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Abstract. This paper is devoted to investigate the robust duality and saddle
point characterizations of nonconvex multiobjective optimization with data un-
certainty in both the objective and constraints. Based on the robust necessary
optimality conditions, we introduce a mixed type robust dual model of the un-
certain multiobjective optimization problem, which covers the Wolfe type dual
model and Mond-Weir type dual model as special cases. The weak robust duality,
strong robust duality and converse robust duality between the robust dual model
and the robust counterpart of original problem are established under some suit-
able conditions. Moreover, we also obtain the robust saddle point type sufficient
and necessary optimality conditions for the uncertain multiobjective optimization
problem under the generalized convexity assumptions.

1. Introduction

Multiobjective optimization is also called multicriteria optimization which has
multiple objectives that are generally in conflict simultaneously. Multiobjective
optimization has been received an increasingly attention and extensively applied
in machine learning, engineering, economy, management and sircraft design; see
[1, 2, 3, 4, 5, 6, 7, 8] and the references therein. However, the existing optimization
theory and algorithms on multiobjective optimization were mainly established in
the sense of accurate data.

In most practical applications, the data of parameters in optimization problem-
s are not known exactly, and solutions to optimization problems can be exhibit
remarkable sensitivity to perturbations in the parameters of the problem. So, it
is worthy to study multiobjective optimization with uncertainty. It is well-known
that robust optimization method is an important method to deal with uncertain
optimization problems in the worst case. Robust optimization problems were first
introduced by Soyster [9], and have been extensively studied in robust optimali-
ty, duality, error bounds and algorithms on various robust solutions for uncertain
optimization problems; see, e.g., [10, 11, 12, 13] and reference therein.

Chuong [14] studied necessary/sufficient optimality conditions for robust (weak-
ly) Pareto solutions of the a robust nonsmooth multiobjective optimization problem
in terms of multipliers and limiting subdifferentials of the related functions, and ex-
plored weak/strong duality relations between the primal one and its dual robust
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problem under the (strictly) generalized convexity assumptions. Chen et al. [15]
investigated a nonsmooth/nonconvex multiobjective optimization problems with
data uncertainty by using robust approach. The robust necessary and sufficient
optimality conditions as well as dualties for weakly robust efficient solution and
properly robust efficient solution of the uncertain multiobjective optimization prob-
lem are established under the convex-like and generalized convexity assumptions. It
is naturally proposed a question whether the robust necessary optimality condition-
s of uncertain multi-criteria optimization problem can be established without the
convex-like assumption in more general case. Ou et al. [16] studied the robust opti-
mality conditions as well as saddle point optimality conditions for uncertain multi-
objective optimization problems by using image space analysis. Recently, Chai [17]
introduced three kinds of robust dual problems, such as the robust augmented La-
grange dual, the robust weak Fenchel dual and the robust weak Fenchel-Lagrangge
dual problem, of the primal optimization problem by employing this weak conju-
gate function. By using Lagrangian functions, strong robust duality was given in
robust convex optimization in which all involved functions are convex-concave func-
tions in [18, 19, 20]. Thereafter, the robust duality and robust saddle point results
of uncertain multiobjective optimization problems were studied without convexity;
see [21, 22]. Very recently, Wang, Li and Chen [23] generalized the results in [24]
form differentiable cases to nondifferentiable cases under weaker assumptions, and
obtained KKT type robust optimality conditions for multiobjective optimization
problem with infinitely many uncertain constraints under the generalized convexity
assumptions. However, robust duality of the multiobjective optimization problem
with infinitely many uncertain constraints are not considered in [23]. Inspired by the
above works, this paper aims to study robust duality and robust saddle point char-
acterizations of the nonconvex multiobjective optimization problems with infinitely
many uncertain constraints.

The rest of this paper is organized as follows. In Section 2, we recall some basic
notations and several auxiliary results. Section 3 introduces a mixed-type robust
dual problem of uncertain optimization problems and deal with duality relations
between the primal-dual problems. A vector-valued Lagrangian function is con-
structed, and then we discuss saddle point results in Section 4. Finally, we give
some conclusions in Section 5.

2. Preliminaries

Throughout of this paper, without special statements, let X be a Banach space
with its topological dual space X∗, Y be a metric space, Rl+ be the nonnegative

orthant of the l-dimensional Euclidean space Rl. The symbol
w∗→ means the conver-

gence in the weak∗-topology of X∗. For each S ⊆ X, the topological interior, the
closure hull and the convex hull of S are denoted by intS, clS and coS, respective-
ly, while cl∗B denotes by the weak∗ topological closure of B ⊆ X∗, and cl∗coB is
weak∗-closed convex hull of B ⊆ X∗. The closed ball with the center x and the
radius ε is denoted by B(x, ε).
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We now consider the following uncertain constrained multiobjective optimization
problem (UMP):

min f(x, u)

s.t. x ∈ X, gt(x, vt) ≤ 0, ∀ t ∈ T,

where f(x, u) := (f1(x, u1), . . . , fl(x, ul)), fk : X × Uk → R, k ∈ K := {1, 2, . . . , l},
gt : X × Vt → R, u := (u1, u2, . . . , ul) is an uncertain parameter with uk ∈ Uk a
compact subset of Y for each k ∈ K and vt is an uncertain parameter which belongs
to the compact set Vt ⊆ Y, t ∈ T an arbitrary index set.

