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Abstract. We extend the notion of dilation distance to strongly continuous one-parameter
unitary groups. If the dilation distance between two such groups is finite, then these groups
can be represented on the same space in such a way that their generators have the same
domain and are in fact a bounded perturbation of one another. This result extends to
d-tuples of one-parameter unitary groups. We apply our results to the Weyl canonical com-
mutation relations, and as a special case we recover the result of Haagerup and Rørdam
that the infinite ampliation of the canonical position and momentum operators satisfying
the Heisenberg commutation relation are a bounded perturbation of a pair of strongly com-
muting selfadjoint operators. We also recover Gao’s higher-dimensional generalization of
Haagerup and Rørdam’s result, and in typical cases we significantly improve control of the
bound when the dimension grows.

1. Dilation of groups and perturbations of generators

Haagerup and Rørdam constructed in [5] two norm continuous families θ 7→ uθ, θ 7→ vθ of
unitaries on a Hilbert spaceH such that vθuθ = eiθuθvθ for all θ. This is a surprising result, in
light of the fact that the C*-algebra of the CCR is never separable [8, Proposition 2.2]. One
key step in their intricate proof was a perturbation theorem for unbounded operators, namely
that the infinite ampliation of the canonical position and momentum operators satisfying the
Heisenberg commutation relation are a bounded perturbation of a pair of strongly commuting
selfadjoint operators. In [3], among other things, we used the notion of dilation distance in
order to give a new proof of the existence of the continuous families θ 7→ uθ, θ 7→ vθ that
avoids the use of unbounded operators. In this note we adapt our dilation techniques to
recover Haagerup and Rørdam’s result on perturbations of unbounded operators. Along the
way we record some interesting connections between dilation theory and strongly continuous
unitary groups.

The basic objects of study in this article are d-tuples of (strongly continuous, one-para-
meter) unitary groups. Recall that a unitary group is a group homomorphisms u : R→ U(H)
from R into the unitary group U(H) for some separable Hilbert space H such that the map
t 7→ u(t) is continuous in the strong operator topology. We shall freely use well known facts
about groups and their generators, and in particular that a unitary group (u(t))t∈R gives
rise to a densely defined (typically unbounded) selfadjoint operator A on H determined by

iAx = limt→0
u(t)x−x

t
for all x ∈ domA, that every such selfadjoint operator generates a
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unitary group by the functional calculus as u(t) = exp(itA), and that these two associations
are mutual inverses (this is Stone’s theorem; see e.g. [6, Theorem 10.15]).

Definition 1.1. Two d-tuples of one-parameter unitary groups u = (u1, . . . , ud) on H and
v = (v1, . . . , vd) on K are said to be equivalent if there are faithful normal representations
π : B(H)→ B(L) and ρ : B(K)→ B(L) such that π(uk(t)) = ρ(vk(t)) for all k = 1, . . . , d and
all t ∈ R. In this case we write u ∼ v.

Recall that every faithful normal representation π of B(H) on G is of the form

π(a) = W ∗(a⊗ 1)W

for some Hilbert space F and unitary W : G → H ⊗ F . Indeed, every faithful normal
representation of B(H) is determined by a representation of the compacts K(H), and every
representation of K(H) is unitarily equivalent to a multiple of the identity representation
(see, for example, Corollary 1 to Theorem 1.4.4 in [1]). From this it follows easily that unitary
groups u, v are equivalent if and only if their infinite ampliations u∞ := u ⊗ 1`2(N), v

∞ :=
v ⊗ 1`2(N) are unitarily equivalent, u∞ ∼ue v

∞.
The following definition is an adaptation, to tuples of unitary groups, of the dilation

distance defined in [3] for tuples of unitaries. Note carefully that here we use a stronger
notion of equivalence, hence a more stringent definition of dilation.

