
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Jacob Hofgaard

Static control flow graph analysis for
inlined function detection and
identification

Master’s thesis in Information Security
Supervisor: Geir Olav Dyrkolbotn
Co-supervisor: Solveig Bruvoll
June 2024

Jacob Hofgaard

Static control flow graph analysis for
inlined function detection and
identification

Master’s thesis in Information Security
Supervisor: Geir Olav Dyrkolbotn
Co-supervisor: Solveig Bruvoll
June 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

In recent years, understanding the inner workings and components of software
has gained significant importance due to the increasing number, size and com-
plexity of programs. Understanding the low-level details of a program is import-
ant in malware analysis and developing low-level components like firmware. The
complexity in programs is often a result of advanced compiler optimizations. Op-
timizations can produce executable code that appears different in structure from
its original source. As software systems scale up, manual analysis becomes more
challenging and time-consuming, highlighting the need for automated tools to as-
sist in reverse engineering. Automated software analysis is essential for efficiently
detecting and identifying pre-analyzed or documented code.

This project explores the use of control flow graphs (CFGs) to detect duplicate
code and recognize code from libraries, focusing on identifying code affected by
the compiler optimization technique known as function inlining. It also explores
the verification and testing process of automated analysis tools related to function
identification. The findings demonstrate that while control flow graph analysis is
an effective method for detecting and identifying inlined functions, it remains
computationally expensive.

iii

Sammendrag

De siste år har forståelse for programvares indre funksjoner og komponenter blitt
stadig viktigere. Dette er på grunn av det økende antallet, størrelse og kompleks-
iteten i programmer. Forståelse for de mer detaljerte nivåene i et program er viktig
innen analyse av skadevare og utvikling av lavnivå programmer som fastvare,
firmware. Kompleksiteten i programmer er ofte et resultat av avanserte kompil-
atoroptimaliseringer som kan produsere programmer med kode der strukturen er
vesentlig annerledes enn i den opprinnelige kildekoden. Når programvaresystemer
blir større og mer omfattende, blir manuell analyse mer utfordrende og tidkre-
vende, noe som understreker viktigheten av automatiserte verktøy for å bistå i om-
vendt utvikling. Automatisering av programvareanalyse er avgjørende for effektivt
å oppdage og identifisere forhåndsanalysert eller allerede dokumentert kode.

Dette prosjektet utforsker bruken av kontrollflytgrafer for å oppdage dup-
likatkode og gjenkjenne kode fra biblioteker, med spesielt fokus på å identifis-
ere kode påvirket av kompilatoroptimaliseringsteknikken kjent som funksjons in-
lining. Prosjektet utforsker også hvordan verifikasjon og testing av automatiserte
analyseverktøy knyttet til funksjons identifisering kan gjennomføres. Funnene viser
at analyse av kontrollflytgrafer er en effektiv metode for å oppdage og identifisere
inlinede funksjoner, men det er en beregningsmessig kostbar teknikk.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . ix
Tables . xi
Code Listings . xiii
Acronyms . xv
1 Introduction . 1

1.1 Topics covered . 1
1.2 Keywords . 2
1.3 Problem description . 2
1.4 Research questions . 3
1.5 Contributions . 4

2 Theory . 5
2.1 Source code . 5
2.2 Compilation and linking . 6
2.3 Executable programs in operating systems 10
2.4 Levels of abstraction . 11
2.5 Code optimization . 17
2.6 Reversing the compilation process . 21
2.7 Control flow graphs . 23
2.8 Hash algorithms . 27

3 Previous work . 29
3.1 Classification and identification of code 29
3.2 GraphSlick . 30

4 Implementation . 39
4.1 GraphSlick modifications . 40
4.2 Splitting of basic blocks for duplicate code detection 42
4.3 Identification of known functions . 45

5 Verification and testing . 49
5.1 Test framework . 49
5.2 Test framework modules . 52

6 Results . 57
6.1 Test setup . 57

vii

viii J. Hofgaard: CFG analysis for inlined function detection and identification

6.2 Inlined function detection . 58
6.3 Function identification . 68

7 Discussion . 75
7.1 Validating the method . 75
7.2 Known functions signature database 76
7.3 Detecting functions . 78
7.4 Test environment . 80

8 Conclusion . 81
8.1 Future Work . 82

Bibliography . 83
A GraphSlick’s code . 91

A.1 Updates done to GraphSlick . 91
B Test code . 93

B.1 Test setup: Test 1 . 93
B.2 Test setup: Test 2 . 94

C Results full tables . 97
C.1 Results: Test 1: Detection of inlined string comparison 97
C.2 Results: Test 2: Detection of inlined function using compiler keywords100
C.3 Results: Test 4: Identification of string comparison function 101

Figures

2.1 Source code to execution of a program 5
2.2 Visualisation of the compiler and linker steps 7
2.3 Levels of abstraction in the compilation process 12
2.4 Optimization of code by changing instructions 18
2.5 Inlining of simple function . 19
2.6 Outlining of simple function . 21
2.7 Disassembly and decompilation . 22

3.1 Bbgroup functionality flowchart . 32
3.2 Simple graph representation of function with four blocks 32
3.3 Itype with opcodes and mnemonics . 33
3.4 Identifying isomorphic subgraphs . 34
3.5 Visualisation of a larger function . 35
3.6 Visualisation of two matching subgraphs 36
3.7 Simplified graph of a function visualizing inlining 37

4.1 Graph comparing default analysis with block splitting 43
4.2 Visualisation of splitting basic blocks 44

5.1 Overview of the analysis testing model 50

6.1 Graph view of a program compiled by different compilers 59
6.2 Inlined code detection compiled by cl 61
6.3 Inlined code detection compiled by msbuild 62
6.4 Inlined code detection compiled by GCC 64
6.5 Duplicate code detection: inline-keyword compiled by cl 65
6.6 Duplicate code detection: inline-keyword compiled by msbuild . . . 66
6.7 Duplicate code detection: inline-keyword compiled by GCC 67
6.8 Performance of inlined function detection 68
6.9 CFG of function inlined in Section 6.2.2 69
6.10 Inlined string comparison compared with non-inlined version 70
6.11 Non-inlined string comparison compared with inlined version . . . 72
6.12 Non-inlined char string comparison compared with inlined version 73

ix

Tables

2.1 Compiler flags used for function inlining 21

6.1 Tools used during the testing process 58
6.2 Analysis execution time on string comparison program 60
6.3 Analysis execution time on program using inline-keyword 65

C.1 Analysis results: Code listing B.4 compiled with cl 98
C.2 Analysis results: Code listing B.4 compiled with msbuild 99
C.3 Analysis results: Code listing B.4 compiled with GCC 99
C.4 Analysis results: Code listing B.8 compiled with cl 100
C.5 Analysis results: Code listing B.8 compiled with msbuild 100
C.6 Analysis results: Code listing B.8 compiled with GCC 101
C.7 Block ID hash table: string comparison function compiled with cl . 101
C.8 Block ID hash table: Appendix B.2 compiled with cl 102

xi

Code Listings

2.1 Intel format of assembly instructions 15
2.2 Machine code and assembly of a mov instruction 15
2.3 Dissasembly of a conditional jump . 16
2.4 Variants of move instructions with different opcodes 16
2.5 Same mnemonic with different opcodes 16
2.6 Different mnemonic with same opcode 17
2.7 Opaque predicate . 26

6.1 Exerpt from msbuild-compiled string-compare 63

A.1 Python packages needed for GraphSlick 91

B.1 Comandline for compilation with clang 93
B.2 Options for compilation with msbuild 93
B.3 Comandline for compilation with gcc 93
B.4 Code example using strcmp . 94
B.5 Comandline for compilation with clang 94
B.6 Options for compilation with msbuild 94
B.7 Comandline for compilation with gcc 95
B.8 Code example using inline-keyword in code 95

xiii

Acronyms

AST Abstract Syntax Tree. 8

CFG Control Flow Graph. 23

CPU Central Processing Unit. 6

DLL Dynamic Linked Library. 11

ELF Executable and Linkable Format. 11

GCC GNU Compiler Collection. 20

IR Intermediate Representation. 9

LTCG Link-time Code Generation. 10

OS Operating systems. 6

PE Portable Executable. 11

xv

Chapter 1

Introduction

Computers and software have become essential in daily life. Society has become
dependent on computers and computer programs in both professional and private
settings. Computers of all sizes, from smart devices to supercomputers, have been
integrated into everyday activities. This has transformed how we interact and con-
nect, whether for work, communication, entertainment, or managing personal af-
fairs. The digitalization process has created opportunities and enhanced efficiency
and connectivity.

However, increased dependence on digital systems has also introduced chal-
lenges and new vulnerabilities. Computers have become increasingly complex sys-
tems with components poorly understood by the general public. These systems are
susceptible to exploitation by malicious actors working to achieve their own goals.
By hiding in and abusing opaque and obscure components of a system, a malicious
actor has the potential to do tremendous damage. This threat has been apparent
both in personal and commercial settings. For example, the 2015 breach of the
dating website Ashley Maddison exposed the private lives of millions of users [1],
while one of Europe’s largest shipping companies, Maersk, lost around $300 mil-
lion because of a cyber attack in 2017 [2]. These are just some examples of the
situations caused by dangerous cyber actors in the last years. The escalating threat
of cyber attacks highlights the need for development, research, and optimizations
in the field of cybersecurity.

1.1 Topics covered

Understanding how computer programs operate, has become increasingly import-
ant. In recent years, vulnerabilities and malicious software have become more
widespread. Vulnerabilities are bugs in a program that can be exploited to gain
access to a system, while malicious software is a complex program used by an
attacker. Both detecting vulnerabilities and understanding malware require deep
insight into the inner workings of software systems. Getting this insight is time-
consuming and difficult.

1

2 J. Hofgaard: CFG analysis for inlined function detection and identification

The process of analyzing and understanding an already existing product is
called reverse engineering [3]. In computer science and information security
contexts, reverse engineering is associated with analyzing an unknown program
to understand its functionality, discover underlying principles, or repurpose its
components. This technique plays a crucial role in various fields, such as soft-
ware development, cybersecurity, and hardware analysis. It enables professionals
to deconstruct complex systems, diagnose vulnerabilities, and enhance existing
designs.

Not all programs are easily analyzed. This can be because a program lacks
proper documentation, has an unknown origin, or is even designed to make it
difficult to reverse engineer. A common example of a program that is difficult to
analyze and understand is malicious software. Malicious software is designed not
to be detected, and if detected, its goal is to make it hard to analyze. Understand-
ing malicious software is a large part of improving cyber security.

1.2 Keywords

Control flow graph, static analysis, reverse engineering, function identification,
function inlining

1.3 Problem description

With the increased digitization, the need for software has increased, and efficiency
in the development process is highly valued. Reusing code already developed by
others can be time-saving when developing a program. This is often done by using
libraries. Libraries are code developed to be generic and provide a desired func-
tionality. They are designed to be reused by other developers. Code from libraries
is already documented and can be used in all types of projects, from professional
tools to malicious software.

The use of libraries also affects reverse engineering. Since libraries are already
documented, there is no need to analyze them further. Detecting which part of a
program is from a library is challenging, especially if the program being analyzed
is compiled. A compiled program is a program converted from human-readable
code, source code, into binary code understood by a computer. If a reverse engin-
eer spends time analyzing something that is already documented, much work will
be superfluous. If something is already understood and documented, it is unne-
cessary to continue analyzing it.

Optimizations in reverse engineering are crucial for improving efficiency, ac-
curacy, and scalability. As systems become increasingly sophisticated and large-
scale, the challenges associated with reverse engineering escalate. Effective op-
timization techniques can significantly reduce the time security researchers spend
understanding malicious software and make it easier for developers to understand
and enhance existing undocumented systems. One possible technique that would

Chapter 1: Introduction 3

improve the efficiency of the reverse engineering process is the identification of
already documented functions, like library functions.

Identification of library functions in compiled programs is not always straight-
forward. When a program is converted from source code into a program, it goes
through optimization steps. The optimizations done to a program are not always
identical. It depends on the code context to determine what optimizations are ef-
fective. This makes it hard to identify a library function as it can take different
shapes depending on how it is optimized. One standard optimization technique
the compiler uses is function inlining. Function inlining is when a compiler re-
places a call to one function with the content of the function. This process op-
timizes the execution speed of the program; however, it makes the program more
difficult to analyze for someone doing reverse engineering.

Detecting and identifying library functions that have been inlined in a com-
piled program would decrease the time spent in analyzing already documented
code in reverse engineering. There are multiple methods that could be used to de-
tect and identify code; one of those methods is the use of control flow graphs. A
control flow graph is a graph portraying the execution flow of a program. By ana-
lyzing this graph, it can be possible to detect structures that are inlined versions
of library functions.

1.4 Research questions

The motivation for this master thesis is to find a technique to supplement the cur-
rent initial analysis tools available when analyzing a completely unknown soft-
ware program. Creating a generic method for identifying known code could save
a lot of time. It would also give the reverse engineer a better opportunity to quickly
assess a program’s capabilities when reverse engineering new software. A lot of
undocumented code, like malware, is written in compiled languages. Tools de-
signed for this type of reverse engineering would, therefore, be disproportionately
beneficial in security-related reverse engineering.

The thesis aims to explore how control flow graphs can be used to detect in-
lined functions. To accomplish this, it will explore the current research on function
detection and identification, and determine whether control flow graph analysis
can be used as a supplement. It will also provide a testing framework to decide
if an analysis technique is suitable to be used in reverse engineering. The thesis
will not provide an exhaustive evaluation but will provide a framework for future
work.

Research questions:

1. Is control flow graph analysis an effective technique for identifying inlined
functions?

2. What are the essential components and design considerations for develop-
ing an effective testing framework for inline function identification?

4 J. Hofgaard: CFG analysis for inlined function detection and identification

1.5 Contributions

This thesis has examined a technique for identifying known, documented code
used within an unknown arbitrary program. This technique uses control flow
graph analysis to detect and identify inlined functions. The effectiveness of con-
trol flow graph analysis as a technique for inlined function detection and iden-
tification has been tested. The tests showed that control flow graph analysis can
detect and identify inlined functions. However, it has some limitations. These lim-
itations relate to function detection in specific function types and performance.
Furthermore, the thesis discusses situations where this method could provide an
advantage and how it can be used on a larger scale.

These contributions offer insights into understanding possible techniques for
supplementing the reverse engineering analysis processes. The work done in this
thesis will extend the current understanding of control flow graph analysis in a
reverse engineering context, and its strengths and weaknesses.

Chapter 2

Theory

Software reverse engineering is the process of analyzing and understanding a pro-
gram. The following chapter explains the theory relevant to understanding the re-
verse engineering process of a binary program. The chapter describes the different
parts of creating and running an executable binary program. An overview of the
parts, the source code, compilation and linking, the executable file, and program
execution are shown in Figure 2.1. All the steps, "Source code", "Compilation and
linking", and "Executable files" and their execution, are described in Sections 2.1
to 2.3. Then, the compilation and linking process and how it optimizes a program
is described in more depth. The chapter then explores the theory relevant to re-
verse engineering of binary programs. Finally, it discusses control flow graphs and
how they relate and can be used to assist in reverse engineering.

Figure 2.1: The figure shows a simplified overview of how source code is conver-
ted into a program and executed on a computer. The compilation and linking-step
is expanded upon later in the thesis.

2.1 Source code

Source code is the input in creating an executable program as shown in Figure 2.1.
Source code is a human-readable version of a computer program written in a
programming language. The programming language defines how the source code
is interpreted. Source code has different properties depending on the language it

5

6 J. Hofgaard: CFG analysis for inlined function detection and identification

is written in. Some languages need to be converted into machine code before they
can be executed. This process is called compilation and is described in Section 2.2.
Source code written in an interpreted language could be executed directly and
does not need to be compiled. The difference between compiled languages and
interpreted languages is explained further in Section 2.4

2.1.1 Open-source and closed-source software

One way to classify software is to differentiate between open-source and closed-
source. Open-source software and closed-source software differ in their accessibil-
ity and transparency. For instance, Linux is a well-known example of open-source
software where its source code is freely available for anyone to view, modify, and
distribute. In contrast, Microsoft Windows operates as closed-source software,
with its source code not accessible to the public. Open-source software allows
anyone to modify, distribute, and use it freely. On the other hand, closed-source
software is developed by a company or organization that keeps the source code
proprietary. This means that users are not able to access or modify the code and
must rely on the company to provide updates, new features, and bug fixes. While
closed-source software often provides more polished and user-friendly products,
open-source software offers greater flexibility and control for those who are com-
fortable with modifying a program themselves. Additionally, the open-source de-
velopment model often leads to more rapid innovation and the ability for de-
velopers to collaborate and build upon each other’s work.

2.2 Compilation and linking

The following section presents how a program is transformed from source code
into a program that can run on a computer. The following section assumes the
source code is written in a language like C or C++, which are languages that need
to be converted from source code into a program before they can be executed. The
main focus is on converting the program into machine code and not on how the
program is handled when executed. It expands on the step called "Compilation
and linking" in Figure 2.1 and explains the sub-parts this step is comprised of.

Executing a program on a computer is a multi-step process. The exact steps
taken and how they are carried out depend on the Operating systems (OS), the
Central Processing Unit (CPU), and the CPU architecture. These steps can be split
into three main parts: the generation of the program, the loading of the program
into memory, and the execution of the program [4]. Interpreted languages do not
completely fit this model and are not relevant to this thesis. A program is generated
in compiled languages when source code is compiled into machine code and given
a structure that the OS can understand. The method a program is loaded and
executed depends on the OS and is described in Section 2.3. This thesis focuses
on the Windows OS on x86 architecture.

Chapter 2: Theory 7

To generate a program that can run on a computer, source code written by a
developer1, needs to be converted from human-readable text into something that
the computer can understand. This process is done in multiple steps. There are
different ways to split up this process, but one way is described by Alfred V et al.
[5]. The steps in Alfred V et al.’s model are listed below and is further explained
in Sections 2.2.1 to 2.2.3.

1. Preprocessor: Collect all relevant files and expand macros.
2. Compiler: Translate source code files into binary files containing machine

code.
3. Linker: Combines binary files and links them together into an executable

program.

Figure 2.2 shows an expanded version of Figure 2.1. The "compilation and
linking" step in Figure 2.1 is split into the steps listed above. The figure shows
what the components of the code generation process are and how they interact
with each other.

Figure 2.2: The figure is an expansion upon Figure 2.1. The compiler and linker-
step is expanded into the steps in the model by Alfred V et al.[5]. The expanded
steps are within the red frame.

The same program or component in a code generation toolchain can some-
times do several steps depending on the toolchain used. This makes the naming
and separating of these steps less clear than visualized in Figure 2.2. One example
of this is the preprocessor and the compiler. Most code generation toolchains im-
plement the preprocessor and compiler in the same process. In addition, the whole
process of generating an executable from source code is sometimes called ’com-
piling a program’. In this thesis, the generation of a program is referred to as
’compiling a program’ since it is the established practice. If specific parts of the
code generation toolchain need to be referred to, the name of that component

1Source code can also be generated programmatically by another program, but the next steps
in the code generation process do not depend on how the source code is created. This thesis does,
therefore, not differentiate between how source code is generated.

8 J. Hofgaard: CFG analysis for inlined function detection and identification

will be used, i.e., the linker, the compiler, or the assembler. The compiler and the
linker components are the main focus of this thesis.

2.2.1 Preprocessor

The preprocessor is the first component that handles source code. As shown in
Figure 2.2 it takes source code directly as its input. The preprocessor is responsible
for collecting all source code files and expanding macros in the code. The text in
the source code is converted into tokens. Tokens are text close to the source code,
but ambiguities, like whitespaces, are removed to make handling the code easier
for the following steps. These tokens are passed as output from the preprocessor
and used in the following steps. The preprocessor is also responsible for collecting
files referenced in the source code that are not directly part of the project, like
expanding #include statements [6].

2.2.2 Compilers

The compiler is the next step in Figure 2.2. Compilers are computer programs
that read tokens from a program written in one language and translate them into
a program written in a different one. This is normally in the form of translating
source code, written in a compilable programming language, into machine code or
executable code that a computer can understand and execute [5]. Compilers are
more complex than preprocessors and can be split into multiple parts. The parts
may differ from compiler to compiler, but most compilers have similar functional-
ity in their parts, even if they use alternative naming. The specific steps described
below are based on the naming in the Clang/LLVM compiler [7]. These steps are:

1. Parsing and Semantic Analysis
2. Code Generation and Optimization
3. Assembler

Parsing and Semantic Analysis

This takes the tokens generated by the preprocessor and generates a parse tree
called the Abstract Syntax Tree (AST). If the AST can not be formed, this generates
errors. The AST is then analyzed to identify if the code is ’correct’ or if it includes
code that has some potential errors. This stage is responsible for generating the
most common warnings seen during the compilation process [7].

Code Generation and Optimization

This step is responsible for converting the AST into something closer to code un-
derstood by a computer. The Code Generation and Optimization step often includes
the assembler. However, it will explained separately below as it could be con-
sidered an individual component. An intermediate code is generated from the

Chapter 2: Theory 9

AST during this step. The intermediate code, also known as Intermediate Rep-
resentation (IR), is a hardware-independent low-level type language. Low-level
languages is explained in Section 2.4. The AST and the IR are optimized during
this step [8]. What properties are prioritized during the optimization step depends
on the arguments given to the compiler process. Compiler optimization is expan-
ded upon in Section 2.5. The output from this step is assembly code unless the
Assembler is part of this step.

Assembler

The assembler takes the output from the previous step and generates machine
code from the assembly instructions. This step is often done as part of the Code
Generation and Optimization step. The output from this step is object files. Object
files are files containing machine code. These files are not able to be run directly
on the computer since they have no reference to where other parts of the code
are located. Code from different source code files are put in different object files.
These have labels or symbols that the linker uses to link different object files into
a single executable [9].

Compiler keywords

Programmers have the ability to influence the compiler’s behavior by incorpor-
ating specific keywords into the source code. These keywords, often called com-
piler directives or pragmas, provide explicit instructions to the compiler on how
to handle certain portions of the code. By using keywords, programmers can op-
timize performance and control aspects of the compilation process. An example
of this is the keyword __always_inline, which specifies that a function should be
inlined [7].

Compiler flags

Compiler flags are settings or options passed to a compiler. These flags modify the
compiler’s behavior and influence various aspects of the compilation process, such
as optimization level, debugging information generation, target architecture, and
more. The specific flags and their meanings may vary depending on the compiler
being used and the target platform. Different flags can significantly impact the
compiled code’s performance, size, and behavior. Since the compiler and linker
are usually run together, some compiler flags are passed to the linker and affect
the behavior of the linker as well.

Compiler flags are global and affect the general "behavior and priority" of the
compiler. They are passed as arguments into the compiler process. In contrast to
compiler keywords, compiler flags affect the whole compilation process and not
specific functions or parts of the code. Flags and keywords are discussed further
as part of code optimizations in Section 2.5.

10 J. Hofgaard: CFG analysis for inlined function detection and identification

2.2.3 Linkers

The linker is the final part in the compilation and linking process shown in Fig-
ure 2.2. It takes the output of a compiler, links the different parts together, and
combines this with information the OS needs during the loading and execution of
a program to make an executable binary.

A compiler generates machine code for the different source code files and
creates separate files containing the machine code for each source code file. When
code or data in other files are being referred to, the compiler creates a symbol to
indicate what is being referred to. The linker is responsible for combining the
different files generated by the compiler and replacing the symbols referencing
other files with pointers to the correct location. Traditionally, the linker does not
optimize and does not affect the code flow. However, compiler flags like Link-
time Code Generation (LTCG) enable code generation during the linker step of
compilation [10]. This flag enables the linker to modify the code and, therefore, do
optimizations. This could include doing inlining across multiple different objects
generated by the compiler, as is expanded upon later.

2.2.4 Compiler identification

When compilers and linkers generate a program from source code, they add ar-
tifacts specific to that compiler setup. These artifacts may be used to identify
which compilation and linking tools were used. This can be done by using rule or
signature-based detection techniques as described in [11]. Neural networks have
also been used to try to identify compilers. According to Tian et al. [12] neural
networks were able to identify the compiler, compiler version, and compiler op-
timization level with a high degree of accuracy.

Programs compiled using the Microsoft toolchain, i.e., the Visual Studio com-
piler, have a signature specifying the compiler and its version [13]. This signa-
ture is in the form of an extra header at the beginning of the executable, located
between the DOS stub and the PE header2. It is called the RICH header. The RICH
header is an undocumented structure created by Microsoft that has been reverse
engineered [15]. It can be used to get information about the compiler. It has also
been used in malware identification and classification [16].

