly adjacent or
even the same program. We attempted to mitigate this by filtering out the sample-
sets which had no or very few similar functions. However, the version deviation is
not accounted for and some samplesets may be several versions apart. Controlling
this would be a very time consuming task, and would not be feasible in the time
scope of this thesis. However, the extracted capabilities and behaviors will still be
representative for benign software updates, even though the amount may not be
representative for adjacent software versions. Software updates are not always
conducted for every version, and therefore, this method and dataset still reflects
real world applications.
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Results

In this chapter we present the result from the experiments. The experiment stages
of binary differentiation and behavior identification were closely linked and are
presented combined in the first section of this chapter, where we describe the iden-
tified behaviors after binary differentiation. These results will provide the knowl-
edge to answer our first two research questions; on how we can extract capabil-
ities from software update changes and determine which are typical for benign
and malicious updates. Next, we present results from malicious scoring and clas-
sification, which leverage the identified behaviors to determine whether software
updates are malicious or benign. Finally, more detailed results are presented for
the malicious dataset in section 4.4, including specific behaviors, malicious scores,
and differentiation results. Thus, providing information for discussing how our
approach performed and why it performed the way it did.

4.1 Behavior identification

We first found the new and modified functions in the software updates using bi-
nary differentiation. Then, we used Capa to identify behavior from these functions
and categorize them into MITRE ATT&CK techniques, MBC, and Capa capabil-
ities. In this section, we present the results from identifying behaviors from all
samplesets, both malicious and benign. We examine the frequency and distribu-
tion of behaviors and capabilities and highlight the differences between malicious
and benign updates. This lays the groundwork for applying malicious scoring and
classification as well as answering our research questions.

This section is divided into three parts where we present the results from
MITRE ATT&CK techniques, MBC, and Capa capabilities. This allows us to differ-
entiate between them to see if one is better suited for finding malicious behavior
in closed-source SSCAs.
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4.1.1 MITRE ATT&CK techniques

The techniques extracted from the datasets are presented in figure 4.1. We see
some techniques that seem very common in the benign set, such as T1012, T1083,
T1620, and T1082. These technique identifiers represent the following techniques,
respectively: Query registry, file and directory discovery, reflective code loading,
and system information discovery. The most prominent technique is the file and
directory discovery (T1083), which occurs 2157 times in the benign dataset and
18 times in the malicious. This technique is identified many times in the benign
samplesets with a very high malicious score. Technique T1213 represents "data
from information repositories", and has a very high occurrence for the small ma-
licious dataset. There are two techniques which are not observed in the benign
dataset, but is observed in the malicious. These are T1129 (shared modules) and
T1125 (video capture).

Figure 4.1: The histogram shows the distribution of MITRE ATT&CK techniques
for both datasets

Figure 4.2 shows how the techniques are observed on average in each dataset.
T1083 still stands out for the benign dataset, but T1213 shows the highest aver-
age occurrence of 9.4 times per sampleset. However, the results also show that
T1213 is only present in two samplesets in the malicious dataset; the SolarWinds
and M.E.Doc campaigns, with respectively, 25 and 69 occurrences. These are also
the malicious samplesets with the highest score. For the benign dataset, the sam-
plesets with the highest scores have a very large number of occurrences for the
T1083 technique.

If we look at the highest weighted MITRE Top ATT&CK techniques (table 4.1)
which we used for malicious scoring, we see that only T1112 and T1047 are ob-
served in the malicious dataset.
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Figure 4.2: The histogram shows the average number of observed MITRE
ATT&CK techniques for both datasets

Table 4.1: Top 10 ATT&CK techniques and their weights

Weight ID Description
2.914285714 T1059 Command and Scripting Interpreter
2.183333333 T1047 Windows Management Instrumentation
2.114285714 T1053 Scheduled Task/Job
1.945238095 T1055 Process Injection
1.880952381 T1218 Signed Binary Proxy Execution
1.826190476 T1574 Hijack Execution Flow
1.804761905 T1562 Impair Defenses
1.766666667 T1543 Create or Modify System Process
1.619047619 T1036 Masquerading
1.604761905 T1112 Modify Registry
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4.1.2 Malware Behavior Catalog identifiers

When comparing the results from MBC behaviors to ATT&CK techniques across
both datasets, MBC identifies more accounts of network communication, process
interaction, and details in file system interaction. The use of WMI is not mapped
to MBC, but is identified as an ATT&CK technique. The extracted MBC identifiers
are presented in figure 4.3 by averaging the occurrences in benign and malicious
datasets. The complete table of occurrences is provided in appendix B, table B.1.

Data encoding, cryptographic library usage, networking, and file attribution
modification are behaviors averaging higher in the malicious dataset than in the
benign. Like the ATT&CK techniques, file and directory discovery is more promi-
nent for benign samplesets than for malicious ones. On average, process creation
and termination also occur more frequently in benign than malicious.

Figure 4.3: The histogram shows the average number of observed MBC identifiers
for both datasets
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4.1.3 CAPA capabilities

The Capa capabilities represent all extractions, including ATT&CK and MBC, as
well as rules not mapped to these frameworks. Examining figure 4.4, the benign
samplesets seem to have a higher average of capabilities identified with file system
interaction, unmanaged runtime and memory, and process creation. The malicious
samplesets have a higher average of data encoding, random number generation,
WMI, network communication, and file attribution modifications. The complete
table of Capa capabilities is provided in appendix B, table B.2.

Figure 4.4: The histogram shows the average number of observed Capa capabil-
ities for both datasets
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4.2 Malicious score

The computed malicious score, based on the extracted ATT&CK techniques and
the MITRE Top attack techniques weights, for the malicious SSCA samplesets are
shown in table 4.2 below. The .NET binaries of M.E.Doc and SolarWinds provide
relatively high scores compared to the other samples, which are written in C/C++.

Table 4.2: Malicious score for the SSCA campaigns

Program Malicious score
Medoc 61.58
SolarWinds_Orion 35.70
CCleaner 2.82
SwissRanger_installer 0.00
eGrabit_installer 2.02
Talk2M_eCatcher_installer 2.02
3CXDesktopApp_d3decompiler 0.00
3CXDesktopApp_ffmpeg 1.49
SmartPSS_installer 1.15
SmartPSS_mshta 0.00

Figure 4.5 displays the scores for the 420 benign samplesets. The majority of
the samples score below 3 points, with a total of 165 samples scoring 0. There are
also a few outliers scoring very high. The basic statistical values for both datasets
are shown in table 4.3 below. The benign scores average on 3.5 points, compared
to the malicious dataset with 10.68. The standard deviation is much lower for the
benign dataset, while it is relatively high for the malicious.

Figure 4.5: The histogram shows the distribution of the malicious score for the
benign dataset. The Y-axis shows the number of samplesets and the X-axis shows
malicious score ranges grouped in intervals of 3 points
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Table 4.3 shows the malicious score statistics for both datasets.

Table 4.3: Malicious score statistics for both datasets

Dataset Mean Min Max Mode Median Std. Deviation N
Benign 3.50 0 79.90 0 0.56 8.92 420
Malicious 10.68 0 61.58 0 1.76 20.94 10

Further analyzing the data, to see what influenced the malicious score, some
correlations were found. We found that the number of functions in the binaries
had a high correlation to the score. However, the difference in the number of func-
tions between the versions in each sampleset did not seem to be correlated to the
score. Neither did the size of the files. We also observed that the most frequently
occurring techniques also correlated to the score.

4.3 Classification

4.3.1 Attribute evaluation

We ran different feature selection and evaluation metrics on the attributes of the
results. These attributes included the malicious score, extracted techniques, be-
haviors, and capabilities. The dependent variable is the "type" labeling the sam-
plesets as either malicious or benign. The metrics used were information gain,
chi-square, and correlation.

The information gain evaluation indicates that none of the capabilities pro-
vide any significant value across all three capability frameworks (ATT&CK, MBC,
and Capa capabilities). The largest value is 0.017 belonging to the capability of
setting file attributes. The Chi-square evaluation results in values ranging from 0
to 84.4. The most significant attributes for classifying the samplesets are shown in
table 4.4. Behavior involving obfuscation, encoding, cryptography, and network
are scored highest. The most significant correlations between capabilities and the
label (malicious or benign) are presented in table 4.5.

The high correlation features occur more frequently in the malicious dataset
than in the benign, which we can see in the figures presented earlier. This could
indicate that these features may be suitable for classification and determining
whether updates are malicious or benign.
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Table 4.4: Most significant capabilities based on chi-square values above 20.

Identifier Value
T1213 84.39
collection/database/sql::reference SQL statements 84.39
data-manipulation/xml::load XML in .NET 42.55
T1027 42.42
DEFENSE EVASION::Obfuscation::Encoding-Std Algorithm [E1027.m02] 42.4
DATA::Encode Data::Base64 [C0026.001] 42.38
data-manipulation/encoding/base64::Base64 encode 42.38
data-manipulation/prng::generate random numbers in .NET 42.16
CRYPTOGRAPHY::Pseudo-random Sequence::Use API [C0021.003] 42.16
T1129 42.1
COMMUNICATION::HTTP Communication::Get Response [C0002.017] 42.1
DATA::Compress Data:: [C0024] 42.1
communication/http/client::read data from Internet 42.1
communication/http/client::send data to Internet 42.1
data-manipulation/compression::GZip compress in .NET 42.1
T1140 33.11
DATA::Decode Data::Base64 [C0053.001] 33.11
data-manipulation/encoding/base64::Base64 decode in .NET 33.11
FILE SYSTEM::Delete File:: [C0047] 20.47
host-interaction/file-system/delete::delete file 20.47
T1033 20.39
T1087 20.39
host-interaction/session::get session user name 20.39
communication/http/client::send HTTP request 20.20
T1047 20.16
host-interaction/wmi::access WMI data in .NET 20.16
T1016 20.11
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Table 4.5: Most significant capabilities based on correlation values above 0.2.

Identifier Value
DATA::Compress Data:: [C0024] 1
communication/http/client::send data to Internet 1
data-manipulation/compression::GZip compress in .NET 1
COMMUNICATION::HTTP Com::Get Response [C0002.017] 0.99
communication/http/client::read data from Internet 0.99
T1213 0.88
collection/database/sql::reference SQL statements 0.88
data-manipulation/xml::load XML in .NET 0.86
T1047 0.63
host-interaction/wmi::access WMI data in .NET 0.63
T1140 0.42
DATA::Decode Data::Base64 [C0053.001] 0.42
data-manipulation/encoding/base64::Base64 decode in .NET 0.42
communication/http::get system web proxy 0.33
DATA::Encode Data::Base64 [C0026.001] 0.32
data-manipulation/encoding/base64::Base64 encode 0.32
T1016 0.3
T1614 0.26
collection::get geographical location 0.26
COMMUNICATION::Socket Com::Create UDP Socket [C0001.010] 0.25
communication/socket/udp/send::create UDP socket 0.25
host-interaction/os/hostname::get hostname 0.24
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4.3.2 Classification and validiation

To evaluate the potential for using the identified behaviors as attributes for the
classification of malicious software updates, we used WEKA to run a Random
Forest decision tree classifier, a multi-layered perceptron (MLP) neural network
classifier, and a Naive Bayes classifier. 10-fold cross-validation was used and each
classifier was executed for each of the behavior frameworks, where the identified
behaviors were the attributes used.

In tables 4.6–4.8, the confusion matrices for the classification results are pre-
sented. Based on these values, precision and sensitivity is calculated and presented
in table 4.9.

The results show that the malicious samplesets were more difficult to classify
correctly with the highest sensitivity of 0.4 (4 of 10 samplesets). All classifications
yielded relatively good results for benign samplesets, but this is not very useful
if no malicious samplesets are correctly classified. MLP performs relatively well
for MBC and Capa attribute sets, while Random Forest is not able to classify any
malicious samples correctly. Naive Bayes performed close to MLP for the Capa
attributes and better for the ATT&CK attributes. The best results were achieved
with the MLP classifier and the Capa capabilities as attributes, where 4 malicious
samples were correctly classified and only 5 benign samplesets were incorrectly
classified. Thus, this model is only able to classify malware with a probability of
0.40, but the probability of wrongly predicting benign software updates as mali-
cious is only 0.012.

The same classifications were run with the techniques and behaviors identi-
fied as the best features in the previous section table 4.4 and 4.5. These features
yielded worse results, not being able to classify the malicious samples correctly.
MLP was able to correctly classify one sampleset but had 1 incorrect benign. Naive
Bayes incorrectly classified one benign and all malicious, while Random Forest in-
correctly classified all malicious samples but all benign correct.

Table 4.6: Confusion matrices for the classification results using ATT&CK tech-
niques as attributes.

Naive Bayes
Class Benign Mal

Benign 416 4
Mal 8 2

MLP
Class Benign Mal

Benign 413 7
Mal 9 1

Random forest
Class Benign Mal

Benign 420 0
Mal 10 0
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Table 4.7: Confusion matrices for the classification results using MBC behaviors
as attributes.

Naive Bayes
Class Benign Mal

Benign 399 21
Mal 10 0

MLP
Class Benign Mal

Benign 416 4
Mal 7 3

Random forest
Class Benign Mal

Benign 420 0
Mal 10 0

Table 4.8: Confusion matrices for the classification results using Capa capabilities
as attributes.

Naive Bayes
Class Benign Mal

Benign 415 5
Mal 6 4

MLP
Class Benign Mal

Benign 411 9
Mal 6 4

Random forest
Class Benign Mal

Benign 420 0
Mal 10 0

Table 4.9: Classification results for the different behavior frameworks presenting
the precision and sensitivity for malicious and benign classifications

Classifier Class ATT&CK MBC CAPA
P S P S P S

Random
forest

Benign 0.977 1.0 0.977 1.0 0.977 1.0
Malicious 0 0 0 0 0 0

Naive
Bayes

Benign 0.981 0.990 0.976 0.950 0.986 0.981
Malicious 0.333 0.200 0 0 0.333 0.400

MLP
Benign 0.979 0.983 0.983 0.990 0.986 0.988

Malicious 0.125 0.100 0.429 0.300 0.444 0.400
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4.4 Malicious software behavior

In this section, the results for the malicious dataset are presented in more de-
tail. This allows us to evaluate and discuss the performance of our approach and
highlight limitations and advantages. Table 4.10 below shows the occurrences of
techniques in the malicious dataset.

Table 4.10: Malicious dataset technique distribution and malicious score

Medoc SolarWinds Ccleaner eGrabit eCatcher 3CX SmartPSS
T1012 2 4 0 1 1 0 0
T1083 8 4 1 2 2 0 1
T1115 0 0 0 0 0 0 0
T1027 10 1 1 0 0 1 0
T1140 6 3 0 0 0 0 0
T1620 0 1 0 0 0 0 0
T1112 0 1 0 0 0 0 0
T1082 4 4 0 0 0 0 0
T1087 4 1 0 0 0 0 0
T1033 4 1 0 0 0 0 0
T1010 0 0 0 0 0 0 0
T1059 0 0 0 0 0 0 0
T1113 0 0 0 0 0 0 0
T1016 2 1 0 0 0 0 0
T1213 69 25 0 0 0 0 0
T1047 0 5 0 0 0 0 0
T1057 0 1 0 0 0 0 0
T1518 0 1 0 0 0 0 0
T1222 0 0 1 1 1 0 1
T1614 0 1 0 0 0 0 0
T1134 0 0 0 0 0 0 0
T1129 0 0 2 0 0 0 1
T1125 0 0 0 1 1 0 0
Score 61.58 35.7 2.82 2.02 2.02 1.49 1.15

4.4.1 SolarWinds

In this thesis, the Sunburst backdoor from the SolarWinds supply chain attack has
been analyzed. This is the malicious code injected into the build process of the
Orion software dynamic link library (DLL) "SolarWinds.Orion.Core.BusinessLayer.dll"
[28]. Based on the Microsoft analysis [28], our binary differentiation successfully
extracted the added and modified malicious functions. However, other functions
that were not mentioned in the analysis, were also identified as new or modified.
The capability extraction shows that ATT&CK techniques were also extracted from
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the functions not explicitly identified as malicious. If we discard the techniques
from the unreported functions, we can remove all T1213, one T1614, one T1082,
and one T1083. This would result in a new score of 22.63. One of the highest
weighted techniques, T1047, is still prominent with a frequency of 5.