Since robust optimization is an effective method for treating the uncertain prob-
lem, we adopt the robust optimization method proposed in [25] to deal with (UMP)
in the worst-case. The robust counterpart of (UMP) is defined as follows:

(RMP) min
x∈C

(
sup
u1∈U1

f1(x, u1), . . . , sup
ul∈Ul

fl(x, ul)

)
,

where C := {x ∈ X : gt(x, vt) ≤ 0, ∀ vt ∈ Vt, ∀t ∈ T} is the so-called the robust
feasible region of (UMP).

For the simplicity, we denote Fk(x) := supuk∈Uk fk(x, uk), F (x) := (F1(x), . . . , Fl(x))
for x ∈ X, Uk(x) := {uk ∈ Uk : fk(x, uk) = Fk(x)} and v := (vt)t∈T ∈ V :=∏
t∈T Vt, and for each t ∈ T , Gt(x) := supvt∈Vt gt(x, vt), Vt(x) := {vt ∈ Vt :

gt(x, vt) = Gt(x)}, G(x) := supt∈T Gt(x) and T (x) := {t ∈ T : Gt(x) = G(x)}.
We also define a set-valued mapping V : T ⇒ Y as V(t) := Vt for all t ∈ T , and

the graph of the mapping V is denoted by gphV := {(t, vt) : vt ∈ Vt, t ∈ T}.
In order to deal with (RMP), we next recall some basic definitions and facts.

Let T be an arbitrary index set and |T | mean the hypervolume of T . R|T | is
defined as:

R|T | := {λ = (λt)t∈T : there only finite t ∈ T, λt 6= 0} ,

and the nonnegative orthant of R|T | is defined by

R|T |+ :=
{
λ ∈ R|T | : λt ≥ 0,∀t ∈ T

}
.

Let the function φ : X → R is locally Lipschitz at x̄ ∈ X. The generalized Clarke
directional derivative of φ at x̄ in the direction d ∈ X is defined by

φ0(x̄; d) := lim sup
x→x̄
τ→0

φ(x+ τd)− φ(x)

τ
,

and the one-side directional derivative of φ at x̄ in the direction d ∈ X is defined by

φ′(x̄; d) := lim
τ→0

φ(x̄+ τd)− φ(x̄)

τ
.

The function φ is called regular at x̄ if φ0(x̄; ·) = φ′(x̄; ·).
The Clarke subdifferential of φ at x̄ is defined by

∂φ(x̄) :=
{
x∗ ∈ X∗ : 〈x∗, d〉 ≤ φ0(x̄; d), ∀ d ∈ X

}
.



4 J. CHEN, R. YANG, E. KÖBIS, AND T. ZHANG

Definition 2.1. Let X be a Banach space, W be a compact metric space and a
function φ : X ×W → R. The multifunction (x, ω) ⇒ ∂xφ(x, ω) ⊆ X∗ is said to

be weak∗ closed at (x̄, ω̄) if x∗n ∈ ∂xφ(xn, ωn) with (xn, ωn) → (x̄, ω̄), and x∗n
w∗→ x∗

implies that x∗ ∈ ∂xφ(x̄, ω̄).

Definition 2.2. x̄ ∈ C is called a local robust weakly efficient solution of problem
(UMP) if, there exists a neighborhood O of x̄ such that

F (x)− F (x̄) 6∈ −intRl+, ∀x ∈ C ∩O.
In particular, if C ⊆ O, the local robust weakly efficient solution notion reduces to
the robust weakly efficient solution notion of (UMP).

Definition 2.3. [23] The robust Mangasarian-Fromowitz constraint qualification
(RMFCQ) holds at x̄ ∈ C if

0 6∈ cl∗co {∂xgt(x̄, vt) : vt ∈ Vt(x̄), t ∈ T (x̄)} .

Definition 2.4. [23] (fk, gt)k∈K,t∈T is said to be generalized convex at x̄ ∈ X if for
any x ∈ X, there exist d ∈ X such that

fk(x, uk)− fk(x̄, uk) ≥ 〈ξk, d〉, ∀ξk ∈ ∂xfk(x̄, uk), ∀uk ∈ Uk(x̄), k ∈ K,
gt(x, vt)− gt(x̄, vt) ≥ 〈ηt, d〉, ∀ηt ∈ ∂xgt(x̄, vt), ∀vt ∈ Vt(x̄), ∀t ∈ T (x̄).