2.3 Executable programs in operating systems

The operating system serves as the intermediary between the hardware and soft-
ware of a computer. They provide an interface that abstracts the hardware, mak-
ing it easier for software or applications to function. Programs running on an OS
are contained in files known as executable files. Executable files are created when
source code is compiled into a program. These files contain machine code that the

2More information about the DOS and PE headers can be found in [14]. It will also be explained
in Section 2.3.1.

Chapter 2: Theory 11

OS can directly execute. In this thesis, ’executable files’ does specifically refer to
files containing machine code in a structured format, such as Portable Executable
(PE) and Executable and Linkable Format (ELF) files. Scripts or other files that
can be executed are referred to as ’scripts’ or ’interpreted code’. Executable files
contain machine code meant to be run on an OS in a predefined format. These
files contain the machine code instructions and information specifying how the
execution environment should be set up and executed by the OS. This section
explores the structure and characteristics of executable files, focusing on the two
most common formats: Windows PE files and Linux ELF files.

2.3.1 Portable Executable

The PE format is a file format used for executable files and Dynamic Linked Lib-
rary (DLL) in the Windows OS. The PE format is widely used for Windows applic-
ations. Understanding the PE structure is crucial for reverse engineering, malware
analysis, debugging, and other security-related tasks. It provides a standard struc-
ture for the executable files and is designed to be independent of the underlying
hardware platform; instead, it interacts with the OS. One example of this is the
handling of memory. The PE structure and the program assume that no other pro-
grams are running on the system and all of the memory space is available. In
reality, the OS handles the memory allocation and allocates physical memory to
addresses unrelated to where the PE structure assumes it will be allocated [17].

The PE structure consists of a header and multiple sections containing code,
data, and resources. The header contains information about the file, such as its
size, entry point, and section layout [14]. The sections contain all the necessary
data and instructions for running the executable. Not all header parts are needed,
some are optional. Which optional headers are used depends on the code and the
compiler compiling the code.

2.3.2 Executable and Linkable Format

ELF is the Linux equivalent of Windows’s PE files. The ELF standard was developed
in the 1990s [18], and adopted as the Linux standard binary format in 1999 [19].
ELF files contain most of the same information as the PE standard.

According to [20] and [21], Windows has around 70% of the market share
in the desktop space, whilst Linux has around 4% of desktops, and macOS has
about 15%. In the server space, this is flipped, and Linux has the majority share
[22]. This thesis mainly focuses on the desktop environment, and therefore the
Windows OS is the main focus.

2.4 Levels of abstraction

In software development and reverse engineering, levels of abstraction refer to
the varying degrees of complexity and detail presented. These levels range from

12 J. Hofgaard: CFG analysis for inlined function detection and identification

high-level abstractions, which hide complex details and provide a user-friendly
interface, to low-level abstractions, which expose the intricacies of the underlying
hardware and system operations.

Different characteristics are desired from code depending on the perspective
of someone looking at the code and where it is running. A programmer designing
a web page has a different perspective than a firmware developer. To satisfy differ-
ent perspectives, several layers of abstraction are used. This section gives a brief
overview of these levels and expands on the levels relevant to the thesis. There
are different ways to divide into these abstraction layers, but this thesis uses the
six levels of abstraction described by Sikorski and Honig [23].

1. Hardware
2. Microcode
3. Machine code
4. Low-level languages
5. High-level languages
6. Interpreted languages

The abstraction levels can be placed in the context of the code generation
process as shown in Figure 2.3. The figure shows how code written in the higher
abstraction levels can be converted and end up as a program running on a com-
puter on the lowest abstraction level.

Figure 2.3: The levels of abstraction are shown in the context of the code gener-
ation process. The numbers in the figure correspond to the levels of abstraction,
from 1: "Hardware" to 6: "Interpreted languages".

2.4.1 Overview of abstraction levels

This section gives a brief description of the abstraction levels. Section 2.4.2 and
the following sections go more in-depth into the abstraction levels that are most
relevant to the thesis.

Chapter 2: Theory 13

Hardware

The hardware level is the electrical circuits inside the processor. This is the lowest
level of abstraction, and all operations on higher levels are ultimately converted
and executed at this level. Since this level is implemented in electrical circuits,
it is not possible to modify it in software. The hardware level is applicable to all
physical processors in a computer, but only the CPU is focused on in this thesis.

Different hardware processor units have different architectures. This is what
is called CPU architecture. The most common processor architecture types are x86
and arm. This thesis focuses on the x86 architecture, which is currently the most
common architecture for PCs [24].

The CPU is the main component that executes instructions. It includes com-
ponents to fetch data and new instructions, execute an instruction, and several
registers containing the most immediate data needed for executing the next in-
structions. These registers store data and memory pointers, i.e. values and pointers
to values. They also store flags related to the current state of the CPU. These flags
are called CPU flags and are stored in a dedicated register. CPU flags are used in
conditional and branching operations. They are described in Section 2.4.2.

Microcode

Microcode (sometimes written as µcode) is the interface between hardware and
machine code, as described in [23, p. 66].

”The microcode level is also known as firmware. Microcode operates
only on the exact circuitry for which it was designed. It contains mi-
crocode instructions that translate from higher machine code levels to
provide a way to interface with the hardware. ” - Sikorski and Honig
[23, p. 66]

Because of the connection with the hardware level, this is not usually a level most
programmers or reverse engineers need to examine. However, the microcode level
is important for understanding low-level CPU optimization techniques, like Out-
Of-Order execution [25], and has introduced vulnerabilities like Specter [26] and
Meltdown [27].

Machine code

Machine code is the bytes the CPU reads from memory, interprets, and then ex-
ecutes. Different CPU architectures could interpret the same bytes as different
instructions, so machine code is highly connected to the platform it is running
on. The CPU interpreting machine code does not need to be physical; it could be
virtual.

Execution of a single machine code instruction could be converted into several
microcode operations depending on the instruction and the microcode architec-
ture. For example, the machine code instruction ADD EAX, EBX will generate mi-
crocode operations related to the addition of the two numbers and the setting of

14 J. Hofgaard: CFG analysis for inlined function detection and identification

affected CPU flags. Whereas the instruction ADD EAX, [EBX] will generate more
microcode instructions, additional instructions are needed for retrieving the value
at the memory address pointed to by EBX, as well as the ones for actually doing
the addition [25].

Low-level languages

Low-level languages are human-readable versions of machine code. The most
well-known is Assembly. The language is a conversion of the machine code with a
few additions to make it more human-readable and user-friendly. This is further
discussed in Section 2.4.2.

High-level languages

High-level languages have no direct connection with the machine code or lower
levels. Figure 2.2 shows how source code written in a high-level language is con-
verted into machine code. To run a program written in a high-level language, the
program needs to be converted into machine code; this topic was explored in Sec-
tion 2.2. Humans find high-level languages a lot easier to use since they remove
several of the details needed in low-level languages. For example, in high-level
languages, the programmer does not need to handle memory allocation of the
stack. Another example is that a single instruction in a high-level language will
likely be converted into multiple machine code instructions, similar to how a ma-
chine code instruction is converted into multiple microcode instructions.

Interpreted languages

Interpreted languages are languages where a program is written and not conver-
ted into machine code before it is run. Instead, an interpreter converts the program
during run-time. This can be done in multiple ways: using an interpreter to inter-
pret and execute instructions continuously or doing a compilation-like process
during the program’s runtime. Compilation during runtime is called Just-In-Time
(JIT) compilation, and it is used as an optimization step. The JIT compilation does
not necessarily compile code into machine code understood by the CPU. It could
instead be compiled into a machine code-like language that runs in a custom vir-
tual machine.

2.4.2 Assembly

Assembly is the human-readable version of machine code and a low-level lan-
guage3. Each "line" in an assembly file represents a separate machine code in-
struction. Each machine code instruction is fetched and executed independently

3Some sources, like [28] do not differentiate between machine code and assembly but describe
"assembly as a symbolic representation of machine code." In this thesis, assembly is the human-
readable version and machine code is the binary representation

Chapter 2: Theory 15

by the processor. The naming convention of assembly instruction differs depend-
ing on the sources and architectures used. This thesis uses the Intel x86/x86-64
naming convention and syntax, as shown in Code listing 2.1. There exists other
assembly syntax, like the AT&T syntax. This thesis uses Intel syntax because most
tools used in this thesis also use the Intel syntax. More information about the
differences between AT&T and Intel syntax can be found in [29] and [30].

Code listing 2.1: Intel format of assembly instructions

LABEL: MOV EAX, 0x1234
label: mnemonic operand1, operand2

In some settings, it is necessary to be able to look at the machine code and the
assembly of an instruction. An example of the format for this is shown in Code
listing 2.2. The first part, the sequence "BA 0F 00 00 00" in the example, is the
machine code of the instruction. The sequence contains numbers in hexadecimal.
The last part is the assembly in the Intel syntax described above.

Code listing 2.2: Machine code and assembly of a mov instruction

BA 0F 00 00 00 mov edx, 0Fh

As shown in Code listing 2.1, each assembly instruction comprises up to three
parts. Not all instructions use all parts. These parts are:

1. Label
2. Mnemonic
3. Operand

Label

Labels are used as references in the code. The label is a marker added to make the
code easier to read and is not part of the machine code. In machine code, memory
addresses are used directly if there is a reference. Labels are a symbolic (human-
readable) representation of that memory address. Not all assembly instructions
have labels. Labels are usually only present if some other code references the
address of the instruction or if it improves readability. The labels themselves do
not contribute to the machine code and are only present if a programmer writing
assembly adds them or they are added by a disassembler.

Mnemonic

Mnemonics is the name of the operation that will be performed when an instruc-
tion is executed, as shown in Code listing 2.1. In Code listing 2.3 jne is the mne-
monic in that line. Mnemonics can also be described as the name of the operation
being done in an assembly instruction.

Mnemonics does not always fully describe exactly what is being executed;
this is further explained in the following paragraphs. Because of the ambiguity in
some mnemonics, there exists a more precise way to explain what an instruction

16 J. Hofgaard: CFG analysis for inlined function detection and identification

does. In this paper, this is referred to as the ’opcode’. The opcode is the first part,
mnemonic equivalent, of the instruction in machine code4, i.e., in Code listing 2.3,
’75’ is the opcode of the conditional jump instruction.

Code listing 2.3: Dissasembly of a conditional jump

75 45 jne label_1

The same mnemonic sometimes refers to different opcodes. This can occur
because of the operands used in the instruction, as shown in Code listing 2.4.
This depends on the operands in the instruction. In assembly the operand type is
not necessary to specify in the instruction, but this is needed in machine code.

Code listing 2.4: Variants of move instructions with different opcodes

C7 45 D8 00 00 00 00 mov [ebp-40], 0
89 45 A4 mov [ebp-92], eax
8B 10 mov edx, [eax]

Sometimes, certain keywords are added to the assembly instruction to add spe-
cificity, like short in Code listing 2.5. The addition of short in the listing specifies
that the conditional jump is relative and to an address a ’short’ offset, a distance
possible to specify with a single byte as offset, from the current instruction pointer.

Code listing 2.5: Same mnemonic with different opcodes

0F 85 B9 00 00 00 jnz label_1
75 0D jnz short label_2

Both instructions in Code listing 2.5 are conditional jumps, and will change the
instruction pointer if the zero-flag, one of the CPU-flags, is 0. Information about
different conditional instructions and CPU flags can be found in [28, p. 3-16]. CPU
flags are affected by the instructions shown in [31], but it is not directly relevant
to the thesis and is not be further explained. The mnemonic for both instructions
in Code listing 2.5 is "jnz", however, the opcodes differ. The first conditional jump
is a jump to an address specified by a 32-bit5 offset relative to the current address.
The second conditional jump uses an 8-bit offset relative to the current address
instead of 32-bit.

Some mnemonics are synonyms and refer to the same opcode. This is com-
mon in conditional operations. In Code listing 2.6, the two mnemonics, jne and
jnz, refer to the same opcode and can be used interchangeably. This is done to im-
prove readability. From the CPUs perspective, the same CPU flag is set if a compar-
ison equals zero and if two equal values are compared [28], [33]. Not all similar-
sounding mnemonics are synonyms. For example, "greater" and "above" are used

4Some sources define the opcode as the whole machine code instruction. In this thesis, the whole
instruction is referred to as ’machine code of an instruction’ or just ’machine code’. The opcode is
only the mnemonic equivalent of the machine code instruction.

5Assuming the CPU is in protected(32-bit or 64-bit) mode, not real mode. Real mode is not
relevant to the thesis, and all code and examples are in protected mode. More information about
real and protected mode can be found in [32].

Chapter 2: Theory 17

to indicate a signed or unsigned comparison and can not be used interchangeably.
The full list of synonyms for conditional mnemonics can be found in [34].

Code listing 2.6: Different mnemonic with same opcode

75 45 jne label_1
75 45 jnz label_2

Operand

Operands are the values given as input and output in a mnemonic and could
be seen as somewhat equivalent to function arguments. Some instructions do
not take operands, and some take several. Operands can be different types, and
different instructions. Operands can be values, registers, or pointers to an ad-
dress in memory. In the Intel assembly format, operations with an output or
destination where the output or results are saved normally, have the format
"mnemonic destination, source", as described in [28, p. 1-7].

Some operations have effects that are not directly linked to the operands. Most
instructions affect CPU flags in some way. This is further described in [31]. In most
normal programs comparison instructions like CMP and TEST are used to affect
the control flow of a program. These instructions directly alter CPU flags, which
control branching operations. However, other instructions, like the MUL-operation,
also affect general-purpose registers. MUL only has a single input operand, but the
result is outputed in multiple registers, EDX:EAX in an x86-architecture CPU.

2.5 Code optimization

When source code is converted into machine code, the compiler aims to optimize
the program being created. This optimization is done to enhance performance,
minimize size, or improve other desirable characteristics. The code that is best for
humans to read and understand may not be optimal for a computer when directly
converted into machine code. Humans often write code for human readability,
which is not essential to a computer. This can result in unoptimized code from a
computer’s perspective. To bridge this gap, compilers attempt to optimize the code
they generate. The two most common characteristics that compilers optimize for
are speed and size. The choice of optimization depends on what the developer
specifies the compiler to optimize for when compiling the program. These two
optimizations can conflict with each other, and the compiler prioritizes one based
on the optimization flags used. For instance, optimizing for speed may result in
a larger code size, while optimizing for size may lead to slower execution. The
developer needs to consider these trade-offs when setting the optimization flags.

One way a compiler optimizes code is by replacing one instruction with an-
other. Certain instructions might be faster or smaller in size, compared to others
and are therefore preferred by the compiler. One example of this is shown in Fig-
ure 2.4. Multiplication is an expensive operation compared to other operations

18 J. Hofgaard: CFG analysis for inlined function detection and identification

[35]. As shown in the figure the compiler will replace multiplication with faster
instructions if it is possible. a1 * 2 is replaced with a1 + a1 since additions are
faster than multiplication. a1 * 4 is replaced with shifting the value to the left,
a1 << 2. Instruction optimization tries to replace slow instructions, instructions
that take a lot of CPU cycles to complete, with faster instructions. Instructions can
also be replaced with instructions that make execution prediction easier. Execution
prediction is also called speculative execution6 by Intel. This type of optimization
does not change how the program is structured, even though the instructions dif-
fer from what the programmer might expect from the source code. Some other
types of code optimization do, however, affect the structure and control flow of a
program.

(a) Multiplication (a*2) optimized by re-
placing multiplication with addition using
the add-instruction

(b) Multiplication (a*4) optimized by re-
placing multiplication with left shifting us-
ing the shl-instruction

Figure 2.4: The figure shows how the compiler uses addition and shift instruc-
tions to speed up multiplication. Figure 2.4a shows how a multiplication with ’2’
is replaced with addition. Figure 2.4b shows how the shift operation is used in-
stead of multiplication.

The compiler could also remove code that is unused or not accessed. Larger
unstructured projects could contain legacy code that is no longer referenced; if the
compiler discovers this, it could remove the code. This would decrease the size
of the program and make execution prediction easier. This type of optimization is
called dead code removal.

2.5.1 Inlining

Inlining is an optimization technique focusing on making a program faster. Inlin-
ing is when the compiler takes a call to a function and replaces the call with the
content of the function that was intended to be called. An example of this is shown
in Figure 2.5.

This removes the need for a function call since the called function is put inside
as part of the calling function. From an optimization perspective, this improves the
performance of the program. Since no call is made, there is no need to establish
and set up a stack frame, or remove it afterward. Additionally, it is not necessary
to set up arguments in the same way as when a function is called. There is also an
improvement in caching and pre-fetching. The instruction pointer does not jump
to a new location. It is more likely that the next instruction is part of the current
memory page and, therefore, cached.

6Speculative execution and fewer cache-misses or cache optimization is not relevant to this
thesis, more information about this topic can be found in [36].

Chapter 2: Theory 19

Figure 2.5: The figure shows how the function "add" is inlined into the function
test. The content of the add function is inserted into where a call to the function
was.

Because inlined functions originally were normal functions, some of the same
attributes apply to them, with some modifications:

Single entry point

Normal functions only have one "entry point". Any normal function will always be
entered at its beginning. This is to make sure that it is able to set up its stack, parse
arguments, and save any non-volatile registers7. In theory, there is nothing stop-
ping a program from jumping or calling any memory address, i.e. not the function
"entry point", if it contains executable code, but this is not normal behavior, and
because of this, it is ignored.

Inlined functions also, in a way, have a single entry point. Since an inlined
function is a function that has been "copied" from one place to another, by the
linker or compiler, it originally had a single "entry point". However, since it isn’t
its own function the stack setup isn’t needed, and there isn’t a clear calling con-
vention defining how arguments should be passed to it. The optimization steps
during compilation could change the layout of the start of the function. Parts of
the function could also be removed by the optimization process.

Return to caller

A function has to return to the place it was called from. This also somewhat applies
to inlined functions. An inlined function is not directly called, but as described
above, it is originally a callable function. To preserve the code’s functionality when
inlining a function, the compiler has to ensure that the inlined function "returns"
to the correct place and that the correct value is "returned". Since there isn’t a re-
turn instruction and an inlined function is part of another function, the compiler

7Some registers, like the return register, ’RAX’ in x86-64, may be overwritten by the callee, other
registers must be preserved by the callee and returned in the same state to the caller. This depends
on the calling convention. More information can be found in [37].

20 J. Hofgaard: CFG analysis for inlined function detection and identification

and linker will optimize it, as explained in the previous paragraph. This optimiz-
ation could include modifying the control flow of the entire function, making the
original function with the inlined function inside it appear differently than just
the original function with the inlined function "copy-pasted" into it.

2.5.2 Inline optimization

If a compiler decides to inline a function depends on the source code, the compiler,
and what flags are given to the compiler. Flags and keywords differ from compiler
to compiler, but most compilers have options with the same meaning, but the
names might differ. The following examples are from Microsoft Visual Studio.

As part of the code optimization step when compiling a program, the compiler
tries to calculate the cost and benefit of inlining functions. The cost, usually larger
code, is compared with the benefit, usually faster execution, and if some threshold
is met the function is inlined.

Keywords in the source code like "__inline" or "__forceinline" incentivize
the compiler to inline the function modified by the keyword [38]. These keywords
affect the cost calculation described earlier and shift the threshold for the inlining
of a function. The keywords are, therefore, more of a suggestion to the compiler
than an instruction; even __forceinline does not guarantee the inlining of a
function. Security considerations, recursion, and exception handling are some of
the things that could stop a function from being inlined.

The flags given to the compiler affect how a compiler weights different altern-
atives during optimization and what optimization choices the compiler is allowed
to make. The different compilers have different options for inlining, as shown in
Table 2.1. The flags shown in the figure are not the only flags affecting function
inlining in the different compilers. Other flags, like -finline-stringops in GNU
Compiler Collection (GCC), affecting the inlining of string-related functions, also
affect function inlining in general [39]. However, the primary compiler flags that
enable and disable if the compiler is allowed to inline anything at all are listed in
the table. Other inlining-related flags primarily affect what the compiler should
prioritize or be limited by. The max stack size in a single function, the size of an
inlined function, and the max instances of a function that can be inlined, can all
stop a function from being inlined. How these flags affect the compiled program
differs depending on the program being compiled. However, according to the doc-
umentation [7], [39], [40], these flags should not affect how an inlined function
is structured or appears.

When reverse engineering a program there is no direct way to differentiate
between a function being inlined because of the cost analysis or because the pro-
grammer specified certain keywords or flags. By looking at what is being inlined
a reverse engineer could make some educated guesses, but there are no artifacts
left in the program that give an unambiguous answer.

Chapter 2: Theory 21

Table 2.1: The main compiler flags used to enable and disable function inlining
for a selection of compilers.

Compiler Enable function inlining Disable function inlining
GCC -finline-functions -fno-inline
clang -finline-functions -fno-inline-functions
msbuild & cl /Ob3 /Obd

2.5.3 Outlining

The opposite of inlining is outlining. This is when a part of a function is taken out
and put into its own function. Outlining could reduce the size of a program if the
code block that is being outlined is used in multiple locations in the program. This
is a new addition to compilers compared to inlining. Outlining was added to LLVM
in 2017 [41]. Outlining, in general, does not make a program harder to reverse
engineer since there is no need to manually recognize the parts of the program
that are used in multiple places and, therefore, only need to be analyzed once.

An example of outlining can be seen in Figure 2.6. This figure shows the op-
posite case compared to Figure 2.5. Outlining is not normally done with code as
small as shown in Figure 2.6, as it would not provide any decrease in the size of
the program by outlining a single line of code. Since outlining does not negatively
affect the difficulty of reverse engineering it is not discussed further in this thesis.

Figure 2.6: The figure shows the opposite of Figure 2.5. In the figure, the ad-
dition of two numbers is outlined from the function test into a function called
_OUTLINED_FUNC_.

2.6 Reversing the compilation process

Analyzing a compiled program in its binary form, machine code, is a non-viable
option. Therefore, tools designed to convert it from machine code to a more
human-readable format have been essential in reverse engineering. This is done in
two processes called disassembly and decompilation. Figure 2.7 shows how the two
processes relate to the code generation process. Disassembly and decompilation
are explained in the following sections.

22 J. Hofgaard: CFG analysis for inlined function detection and identification

Figure 2.7: The figure shows how the compilation process can be reversed from
machine code in an executable to low-level languages with disassembly and from
low-level languages to high-level languages with decompilation.

2.6.1 Disassembly

The basic process of disassembly is converting machine code into assembly code.
This is done by taking the given machine code, looking up what that series of
bytes are as opcodes, and returning the equivalent assembly instructions. The
architecture of the machine code and the attributes associated with the data cur-
rently being disassembled need to be a prerequisite to disassembling a program.
Machine code does not have any intrinsic properties that make it possible to de-
termine what instruction architecture it is. This is normally not a problem since
most machine code is in a context, like an executable file or a library, which con-
tains headers specifying the architecture and the properties of different sections
of a program. There are examples of situations where this context could be miss-
ing, like shellcode, machine code injected into a process [42]. However, this is not
relevant to the thesis.

Normally disassembly refers to the disassembling of machine code running on
hardware, like machine code in x86-64. It could also refer to bytecode running on
a virtual machine, like java bytecode or code obfuscated by VMProtect [43], [44].

Basic blocks

As described in [45], basic blocks are a series of machine code operations that will,
from the perspective of a single thread, always be executed in order if not affected
by any outside operations. A set of instructions without branches or conditional
operations that will affect execution flow. Every basic block has to have a single
"entry point", i.e., no jumps are allowed to the middle of a basic block. A basic
block ends when one of the following situations occurs.

• The next instruction is an operation where the address of the following in-
struction is dependent on the state of the program.
• The next instruction is an "entry point" or the beginning of a new basic block.
• The next instruction affects the instruction pointer in a way where the next

instruction to be executed is not the next in memory (like a jump or a return
instruction).

Chapter 2: Theory 23

The CALL-instruction does, however, not break up a basic block; this is because it
is assumed that the program will return to the instruction after the call-instruction
when the called function is done and returns. This assumption should be correct
unless the called function doesn’t return, like the function ExitProcess in the
Windows API [46].

A CALL-instruction could also not return to its return address if the pro-
gram does something unexpected like modifying its return address. The execution
would then continue where the modified return address pointed to. This type of
modification of control flow is most commonly associated with Return Oriented
Programming, sometimes just called ROP. Return-oriented programming is nor-
mally an exploit technique used to get code execution if a buffer overflow occurs
in the stack. It was invented as a response to the introduction of non-executable
memory [47]. However, return oriented programming could also be used as a
method to obfuscate the control flow of a program.

2.6.2 Decompilation

Disassembly is sometimes confused with decompilation. Decompilation is the pro-
cess of trying to create a representation of the program in a high-level language
from the compiled program [48]. This high-level representation is not necessar-
ily the same as a source code equivalent of the program. When disassembling a
program, information about the source code is not normally known. Information
like what language the source code was written in could be undetectable. Some
disassemblers like IDA PRO, therefore, always disassemble the program into a
C/C++ or "C-equivalent" high-level language regardless of the language of the
source code [49].