The capability extraction also extracted MBC identifers, which show slightly
differing behaviors compared to the ATT&CK techniques. The MBC identifiers for
the SolarWinds sampleset finds more use of data encoding, cryptography, process
and thread interaction, but misses WMI behavior.

Looking at the overall capabilities extracted, there are several not mapped to
MITRE ATT&CK or MBC. However, comparing the capabilities to the techniques
reported in [70], many of them are found in this research. Some are not identified,
which is expected as the report includes techniques found from the context and
not just from the malicious code. In addition, the Capa rules defining the tech-
niques and the contributions to the report may also differ in interpretation by the
authors. Causing the same behavior to be mapped to different techniques.

4.4.2 M.E.Doc - NotPetya

The supply chain attack on the M.E.Doc software is similar in the method of in-
jecting malicious code into the source code of the file "ZvitPublishedObjects.dll".
Based on the analysis by [71] and [5], it seems like the binary differentiation
we did identified the malicious functions as new or modified. Like the SolarWinds
sampleset, there are also additional functions identified as new or modified. These
are not explicitly identified as malicious by the analysis. However, some of them
are used by the malicious code, indicating that they may have been altered for
malicious use. If we only include the program classes mentioned in the analysis
reports, the M.E.Doc sampleset would get a score of 8.49, discarding most of the
techniques found. However, as the malicious functions uses the other functions,
this filtering would also cause a loss of information.

The extracted MBC identifiers are similar to the ATT&CK techniques but they
are both missing some capabilities compared to each other, and to the overall
capability extraction.

4.4.3 SmartPSS

The SmartPSS supply chain attack differs from SolarWinds and M.E.Doc, in the
way the malicious code is introduced. In this campaign, the threat actors have
created a new installer including a benign installer and a Windows executable.
This executable is a benign Microsoft executable, mshta.exe, with a few bytes
appended to it. The purpose of the file is to download a new file from a domain
supplied on the command line by the installer script [33]. Thus, the sample does
not contain modified code in the same way as the previous attacks but rather adds
an executable file and a command line argument.

The differentiation step found some differences in functions for the installers
and a few techniques were extracted, most likely not related to any malicious



44 E. Frankrig: Closed-Source SSCA Detection Using Behavior Identification

code, but rather the install software. Binary differentiation could not find any dif-
ferences in the legitimate mshta sample compared to the slightly altered version.
This is also expected knowing that only a few bytes were appended.

4.4.4 Dragonfly campaign

The SwissRanger, eGrabit, and Talk2M eCatcher supply chain attacks are attributed
to the same campaign and consist of the same method for trojanizing the legit-
imate installers [32]. They are similar to the previous sample, providing a mali-
cious binary with a legitimate installer. In this case, a malicious DLL is side-loaded
to execute the malicious code.

The installers for eGrabit, and eCatcher provide the same results, while the
installer for SwissRanger does not present any ATT&CK techniques but has two
MBC identifiers. Running Capa to extract the capabilities from the known mali-
cious DLLs, results in more behaviors identified and higher malicious scores. The
eGrabit and eCatcher samples received a score of 9.18, while SwissRanger scored
19.68.

4.4.5 3CX Desktop App

The results for the 3CX Desktop App show that only one ATT&CK technique was
identified in one of the trojanized DLLs. The technique is T1027, indicating obfus-
cated files or information. The MBC behaviors found in this sample also indicates
obfuscation and base64 encoding.

These results were match what we described in the background, as the attack
included two DLLs, one that loads the other obfuscated DLL. Thus, finding a few
indicators of obfuscation in the first is expected. Our method was therefore unable
to deobfuscate the other binary. However, this was not part of our scope and is
left for future work.
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Discussion

In this chapter we discuss the results, what they mean, and how they compare to
existing research. Throughout the discussion, we highlight factors that possibly
impacted the results. Lastly, the research questions are answered based on the
results and discussion.

5.1 Datasets

The very first part of the experiment was the dataset generation. The benign
dataset was created with 420 samplesets, from a total of over 14000 .NET binary
programs. It shows that generating a large dataset of software updates can be
challenging, especially for closed-source software. Guaranteeing that every sam-
pleset consists of two binaries of the exact same program and being versions di-
rectly following one another would not be feasible in the time frame of this thesis.
One would have to compare each sample to the information from the distributors.
However, the filtering after the binary differentiation guarantees a certain degree
of similarity between the binaries in each sampleset, even though the versions
may not be directly adjacent. Creating a dataset where the versions are known
to be directly adjacent could be easier to accomplish by using open-source pro-
grams instead of closed-source, and may present a possibility of tracking software
behavior across updates in a more precise manner. This was out of scope for this
thesis and is left for future work.

Due to the low number of known closed-source software supply chain attacks,
the malicious dataset included only two .NET binaries, the same type as the whole
benign set. However, the eight other samplesets consisted of C/C++ samples from
known closed-source SSCAs. These samples were either the program installer bi-
nary or a trojanized binary that we extracted from the installer.

For the samplesets where the attack included an added malicious binary that
did not have a similar benign binary, we conducted the analysis on the entire
installer. If the trojanized binary extracted from the installer had an equivalent
benign version, those binaries were used in the samplesets.

45
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We recognize that the behavior identification for the installers does not rep-
resent the behavior of the malicious program, but rather the installer and the
changes done to the installer script. Thus, it is no surprise that we did not ex-
tract many capabilities from these samplesets. Using the malicious binaries inside
the installers without having a benign version to differentiate, would not fit the
methodology as binary differentiation would not be necessary. Therefore, we did
not extract behaviors from those malicious binaries. An option would be to ex-
clude these binaries, but due to the low number of malicious samples and the fact
that they do alter the benign behavior they were included in the experiment.

The most significant challenge with this thesis was to find and use suitable
samples from closed-source software supply chain attacks. Ideally, the malicious
dataset would consist of only and more C# .NET binaries, but the prevalence of
such amounts in this domain makes it infeasible. However, including the other
samples presented results indicating that C/C++ software updates may provide
fewer identified behaviors, which could be an interesting future research topic.

5.2 Binary differentiation

The binary differentiation was able to extract the functions with malicious code
inserted by the threat actors. This shows that it could be a useful tool for reducing
the amount of code to be analyzed, providing a more efficient way of looking for
malicious updates and analyzing them. For the malicious dataset, we also iden-
tified new or modified functions that were not reported as malicious by existing
analysis. The reason for this could be that legitimate updates were pushed along-
side the malicious code. Particularly in the SolarWinds sampleset, where the ver-
sions are very close, the number of benign new functions was low. For the M.E.Doc
sampleset, however, the version of the benign sample was not identifiable and may
therefore include more benign updates, causing more functions to be identified
as new or modified.

For the benign dataset, the sample size of 420 did not allow for the same de-
tailed analysis. We would have to manually go through each sampleset to examine
the function names and identified behaviors and find reliable information about
the changes between each version to compare our results to. This would be a very
time-consuming task and was not feasible in the time frame of this thesis. Even
though we were not able to validate that the differing functions were correctly
identified, our results showed that binary differentiation was able to find new
and modified functions between updates.

Some of the samplesets with high scores and a large number of capabilities
were further examined to see if this was due to a large difference in file size or
the number of functions. However, they did not show a clear relationship to the
file size difference or the difference in number of functions.
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5.3 Capability and behavior identification

As mentioned in the article [50], the Capa rules are mostly mapped to the MITRE
ATT&CK framework or Malware Behavior Catalog. Only using the ATT&CK results
does not provide completely accurate identification of the behavior of the mali-
cious code. The MBC behaviors presented more information about process and
thread interaction, networking, use of cryptographic functions, data encoding,
and file system interaction.

The objectives and behaviors in MBC are more tailored to executable programs
and malware, which could explain the difference in extracted capabilities between
ATT&CK and MBC. It will also depend on how the Capa rules are written, where
the rule author must define the mapping to MBC or ATT&CK.

When examining the difference in the average frequency of behaviors for the
malicious dataset and the benign dataset, a few behaviors are more prominent in
the malicious dataset. Base64 encoding and decoding occur more often in mali-
cious updates, which match the findings from [11] and [12] where obfuscation is
a feature found in the trojanized updates.

Networking interaction, including reading and sending data over HTTP, is av-
eraging higher in malicious updates. This behavior is not necessarily malicious but
can give an indication on how potential command-and-control is implemented.
Barr-Smith et al. [12] do not report on changes in network activity, but our ap-
proach is able to find specific types and protocols. Similarly, Refsnes [11] reports
on identified IP addresses and domains, but not how they are communicated to,
which we are able to. Thus, presenting an advantage of our approach compared
to previous work, where we identify specific network protocols and details on
how the network communication is conducted. Our approach was not able to
identify specific IP addresses and domains and was not part of the objectives for
this project. However, researching the possible advantages of combining these el-
ements is left for future work.

5.4 Malicious scoring

For the malicious scoring, we expected to find higher scores for malicious updates
than benign updates. The scoring based on the ATT&CK techniques did not provide
a significant difference between the benign dataset and the malicious dataset. For
the malicious updates only the .NET samplesets, SolarWinds and M.E.Doc, pro-
vided a high score. There were still some benign samplesets that scored similarly
to these and even a few with a higher score. If we filtered out the outliers from
the benign dataset, it could be possible to identify these two malicious updates
from the score. These benign outliers with very high scores also seem to have a
very high count of one or two techniques which impact the score significantly. To
counter such challenges, a future modification to the model could be to account
for high-frequency techniques.
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The malicious samplesets that were not .NET presented relatively low mali-
cious scores and we would not be able to identify them among benign .NET up-
dates. This low score is due to a low number of identified techniques in the new or
modified functions. Further research into software updates for programs written
in lower-level languages could help explain this outcome.

The approach presented in this thesis shows that we can identify possible ma-
licious .NET software updates, but may also include some benign outliers or false
positives. Our approach saves the mapping between functions and extracted ca-
pabilities as well as how the malicious score is calculated. Thus, presenting an
advantage where we can examine the resulting database to identify which func-
tions perform the identified behaviors and how the score was calculated. This can
provide the malware analysts with a good starting point for analysis.

The malicious scoring also shows the complexity in malware classification.
Benign software can show behavior that we associate with malware and the other
way around. One behavior is not necessarily malicious in itself and therefore we
have to take into account the surrounding behaviors; the preceding and following
actions. The malicious scoring uses technique weights that are calculated based on
both prevalence and surrounding behavior [58]. To our knowledge, our research
is the first to test the use of these weights in malware scoring. The results indicate
that it is challenging to correctly calculate these weights, and that further research
is needed.

5.5 Attribute evaluation and classification

The attribute evaluation conducted using the WEKA and RapidMiner software
provided us with some information about how useful the different attributes were
for classifying the samplesets. However, when using the top-rated Chi-square and
correlation attributes, the classification results were worse than not using this
selection.

For all three classifiers tested (MLP, Naive Bayes, and Random forest), the 10-
fold cross-validation showed that at best we were able to classify 4 of 10 malicious
software updates. For benign software updates, all classifiers performed well with
precision and sensitivity of at least 0.95. The low number of malicious samples
hampers the usability of such a model to classify malicious updates effectively.
Ideally, we would have more malicious samples to build a better machine learning
model and to be able to apply more tests. However, with the small dataset, we
were still able to create a model that classified on average malicious samples with
a probability of 0.4 and a probability of 0.012 of benign samples being incorrectly
classified.

Even if the generated models using the current dataset is not applicable as the
single system for malware classification, it could provide an additional depth to
malware detection technology and reduce the workload for the malware analyst.
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5.6 Research questions

5.6.1 RQ1. How can program behavior be extracted from the changes
in program updates?

Our research shows that binary differentiation successfully identifies new and
modified functions in software updates. Furthermore, we were able to identify
program behavior from these functions using the Mandiant FLARE Capa frame-
work. Using this method is effective on software updates, regardless of being ma-
licious or benign. Our approach is also able to accomplish this regardless of the
version difference between the samples.

Leveraging the Capa framework, we can extract capabilities and behaviors,
and the majority of them are mapped to MITRE ATT&CK and MBC. The extracted
capabilities from the malicious samplesets do not deviate far from reports when
examining the SolarWinds and M.E.Doc attacks. However, if the differentiation
identifies benign functions, capabilities from these functions are also identified.

5.6.2 RQ2. Which behaviors are prominent in benign software up-
dates and how do they differ from malicious updates?

In this thesis, we created a benign dataset consisting of 420 .NET software updates
using automated methods. This dataset was used with our approach to identify be-
haviors for each benign software update. Thus, providing results on the frequency
and distribution of program behaviors for benign software updates.

From the experiment results, we found that the benign software updates have
a wide range of behaviors. The most prominent based on the average occurrence,
include unmanaged code calling, file enumeration, creating and terminating pro-
cesses, and finding data using regex.

According to our results, the malicious updates have a higher average oc-
currence of the following behaviors: XML loading, random number generation,
base64 encoding and decoding, file deletion, HTTP sending and receiving data,
WMI usage, and file attribution modifications.

5.6.3 RQ3. To what extent can extracted behaviors be used to identify
software supply chain attacks?

As presented in the results and discussed previously, this approach of extracting
the behaviors and capabilities from software updates can be useful for detect-
ing SSCAs. First, our approach identifies new and modified functions and then
maps the behavior found in functions to standardized formats, including MITRE
ATT&CK and MBC. This presents an advantage for reporting purposes and exten-
sibility to other existing frameworks. Another advantage includes being able to
easily examine behaviors for initial analysis and then have a starting point for
potential further analysis, as we know the functions conducting the behavior.



50 E. Frankrig: Closed-Source SSCA Detection Using Behavior Identification

For automatic detection of SSCAs, the tested classifiers show that we are able
to detect malicious software updates with a probability of 0.4 while the probability
of incorrectly classifying benign updates as malicious is as low as 0.012. Thus, our
approach can present a potential addition to existing detection methods, with the
advantage of providing useful knowledge for deeper analysis and reducing the
workload for analysts.

5.6.4 RQ4. How can identified behaviors provide a malicious score
that can be used to detect malicious software updates?

This thesis used existing provenance weights of MITRE ATT&CK techniques from
the MITRE Top 10 Techniques [58]. We calculated a malicious score for each sam-
pleset using these weights multiplied with the occurrence of ATT&CK techniques.
For the benign dataset, most samplesets got a score between 0 and 3, with 0 being
the most frequent. 90 of 420 samplesets scored above 3, with the highest score of
79.9.

The malicious dataset only consisted of 10 samplesets and had a very high
standard deviation. The two .NET samplesets (SolarWinds and M.E.Doc) had high
scores, but the eight C/C++ samplesets had relatively low scores between 0 and
3.

Due to the low number of samplesets in the malicious dataset, we cannot
conclude that the malicious score is a reliable marker for all malicious updates.
However, the results indicate that malicious .NET software updates could present
scores that have a significantly higher value than the average benign updates.
Therefore, indicating that the malicious scoring could be useful for detecting
closed-source SSCAs for .NET software.
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Conclusion

In this thesis, we propose a novel automated approach for identifying malicious
behavior in software updates and use these behaviors to generate a malicious
score. The validation of this approach, using benign and malicious software up-
dates, presents new knowledge of behaviors in closed-source software supply
chain attacks and techniques that can be used to detect them.

The results show that our approach successfully identifies behaviors from new
and modified functions in software updates, by leveraging existing tools and frame-
works. The behaviors are reported in standardized MITRE ATT&CK techniques
and Malware Behavior Catalog (MBC) identifiers and mapped to the functions
conducting the behavior. This can aid in standardized reporting formats and pro-
vide the analysts with an advantage in triaging and a better starting point for
advanced analysis.