It is worth noting that if for each uk ∈ Uk, k = 1, 2, . . . , l, vt ∈ Vt, t ∈ T, fk(·, uk)
and gt(·, vt) are convex, then (fk, gt)k∈K,t∈T is generalized convex. Besides, if for

each u ∈ U and v ∈ V , f is Rl+-generalized convex and g := (gt)t∈T is R|T |+ -
generalized convex defined as [15, Definition 2.6], then (fk, gt)k∈K,t∈T is generalized
convex.

Lemma 2.5. [23, Theorem 3.1] Let x ∈ X. Suppose that the following conditions
hold:

(i) For any given t ∈ T, gt(x, vt) is upper semi-continuous (u.s.c) in vt ∈ Vt,
and for any given v ∈ V , gt(x, vt) is u.s.c in t ∈ T .

(ii) For any given t ∈ T, gt(x, vt) is locally Lipschitz in x uniformly for vt ∈ Vt,
and for any given v ∈ V , gt(x, vt) is locally Lipschitz in x uniformly for
t ∈ T .

(iii) For any given t ∈ T, ∂xgt(x, vt) is weak∗ closed in (x, vt) for each vt ∈ Vt(x),
and for any given v ∈ V , ∂xgt(x, vt) is weak∗ closed in (x, t) for each t ∈
T (x).

(iv) gt(x, vt) is regular in x for each vt ∈ Vt and t ∈ T .

Then ∂G(x) = cl∗co {∂xgt(x, vt) : vt ∈ Vt(x), t ∈ T (x)}.

For the sake of brevity, we give the blanket hypotheses (see, e.g., [23, 25]):

(H1) For each k ∈ K, fk(x, uk) is u.s.c in uk ∈ Uk.
(H2) For each k ∈ K, fk(x, uk) is locally Lispschitz in x uniformly for uk ∈ Uk,

namely, there exists L > 0 such that

‖fk(x1, uk)− fk(x2, uk)‖ ≤ L ‖x1 − x2‖ , ∀x1, x2 ∈ B(x, δ), uk ∈ Uk.
(H3) For each k ∈ K, the subdifferential ∂xfk(x, uk) is weak∗ closed in (x, uk) for

each uk ∈ Uk(x).
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(H4) For each k ∈ K, fk(x, uk) is regular in x for each uk ∈ Uk, i.e., fk
0
x(x, uk; ·) =

fk
′
x(x, uk; ·).

The following necessary conditions for local robust weakly efficient solutions of
problem (UMP) can be obtained from [23, Theorem 4.1].

Lemma 2.6. (Necessary optimality conditions) Let x̄ be a local robust weakly ef-
ficient solution of (UMP) and the (RMFCQ) hold at x̄. Suppose that fk(x, uk)
satisfies (H1)-(H4) for each k ∈ K and the assumptions of Lemma 2.5 are fulfilled.
Then there exist θk ≥ 0, k ∈ K not all zero, and λ ≥ 0 such that

0 ∈
∑
k∈K

θkcl∗co {∂xfk(x̄, uk) : uk ∈ Uk(x̄)}+ λcl∗co {∂xgt(x̄, vt) : vt ∈ Vt(x̄), t ∈ T (x̄)} ,

and λ supvt∈Vt,t∈T gt(x̄, vt) = 0.

3. Robust dualities

In this section, based on the robust Karush-Kuhn-Tucker optimality condition-
s, we formulate a Mixed type robust dual model of the uncertain multiobjective
optimization problem. Then we investigate the weak, strong and converse robust
duality results between the robust dual model and the original problem.

We first present the following robust mixed dual model (RMD) of (RMP):

maxL(z, λ, β, v) = F (z) +
∑
t∈T

λtgt(z, vt)e.

s.t.βt sup
vt∈Vt,t∈T

gt(z, vt) ≥ 0,

0 ∈
∑
k∈K

θkcl∗co{∂zfk(z, uk) : uk ∈ Uk(z)}

+
∑
t∈T

(λt + βt)cl∗co{∂zgt(z, vt) : vt ∈ Vt(z), t ∈ T (z)},

θk ≥ 0, k ∈ K,λt ≥ 0, βt ≥ 0, vt ∈ Vt, t ∈ T,

where λ := (λt)t∈T ∈ R|T |+ , β := (βt)t∈T ∈ R|T |+ , v := (vt)t∈T ∈ V, e := (1, 1, . . . , 1) ∈
Rl.