A part of decompilation is disassembly. By first disassembling the program an
analysis tool is sometimes able to detect certain features or sets of instructions
and interpret them as a specific high-level language feature, like loops, switches,
or if-else statements. Certain nuances in the source code, like if a for-loop or a
while-loop is used are seldom detected or differentiated in the machine code.
This is not necessarily a weakness in the decompilation; nuances like that are
sometimes removed by the compiling process and create situations where there
are not any differences in the machine code.

2.7 Control flow graphs

A Control Flow Graph (CFG) is a graph created from the execution flow of a
program. Each node in the graph is an operation or set of instructions the program
executes, and each edge is the relations between each execution block [50]. CFGs
have been proposed and used as a technique in program analysis for more than
50 years. CFGs are further expanded upon in the following paragraphs.

CFGs are used in reverse engineering to analyze a program’s behavior, identify
potential errors or inefficiencies, and optimize the program’s performance. They

24 J. Hofgaard: CFG analysis for inlined function detection and identification

can also be used in debugging and dynamic analysis to trace the flow of execution.
Malware detection and classification have been a field where CFG analysis has
been used extensively during the last few years.

CFG generation and analysis are a somewhat expensive form of analysis. It
is most commonly used in the classification and categorization of malware [51],
[52]. In recent years research into combining machine learning and CFG analysis
has also been used to identify and extract behavioral patterns from a malware
sample using static analysis [53]. Different types of CFGs have also been used to
analyze and classify malware, using code flow graphs and call graphs [54].

2.7.1 Control flow graph definition

A graph is a combination of a set of nodes and a set of edges. The total amount
of nodes and edges is called a graph. Nodes are objects with one or more of the
following: attributes, labels, and properties, depending on the data model. Edges
connect the nodes. They must have a source node and a destination node [55].
An edge could have the same source and destination node. Edges are objects that
can have different properties, like weights depending on the data model. An edge
with a weight is called a weighted edge.

There are different types of graphs depending on what type of edges are used,
undirected edges and directed edges [56]. Undirected edges are edges where the
position of the source and destination node are irrelevant. In a graph with two
nodes, A and B, and undirected edges an edge with source A and destination B will
be equivalent to an edge with source B and destination A. In directed edges the
position of the source and destination does matter, and graphs with directed edges
can be used to form hierarchical structures. Both undirected edges and directed
edges can be weighted.

A CFG is a graph representation of a computer program’s control flow. A pro-
gram’s control flow determines the order in which it executes its statements and
is influenced by conditional statements (like if-else or switch statements), loops
(like for or while loops), and function calls.

In a CFG, each node represents a block of code, while the edges between the
nodes represent the control flow between the blocks. The edges in a CFG are
unweighted directed edges, meaning edges are not associated with any cost and
the control flow in a program is directional. The nodes are usually labeled with
some properties of that code block, like a signature, an address, or/and some set
of instructions that the code block encompasses. The edges in a control flow graph
can be labeled with the conditions that must be met for the flow to follow that
particular edge [57].

Chapter 2: Theory 25

2.7.2 Control flow graph types

A CFG can be created with different objects considered nodes and edges depend-
ing on the use case. Two examples of this are:

• a graph based on basic blocks
• a graph based on function calls

Basic blocks are a series of operations without branches or conditional operations
as described in Section 2.6.1. A CFG based on basic blocks creates a node for each
basic block and creates edges based on how these blocks are connected. This is
a low-level graph where everything is created from the disassembled code. A call
graph-based CFG is a graph created from the relations between different functions
or subroutines [58]. Each node in the graph is a function, and each edge is an
invocation of one function from another. A call graph could be created statically
by disassembling a program and creating a graph based on each call instruction,
or dynamically by running the program and tracing each function call.

A CFG created using static analysis could be incomplete since some edges
could be generated dynamically. This happens if the address of a jump is calculated
during runtime. Code branching based on runtime-determined addresses is called
"indirect jumps" [59]. A common example of indirect jumps is in object-oriented
languages. Object-oriented languages contain classes with functions or methods
and data attached to each instance of a class. Methods in a class are often invoked
based on a virtual function table specific for one instance of a class; a call graph-
based CFG would, therefore, be hard to create without tracing the program.

A CFG can also be created dynamically by running the program. This type
of CFG is produced by tracing the execution path of a program and marking the
parts of code that are executed during runtime. While this approach can trace
edges that are generated at runtime, it also has limitations. A dynamically created
CFG is only a snapshot of the program’s control flow during a specific run, and
it may not capture all possible paths that the program could take. This can limit
the extensiveness of the graph and potentially affect the accuracy of any analysis
done using the graph.

CFGs are not intrinsically connected to compiled languages or code but could
be created from interpreted languages. CFGs created from an interpreted lan-
guage will have some challenges connected to them since it is not machine code
that needs to be analyzed into a graph. Dynamically typed languages could also
bring some unexpected situations since a function call in a dynamically typed lan-
guage depends on the argument type to decide if a specific implementation of a
function should be called, this could create more complex CFGs [60]. This thesis
focuses on compiled languages; further research could, however, be done into test-
ing if the same methods and techniques would be applicable to other language
types.

26 J. Hofgaard: CFG analysis for inlined function detection and identification

2.7.3 CFG vulnerabilities

CFG generation is, like many other analysis techniques, vulnerable to obfuscation
of the program that is being analyzed.

Opaque predicates is a technique specifically designed to obfuscate the control
flow of a program by inserting false branches. False branches are branches where
one path is always chosen [61]. This is achieved by creating branching operations
where one branch always is taken. An example of an opaque predicate is shown
in Code listing 2.7. Regardless of the value of eax the least significant bit will
always be 0 when shifted 1 to the left [62], the cmp-instruction would therefore
always set the CPU flag ZF and the execution would jump to the address of the
label ALWAYS_JUMP_HERE. In CFGs, opaque predicates create false nodes and edges
if they are not detected, which could, therefore, make the graph harder to analyze
or negate the result of the analysis done on the CFG.

Code listing 2.7: Opaque predicate

shl eax, 1
cmp eax, 1
jz ALWAYS_JUMP_HERE
jmp NEVER_JUMP_HERE

Dead code insertion is another known obfuscation technique. "Dead code" is
code in a program that doesn’t affect the execution result, the state of the program
is the same before and after the code has been executed. This could be achieved
by inserting a single "nop"-instruction, or more complex operations as long as no
data or program state has been modified after the execution of the dead code [63].
Dead code does not have to be an obfuscation technique but could be the result
of poorly optimized code or legacy code that no longer is used [64].

2.7.4 CFG analysis implementations

CFG analysis has been implemented in several reverse engineering tools. It has
a different understanding of a program’s structure compared to other methods.
This makes it suitable for comparing code. Methods comparing code byte for byte
would be susceptible to assuming differences exist, even if the difference is only
in a code’s offset. A CFG-based analysis could track the different offsets and, more
precisely, mark the actual deviation and not deviations attributed to variations in
offsets. Two tools implementing CFG analysis are Diaphora and Bindiff.

Diaphora [65] is a plugin to IDA Pro8. This plugin is a collection of tools created
for finding the difference between two compiled programs. In 2018 Karamitas and
Kehagias [67] used Diaphora to find differences in functions based on the CFG of
those functions. This was not a technique previously used in Diaphora and created
a 2,5 times speed increase compared to the original version of Diaphora. It was
equal in or had better accuracy. The results discovered by Karamitas and Kehagias

8IDA Pro is an "Interactive disassembler" created for disassembly, decompiling, and debugging
software, commonly used in reverse engineering. It is developed by a company called HexRays [66].

Chapter 2: Theory 27

show the potential gains of using CFG analysis as a binary analysis tool. A version
of the method was later implemented in Diaphora [68]. Diaphora did not publish
if their implementation of the method performed any differently than the one
created by Karamitas and Kehagias.

Bindiff [69] is another tool created for comparing two programs. Bindiff has
implemented several different comparison methods, some of which use control
flow graph analysis. CFG is used when trying to match entire functions and in basic
block matching. This is done by comparing edges as well as the nodes themselves
in either a call graph-based analysis or a code flow graph. Bindiff is commonly
used in finding differences when programs receive updates or are patched. In
comparisons between Bindiff and Diaphora, Diaphora has been shown to be a bit
more accurate [70].

2.8 Hash algorithms

Hash algorithms are algorithms that convert input data of arbitrary size to a fixed-
size representation of the input. The output is a number called a hash value or
digest. This hash value is supposed to be a unique representation of the input
data. In theory, the hash of two different input data sets should never be equal
for all data. In practice, this is not possible since the size of all possible input
data is greater than the size of available hash space. Hash values are used for
data integrity checks, data indexing, and data comparison. The first mention of
hashing was in 1953 by Luhn [71] according to [72].

There are different types of hash algorithms, and they can be broadly classified
into two categories: cryptographic and non-cryptographic [73]. Cryptographic
hash algorithms are designed to be secure and irreversible, meaning that gen-
erating the same hash value for two different input data is almost impossible.
Hash functions are one-way functions, and the only way to find the input used
to generate a hash is to hash different inputs until a hash match is found. As
cryptographic hashes are computationally expensive, this is a difficult task. These
algorithms are used for digital signatures, password storage, and other security ap-
plications. Some popular cryptographic hash algorithms include SHA-256, SHA-1,
and BLAKE2.

Non-cryptographic, or data-oriented, hash algorithms, on the other hand,
are designed for speed and efficiency. These are typically used for data index-
ing, data comparison, and other non-security-related tasks. Some common non-
cryptographic hash algorithms include MurmurHash, CityHash, and FNVHash
[74].

Hash algorithms have become essential in computing and security. They
provide a fast and efficient way to index and compare data, and they play a critical
role in ensuring data integrity and security. In this thesis, the security and data
integrity part of hashing is not focused on. Hashes are used to compare and index
data.

28 J. Hofgaard: CFG analysis for inlined function detection and identification

2.8.1 SHA1

SHA19 is a hash algorithm published in RFC 3174 in 2001 by Eastlake and Jones
[75]. SHA1 was a common cryptographic hash algorithm, but several weaknesses
have been found. US National Institute of Standards and Technology has encour-
aged transitioning away from it in security applications [76]. These weaknesses
do not apply to SHA1 as a data comparison algorithm. US National Institute of
Standards and Technology still acknowledges it as an acceptable hash algorithm
to use in non-cryptographic use cases, like data comparison where it is still quite
common [77]. We used SHA1 in our work.

9Secure Hash Algorithm (SHA)

Chapter 3

Previous work

Classification and identification of code are not new concepts; they have been used
since the beginning of reverse engineering. This chapter explores some of the re-
search and tools used in code classification and identification. It focuses on func-
tion identification, not the classification of a whole program. Then, the chapter
provides a detailed explanation of a tool implementing CFG analysis, GraphSlick.
This tool is expanded upon in Chapter 4 to be able to do function identification.

3.1 Classification and identification of code

Fast Library Identification and Recognition Technology (FLIRT) is an industry-
standard tool for function identification. FLIRT is a module in the analysis tool IDA
Pro used for function identification [78]. FLIRT uses binary matching to identify
functions. A database of FLIRT signatures is included with IDA when it is installed.
If a signature in the database matches a function in a program, the function in the
program is labeled as the matching function from the database. The signatures
are based on the first 32 bytes of a function [79]. The fact that FLIRT uses exact
byte matching on a limited part of a function makes it vulnerable to wrongly
identifying functions with a similar or identical beginning. It was shown in [80]
how "FLIRT aware" malware could use this to its advantage. A method to remove
the false positives in FLIRT was shown in Griffin et al.[81]. Griffin et al. used
dynamic length byte sequences, signatures, and reference heuristics to identify
the relations between components in a program. This was mainly used to detect
malware components. Library function identification was also implemented as a
way to limit false positives in malware classification, but this was not the main
focus of the project.

3.1.1 Graph analysis for identification

An alternative to binary matching is using graph representations of a program to
analyze it. As described in Section 2.7, this can be done in multiple ways. Graph
analysis has been used to classify whole programs and function identification.

29

30 J. Hofgaard: CFG analysis for inlined function detection and identification

Håland[53] used CFG analysis as a method for malware classification. Malware
samples were classified into families based on a CFG analysis of the malware’s call
graph.

One example of function identification using CFG analysis is BinSign[82]. Bin-
Sign used CFG analysis as an alternative to binary pattern matching for function
identification. A CFG was created by using the basic blocks of a function. In each
basic block, a fingerprint was created by looking at the number of instances of each
instruction in the block, what mnemonic was used in each instruction, and its op-
erand types. BinSign focused on complete function matching and tried to match
each function with a function from a database of known functions. It showed that
CFG analysis was more precise than binary pattern matching at identifying com-
plete functions.

Research has also been done in the identification and classification of inlined
functions. This has been done by creating a graph based on the order in which in-
structions are executed, like using basic blocks. It has also been done by ordering
instructions based on how they affect data and if they affect the same data. Qiu et
al.[83] used a method tracking execution flow graphs. Execution flow graphs are
a version of CFGs in which a graph is created based on the context of each instruc-
tion. An execution flow graph is created by determining which instructions affect
each other when executed. This is done by tracking the data affected by each in-
struction; if a subsequent instruction is affected by a previous instruction, they are
part of the same execution flow. If an instruction overwrites the data affected by a
previous instruction, it is part of a different, subsequent execution flow. Qiu et al.
used execution flow graph to identify library functions in [83] and [84]. Execu-
tion flow graph analysis was effective at identifying inlined functions in situations
where the execution flow could be predicted. However, it encountered situations
where the execution flow could not be determined. In those situations, the method
was unable to identify known functions.

3.2 GraphSlick

In 2014, a project called GraphSlick[85]was presented. GraphSlick was created as
a plugin for IDA Pro in an effort to use CFG analysis as a method to detect duplicate
code, developed by Rahbar et al. It was released and presented in a plugin creation
competition organized by HexRays1. The development began in 2013, according
to its GitHub repository, and has not been updated since November 2014 [85].
GraphSlick is described as a tool for:

”automated detection of inlined functions. It highlights similar groups
of nodes and allows you to group them, simplifying complex func-
tions.” - HexRays[86]

1https://hex-rays.com/contests_details/contest2014

https://hex-rays.com/contests_details/contest2014

Chapter 3: Previous work 31

It analyzes a CFG created from basic blocks to find sequences of blocks that
are isomorphic. Isomorphic meaning, "being of identical or similar form, shape, or
structure"[87]. If any are found, they are likely inlined functions or code copied
to multiple places. GraphSlick is then able to outline the code blocks and show
them as subroutines.

The GraphSlick tool is split into two parts. The first part, which is referred to as
the GraphSlick-GUI, handles visualization and integration with IDA and is written
in C/C++. The GraphSlick-GUI only provides visualization and a user interface
and is, therefore, not relevant to the thesis. The second part is called bbgroup and
is written in Python. Bbgroup is the actual algorithm and does the duplication
matching. Bbgroup is not directly a plugin to IDA Pro but uses IDA’s Python librar-
ies and has very limited functionality outside an IDA environment. In the thesis,
the focus is on bbgroup. The name GraphSlick is used to refer to the analysis tool
and method in its entirety, whereas the name bbgroup is used when referring to the
code implementing the analysis method in GraphSlick. GraphSlick does not have
any functionality related to function identification, but the analysis method used
could be modified to implement this, this is explored in Chapter 4. In the follow-
ing sections, a detailed explanation of GraphSlick is provided. This is necessary as
we had to change the code to make it work for our experiment.

3.2.1 GrahpSlick’s analysis component

The analysis component of GraphSlick is called Bbgroup. Bbgroup is the most
extensive part of the GraphSlick code, and the code-matching is implemented in
bbgroup.

As described earlier, bbgroup is not a direct IDA plugin and could be used
in a standalone capacity. However, in the standalone mode, the functionality is
limited to only searching graphs that have already been generated from a run in
an IDA environment. This means it cannot generate new graphs or perform any
new analysis outside the IDA environment. The standalone version is, therefore,
almost exclusively used to test and verify that the plugin’s components work.

The flow when using the Bbgroup is shown in Figure 3.1. Bbgroup starts by
iterating through each basic block in a function and generating two hashes for
each basic block called hash_itype1 and hash_itype2. These hashes are further
explained in the following paragraphs. Each basic block also gets a reference
to its predecessors and successors. The predecessors and successors are the
previous and next basic blocks from a control flow perspective, as explained
in Section 2.7.2. This is an equivalent structure to IDAs "Graph View". The
predecessors and successors are taken from IDAs analysis and decompilation.
Bbgroup does not do any of its own analysis to determine the control flow of a
function. In Figure 3.2, node A would have nodes B and D as its successors and no
predecessors. Nodes B and D have A as their predecessor, B has one predecessor
and two successors, and C and D have no successors.

32 J. Hofgaard: CFG analysis for inlined function detection and identification

Figure 3.1: Bbgroup functionality flowchart shows the main steps bbgroup does
when creating a CFG of a function. It iterates through every block in a function,
calculating the hash of a block and getting its successor and predecessors. This is
done for every block.

Figure 3.2: Simple graph representation of function with four blocks. Each block
has a letter used to reference it and links between blocks that show the possible
control flow. These links show which blocks are the successors and predecessors
to each other.

When referring to blocks, bbgroup uses the IDAs block ID. A block ID is a
number given to each block in a function; the first block in a function is block
0, and each subsequent block is given an incrementing number. The blocks are
given a number based on their position in the CFG in the function. A block ID is
unique in a function, but across different functions, the same block ID will exist
many times. When referring to blocks across functions, the address of the first
instruction in the block is used, or the block ID as well as the function name or
address.

The type1 hash is a SHA1 hash based on each mnemonic in the basic blocks.
This is implemented using an instruction’s itype-element. The itype is a property
of an assembly instruction and contains the "Internal code of instruction" accord-
ing to the IDA SDK [88]. IDA uses this internal value to keep track of each in-
struction. However, as shown in Figure 3.3, instructions with the same mnemonic

Chapter 3: Previous work 33

but different opcodes, get the same itype. The instruction at address 0x00401DA0
starts with the bytes 0x8B while the instruction at address 0x00401DA7 starts with
0xA3, however both have itype equal to ’122’.

Figure 3.3: The figure shows that itype does not depend on opcode but on mne-
monic. The two mov-instructions at address 0x00401DA0 and 0x00401DA7 have
different opcodes, starting with 8B and A3. The itypes of both instructions are
’122’, as shown on the right side of the figure. idautils, part of the official IDA Pro
Python API, is used to show the itype.

The type2 hash is a SHA1 hash using the itype of instruction and the oper-
and types. This method is more robust since it differentiates between the types
of operands used. It is, however, not as strict as if the whole machine code was
used. The type2 hash would give the same hash value to a block only containing
MOV EAX, EAX as a block only containing MOV EBX, EBX, since it only considers
the operand types, not the value. On one hand, this could give unequal blocks of
the same hash and create false positives. On the other hand, it is more resistant
to cases where the compiler coincidentally uses a different set of registers.

Isomorphic subgraph detection

GraphSlick’s analysis component tries to identify duplicate code. This is done by
deciding if the CFGs of code parts are isomorphic. If two or more CFGs are equi-
valent or isomorphic, they are marked as duplicate code. The analysis process
GraphSlick uses for isomorphic detection is explained with the help of Figure 3.4.
The figure shows a function comprised of ten blocks, named A to J. The function
has a single return block, J, and starts at A. The color of the blocks represents its
hash value; blocks with the same color have the same hash value.

The analysis would start by identifying two hash-equal blocks. This is done
starting from the top of the graph. In Figure 3.4, blocks B and F would be the
first pair of blocks to satisfy the criteria. The analysis would then continue using
blocks B and F as the potential starting blocks for two duplicate code parts. From
B and F, their successors will be checked to see if they are identical. This would be
the case for the pair C and H, but not for D and G. As the pair C and H are equal,
the process would be repeated for their successors. This would identify that the
pair E and I are identical. As J has both C and H as its predecessors, it would be
disregarded since a block can not be shared between the two subgraphs. Finally,
E and I will be checked; since both only have J as their successor, it would be
disregarded as explained above. As no further blocks were identified, the analysis
would end, and the two subgraphs comprised of {B, C, E} and {F, H, I} would be
marked as two instances of duplicate code.

34 J. Hofgaard: CFG analysis for inlined function detection and identification

Figure 3.4: The figure shows a graph with two isomorphic subgraphs. The graph
of nodes {B, C, E} is isomorphic with nodes {F, H, I}. The color of the node rep-
resents its hash value.

3.2.2 GraphSlick as an inlined function detection tool

When looking at code from an inlined function, a function that the compiler in-
lined as part of an optimization as discussed in Section 2.5, the code itself does
not differ from code in the rest of the function. A regular function will typically
start with a prologue and end with an epilogue as described by Sikorski and Ho-
nig[23]. A prologue is saving the base pointer to the stack and setting up a new
stack frame, and the epilogue is setting up a return value, resetting registers, and
returning. An inlined function is not a separate function and does not have these
markers. Detecting inlined functions based on some specific instructions or actions
is, therefore, not possible. To find inlined functions another method is needed.

When a program is created, a lot of code is used more than once throughout
the program. This is typically done by putting the code that will be used mul-
tiple times in a function. The function could then be called from multiple places.
Included libraries are examples of code likely to be used multiple times. If func-
tionality from a library is needed it is probably needed more than once. This is
applicable to both standard libraries, like the string library in C/C++ with func-
tions like strcmp()[89], and third-party libraries, like the graphics library qt [90].
This assumption is critical to make it possible to use GraphSlick to detect inlined
functions.

A graph view of an example function is shown in Figure 3.5. The color of each
block represents its hash, and the letter is a way to address a specific block. The
function starts with node A, and the control flow then diverges to either B or F. It
could then take multiple paths but always ends with node I. The group consisting
of nodes {C, D, E} and {F, G, H} would be examples of similar subgraphs. Both
groups contain a primary node, C and F, each with one "yellow", {E, H}, and one

Chapter 3: Previous work 35

"blue", {D, G}, and successor node. The two groups are, however, not examples
of potential inlined functions as there exists an extra edge in the graph in one
instance and not in the other. The edge from B to E is an edge that comes from an
"outside" block, a block not part of the subgraph of the inlined function. It would
violate one of the properties defining a function. As explained in Section 2.5.1, a
function can only have a single "entry point". This also applies to inlined functions.

Figure 3.5: The figure shows a graph of a function. The color of each block rep-
resents its hash value. The function has two groups of similar nodes, green, blue,
and yellow. The two groups are not isomorphic subgraphs as there exists a link
between two nodes in one of them, B to E, but no similar link exists in the other
group.

Since the hashes are somewhat fuzzy, by only using mnemonics or mnemonics
and operand types, it would not be possible to assert with complete certainty that
the nodes in the two groups, {C, D, E}, and {F, G, H}, are equivalent. However,
the certainty would increase if a larger group of matches were found. Figure 3.6
shows a small section of a larger function. In the figure, two groups of blocks are
colored; each node in one group has a "twin node" in the other group with the
same hash. The "twin nodes" have the same hash, and predecessors with the same
hash, as described in Section 3.2.1. As the two subgraphs in Figure 3.6 contain
a significant number of blocks, it would be more likely that they are equivalent
compared to isomorphic subgraphs with fewer blocks. The number of blocks a
set of subgraphs is comprised of increases the likelihood that they are equival-
ent. GraphSlick provides the option to define the minimum number of nodes a
subgraph needs to be composed of before it classifies graphs as equivalent.

GraphSlick is a plugin mainly designed to find subgraphs that share similar
blocks. The similarity of blocks is based on the hash values assigned to each block
as described in Section 3.2.1. If we assume that a given program is optimized to

36 J. Hofgaard: CFG analysis for inlined function detection and identification

Figure 3.6: Part of a function is shown using IDA’s Graph View. The portion of the
function shows two matching subgraphs. The matching blocks in the matching
subgraphs are colored. The purple blocks are part of one subgraph, and the pink
blocks are part of the other.

inline functions and functions are called more than once, a set of subgraphs that
share similar blocks could be a single function that has been inlined in different
places. There is also a chance it could be a similar piece of code manually copied
to multiple places.

A function has a single entry point, takes in some data, and returns to where
it was called from [91]. The same principles apply to an inlined function since
it originally was a function before the compiler optimized it. An inlined function
does have some differences in how data is passed to it, how it "returns," and how it
is "called," as described in Section 2.5.1. Since functions only can have one entry
point, this can be used to detect if a set of similar blocks is an inlined function
or not. In Figure 3.5, node B has two successors, C and E. The nodes {C, D, E}
are, therefore, not able to be an inlined function since there would have been two
entry points, C and E. However, if the function looks like in Figure 3.7a, the two
groups, {C, D, E}, and {F, G, H}, could be a single function being inlined twice in
the same function.