Definition 1.2. Given two d-tuples of one-parameter unitary groups u = (u1, . . . , ud) and
v = (v1, . . . , vd), and given a positive real number c, we write u ≺c v if there exist two Hilbert
spaces H ⊆ K and two d-tuples of one-parameter unitary groups U = (U1, . . . , Ud) on B(H)d

and V = (V1, . . . , Vd) on B(K)d, such that u ∼ U , v ∼ V and

Uk(t) = PHC(t)Vk(t)
∣∣
H

for all k = 1, . . . , d and all t in a neighborhood of 0, where C(t) is a family of constants such

that C(t) ≤ et
2c. The dilation distance is defined as

dD(u, v) := max (inf{c : u ≺c v}, inf{c : v ≺c u}) .

As usual, the above definition is understood to mean that dD(u, v) = ∞ in the case that
there are no constants c such that the semigroups dilate one another as above.

Our first goal is to show that tuples that are close in dilation distance are also close in the
sense that they have equivalent representations on the same space that are close in norm.
The key is the technical Theorem 1.4 below, which is proved roughly along the lines of [3,
Theorem 2.6], with some changes so as to make the method applicable to strongly continuous
unitary groups (its proof can be adapted to the case of tuples of single unitaries to recover
[3, Theorem 2.6] with improved constants).

The following simple preparatory lemma has no counterpart for tuples of unitaries.

Lemma 1.3. Let U and V be one-parameter unitary groups on the same Hilbert space L,
and let C,D ∈ R+. Then the following are equivalent.

(1) ‖U(t)− V (t)‖ ≤ C|t|+Dt2 for all positive t in some neighborhood of 0,
(2) ‖U(t)− V (t)‖ ≤ C|t| for all t ∈ R.

Proof. Assume ‖U(t) − V (t)‖ ≤ C|t| + Dt2 for all positive t in some neighborhood of 0.
Then for every C ′ > C, we have ‖U(t)− V (t)‖ ≤ C ′|t| for all t in some small interval [0, a]
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with a > 0. This estimate easily extends to all t ∈ R+; indeed, for s, t ∈ [0, a] we have

‖U(t+ s)− V (t+ s)‖ = ‖U(t)(U(s)− V (s)) + (U(t)− V (t))V (s)‖ ≤ C ′(t+ s),

so the estimate holds on [0, 2a] and by induction it holds on R+. From ‖U(−t)− V (−t)‖ =∥∥U(−t)
(
V (t)− U(t)

)
V (−t)

∥∥ = ‖U(t)− V (t)‖ we conclude that the estimate holds also for
negative t and hence on all of R. Now, if ‖U(t)− V (t)‖ ≤ C ′|t| for all C ′ > C , then clearly
‖U(t)− V (t)‖ ≤ C|t|. The reverse implication is trivial.

Theorem 1.4. Let u = (u1, . . . , ud) and v = (v1, . . . , vd) be two d-tuples of one-parameter
unitary groups on Hilbert spaces H1 and H2. If dD(u, v) ≤ δ <∞, then there exist a Hilbert
space L and faithful normal representations π : B(H1) → B(L) and ρ : B(H2) → B(L) of
infinite multiplicity such that

‖π(uk(t))− ρ(vk(t))‖ ≤ 5
√

2|t|δ1/2

for all k = 1, . . . , d and all t in a neighborhood of 0.

Proof. Assume first that δ > dD(u, v).
By replacing u and v with their infinite ampliations, we may assume that there are unitaries

W1 : H2 ⊕K2 → H1, W2 : H1 ⊕K1 → H2

such that

(1.1) W ∗
1 uk(t)W1 =

(
v′k(t) xk(t)
yk(t) zk(t)

)
and W ∗

2 vk(t)W2 =

(
u′k(t) rk(t)
sk(t) wk(t)

)
with v′(t) = C(t)−1v(t) and u′ = D(t)−1u(t), where C(t) ≤ ect

2
and D(t) ≤ edt

2
for some

c, d < δ. It follows that ‖vk(t) − v′k(t)‖ ≤ |1 − e−ct
2| ≤ ct2 ≤ δt2 for all k = 1, . . . , d and

all t ∈ R; likewise for u, we have ‖uk(t) − u′k(t)‖ ≤ δt2. By a further ampliation if needed,
we may assume that every entry xk, yk, zk . . . in the above operator matrices has infinite
multiplicity.