We also denote the feasible set of (RMD) by CD.
In particular, if βt = 0, t ∈ T , (RMD) reduces to the following Wolfe type robust

dual problem (RMDw):

maxL(z, λ, β, v) = F (z) +
∑
t∈T

λtgt(z, vt)e.

s.t. 0 ∈
∑
k∈K

θkcl∗co{∂zfk(z, uk) : uk ∈ Uk(z)}

+
∑
t∈T

λtcl∗co{∂zgt(z, vt) : vt ∈ Vt(z), t ∈ T (z)},

θk ≥ 0, k ∈ K,λt ≥ 0, vt ∈ Vt, t ∈ T.
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Besides, if λt = 0, t ∈ T , (RMD) reduces to the following Mond-Weir type robust
dual problem (RMDm):

maxL(z, λ, β, v) = F (z).

s.t. 0 ∈
∑
k∈K

θkcl∗co{∂zfk(z, uk) : uk ∈ Uk(z)}

+
∑
t∈T

βtcl∗co{∂zgt(z, vt) : vt ∈ Vt(z), t ∈ T (z)},

βt sup
vt∈Vt,t∈T

gt(z, vt) ≥ 0,

θk ≥ 0, k ∈ K,βt ≥ 0, vt ∈ Vt, t ∈ T.
So, (RMD) unifies the Wolfe type robust dual model and Mond-Weir type robust
dual model.

The local robust weakly efficient solution of (RMD) is defined similarly as in
Definition 2.2. In the rest of this paper, we use the following notations: for u, v ∈ Rl,

u ≺ v ⇔ v − u ∈ intRl+, u 6≺ v ⇔ v − u 6∈ intRl+.

Definition 3.1. (z̄, λ̄, β̄, v̄) ∈ CD is said to be a local weakly efficient solution
of (RMD) if, there exists a neighborhood O of (z̄, λ̄, β̄, v̄) such that there is no
(z, λ, β, v) ∈ CD ∩O satisfying

L(z̄, λ̄, β̄, v̄) 6≺ L(z, λ, β, v).

In particular, if O := X, then the above local weakly efficient solution notion
reduces to the weakly efficient solution notion. We denote SlwD and SwD by the set of
local weakly efficient solutions and the set of weakly efficient solutions of (RMD),
respectively.

The next theorem gives the robust weak duality between (RMP) and (RMD).

Theorem 3.2. (Weak robust duality) Let (fk, gt)k∈K,t∈T be generalized convex at
z. Then

(3.1) F (x) 6≺ L(z, λ, β, v), ∀x ∈ C, (z, λ, β, v) ∈ CD.

Proof. For any (z, λ, β, v) ∈ CD, there exist θk ≥ 0, k ∈ K not all zero, λt ≥ 0,
βt ≥ 0, and

z∗k ∈ cl∗co{∂zfk(z, uk) : uk ∈ Uk(z)}, k ∈ K,(3.2)

and

x∗ ∈ cl∗co{∂zgt(z, vt) : vt ∈ Vt(z), t ∈ T (z)},(3.3)

such that

0 ∈
∑
k∈K

θkz
∗
k +

∑
t∈T

(λt + βt)x
∗,(3.4)

βt sup
vt∈Vt,t∈T

gt(z, vt) ≥ 0.(3.5)

Since θk ≥ 0, k ∈ K are not all zero, without loss of generality, we assume that∑
k∈K θk = 1 and set θ = (θ1, θ2, . . . , θl).



ROBUST DUALITY AND SADDLE POINT CHARACTERIZATIONS FOR NONCONVEX UMP 7

Suppose to the contrary that there exists x ∈ C such that

F (x) ≺ L(z, λ, β, v).

Then

〈θ, F (x)− L(z, λ, β, v)〉 < 0.

Moreover, one has

(3.6)
∑
k∈K

θk(Fk(x)− Fk(z))−
∑
t∈T

λtgt(z, vt) < 0.

From the generalized convexity of (fk, gt)k∈K,t∈T , it follows that there exists d ∈ X
such that

fk(x, uk)− fk(z, uk) ≥ 〈ξk, d〉, ∀ξk ∈ ∂zfk(z, uk), ∀uk ∈ Uk(z), k ∈ K,(3.7)

gt(x, vt)− gt(z, vt) ≥ 〈ηt, d〉, ∀ηt ∈ ∂zgt(z, vt), ∀vt ∈ Vt(z), ∀t ∈ T (z).(3.8)

We conclude form (3.2) that there is a net

{z∗r}r∈Λ ⊆ co{∂zfk(z, uk) : uk ∈ Uk(z)}.

such that z∗r
w∗→ z∗k, where Λ stands for the directed set of this net. Then, for each

r ∈ Λ, there exist αrj ≥ 0, z∗rj ∈ ∂zfk(z, urj), urj ∈ Uk(z), j = 1, . . . , k
′
, k
′ ∈ N, and∑k

′

j=1 αrj = 1, such that

z∗r =
k
′∑

j=1

αrjz
∗
rj .(3.9)

This together with (3.7) ensures that

〈z∗r , d〉 =
k
′∑

j=1

αrj〈z∗rj , d〉 ≤
k
′∑

j=1

αrj [fk(x, urj)− fk(z, urj)].(3.10)

Since urj ∈ Uk(z), fk(z, urj) = Fk(z) for j = 1, . . . , k
′
. By the definition of Fk,

fk(x, urj) ≤ Fk(x) for j = 1, . . . , k
′
. Using (3.10) yields that

〈z∗r , d〉 ≤ Fk(x)− Fk(z).