Chapter 3: Previous work 37

(a) The figure shows a graph of a function. The color
of each block represents its hash value. The function
contains two isomorphic subgraphs of blocks {C, D,
E} and {F, G, H}.

(b) Same as Figure 3.7a but with a realistic view of
how the graph would look, blocks B and C concaten-
ated. Block B and C would not be different blocks in
reality, but they are colored differently to make com-
parison with Figure 3.7a easier.

Figure 3.7: The graphs show a similar function to the one shown in Figure 3.5.
The function in Figure 3.5 has a link between block B and E, which is not present
in this figure.

38 J. Hofgaard: CFG analysis for inlined function detection and identification

Because of how control flow works, instances of inlined functions do not create
distinct "entry points" for inlined functions since they are part of the function they
are being inlined into. This creates combined blocks that contain part of the main
function and part of the beginning of the inlined function. Separating where the
inlined function begins and where the main function ends is not trivial. A single
block could contain the beginning of the inlined function and parts of the main
function. In Figure 3.7a, block B and block C would, in reality, be part of the same
block, and the graph would be more like the graph shown in Figure 3.7b. This
makes detecting identical subgraphs more difficult. It is easy to see that blocks {F,
G, H} are equal to {C, D, E}, but this process is more complex if block C is not a
separate block.

Chapter 4

Implementation

In the following chapter, how GraphSlick can be modified to be used as an inlined
function detection and identification tool is explained. It also explains problems
related to implementing a technique for inlined function detection in compiled
programs and possible solutions. Inlined function identification and related issues
are also described. A solution for inlined function detection and identification is
presented. Testing of the method is described later, in Chapter 6.

We considered GraphSlick, Bindiff, and Diaphora as baseline for the work done
in this thesis. Bindiff and Diaphora are industry-standard tools for comparing pro-
grams. They are more refined, offer more expansive functionality, and have a more
polished user experience compared to GraphSlick. This makes them popular tools
for reverse engineering. However, they are more complicated to modify. The ex-
tensive functionality means that more components affect the program, and modi-
fications to them must account for this.

GraphSlick is an open-source CFG-based analysis tool integrated into IDA Pro.
It is designed more like a research project or proof of concept. It was selected
as it is a more specialized tool designed around CFG analysis and has a more
narrow focus compared to the other two. It does not offer functionality outside the
main CFG analysis component, which makes it easier to understand and modify.
Therefore, GraphSlick was seen as the best candidate for testing CFG analysis
techniques.

As previously described, GraphSlick was created around ten years ago and
does not function in its current state on updated systems. To make it work with
the current version of IDA, version 8.3.2306081; some updates had to be imple-
mented. The changes were mainly related to switching from Python 2 to Python 3
and the naming convention in the IDA-python API. These changes are documented
in Appendix A.1. This was done not to improve GraphSlick but only to make a ver-
sion close to the original functioning in the thesis. The following sections describe
modifications done to GraphSlick in an effort to expand on its functionality.

1This version was the most updated version when work on the thesis was started. For consist-
ency and reproducibility, the following version is always used unless otherwise specified: Version
8.3.230608 Windows 10 x64.

39

40 J. Hofgaard: CFG analysis for inlined function detection and identification

4.1 GraphSlick modifications

Some modifications are needed to enable GraphSlick to detect inlined functions.
These modifications are inspired by the literature described in Chapter 3. Differ-
ent methods were tested to overcome the challenges described in Chapter 3 and
identify inlined functions. This chapter explains the different methods that were
tried. At the end of the chapter, the solution that was settled for is explained, and
why this solution was seen as optimal.

4.1.1 Identifying the function start

One way to detect inlined functions is to discover their beginning. As described
earlier, an inlined function does not contain the same prologue or signature start
as normal functions. Arguments into inlined functions are not easy to detect, since
they use the same stack as the main function or they could be passed in registers.
Using registers to pass arguments into functions is not unique to inlined func-
tions, however, inlined functions do not have any call instructions referencing
their start. Therefore, no calling convention applies, and each instance of an "in-
lined call" could be different regardless of the calling convention in the rest of
the program. Without any function prologue and no defined calling convention,
a different method must be used to identify the start of an inlined function.

Another way to detect a function is to use references. Normally, functions have
pointers that reference their start. By going through all the references in a pro-
gram, some of them would reference the start of a function. This would also be
the case with inlined functions. However, as seen in Figure 3.7b, an inlined func-
tion could start as part of another block. It might have been possible to assume
that some inlined functions were more like blocks {F, G, H} in Figure 3.7b. Since
block F is a standalone block it would have references pointing to it. This method
could, therefore, in some cases, have been used to detect the beginning of inlined
functions. The problem is that this method is unreliable, and functions without
references to their start would not be detected.

4.1.2 Library lookup

If some attributes of the program are known at the time of analysis, this can be
used in inline function detection. Some of the inlined functions in the program
being analyzed could be from external libraries that are statically linked. Assuming
the external libraries are known, this could be used to detect functions from that
library in the currently analyzed executable.

A possible way to implement this would be to create a signature for each of
the functions exported by the library. Then, each of these signatures could be
searched for in the program being analyzed. If a signature is found, this will both
detect the location of an inlined function and identify the function being inlined
as the library function. The signature for a library function could be created as
CFG for the function using GraphSlick. A compiled version of the library would

Chapter 4: Implementation 41

need to be generated to match CFGs from the library with code in the executable.
This compiled library should preferably be compiled with the same settings as the
executable; this will make it more likely that the signatures in the library match
parts of the code in the executable.

This method would likely be quite effective in detecting statically linked func-
tions in an executable. It might, however, have some problems when trying to
identify inlined functions. Inlined functions do not have a clear function prolog,
or an easy way to identify the location where the original function ends and in-
lined function starts as discussed in Section 3.2.2. This lack of a clear start would
make matching an inlined function with a library signature challenging.

4.1.3 Duplicate code detection

Inlined functions are likely not inlined only once, and multiple instances of the
same function inlined in several places could exist. The different instances would
probably not be identical as described in Section 3.2.2. They would, however, still
share most of the same code. It would, therefore, be possible to detect different
instances of a known inlined function. Or it would be possible to assume that some
identical pieces of identical code are part of an inlined function.

By detecting duplicate code parts, it is possible to assume that some of these
duplicate code pieces are part of an inlined function. If a part of an inlined function
is known, it would be possible to expand from the known part and check if earlier
or later parts are part of the same function. By doing this search in a loop or
recursively, it would be likely that the entire inlined function is found. This method
depends on a technique to identify if a piece of code is part of the same inlined
function. A technique to solve this is described in Section 4.2.

Like the previous ones, this solution has some weaknesses, and some assump-
tions are needed. The most obvious weakness is the assumption that a function is
inlined more than once. This assumption is likely not always true and may lead
to cases where a function is only used once and, therefore, not detected. Another
weakness or problem to overcome is differentiating between inlined code from
libraries and other duplicate code pieces found in the program. Most of the du-
plicate code will likely not be part of an inlined function, a type of filtering or
sorting is needed to decide if a duplicate piece of code is an inlined function or
something else. An inlined function would also need to be matched with a library
to identify it.

The Duplicate code detection solution was seen as the one with the most poten-
tial, this method is used as the basis for further testing. In Section 7.3 this choice
is further discussed.

42 J. Hofgaard: CFG analysis for inlined function detection and identification

4.2 Splitting of basic blocks for duplicate code detection

GraphSlick, as developed in 2014, is not able to detect inlined functions as de-
scribed in Section 3.2.2 and shown in Figure 3.7b. This is mainly because inlined
functions share their beginning basic block with code from the function they are
inlined into. Different instances of the same function inlined in different places
would then not have the same hash on the first block. This is shown in Figure 4.1a.
In the figure, one function is inlined twice. The inlined function starts as part of
block pair A and B and ends with the block pair C and D. Instead of identifying
the complete inlined function, GraphSlick recognizes a series of blocks as equal
and tries to create subgraphs of equal blocks based on this. This creates several
smaller subgraphs since the common starting blocks, A and B are not recognized
as equal, and the lack of a common beginning propagates downwards. This can
be seen in Figure 4.1a by looking at the green and the brown sets.

A possible solution proposed in this thesis is splitting basic blocks. This method
is a three-step process: first, do a normal analysis with GrapSlick, then identify
basic blocks that could potentially be the starting block in a graph but are not
currently part of one, and finally, split those basic blocks in two and redo the
analysis to test whether splitting the blocks improved the analysis. The result of
this process can be seen in Figure 4.1b.

4.2.1 Splitting basic blocks

Splitting basic blocks is a possible solution for finding the beginning of an inlined
function. By splitting a single basic block into multiple parts, the CFG analysis
can get a more nuanced and detailed picture of the analyzed program. This extra
detail negates the problem of having basic blocks containing part of an original
function and part of an inlined function.

IDA does not naturally have a way to split a basic block into multiple parts.
To achieve this, a "virtual" basic block is created. This virtual basic block is not
added to IDA’s internal program structure and, therefore, does not affect IDA’s
own analysis process. This virtual basic block is only a part of the CFG used by
GraphSlick.

When GraphSlick does its analysis step as described in Section 3.2.1, it begins
by creating a CFG of a function. This CFG is created by hashing every basic block
and building a graph based on every block’s predecessor and successor. This pro-
cess uses the IDA-API to get a list of all basic blocks in a function. By modifying
GraphSlick, it is possible to create modifications to the basic blocks and add cus-
tom ones, as shown in Figure 4.2. This process takes a basic block, block A in the
figure, and finds somewhere to split it, calculates the hash of the two new blocks,
and finally creates links or references to make the new blocks a part of the graph.

Figure 4.2 shows a representation of the internal state of the data in a modified
version of GraphSlick during an analysis where a basic block is split. In the figure,
the color of each block represents its hash value during the different parts of its

Chapter 4: Implementation 43

(a) The figure shows the isomorphic
subgraphs in a function. The colors of
each set of nodes represent their equal
counterparts. For example, the two sets
of green blocks, right below A and B, are
equal.

(b) The figure shows the isomorphic
subgraphs after blocks A and B are split.
This identifies all the subgraphs in Fig-
ure 4.1a as the same subgraph and
expands the graphs down to the last
blocks, C and D. The entirety of blocks
A and B are colored for visualization
purposes. However, only the lower split
parts match.

Figure 4.1: A graph view of a function in IDA shows a part of a function contain-
ing two instances of an inlined function starting in blocks A and C. The blocks
identified as isomorphic subgraphs are colored. Figure 4.1a visualises the default
analysis and Figure 4.1b visualises the results after splitting two basic blocks.

44 J. Hofgaard: CFG analysis for inlined function detection and identification

Figure 4.2: The process of splitting a basic block is shown in the figure. Block A
is first split into two blocks, the orange and the green. The orange block would
start at the same location as the original brown block and, therefore, still has the
reference A. Lastly, blocks A and B are separated to show that they are no longer
the same block.

analysis. The letter represents the starting address of each block and the lines how
they are connected. The process starts with identifying a block to split and where
to split it; in the example, it is decided to be split at "address B." Where to split
a block is explained in the following section, "Identifying inlined function starting
point". Then, the hash value of the set of instructions from the start of A to B is
calculated. This hash value is set as the new hash for the A block, and the end of
the address of the A block is set to the address B. The hash of the set of instructions
from B to the end of the basic block2 is also calculated. Next, a new basic block
data structure is created with the start address of B, the hash value of the block is
set to the hash previously calculated, the end of the block is set to the same as the
original end of block A, and the same successor blocks as the A block originally
had. Finally, A’s successor blocks are changed from blocks C and D, and to B. The
result of this process is a graph compatible with the steps done in GraphSlick’s
analysis process.

The splitting of a basic block is a computationally expensive task. It requires
the recalculation of multiple hashes, which in and of itself is a costly operation.
It also modifies the graph GraphSlick uses for its analysis, so any analysis already
done by GraphSlick must be redone. This is further discussed in Section 7.3.3.

2The end of the basic block is normally the start address of one of the succeeding basic blocks,
C or D in the figure, but not necessarily.

Chapter 4: Implementation 45

Identifying inlined function starting point

Splitting blocks is computationally expensive, and it would be unfeasible to try
splitting every basic block. Therefore, deciding which blocks to split is an import-
ant part of the process. As previously discussed, an inlined function will likely be
optimized and fitted to the function it is inlined into. This primarily affects the be-
ginning and end of the inlined function. The CFG analysis used in this thesis uses
a single starting node and tries to find isomorphic subgraphs based on successor
nodes to a starting node. Identifying the correct starting node is a requirement for
the method to function as intended. Without a common starting node, the ana-
lysis cannot connect different branches of a function. This was previously shown
in Figure 4.1.

In Figure 4.1a, GraphSlick could not connect the different parts and instead
created multiple smaller subgraphs. However, blocks following where the inlined
function started were detected as a matching set of blocks. As Figure 4.1b shows,
splitting the block pair directly preceding the first detected isomorphic subgraph,
enables GraphSlick to detect the entire inlined function as a single subgraph in-
stead of multiple smaller ones. This indicates that it would be possible to use the
analysis done by GraphSlick as an initial estimate of which block would be sens-
ible to split. Trying to split the block directly preceding the first set of detected
isomorphic graphs is likely the start of an inlined function. All blocks directly be-
fore all instances of the same isomorphic graph must be split and split in the same
location for an analysis to be effective.

A block containing the beginning of an inlined function and part of the original
function, would have the inlined function at the bottom. It would, therefore, be
possible to detect the address where an inlined function starts. By comparing from
the last instruction in a block and continuing upward, it would be possible to
estimate where the inlined function starts. The exact instructions would not be
possible to determine. There could be differences in how different instances of
an inlined function are optimized at its beginning. There could also be instances
where previous instructions before an inlined function are similar, which would
make the technique determine that a part of the original function was part of
the inlined function. Determining exactly where an inlined function begins is not
necessary for function identification, as is described in the next section.

4.3 Identification of known functions

This section explains how an inlined function can be identified as a specific func-
tion from a known program. The method described in this section assumes that
some code in a function is detected as a potentially inlined function, i.e., a set of
connected basic blocks with a single "entry point" and no external references into
it, as described in Section 2.5.1 and shown in Figure 4.1.

After detecting a potential inlined function, identifying which function is in-
lined is the next step. Identifying unknown programs and understanding them

46 J. Hofgaard: CFG analysis for inlined function detection and identification

is the main task in reverse engineering. Identifying code can be done on several
levels. Methods used in malware classification analyze a complete program on
a higher level and try to categorize it into malware families or groups. Function
identification techniques, like FLIRT, analyze a program’s individual components
on a lower level. CFG analysis, when the CFG is based on basic blocks, also ana-
lyzes a program on a lower level, like FLIRT. CFG analysis as a method can also
be used in classification and grouping if it’s done on a higher level.

The identification of something unknown depends on the existence of some-
thing already known that the unknown can be matched with. If the unknown
matches the known, the unknown is identified as the known. In function identi-
fication, this means that a function is identified if it matches a known function.
FLIRT uses a dataset containing a binary mask of known functions. This is used
to compare functions detected by IDA and check if they match a function in the
dataset. If a match is found, IDA labels the matching unknown function as the
matching known function and adds the correct arguments.

FLIRT can not be used directly to identify inlined functions. If a function with
an FLIRT signature is inlined, the FLIRT signature will not match the inlined ver-
sion of the function. The inlined function does not have a precise and easily iden-
tifiable starting location. The FLIRT signature depends on the start of a function to
be able to find it. Even if the start of an inlined function were accurately identified,
FLIRT would still be unable to detect it. FLIRT relies on looking at the beginning
of a function to identify the arguments passed to the function. Inlined functions
do not have a detectable calling convention, and the "calling convention" used to
"call" an inlined function could differ across a program. Outlining an inlined func-
tion could be a possible way to make FLIRT able to identify inlined functions, but
this is likely unfeasible. To outline an inlined function, the entire inlined function
would need to be detected, and the arguments and variables used in the inlined
function would need to be identified. During the optimization process of a func-
tion containing an inlined function, a compiler could make the inlined function
access variables belonging to the function it is inlined into. The arguments needed
by the inlined function would also need to be identified. Outlining an inlined func-
tion includes setting up a stack and accessing arguments passed to the function. If
an analysis tool is able to separate out an inlined function, it already has enough
information about the inlined function to identify it.

Instead of using FLIRT, this thesis proposes using CFG analysis to identify an
unknown inlined function. As described in Section 3.2.2, CFG analysis can be used
to detect similar/duplicate code. An inlined function should be quite similar to a
non-inlined version of the same function. A similar technique to the one used for
duplicate code detection could be used to identify an inlined function. By compar-
ing the inlined version to a non-inlined version of a function it would be possible
to check if they are similar.

Chapter 4: Implementation 47

4.3.1 Function matching

An inlined and a non-inlined function will not be identical even if they are com-
piled from the same function. From a CFG perspective, the graph structure will
likely be similar, but the content of individual blocks may differ, and parts of the
graph may be missing.

The first block in a function will not be equal to an inlined function. This
makes using the exact same analysis method described in Section 3.2.2 difficult.
That analysis method depends on the existence of a ’starting block’ to which all
subsequent blocks are related. Since the first blocks, the ’starting blocks’ for the
analysis, differ, this method would not be able to traverse through the graph and
test if subsequent blocks match. Given a CFG of the inlined function and the non-
inlined function, replacing the first block in the two CFGs with a fake, predeter-
mined, equal block would be possible. This would make the first blocks match
and could make the duplicate code detection technique work, but it would rely
on the function start, the difference between the inlined and non-inlined function,
being contained in a single block. If a function has several blocks used to initialize
it, meaning more than one ’starting block’, its inlined counterpart might differ in
more than one block. Creating fake starting blocks could limit the function iden-
tification to only working on functions with one starting block.

The CFG comparison could also be done by ignoring the lack of a common
starting block. This would make the comparison method similar to GraphSlick
without block splitting. The advantage of this is that it would work without identi-
fying common starting blocks. The disadvantage is that some blocks would not
find a match, and holes in the graph could appear. As shown in Figure 4.1, mul-
tiple split subgraphs could create situations where a block is lacking a group.

Traversing the blocks in the two CFGs and finding matches without needing
them to be connected to a preceding block would solve the ’starting block’ prob-
lem. However, this would make the matching method more prone to wrong iden-
tification in cases where blocks are equal but the structure of the CFGs differs.
By only matching block hashes, the method would not be able to differentiate
between graphs with the same blocks if the blocks swapped positions.

The differences between an inlined and non-inlined function is tested in
Chapter 6.

4.3.2 Partial matches

Regardless of the method used for matching an inlined function, the whole func-
tion is unlikely to match its non-inlined counterpart. Both the ’starting block’ and
compiler optimizations make this unlikely. Therefore, a score needs to be given for
each potential identification. The identification with the highest score is chosen
as the most likely known function the unknown function equals.

The score is given based on the percentage of blocks matching between the
known and unknown functions. The ’starting block’ will be deducted from the

48 J. Hofgaard: CFG analysis for inlined function detection and identification

number of blocks as this block will not match, and any blocks containing a return-
instruction3 is also ignored when calculating the number of matching blocks.

4.3.3 Known function dataset

The dataset of known functions needs to contain a large number of library func-
tions to be able to match a large percentage of unknown functions.

The dataset would also need to include several instances of the same func-
tion. Some high-level language functions can be called with multiple different
arguments. One example is the C++ function std::string::compare(). This
function refers to different machine code instructions depending on the argu-
ments passed to the function. If a programmer calls the string compare func-
tion like std::string::compare(std::string*) in machine code, this will not
be the same function as if std::string::compare(const char*) is called. Since
these are two different functions from a machine code perspective, the dataset of
known functions should optimally include both versions. The difference between
the functions might not be large in some cases, or the difference is so small that
the instructions/mnemonics used are identical. In that case, the analysis process
would not be able to differentiate between the known functions.

This thesis does not focus on the known function dataset. The main focus is
the detection and identification process; generating an extensive list of known
functions is not necessary for this process but will be necessary if the work done
in this thesis is to be used in real-world scenarios.

3This only applies to the known function, as the unknown is an inlined function and inlined
functions does not have a return instruction in them.

Chapter 5

Verification and testing

The following chapter describes a framework for verifying inlined function de-
tection and identification. The framework is designed to test arbitrary analysis
methods, compare analysis tools, and validate techniques. Running a large-scale
test is beyond the scope of this thesis, so the entire framework has not been tested.
This requires more time than is available in a master’s thesis and is left for future
work. In Section 5.1, the test framework is described. The main components of the
framework and the goal and challenges of each module are explained. Section 5.2
explains how each module can be implemented and how they interact.

5.1 Test framework

To verify any analysis process on a large scale, a test model has to be designed. Dif-
ferent levels of software testing exist, like unit tests and integration tests. Different
levels of testing are used depending on what the test is supposed to uncover. Unit
tests are designed to test smaller components or functions in a program, while
integration tests are used to test a larger system [92], [93]. The test framework
described in this section is designed to test an entire analysis method or tool.

Any test framework is composed of multiple components that need to work in-
dependently of each other. To accomplish accurate results, each component must
be tested to ensure correct functionality. This ensures that each component works
as intended and that the integration with each component is correct. However,
the main focus of this thesis is on creating an analysis technique, and testing of
the test system is not discussed further.

5.1.1 Test framework design

The system described in this section has been chosen as a suitable design for test-
ing function detection and identification tools. The system is module-based to ac-
commodate multiple test samples. Each module takes data in a specified format
as input and returns it in the format expected by the next module. Any test sys-
tem needs to take input data, process it, output results, and verify those results.

49

50 J. Hofgaard: CFG analysis for inlined function detection and identification

A function detection and identification test framework needs an input program,
analyze the program, and verify the analysis. To have more control over the in-
put data, a pre-compiled program is not used as test data. Instead, source code
is taken as input and compiled into a program. Based on this, the test framework
needs to be comprised of the following steps.

1. Generate test data by compiling a source code program
2. Analyze the test program
3. Generate result files based on the analysis
4. Verify the results by comparing them with data from the source code and

the compiler
5. Save the results
6. Go back to Item 1 and compile a new program or the same program with

new compiler flags

This list of steps can be visualized in a figure. Figure 5.1 shows the main com-
ponents of the model. The model is based on the following modules: the compiler-
/linker, the analysis module, and the verification. Each module can be replaced
independently of the others as long as the output from each module is in the
expected format. Test data generation, ie. compiling source code, is a step that
would likely need to be changed depending on what program is compiled. This
step could also be modified depending on the compiler that generated the test
samples. Each module is further explained in Section 5.2.

Figure 5.1: The figure shows how a test system for program analysis can be de-
signed. It expands upon the figure showing how a program is created from source
code, Figure 2.1, with the components needed for program analysis. It replaces
the program execution with an analysis step. A database containing library func-
tions and a verification module is also added.

Chapter 5: Verification and testing 51

5.1.2 Test components

The test framework needs to be able to take in test data, source code, analyze it
to find inlined functions, identify whether the inlined functions are from a library
and from which library, mark the found functions, and verify that the results are
correct. The following paragraphs explain briefly the modules from Figure 5.1.

Source code, Compilation and linking & Executable file

The test data module of the test framework is responsible for handling test data
and passing it to the analysis module. The module needs to create a program that
can be analyzed by the analysis module. To test if inlined functions detection and
identification, the test data need to be compiled into a computer program. Most
real-world machine-code programs are in the form of a PE file on Windows1.

Analysis & Library database

The analysis module needs to integrate an analysis tool or technique, like the
analysis technique described in Section 4.1. This includes taking in an executable
file, finding the inlined functions, and looking up in a "library database" if any of
the inlined functions are known. The tool, however, needs to return its results in
a "result-object" instead of displaying them to the user. This result object needs to
contain the inlined functions that have been found, the location of said functions,
and what function they are if that information has been found. Further description
of how the analysis process must be modified to the test framework is described
in Section 5.2.2.

Verification

The verification step is the step that takes in the results and determines if the
analysis step identified the correct inlined functions. The results could include any
combination of true positives, false positives, true negatives, and false negatives.
True positives would be inlined functions that have been detected and correctly
identified. False positives would be parts of the code that are identified as an
inlined function without being one. False negatives are inlined functions that are
not identified. True negatives are regular code that the analysis correctly detects
as not inlined.

There are different ways to classify false positives and false negatives since
detecting and identifying inlined code are two different processes. It would be
possible to be more liberal and not classify a case where the analysis tool cor-
rectly detects a piece of code as duplicate but fails to identify it as inlined as a
false negative. This thesis’ main focus is on inlined function identification and not
duplicate code detection, and the verification process should reflect this. There-
fore, more stringent verification is used.