Malicious scores were successfully generated from the identified ATT&CK tech-
niques using existing weights from the MITRE Top 10 techniques [58]. The ma-
licious .NET updates would be possible to distinguish from the benign .NET up-
dates, as most benign updates scored below 3. However, malicious updates written
in lower-level languages scored within the normal range of benign .NET updates.
Software updates with a high frequency of one or few techniques receive a high
score, even if the techniques are not necessarily malicious or suspicious by them-
selves. More research is, therefore, necessary to identify proper attribute weights
and handling of high frequency but few techniques.

In this master thesis, we have successfully identified program behavior and
capabilities in benign and malicious software updates. The behaviors more promi-
nent in malicious updates are presented, showing a higher frequency of data en-
coding and obfuscation, random number generation, compression, network activ-
ity, and file deletion. The Malware Behavior Catalog (MBC) is found to be a more
accurate framework in identifying behavior for software than ATT&CK. However,
the use of both MBC and ATT&CK presents an advantage through the automated
behavior extraction which can be used to report behaviors in a standardized for-
mat.

To further evaluate the use of identified behaviors to detect malicious software
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updates, we ran three machine learning classifiers with 10-fold cross-validation
and the behaviors as attributes. We were able to generate a model that classified
malicious software updates with a probability of 0.4 while retaining a probability
of incorrectly classifying benign updates as malicious at 0.012. This model is not
suitable as a single detection method but presents a possible addition to provide
another layer of defence.

6.1 Future work

This thesis presents an approach to identify behavior in software updates and
detect possible malicious updates as part of closed-source software supply chain
attacks. As the approach leverages existing open-source tools and frameworks in
a workflow, future work could include extending the methods and including other
behavior or malware identification techniques.

Validating this approach using open-source software could also contribute to
increased knowledge of software supply chain attacks and how we can detect
them. Additionally, creating a similar benign dataset consisting of lower-level writ-
ten programs, such as C/C++, would be an interesting topic to examine the dif-
ferences in behavior identification across languages and runtime environments.

Using the attribute weights from the MITRE Top 10 techniques to create a ma-
licious score, did not provide distinct results for effectively classifying malicious
software updates. Thus, further research into the weighting of techniques spe-
cific to software supply chain attacks and examining their interdependence could
provide further insight into the behavior of SSCAs.
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Appendix A

Code

This appendix includes the Python scripts used in this project experiment. The
scripts were used for the following tasks:

• Generate and filter the benign dataset.
• Perform binary differentiation using IDA Pro and Diaphora.
• Extracting the behaviors and capabilities from the new and modified func-

tions.
• Create a malicious score based on the extracted MITRE ATT&CK techniques

for each sampleset.

A.1 Benign dataset creation

To create the benign dataset from the downloaded benign .NET software described
in 3, we grouped program names and sorted by version. For each program that
had two or more versions, we grouped together two and two binaries in version
order as tuples. These tuples were written to a database table which was used
later when performing the binary diffing.

Code listing A.1: Python script for creating the benign dataset

1 import sys
2 import os
3 import sqlite3
4 import argparse
5 from tqdm import tqdm
6 from hashlib import sha256
7 from win32api import GetFileVersionInfo, GetFileAttributes
8

9

10 def sort_version(version_hash_list):
11 return version_hash_list[1]
12

13

14 def create_database(db_file):
15 db_conn = sqlite3.connect(db_file)

61
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16 db = db_conn.cursor()
17 db.execute(’’’
18 CREATE TABLE IF NOT EXISTS files
19 ([id] INTEGER PRIMARY KEY, [sha256] TEXT, [file_path] TEXT, [app_name]

TEXT, [version] TEXT)
20 ’’’)
21 db.execute(’’’
22 CREATE TABLE IF NOT EXISTS sample_sets
23 ([id] INTEGER PRIMARY KEY, [first_file] TEXT, [second_file] TEXT)
24 ’’’)
25 db_conn.commit()
26 return db_conn
27

28

29 def write_file_to_db(db, file_hash, file_path, app_name, version):
30 query = ’’’INSERT INTO files (sha256, file_path, app_name, version) \
31 VALUES (?, ?, ?, ?)’’’
32 values = (file_hash, file_path, app_name, version)
33 db.execute(query, values)
34 db.commit()
35

36

37 def write_sample_set_to_db(db, file_hash_1, file_hash_2):
38 query = ’’’INSERT INTO sample_sets (first_file, second_file)\
39 VALUES (?, ?)’’’
40 values = (file_hash_1, file_hash_2)
41 db.execute(query, values)
42 db.commit()
43

44

45 def get_file_properties(fname):
46 """
47 Read all properties of the given file return them as a dictionary.
48 """
49 prop_names = (
50 ’Comments’, ’InternalName’, ’ProductName’,
51 ’CompanyName’, ’LegalCopyright’, ’ProductVersion’,
52 ’FileDescription’, ’LegalTrademarks’, ’PrivateBuild’,
53 ’FileVersion’, ’OriginalFilename’, ’SpecialBuild’
54 )
55

56 props = {
57 ’FixedFileInfo’: None,
58 ’StringFileInfo’: None,
59 ’FileVersion’: None
60 }
61

62 try:
63 # backslash as parm returns dictionary of numeric info corresponding to

VS_FIXEDFILEINFO struc
64 fixed_info = GetFileVersionInfo(fname, ’\\’)
65 props[’FixedFileInfo’] = fixed_info
66 props[’FileVersion’] = "%d.%d.%d.%d" % (
67 fixed_info[’FileVersionMS’] / 65536,
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68 fixed_info[’FileVersionMS’] % 65536, fixed_info[’FileVersionLS’] /
65536,

69 fixed_info[’FileVersionLS’] % 65536
70 )
71

72 # \VarFileInfo\Translation returns list of available (language, codepage)
73 # pairs that can be used to retreive string info. We are using only the

first pair.
74 lang, codepage = GetFileVersionInfo(fname, ’\\VarFileInfo\\Translation’)[0]
75

76 # any other must be of the form \StringfileInfo\%04X%04X\parm_name, middle
77 # two are language/codepage pair returned from above
78

79 str_info = {}
80 for propName in prop_names:
81 str_info_path = u’\\StringFileInfo\\%04X%04X\\%s’ % (lang, codepage,

propName)
82 ## print str_info
83 str_info[propName] = GetFileVersionInfo(fname, str_info_path)
84

85 props[’StringFileInfo’] = str_info
86 except:
87 pass
88

89 return props["StringFileInfo"]
90

91

92 def sort_samples_by_name(file_info_dict, sort_key="InternalName"):
93 results_dict = {}
94 for key, value in file_info_dict.items():
95 if value is None:
96 continue
97 if sort_key in value:
98 internal_name = value[sort_key]
99 else:

100 continue
101 sub_dict = {
102 "FILENAME": key,
103 "VERSION": value["FileVersion"],
104 }
105 results_dict.setdefault(internal_name, []).append(sub_dict)
106

107 return results_dict
108

109

110 def main(argv=None):
111 """Iterate over all files and create a data structure with attributes"""
112

113 if argv is None:
114 argv = sys.argv[1:]
115

116 parser = argparse.ArgumentParser(description="Create a database with program
versions.")

117 parser.add_argument("-d", "--dir", help="Directory containing files")
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118 parser.add_argument("-o", "--outfile", help="Database file to write to")
119 args = parser.parse_args(args=argv)
120

121 db = create_database(args.outfile)
122

123 master_dict = {}
124

125 file_count = sum(len(files) for _, _, files in os.walk(args.dir))
126 print(f"[i] Total number of files: {file_count}")
127 with tqdm(total=file_count, desc="Creating database file table") as

progress_bar:
128 for root, dirs, files in os.walk(args.dir):
129 for file in files:
130 filename = os.path.join(root, file)
131

132 # Get file properties
133 file_props = get_file_properties(filename)
134 if file_props is None:
135 progress_bar.update(1)
136 continue
137

138 # Get file sha256sum
139 with open(filename, "rb") as f:
140 data = f.read()
141 file_hash = sha256(data).hexdigest()
142

143 # Get app name and version
144 if "InternalName" in file_props:
145 app_name = file_props["InternalName"]
146 else:
147 app_name = "NONE"
148 if "FileVersion" in file_props:
149 version = file_props["FileVersion"]
150 else:
151 version = "NONE"
152

153 # Write info to db
154 write_file_to_db(db, file_hash, filename, app_name, version)
155

156 if version is not None and file_hash is not None:
157 if app_name not in master_dict or (app_name in master_dict and

[file_hash, version] not in master_dict[app_name]):
158 master_dict.setdefault(app_name, []).append([file_hash,

version])
159

160 progress_bar.update(1)
161

162 item_count = sum(len(value) for _, value in master_dict.items())
163 with tqdm(total=item_count, desc="Creating database sample set table") as

progress_bar:
164 for key, value in master_dict.items():
165 if len(value) < 2:
166 progress_bar.update(1)
167 continue
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168 value.sort(key=sort_version)
169 for i in range(1, len(value)):
170 if value[i-1] != value[i]:
171 write_sample_set_to_db(db, value[i-1][0], value[i][0])
172 progress_bar.update(1)
173 return 0
174

175

176 if __name__ == "__main__":
177 sys.exit(main())

A.2 Binary differentiation

The binary differentiation was performed using IDA Pro and Diaphora in the script
below. The script fetches each sampleset, creates an IDA database for each and
then uses the Diaphora library to perform the differentiation. The result is written
to a SQLite database file for each sampleset, where we can extract the unmatched
functions and functions with a similiarity ratio between 0 and 1.

The second script is used to filter out samplesets that are equal or too different
to be versions of the same program.

Code listing A.2: Python script for performing the binary differentiation

1 import sys
2 import os
3 import argparse
4 import sqlite3
5 import subprocess
6 import logging
7 from time import sleep
8

9 # Set program paths
10 diaphora_path = "C:/Users/user/Downloads/diaphora-3.1.2/diaphora/diaphora.py"
11 ida_log_file = "C:\\Users\\user\\Desktop\\ida.log"
12 db_outdir = "C:\\Users\\user\\Desktop\\analysis\\diaphora_results\\databases\\"
13 diff_outdir = "C:\\Users\\user\\Desktop\\analysis\\diaphora_results\\diff_results\\

"
14

15

16 def check_file_size(file_path):
17 return os.path.getsize(file_path)
18

19

20 def create_diaphora_db(bin_path, export_path):
21 os.environ["DIAPHORA_EXPORT_FILE"] = export_path
22 os.environ["DIAPHORA_AUTO"] = "1"
23 os.environ["DIAPHORA_USE_DECOMPILER"] = "0"
24 os.environ["DIAPHORA_PROFILE"] = "1"
25 os.environ["DIAPHORA_DEBUG"] = "1"
26 env = os.environ.copy()
27 p = subprocess.Popen(
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28 ["ida64.exe", "-B", "-LC:\\Users\\user\\Desktop\\ida.log", f"-S{
diaphora_path}", bin_path], shell=False,

29 env=env)
30 p.wait()
31 sleep(0.1)
32

33 # Clean up environment variables
34 os.environ.pop("DIAPHORA_PROFILE")
35 os.environ.pop("DIAPHORA_DEBUG")
36 os.environ.pop("DIAPHORA_EXPORT_FILE")
37 os.environ.pop("DIAPHORA_AUTO")
38

39 return p.returncode
40

41

42 def do_diaphora_diff(db1, db2, diaphora_outfile):
43 os.environ["DIAPHORA_DB1"] = db1
44 os.environ["DIAPHORA_DB2"] = db2
45 os.environ["DIAPHORA_AUTO"] = "1"
46 os.environ["DIAPHORA_AUTO_DIFF"] = "1"
47 os.environ["DIAPHORA_DIFF_OUT"] = diaphora_outfile
48 os.environ["DIAPHORA_PROFILE"] = "1"
49 os.environ["DIAPHORA_DEBUG"] = "1"
50 env = os.environ.copy()
51 p = subprocess.Popen(["ida64.exe", "-A", f"-L{ida_log_file}", f"-S{

diaphora_path}"], shell=False, env=env)
52 p.wait()
53 sleep(0.1)
54

55 # Clean up environment variables
56 os.environ.pop("DIAPHORA_DB1")
57 os.environ.pop("DIAPHORA_DB2")
58 os.environ.pop("DIAPHORA_AUTO")
59 os.environ.pop("DIAPHORA_AUTO_DIFF")
60 os.environ.pop("DIAPHORA_DIFF_OUT")
61 os.environ.pop("DIAPHORA_USE_DECOMPILER")
62 os.environ.pop("DIAPHORA_PROFILE")
63 os.environ.pop("DIAPHORA_DEBUG")
64

65 return p.returncode
66

67

68 def main(argv=None):
69 if argv is None:
70 argv = sys.argv[1:]
71

72 parser = argparse.ArgumentParser(description="Diff files from sqlite db")
73 parser.add_argument("-f", "--file_db", help="sqlite db containing benign file

data")
74 args = parser.parse_args(args=argv)
75

76 logger = logging.getLogger(__name__)
77 logging.basicConfig(filename="./benign_differ.log", encoding="utf-8", level=

logging.DEBUG)
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78

79 db_conn = sqlite3.connect(args.file_db)
80 db = db_conn.cursor()
81 diff_list_query = ’’’SELECT * FROM sample_sets’’’
82 file_info_query = ’’’SELECT file_path, app_name, version, sha256 FROM files

WHERE sha256 = ?’’’
83

84 db.execute(diff_list_query)
85 diff_list = db.fetchall()
86

87 for sample_set in diff_list:
88 db.execute(file_info_query, (sample_set[1],))
89 fpath_1, appname_1, ver_1, hash_1 = db.fetchone()
90

91 f_size = check_file_size(fpath_1)
92 if f_size < 100000:
93 continue
94

95 db.execute(file_info_query, (sample_set[2],))
96 fpath_2, appname_2, ver_2, hash_2 = db.fetchone()
97

98 diff_db_1 = fpath_1 + ".sqlite"
99 diff_db_2 = fpath_2 + ".sqlite"

100 diff_export = diff_outdir + f"{appname_1}_{hash_1}-{hash_2}.diaphora"
101

102 logger.info("Diffing %s version %s vs %s", appname_1, ver_1, ver_2)
103 logger.info("File1=%s | File2=%s", os.path.basename(fpath_1), os.path.

basename(fpath_2))
104

105 rescode = create_diaphora_db(fpath_1, diff_db_1)
106 if rescode != 0:
107 logger.warning("Creating first database failed with code %s", rescode)
108 continue
109 rescode = create_diaphora_db(fpath_2, diff_db_2)
110 if rescode != 0:
111 logger.warning("Creating second database failed with code %s", rescode)
112 continue
113 rescode = do_diaphora_diff(diff_db_1, diff_db_2, diff_export)
114 if rescode != 0:
115 logger.warning("Diffing failed with code %s", rescode)
116 continue
117

118 return 0
119

120

121 if __name__ == "__main__":
122 sys.exit(main())

A.3 Benign dataset filtering

After creating and conducting the binary differentiation, we filtered the benign
samplesets in two stages. First, we removed the samplesets where both binaries
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where equal or too different to be versions of the same program. Secondly, we
retrived the VirusTotal analysis statistics and removed those with many malicious
verdicts. These stages were completed using the Python scripts below.