Passing to the limit with respect to r, one has

〈z∗k, d〉 ≤ Fk(x)− Fk(z).

Similarly, there is a net

{x∗s}s∈Λ ⊆ co{∂zgt(z, vt) : vt ∈ Vt(z), t ∈ T (z)}.

such that x∗s
w∗→ x∗. For each s ∈ Λ, there exist ιsi , τsj ≥ 0, i = 1, 2, . . . , i

′
, j =

1, 2, . . . , j
′
, i
′
, j
′ ∈ N,

∑i
′

i=1 ιsi =
∑j

′

j=1 τsj = 1, tsi ∈ T (z), vtsij ∈ Vtsij (z) and

x∗tsij
∈ ∂zgtsi (z, vtsij ) such that x∗s =

∑i
′

i=1 ιsi
∑j

′

j=1 τsjx
∗
tsij

.
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Form (3.8), we deduce that

〈x∗s, d〉 =

i
′∑

i=1

ιsi

j
′∑

j=1

τsj 〈x∗tsij , d〉

≤
i
′∑

i=1

ιsi

j
′∑

j=1

τsj

(
gtsi (x, vtsij )− gtsi (z, vtsij )

)

≤
i
′∑

i=1

ιsi
(
Gtsi (x)−Gtsi (z)

)
≤ G(x)−G(z).

Taking the limit with respect to s ∈ Λ, we have

〈x∗, d〉 ≤ G(x)−G(z) ≤ −G(z),(3.11)

because of x ∈ C. Together (3.4), (3.5) with the definition of G(z), we have

0 =
∑
k∈K

θk〈z∗k, d〉+
∑
t∈T

(λt + βt)〈x∗, d〉

≤
∑
k∈K

θk(Fk(x)− Fk(z))−
∑
t∈T

(λt + βt)G(z)

≤
∑
k∈K

θk(Fk(x)− Fk(z))−
∑
t∈T

λtG(z)

≤
∑
k∈K

θk(Fk(x)− Fk(z))−
∑
t∈T

λtgt(z, vt),

where contradicts with (3.6). It therefore implies that (3.1) holds. �

It should be pointed out that the generalized convexity of (fk, gt)k∈K,t∈T in The-
orem 3.2 is indispensable; see Example 3.3.

Example 3.3. Consider the following uncertain biobjective problem:

min
(
−|x| − u1,−x2 − u2

)
s.t. t2|x| − vt ≤ 0, ∀ t ∈ T,

where u1, u2 ∈ U2, U1 = U2 := [0, 1], and vt ∈ Vt := [1, 1 + t] for t ∈ T := [0, 1].
The robust counterpart of the uncertain biobjective problem is as follows:

min
(
−|x|,−x2

)
s.t. t2|x| − vt ≤ 0, ∀ vt ∈ Vt, ∀ t ∈ T.

After calculation, we obtain thatGt(x) = t2|x|−1, G(x) = |x|−1, Vt(x) = {1}, U1(x) =
U2(x) = {0}, T (x) = {1}, C = R, ∂xf1(x, u1) = [−1, 1], ∂xf2(x, u2) = −2x for
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u1, u2 ∈ {0}, and

∂xgt(x, vt) =


[−1, 1], x = 0,

{1}, x > 0,

{−1}, x < 0.

Taking z̄ := 0, θ̄1 = θ̄2 := 1
2 , β̄t = 0 and λ̄t = v̄t := 1 for all t ∈ T , we have

(z̄, λ̄, β̄, v̄) ∈ CD and
L(z̄, λ̄, β̄, v̄t) = (−1,−1).

However, there exists x̄ := 2 ∈ C such that

F (x̄) = (−2,−4) ≺ (−1,−1) = L(z̄, λ̄, β̄, v̄).

As a matter of fact, (fk, gt)k∈K,t∈T is not generalized convex at z̄. For u1, u2 ∈ {0},
taking (ξ̄1, ξ̄2) = (0, 0) ∈ ∂zf1(z̄, u1)× ∂zf2(z̄, u2), we get that for any d ∈ R,

f1(x̄, u1)− f1(z̄, u1) = −2 < 0 = 〈ξ̄1, d〉
and

f2(x̄, u2)− f1(z̄, u2) = −4 < 0 = 〈ξ̄2, d〉.

The following theorem declares strong robust duality relations (RMP) and (R-
MD).