1A ELF file on Linux. However, this thesis focuses on Windows, and PE files are used.

52 J. Hofgaard: CFG analysis for inlined function detection and identification

The verification step needs a way to check if the results are correct. The veri-
fication process does not know if the results are correct and needs to compare the
results with a set of verification data. The verification data needs to be generated
with the test data. The implementation of the verification component is described
further in Section 5.2.1.

5.2 Test framework modules

This section explains the three main components shown in Figure 5.1, the com-
piler and linker, the analysis module, and the verification process. The three com-
ponents are described oppositely compared to how they are used, Verification first
and The compiler and linker last, since how the first steps are done depends on the
last step.

5.2.1 Verification module

The verification step in the model needs to take in the results from the analysis
tool and determine if the hits are correct. Two metrics need to be tracked: the
number of hits and the authenticity of those hits. To be able to track these met-
rics, information containing which functions exist in the program, where they are
located, and if they are inlined need to be gathered. This information could be
gathered from the source code or the compiler output.

Source code

The source code contains information about which functions are called from
where, the number of times a function is called, and keywords like __inline.
Extracting keywords like __inline or __forceinline could, at first glance, be
helpful in identifying if a function has been inlined. However, as discussed in Sec-
tion 2.2.2, these keywords are more of suggestions or guidance to the compiler
and are not necessarily followed. The compiler only uses the keywords to add in-
centives to inline a function. Tracking these keywords in the source code does not
provide information accurate enough for the verification process.

Tracking function calls from the source code is also challenging. The compiler
does not convert the source code directly into machine code. The compiler is able
to modify and optimize a program as part of the compilation process. A part of
the optimization process is removing dead code as discussed in Section 2.5. When
the compiler detects dead code, it could be removed as an optimization step. If
source code were used to create verification data, dead code removal done by the
compiler would make the verification data incorrect.

The compiler does multiple sets of optimization runs, and if LTCG is enabled,
the linker could do optimization as well. This further creates differences between
the source code and the generated machine code.

Chapter 5: Verification and testing 53

Object files

One of the final steps during the compilation process is the generation of object
files. Object files contain machine code, like the final program, but the machine
code is not linked together and is instead spread across multiple files. Therefore,
these object files could be used to detect if a function has been inlined. Since object
files are created in one of the final code generation steps, they do not significantly
differ from the final program. One difference between object files and the final
program is that object files contain symbols. The name of a function is one type
of symbol.

The linker compiles and produces its own object files if LTCG is enabled. In
the Microsoft C/C++ compiler toolchain, these files have the .iobj file-extension
instead of the .obj file-extension. Object files created during the linker stage do
not differ significantly in structure or function from "normal" object files. LTCG
does, therefore, not significantly affect how object files are used.

By combining object files and source code, it would be possible to identify
which functions were inlined. If the source code of a program contains two func-
tions, A and B, and function B is called from function A, the object files could be
analyzed to identify if function B was inlined. If the object files do not reference
function B, it would indicate that function B was inlined or removed by one of the
optimization steps. To decide if it was inlined or removed because of optimization,
the same program could be recompiled with function inlining disabled2. If the ob-
ject files now contain a reference to function B, the function was inlined. Since
the final program lacks symbols, identifying which functions were inlined would
be difficult. This is not a problem with object files. Consequently, object files could
be used to create a list containing which functions were inlined, approximately
where they are, and how many instances of each inlined function exist. This list
can be compared with the result from the analysis step to verify if the analysis was
correct.

5.2.2 Analysis module

The analysis module needs to integrate the analysis tool into the test system. The
tool implementing the method described in Section 4.1 would need to automat-
ically analyze the program and output the results in a format understood by the
verification process. As described above, the verification process needs to know
which functions were identified and where they were detected. The analysis tool
first detects potential inlined functions and the address of that inlined function.
The detection is based on duplicate code detection. The number of instances of
each detected inlined function is the same as the number of duplicate instances
of that code.

The verification process would not be able to assert with certainty which ad-
dress an inlined function is located at. Object files are generated before the linking

2The ’/Ob0’ compiler flag in Microsoft C/C++ compilers disable function inline expansion [40]

54 J. Hofgaard: CFG analysis for inlined function detection and identification

step, where addresses are assigned. However, the object files do contain inform-
ation about which function an inlined function is inlined into. Tools like IDA Pro
are able to take an address and identify which function that address is contained
in. The analysis tool can use IDA’s interface to convert the address of an inlined
function into a function reference.

The analysis tool must output the following for each inlined function: its loc-
ation (which function it is inlined into), the group it is part of, and which known
function is associated with that group. The analysis process would be able to verify
whether this information is correct based on information from the object files.

Compiler metadata

Information about the compiler would be needed to ensure that the correct version
of a known function is chosen when trying to identify an unknown function. As
described in Section 2.2.4, compiler detection is possible. Reverse engineering
tools can identify several different compilers and new techniques and methods
for compiler identification have been presented in research papers [94]. Some
compilers also add compiler information, making compiler detection and rough
identification easy, an example is the RICH header, described Section 2.2.4.

Compiler identification is not done as part of the test framework or analysis
tool. This is done to limit the scope of the testing and the tools presented in this
thesis. Instead, the analysis tool is given the correct information about the com-
piler. Compiler detection is separate from the scope of this thesis. Still, it is neces-
sary to discuss and address this problem in order to assess the real-world viability
of the methods presented in this thesis. This also ensures that any errors in the
analysis process and library detection are due to analysis errors, not compiler de-
tection and identification errors.

Known functions dataset

The analysis tool requires a dataset containing signatures for known functions
that can be used to identify unknown inlined functions. The dataset must include
the name of a known function, the compiler and compiler flags used to create that
instance of the known function, and a CFG of its basic blocks. The analysis tool
would be able to select which entries in the dataset, based on the compiler and
compiler flags, an unknown function is compared to.

A part of the analysis tool would need to generate the dataset before the actual
analysis is done. The ability to create a CFG based on basic blocks is part of the
analysis tool, and it would be preferred to continue using this tool instead of
developing a completely separate one. A program or library containing the known
functions would need to be passed to the analysis tool. The analysis tool would
iterate over all known functions in the program, create a CFG of the functions,
and extract the names of the functions.

Chapter 5: Verification and testing 55

5.2.3 Test code generation

As described in the previous sections, Sections 5.2.1 and 5.2.2, both the verifica-
tion and the analysis steps depend on the code generation step. The verification
needs both object files with and without inlining. The analysis step needs a com-
piled program with inlining. The test would optimally be done using programs
compiled by several different compilers. A selection of compilers was chosen to
limit the amount of testing needed and the amount of test data required to be
generated. The compilers are selected based on which are most commonly used in
the real world. GCC is the most common cross-platform C/C++ compilers, while
the Microsoft C/C++ compilers are commonly used when a program is strictly
developed for a Windows platform [95]. The Microsoft C/C++ code generation
tools include msbuild and cl. Msbuild is the default tool used to build Visual Studio
projects, while cl is a compiler used in command line building.

To create a robust testing system, the test framework must analyze and verify
multiple pieces of test code. Both differences in the type of program that is ana-
lyzed and how the same program is generated could create nuances that affect the
analysis process. Generating the test program from source code is most efficient
for testing different programs and different versions or instances of a program. By
compiling the test data, it is possible to achieve greater control over what is being
tested. It is also easier to generate multiple test samples from the same source
code by varying compiler settings and compiling the same program with different
compilers. Verifying the analysis results is also easier if the test samples are com-
piled from known source code. There are, however, some disadvantages to com-
piling the test samples as part of the testing process. Setting up an environment to
compile different samples with the necessary dependencies takes time. This pro-
cess will also need to be repeated for every sample and compiler with which the
sample will be compiled. Another disadvantage is the compilation environment;
if already compiled samples were used, it might be more representative of the
compiler environment of many distributed programs.

Open-source programs are better suited for the testing process compared to
closed-source programs. The main reasons for this are availability and reprodu-
cibility. The source code for closed-source programs is unavailable to people out-
side the distributors. Another reason for using open-source is coding standards
and quality. Test programs that follow established best-practice coding styles are
selected to get the most accurate representation of real-life programs. Large open-
source projects have many contributors and are more likely to follow best-practice
coding styles. If this is not the case and a single style is not enforced, the different
styles of all the contributors will make the code difficult to work with. A closed-
source project does not necessarily adhere to the same coding practices, and be-
cause the source code is inaccessible, it is impossible to check the code quality.

The test code generation step would also need to generate programs for the
known function dataset used by the analysis process. This dataset must contain
known functions inlined in the test program. It would need to be compiled with

56 J. Hofgaard: CFG analysis for inlined function detection and identification

the same compiler and compiler settings as the inlined functions. As previously
described, this will ensure that any correct or false results are because of the ana-
lysis process. Separate tests would need to be done to assess the analysis process’s
ability to differentiate between known functions from different compilers. The
known functions can be generated by compiling a library where the known func-
tions are exported or by compiling a program with inlining disabled. This would
allow the analysis tool to analyze and extract the CFG of functions, which could be
used to identify unknown inlined functions. Whether using a compiled library or
a non-inlined version of a program is most efficient depends on the known func-
tions and if a library containing the functions can be compiled as a standalone
version. These files must be compiled with symbols to make each known function
identifiable.

Chapter 6

Results

This chapter describes the tests on the detection and identification of inlined func-
tions. First, the tools used and their versions are described in Section 6.1. Then,
tests related to inlined function detection and the associated results are explained.
Finally, the identification of inlined functions is tested. The tests are listed below:

1. Inlined function detection

a. Test 1: Detection of inlined string comparison
b. Test 2: Detection of inlined function using compiler keywords

2. Inlined function identification

a. Test 3: Identification of keyword-inlined function
b. Test 4: Identification of string comparison function

The first two tests are detecting inlined functions and are described in Sec-
tions 6.2.1 and 6.2.2. They are conducted to compare the method’s effectiveness
for inlined function detection compared to GraphSlick. This is done with an in-
lined function from a library and an inlined function from the same source code.

The last tests, Sections 6.3.1 and 6.3.2, are for inlined function identification.
A signature is created of the functions from the inlined function detection tests,
and the inlined functions are identified based on the signature.

In addition, the computational performance of inlined function detection was
measured. This is described in Section 6.2.3. It was tested to validate if the method
could be applicable as a supplement in a reverse engineering workflow.

6.1 Test setup

The tests were conducted on a Windows operating system using a set of tools.
These tools, which are briefly described below, were used in their respective ver-
sions as shown in Table 6.1. All programs were compiled to intel-x64 architecture
unless otherwise specified.

57

58 J. Hofgaard: CFG analysis for inlined function detection and identification

Windows is the most common operating system used worldwide, as discussed
in Section 2.3. Therefore, Windows was used during the testing process for this
thesis. The choice of OS does most likely not affect the results much since it is a
program running in user space that is compiled and analyzed and not a kernel
program. However, some differences might occur in the runtime and low-level
function implementation. These differences are further discussed in Section 7.4.

Table 6.1: Versions of tools and Operating System version used during the testing
process

Operating System information

OS Name: Microsoft Windows 10 Home x64
OS Version: 10.0.19045 N/A Build 19045

Tools and programs

cl Verison: Microsoft (R) CC++ Optimizing Compiler Version 19.29.30152
GCC Version: g++ (MinGW.org GCC Build-2) 9.2.0

Msbuild:

Microsoft Visual Studio Community 2019
Version 16.11.31
VisualStudio.16.Release/16.11.31+34114.132
Microsoft .NET Framework
Version 4.8.09037

IDAPro Version: Version 8.3.230608 Windows x64 (64-bit address size)

The compilers were chosen based on their commonality. Both cl (Microsoft (R)
C/C++ Optimizing Compiler Version) and msbuild are build programs related to
Microsoft Visual Studio, and GCC is a common compiler used both on Windows
and Linux. Appendices B and C contain the code used in the tests and the result
details. The main test parameters and results are included in this chapter.

6.2 Inlined function detection

Tests related to inlined function detection are described in this section. First, inlin-
ing is done because of compiler flags, and next, due to compiler keywords. Lastly,
the performance or time taken by the analysis process is described.

6.2.1 Test 1: Detection of inlined string comparison

The first test, which served to evaluate the detection of an inlined function in a
standard library using different compilers, was conducted by compiling the code in
Appendix B.1 with the compilers cl, msbuild, and GCC. The compilation was done
on Windows as described in Section 6.1. This code included one function with
three instances of the C++ function used for string comparison in the standard
string library. This is a function part of the standard string library in C++ called

Chapter 6: Results 59

’std::string::compare’ [96] . The compilers had optimization turned on and focused
on speed. The compiler options can be seen in Appendix B.1.

The compilers produced the following code shown in Figure 6.1. As seen in
the figure, the graph view of the same program compiled with different compilers
drastically changes the CFG of the program. The "free-flowing blocks" at the top
of Figure 6.1a and Figure 6.1c are related to C++ cleanup and atexit [97] , and
not directly part of the analyzed function. The structure and size of the programs
are quite dissimilar.

(a) Compiled by cl (b) Compiled by msbuild (c) Compiled by GCC

Figure 6.1: Graph view of the different compiled versions of the code in Ap-
pendix B.1. The figure shows how different compilers create quite different struc-
tures even though the same source code is compiled. The amount of blocks in each
compilation is also distinct; the version compiled by cl Figure 6.1a has a lot more
blocks than the two other versions.

The programs were analyzed using the original GraphSlick analysis method
and the method proposed in this thesis. This method was described in Sec-
tion 4.2.1. The analysis done using the original method is referred to as Original
GraphSlick, and the new method, described in Section 4.2.1, is referred to as
Modified GraphSlick. The analysis process was timed using the Python module

60 J. Hofgaard: CFG analysis for inlined function detection and identification

timeit[98]. The time analysis was done using the average of 50 runs. Each run
redid the setup and generation of the CFG. This ensured that each run was in-
dependent and that previous analyses did not affect the reanalysis of the current
run. By redoing the CFG generation each run, some extra time was added. This is
not directly part of the analysis, but creating the CFG is a necessity and, therefore,
not subtracted from the time.

Table 6.2 shows the execution time for the different analysis runs. Each ana-
lysis was done without other analysis jobs running and no other resource-intensive
programs running on the system. All timed analyses were done on the same sys-
tem. The analysis time was measured over 50 runs. The average analysis time and
the standard deviation are given in the table.

Table 6.2: Average execution time for the analysis process of the program Ap-
pendix B.1 compiled with cl, msbuild, and GCC. The analysis time was averaged
over 50 runs. The average time and standard deviation are given in the table. The
table shows that the time used when the cl compiled version was analyzed was
much greater than the rest of the results.

Compiler Original GraphSlick Modified GraphSlick
cl 130 ms ± 1.94 ms 1.79 s ± 68.9 ms
msbuild 19.4 ms ± 624 µs 41.8 ms ± 1.94 ms
GCC 9.06 ms ± 342 µs 28.2 ms ± 1.01 ms

Cl

An unmodified version of GraphSlick was first used to do an initial analysis. The
function test_stringcmp in Code listing B.4 was analyzed, and the following
GraphSlick parameters were used: minFunctionSizeInBlocks=2 and hashtype=1.
GraphSlick detected four distinct node groups. Using manual analysis, it was ob-
served that three of them were part of the string-compare function, and one group
was unrelated. The modified version of GraphSlick was used to do a subsequent
analysis. This analysis resulted in two distinct node groups being identified. Fig-
ure 6.2 shows a graphical representation of the results by both the modified and
unmodified GraphSlick versions. The full results are in Appendix C.1 in Table C.1.

Figure 6.2 illustrates the analysis of the function with the three instances of the
inlined string-compare function. Notably, the analysis by the original GraphSlick
resulted in the identification of only the green and blue colored groups in the first
instance (Figure 6.2a). However, a brown group was also identified alongside the
green and blue groups in the second and third instances. In contrast, the modified
GraphSlick identified all three string-compare functions in their entirety in all
three instances (Figure 6.2b).

Chapter 6: Results 61

(a) Analysis by original GraphSlick (b) Analysis by modified GraphSlick

Figure 6.2: Comparison of analysis done on cl compiled program using original
and modified GraphSlick. The original GraphSlick was not able to identify the
complete inlined function and instead identified three (green, brown, and blue)
parts of the larger inlined function, shown in Figure 6.2a. As seen in Figure 6.2b,
the modified GrapSlick was able to identify the first block of the inlined function
and use this to create a coherent instance.

62 J. Hofgaard: CFG analysis for inlined function detection and identification

Msbuild

The same steps and parameters used in analyzing the cl compiled executable were
replicated in the analysis of the msbuild executable. Both the original and mod-
ified versions of GraphSlick were used to analyze the program, generating the
results shown in Table C.2, and visualized in Figure 6.3.

(a) Analysis by original GraphSlick (b) Analysis by modified GraphSlick

Figure 6.3: Comparison of analysis done on msbuild compiled program using
original and modified GraphSlick. As seen in Figures 6.3a and 6.3b, there was
no large difference between the two GraphSlick versions during the analysis. The
color difference is only a visual difference.

The analysis done on the msbuild compiled program showed more similar-
ities than the cl compiled one. The original GraphSlick identified three distinct
block groups in the executable, and the modified version of GraphSlick found
two groups. A manual analysis of the program was also done. This was done by
comparing the source code, the compiled program using IDA’s disassembler and
decompiler, and the GraphSlick analysis.

The manual analysis of the program aimed to validate the results of the ana-
lysis done by GraphSlick. It revealed that none of the three groups identified by the
first analysis were related to the string compare function. Instead, all the blocks
identified were either related to cleanup, exception handling, or just small sections
of blocks that coincidentally were similar.

Chapter 6: Results 63

Further manual analysis showed that the string-compare function was inlined
differently than in the cl-compiled version. As shown in Code listing 6.1, string
compare was inlined, but not in the same way as in the cl version. The code in the
listing was taken from the basic block at address 0x140001478. The basic block
at this address contained the inlined string compare function. The string compare
function was used, and as shown, there is no reference to a compare-function
or an unknown function. This indicates that the function was inlined. However,
the actual comparison in the string compare function was made using a memcmp-
function. This function was not inlined, and a call to the memcmp may be seen at
the fourth last line in Code listing 6.1. No memcmp function was found in the cl
compiled version. The cl version did not call any functions in the inlined blocks,
the blocks detected as duplicates, indicating that the actual comparison was also
inlined.

Code listing 6.1: Exerpt from msbuild-compiled string-compare

loc_140001478:
4C 8B 75 07 mov r14, [rbp+57h+Src]
33 C0 xor eax, eax
48 89 45 E7 mov [rbp+57h+Buf1], rax
48 89 45 F7 mov [rbp+57h+var_60], rax
48 C7 45 FF 0F mov [rbp+57h+var_58], 0Fh
00 00 00
44 8D 40 0D lea r8d, [rax+0Dh] ; Size
48 8D 15 FF 1E lea rdx, aTestString ; "Test & string"
00 00
48 8D 4D E7 lea rcx, [rbp+57h+Buf1] ; void *
E8 0E 02 00 00 call sub_1400016B0
48 8D 55 E7 lea rdx, [rbp+57h+Buf1]
4C 8B 6D E7 mov r13, [rbp+57h+Buf1]
48 83 7D FF 10 cmp [rbp+57h+var_58], 10h
49 0F 43 D5 cmovnb rdx, r13 ; Buf2
48 8D 4D C7 lea rcx, [rbp+57h+Buf2]
48 8B 5D C7 mov rbx, [rbp+57h+Buf2]
4C 8B 65 DF mov r12, [rbp+57h+var_78]
49 83 FC 10 cmp r12, 10h
48 0F 43 CB cmovnb rcx, rbx ; Buf1
4C 8B 7D D7 mov r15, [rbp+57h+var_80]
4D 8B C7 mov r8, r15
4C 39 7D F7 cmp [rbp+57h+var_60], r15
4C 0F 42 45 F7 cmovb r8, [rbp+57h+var_60] ; Size
E8 E7 16 00 00 call memcmp
8B F8 mov edi, eax
85 C0 test eax, eax
75 5C jnz short loc_14000153E

GCC

The same steps were taken for the GCC compiled program. The full results can
be found in the Table C.3, and they are visualized in Figure 6.4. In the analysis of
the GCC compiled program, there were no differences in the analysis done by the
modified and original versions of GraphSlick. Both versions identified two distinct
groups: one group of three instances of two blocks (shown as blue in Figure 6.4)

64 J. Hofgaard: CFG analysis for inlined function detection and identification

and a second group of two instances of another two blocks. The second group is
not shown in Figure 6.4.

The manual analysis of the program yielded significant findings. Firstly, none
of the blocks in the two groups identified were directly related to the string com-
pare functions. Instead, both groups contained smaller code sections associated
with cleanup functionality. Secondly, the GCC-compiled program handled string
comparison in a manner similar to the msbuild compiled version. No reference to
a ’string compare’-function was found in the function. Instead, a call to the func-
tion memcmp was used, and memcmp performed the actual comparison, mirroring
the msbuild compiled version.

(a) Analysis by original GraphSlick (b) Analysis by modified GraphSlick

Figure 6.4: Comparison of analysis done on GCC compiled program using ori-
ginal and modified GraphSlick. As seen when comparing the colored blocks in
Figures 6.4a and 6.4b, there was no difference between the analysis results.

6.2.2 Test 2: Detection of inlined function using compiler keywords

The second test was done using the code and process shown in Appendix B.2.
This code uses keywords in the source code to affect which functions the com-
piler inlines. These keywords are compiler suggestions and are not necessar-
ily enforced all the time, as was described in Sections 2.2.2 and 2.5.2. The
keywords accepted by one compiler are not necessarily the same as other com-
pilers. When the code in Code listing B.8 was compiled with cl and msbuild,
it was compiled without any modifications to the source code. When GCC was
used as the compiler the keywords __forceinline and __declspec(noinline)
in Code listing B.8 were substituted with __attribute__((always_inline)) and
__attribute__((noinline)). No other modifications to the code at Code list-
ing B.8 were done regardless of the compiler used.

Chapter 6: Results 65

The three instances of the compiled program were all analyzed using both the
original and modified versions of GraphSlick. The execution time of the analysis
process is shown in Table 6.3.

Table 6.3: Average execution time for the analysis process of the program Ap-
pendix B.2 compiled with cl. The analysis time was averaged over 50 loops. The
average time and standard deviation are given in the table.

Compiler Original GraphSlick Modified GraphSlick
cl 3.14 ms ± 781 µs 87.1 ms ± 2.06 µs
msbuild 2.15 ms ± 221 µs 39.9 ms ± 342 µs
GCC 1.84 ms ± 184 µs 38.9 ms ± 129 µs

Cl, msbuild & GCC

The code in Code listing B.8 was compiled with cl using the command line in Code
listing B.5. The compilation result and analysis results are shown in Figure 6.5.
The main function in this program had the CFG in Figure 6.5a. Both the original
GraphSlick and the modified method identified two instances of one block group
when analyzing the program. The modified version identified two extra blocks that
were added to their respective block groups, as shown in Table C.4. The original
analysis method is visualized in Figure 6.5b and the modified in Figure 6.5c. This
was confirmed by manually analyzing the three programs.

(a) Control flow graph of the
program

(b) Analysis done by original
GraphSlick

(c) Analysis done by modi-
fied GraphSlick

Figure 6.5: Figure shows the whole CFG of the main function of the compiled
code from Code listing B.8, and results from the two analysis methods. The
code was compiled using cl and analyzed using original and modified versions
of GraphSlick.

66 J. Hofgaard: CFG analysis for inlined function detection and identification

The same program, code from Code listing B.8, was compiled with msbuild
using the compiler options in Code listing B.6. The analysis results are in the
appendix in Table C.5. Figure 6.6 shows the CFG of the compiled program and
which blocks were identified by the two analysis methods.

(a) Control flow graph of the
program

(b) Analysis done by original
GraphSlick

(c) Analysis done by modi-
fied GraphSlick

Figure 6.6: Figure shows the whole CFG of the main function of the msbuild
compiled code from Code listing B.8, and results from the two GraphSlick analysis
methods.

The code from Code listing B.8 was finally compiled with GCC using the com-
mand in Code listing B.7. The analysis results are in Table C.6, and the whole
process is visualized in Figure 6.7.

Inlined function using compiler keyword analysis results

The three figures, Figures 6.5 to 6.7, show that the modified version could detect
the starting block of the inlined function in all three tests. In the cl compiled
version, Figure 6.5, the only difference was the addition of the starting block of the
inlined function. The two versions compiled by msbuild and GCC also identified
the starting block and additional blocks.

6.2.3 Basic block splitting performance

CFG analysis is a computationally expensive operation. Both the graph creation
and the analysis are expensive. When creating the CFG, the hash value for every
block must be calculated, and the predecessors and successors of each node must
be identified. The analysis of the CFG is also expensive as the program has to go
through each block and check if there exists a set of isomorphic graphs based on
the starting block. When a basic block is split, the analysis has to be redone.