Code listing A.3: Python script for filtering out benign samplesets that have no
similarities or no differences

1 import sys
2 import os
3 import sqlite3
4

5

6 def get_similarity(db_path):
7 conn = sqlite3.connect(db_path)
8 conn.row_factory = lambda cursor, row: row[0]
9 c = conn.cursor()

10 c.execute("SELECT count(*) FROM unmatched")
11 cnt_unmatched = c.fetchone()
12

13 c.execute("SELECT ratio FROM results")
14 ratio_list = c.fetchall()
15 c.close()
16

17 sum_ratio = 0
18 for ratio in ratio_list:
19 sum_ratio += float(ratio)
20 cnt_total_functions = cnt_unmatched + len(ratio_list)
21 similarity_percent = sum_ratio / cnt_total_functions
22

23 return similarity_percent
24

25

26 def create_output_dirs():
27 source_dir = "C:\\Users\\user\\Desktop\\analysis\\benign\\diaphora_results\\

diff_results"
28 exact_match = os.path.join(source_dir, "exact_match")
29 if not os.path.exists(exact_match):
30 os.mkdir(exact_match)
31 partial_match = os.path.join(source_dir, "partial_match")
32 if not os.path.exists(partial_match):
33 os.mkdir(partial_match)
34 no_match = os.path.join(source_dir, "no_match")
35 if not os.path.exists(no_match):
36 os.mkdir(no_match)
37 return exact_match, partial_match, no_match
38

39

40 def main(argv=None):
41 if argv is None:
42 argv = sys.argv[1:]
43

44 exact_match, partial_match, no_match = create_output_dirs()
45

46 for filename in os.listdir(argv[0]):
47 file = os.path.join(argv[0], filename)
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48 if os.path.isfile(file) and os.path.getsize(file):
49 sim_score = get_similarity(file)
50 print(f"{sim_score} ({filename})")
51

52 if sim_score < 0.10:
53 try:
54 os.rename(file, os.path.join(no_match, filename))
55 except FileNotFoundError:
56 print("File Not found: ", file)
57 continue
58 elif sim_score == 1.0:
59 try:
60 os.rename(file, os.path.join(exact_match, filename))
61 except FileNotFoundError:
62 print("File Not found: ", file)
63 continue
64 else:
65 try:
66 os.rename(file, os.path.join(partial_match, filename))
67 except FileNotFoundError:
68 print("File Not found: ", file)
69 continue
70

71

72 if __name__ == "__main__":
73 sys.exit(main())

Code listing A.4: Python script for fetching VirusTotal analysis stats

1 from tqdm import tqdm
2 import requests
3 import os
4 import json
5 import sqlite3
6 import sys
7 import re
8

9

10 api_key = ""
11

12 def get_vt_analysis(id):
13

14 url = f"https://www.virustotal.com/api/v3/files/{id}"
15

16 headers = {
17 "accept": "application/json",
18 "x-apikey": api_key
19 }
20

21 response = requests.get(url, headers=headers)
22 if response.status_code != 200:
23 print(f"VT query error: {response.content} \n{url}")
24 exit(1)
25

26 data = response.json().get("data")
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27 mal_score = data["attributes"]["last_analysis_stats"]
28 return mal_score
29

30

31 def get_hashes(db_path):
32 conn = sqlite3.connect(db_path)
33 db = conn.cursor()
34 db.execute("SELECT diff_db FROM fileinfo")
35 diff_db_list = db.fetchall()
36 conn.close()
37 return diff_db_list
38

39

40 def create_vt_table(db_path):
41 conn = sqlite3.connect(db_path)
42 db = conn.cursor()
43 # create table
44 db.execute("CREATE TABLE IF NOT EXISTS vt_stats (id integer PIRMARY KEY,

diff_db text, hash1_vt_mal integer, hash1_vt_sus integer, hash2_vt_mal integer,
hash2_vt_sus integer)")

45 conn.commit()
46 return conn
47

48

49 def insert_vt_values(db_conn, diff_db, vt_mal1, vt_sus1, vt_mal2, vt_sus2):
50 db = db_conn.cursor()
51 query = "INSERT INTO vt_stats(diff_db, hash1_vt_mal, hash1_vt_sus, hash2_vt_mal

, hash2_vt_sus) VALUES(?,?,?,?,?)"
52 values = (diff_db, vt_mal1, vt_sus1, vt_mal2, vt_sus2)
53 db.execute(query, values)
54 db_conn.commit()
55

56

57 def find_hashes(string):
58 pattern = r"[a-f0-9]{64}-[a-f0-9]{64}"
59 matches = re.findall(pattern, string)[0].split("-")
60 return matches
61

62

63

64 def main(argv=None):
65 if len(sys.argv) > 1:
66 argv = sys.argv[1:]
67 sql_db = argv[0]
68 diff_filename_list = get_hashes(sql_db)
69 db_conn = create_vt_table(sql_db)
70 with tqdm(total=len(diff_filename_list)) as pbar:
71 for diff_fpath, in diff_filename_list:
72 hashes = find_hashes(diff_fpath)
73 hash1_score = get_vt_analysis(hashes[0])
74 hash2_score = get_vt_analysis(hashes[1])
75 if hash1_score == -1 or hash2_score == -1:
76 print("Error with: %s", diff_fpath)
77 insert_vt_values(db_conn, diff_fpath, -1, -1, -1, -1)
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78 continue
79 print("VT_mal score: ", hash1_score["malicious"], hash2_score["

malicious"])
80 insert_vt_values(db_conn, diff_fpath, hash1_score["malicious"],

hash1_score["suspicious"], hash2_score["malicious"], hash2_score["suspicious"])
81 pbar.update(1)
82

83

84 if __name__ == "__main__":
85 sys.exit(main())

A.4 Behavior extraction and malicious scoring

For extracting the capabilities and behaviors from the functions that are unmatched
or modified, we modified an existing script from the Capa GitHub repository [14].
This script performs the Capa analysis on a program and outputs the matched be-
haviors to the functions where they are found. We modified the script to save the
behaviors and functions to the diffing result file, and then calculate the malicious
score using a CSV file containing the MITRE Top ATT&CK technique weights.

Code listing A.5: Python script for performing behavior extraction and malicious
scoring

1 #!/usr/bin/env python2
2 # Copyright (C) 2023 Mandiant, Inc. All Rights Reserved.
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at: [package root]/LICENSE.txt
6 # Unless required by applicable law or agreed to in writing, software distributed

under the License
7 # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND

, either express or implied.
8 # See the License for the specific language governing permissions and limitations

under the License.
9 """

10 show-capabilities-by-function
11

12 Invoke capa to extract the capabilities of the given sample
13 and emit the results grouped by function.
14

15 This is useful to identify "complex functions" - that is,
16 functions that implement a lot of different types of logic.
17

18 Example::
19

20 $ python scripts/show-capabilities-by-function.py /tmp/suspicious.dll_
21 function at 0x1000321A with 33 features:
22 - get hostname
23 - initialize Winsock library
24 function at 0x10003286 with 63 features:
25 - create thread
26 - terminate thread
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27 function at 0x10003415 with 116 features:
28 - write file
29 - send data
30 - link function at runtime
31 - create HTTP request
32 - get common file path
33 - send HTTP request
34 - connect to HTTP server
35 function at 0x10003797 with 81 features:
36 - get socket status
37 - send data
38 - receive data
39 - create TCP socket
40 - send data on socket
41 - receive data on socket
42 - act as TCP client
43 - resolve DNS
44 - create UDP socket
45 - initialize Winsock library
46 - set socket configuration
47 - connect TCP socket
48 ...
49

50 Copyright (C) 2023 Mandiant, Inc. All Rights Reserved.
51 Licensed under the Apache License, Version 2.0 (the "License");
52 you may not use this file except in compliance with the License.
53 You may obtain a copy of the License at: [package root]/LICENSE.txt
54 Unless required by applicable law or agreed to in writing, software distributed

under the License
55 is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,

either express or implied.
56 See the License for the specific language governing permissions and limitations

under the License.
57 """
58 import json
59 import sys
60 import os
61 import logging
62 import argparse
63 import collections
64 from typing import Dict, Set, Any
65 import sqlite3
66 import colorama
67 import csv
68 import re
69 from tqdm import tqdm
70 from pprint import pprint
71

72 import capa.main
73 import capa.rules
74 import capa.engine
75 import capa.helpers
76 import capa.features
77 import capa.exceptions
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78 import capa.render.json
79 import capa.render.default
80 import capa.render.utils as rutils
81 import capa.render.verbose
82 import capa.features.freeze
83 import capa.features.freeze.features as frzf
84 import capa.capabilities.common
85 import capa.render.result_document as rd
86 from capa.features.freeze import Address
87 from capa.features.common import OS_AUTO, FORMAT_AUTO
88

89 logger = logging.getLogger("capa.show-capabilities-by-function")
90

91

92 def get_unmatched_functions(db_path):
93 conn = sqlite3.connect(db_path)
94 conn.row_factory = lambda cursor, row: row[0]
95 c = conn.cursor()
96 c.execute("SELECT name FROM unmatched")
97 unmatched = c.fetchall()
98 conn.close()
99 return unmatched

100

101

102 def get_partial_matched_functions(db_path):
103 conn = sqlite3.connect(db_path)
104 conn.row_factory = lambda cursor, row: row[0]
105 c = conn.cursor()
106 c.execute("SELECT name2 FROM results WHERE ratio != ’1.0000000’ AND bb1 != ’1’

AND bb2 != ’1’")
107 partial_functions = c.fetchall()
108 conn.close()
109 return partial_functions
110

111

112 def get_diff_binary(db_path):
113 conn = sqlite3.connect(db_path)
114 conn.row_factory = lambda cursor, row: row[0]
115 c = conn.cursor()
116 c.execute("SELECT diff_db FROM config")
117 result = c.fetchone()
118 diff_bin_path = "".join(ch for ch in result)
119 conn.close()
120 return diff_bin_path
121

122

123 def create_capa_db_tables(db_file):
124 db_conn = sqlite3.connect(db_file)
125 db = db_conn.cursor()
126 db.execute(’’’
127 CREATE TABLE IF NOT EXISTS capa_attck
128 ([id] INTEGER PRIMARY KEY, [function_name] TEXT, [attck] TEXT, UNIQUE(

function_name, attck))
129 ’’’)
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130 db.execute(’’’
131 CREATE TABLE IF NOT EXISTS capa_mbc
132 ([id] INTEGER PRIMARY KEY, [function_name] TEXT, [mbc] TEXT, UNIQUE

(function_name, mbc))
133 ’’’)
134 db.execute(’’’
135 CREATE TABLE IF NOT EXISTS capa_capability
136 ([id] INTEGER PRIMARY KEY, [function_name] TEXT, [capability] TEXT,

UNIQUE(function_name, capability))
137 ’’’)
138 db_conn.commit()
139 return db_conn
140

141

142 def write_cap_to_db(db, function_name, table, capa_type, capa_str):
143 query = f"INSERT OR IGNORE INTO {table} (function_name, {capa_type}) \
144 VALUES (?, ?)"
145 values = (function_name, capa_str)
146 db.execute(query, values)
147 db.commit()
148

149

150 def write_results_to_database(data, db_name):
151 db = create_capa_db_tables(db_name)
152 for key, value in data.items():
153 for tactic, techniques in value["ATTCK"].items():
154 for technique in techniques:
155 write_cap_to_db(db, key, "capa_attck", "attck", f"{tactic}::{

technique}")
156 for behavior, subbehaviors in value["MBC"].items():
157 for subbehavior in subbehaviors:
158 write_cap_to_db(db, key, "capa_mbc", "mbc", f"{behavior}::{

subbehavior}")
159 for cap, subcaps in value["CAPABILITY"].items():
160 for subcap in subcaps:
161 write_cap_to_db(db, key, "capa_capability", "capability", f"{cap

}::{subcap}")
162 db.close()
163

164

165 def results_database(db_name, diaphora_file, mitre_score):
166 db_conn = sqlite3.connect(db_name)
167 db = db_conn.cursor()
168 db.execute(’’’CREATE TABLE IF NOT EXISTS results
169 ([id] INTEGER PRIMARY KEY, [diff_db] TEXT, [mitre_score] TEXT,

UNIQUE(diff_db, mitre_score))
170 ’’’)
171 db.execute("INSERT OR IGNORE INTO results (diff_db, mitre_score) VALUES (?, ?)"

, (diaphora_file, mitre_score))
172

173 db_conn.commit()
174 db_conn.close()
175

176
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177 def add_mitre_score_to_db(db_name, data):
178 db_conn = sqlite3.connect(db_name)
179 db = db_conn.cursor()
180 # Check if table exists
181 db.execute(’’’DROP TABLE IF EXISTS mitre_scoring’’’)
182 db.execute(’’’
183 CREATE TABLE IF NOT EXISTS mitre_scoring
184 ([id] INTEGER PRIMARY KEY, [technique] TEXT, [weight] TEXT, [

occurences] INTEGER)
185 ’’’)
186 db.execute(’’’DROP TABLE IF EXISTS mitre_final_score’’’)
187 db.execute(’’’
188 CREATE TABLE IF NOT EXISTS mitre_final_score
189 ([id] INTEGER PRIMARY KEY, [final_score] TEXT)
190 ’’’)
191

192 query = ’’’INSERT INTO mitre_scoring (technique, weight, occurences) VALUES(?,
?, ?)’’’

193 final_score = 0
194 for technique, weight, occurences in data:
195 final_score += (occurences * float(weight))
196 values = (technique, weight, occurences)
197 db.execute(query, values)
198

199 db.execute("INSERT INTO mitre_final_score (final_score) VALUES (?)", (
final_score,))

200

201 db_conn.commit()
202 db_conn.close()
203 return final_score
204

205

206 def get_technique_ids(json_data):
207 t_list = []
208 for key, value in json_data.items():
209 for techniques in value["ATTCK"].values():
210 for technique in techniques:
211 t_ids = re.findall("T[0-9]{4}$", technique)
212 for t_id in t_ids:
213 t_list.append(t_id)
214 return t_list
215

216

217 def mitre_score(score_file_csv, json_results):
218 """Score the json_results using the mitre scoring system"""
219 with open(score_file_csv) as csvfile:
220 score_chart = csv.DictReader(csvfile)
221 score_id = score_chart.fieldnames[0]
222 techniques = get_technique_ids(json_results)
223 scoring_table = []
224 for row in score_chart:
225 t_id = row["Technique (ID)"]
226 if t_id in techniques:
227 scoring_table.append((t_id, row[score_id], techniques.count(t_id)))
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228 return scoring_table
229

230

231 def render_meta(doc: rd.ResultDocument, result):
232 result["md5"] = doc.meta.sample.md5
233 result["sha1"] = doc.meta.sample.sha1
234 result["sha256"] = doc.meta.sample.sha256
235 result["path"] = doc.meta.sample.path
236

237

238 def render_capabilities(rule_meta, result):
239 """
240 example::
241 {’CAPABILITY’: {’accept command line arguments’: ’host-interaction/cli’,
242 ’allocate thread local storage (2 matches)’: ’host-interaction/

process’,
243 ’check for time delay via GetTickCount’: ’anti-analysis/anti-

debugging/debugger-detection’,
244 ’check if process is running under wine’: ’anti-analysis/anti-

emulation/wine’,
245 ’contain a resource (.rsrc) section’: ’executable/pe/section/rsrc’,
246 ’write file (3 matches)’: ’host-interaction/file-system/write’}
247 }
248 """
249 #subrule_matches = find_subrule_matches(doc)
250

251 result["CAPABILITY"] = {}
252 capability = rule_meta.name
253

254 result["CAPABILITY"].setdefault(rule_meta.namespace, [])
255 result["CAPABILITY"][rule_meta.namespace].append(capability)
256

257

258 def render_attack(rule_meta, result):
259 """
260 example::
261 {’ATT&CK’: {’COLLECTION’: [’Input Capture::Keylogging [T1056.001]’],
262 ’DEFENSE EVASION’: [’Obfuscated Files or Information [T1027]’,
263 ’Virtualization/Sandbox Evasion::System Checks ’
264 ’[T1497.001]’],
265 ’DISCOVERY’: [’File and Directory Discovery [T1083]’,
266 ’Query Registry [T1012]’,
267 ’System Information Discovery [T1082]’],
268 ’EXECUTION’: [’Shared Modules [T1129]’]}
269 }
270 """
271 result["ATTCK"] = {}
272 tactics = collections.defaultdict(set)
273 if not rule_meta.attack:
274 return -1
275 for attack in rule_meta.attack:
276 tactics[attack.tactic].add((attack.technique, attack.subtechnique, attack.

id))
277
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278 for tactic, techniques in sorted(tactics.items()):
279 inner_rows = []
280 for technique, subtechnique, id in sorted(techniques):
281 if subtechnique is None:
282 inner_rows.append(f"{technique} {id}")
283 else:
284 inner_rows.append(f"{technique}::{subtechnique} {id}")
285 result["ATTCK"].setdefault(tactic.upper(), inner_rows)
286