Since the uk and the vk are unitary groups, we find that

y∗kyk = 1− v′∗k v′k = v∗k(vk − v′k) + (vk − v′k)∗v′k
and, since ‖v′k(t)‖ ≤ 1 and ‖vk(t)‖ = 1, we conclude ‖yk(t)‖ ≤ |t|

√
2δ. Analogous reasoning

yields ‖xk(t)‖, ‖sk(t)‖, ‖rk(t)‖ ≤ |t|
√

2δ. With the block matrices

E :=

(
v′ − v x
y 0

)
, F :=

(
u′ − u r
s 0

)
,

we obtain

W ∗
1 uW1 = v ⊕ z + E, W ∗

1 vW2 = u⊕ w + F.(1.2)

The norm of E can be estimated as

‖Ek(t)‖ ≤ max(‖xk(t)‖, ‖yk(t)‖) + ‖(v′k(t)− vk(t))‖ ≤ |t|
√

2δ + t2δ,

and, analogously, ‖Fk(t)‖ ≤ |t|
√

2δ + t2δ. Define

π(1) : B(H1)→ B(H2 ⊕K2), π(1)(a) := W ∗
1 aW1,

ρ(1) : B(H2)→ B(H1 ⊕K1), ρ(1)(b) := W ∗
2 bW2
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so that

π(1)(u) = v ⊕ z + E and ρ(1)(v) = u⊕ w + F.

Let π(k) and ρ(k) be conjugation with W1 ⊕ id and W2 ⊕ id, respectively, where id denote
identity operators on direct sums of k−1 Hilbert spaces which will be clear from the context.
Then we obtain

π(2)ρ(1)(v) = π(1)(u)⊕ w + π(2)(F ) = v ⊕ z ⊕ w + E ⊕ 0K1 + π(2)(F ).

On the other hand, we find that

π(3)ρ(2)π(1)(u) = π(3)ρ(2)(v ⊕ z) + π(3)ρ(2)(E)

= π(3)(u⊕ w ⊕ z) + π(3)(F ⊕ 0K2) + π(3)ρ(2)(E)

= v ⊕ z ⊕ w ⊕ z + E ⊕ 0K1⊕K2 + π(2)(F )⊕ 0K2 + π(3)ρ(2)(E).

To summarize more concisely what we found, let ∼ue denote unitary equivalence and write

v ∼ue (v ⊕ z ⊕ w) +R

and

u ∼ue (v ⊕ z ⊕ w ⊕ z) + S

where ‖Rk(t)‖+ ‖Sk(t)‖ ≤ 3‖Ek(t)‖+ 2‖Fk(t)‖ ≤ 5(|t|
√

2δ + t2δ).
Recall that in the beginning of the proof we passed to infinite ampliations, therefore

z ⊕ z ∼ue z and we obtain faithful normal representations

π : B(H1)→ B(L), ρ : B(H2)→ B(L), L := H2 ⊕K2 ⊕K1

with

‖π(uk(t))− ρ(vk(t))‖ ≤ 5(|t|
√

2δ + t2δ)

in a neighborhood of 0.
From Lemma 1.3, we conclude that ‖π(uk(t)) − ρ(vk(t))‖ ≤ 5

√
2|t|δ1/2 for all t and all

δ > dD(u, v), hence also for δ = dD(u, v).

Our next task is to relate closeness of groups to closeness of their generators. The next
two lemmas might be well-known, but we include our own proofs of them for completeness.1

Lemma 1.5. Let u be a one-parameter unitary group with selfadjoint generator A. Then

domA =

{
x : lim sup

t→0

‖(u(t)− 1)x‖
t

<∞
}
.