The analysis by the modified GraphSlick version was done on multiple differ-
ent programs and functions in those programs to explore its performance. Fig-
ure 6.8 shows the result of these tests. The programs chosen for the performance

Chapter 6: Results 67

(a) Control flow graph of the program

(b) Analysis done by original GraphSlick (c) Analysis done by modified GraphSlick

Figure 6.7: Figure shows the whole CFG of the main function of the GCC com-
piled code from Code listing B.8, and results from the two GraphSlick analysis
methods.

test were the ones already analyzed in the previous tests, as well as two com-
mon programs. 7zip.dll1 and python311.dll2 were used for testing. These two
programs were not chosen because of their use of inlined functions. They were
instead chosen because they are common programs likely to be representative of
programs a reverse engineer could end up analyzing. A reverse engineer does not
know if any inlined functions exist in a program when it is initially analyzed, and
inlined function detection would be helpful to run regardless of the results.

The tests were timed only by splitting a single block pair. Each data point
results from an average of 50 runs of the analysis process. This ensures that the
data is more reliable and not as affected by random variables in a single run. As
shown in Figure 6.8, the time used on analysis scales with the number of nodes
in the graph analyzed. The exact scaling has not been determined. The tests were
done up to a CFG with 2061 nodes. Tests with larger graphs were not conducted
as the time to complete the analysis was extensive. The whole 7zip.dll contained
69612 nodes, making it unrealistic to analyze the whole program.

17zip version 19.0.0, MD5: 72491C7B87A7C2DD350B727444F13BB4
2Python version 3.11.4, MD5: 5A5DD7CAD8028097842B0AFEF45BFBCF

68 J. Hofgaard: CFG analysis for inlined function detection and identification

0 500 1,000 1,500 2,000

0

200

400

Number of nodes

Se
co

un
ds

Figure 6.8: The figure shows the time in seconds used when a program was
analyzed. The analysis was done using the modified GraphSlick version. The x-
axis is the time taken for an analysis to complete. The y-axis is the number of
nodes that were analyzed.

6.3 Function identification

To identify a specific inlined function, a signature of a non-inlined version of that
function needs to be generated. This signature is a unique identifier for the func-
tion and is crucial in the function identification process. It allows a function or
parts of a function to be matched with other programs or code parts.

6.3.1 Test 3: Identification of keyword-inlined function

The code from Code listing B.8 was compiled again with keywords changed. The
function inlined in the earlier test, described in Section 6.2.2, needed not to be
inlined3. This made it possible to generate a CFG of that function. To accomplish
this, the keyword __forceinline was changed into __declspec(noinline). The
now not inlined function, the cl compiled version of this function, can be seen in
Figure 6.9.

The hashes, GraphSlick type 1 hash, of all basic blocks were generated to com-
pare the not-inlined function with its inlined counterpart. The hashes are listed
in Table C.7. This was then compared with the hashes, listed in Table C.8, of the
main function in the inlined version of the program. Not all of the nodes in the
main function were part of the inlined function. The basic blocks with ID 0 and
2 to 7 were in one group, and blocks with ID 12 and 14 to 19 were in another
group. Since these two groups are identical, only the first group, blocks 0 and 2-7,

3Not inlined is not the same as outlined. Outlining and inlining are modifications done by the
compiler; "not inlining" is just the lack of inlining

Chapter 6: Results 69

Figure 6.9: Control flow graph of the function that was inlined in the tests done in
Section 6.2.2. Using the code from Code listing B.8, without the inline-keyword,
compiled by cl using the command shown in Code listing B.5.

is focused on. Matches were found for nodes with block IDs 2, 5, and 6 in the
inlined version of the function, as seen in Tables C.7 and C.8.

Of the seven nodes in the group, only six can realistically find a match since
the first block is a "split block" and, therefore, unlikely to have a match in the
non-inlined version. The non-inlined version has some stack initialization that the
inlined version lacks. Of the blocks that didn’t match, two blocks, blocks 1 and 3
in the non-inlined version, included return statements, and the last block, block
4, had one extra instruction, push rsi, in the non-inlined version of the function.
As rsi is a nonvolatile register, this instruction is likely added in the non-inlined
version to ensure the register’s value is preserved and reclaimed when the function
returns. The inlined version does not need to do this, as the concept of volatile
and nonvolatile registers does not exist within the context of a single function. The
concept of volatile registers is more applicable when there is a caller and callee
function.

6.3.2 Test 4: Identification of string comparison function

The function identification test was also done on the program with the inlined
string comparison function. This was done on the same source code and compiler
settings used in the test described in Section 6.2.1. The test was done to look at
the effectiveness of function identification on an inlined function from a standard
library as opposed to an inlined function manually inlined from the same source
code. This test was only done on the cl-compiled version. The program compiled
by other versions created a program where the inlined function comprised a single
block, which does not fit a structure suitable for graph analysis. The cl compiled
version created a graph with multiple blocks from the inlined function. The string
comparison function was compiled as a standalone function to make a reference
with which the inlined version could be matched. The version of the string com-
pare function used was std::string::compare(std::string). This function is
called the library function. A CFG was created from the library function using
hash-type 1.

70 J. Hofgaard: CFG analysis for inlined function detection and identification

The program was first analyzed to detect potential inlined functions. Since the
program analyzed was the same, and the analysis process is deterministic, this
yielded the same result described in Section 6.2.1. The detected inlined functions
were then matched with the library function’s CFG. The results from this process
are shown in Figure 6.10. As shown in Figure 6.10b, all blocks, except the start
block, have an equivalent block in the library function. The blocks, block ID 11 to
24, are all hash equal with a block in the library function. All the matches were
based on itype 1 hashes generated by GraphSlick. The fact that every block in the
inlined function matches the non-inlined version indicates that the entire inlined
function was not necessarily detected. Both "starting blocks" and "return blocks"
in an inlined function are likely to be affected by compiler optimizations. Since
every block, except the first, in the detected inlined function matches the library
function, the actual inlined function likely extends to some of the subsequent
blocks. This is not a fault with the identification step but relates to the detection
step. The only block not found in the library function’s CFG is the first block, block
10; this is expected as starting blocks seldom equal their non-inlined counterparts.

(a) Blocks detected as potential in-
lined code

(b) Blocks in the inlined version
matching the non-inlined version

Figure 6.10: Figure shows the comparison between the inlined string comparison
function and the non-inlined version. The blocks found in the inlined version that
are also present in the non-inlined version are colored red in Figure 6.10b.

The matching was also done from the opposite perspective: by examining
which blocks in the library function have an equal block in the inlined function.
This was done using the same method as above, but the functions were switched.
The entire library function was used as the "unknown function", and one instance
of the detected inlined function was used as the "known function". Since all in-
stances of the inlined function are equal, from a CFG analysis perspective, which
instance is used does affect the results.

Chapter 6: Results 71

Figure 6.11 shows the CFG of the compiled function and the blocks that match
the inlined version of the function. The start of the function, except the first block,
matches the start of the inlined function. This is expected as it should equal the
results in Figure 6.10. The end of the function does not match with its inlined
counterpart. As described earlier, this indicates that the entire inlined function
was not detected, and more blocks exist at the end of the inlined function that
are not detected. This is, however, not supported by the results from the detection
of the inlined function, shown in Figure 6.1. In this figure, the second and third
instances of the inlined function only have two blocks between them, and it would,
therefore, not be possible for the inlined function to be as large as its non-inlined
counterpart.

A non-inlined version of another string compare function was also tested.
This was the same C++ function but with a different argument. The function
was std::string::compare(char*). The CFG of the function is shown in Fig-
ure 6.12. This function is almost identical to the one in Figure 6.11. However,
there are some differences in its beginning. It does also not have as many blocks.
This is especially easy to see at the end of the function. As shown in Figure 6.12b,
14 blocks match with its inlined counterpart. This is an equal number as in
std::string::compare(std::string) version. The equal amount of matching
blocks would make it very difficult to decide which of the two library functions the
inlined function is identified as. By looking at the number of non-matching blocks,
the std::string::compare(char*) version has fewer nonmatching blocks, 9 to
11 in the std::string version.

72 J. Hofgaard: CFG analysis for inlined function detection and identification

(a) Graph view of the non-
inlined function

(b) Blocks from the non-
inlined function matching
the inlined version

Figure 6.11: Figure shows the graph view of the non-inlined string comparison
function with a std::string as argument. The blocks found in the inlined version
that are also present in the non-inlined version are colored red in Figure 6.11b.

Chapter 6: Results 73

(a) Graph view of the non-
inlined function

(b) Blocks from the non-
inlined function matching
the inlined version

Figure 6.12: Figure shows the graph view of the non-inlined string comparison
function with a char* as argument. The blocks found in the inlined version that
are also present in the non-inlined version are colored red in Figure 6.12b.

Chapter 7

Discussion

This chapter discusses the results from the previous chapter and their implica-
tions. It discusses inlined function detection and identification separately. It also
covers previously unforeseen problems discovered during testing, like single-block
inlining.

7.1 Validating the method

Validating the effectiveness of the tests in function inlining presents several chal-
lenges, primarily revolving around creating a comprehensive dataset that accur-
ately represents the behavior and structure of functions when inlined. In the test
shown in Section 6.3.2 from the perspective of the inlined function, it matches
quite well with the non-inlined version. The non-inlined version does, however,
have a lot of extra blocks that do not appear in the inlined version of the function.
These blocks relate to stack cleanup, register preservation, exception handling,
C++ object deallocation, and returning the correct value. This is likely optimized
away in the inlined version; exception handling and memory cleanup are handled
as a whole for the entire function and not separately by each instance of the in-
lined function.

Validating if a function match is identified is difficult since the results differ
based on the perspective. An inlined version of a function is optimized compared
to its non-inlined counterpart. Only half the blocks in the non-inlined functions
were a match. Another problem is in cases where there are different versions of
the same function as described in Section 4.3.3. In those cases, it would likely not
be possible to differentiate the functions using the CFG analysis method tested in
this thesis. If differentiating between them is important depend on the situation,
and there are cases where there would be little to be gained in differentiation
between them. Regardless of the potential lack of gain, this is a weakness of the
method and should, therefore, be highlighted or further explored to improve it.

Another problem with verification is how compiler optimization, dead code
removal, runtime setup, and library code lead to the detection of false negatives.
Identifying the number of false negatives poses a challenge. The use of object files

75

76 J. Hofgaard: CFG analysis for inlined function detection and identification

to identify if a function has been removed by optimizations could assist in this.
However, it has not been extensively tested in an automated setting.

7.2 Known functions signature database

When compiling source code into a program, the structure of the resulting pro-
gram is highly dependent on the compiler and compiler options used. The CFGs of
the programs shown in Figure 6.1 are compiled from the same source code. Some
overall structures are similar in the CFGs, but several differences make it challen-
ging to identify that the graphs are from the same source code. Some differences
could be attributed to different compilers using different implementations of the
standard library to compile a program. This is not the only difference since signi-
ficant differences exist between the two programs compiled with cl and msbuild,
both of which use the Microsoft Visual Studio toolchain. Different compilation
toolchain uses different implementations for c standard libraries; gcc uses glibc.
In contrast, the Microsoft compilers use the C runtime, also called CRT, and clang
uses libc. Different standard libraries differ in their implementation of low-level
functionality, like how they handle C++ objects. This could partially explain the
significant difference in CFGs by different compilers. Differences in the programs
compiled in Figures 6.5 to 6.7 also show that the differences are not only connec-
ted to the implementation standard functions. In Test 2 described in Section 6.2.2,
the inlined function did not come from a standard library. Since the inlined func-
tion was from the compiled program source code, the implementation of the in-
lined function was not different across compilers. This indicates that a program’s
CFG depends highly on the compiler and compiler flags used.

The method proposed in this thesis for function identification depends on hav-
ing a dataset of the known CFGs of known non-inlined versions of functions. To
match a potentially inlined function with a known function in the dataset, the
dataset must encompass various versions of the known function compiled with
different compilers and compiler flags. This diversity in the dataset is crucial for
the method’s effectiveness in real-world scenarios. A dataset containing diverse
compiler keyword and flag combinations enhances the robustness and univer-
sal capabilities of the function identification method. Having multiple versions
of known functions compiled with different compilers, compiler keywords, and
flags allows for a broader coverage of possible code transformations and optimiz-
ations. It ensures that the method is not overspecialized to a particular compiler
or optimization setting, making it more applicable to real-world software systems
developed where various tools and environments are used. However, achieving
this diversity in the dataset could be challenging and require significant resources
and time.

The reliance on compiling a known function with different compilers and the
lack of robustness across compilers can be seen as a weakness of the method. This
problem could create situations where a match is not found because the data-
set isn’t extensive enough. By only using mnemonics when matching and detect-

Chapter 7: Discussion 77

ing functions, there is some tolerance to compiler differences, and the method
is somewhat resistant to situations where compiler optimizations make distinct
instances of a function differ across a program. The tolerance and resistance are,
however, not great, and the method would still need many different signatures
of the same function to be reliably able to identify it. This is not a problem and
weakness unique to this method. Other industry-standard methods and tools for
detecting and identifying something, like IDA Pro’s FLIRT signatures and YARA
rules, are equally affected by compiler differences. Both FLIRT and YARA use bin-
ary matching to identify something; because of this, they are affected by the dif-
ferences between compilers. The binary matching also makes them somewhat less
robust compared to the method presented in this thesis. By using mnemonics in-
stead of opcodes, an operation like mov rax, [rsp] is not differentiated from
mov rax, rbx. Not differentiating between these operations is not necessarily a
good or bad thing. In some cases, they might be equivalent, and the difference is
created by the compiler, whilst in other cases, not differentiating between them is
an error. FLIRT and YARA work on a binary level and achieve some robustness by
allowing some series of bytes to be anything. This is achieved by using wildcards.
Support for wildcards allows for some flexibility in the signatures and rules, but
they are generally still more strict than using mnemonics.

Creating an extensive dataset containing the necessary number of known func-
tions would be difficult in the short term. Initially, a lot of data would be needed to
get started. To make the method viable as quickly as possible, it would be sensible
to do research into the most common compilers and compiler flags used. Find-
ing the most common libraries used in projects where the functions will likely be
inlined and optimized will also be sensible.

In the long term, the large amount of data needed might pose a problem. A big
dataset would significantly increase the time needed for function identification.
A larger dataset would include more functions that are potential matches and
several versions of the same function, all of which would have to be tested. This
could lead to scalability issues, as the time and resources required for function
identification would increase with the size of the dataset. To manage these issues,
it would be sensible to limit the number of known functions needed to be tested
against. One way to do this would be to use compiler identification. Labeling the
known functions in the dataset with the compiler and compiler options used, when
creating that known function, would make it possible to only match with functions
from a specific compiler. If compiler identification were done on the program being
analyzed, this would limit the need to match against known functions from other
compilers. Depending on the precision of the compiler identification, it might be
possible to limit the matching process to only lookup known functions with specific
compiler flags. The accuracy and robustness of compiler identification tools must
be validated before this can be implemented.

Identifying the correct match with certainty is difficult, as discussed in Sec-
tion 7.1. As seen in the results from Figure 6.9, the same function compiled on
the exact same system differs between an inlined version and a non-inlined ver-

78 J. Hofgaard: CFG analysis for inlined function detection and identification

sion. This makes it challenging to identify whether a specific known function best
matches an unknown inlined function. Without the ability to be sure if the correct
match is found, it will be unfeasible to optimize the process by stopping the iden-
tification process halfway through the dataset. The identification process must go
through the entire dataset to find the best-matching known function.

7.3 Detecting functions

The current tests were done by detecting duplicate code in a single function. The
program analyzed included multiple instances of a function, function B, being
inlined in the same function, function A. The analysis could be done across various
functions. Nothing in the analysis method depends on the CFG being from a single
function or that the CFG needs to be comprised of a single connected graph. The
original version of GraphSlick could not support this because it used block IDs
as a key when referencing blocks in the CFG. Block IDs overlap across different
functions. If GraphSlick used a block’s starting address or the address of the start of
the function added to the block IDs, it would be able to analyze multiple functions
and detect duplicate code across them. Using a substitute for a key in the CFG,
instead of block IDs, that is unique across the entire program would not affect
IDA. Since GraphSlick uses its own CFG, the rest of IDA is unaffected by changes
in the structure of the CFG.

Analyzing the entire program would be helpful and necessary in real-world use
cases. The code detection depends on the assumption that more than one instance
of the function being inlined exists. If this assumption is correct has yet to be
evaluated, and this thesis has not done tests to validate it. The original GraphSlick
version relied on the duplicate code being in a single function to detect it. In
reality, functions can be reused across different parts of the program, leading to
instances of an inlined function scattered throughout various functions, modules,
or multiple files. Therefore, a more comprehensive approach that considers the
entire program rather than individual functions in isolation is likely to yield more
accurate results.

7.3.1 Non-duplicated inlined code

A weakness of the method used in this thesis for inlined function detection is
that it doesn’t actually detect inlined functions. Instead, it detects duplicate code
with a structure that is potentially from an inlined function. This relies on the
assumption that the code is inlined in multiple locations. Like all assumptions, it
might not be correct. As previously described, this thesis has yet to find a method
to differentiate between machine code from an inlined function and other sources.
Detecting a single instance of an inlined function is impossible with the technique
described in this thesis.

Chapter 7: Discussion 79

7.3.2 Detecting single block inlined functions

Test 1, as described in Section 6.2.1, showed that the method is ineffective at
identifying some inlined functions. The analysis could not detect the inlined func-
tion when the program was compiled using msbuild or gcc. As described earlier,
this can be attributed to the analysis process not detecting inlined functions but
duplicate series of basic blocks. When an inlined function was inlined in a single
basic block, the CFG analysis did not work since there wasn’t a graph with mul-
tiple nodes to analyze. The work done in this thesis has not identified a solution to
match single-block inlined functions. Possible solutions to this problem have been
considered, but they have been found ineffective. One solution that has been con-
sidered is to set minFunctionSizeInBlocks=1 the analysis. This would enable the
analysis to match singular equal blocks. The problem with this is that it would
create a lot of false positives, matching blocks that are not related to an inlined
function. It would also not necessarily be able to match single-block inlined func-
tions since the single block would be the first block of that inlined function. As pre-
viously described, when inlining a function, the first block of the inlined function
contains code from both the function being inlined into and the inlined function.
Block splitting would, therefore, also be necessary to match single-block inlined
functions. This makes detecting single-block inlined functions unfeasible. Without
any initial analysis indicating the potential block-splitting candidates, the analysis
process would have to try to split and match any two blocks. This would gener-
ate more false positives and be prohibitively computationally expensive. Other
methods are better suited to detect code similarities between single blocks. CFG
analysis is more suitable when multiple nodes are compared.

7.3.3 Performance

The performance of the analysis could be a limiting factor. The time taken by the
analysis process depends on the number of blocks contained in the CFG analyzed.
The tests show that the analysis time does not scale linearly with the number of
blocks. The exact performance parameters of the analysis process are not fully
explored, but based on the test results, it is probably somewhat exponential.

A relatively simple function, like the function analyzed in Section 6.2.1 com-
piled by cl, contained 98 blocks. The average analysis time for this function was
1.79 seconds using the modified GraphSlick. Analyzing a CFG with 2037 nodes
took 8 minutes and 30 seconds. An analysis across all functions in a more extens-
ive program would be unfeasible in a reasonable time as programs could have
tens of thousands of blocks.

An analysis of a CFG of an entire program would seldom be needed. Other
faster methods for function identification could be used in conjunction with the
CFG-based method. If one of the quicker methods, like IDA’s FLIRT-signatures,
identifies a function, adding the CFG of this function to the CFG being analyzed
would not be needed. This assumes that other analysis methods correctly identify
functions. Given this assumption, it implies that this function identified by another

80 J. Hofgaard: CFG analysis for inlined function detection and identification

technique is a known function. Therefore, further code analysis with the purpose
of function identification is redundant. Functions relating to program start are also
candidates to be excluded from a CFG analysis of the programs. Functions related
to the initialization process, such as the initialization of the c-runtime library, cre-
ate a lot of blocks that relate to standard libraries. If blocks from these functions
are excluded from the CFG, a higher proportion of the CFG would contain blocks
relevant to the analysis of the program’s functionality.

7.4 Test environment

The tests were only conducted on a limited number of test environments. Only
Windows was used as an OS, and the number of compilers was limited. As seen
in the function identification tests, quite small differences in functions, like the
arguments used to call it, could create large differences in the CFG of the output
function. The same was seen when the same program was compiled with differ-
ing compilers. This indicates that further testing with another OS, different CPU
architecture, and other compilers would be beneficial.

The tests did, on the other hand, reveal that the method did not function
differently when tested with a differing set of compilers. In all cases where the
method was expected to perform it did so to a certain degree. In the situations
where it didn’t perform, like with the single-block inlined functions, this was ex-
pected as CFG analysis requires multiple blocks in a CFG. The reason for its failure
was, therefore, not related to any compiler or environment setting. Instead, it was
related to a specific implementation of a function and how it was inlined in the
standard library used by the compiler.

Chapter 8

Conclusion

This project has demonstrated that Control Flow Graph (CFG) analysis is a viable
technique for detecting and identifying inlined functions. CFG analysis has proven
effective in discerning the structures and characteristics of some types of inlined
functions. The results suggest that CFG analysis can be integrated into existing
reverse engineering frameworks to enhance their capabilities in handling inlined
functions. The project has built and expanded upon the work done in GraphSlick.

GraphSlick previously showed that CFG analysis can be used to detect duplic-
ate code. This thesis’s advancement to the GraphSlick project showed that duplic-
ate code detection can also be used to detect inlined functions. This was done by
splitting basic blocks. A single basic block can include code from different parts
of a function. By dividing the top from the bottom of a basic block, the bottom
creates a possible starting point from which a function-like graph can be derived.
The method proposed in this thesis can only detect inlined functions that contain
more than one basic block. In general, CFG analysis depends on a graph contain-
ing multiple blocks that can be analyzed to be effective. This limitation is not only
applicable to the implementation chosen by this thesis.

Inlined function identification was also explored. Analysis showed that an ex-
act match between a known function and an inlined instance of that function is
not feasible. Even without an exact match, it was possible to identify an inlined
function with its non-inlined counterpart. This was done by creating a CFG of the
inlined function and comparing it with the CFG of known functions that poten-
tially match. Problems relating to the "entry point" and return blocks of a function
when inlined were discussed, and possible solutions were explored.

A framework for testing and validating function detection and identification
techniques was visualized in Figure 5.1. It described and explored the necessary
components in a testing system designed to verify the analysis of inlined functions.
The main components of a testing framework are the test data generation and
the verification. Generating good test data and verifying results is challenging
because of the complexities in the compiler and the linker. These challenges can
be overcome by using intermediary steps in the compilation process to generate
verification data.

81

82 J. Hofgaard: CFG analysis for inlined function detection and identification

To summarize, this thesis expanded on the current reverse engineering know-
ledge related to function identification. It focused on detecting and identifying
inlined functions and showed that CFG analysis is a viable technique for this task,
which should be explored further.

8.1 Future Work

While showcasing the versatility of CFG analysis in tackling complex problems in
reverse engineering, the thesis also underscores the need for further research. It
has laid the groundwork and shown promising results at an initial stage, but more
work is still needed before it can be used and deployed as more than a proof of
concept. This presents an opportunity for other researchers to contribute to the
advancement of techniques related to inlined code detection and identification.

Any method of function identification depends on a dataset of known func-
tions to which unknown functions can be matched. The dataset needs to be ex-
tensive to identify unknown functions, as the origin of the unknown function is
not necessarily known. As the thesis has focused on creating a proof of concept, it
has yet to examine how a dataset of library functions could be made at scale. The
dataset’s storage, distribution, and updating must also be explored. Similar data-
sets, like IDA’s FLIRT signatures, could be used as an inspiration in this process.

The technique was only tested on a single operating system, Windows, with a
limited number of compilers and programs. More extensive tests would need to
be done to establish greater faith in the technique. Testing with a larger sample
size of compilers, compiler flags, and programs would also help better understand
its strengths and limitations. The thesis has described the design and implement-
ation of a testing framework for more extensive tests. Tests comparing different
techniques, like the one using execution flow graphs proposed by Qiu et al. [83],
should also be explored.

Further research is needed to investigate the performance of CFG analysis, par-
ticularly in the context of large graphs. While the tests conducted in this project
validate the effectiveness of CFG analysis for inlined function detection, they also
reveal significant scalability issues. The current method’s performance degrades
as graph size increases, leading to longer processing times and higher computa-
tional resource consumption. Future work should focus on optimizing the CFG
analysis algorithm to handle larger graphs more efficiently. Potential areas for
improvement include algorithmic enhancements, parallel processing techniques,
and graph reduction techniques. Addressing these performance bottlenecks is cru-
cial for making CFG analysis a practical tool for real-world applications involving
extensive codebases.