287

288 def render_mbc(rule_meta, result):
289 """
290 example::
291 {’MBC’: {’ANTI-BEHAVIORAL ANALYSIS’: [’Debugger Detection::Timing/Delay

Check ’
292 ’GetTickCount [B0001.032]’,
293 ’Emulator Detection [B0004]’,
294 ’Virtual Machine Detection::Instruction ’
295 ’Testing [B0009.029]’,
296 ’Virtual Machine Detection [B0009]’],
297 ’COLLECTION’: [’Keylogging::Polling [F0002.002]’],
298 ’CRYPTOGRAPHY’: [’Encrypt Data::RC4 [C0027.009]’,
299 ’Generate Pseudo-random Sequence::RC4 PRGA ’
300 ’[C0021.004]’]}
301 }
302 """
303 result["MBC"] = {}
304 objectives = collections.defaultdict(set)
305 if not rule_meta.mbc:
306 return -1
307

308 for mbc in rule_meta.mbc:
309 objectives[mbc.objective].add((mbc.behavior, mbc.method, mbc.id))
310

311 for objective, behaviors in sorted(objectives.items()):
312 inner_rows = []
313 for behavior, method, id in sorted(behaviors):
314 if method is None:
315 inner_rows.append(f"{behavior} [{id}]")
316 else:
317 inner_rows.append(f"{behavior}::{method} [{id}]")
318 result["MBC"].setdefault(objective.upper(), inner_rows)
319

320

321 def render_dictionary(rule_meta) -> Dict[str, Any]:
322 result: Dict[str, Any] = {}
323 #render_meta(rule_meta, result)
324 render_attack(rule_meta, result)
325 render_mbc(rule_meta, result)
326 render_capabilities(rule_meta, result)
327 return result
328

329

330 def render_matches_by_function(doc: rd.ResultDocument, extractor, diaphora_db):
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331 """
332 like:
333

334 function at 0x1000321a with 33 features:
335 - get hostname
336 - initialize Winsock library
337 function at 0x10003286 with 63 features:
338 - create thread
339 - terminate thread
340 function at 0x10003415 with 116 features:
341 - write file
342 - send data
343 - link function at runtime
344 - create HTTP request
345 - get common file path
346 - send HTTP request
347 - connect to HTTP server
348 """
349 assert isinstance(doc.meta.analysis, rd.StaticAnalysis)
350 functions_by_bb: Dict[Address, Address] = {}
351 for finfo in doc.meta.analysis.layout.functions:
352 faddress = finfo.address
353

354 for bb in finfo.matched_basic_blocks:
355 bbaddress = bb.address
356 functions_by_bb[bbaddress] = faddress
357

358 ostream = rutils.StringIO()
359

360 matches_by_function: Dict[Any, Any] = {}
361

362 for rule in rutils.capability_rules(doc):
363 if capa.rules.Scope.FUNCTION in rule.meta.scopes:
364 for addr, _ in rule.matches:
365 matches_by_function[addr] = render_dictionary(rule.meta)
366

367 elif capa.rules.Scope.BASIC_BLOCK in rule.meta.scopes:
368 for addr, _ in rule.matches:
369 function = functions_by_bb[addr]
370 matches_by_function[function] = render_dictionary(rule.meta)
371 else:
372 # file scope
373 pass
374

375 # Get diaphora diffing results
376 new_functions = get_unmatched_functions(diaphora_db)
377 modified_functions = get_partial_matched_functions(diaphora_db)
378

379 result: Dict[Any, Any] = {}
380

381 if doc.meta.analysis.extractor != "DnfileFeatureExtractor":
382 # Parse function names to address values
383 for i in range(0, len(new_functions)):
384 try:
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385 new_functions[i] = hex(int(new_functions[i].lstrip("sub_"), 16))
386 except ValueError:
387 continue
388 for i in range(0, len(modified_functions)):
389 try:
390 modified_functions[i] = hex(int(modified_functions[i].lstrip("sub_"

), 16))
391 except ValueError:
392 continue
393

394 for f in doc.meta.analysis.feature_counts.functions:
395 if not matches_by_function.get(f.address, {}):
396 continue
397 f_addr_formated = capa.render.verbose.format_address(f.address)
398

399 if f_addr_formated in new_functions:
400 ostream.writeln(f"New function at {f_addr_formated} with {f.count}

features: ")
401 result[f_addr_formated] = matches_by_function[f.address]
402 result[f_addr_formated]["MATCH"] = "UNMATCHED"
403

404 if f_addr_formated in modified_functions:
405 ostream.writeln(f"Modified function at {f_addr_formated} with {f.

count} features: ")
406 result[f_addr_formated] = matches_by_function[f.address]
407 result[f_addr_formated]["MATCH"] = "PARTIAL"
408

409 else:
410 for f in doc.meta.analysis.feature_counts.functions:
411 if not matches_by_function.get(f.address, {}):
412 continue
413 func_name = str(extractor.token_cache.methods[f.address.value])
414

415 for matching_name in new_functions:
416 if matching_name in func_name or func_name in matching_name:
417 # ostream.writeln(f"New function at {func_name} ({f.address})

with {f.count} features")
418 result[func_name] = matches_by_function[f.address]
419 result[func_name]["MATCH"] = "UNMATCHED"
420

421 for matching_name in modified_functions:
422 if matching_name in func_name or func_name in matching_name:
423 # ostream.writeln(f"Modified function at {func_name} ({f.

address}) with {f.count} features")
424 result[func_name] = matches_by_function[f.address]
425 result[func_name]["MATCH"] = "PARTIAL"
426 # print(ostream.getvalue())
427 return result
428

429

430 def main(argv=None):
431 if argv is None:
432 argv = sys.argv[1:]
433
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434 parser = argparse.ArgumentParser(description="detect capabilities in programs."
)

435 capa.main.install_common_args(
436 parser, wanted={"format", "os", "backend", "input_file", "signatures", "

rules", "tag"}
437 )
438 #parser.add_argument("-x", "--diaphorafile", help="path to .diaphora file")
439

440 logger = logging.getLogger(__name__)
441 logging.basicConfig(filename="./capability_extraction.log", encoding="utf-8",

level=logging.DEBUG)
442

443 args = parser.parse_args(args=argv)
444 diffing_dir = args.input_file
445 dir_list = os.listdir(diffing_dir)
446

447 with tqdm(total=len(dir_list), desc="Extracting behavior from differing
functions") as progress_bar:

448 for filename in dir_list:
449 if not filename.endswith(".diaphora"):
450 continue
451 # Get the necessary binary file (last version) from diaphora file
452 diaphora_file = os.path.join(diffing_dir, filename)
453 binary_db = get_diff_binary(diaphora_file)
454 binary = os.path.splitext(binary_db)[:1]
455 binary = "".join(x for x in binary)
456 # Set the input binary
457 args.input_file = binary
458

459 try:
460 capa.main.handle_common_args(args)
461 capa.main.ensure_input_exists_from_cli(args)
462 input_format = capa.main.get_input_format_from_cli(args)
463 rules = capa.main.get_rules_from_cli(args)
464 backend = capa.main.get_backend_from_cli(args, input_format)
465 sample_path = capa.main.get_sample_path_from_cli(args, backend)
466 if sample_path is None:
467 os_ = "unknown"
468 else:
469 os_ = capa.loader.get_os(sample_path)
470 extractor = capa.main.get_extractor_from_cli(args, input_format,

backend)
471 except capa.main.ShouldExitError as e:
472 return e.status_code
473

474 capabilities, counts = capa.capabilities.common.find_capabilities(rules
, extractor)

475

476 meta = capa.loader.collect_metadata(argv, args.input_file, input_format
, os_, args.rules, extractor, counts)

477 meta.analysis.layout = capa.loader.compute_layout(rules, extractor,
capabilities)

478

479 if capa.capabilities.common.has_file_limitation(rules, capabilities):
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480 # bail if capa encountered file limitation e.g. a packed binary
481 # do show the output in verbose mode, though.
482 if not (args.verbose or args.vverbose or args.json):
483 return capa.main.E_FILE_LIMITATION
484

485 doc = rd.ResultDocument.from_capa(meta, rules, capabilities)
486

487 result_dict = render_matches_by_function(doc, extractor, diaphora_file)
488

489 results = json.dumps(result_dict)
490 json_data = json.loads(results)
491 json_file = os.path.splitext(diaphora_file)[0] + ".json"
492 with open(json_file, "w") as j_file:
493 json.dump(json_data, j_file)
494 write_results_to_database(json_data, diaphora_file)
495 scoring_table = mitre_score("./mitre_scores.csv", json_data)
496 final_score = add_mitre_score_to_db(diaphora_file, scoring_table)
497 results_database("./final_results.sqlite", diaphora_file, final_score)
498

499 logger.info("Capa completed %s", diaphora_file)
500

501 progress_bar.update(1)
502

503 colorama.deinit()
504 return 0
505

506

507 if __name__ == "__main__":
508 sys.exit(main())





Appendix B

Behavior identification results

This appendix includes detailed tables from the behavior identification, displaying
the frequency of the MBC identifiers and the Capa capabilities for the benign and
malicious dataset.

Table B.1: Complete table of MBC identifiers and number of occurrences in be-
nign and malicious datasets

MBC identifier Benign Malicious
DISCOVERY::File and Directory Discovery::
[E1083]

1883 16

PROCESS::Create Process:: [C0017] 398 3
PROCESS::Suspend Thread:: [C0055] 322 7
PROCESS::Terminate Process:: [C0018] 289 3
OPERATING SYSTEM::Console:: [C0033] 247 1
FILE SYSTEM::Writes File:: [C0052] 150 2
DISCOVERY::System Information Discovery::
[E1082]

141 4

OPERATING SYSTEM::Registry::Query Registry
Value [C0036.006]

131 6

CRYPTOGRAPHY::Generate Pseudo-random Se-
quence::Use API [C0021.003]

119 11

PROCESS::Create Thread:: [C0038] 123 5
FILE SYSTEM::Read File:: [C0051] 114 6
FILE SYSTEM::Create Directory:: [C0046] 109 1
FILE SYSTEM::Delete File:: [C0047] 101 9
FILE SYSTEM::Move File:: [C0063] 86 2
DEFENSE EVASION::Obfuscated Files or
Information::Encoding-Standard Algorithm
[E1027.m02]

70 13

83
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OPERATING SYSTEM::Registry::Set Registry Key
[C0036.001]

75 3

FILE SYSTEM::Copy File:: [C0045] 77 0
IMPACT::Clipboard Modification:: [E1510] 74 0
DATA::Encode Data::Base64 [C0026.001] 58 12
COMMUNICATION::HTTP Communication::Send
Request [C0002.003]

57 3

FILE SYSTEM::Set File Attributes:: [C0050] 52 4
FILE SYSTEM::Get File Attributes:: [C0049] 44 1
DATA::Decode Data::Base64 [C0053.001] 33 9
OPERATING SYSTEM::Registry::Query Registry
Key [C0036.005]

34 2

COMMUNICATION::HTTP Communication::Get
Response [C0002.017]

12 11

OPERATING SYSTEM::Registry::Delete Registry
Value [C0036.007]

22 1

FILE SYSTEM::Delete Directory:: [C0048] 18 0
COMMUNICATION::HTTP Communica-
tion::Download URL [C0002.006]

15 0

CRYPTOGRAPHY::Cryptographic Hash::MD5
[C0029.001]

14 1

OPERATING SYSTEM::Registry::Delete Registry
Key [C0036.002]

15 0

COMMUNICATION::HTTP Communication::Create
Request [C0002.012]

14 0

ANTI-BEHAVIORAL ANALYSIS::Debugger Detec-
tion::WudfIsAnyDebuggerPresent [B0001.031]

12 0

ANTI-BEHAVIORAL ANALYSIS::Debugger Detec-
tion::CheckRemoteDebuggerPresent [B0001.002]

12 0

PROCESS::Create Mutex:: [C0042] 10 0
PERSISTENCE::Registry Run Keys / Startup
Folder:: [F0012]

10 0

EXECUTION::Command and Scripting Interpreter::
[E1059]

9 0

COMMUNICATION::Socket Communica-
tion::Receive Data [C0001.006]

8 0

COMMUNICATION::Socket Communica-
tion::Create TCP Socket [C0001.011]

6 0

COMMUNICATION::Socket Communica-
tion::Create UDP Socket [C0001.010]

5 1

CRYPTOGRAPHY::Cryptographic Hash::SHA1
[C0029.002]

5 0
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CRYPTOGRAPHY::Encrypt Data:: [C0027] 5 0
COMMUNICATION::Socket Communication::Send
Data [C0001.007]

5 0

DATA::Compress Data:: [C0024] 3 2
COMMUNICATION::DNS Communication::Resolve
[C0011.001]

3 1

COMMUNICATION::Socket Communication::TCP
Client [C0001.008]

3 0

COMMUNICATION::Socket Communication::Start
TCP Server [C0001.005]

3 0

CRYPTOGRAPHY::Cryptographic Hash::SHA256
[C0029.003]

3 0

OPERATING SYSTEM::Environment Variable::Set
Variable [C0034.001]

2 0

COLLECTION::Screen Capture::WinAPI
[E1113.m01]

1 0

DISCOVERY::Code Discovery::Inspect Section
Memory Permissions [B0046.002]

1 0

ANTI-STATIC ANALYSIS::Executable Code Obfusca-
tion::Argument Obfuscation [B0032.020]

0 1

ANTI-STATIC ANALYSIS::Executable Code Obfusca-
tion::Stack Strings [B0032.017]

0 1

DATA::Encode Data::XOR [C0026.002] 0 1
COMMUNICATION::HTTP Communication::Read
Header [C0002.014]

0 1

DATA::Checksum::CRC32 [C0032.001] 0 1

Table B.2: Complete table of Capa capabilities and number of occurrences in
benign and malicious datasets

Capa capability Benign Malicious

runtime::unmanaged call 1092 7
host-interaction/file-system/exists::check if file ex-
ists

1018 7

host-interaction/file-system/files/list::enumerate
files in .NET

579 2

data-manipulation/regex::find data using regex in
.NET

417 7

host-interaction/process/create::create process on
Windows

398 3

host-interaction/thread/suspend::suspend thread 322 7



86 E. Frankrig: Closed-Source SSCA Detection Using Behavior Identification

host-interaction/process/terminate::terminate pro-
cess

289 3

host-interaction/file-system/exists::check if direc-
tory exists

274 2

host-interaction/console::manipulate console
buffer

245 1

host-interaction/memory::manipulate unmanaged
memory in .NET

231 0

host-interaction/file-system::check file extension in
.NET

224 0

data-manipulation/xml::load XML in .NET 159 19
host-interaction/file-system/write::write file on
Windows

150 2

host-interaction/registry::query or enumerate reg-
istry value

131 6

host-interaction/thread/create::create thread 123 5
host-interaction/file-system::get common file path 121 5
host-interaction/os/version::get OS version in .NET 123 3
data-manipulation/prng::generate random num-
bers in .NET

113 11

host-interaction/file-system/read::read file on Win-
dows

114 6

load-code/dotnet::load .NET assembly 116 1
host-interaction/file-system/delete::delete file 101 9
host-interaction/file-system/create::create direc-
tory

109 1

collection/database/sql::reference SQL statements 14 94
host-interaction/file-system/meta::get file size 92 1
host-interaction/file-system/move::move file 86 2
host-interaction/registry/create::set registry value 75 3
host-interaction/file-system/copy::copy file 77 0
host-interaction/environment-variable::query
environment variable

73 3

host-interaction/clipboard::write clipboard data 74 0
host-interaction/file-system/meta::get file version
info

73 1

data-manipulation/encoding/base64::encode data
using Base64

58 12

host-interaction/session::get session user name 56 5
host-interaction/os/hostname::get hostname 59 1
host-interaction/file-system/meta::set file at-
tributes

52 4
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executable/resource::access .NET resource 53 2
communication/authentication::manipulate net-
work credentials in .NET

55 0

load-code/dotnet::generate method via reflection
in .NET

51 0

communication/http/client::send HTTP request 45 3
host-interaction/file-system/meta::get file at-
tributes