Theorem 3.4. (Strong robust duality) Let x̄ be a local robust weakly efficient solu-
tion of (UMP) and (RMFCQ) hold at x̄. Assume that fk(x, uk) satisfies (H1)-(H4)
for each k ∈ K and the assumptions of Lemma 2.5 are satisfied. Then there exist

(λ̄, β̄, v̄) ∈ R|T |+ × R|T |+ × V such that(
x̄, λ̄, 0, v̄

)
∈ CD, F (x̄) = L(x̄, λ̄, 0, v̄), and λ̄tgt(x̄, v̄t) = 0, t ∈ T.

Furthermore, if (fk, gt)k∈K,t∈T is generalized convex, then (x̄, λ̄, 0, v̄) ∈ SwD.

Proof. It follows from Lemma 2.6 that there exist θ̄k ≥ 0, k ∈ K not all zero, and
λ̃ ≥ 0 such that

0 ∈
∑
k∈K

θ̄kcl∗co{∂xfk(x̄, uk) : uk ∈ Uk(x̄)}+ λ̃cl∗co{∂xgt(x̄, vt) : vt ∈ Vt(x̄), t ∈ T (x̄)}
(3.12)

and

λ̃ sup
vt∈Vt,t∈T

gt(x̄, vt) = 0.(3.13)

If λ̃ > 0, then supvt∈Vt,t∈T gt(x̄, vt) = 0 and T (x̄) 6= ∅. For t ∈ T , we let β =

(βt)t∈T = 0, λ̄ = (λ̄t) ∈ R|T |+ and

(3.14) λ̄t :=



λ̃

|T |
, if λ̃ = 0,

λ̃

|T (x̄)|
, if t ∈ T (x̄), λ̃ > 0,

0, if t ∈ T \ T (x̄), λ̃ > 0.
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Then
∑

t∈T λ̄t = λ̃ and

0 ∈
∑
k∈K

θ̄kcl∗co{∂xfk(x̄, uk) : uk ∈ Uk(x̄)}

+
∑
t∈T

λ̄tcl∗co{∂xgt(x̄, vt) : vt ∈ Vt(x̄), t ∈ T (x̄)},

which implies that there exists v̄ ∈ V meeting v̄t ∈ Vt(x̄), t ∈ T (x̄) such that(
x̄, λ̄, 0, v̄

)
∈ CD and so,

gt(x̄, v̄t) = Gt(x̄) = G(x̄) = sup
vt∈Vt,t∈T

gt(x̄, vt).

From (3.13), one has

λ̄t sup
vt∈Vt,t∈T

gt(x̄, vt) = λ̄tgt(x̄, v̄t) = 0, t ∈ T (x̄).

It therefore follows from (3.14) that

λ̄tgt(x̄, v̄t) = 0, t ∈ T,
and

L(x̄, λ̄, 0, v̄) = F (x̄) +
∑
t∈T

λ̄tgt(x̄, v̄t)e = F (x̄).

Since (fk, gt)k∈K,t∈T is generalized convex and x̄ ∈ C, we conclude from Theorem
3.2 that

L(x̄, λ̄, 0, v̄) = F (x̄) 6≺ L(z, λ, β, v), ∀ (z, λ, β, v) ∈ CD.
Consequently, one has

(
x̄, λ̄, 0, v̄

)
∈ SwD. �

Theorem 3.5. (Converse robust duality) Let (x̄, λ̄, λ̄, v̄) ∈ CD be a weak efficient
solution of (RMD) with x̄ ∈ C and λ̄t = 0 for t ∈ T \ T (x̄). If (fk, gt)k∈K,t∈T is
generalized convex at x̄, then x̄ is a robust weak efficient solution of (UMP).

Proof. Since (x̄, λ̄, λ̄, v̄) ∈ CD and λ̄t = 0 for t ∈ T \ T (x̄), one has

λ̄tgt(x̄, v̄t) = λ̄t sup
vt∈Vt,t∈T

gt(x̄, vt) ≥ 0, t ∈ T,

and so,
∑

t∈T λ̄tgt(x̄, v̄t) ≥ 0. It follows from Theorem 3.2 that

(3.15) F (x) 6≺ L(x̄, λ̄, λ̄, v̄), ∀x ∈ C.
Taking x = x̄ in above formula, we have

0 6≺
∑
t∈T

λ̄tgt(x̄, v̄t)e,

i.e.,
∑

t∈T λ̄tgt(x̄, v̄t)e /∈ intRl+. Due to e = (1, 1, . . . , 1) ∈ Rl+, one has∑
t∈T

λ̄tgt(x̄, v̄t) ≤ 0.

Consequently, we obtain
∑

t∈T λ̄tgt(x̄, v̄t) = 0 and F (x̄) = L(x̄, λ̄, λ̄, v̄). Then (3.15)
implies that

F (x) 6≺ F (x̄), ∀x ∈ C,
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i.e., F (x) − F (x̄) /∈ −intRl+ for all x ∈ C. Thus, x̄ ∈ C is a robust weak efficient
solution of (UMP). �

4. Robust saddle point characterizations

In this section, we present robust saddle point characterizations of (UMP) in the
sense of vector-valued Lagrangian function.