Bibliography

[1] S. Mansfield-Devine, ‘The ashley madison affair,’ Network Security,
vol. 2015, no. 9, pp. 8–16, 2015.

[2] A. Greenberg, ‘The untold story of notpetya, the most devastating cyberat-
tack in history,’ Wired, August, vol. 22, 2018.

[3] O. E. Dictionary, reverse-engineer, v (Oxford English Dictionary). Oxford
University Press, Jul. 2023.

[4] D. A. Solomon, M. E. Russinovich and A. Ionescu, Windows internals. Mi-
crosoft Press, 2009.

[5] A. Alfred V, L. Monica S, S. Ravi, U. Jeffrey D et al., Compilers-principles,
techniques, and tools. pearson Education, 2007.

[6] The FreeBSD Project, Clang tools documentation, https://man.freebsd.
org/cgi/man.cgi?query=clang-cpp&sektion=1&manpath=FreeBSD+9.0-
RELEASE, [Accessed 10-05-2024].

[7] The Clang Team, Clang - the clang c, c++, and objective-c compiler, https:
//clang.llvm.org/docs/CommandGuide/clang.html, [Accessed 26-03-
2024].

[8] The Clang Team, Llvm language reference manual, https://llvm.org/
docs/LangRef.html, [Accessed 26-03-2024].

[9] R. Awati, Assembler, https://www.techtarget.com/searchdatacenter/
definition/assembler, [Accessed 03-05-2024].

[10] Microsoft, /ltcg (link-time code generation), https://learn.microsoft.
com/en-us/cpp/build/reference/ltcg-link-time-code-generation,
Accessed: 2023-10-02, 22nd Sep. 2022.

[11] A. Rahimian, P. Shirani, S. Alrbaee, L. Wang and M. Debbabi, ‘Bincomp: A
stratified approach to compiler provenance attribution,’ Digital Investiga-
tion, vol. 14, S146–S155, 2015.

[12] Z. Tian, Y. Huang, B. Xie, Y. Chen, L. Chen and D. Wu, ‘Fine-grained com-
piler identification with sequence-oriented neural modeling,’ IEEE Access,
vol. 9, pp. 49 160–49 175, 2021. DOI: 10.1109/ACCESS.2021.3069227.

83

https://man.freebsd.org/cgi/man.cgi?query=clang-cpp&sektion=1&manpath=FreeBSD+9.0-RELEASE
https://man.freebsd.org/cgi/man.cgi?query=clang-cpp&sektion=1&manpath=FreeBSD+9.0-RELEASE
https://man.freebsd.org/cgi/man.cgi?query=clang-cpp&sektion=1&manpath=FreeBSD+9.0-RELEASE
https://clang.llvm.org/docs/CommandGuide/clang.html
https://clang.llvm.org/docs/CommandGuide/clang.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://www.techtarget.com/searchdatacenter/definition/assembler
https://www.techtarget.com/searchdatacenter/definition/assembler
https://learn.microsoft.com/en-us/cpp/build/reference/ltcg-link-time-code-generation
https://learn.microsoft.com/en-us/cpp/build/reference/ltcg-link-time-code-generation
https://doi.org/10.1109/ACCESS.2021.3069227

84 J. Hofgaard: CFG analysis for inlined function detection and identification

[13] M. Poslušný and P. Kálnai, Vb2019 paper: Rich headers: Leveraging this
mysterious artifact of the pe format, https://www.virusbulletin.com/
virusbulletin/2020/01/vb2019- paper- rich- headers- leveraging-
mysterious-artifact-pe-format/, [Accessed 28-04-2024].

[14] Microsoft, Pe format, https://learn.microsoft.com/en-us/windows/
win32/debug/pe-format, [Accessed 28-04-2024].

[15] Bytepointer, The undocumented microsoft "rich" header, https : / /
bytepointer.com/articles/the_microsoft_rich_header.htm, [Ac-
cessed 28-04-2024].

[16] A. D. Forfot, ‘Exploring the pe header and the rich header for effective
malware classification and triage,’ M.S. thesis, NTNU, 2021.

[17] M. E. Russinovich, D. A. Solomon and A. Ionescu, Windows internals, part
2. Pearson Education, 2012.

[18] T. Committee et al., Tool interface standard (tis) executable and linking
format (elf) specification version 1.2, 1995.

[19] The 86open Project, Unix-on-intel players agree on a common binary (it’s the
linux elf format), https://web.archive.org/web/20070227214032/http:
//www.telly.org/86open/, [Accessed 26-04-2024].

[20] Statcounter, Desktop operating system market share worldwide, https://
gs.statcounter.com/os-market-share/desktop/worldwide, [Accessed
03-05-2024].

[21] A. Sherif, Global market share held by operating systems for desktop pcs, from
january 2013 to february 2024, https://www.statista.com/statistics/
218089/global-market-share-of-windows-7/, [Accessed 03-05-2024].

[22] Fortune Business Insights, Server operating system market volume, share
& industry analysis, by operating system (windows, linux, unix, and oth-
ers), https://www.fortunebusinessinsights.com/server-operating-
system-market-106601, [Accessed 03-05-2024].

[23] M. Sikorski and A. Honig, Practical malware analysis: the hands-on guide to
dissecting malicious software. no starch press, 2012, ISBN: 978-1593272906.

[24] K. Gupta and T. Sharma, ‘Changing trends in computer architecture: A com-
prehensive analysis of arm and x86 processors,’ International Journal of
Scientific Research in Computer Science, Engineering and Information Tech-
nology, vol. 7, 2021.

[25] A. Fog, ‘The microarchitecture of intel, amd and via cpus: An optimization
guide for assembly programmers and compiler makers,’ Copenhagen Uni-
versity College of Engineering, vol. 3, May 2023.

[26] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M.
Lipp, S. Mangard, T. Prescher, M. Schwarz and Y. Yarom, ‘Spectre attacks:
Exploiting speculative execution,’ in 40th IEEE Symposium on Security and
Privacy (S&P’19), 2019.

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-rich-headers-leveraging-mysterious-artifact-pe-format/
https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-rich-headers-leveraging-mysterious-artifact-pe-format/
https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-rich-headers-leveraging-mysterious-artifact-pe-format/
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://bytepointer.com/articles/the_microsoft_rich_header.htm
https://bytepointer.com/articles/the_microsoft_rich_header.htm
https://web.archive.org/web/20070227214032/http://www.telly.org/86open/
https://web.archive.org/web/20070227214032/http://www.telly.org/86open/
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/
https://www.fortunebusinessinsights.com/server-operating-system-market-106601
https://www.fortunebusinessinsights.com/server-operating-system-market-106601

Bibliography 85

[27] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S.
Mangard, P. Kocher, D. Genkin, Y. Yarom and M. Hamburg, ‘Meltdown:
Reading kernel memory from user space,’ in 27th USENIX Security Sym-
posium (USENIX Security 18), 2018.

[28] Intel, ‘Intel® 64 and IA-32 Architectures Software Developer’s Manual,’
Volume 1: Basic Architecture, vol. 1, 2023.

[29] J. F.
bibinitperiod f. Dean Elsner, 80386 dependent features - at&t syntax versus
intel syntax, https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_
chapter/as_16.html, [Accessed 02-11-2023], 1994.

[30] vivek, At&t assembly syntax, https : / / csiflabs . cs . ucdavis . edu /
~ssdavis/50/att-syntax.htm, [Accessed 02-11-2023], 2003.

[31] Intel, Eflags cross-reference and condition codes, https://www.cs.utexas.
edu/~byoung/cs429/condition-codes.pdf, [Accessed 28-04-2024].

[32] T. Shanley, Protected mode software architecture. Taylor & Francis, 1996.

[33] F. Cloutier, Jcc — jump if condition is met, https://www.felixcloutier.
com/x86/jcc, [Accessed 28-04-2024].

[34] Intel, ‘Intel® 64 and IA-32 Architectures Software Developer’s Manual,’
APPENDIX B EFLAGS CONDITION CODES, vol. 2, 2023.

[35] A. Fog et al., ‘Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for intel, amd and via cpus,’ Copenhagen
University College of Engineering, vol. 93, p. 110, 2011, Updated version at:
https://www.agner.org/optimize/instruction_tables.pdf, Accessed
2023-10-02.

[36] Intel, ‘Intel Analysis of Speculative Execution Side Channels,’ 2018.

[37] Stanford CS107 joint effort, Guide to x86-64, https://web.stanford.edu/
class/archive/cs/cs107/cs107.1174/guide_x86-64.html, [Accessed
03-05-2024].

[38] Inline functions (c++), https://learn.microsoft.com/en-us/cpp/cpp/
inline-functions-cpp, Accessed: 2023-10-02, 25th Aug. 2022.

[39] Free Software Foundation, Inc, 3.11 options that control optimization,
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html, [Ac-
cessed 27-05-2024].

[40] Microsoft, /ob (inline function expansion), https://learn.microsoft.
com/en-us/cpp/build/reference/ob-inline-function-expansion?
view=msvc-170, [Accessed 08-05-2024].

[41] Llvm weekly - #186, jul 24th 2017, https://llvmweekly.org/issue/186,
Accessed: 2023-10-02, 24th Jul. 2017.

https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_16.html
https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_16.html
https://csiflabs.cs.ucdavis.edu/~ssdavis/50/att-syntax.htm
https://csiflabs.cs.ucdavis.edu/~ssdavis/50/att-syntax.htm
https://www.cs.utexas.edu/~byoung/cs429/condition-codes.pdf
https://www.cs.utexas.edu/~byoung/cs429/condition-codes.pdf
https://www.felixcloutier.com/x86/jcc
https://www.felixcloutier.com/x86/jcc
https://www.agner.org/optimize/instruction_tables.pdf
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_x86-64.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_x86-64.html
https://learn.microsoft.com/en-us/cpp/cpp/inline-functions-cpp
https://learn.microsoft.com/en-us/cpp/cpp/inline-functions-cpp
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://learn.microsoft.com/en-us/cpp/build/reference/ob-inline-function-expansion?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/ob-inline-function-expansion?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/ob-inline-function-expansion?view=msvc-170
https://llvmweekly.org/issue/186

86 J. Hofgaard: CFG analysis for inlined function detection and identification

[42] M. Polychronakis, K. G. Anagnostakis and E. P. Markatos, ‘Comprehensive
shellcode detection using runtime heuristics,’ in Proceedings of the 26th An-
nual Computer Security Applications Conference, 2010, pp. 287–296.

[43] A. Obregon, An introduction to java bytecode, https : / / medium . com /
\spacefactor \ @m{}AlexanderObregon / an - introduction - to - java -
bytecode-885677548674, [Accessed 27-03-2024].

[44] VMProtect Software, Vmprotect overview, https : / / vmpsoft . com /
vmprotect/overview, [Accessed 27-03-2024].

[45] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Ap-
proach (ISSN). Elsevier Science, 2011, ISBN: 9780123838735.

[46] Microsoft, Exitprocess function (processthreadsapi.h), https : / / learn .
microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-
processthreadsapi-exitprocess, [Accessed 26-03-2024].

[47] OSIRIS Lab, Return oriented programming, https://ctf101.org/binary-
exploitation/return-oriented-programming/, [Accessed 26-03-2024].

[48] R. Meier, Reverse engineering introduction to the world of disassembling and
decompiling, https://www.scip.ch/en/?labs.20211202, [Accessed 04-
12-2023].

[49] HexRays, Introduction to decompilation vs. disassembly, https : / / hex -
rays.com/decompiler/decompilation_vs_disassembly/, [Accessed 01-
12-2023].

[50] F. E. Allen, ‘Control flow analysis,’ ACM Sigplan Notices, vol. 5, no. 7, pp. 1–
19, 1970.

[51] D. Bruschi, L. Martignoni and M. Monga, ‘Detecting self-mutating malware
using control-flow graph matching,’ in Detection of Intrusions and Malware
& Vulnerability Assessment: Third International Conference, DIMVA 2006,
Berlin, Germany, July 13-14, 2006. Proceedings 3, Springer, 2006, pp. 129–
143.

[52] G. Bonfante, M. Kaczmarek and J.-Y. Marion, ‘Control flow graphs as mal-
ware signatures,’ in International workshop on the Theory of Computer Vir-
uses, 2007.

[53] M. S. Håland, ‘Multinomial malware classification using control flow
graphs,’ M.S. thesis, NTNU, 2019.

[54] M. O. Østbye, ‘Multinomial malware classification based on call graphs,’
M.S. thesis, NTNU, 2017.

[55] S. Näher, ‘Leda, a platform for combinatorial and geometric computing,’
in Handbook of Data Structures and Applications, Chapman and Hall/CRC,
2018, pp. 653–666.

https://medium.com/\spacefactor \@m {}AlexanderObregon/an-introduction-to-java-bytecode-885677548674
https://medium.com/\spacefactor \@m {}AlexanderObregon/an-introduction-to-java-bytecode-885677548674
https://medium.com/\spacefactor \@m {}AlexanderObregon/an-introduction-to-java-bytecode-885677548674
https://vmpsoft.com/vmprotect/overview
https://vmpsoft.com/vmprotect/overview
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
https://ctf101.org/binary-exploitation/return-oriented-programming/
https://ctf101.org/binary-exploitation/return-oriented-programming/
https://www.scip.ch/en/?labs.20211202
https://hex-rays.com/decompiler/decompilation_vs_disassembly/
https://hex-rays.com/decompiler/decompilation_vs_disassembly/

Bibliography 87

[56] European Molecular Biology Laboratory, Graph theory: Graph types and
edge properties, https://www.ebi.ac.uk/training/online/courses/
network-analysis-of-protein-interaction-data-an-introduction/
introduction- to- graph- theory/graph- theory- graph- types- and-
edge-properties/, [Accessed 27-03-2024].

[57] X. Hu, T.-c. Chiueh and K. G. Shin, ‘Large-scale malware indexing us-
ing function-call graphs,’ in Proceedings of the 16th ACM Conference on
Computer and Communications Security, ser. CCS ’09, Chicago, Illinois,
USA: Association for Computing Machinery, 2009, pp. 611–620, ISBN:
9781605588940. DOI: 10.1145/1653662.1653736. [Online]. Available:
https://doi.org/10.1145/1653662.1653736.

[58] B. G. Ryder, ‘Constructing the call graph of a program,’ IEEE Transactions
on Software Engineering, no. 3, pp. 216–226, 1979.

[59] C. Cifuentes and M. Van Emmerik, ‘Recovery of jump table case state-
ments from binary code,’ Science of Computer Programming, vol. 40, no. 2-3,
pp. 171–188, 2001.

[60] D. Grove, G. DeFouw, J. Dean and C. Chambers, ‘Call graph construction in
object-oriented languages,’ in Proceedings of the 12th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applications,
1997, pp. 108–124.

[61] L. Zobernig, S. D. Galbraith and G. Russello, ‘When are opaque predicates
useful?’ In 2019 18th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/13th IEEE International Con-
ference On Big Data Science And Engineering (TrustCom/BigDataSE), IEEE,
2019, pp. 168–175.

[62] Intel, ‘Intel® 64 and IA-32 Architectures Software Developer’s Manual,’
Volume 2A: Instruction Set Reference, M-U, vol. 2, 2023.

[63] S. Romano, C. Vendome, G. Scanniello and D. Poshyvanyk, ‘A multi-study
investigation into dead code,’ IEEE Transactions on Software Engineering,
vol. 46, no. 1, pp. 71–99, 2018.

[64] R. Naug and D. kavita, ‘A study of types of dead codes and their solutions,’
International Journal of Advance Research in Computer Science and Manage-
ment, Apr. 2021.

[65] J. Koret, A new control flow graph based heuristic for diaphora, https://
github.com/joxeankoret/diaphora, Accessed: 2024-05-27.

[66] HexRays, Hex Rays - State-of-the-art binary code analysis solutions, https:
//hex-rays.com/ida-pro/, [Accessed 31-10-2023].

[67] C. Karamitas and A. Kehagias, ‘Efficient features for function matching
between binary executables,’ in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), IEEE, 2018,
pp. 335–345.

https://www.ebi.ac.uk/training/online/courses/network-analysis-of-protein-interaction-data-an-introduction/introduction-to-graph-theory/graph-theory-graph-types-and-edge-properties/
https://www.ebi.ac.uk/training/online/courses/network-analysis-of-protein-interaction-data-an-introduction/introduction-to-graph-theory/graph-theory-graph-types-and-edge-properties/
https://www.ebi.ac.uk/training/online/courses/network-analysis-of-protein-interaction-data-an-introduction/introduction-to-graph-theory/graph-theory-graph-types-and-edge-properties/
https://www.ebi.ac.uk/training/online/courses/network-analysis-of-protein-interaction-data-an-introduction/introduction-to-graph-theory/graph-theory-graph-types-and-edge-properties/
https://doi.org/10.1145/1653662.1653736
https://doi.org/10.1145/1653662.1653736
https://github.com/joxeankoret/diaphora
https://github.com/joxeankoret/diaphora
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/

88 J. Hofgaard: CFG analysis for inlined function detection and identification

[68] A new control flow graph based heuristic for diaphora, https : / /
joxeankoret . com / blog / 2018 / 11 / 04 / new - cfg - based - heuristic -
diaphora/, Accessed: 2023-04-16.

[69] Bindiff manual, https://www.zynamics.com/bindiff/manual/, Accessed:
2023-04-16.

[70] M. Arutunian, H. Hovhannisyan, V. Vardanyan, S. Sargsyan, S. Kurman-
galeev and H. Aslanyan, ‘A method to evaluate binary code comparison
tools,’ in 2021 Ivannikov Memorial Workshop (IVMEM), IEEE, 2021, pp. 3–
5.

[71] H. P. Luhn, ‘A new method of recording and searching information,’ Amer-
ican Documentation, vol. 4, no. 1, pp. 14–16, 1953. DOI: https://doi.
org/10.1002/asi.5090040104. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/asi.5090040104. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/asi.5090040104.

[72] M. T. McClellan and J. Minker, The art of computer programming, vol. 3:
Sorting and searching, 1974.

[73] L. Chi and X. Zhu, ‘Hashing techniques: A survey and taxonomy,’ ACM
Comput. Surv., vol. 50, no. 1, Apr. 2017, ISSN: 0360-0300. DOI: 10.1145/
3047307. [Online]. Available: https://doi.org/10.1145/3047307.

[74] Daisie Team, Comprehensive guide to non-cryptographic hash functions,
https : / / blog . daisie . com / comprehensive - guide - to - non -
cryptographic-hash-functions/, [Accessed 26-04-2024].

[75] D. E. Eastlake and P. Jones, US Secure Hash Algorithm 1 (SHA1), RFC 3174,
Sep. 2001. DOI: 10.17487/RFC3174. [Online]. Available: https://www.
rfc-editor.org/info/rfc3174.

[76] US National Institute of Standards and Technology, Nist transitioning away
from sha-1 for all applications, https://csrc.nist.gov/news/2022/
nist-transitioning-away-from-sha-1-for-all-apps, [Accessed 27-
03-2024].

[77] E. Barker and A. Roginsky, Transitioning the use of cryptographic algorithms
and key lengths. Mar. 2019. DOI: 10.6028/nist.sp.800-131ar2. [Online].
Available: http://dx.doi.org/10.6028/NIST.SP.800-131Ar2.

[78] F.l.i.r.t. https://hex-rays.com/products/ida/tech/flirt/, Accessed:
2023-04-15.

[79] Ida f.l.i.r.t. technology: In-depth, https://hex-rays.com/products/ida/
tech/flirt/in_depth/, Accessed: 2023-04-15.

[80] J. McMaster, Issues with flirt aware malware, 2011.

[81] K. Griffin, S. Schneider, X. Hu and T.-c. Chiueh, ‘Automatic generation of
string signatures for malware detection,’ in Recent Advances in Intrusion
Detection: 12th International Symposium, RAID 2009, Saint-Malo, France,
September 23-25, 2009. Proceedings 12, Springer, 2009, pp. 101–120.

https://joxeankoret.com/blog/2018/11/04/new-cfg-based-heuristic-diaphora/
https://joxeankoret.com/blog/2018/11/04/new-cfg-based-heuristic-diaphora/
https://joxeankoret.com/blog/2018/11/04/new-cfg-based-heuristic-diaphora/
https://www.zynamics.com/bindiff/manual/
https://doi.org/https://doi.org/10.1002/asi.5090040104
https://doi.org/https://doi.org/10.1002/asi.5090040104
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.5090040104
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.5090040104
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.5090040104
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.5090040104
https://doi.org/10.1145/3047307
https://doi.org/10.1145/3047307
https://doi.org/10.1145/3047307
https://blog.daisie.com/comprehensive-guide-to-non-cryptographic-hash-functions/
https://blog.daisie.com/comprehensive-guide-to-non-cryptographic-hash-functions/
https://doi.org/10.17487/RFC3174
https://www.rfc-editor.org/info/rfc3174
https://www.rfc-editor.org/info/rfc3174
https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps
https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps
https://doi.org/10.6028/nist.sp.800-131ar2
http://dx.doi.org/10.6028/NIST.SP.800-131Ar2
https://hex-rays.com/products/ida/tech/flirt/
https://hex-rays.com/products/ida/tech/flirt/in_depth/
https://hex-rays.com/products/ida/tech/flirt/in_depth/

Bibliography 89

[82] L. Nouh, A. Rahimian, D. Mouheb, M. Debbabi and A. Hanna, ‘Binsign:
Fingerprinting binary functions to support automated analysis of code ex-
ecutables,’ in ICT Systems Security and Privacy Protection, S. De Capitani di
Vimercati and F. Martinelli, Eds., Cham: Springer International Publishing,
2017, pp. 341–355, ISBN: 978-3-319-58469-0.

[83] J. Qiu, X. Su and P. Ma, ‘Using reduced execution flow graph to identify
library functions in binary code,’ IEEE Transactions on Software Engineering,
vol. 42, no. 2, pp. 187–202, 2016. DOI: 10.1109/TSE.2015.2470241.

[84] J. Qiu, X. Su and P. Ma, ‘Library functions identification in binary code by
using graph isomorphism testings,’ in 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER), 2015,
pp. 261–270. DOI: 10.1109/SANER.2015.7081836.

[85] A. Rahbar, A. Pezeshk and E. Bachaalany, Graphslick,
https : / / github . com / lallousx86 / GraphSlick, Commit
f7fac52852702a3c7300ba2474c9ab0eda59359b, 2014.

[86] HexRays, 2014 plug-in contest, https : / / hex - rays . com / contests _
details/contest2014/#graphslick, [Accessed 26-03-2024].

[87] Merriam-Webster.com Dictionary, Isomorphic, https : / / www . merriam -
webster.com/dictionary/isomorphic, [Accessed 16-05-2024].

[88] HexRays, Ida sdk: Insn_t class reference, https://www.hex- rays.com/
products/ida/support/sdkdoc/classinsn__t.html, [Accessed 22-11-
2023].

[89] cplusplus.com, Function strcmp, https://cplusplus.com/reference/
cstring/strcmp/, [Accessed 25-03-2024].

[90] Q. C. Ltd., Qt reference pages, https://doc.qt.io/qt-6/reference-
overview.html, [Accessed 25-03-2024].

[91] D. H. J. de St. Germain, Functions, https : / / users . cs . utah . edu /
~germain/PPS/Topics/functions.html, [Accessed 25-03-2024].

[92] L. Baresi and M. Pezzè, ‘An introduction to software testing,’ Electronic
Notes in Theoretical Computer Science, vol. 148, no. 1, pp. 89–111, 2006,
Proceedings of the School of SegraVis Research Training Network on
Foundations of Visual Modelling Techniques (FoVMT 2004), ISSN: 1571-
0661. DOI: https://doi.org/10.1016/j.entcs.2005.12.014. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1571066106000442.

[93] A. Alhroob, K. Dahal and M. Hossain, ‘Software test case generation from
system models and specification. use of the uml diagrams and high level
petri nets models for developing software test cases.,’ Ph.D. dissertation,
Dec. 2010.