44 1

data-manipulation/encoding/base64::decode data
using Base64 in .NET

33 9

host-interaction/registry::query or enumerate reg-
istry key

34 2

collection::get geographical location 31 1
host-interaction/process/list::find process by PID 29 0
host-interaction/process/list::find process by name 26 0
collection::save image in .NET 24 0
host-interaction/registry/delete::delete registry
value

22 1

communication/http/client::read data from Inter-
net

12 11

host-interaction/gui::enumerate gui resources 20 0
host-interaction/wmi::access WMI data in .NET 14 5
host-interaction/clipboard::read clipboard data 19 0
host-interaction/file-system/delete::delete direc-
tory

18 0

data-manipulation/compression::create zip archive
in .NET

17 0

communication/http/client::download URL 15 0
host-interaction/file-system::generate random file-
name in .NET

15 0

host-interaction/process/list::enumerate processes 14 1
host-interaction/registry/delete::delete registry
key

15 0

data-manipulation/hashing/md5::hash data with
MD5

14 1

communication/http/client::create HTTP request 14 0
host-interaction/file-system::set current directory 13 0
data-manipulation/database/sql::execute SQLite
statement in .NET

13 0

data-manipulation/encoding/url::decode data us-
ing URL encoding

12 0

communication/http/client::send request in .NET 12 0
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load-code/dotnet::invoke .NET assembly method 12 0
anti-analysis/anti-debugging/debugger-
detection::check for debugger via API

12 0

host-interaction/hardware/keyboard::send
keystrokes

12 0

host-interaction/file-system/move::move directory 11 0
communication/http::set web proxy in .NET 11 0
host-interaction/mutex::create mutex 10 0
persistence/registry/run::persist via Run registry
key

10 0

host-interaction/cli::accept command line argu-
ments

9 0

host-interaction/thread/task::execute via asyn-
chronous task in .NET

9 0

communication/socket/receive::receive data on
socket

8 0

communication/http/client::send data to Internet 4 3
communication/socket/tcp::create TCP socket 6 0
host-interaction/clipboard::clear clipboard data 6 0
communication/socket/udp/send::create UDP
socket

5 1

host-interaction/thread/timer::execute via timer in
.NET

6 0

data-manipulation/prng::generate random bytes in
.NET

6 0

host-interaction/hardware/storage::get disk infor-
mation

6 0

data-manipulation/encryption/dpapi::encrypt data
using DPAPI

5 0

host-interaction/process::get process image file-
name

5 0

host-interaction/process/terminate::terminate pro-
cess by name in .NET

5 0

communication/http::set HTTP User-Agent in .NET 5 0
data-manipulation/hashing/sha1::hash data using
SHA1

5 0

communication/socket/send::send data on socket 5 0
data-manipulation/compression::compress data
using GZip in .NET

3 2

host-interaction/hardware/cpu::get number of
processors

5 0

communication/http::get system web proxy 4 1
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persistence/service::persist via Windows service 5 0
communication/http::set HTTP cookie 4 0
communication/dns::resolve DNS 3 1
communication/tcp/client::act as TCP client 3 0
host-interaction/hardware/storage::get disk size 3 0
persistence::create shortcut via IShellLink 0 3
host-interaction/network/interface::get network-
ing interfaces

2 1

communication/tcp/serve::start TCP server 3 0
data-manipulation/hashing/sha256::hash data us-
ing SHA256

3 0

host-interaction/gui::display service notification
message box

3 0

host-interaction/console::manipulate console win-
dow

2 0

host-interaction/process/modify::acquire debug
privileges

2 0

collection/network::get MAC address in .NET 1 1
data-manipulation/json::deserialize JSON in .NET 2 0
data-manipulation/json::serialize JSON in .NET 2 0
persistence/scheduled-tasks::schedule task via at 2 0
host-interaction/environment-variable::set envi-
ronment variable

2 0

collection/webcam::capture webcam image 0 2
linking/runtime-linking::link function at runtime
on Windows

0 2

data-manipulation/encoding/xor::encode data us-
ing XOR

0 1

communication/http::read HTTP header 0 1
host-interaction/network/domain::get domain in-
formation

0 1

data-manipulation/checksum/crc32::hash data
with CRC32

0 1

linking/runtime-linking::get kernel32 base address 0 1
load-code/dotnet/csharp::compile CSharp in .NET 1 0
anti-analysis/obfuscation/string/stackstring::contain
obfuscated stackstrings

0 1

host-interaction/file-system::reference absolute
stream path on Windows

1 0

runtime/dotnet::unmanaged call via dynamic PIn-
voke in .NET

1 0

load-code/pe::inspect section memory permissions 1 0
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collection/screenshot::capture screenshot 1 0
host-interaction/clipboard::check clipboard data 1 0
load-code/dotnet::compile .NET assembly 1 0
load-code/pe::resolve function by parsing PE ex-
ports

0 1

persistence/scheduled-tasks::schedule task via
schtasks

0 0



Appendix C

Malicious scoring weights

This appendix includes the weights used in the malicious scoring, where the ma-
licious score was calculated by multiplying these weights with the number of oc-
currences of the techniques. This table is generated from the MITRE Top ATT&CK
technique spreadsheet [59] as described in chapter 3.

Table C.1: All weights from the MITRE Top 10 ATT&CK techniques

Total Top
Att&ck
Score

Technique
(ID)

Technique (Name) Sub-technique (Name)

2.914286 T1059 Command and Scripting
Interpreter

NaN

2.183333 T1047 Windows Management
Instrumentation

NaN

2.114286 T1053 Scheduled Task/Job NaN
1.945238 T1055 Process Injection NaN
1.880952 T1218 Signed Binary Proxy Exe-

cution
NaN

1.826190 T1574 Hijack Execution Flow NaN
1.804762 T1562 Impair Defenses NaN
1.766667 T1543 Create or Modify System

Process
NaN

1.619048 T1036 Masquerading NaN
1.604762 T1112 Modify Registry NaN
1.592243 T1021 Remote Services NaN
1.586262 T1105 Ingress Tool Transfer NaN
1.494314 T1027 Obfuscated Files or In-

formation
NaN

1.460332 T1003 OS Credential Dumping NaN
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1.411905 T1095 Non-Application Layer
Protocol

NaN

1.392857 T1090 Proxy NaN
1.357723 T1078 Valid Accounts NaN
1.311811 T1204 User Execution NaN
1.306383 T1548 Abuse Elevation Control

Mechanism
NaN

1.296056 T1070 Indicator Removal on
Host

NaN

1.242857 T1557.003 Adversary-in-the-Middle DHCP Spoofing
1.181680 T1074 Data Staged NaN
1.147619 T1559.003 Inter-Process Communi-

cation
XPC Services

1.128571 T1564.010 Hide Artifacts Process Argument Spoof-
ing

1.083195 T1190 Exploit Public-Facing Ap-
plication

NaN

1.071094 T1569 System Services NaN
1.069018 T1552 Unsecured Credentials NaN
0.989403 T1547 Boot or Logon Autostart

Execution
NaN

0.952785 T1106 Native API NaN
0.947619 T1059.001 Command and Scripting

Interpreter
PowerShell

0.935646 T1219 Remote Access Software NaN
0.923648 T1068 Exploitation for Privilege

Escalation
NaN

0.909524 T1003.001 OS Credential Dumping LSASS Memory
0.871188 T1110 Brute Force NaN
0.870046 T1564 Hide Artifacts NaN
0.861174 T1072 Software Deployment

Tools
NaN

0.807143 T1484 Domain Policy Modifica-
tion

NaN

0.781106 T1071 Application Layer Proto-
col

NaN

0.772202 T1557 Adversary-in-the-Middle NaN
0.745593 T1098 Account Manipulation NaN
0.730952 T1210 Exploitation of Remote

Services
NaN

0.719175 T1570 Lateral Tool Transfer NaN
0.685714 T1021.001 Remote Services Remote Desktop Protocol
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0.685644 T1197 BITS Jobs NaN
0.684502 T1560 Archive Collected Data NaN
0.680675 T1082 System Information Dis-

covery
NaN

0.669344 T1136 Create Account NaN
0.669048 T1561.002 Disk Wipe Disk Structure Wipe
0.665455 T1546 Event Triggered Execu-

tion
NaN

0.661905 T1053.005 Scheduled Task/Job Scheduled Task
0.647619 T1530 Data from Cloud Storage

Object
NaN

0.638095 T1021.002 Remote Services SMB/Windows Admin
Shares

0.623227 T1490 Inhibit System Recovery NaN
0.622111 T1056 Input Capture NaN
0.616667 T1528 Steal Application Access

Token
NaN

0.603350 T1222 File and Directory Per-
missions Modification

NaN

0.595238 T1543.003 Create or Modify System
Process

Windows Service

0.592951 T1489 Service Stop NaN
0.591802 T1559 Inter-Process Communi-

cation
NaN

0.590476 T1003.002 OS Credential Dumping Security Account Man-
ager

0.590328 T1566 Phishing NaN
0.588021 T1203 Exploitation for Client

Execution
NaN

0.576190 T1078.004 Valid Accounts Cloud Accounts
0.567839 T1140 Deobfuscate/Decode

Files or Information
NaN

0.559524 T1565.003 Data Manipulation Runtime Data Manipula-
tion

0.558090 T1571 Non-Standard Port NaN
0.557143 T1563.002 Remote Service Session

Hijacking
RDP Hijacking

0.555269 T1012 Query Registry NaN
0.554918 T1558 Steal or Forge Kerberos

Tickets
NaN

0.552381 T1070.001 Indicator Removal on
Host

Clear Windows Event
Logs
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0.547619 T1003.003 OS Credential Dumping NTDS
0.538095 T1547.015 Boot or Logon Autostart

Execution
Login Items

0.537410 T1102 Web Service NaN
0.533333 T1048.003 Exfiltration Over Alter-

native Protocol
Exfiltration Over Un-
encrypted/Obfuscated
Non-C2 Protocol

0.528571 T1133 External Remote Ser-
vices

NaN

0.523810 T1059.005 Command and Scripting
Interpreter

Visual Basic

0.523810 T1548.001 Abuse Elevation Control
Mechanism

Setuid and Setgid

0.520876 T1048 Exfiltration Over Alter-
native Protocol

NaN

0.519048 T1021.006 Remote Services Windows Remote Man-
agement

0.519048 T1548.002 Abuse Elevation Control
Mechanism

Bypass User Account
Control

0.512381 T1555 Credentials from Pass-
word Stores

NaN

0.504762 T1542.005 Pre-OS Boot TFTP Boot
0.500000 T1602.002 Data from Configuration

Repository
Network Device Configu-
ration Dump

0.483947 T1482 Domain Trust Discovery NaN
0.480952 T1602.001 Data from Configuration

Repository
SNMP (MIB Dump)

0.479206 T1565 Data Manipulation NaN
0.476190 T1574.001 Hijack Execution Flow DLL Search Order Hi-

jacking
0.476190 T1213 Data from Information

Repositories
NaN

0.475858 T1087 Account Discovery NaN
0.471711 T1080 Taint Shared Content NaN
0.471429 T1070.002 Indicator Removal on

Host
Clear Linux or Mac Sys-
tem Logs

0.471429 T1569.001 System Services Launchctl
0.471429 T1213.001 Data from Information

Repositories
Confluence

0.471429 T1213.002 Data from Information
Repositories

Sharepoint

0.466667 T1021.005 Remote Services VNC
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0.462302 T1505 Server Software Compo-
nent

NaN

0.461905 T1136.003 Create Account Cloud Account
0.461905 T1601 Modify System Image NaN
0.458370 T1091 Replication Through Re-

movable Media
NaN

0.457143 T1212 Exploitation for Creden-
tial Access

NaN

0.452592 T1563 Remote Service Session
Hijacking

NaN

0.452381 T1557.002 Adversary-in-the-Middle ARP Cache Poisoning
0.452381 T1558.002 Steal or Forge Kerberos

Tickets
Silver Ticket

0.452381 T1114 Email Collection NaN
0.450483 T1127 Trusted Developer Utili-

ties Proxy Execution
NaN

0.447619 T1021.003 Remote Services Distributed Component
Object Model

0.445238 T1539 Steal Web Session
Cookie

NaN

0.442857 T1547.006 Boot or Logon Autostart
Execution

Kernel Modules and Ex-
tensions

0.442857 T1036.003 Masquerading Rename System Utilities
0.442857 T1059.007 Command and Scripting

Interpreter
JavaScript/JScript

0.442583 T1497 Virtualization/Sandbox
Evasion

NaN

0.441743 T1211 Exploitation for Defense
Evasion

NaN

0.438095 T1552.001 Unsecured Credentials Credentials In Files
0.438095 T1003.005 OS Credential Dumping Cached Domain Creden-

tials
0.438095 T1078.003 Valid Accounts Local Accounts
0.438095 T1110.003 Brute Force Password Spraying
0.433333 T1552.004 Unsecured Credentials Private Keys
0.433333 T1537 Transfer Data to Cloud

Account
NaN

0.430952 T1602 Data from Configuration
Repository

NaN

0.424444 T1189 Drive-by Compromise NaN
0.423810 T1204.002 User Execution Malicious File
0.419725 T1542 Pre-OS Boot NaN
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0.419048 T1505.002 Server Software Compo-
nent

Transport Agent

0.416995 T1134 Access Token Manipula-
tion

NaN

0.414286 T1136.002 Create Account Domain Account
0.414286 T1048.002 Exfiltration Over Alter-

native Protocol
Exfiltration Over Asym-
metric Encrypted Non-
C2 Protocol

0.411905 T1601.001 Modify System Image Patch System Image
0.411905 T1601.002 Modify System Image Downgrade System Im-

age
0.410946 T1046 Network Service Scan-

ning
NaN

0.409524 T1557.001 Adversary-in-the-Middle LLMNR/NBT-NS Poison-
ing and SMB Relay

0.409524 T1562.006 Impair Defenses Indicator Blocking
0.409524 T1098.001 Account Manipulation Additional Cloud Cre-

dentials
0.405481 T1572 Protocol Tunneling NaN
0.404762 T1021.004 Remote Services SSH
0.404762 T1563.001 Remote Service Session

Hijacking
SSH Hijacking

0.404762 T1053.002 Scheduled Task/Job At (Windows)
0.404762 T1059.006 Command and Scripting

Interpreter
Python

0.404762 T1542.001 Pre-OS Boot System Firmware
0.400000 T1003.004 OS Credential Dumping LSA Secrets
0.400000 T1053.003 Scheduled Task/Job Cron
0.397619 T1565.001 Data Manipulation Stored Data Manipula-

tion
0.395238 T1053.001 Scheduled Task/Job At (Linux)
0.395238 T1218.011 Signed Binary Proxy Exe-

cution
Rundll32

0.395238 T1556 Modify Authentication
Process

NaN

0.390476 T1558.003 Steal or Forge Kerberos
Tickets

Kerberoasting

0.390476 T1552.002 Unsecured Credentials Credentials in Registry
0.390476 T1218.012 Signed Binary Proxy Exe-

cution
Verclsid

0.390284 T1137 Office Application
Startup

NaN
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0.385714 T1218.005 Signed Binary Proxy Exe-
cution

Mshta

0.385714 T1003.006 OS Credential Dumping DCSync
0.385714 T1078.002 Valid Accounts Domain Accounts
0.382257 T1553 Subvert Trust Controls NaN
0.381423 T1040 Network Sniffing NaN
0.380952 T1574.010 Hijack Execution Flow Services File Permissions