We now define the vector-valued Lagrangian function L : Rn × V ×R|T |+ → Rl as
follows

L(x, v, λ) = F (x) +
∑
t∈T

λtgt(x, vt)e,

where λ := (λt)t∈T ∈ R|T |+ , v := (vt)t∈T ∈ V and e := (1, 1, . . . , 1) ∈ Rl.

Definition 4.1. A point (x̄, v̄, λ̄) ∈ X × V × R|T |+ is called a robust weak saddle
point of L(x, v, λ) if,

L(x, v̄, λ̄) 6≺ L(x̄, v̄, λ̄) 6≺ L(x̄, v, λ), ∀ (x, v, λ) ∈ X × V × R|T |+ .

The following theorem presents the saddle point type necessary robust optimality
conditions of (UMP).

Theorem 4.2. Let x̄ be a robust weakly efficient solutions of (UMP) and (RM-
FCQ) hold at x̄. Assume that the assumptions of Lemma 2.6 are satisfied, and

(fk, gt)k∈K,t∈T is generalized convex at x̄. Then there exist λ̄ := (λ̄t)t∈T ∈ R|T |+ and

v̄ := (v̄t)t∈T ∈ V such that (x̄, v̄, λ̄) is a robust weak saddle point of L(x, v, λ).

Proof. It follows from Lemma 2.6 that there exist θ̄k ≥ 0, k ∈ K not all zero, and
λ̃ ≥ 0 such that

0 ∈
∑
k∈K

θ̄kcl∗co{∂xfk(x̄, uk) : uk ∈ Uk(x̄)}+ λ̃cl∗co{∂xgt(x̄, vt) : vt ∈ Vt(x̄), t ∈ T (x̄)},

and

λ̃ sup
vt∈Vt,t∈T

gt(x̄, vt) = 0.(4.1)

Without loss of generality, assume that
∑

k∈K θ̄k = 1.

If λ̃ = 0, (4.1) implies that there exist v̄t ∈ Vt, t ∈ T such that∑
t∈T

λ̄tgt(x̄, v̄t) = 0,(4.2)

where λ̄t := λ̃
|T | .

If λ̃ > 0, (4.1) implies that T (x̄) 6= ∅ and for each t ∈ T (x̄), there exists v̄t ∈ Vt(x̄)
such that

gt(x̄, v̄t) = sup
vt∈Vt,t∈T

gt(x̄, vt) = 0.(4.3)
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For t ∈ T , we let

(4.4) λ̄t :=


λ̃

|T (x̄)|
, if t ∈ T (x̄),

0, if t ∈ T \ T (x̄).

Clearly,
∑

t∈T λ̄t = λ̃. Therefore, from (4.1) and (4.3), we derive

λ̃gt(x̄, v̄t) =
∑
t∈T (x̄)

λ̄tgt(x̄, v̄t) = λ̃ sup
vt∈Vt,t∈T

gt(x̄, vt) = 0, t ∈ T (x̄).

Moreover, one has ∑
t∈T

λ̄tgt(x̄, v̄t) = 0.(4.5)

Since x̄ ∈ C, then gt(x̄, vt) ≤ 0, vt ∈ Vt and∑
t∈T

λtgt(x̄, vt) ≤ 0, ∀ (v, λ) := (v, (λt)t∈T ) ∈ V × R|T |+ .(4.6)

Combined (4.2), (4.5) with (4.6), we have∑
t∈T

λtgt(x̄, vt) ≤
∑
t∈T

λ̄tgt(x̄, v̄t).

So, one has ∑
t∈T

λ̄tgt(x̄, v̄t)e−
∑
t∈T

λtgt(x̄, vt)e ∈ Rl+,

which implies that

F (x̄) +
∑
t∈T

λ̄tgt(x̄, v̄t)e−

(
F (x̄) +

∑
t∈T

λtgt(x̄, vt)e

)
/∈ −intRl+.

Then we have

L(x̄, v̄, λ̄) 6≺ L(x̄, v, λ), ∀ (v, λ) ∈ V × R|T |+ .(4.7)

By the proof of Theorem 3.4, one has
(
x̄, λ̄, 0, v̄

)
∈ CD and

L(x̄, v̄, λ̄) = F (x̄) = L(x̄, λ̄, 0, v̄).