Proof. Let x be such that lim sup ‖(u(t)−1)x‖
t

<∞. For all y from the dense subspace dom(A)
we have

|〈x,Ay〉| = lim |〈x, 1
t
(u(t)− 1)y〉| ≤ lim sup |〈1

t
(u(t)∗ − 1)x, y〉| ≤ lim sup

‖(u(t)− 1)x‖
t

‖y‖,

therefore y 7→ |〈x,Ay〉| is bounded and we conclude that x ∈ domA∗ = domA. The reverse
inclusion is obvious.

1Note that Lemma 1.6 is the sufficiency statement in [2, Proposition 2.3], but our proof is somewhat
different, presenting it as an immediate consequence of the characterization of the domain of the generator
of a one-parameter unitary group given in Lemma 1.5.
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Lemma 1.6. Let u and v be one-parameter unitary groups on a Hilbert space H with selfad-
joint generators A,B. Assume further that there is a constant K such that ‖u(t)− v(t)‖ ≤
K|t| for all t in neighborhood of 0. Then domA = domB and ‖A− B‖ ≤ K, that is, there
exists a bounded operator C ∈ B(H) such that B = A+ C and ‖C‖ ≤ K.

Proof. Let x ∈ H. By Lemma 1.5,

lim sup
‖(v(t)− 1)x‖

t
≤ lim sup

‖(u(t)− 1)x‖
t

+K‖x‖

shows that domB ⊂ domA and the reverse inclusion follows analogously. Since the domains
agree, C := A−B is a densely defined operator. For x ∈ domA, we have

‖Cx‖ ≤ lim sup
‖(u(t)− v(t))x‖

t
≤ K‖x‖.

But since domA is dense in H, the operator C extends to a bounded operator on H of norm
at most K.

We now combine the results of this section to show that unitary groups that are at a finite
dilation distance from each other are, in fact, bounded perturbations of one another.

Theorem 1.7. Let u and v be two d-tuples of one-parameter unitary groups. If dD(u, v) ≤
δ < ∞, then there are realizations as u ∼ U and v ∼ V of infinite multiplicity on the same
Hilbert space H, and there are selfadjoint operators A1, . . . , Ad and B1, . . . , Bd in H with
domAk = domBk such that Uk(t) = exp(itAk) and Vk(t) = exp(itBk) and such that

‖Bk − Ak‖ ≤ 5
√

2 δ1/2

for all k = 1, . . . , d.

Proof. By Theorem 1.4, there are realizations u ∼ U and v ∼ V such that ‖Vk(t)−Uk(t)‖ ≤
K|t| for all k = 1, . . . , d, where K = 5

√
2 δ1/2. Applying Lemma 1.6 for all k = 1, . . . , d we

obtain the result.

Remark 1.8. The converse fails in an obvious manner: in C, the unitary groups eiat, eibt

with distinct generators a, b ∈ R have infinite dilation distance. The notion of dilation
distance works poorly when the matrix ranges do not contain open subsets.

2. Bounded perturbation of the Heisenberg commutation relations

A pair of selfadjoint (unbounded) operators P andQ on a Hilbert space is said to satisfy the
Heisenberg commutation relation (or sometimes the Weyl form of the canonical commutation
relations) if the corresponding unitary groups u(t) = eitP and v(t) = eitQ satisfy