Weakness
0.379893 T1083 File and Directory Dis-

covery
NaN

0.376190 T1059.003 Command and Scripting
Interpreter

Windows Command
Shell

0.374096 T1005 Data from Local System NaN
0.371429 T1562.001 Impair Defenses Disable or Modify Tools
0.369090 T1485 Data Destruction NaN
0.366667 T1136.001 Create Account Local Account
0.366667 T1071.004 Application Layer Proto-

col
DNS

0.361905 T1543.002 Create or Modify System
Process

Systemd Service

0.361905 T1556.001 Modify Authentication
Process

Domain Controller Au-
thentication

0.361905 T1071.001 Application Layer Proto-
col

Web Protocols

0.361905 T1546.003 Event Triggered Execu-
tion

Windows Management
Instrumentation Event
Subscription

0.361905 T1558.004 Steal or Forge Kerberos
Tickets

AS-REP Roasting

0.361905 T1059.004 Command and Scripting
Interpreter

Unix Shell

0.359524 T1599.001 Network Boundary
Bridging

Network Address Trans-
lation Traversal

0.358990 T1113 Screen Capture NaN
0.357143 T1110.001 Brute Force Password Guessing
0.357143 T1573.002 Encrypted Channel Asymmetric Cryptogra-

phy
0.354762 T1187 Forced Authentication NaN
0.354762 T1599 Network Boundary

Bridging
NaN

0.352381 T1550.001 Use Alternate Authenti-
cation Material

Application Access Token
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0.352381 T1505.003 Server Software Compo-
nent

Web Shell

0.352381 T1574.008 Hijack Execution Flow Path Interception by
Search Order Hijacking

0.352381 T1574.009 Hijack Execution Flow Path Interception by Un-
quoted Path

0.352381 T1542.003 Pre-OS Boot Bootkit
0.352381 T1547.011 Boot or Logon Autostart

Execution
Plist Modification

0.351638 T1195 Supply Chain Compro-
mise

NaN

0.347619 T1562.004 Impair Defenses Disable or Modify Sys-
tem Firewall

0.347619 T1218.007 Signed Binary Proxy Exe-
cution

Msiexec

0.347619 T1566.001 Phishing Spearphishing Attach-
ment

0.347619 T1574.007 Hijack Execution Flow Path Interception by
PATH Environment
Variable

0.342984 T1525 Implant Container Image NaN
0.342857 T1087.002 Account Discovery Domain Account
0.342857 T1221 Template Injection NaN
0.342780 T1037 Boot or Logon Initializa-

tion Scripts
NaN

0.340476 T1111 Two-Factor Authentica-
tion Interception

NaN

0.338095 T1036.005 Masquerading Match Legitimate Name
or Location

0.338095 T1052 Exfiltration Over Physi-
cal Medium

NaN

0.338095 T1052.001 Exfiltration Over Physi-
cal Medium

Exfiltration over USB

0.338095 T1574.005 Hijack Execution Flow Executable Installer File
Permissions Weakness

0.338095 T1059.008 Command and Scripting
Interpreter

Network Device CLI

0.338095 T1542.004 Pre-OS Boot ROMMONkit
0.338095 T1552.005 Unsecured Credentials Cloud Instance Metadata

API
0.333333 T1110.004 Brute Force Credential Stuffing
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0.333333 T1195.002 Supply Chain Compro-
mise

Compromise Software
Supply Chain

0.333333 T1550.002 Use Alternate Authenti-
cation Material

Pass the Hash

0.328571 T1098.004 Account Manipulation SSH Authorized Keys
0.328571 T1556.004 Modify Authentication

Process
Network Device Authen-
tication

0.324360 T1176 Browser Extensions NaN
0.323810 T1195.001 Supply Chain Compro-

mise
Compromise Software
Dependencies and
Development Tools

0.323810 T1547.004 Boot or Logon Autostart
Execution

Winlogon Helper DLL

0.323810 T1218.003 Signed Binary Proxy Exe-
cution

CMSTP

0.320306 T1119 Automated Collection NaN
0.319048 T1003.008 OS Credential Dumping /etc/passwd and

/etc/shadow
0.319048 T1552.006 Unsecured Credentials Group Policy Preferences
0.319048 T1547.001 Boot or Logon Autostart

Execution
Registry Run Keys /
Startup Folder

0.319048 T1569.002 System Services Service Execution
0.319048 T1218.004 Signed Binary Proxy Exe-

cution
InstallUtil

0.319048 T1505.001 Server Software Compo-
nent

SQL Stored Procedures

0.314286 T1048.001 Exfiltration Over Alter-
native Protocol

Exfiltration Over Sym-
metric Encrypted Non-
C2 Protocol

0.314286 T1204.001 User Execution Malicious Link
0.314286 T1218.001 Signed Binary Proxy Exe-

cution
Compiled HTML File

0.314286 T1222.001 File and Directory Per-
missions Modification

Windows File and Direc-
tory Permissions Modifi-
cation

0.314286 T1222.002 File and Directory Per-
missions Modification

Linux and Mac File and
Directory Permissions
Modification

0.311905 T1495 Firmware Corruption NaN
0.311905 T1550 Use Alternate Authenti-

cation Material
NaN
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0.310246 T1041 Exfiltration Over C2
Channel

NaN

0.309524 T1003.007 OS Credential Dumping Proc Filesystem
0.309524 T1098.003 Account Manipulation Add Office 365 Global

Administrator Role
0.309524 T1218.009 Signed Binary Proxy Exe-

cution
Regsvcs/Regasm

0.308781 T1185 Browser Session Hijack-
ing

NaN

0.304762 T1567 Exfiltration Over Web
Service

NaN

0.304762 T1548.003 Abuse Elevation Control
Mechanism

Sudo and Sudo Caching

0.304762 T1078.001 Valid Accounts Default Accounts
0.302381 T1606 Forge Web Credentials NaN
0.301784 T1486 Data Encrypted for Im-

pact
NaN

0.300443 T1018 Remote System Discov-
ery

NaN

0.300000 T1562.002 Impair Defenses Disable Windows Event
Logging

0.300000 T1070.003 Indicator Removal on
Host

Clear Command History

0.300000 T1534 Internal Spearphishing NaN
0.300000 T1553.003 Subvert Trust Controls SIP and Trust Provider

Hijacking
0.300000 T1574.002 Hijack Execution Flow DLL Side-Loading
0.300000 T1055.008 Process Injection Ptrace System Calls
0.300000 T1059.002 Command and Scripting

Interpreter
AppleScript

0.300000 T1098.002 Account Manipulation Exchange Email Dele-
gate Permissions

0.300000 T1550.003 Use Alternate Authenti-
cation Material

Pass the Ticket

0.300000 T1556.003 Modify Authentication
Process

Pluggable Authentica-
tion Modules

0.300000 T1559.002 Inter-Process Communi-
cation

Dynamic Data Exchange

0.300000 T1546.008 Event Triggered Execu-
tion

Accessibility Features

0.300000 T1548.004 Abuse Elevation Control
Mechanism

Elevated Execution with
Prompt
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0.297292 T1001 Data Obfuscation NaN
0.295703 T1033 System Owner/User Dis-

covery
NaN

0.295238 T1218.008 Signed Binary Proxy Exe-
cution

Odbcconf

0.290476 T1546.013 Event Triggered Execu-
tion

PowerShell Profile

0.285714 T1020.001 Automated Exfiltration Traffic Duplication
0.285714 T1110.002 Brute Force Password Cracking
0.285714 T1578.002 Modify Cloud Compute

Infrastructure
Create Cloud Instance

0.285714 T1578.003 Modify Cloud Compute
Infrastructure

Delete Cloud Instance

0.285714 T1071.002 Application Layer Proto-
col

File Transfer Protocols

0.285714 T1071.003 Application Layer Proto-
col

Mail Protocols

0.285714 T1134.001 Access Token Manipula-
tion

Token Imperson-
ation/Theft

0.285714 T1554 Compromise Client Soft-
ware Binary

NaN

0.280952 T1114.002 Email Collection Remote Email Collection
0.280952 T1087.001 Account Discovery Local Account
0.280952 T1546.006 Event Triggered Execu-

tion
LC_LOAD_DYLIB Addi-
tion

0.280952 T1547.007 Boot or Logon Autostart
Execution

Re-opened Applications

0.280952 T1566.003 Phishing Spearphishing via Ser-
vice

0.280952 T1562.007 Impair Defenses Disable or Modify Cloud
Firewall

0.280952 T1578 Modify Cloud Compute
Infrastructure

NaN

0.280952 T1578.001 Modify Cloud Compute
Infrastructure

Create Snapshot

0.276190 T1053.006 Scheduled Task/Job Systemd Timers
0.276190 T1218.002 Signed Binary Proxy Exe-

cution
Control Panel

0.276190 T1546.002 Event Triggered Execu-
tion

Screensaver

0.276190 T1134.002 Access Token Manipula-
tion

Create Process with To-
ken
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0.271429 T1218.010 Signed Binary Proxy Exe-
cution

Regsvr32

0.271429 T1562.003 Impair Defenses Impair Command His-
tory Logging

0.271429 T1574.012 Hijack Execution Flow COR_PROFILER
0.271429 T1558.001 Steal or Forge Kerberos

Tickets
Golden Ticket

0.270532 T1202 Indirect Command Exe-
cution

NaN

0.269764 T1069 Permission Groups Dis-
covery

NaN

0.266667 T1547.003 Boot or Logon Autostart
Execution

Time Providers

0.266667 T1574.004 Hijack Execution Flow Dylib Hijacking
0.266667 T1127.001 Trusted Developer Utili-

ties Proxy Execution
MSBuild

0.262859 T1200 Hardware Additions NaN
0.261905 T1070.008 Indicator Removal Clear Mailbox Data
0.261905 T1137.001 Office Application

Startup
Office Template Macros

0.261905 T1546.004 Event Triggered Execu-
tion

.bash_profile and .bashrc

0.261905 T1547.009 Boot or Logon Autostart
Execution

Shortcut Modification

0.260630 T1057 Process Discovery NaN
0.260519 T1132 Data Encoding NaN
0.258423 T1216 Signed Script Proxy Exe-

cution
NaN

0.257143 T1566.002 Phishing Spearphishing Link
0.257143 T1087.004 Account Discovery Cloud Account
0.257143 T1069.002 Permission Groups Dis-

covery
Domain Groups

0.257143 T1543.001 Create or Modify System
Process

Launch Agent

0.254762 T1568 Dynamic Resolution NaN
0.252381 T1562.008 Impair Defenses Disable Cloud Logs
0.252381 T1055.001 Process Injection Dynamic-link Library In-

jection
0.252381 T1055.009 Process Injection Proc Memory
0.250127 T1104 Multi-Stage Channels NaN
0.247619 T1037.004 Boot or Logon Initializa-

tion Scripts
Rc.common
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0.247619 T1134.005 Access Token Manipula-
tion

SID-History Injection

0.247619 T1199 Trusted Relationship NaN
0.247619 T1564.003 Hide Artifacts Hidden Window
0.247619 T1114.003 Email Collection Email Forwarding Rule
0.242857 T1025 Data from Removable

Media
NaN

0.242857 T1092 Communication
Through Removable
Media

NaN

0.242857 T1134.003 Access Token Manipula-
tion

Make and Impersonate
Token

0.242857 T1559.001 Inter-Process Communi-
cation

Component Object
Model

0.238095 T1137.003 Office Application
Startup

Outlook Forms

0.238095 T1102.001 Web Service Dead Drop Resolver
0.238095 T1550.004 Use Alternate Authenti-

cation Material
Web Session Cookie

0.238095 T1069.001 Permission Groups Dis-
covery

Local Groups

0.235756 T1220 XSL Script Processing NaN
0.233333 T1011.001 Exfiltration Over Other

Network Medium
Exfiltration Over Blue-
tooth

0.233333 T1564.006 Hide Artifacts Run Virtual Instance
0.233333 T1037.002 Boot or Logon Initializa-

tion Scripts
Logon Script (Mac)

0.233333 T1037.003 Boot or Logon Initializa-
tion Scripts

Network Logon Script

0.233333 T1070.004 Indicator Removal on
Host

File Deletion

0.233333 T1137.004 Office Application
Startup

Outlook Home Page

0.233333 T1137.005 Office Application
Startup

Outlook Rules

0.233333 T1543.004 Create or Modify System
Process

Launch Daemon

0.233333 T1546.010 Event Triggered Execu-
tion

AppInit DLLs

0.233333 T1053.004 Scheduled Task/Job Launchd
0.233333 T1056.003 Input Capture Web Portal Capture
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0.233333 T1102.002 Web Service Bidirectional Communi-
cation

0.233333 T1102.003 Web Service One-Way Communica-
tion

0.229423 T1561 Disk Wipe NaN
0.228571 T1070.007 Indicator Removal Clear Network Connec-

tion History and Config-
urations

0.228571 T1137.002 Office Application
Startup

Office Test

0.228571 T1546.014 Event Triggered Execu-
tion

Emond

0.228571 T1090.003 Proxy Multi-hop Proxy
0.224270 T1573 Encrypted Channel NaN
0.223810 T1205 Traffic Signaling NaN
0.223810 T1195.003 Supply Chain Compro-

mise
Compromise Hardware
Supply Chain

0.223810 T1538 Cloud Service Dashboard NaN
0.223810 T1573.001 Encrypted Channel Symmetric Cryptography
0.219048 T1037.005 Boot or Logon Initializa-

tion Scripts
Startup Items

0.219048 T1546.011 Event Triggered Execu-
tion

Application Shimming

0.219048 T1606.002 Forge Web Credentials SAML Tokens
0.214286 T1547.012 Boot or Logon Autostart

Execution
Print Processors

0.214286 T1564.007 Hide Artifacts VBA Stomping
0.214286 T1580 Cloud Infrastructure Dis-

covery
NaN

0.210643 T1201 Password Policy Discov-
ery

NaN

0.209524 T1553.004 Subvert Trust Controls Install Root Certificate
0.209524 T1055.012 Process Injection Process Hollowing
0.209524 T1090.001 Proxy Internal Proxy
0.207413 T1135 Network Share Discov-

ery
NaN

0.207143 T1561.001 Disk Wipe Disk Content Wipe
0.205468 T1016 System Network Config-

uration Discovery
NaN

0.204762 T1560.001 Archive Collected Data Archive via Utility
0.204762 T1564.004 Hide Artifacts NTFS File Attributes
0.204762 T1205.001 Traffic Signaling Port Knocking
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0.204762 T1568.002 Dynamic Resolution Domain Generation Al-
gorithms

0.204762 T1001.003 Data Obfuscation Protocol Impersonation
0.204762 T1008 Fallback Channels NaN
0.202381 T1491 Defacement NaN
0.202381 T1491.001 Defacement Internal Defacement
0.200000 T1114.001 Email Collection Local Email Collection
0.200000 T1552.003 Unsecured Credentials Bash History
0.200000 T1090.002 Proxy External Proxy
0.195238 T1606.001 Forge Web Credentials Web Cookies
0.195238 T1547.008 Boot or Logon Autostart

Execution
LSASS Driver

0.195238 T1567.001 Exfiltration Over Web
Service

Exfiltration to Code
Repository

0.195238 T1484.001 Domain Policy Modifica-
tion

Group Policy Modifica-
tion

0.195238 T1030 Data Transfer Size Limits NaN
0.195238 T1055.002 Process Injection Portable Executable In-

jection
0.195238 T1055.003 Process Injection Thread Execution Hi-

jacking
0.192857 T1491.002 Defacement External Defacement
0.190476 T1027.002 Obfuscated Files or In-

formation
Software Packing

0.190476 T1029 Scheduled Transfer NaN
0.190476 T1056.002 Input Capture GUI Input Capture
0.190476 T1132.001 Data Encoding Standard Encoding
0.185714 T1055.013 Process Injection Process Doppelg’e4nging
0.185714 T1001.001 Data Obfuscation Junk Data
0.185714 T1001.002 Data Obfuscation Steganography
0.185714 T1055.004 Process Injection Asynchronous Procedure

Call
0.185714 T1055.005 Process Injection Thread Local Storage
0.185714 T1055.011 Process Injection Extra Window Memory

Injection
0.185714 T1055.014 Process Injection VDSO Hijacking
0.185714 T1132.002 Data Encoding Non-Standard Encoding
0.183333 T1565.002 Data Manipulation Transmitted Data Manip-

ulation
0.183333 T1598 Phishing for Information NaN
0.183333 T1598.002 Phishing for Information Spearphishing Attach-

ment
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0.180952 T1484.002 Domain Policy Modifica-
tion