Since (fk, gt)k∈K,t∈T is generalized convex at x̄, we deduce from Theorem 3.2 that

F (x) 6≺ L(x̄, v̄, λ̄), ∀x ∈ C,

and so,

F (x) + δC(x)e 6≺ L(x̄, v̄, λ̄), ∀x ∈ X,(4.8)

where δC(x) is the indicator function defined on C.
Suppose that there exist x̂ ∈ X such that L(x̂, v̄, λ̄) ≺ L(x̄, v̄, λ̄). Then

F (x̂) +
∑
t∈T

λ̄tgt(x̂, v̄t)e ≺ F (x̄) +
∑
t∈T

λ̄tgt(x̄, v̄t)e = F (x̄).(4.9)
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Observed that

F (x̂) +
∑
t∈T

λ̄tgt(x̂, v̄t)e = F (x̂) + δC(x̂)e+

(∑
t∈T

λ̄tgt(x̂, v̄t)− δC(x̂)

)
e.

Combined (4.8) and (4.9), we have
(∑

t∈T λ̄tgt(x̂, v̄t)− δC(x̂)
)
e ∈ intRl+ and so,∑

t∈T λ̄tgt(x̂, v̄t) > δC(x̂). Thus, x̂ ∈ C and
∑

t∈T λ̄tgt(x̂, v̄t) > 0, which contradicts

the fact that
∑

t∈T λ̄tgt(x̂, v̄t) ≤ 0. Therefore, one has

L(x, v̄, λ̄) 6≺ L(x̄, v̄, λ̄), ∀x ∈ X.(4.10)

Consequently, it follows from (4.7) and (4.10) that there exist λ̄ := (λ̄t)t∈T ∈ R|T |+

and v̄ := (v̄t)t∈T ∈ V such that (x̄, v̄, λ̄) ∈ X × V × R|T |+ is a robust weak saddle
point of L(x, v, λ). �

The following result presents the saddle point type sufficient robust optimality
conditions of (UMP).

Theorem 4.3. If (x̄, v̄, λ̄) ∈ X×V ×R|T |+ is a robust weak saddle point of L(x, v, λ),
then x̄ ∈ C is a local robust weakly efficient solution of (UMP).

Proof. Since (x̄, v̄, λ̄) ∈ X × V ×R|T |+ is a robust weak saddle point of L(x, v, λ), we
have

(4.11) L(x, v̄, λ̄) 6≺ L(x̄, v̄, λ̄), ∀x ∈ X
and

L(x̄, v̄, λ̄) 6≺ L(x̄, v, λ), ∀ (v, λ) = (v, (λt)t∈T ) ∈ V × R|T |+ .

So, one has∑
t∈T

λ̄tgt(x̄, v̄t)e 6≺
∑
t∈T

λtgt(x̄, vt)e, ∀ (v, λ) = (v, (λt)t∈T ) ∈ V × R|T |+ ,

i.e., for any (v, λ) = (v, (λt)t∈T ) ∈ V × R|T |+ , we get∑
t∈T

λ̄tgt(x̄, v̄t) ≥
∑
t∈T

λtgt(x̄, vt).(4.12)

For each t ∈ T , set vt = v̄t, λt = 0 and λt = 2λ̄t in (4.12), respectively, we obtain
0 ≥

∑
t∈T λ̄tgt(x̄, v̄t) ≥ 0, i.e.,

∑
t∈T λ̄tgt(x̄, v̄t) = 0. Thus, we have∑

t∈T
λtgt(x̄, vt) ≤ 0, ∀ (v, λ) = (v, (λt)t∈T ) ∈ V × R|T |+ ,(4.13)

which implies that gt(x̄, vt) ≤ 0 for all vt ∈ Vt and t ∈ T and so, x̄ ∈ C.
Note that for any x ∈ C, gt(x, vt) ≤ 0 for all t ∈ T and vt ∈ Vt. Then

(4.14)
∑
t∈T

λ̄tgt(x, vt) ≤ 0, ∀ (x, v) ∈ C × V.

Using (4.11) yields that

(4.15) F (x)− F (x̄) +
∑
t∈T

λ̄tgt(x, v̄t)e /∈ −intRl+, ∀x ∈ X.
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Suppose that for any neighborhood O of x̄, there exists x̂ ∈ C ∩ O such that
F (x̂)− F (x̄) ∈ −intRl+. This together with (4.14) yields that

F (x̂)− F (x̄) +
∑
t∈T

λ̄tgt(x̂, v̄t)e ∈ −intRl+ − Rl+ ⊆ −intRl+,

which contradicts with (4.15). Therefore, there exists a neighborhood O of x̄ such
that

F (x)− F (x̄) 6∈ −intRl+, ∀x ∈ C ∩O,
that is, x̄ is a local robust weakly efficient solution of (UMP). �

5. Conclusions

Based on the Karush-Kuhn-Tucker type robust necessary optimality conditions,
the mixed type robust dual model of uncertain multiobjective optimization problem
is proposed. The weak, strong and converse robust duality results between (RMP)
and (RMD) are derived. The robust saddle point type sufficient and necessary
optimality conditions for the (UMP) are presented under the generalized convexity
assumptions. For the future work, it is interesting to study robust optimality,
duality of (UMP) by the image space analysis like in [16] as well as robust stability.
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