[94] Damaye, Sebastien, Peid, https://www.aldeid.com/wiki/PEiD, [Accessed
27-03-2024].

https://doi.org/10.1109/TSE.2015.2470241
https://doi.org/10.1109/SANER.2015.7081836
https://github.com/lallousx86/GraphSlick
https://hex-rays.com/contests_details/contest2014/#graphslick
https://hex-rays.com/contests_details/contest2014/#graphslick
https://www.merriam-webster.com/dictionary/isomorphic
https://www.merriam-webster.com/dictionary/isomorphic
https://www.hex-rays.com/products/ida/support/sdkdoc/classinsn__t.html
https://www.hex-rays.com/products/ida/support/sdkdoc/classinsn__t.html
https://cplusplus.com/reference/cstring/strcmp/
https://cplusplus.com/reference/cstring/strcmp/
https://doc.qt.io/qt-6/reference-overview.html
https://doc.qt.io/qt-6/reference-overview.html
https://users.cs.utah.edu/~germain/PPS/Topics/functions.html
https://users.cs.utah.edu/~germain/PPS/Topics/functions.html
https://doi.org/https://doi.org/10.1016/j.entcs.2005.12.014
https://www.sciencedirect.com/science/article/pii/S1571066106000442
https://www.sciencedirect.com/science/article/pii/S1571066106000442
https://www.aldeid.com/wiki/PEiD

90 J. Hofgaard: CFG analysis for inlined function detection and identification

[95] JetBrains, C, https://www.jetbrains.com/lp/devecosystem-2020/c/,
[Accessed 10-05-2024].

[96] cppreference.com, Std basic_string compare, https://en.cppreference.
com/w/cpp/string/basic_string/compare, [Accessed 03-05-2024].

[97] cppreference.com, Atexit, https://en.cppreference.com/w/c/program/
atexit, [Accessed 03-05-2024].

[98] Python, Timeit — measure execution time of small code snippets, https:
//docs.python.org/3/library/timeit.html, [Accessed 03-05-2024].

https://www.jetbrains.com/lp/devecosystem-2020/c/
https://en.cppreference.com/w/cpp/string/basic_string/compare
https://en.cppreference.com/w/cpp/string/basic_string/compare
https://en.cppreference.com/w/c/program/atexit
https://en.cppreference.com/w/c/program/atexit
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html

Appendix A

GraphSlick’s code

A.1 Updates done to GraphSlick

The section will describe the updates needed to make GraphSlick work with
IDA Pro Version 8.3.230608 on Windows 10 x64. The updates are not meant
to improve GraphSlick or expand its functionality. Instead, they are necessary as
GraphSlick is around 10 years old, and a lot of its dependencies have changed in
the last few years. The changes to GraphSlick have been documented in commits
in a project on github. The following chapter will give a brief description of what
the changes encompass.

When GraphSlick was developed Python 2 was the version shipped with IDA.
This is no longer the case, and IDA uses Python 3. The IDA version used in this
project uses Python 3.11.4. One of the main changes is to the string printing. As
printing is handled as a function in Python 3, print(), this needs to be changed
from how it was done in Python 2.

GraphSlick depends on the Python packages shown in Code listing A.1.
All packages can be installed using the package installer for Python, pip. The
packages are located at pypi.org. One of the packages, ordered-set needs to
be modified to work properly. This change can be done by changing the file
orderd_set.py on line 21 from "class OrderedSet(collections.MutableSet)"
to "class OrderedSet(collections.abc.MutableSet)". The file can be found at
%PYTHON_INSTALL_PATH%\Lib\site-packages\orderd_set.py.

Code listing A.1: Python packages needed for GraphSlick

ordered-set==1.1
sark==8.2.0
pickleshare==0.7.5

The IDA API for Python has also changed since GraphSlick was developed.
This is mostly related to the names of structures. An example of this is how the
basic block object in IDA has changed the naming of its start and end address
from block.startEA and block.endEA to block.start_ea and block.end_ea,
and it has changed how operands are accessed in object instruction, from

91

92 J. Hofgaard: CFG analysis for inlined function detection and identification

instr.Operands to instr.ops. These changes to naming do not affect what prop-
erties are accessed. However, there would likely be some changes if an IDA version
from 2014 was compared to version 8.3. The IDA analysis and disassembly pro-
cess has improved in the last few years, and this will affect the properties accessed
by the Python API as IDA’s analysis creates the properties.

Appendix B

Test code

The appendix shows the code used when the test programs in Sections 6.2.1
and 6.2.2 were compiled. The source code for the program used in Test 4 is also
shown in this section as this was the same program as in Test 1. The command
line used to compile the program or the compiler options are also listed in this
appendix.

B.1 Test setup: Test 1

The test program contains the std::string::compare-function. The program
uses a string taken from the command line, argv, as part of the string compar-
ison to stop the compiler from being able to do the comparison compile time. This
program was also used in Test 4.

The program were complied with cl, msbuild, and gcc, using the compilation
arguments/command line shown below:

Code listing B.1: Comandline for compilation with clang

cl /EHsc /MD /O2 /Ob3 main.cpp

Code listing B.2: Options for compilation with msbuild

/permissive- /ifcOutput "x64\Release\" /GS /GL /W3 /Gy /Zc:wchar_t /Zi /Gm- /O2 /
Ob2 /sdl /Fd"x64\Release\vc142.pdb" /Zc:inline /fp:precise /D "NDEBUG" /D "
_CONSOLE" /D "_UNICODE" /D "UNICODE" /errorReport:prompt /WX- /Zc:forScope /Gd
/Oi /MD /FC /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Fp"x64\Release\
strcmp_msbuild.pch" /diagnostics:column

Code listing B.3: Comandline for compilation with gcc

g++ -O3 -MD -fno-exceptions main.cpp

93

94 J. Hofgaard: CFG analysis for inlined function detection and identification

Code listing B.4: Code example using strcmp

#include <string>
#include <iostream>

char ** ARGS;

int test_stringcmp(void) {
std::string str = "";
std::string sep = "␣&␣";
for (char **it=ARGS; *it; it++) {

std::string arg = *it;
std::cout << arg << ’\n’;
if (it!=ARGS) {

str += sep;
}

else if (arg.compare(str) == 0){
break;

}
str += arg;

}
std::string cmpstr = "Test␣&␣string";
int cmp = str.compare(cmpstr);
if (cmp) {

return cmp;
}

return str.compare(sep);
}

int main(int argc, char **argv) {
ARGS = argv+1;
return test_stringcmp();

}

B.2 Test setup: Test 2

Test 2 contained an inlined function from the same source code. Keywords
were used to make the compiler inline a function. When the code
was compiled with GCC the __forceinline-keyword was switched to
__attribute__((always_inline)). The code was complied with cl, msbuild, and
gcc with the compilation arguments/command line shown below:

Code listing B.5: Comandline for compilation with clang

cl /EHsc /MD /O2 /Ob3 main.cpp

Code listing B.6: Options for compilation with msbuild

/permissive- /ifcOutput "x64\Release\" /GS /GL /W3 /Gy /Zc:wchar_t /Zi /Gm- /O2 /
Ob2 /sdl /Fd"x64\Release\vc142.pdb" /Zc:inline /fp:precise /D "NDEBUG" /D "
_CONSOLE" /D "_UNICODE" /D "UNICODE" /errorReport:prompt /WX- /Zc:forScope /Gd
/Oi /MT /FC /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Fp"x64\Release\
Test_App_CFG_target.pch" /diagnostics:column

Chapter B: Test code 95

Code listing B.7: Comandline for compilation with gcc

g++ -O3 -MD -fno-exceptions main.cpp

Code listing B.8: Code example using inline-keyword in code

#include <Windows.h>
#include <iostream>

__declspec(noinline)
void func2(int i) {

Sleep(i);
}

__forceinline
int func1(volatile int i) {

int res = i;
i++;
if (i == 4) {

res = res * 2;
std::cout << "1" << std::endl;

}
else if (i == 2) {

res = res - 3;
std::cout << "2" << std::endl;
func2(2);

}
else {

for (int j = 0; j < i; j++) {
std::cout << "else" << std::endl;

}
func2(i);

}

if (res < 0) {
return 0;

}
else{

return res;
}

}

int main(int argc, char* argv[])
{

int temp;
std::cout << "This␣is␣some␣code␣to␣add␣to␣the␣program" << std::endl;
temp = argc ^ 0x1234;
int res = func1(temp);

if (res != 0) {
func2(2);

}
else {

std::cout << "Some␣more␣code␣here" << std::endl;
}

std::cout << "This␣is␣some␣more␣code" << std::endl;
temp = func1(res);
return temp + res;

}

Appendix C

Results full tables

This appendix contains the analysis results from the tests described in Chapter 6.
The main results are described and visualized in Chapter 6. In this appendix the
entire results are shown.

Appendices C.1 and C.2 contain tables of the inlined function detection done
by the GraphSlick. The tables are split into two parts. The first part contains the
results from the original GraphSlick, while the last contains the results from the
modified GraphSlick.

Each row in the tables represents one group of detected isomorphic subgraphs.
The first column is the group ID, and the following columns are the instances of
block groups in that group. Thus, all block groups in one row are isomorphic
subgraphs of one another. In each block group, the block IDs contained in that
block group are listed. More block IDs in a block group mean that larger subgraphs
were detected, whilst more block groups mean that more isomorphic subgraphs
were detected.

Appendix C.3 contains tables of the CFG of the detected inlined function and
the known library function. The tables list the block IDs and the corresponding
itype1_hash for each block.

C.1 Results: Test 1: Detection of inlined string compar-
ison

The results from Test 1 are shown in this section. The results are contained in
Tables C.1 to C.3. Larger block groups mean that more blocks were detected as
part of an isomorphic function (potential inlined function).

97

98 J. Hofgaard: CFG analysis for inlined function detection and identification

Table C.1: Results of analysis done with original and modified GraphSlick on
Code listing B.4 compiled with cl. The group ID is a hash of the blocks the group
is comprised of, the block group contains the IDA block ID of the blocks in that
block group. The results are described in Section 6.2.1.

Original GraphSlick

Group ID,
SHA1

Block
group
1

Block
group
2

Block
group
3

Block
group
4

Block
group
5

Block
group
6

ed7902b6b9
2af83b2eb3
5f6224a9f5
b5245ddae6

15, 16,
17, 18,
19

17, 18,
19, 20,
21

37, 38,
39, 40,
41

39, 40,
41, 42,
43

63, 64,
65, 66,
67

65, 66,
67, 68,
69

1430c0f640
fdee3d3414
69de0ca8ca
a2bfbac4d5

36, 37 62, 63

6c21f2a1af
bbe1be6362
98dd1e7aa5
0f4f9d4417

27, 28,
29, 30

76, 77,
78, 79

6fa1ee4d43
4d04c90aba
fdc440dcb9
d5c1580ffe

11, 12,
13

33, 34,
35

59, 60,
61

Modified GraphSlick

Group ID,
SHA1

Block
group
1

Block
group
2

Block
group
3

Block
group
4

Block
group
5

Block
group
6

c35227c5e4
fdde80e28d
35b1584bd2
0c98977aab

10, 11,
14, 12,
15, 23,
13, 16,
22, 24,
17, 18,
19, 20,
21

32, 33,
36, 34,
37, 52,
35, 38,
44, 53,
39, 40,
41, 42,
43

58, 59,
62, 60,
63, 71,
61, 64,
70, 72,
65, 66,
67, 68,
69

f0c9585cc7
119d8934db
b1bc6e905c
f6181aac76

76, 77,
78, 79

80, 81,
82, 84

ed7902b6b92af83b2eb35f6224a9f5b5245ddae6
ed7902b6b92af83b2eb35f6224a9f5b5245ddae6
ed7902b6b92af83b2eb35f6224a9f5b5245ddae6
ed7902b6b92af83b2eb35f6224a9f5b5245ddae6
1430c0f640fdee3d341469de0ca8caa2bfbac4d5
1430c0f640fdee3d341469de0ca8caa2bfbac4d5
1430c0f640fdee3d341469de0ca8caa2bfbac4d5
1430c0f640fdee3d341469de0ca8caa2bfbac4d5
6c21f2a1afbbe1be636298dd1e7aa50f4f9d4417
6c21f2a1afbbe1be636298dd1e7aa50f4f9d4417
6c21f2a1afbbe1be636298dd1e7aa50f4f9d4417
6c21f2a1afbbe1be636298dd1e7aa50f4f9d4417
6fa1ee4d434d04c90abafdc440dcb9d5c1580ffe
6fa1ee4d434d04c90abafdc440dcb9d5c1580ffe
6fa1ee4d434d04c90abafdc440dcb9d5c1580ffe
6fa1ee4d434d04c90abafdc440dcb9d5c1580ffe
c35227c5e4fdde80e28d35b1584bd20c98977aab
c35227c5e4fdde80e28d35b1584bd20c98977aab
c35227c5e4fdde80e28d35b1584bd20c98977aab
c35227c5e4fdde80e28d35b1584bd20c98977aab
f0c9585cc7119d8934dbb1bc6e905cf6181aac76
f0c9585cc7119d8934dbb1bc6e905cf6181aac76
f0c9585cc7119d8934dbb1bc6e905cf6181aac76
f0c9585cc7119d8934dbb1bc6e905cf6181aac76

Chapter C: Results full tables 99

Table C.2: Results of analysis done with original and modified GraphSlick on
Code listing B.4 compiled with msbuild. The group ID is a hash of the blocks the
group is comprised of, the block group contains the IDA block ID of the blocks in
that block group. The results are described in Section 6.2.1.

Original GraphSlick

Group ID, SHA1 Block group 1 Block group 2
e2505284662ad8d0688f
8c3de5306475c42aa2e3

33, 34, 38, 35, 37,
39, 36, 40, 41

38, 39, 43, 40, 42,
44, 41, 45, 46

11cadb4195b552541d83
4db22a59c440ea3baf50

19, 20, 21, 22 43, 44, 45, 47

b95e5d9c708ecc5efcca
af86080f3d63d1e3dc5d

24, 25 30, 31

Modified GraphSlick

Group ID, SHA1 Block group 1 Block group 2
11cadb4195b552541d83
4db22a59c440ea3baf50

19, 20, 21, 22 43, 44, 45, 47

b6e2913568685945b2ae
a957b42ad9a61c1e1a32

34, 35, 37, 36 39, 40, 42, 41

Table C.3: Results of analysis done with original and modified GraphSlick on
Code listing B.4 compiled with GCC. The group ID is a hash of the blocks the
group is comprised of, the block group contains the IDA block ID of the blocks in
that block group. The results are described in Section 6.2.1.

Original GraphSlick

Group ID, SHA1 Block
group 1

Block
group 2

Block
group 3

9df57c85bbbdde90c51b
1cfa0bf3ee7db2538913

12, 13 14, 15 22, 23

7ca2e83ffc3795c22881
105ef4c840c7c33ca1be

41, 43 42, 44

Original GraphSlick

Group ID, SHA1 Block
group 1

Block
group 2

Block
group 3

9df57c85bbbdde90c51b
1cfa0bf3ee7db2538913

12, 13 14, 15 22, 23

7ca2e83ffc3795c22881
105ef4c840c7c33ca1be

41, 43 42, 44

e2505284662ad8d0688f8c3de5306475c42aa2e3
e2505284662ad8d0688f8c3de5306475c42aa2e3
11cadb4195b552541d834db22a59c440ea3baf50
11cadb4195b552541d834db22a59c440ea3baf50
b95e5d9c708ecc5efccaaf86080f3d63d1e3dc5d
b95e5d9c708ecc5efccaaf86080f3d63d1e3dc5d
11cadb4195b552541d834db22a59c440ea3baf50
11cadb4195b552541d834db22a59c440ea3baf50
b6e2913568685945b2aea957b42ad9a61c1e1a32
b6e2913568685945b2aea957b42ad9a61c1e1a32
9df57c85bbbdde90c51b1cfa0bf3ee7db2538913
9df57c85bbbdde90c51b1cfa0bf3ee7db2538913
7ca2e83ffc3795c22881105ef4c840c7c33ca1be
7ca2e83ffc3795c22881105ef4c840c7c33ca1be
9df57c85bbbdde90c51b1cfa0bf3ee7db2538913
9df57c85bbbdde90c51b1cfa0bf3ee7db2538913
7ca2e83ffc3795c22881105ef4c840c7c33ca1be
7ca2e83ffc3795c22881105ef4c840c7c33ca1be

100 J. Hofgaard: CFG analysis for inlined function detection and identification

C.2 Results: Test 2: Detection of inlined function using
compiler keywords

This section shows the results from Test 2. The tables are in the same format as in
Appendix C.1. The format is described in at the begining of the appendix.

Table C.4: Results of analysis done with original and modified GraphSlick on
Code listing B.8 compiled with cl. The group ID is a hash of the blocks the group
is comprised of, the block group contains the IDA block ID of the blocks in that
block group. The results are described in Section 6.2.2.

Original GraphSlick

Group ID, SHA1 Block group 1 Block group 2
97c17ad28bc4fc23c042
1105406edfefa6f695c8

2, 3, 4, 5, 7, 6 14, 15, 16, 17,
19, 18

Modified GraphSlick

Group ID, SHA1 Block group 1 Block group 2
14741e3274d04853bb45
52d2ea9fe4c4a4ca2f31

0, 2, 3, 4, 5, 7, 6 12, 14, 15, 16,
17, 19, 18

Table C.5: Results of analysis done with original and modified GraphSlick on
Code listing B.8 compiled with msbuild. The group ID is a hash of the blocks the
group is comprised of, the block group contains the IDA block ID of the blocks in
that block group. The results are described in Section 6.2.2.

Original GraphSlick

Group ID, SHA1 Block group 1 Block group 2
a29943fac0c91fc03a80
04ac3b2e72749ff2bd6b

2, 3, 4, 5 11, 12, 13, 14

Modified GraphSlick

Group ID, SHA1 Block group 1 Block group 2
8632fb1a38b663651255
a7d52a80eea1af808398

0, 1, 2, 3, 4, 5 9, 10, 11, 12,
13, 14

97c17ad28bc4fc23c0421105406edfefa6f695c8
97c17ad28bc4fc23c0421105406edfefa6f695c8
14741e3274d04853bb4552d2ea9fe4c4a4ca2f31
14741e3274d04853bb4552d2ea9fe4c4a4ca2f31
a29943fac0c91fc03a8004ac3b2e72749ff2bd6b
a29943fac0c91fc03a8004ac3b2e72749ff2bd6b
8632fb1a38b663651255a7d52a80eea1af808398
8632fb1a38b663651255a7d52a80eea1af808398

Chapter C: Results full tables 101

Table C.6: Results of analysis done with original and modified GraphSlick on
Code listing B.8 compiled with GCC. The group ID is a hash of the blocks the
group is comprised of, the block group contains the IDA block ID of the blocks in
that block group. The results are described in Section 6.2.2.

Original GraphSlick

Group ID, SHA1 Block group 1 Block group 2
384fd4e1a43ee9c472b4
7664b37d4f0e82de0bb3

1, 8 5, 9

Modified GraphSlick

Group ID, SHA1 Block group 1 Block group 2
928cdfba0280e6b2430a
72922a74e6762e3dbd1f

0, 1, 10, 8 4, 5, 12, 9

C.3 Results: Test 4: Identification of string comparison
function

The CFGs from the detected inlined string compare function are listed in this
section. The tables contain the block IDs and node hashes for the inlined function
and the known string comparison function from the C++ standard library.

Table C.7: List of hash (itype1-hash) values of some of the blocks in the non-
inlined version of the string comparison function compiled with cl.

Block ID Block hash
0 32ad14bd5184dee01d95c51a8d441dbc3192932d
1 2a0e2203060ee9b7af620be1d45db72dccf19e7e
2 958fe0b12065656a7e51b4131c3b6a8a0533572b
3 5bf3b6f6dce55a30d3e89c07bb1e1530b1e4eeeb
4 d52002b97a39cf545946dd413c3a1965b48abda8
5 8b7471f4ae0bf59f5f0a425068c05d96f4801b9e
7 eafcb28562dd561fba78f7c2aee929ec9495daf1
6 bad7183c5654a249eea49d487514850230733039

384fd4e1a43ee9c472b47664b37d4f0e82de0bb3
384fd4e1a43ee9c472b47664b37d4f0e82de0bb3
928cdfba0280e6b2430a72922a74e6762e3dbd1f
928cdfba0280e6b2430a72922a74e6762e3dbd1f
32ad14bd5184dee01d95c51a8d441dbc3192932d
2a0e2203060ee9b7af620be1d45db72dccf19e7e
958fe0b12065656a7e51b4131c3b6a8a0533572b
5bf3b6f6dce55a30d3e89c07bb1e1530b1e4eeeb
d52002b97a39cf545946dd413c3a1965b48abda8
8b7471f4ae0bf59f5f0a425068c05d96f4801b9e
eafcb28562dd561fba78f7c2aee929ec9495daf1
bad7183c5654a249eea49d487514850230733039

102 J. Hofgaard: CFG analysis for inlined function detection and identification

Table C.8: List of hash (itype1-hash) values of the blocks contained in the inlined
version of the string comparison function.

Block ID Block hash
0 ae779acc189abad25fb53109993266c49ea21247
1 ae691977095934abd83cbc7b956ea10810bc2100
2 958fe0b12065656a7e51b4131c3b6a8a0533572b
9 c458d78de80be0321b9c18003f4a2327b1162f68
8 69e56976fc9bee70c1d2eaa85c0c8dea9f722a2f
3 6bade00c601dcdc1c1aeda947d467fdaa9fb3bf4
4 d548e8c90ebf6c25b931cfca81933a8bbe40dc09
5 8b7471f4ae0bf59f5f0a425068c05d96f4801b9e
7 b92265b94936e7d8282624aaf87e4ec89f601835
6 bad7183c5654a249eea49d487514850230733039
0xa ca7469b2f65a9a05ad56851727e623528ab4e798
0xb bfda6ee5117ee6b077bbc524328982c5d20abb03
0xc ae779acc189abad25fb53109993266c49ea21247
0xd 1a16a42243784a2d0735add9326257d0fcbf07af
0xe 958fe0b12065656a7e51b4131c3b6a8a0533572b
0xf 6bade00c601dcdc1c1aeda947d467fdaa9fb3bf4
0x10 d548e8c90ebf6c25b931cfca81933a8bbe40dc09
0x14 1aaeb30f2b03b1508e5ab4c8e0257f013ad0ce7e
0x13 b92265b94936e7d8282624aaf87e4ec89f601835
0x11 8b7471f4ae0bf59f5f0a425068c05d96f4801b9e
0x12 bad7183c5654a249eea49d487514850230733039

ae779acc189abad25fb53109993266c49ea21247
ae691977095934abd83cbc7b956ea10810bc2100
958fe0b12065656a7e51b4131c3b6a8a0533572b
c458d78de80be0321b9c18003f4a2327b1162f68
69e56976fc9bee70c1d2eaa85c0c8dea9f722a2f
6bade00c601dcdc1c1aeda947d467fdaa9fb3bf4
d548e8c90ebf6c25b931cfca81933a8bbe40dc09
8b7471f4ae0bf59f5f0a425068c05d96f4801b9e
b92265b94936e7d8282624aaf87e4ec89f601835
bad7183c5654a249eea49d487514850230733039
ca7469b2f65a9a05ad56851727e623528ab4e798
bfda6ee5117ee6b077bbc524328982c5d20abb03
ae779acc189abad25fb53109993266c49ea21247
1a16a42243784a2d0735add9326257d0fcbf07af
958fe0b12065656a7e51b4131c3b6a8a0533572b
6bade00c601dcdc1c1aeda947d467fdaa9fb3bf4
d548e8c90ebf6c25b931cfca81933a8bbe40dc09
1aaeb30f2b03b1508e5ab4c8e0257f013ad0ce7e
b92265b94936e7d8282624aaf87e4ec89f601835
8b7471f4ae0bf59f5f0a425068c05d96f4801b9e
bad7183c5654a249eea49d487514850230733039

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	1 Introduction
	1.1 Topics covered
	1.2 Keywords
	1.3 Problem description
	1.4 Research questions
	1.5 Contributions

	2 Theory
	2.1 Source code
	2.2 Compilation and linking
	2.3 Executable programs in operating systems
	2.4 Levels of abstraction
	2.5 Code optimization
	2.6 Reversing the compilation process
	2.7 Control flow graphs
	2.8 Hash algorithms

	3 Previous work
	3.1 Classification and identification of code
	3.2 GraphSlick

	4 Implementation
	4.1 GraphSlick modifications
	4.2 Splitting of basic blocks for duplicate code detection
	4.3 Identification of known functions

	5 Verification and testing
	5.1 Test framework
	5.2 Test framework modules

	6 Results
	6.1 Test setup
	6.2 Inlined function detection
	6.3 Function identification

	7 Discussion
	7.1 Validating the method
	7.2 Known functions signature database
	7.3 Detecting functions
	7.4 Test environment

	8 Conclusion
	8.1 Future Work

	Bibliography
	A GraphSlick's code
	A.1 Updates done to GraphSlick

	B Test code
	B.1 Test setup: Test 1
	B.2 Test setup: Test 2

	C Results full tables
	C.1 Results: Test 1: Detection of inlined string comparison
	C.2 Results: Test 2: Detection of inlined function using compiler keywords
	C.3 Results: Test 4: Identification of string comparison function