Domain Trust Modifica-
tion

0.180952 T1547.002 Boot or Logon Autostart
Execution

Authentication Package

0.180952 T1547.005 Boot or Logon Autostart
Execution

Security Support
Provider

0.180952 T1574.006 Hijack Execution Flow LD_PRELOAD
0.178571 T1499 Endpoint Denial of Ser-

vice
NaN

0.178571 T1499.004 Endpoint Denial of Ser-
vice

Application or System
Exploitation

0.176190 T1535 Unused/Unsupported
Cloud Regions

NaN

0.176190 T1567.002 Exfiltration Over Web
Service

Exfiltration to Cloud
Storage

0.176190 T1553.001 Subvert Trust Controls Gatekeeper Bypass
0.176190 T1555.005 Credentials from Pass-

word Stores
Password Managers

0.176190 T1049 System Network Connec-
tions Discovery

NaN

0.176190 T1216.001 Signed Script Proxy Exe-
cution

PubPrn

0.173810 T1498 Network Denial of Ser-
vice

NaN

0.173810 T1585.003 Establish Accounts Cloud Accounts
0.171725 T1129 Shared Modules NaN
0.171429 T1137.006 Office Application

Startup
Add-ins

0.171429 T1546.015 Event Triggered Execu-
tion

Component Object
Model Hijacking

0.171429 T1036.007 Masquerading Double File Extension
0.169048 T1499.001 Endpoint Denial of Ser-

vice
OS Exhaustion Flood

0.166667 T1011 Exfiltration Over Other
Network Medium

NaN

0.166667 T1053.007 Scheduled Task/Job Container Orchestration
Job

0.166667 T1564.002 Hide Artifacts Hidden Users
0.166667 T1036.001 Masquerading Invalid Code Signature
0.164286 T1499.002 Endpoint Denial of Ser-

vice
Service Exhaustion Flood
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0.164286 T1499.003 Endpoint Denial of Ser-
vice

Application Exhaustion
Flood

0.162681 T1518 Software Discovery NaN
0.161905 T1555.002 Credentials from Pass-

word Stores
Securityd Memory

0.157354 T1020 Automated Exfiltration NaN
0.157143 T1556.002 Modify Authentication

Process
Password Filter DLL

0.157143 T1568.003 Dynamic Resolution DNS Calculation
0.154762 T1598.003 Phishing for Information Spearphishing Link
0.152381 T1037.001 Boot or Logon Initializa-

tion Scripts
Logon Script (Windows)

0.152381 T1546.009 Event Triggered Execu-
tion

AppCert DLLs

0.150000 T1498.002 Network Denial of Ser-
vice

Reflection Amplification

0.147619 T1526 Cloud Service Discovery NaN
0.145238 T1498.001 Network Denial of Ser-

vice
Direct Network Flood

0.145238 T1598.001 Phishing for Information Spearphishing Service
0.142857 T1552.007 Unsecured Credentials Container API
0.138095 T1027.004 Obfuscated Files or In-

formation
Compile After Delivery

0.138095 T1555.001 Credentials from Pass-
word Stores

Keychain

0.138095 T1555.003 Credentials from Pass-
word Stores

Credentials from Web
Browsers

0.138095 T1574.011 Hijack Execution Flow Services Registry Permis-
sions Weakness

0.138095 T1115 Clipboard Data NaN
0.133333 T1204.003 User Execution Malicious Image
0.133333 T1518.001 Software Discovery Security Software Dis-

covery
0.133333 T1546.001 Event Triggered Execu-

tion
Change Default File As-
sociation

0.133333 T1547.010 Boot or Logon Autostart
Execution

Port Monitors

0.133333 T1553.006 Subvert Trust Controls Code Signing Policy
Modification

0.133333 T1123 Audio Capture NaN
0.133333 T1621 Multi-Factor Authentica-

tion Request Generation
NaN
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0.128571 T1611 Escape to Host NaN
0.128571 T1610 Deploy Container NaN
0.128571 T1027.005 Obfuscated Files or In-

formation
Indicator Removal from
Tools

0.128571 T1070.006 Indicator Removal on
Host

Timestomp

0.128571 T1568.001 Dynamic Resolution Fast Flux DNS
0.126190 T1531 Account Access Removal NaN
0.123810 T1070.005 Indicator Removal on

Host
Network Share Connec-
tion Removal

0.123810 T1546.012 Event Triggered Execu-
tion

Image File Execution Op-
tions Injection

0.123810 T1556.007 Modify Authentication
Process

Hybrid Identity

0.123810 T1007 System Service Discov-
ery

NaN

0.123810 T1027.003 Obfuscated Files or In-
formation

Steganography

0.119922 T1014 Rootkit NaN
0.119048 T1039 Data from Network

Shared Drive
NaN

0.119048 T1615 Group Policy Discovery NaN
0.119048 T1074.001 Data Staged Local Data Staging
0.119048 T1564.001 Hide Artifacts Hidden Files and Direc-

tories
0.119048 T1124 System Time Discovery NaN
0.119048 T1134.004 Access Token Manipula-

tion
Parent PID Spoofing

0.118264 T1120 Peripheral Device Dis-
covery

NaN

0.114286 T1036.004 Masquerading Masquerade Task or Ser-
vice

0.114286 T1217 Browser Bookmark Dis-
covery

NaN

0.114286 T1218.014 Signed Binary Proxy Exe-
cution

MMC

0.114286 T1647 Plist File Modification NaN
0.114286 T1027.001 Obfuscated Files or In-

formation
Binary Padding

0.114286 T1218.013 Signed Binary Proxy Exe-
cution

Mavinject

0.114286 T1574.013 Hijack Execution Flow KernelCallbackTable
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0.109524 T1056.001 Input Capture Keylogging
0.109524 T1006 Direct Volume Access NaN
0.109524 T1546.007 Event Triggered Execu-

tion
Netsh Helper DLL

0.109524 T1547.013 Boot or Logon Autostart
Execution

XDG Autostart Entries

0.109524 T1555.004 Credentials from Pass-
word Stores

Windows Credential
Manager

0.109524 T1560.003 Archive Collected Data Archive via Custom
Method

0.109524 T1564.005 Hide Artifacts Hidden File System
0.109524 T1010 Application Window Dis-

covery
NaN

0.109524 T1036.006 Masquerading Space after Filename
0.109524 T1090.004 Proxy Domain Fronting
0.109524 T1553.002 Subvert Trust Controls Code Signing
0.109524 T1578.004 Modify Cloud Compute

Infrastructure
Revert Cloud Instance

0.109524 T1613 Container and Resource
Disocovery

NaN

0.104762 T1069.003 Permission Groups Dis-
covery

Cloud Groups

0.104762 T1070.009 Indicator Removal Clear Persistence
0.104762 T1074.002 Data Staged Remote Data Staging
0.104762 T1207 Rogue Domain Con-

troller
NaN

0.104762 T1505.005 Server Software Compo-
nent

Terminal Services DLL

0.104762 T1562.009 Impair Defenses Safe Mode Boot
0.104762 T1614.001 System Location Discov-

ery
System Language Dis-
covery

0.104762 T1016.001 System Network Config-
uration Discovery

Internet Connection Dis-
covery

0.104762 T1027.006 Obfuscated Files or In-
formation

HTML Smuggling

0.104762 T1125 Video Capture NaN
0.104762 T1497.001 Virtualization/Sandbox

Evasion
System Checks

0.104762 T1497.003 Virtualization/Sandbox
Evasion

Time Based Evasion

0.104762 T1609 Container Administra-
tion Command

NaN
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0.104762 T1614 System Location Discov-
ery

NaN

0.104762 T1620 Reflective Code Loading NaN
0.100000 T1043 Commonly Used Port NaN
0.100000 T1061 Graphical User Interface NaN
0.100000 T1108 Redundant Access NaN
0.100000 T1648 Serverless Execution NaN
0.100000 T1026 Multiband Communica-

tion
NaN

0.100000 T1027.007 Obfuscated Files or In-
formation

Dynamic API Resolution

0.100000 T1051 Shared Webroot NaN
0.100000 T1064 Scripting NaN
0.100000 T1149 LC_MAIN Hijacking NaN
0.100000 T1205.002 Traffic Signaling Socket Filters
0.100000 T1505.004 Server Software Compo-

nent
IIS Components

0.100000 T1542.002 Pre-OS Boot Component Firmware
0.100000 T1546.005 Event Triggered Execu-

tion
Trap

0.100000 T1546.016 Event Triggered Execu-
tion

Installer Packages

0.100000 T1547.014 Boot or Logon Autostart
Execution

Active Setup

0.100000 T1556.005 Modify Authentication
Process

Reversible Encryption

0.100000 T1560.002 Archive Collected Data Archive via Library
0.100000 T1564.008 Hide Artifacts Email Hiding Rules
0.100000 T1564.009 Hide Artifacts Resource Forking
0.100000 T1612 Build Image on Host NaN
0.100000 T1622 Debugger Evasion NaN
0.100000 T1649 Steal or Forge Authenti-

cation Certificates
NaN

0.100000 T1027.008 Obfuscated Files or In-
formation

Stripped Payloads

0.100000 T1027.009 Obfuscated Files or In-
formation

Embedded Payloads

0.100000 T1034 Path Interception NaN
0.100000 T1036.002 Masquerading Right-to-Left Override
0.100000 T1055.015 Process Injection ListPlanting
0.100000 T1056.004 Input Capture Credential API Hooking
0.100000 T1062 Hypervisor NaN
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0.100000 T1087.003 Account Discovery Email Account
0.100000 T1098.005 Account Manipulation Device Registration
0.100000 T1153 Source NaN
0.100000 T1213.003 Data from Information

Repositories
Code Repositories

0.100000 T1480 Execution Guardrails NaN
0.100000 T1480.001 Execution Guardrails Environmental Keying
0.100000 T1497.002 Virtualization/Sandbox

Evasion
User Activity Based
Checks

0.100000 T1553.005 Subvert Trust Controls Mark-of-the-Web Bypass
0.100000 T1556.006 Modify Authentication

Process
Multi-Factor Authentica-
tion

0.100000 T1562.010 Impair Defenses Downgrade Attack
0.100000 T1619 Cloud Storage Object

Discovery
NaN

0.100000 T1175 Component Object
Model and Distributed
COM

NaN

0.097619 T1587 Develop Capabilities NaN
0.092857 T1529 System Shutdown/Re-

boot
NaN

0.092857 T1588.001 Obtain Capabilities Malware
0.078571 T1590.004 Gather Victim Network

Information
Network Topology

0.078571 T1591.004 Gather Victim Org Infor-
mation

Identify Roles

0.074106 T1496 Resource Hijacking NaN
0.073810 T1595.001 Active Scanning Scanning IP Blocks
0.073810 T1586.003 Compromise Accounts Cloud Accounts
0.069048 T1595 Active Scanning NaN
0.069048 T1595.002 Active Scanning Vulnerability Scanning
0.069048 T1589.003 Gather Victim Identity

Information
Employee Names

0.069048 T1590 Gather Victim Network
Information

NaN

0.069048 T1590.001 Gather Victim Network
Information

Domain Properties

0.069048 T1590.002 Gather Victim Network
Information

DNS

0.069048 T1590.005 Gather Victim Network
Information

IP Addresses
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0.069048 T1590.006 Gather Victim Network
Information

Network Security Appli-
ances

0.064286 T1587.004 Develop Capabilities Exploits
0.064286 T1588.006 Obtain Capabilities Vulnerabilities
0.064286 T1592.003 Gather Victim Host Infor-

mation
Firmware

0.059524 T1583.007 Acquire Infrastructure Serverless
0.059524 T1587.002 Develop Capabilities Code Signing Certificates
0.059524 T1588.003 Obtain Capabilities Code Signing Certificates
0.054762 T1589 Gather Victim Identity

Information
NaN

0.054762 T1594 Search Victim-Owned
Websites

NaN

0.054762 T1588 Obtain Capabilities NaN
0.054762 T1589.001 Gather Victim Identity

Information
Credentials

0.054762 T1592 Gather Victim Host Infor-
mation

NaN

0.054762 T1608 Stage Capabilities NaN
0.054019 T1584 Compromise Infrastruc-

ture
NaN

0.050000 T1583 Acquire Infrastructure NaN
0.050000 T1583.001 Acquire Infrastructure Domains
0.050000 T1584.001 Compromise Infrastruc-

ture
Domains

0.050000 T1584.002 Compromise Infrastruc-
ture

DNS Server

0.050000 T1585 Establish Accounts NaN
0.050000 T1585.001 Establish Accounts Social Media Accounts
0.050000 T1586 Compromise Accounts NaN
0.050000 T1586.001 Compromise Accounts Social Media Accounts
0.050000 T1589.002 Gather Victim Identity

Information
Email Addresses

0.050000 T1600 Weaken Encryption NaN
0.050000 T1600.001 Weaken Encryption Reduce Key Space
0.050000 T1600.002 Weaken Encryption Disable Crypto Hard-

ware
0.050000 T1583.002 Acquire Infrastructure DNS Server
0.050000 T1583.003 Acquire Infrastructure Virtual Private Server
0.050000 T1583.004 Acquire Infrastructure Server
0.050000 T1583.005 Acquire Infrastructure Botnet
0.050000 T1583.006 Acquire Infrastructure Web Services
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0.050000 T1584.003 Compromise Infrastruc-
ture

Virtual Private Server

0.050000 T1584.004 Compromise Infrastruc-
ture

Server

0.050000 T1584.005 Compromise Infrastruc-
ture

Botnet

0.050000 T1584.006 Compromise Infrastruc-
ture

Web Services

0.050000 T1584.007 Compromise Infrastruc-
ture

Serverless

0.050000 T1585.002 Establish Accounts Email Accounts
0.050000 T1586.002 Compromise Accounts Email Accounts
0.050000 T1587.001 Develop Capabilities Malware
0.050000 T1587.003 Develop Capabilities Digital Certificates
0.050000 T1588.002 Obtain Capabilities Tool
0.050000 T1588.004 Obtain Capabilities Digital Certificates
0.050000 T1588.005 Obtain Capabilities Exploits
0.050000 T1590.003 Gather Victim Network

Information
Network Trust Depen-
dencies

0.050000 T1591 Gather Victim Org Infor-
mation

NaN

0.050000 T1591.001 Gather Victim Org Infor-
mation

Determine Physical Loca-
tions

0.050000 T1591.002 Gather Victim Org Infor-
mation

Business Relationships

0.050000 T1591.003 Gather Victim Org Infor-
mation

Identify Business Tempo

0.050000 T1592.001 Gather Victim Host Infor-
mation

Hardware

0.050000 T1592.002 Gather Victim Host Infor-
mation

Software

0.050000 T1592.004 Gather Victim Host Infor-
mation

Client Configurations

0.050000 T1593 Search Open Websites/-
Domains

NaN

0.050000 T1593.001 Search Open Websites/-
Domains

Social Media

0.050000 T1593.002 Search Open Websites/-
Domains

Search Engines

0.050000 T1593.003 Search Open Websites/-
Domains

Code Repositories
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0.050000 T1596 Search Open Technical
Databases

NaN

0.050000 T1596.001 Search Open Technical
Databases

DNS/Passive DNS

0.050000 T1596.002 Search Open Technical
Databases

WHOIS

0.050000 T1596.003 Search Open Technical
Databases

Digital Certificates

0.050000 T1596.004 Search Open Technical
Databases

CDNs

0.050000 T1596.005 Search Open Technical
Databases

Scan Databases

0.050000 T1597 Search Closed Sources NaN
0.050000 T1597.001 Search Closed Sources Threat Intel Vendors
0.050000 T1597.002 Search Closed Sources Purchase Technical Data
0.050000 T1608.001 Stage Capabilities Upload Malware
0.050000 T1608.002 Stage Capabilities Upload Tool
0.050000 T1608.003 Stage Capabilities Install Digital Certificate
0.050000 T1608.004 Stage Capabilities Drive-by Target
0.050000 T1608.005 Stage Capabilities Link Target
0.050000 T1608.006 Stage Capabilities SEO Poisoning
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