(2.1) u(s)v(t) = eistv(t)u(s),

a condition which is customarily interpreted as

[P,Q] = −iI.
It is known [6, Theorem 14.8] that that there exists a unique (up to unitary equivalence)
representation of the Heisenberg commutation relation that is irreducible, in the sense that
the commutant of C∗(u(s), v(t) : s, t ∈ R) is trivial, namely: the essentially unique repre-
sentation on L2(R) in which P = −i d

dx
is the momentum operator and Q = Mx (where

(Mxf)(x) = xf(x)) is the position operator. Haagerup and Rørdam proved that the infinite
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ampliations of P and Q are a bounded perturbation of a pair of selfadjoint operators P0 and
Q0 that strongly commute, in the sense that the one-parameter groups that they generate
satisfy eisP0eitQ0 = eisQ0eitP0 for all s, t ∈ R [5, Theorem 3.1]. A higher dimensional gener-
alization of this was obtained by Gao [2]. In this section, using our dilation framework, we
recover this result of Gao.

Definition 2.1. Given a real antisymmetric d × d matrix Θ = (θk,`), we say that a tuple
u = (u1, . . . , ud) of one-parameter unitary groups commutes according to Θ if

(2.2) u`(s)uk(t) = eiθk,`stuk(t)u`(s) , k, ` = 1, . . . , d , s, t ∈ R.

A concrete representation of Θ-commuting one-parameter unitary groups is given by the
Weyl unitaries (see, e.g., [7]), which have been observed in [4] to behave nicely under com-
pressions. For a Hilbert space H let

Γ(H) :=
∞⊕
k=0

H⊗sk

be the symmetric Fock space over H. The exponential vectors e(x) :=
∑∞

k=0
1√
k!
x⊗k, x ∈ H

form a linearly independent and total subset of Γ(H). Clearly, 〈e(x), e(y)〉 = e〈x,y〉 for all
x, y ∈ H. For z ∈ H the Weyl operator W (z) ∈ B(Γ(H)) is defined by

W (z)e(x) = e(z + x) exp

(
−‖z‖

2

2
− 〈x, z〉

)
for all exponential vectors e(x). Simple calculations show that the Weyl operators are unitary
and that W (z),W (y) commute up to the phase factor e2i Im〈y,z〉, that is

W (y)W (z) = e2i Im〈y,z〉W (z)W (y).

Lemma 2.2. Let Θ = (θk,`) be a real and antisymmetric d× d matrix.

(1) There exists a Hilbert space H, dimH = d and linearly independent x1, . . . , xd ∈ H
such that

2 Im〈x`, xk〉 = θk,`.

(2) The families uk(t) = W (txk) for k = 1, . . . , d and t ∈ R give rise to a d-tuple of
strongly continuous one-parameter unitary groups that satisfiy (2.2).

Proof. The first part follows directly from [3, Lemma 5.2]. A routine argument shows that
u1, . . . , ud are strongly measurable hence strongly continuous unitary groups and that

u`(s)uk(t) = W (sx`)W (txk) = ei2 Im〈sx`,txk〉W (txk)W (tx`) = eiθk,`stuk(t)u`(s),

i.e., (2.2) is satisfied.

Lemma 2.3. Let Θ = (θk,`), Θ′ = (θ′k,`) be real and antisymmetric d × d matrices, and
let x1, . . . , xd be as in Lemma 2.2. Then there exist a Hilbert space K ⊃ H, dimK = 2d
and linearly independent vectors z1, . . . , zd ∈ K, such that xk := pHzk (k = 1, . . . , d, pH the
projection onto H) and such that with yk := pH⊥zk the following conditions are satisfied:

2 Im〈z`, zk〉 = θ′k,`; 2 Im〈x`, xk〉 = θk,`; ‖yk‖2 = 1
2
‖Θ′ −Θ‖.

Proof. This is a slight modification of the statement of [3, Lemma 5.3]. The same proof
works.
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Theorem 2.4. Let d = 2n and let Θ be a real nonsingular antisymmetric d × d matrix.2

Let P1, . . . , Pd be the generators of one-parameter unitary groups u1, . . . , ud that commute
according to Θ. For any real antisymmetric d× d matrix Θ′, the infinite ampliation P∞ :=
P ⊗1`2(N) of P is a bounded perturbation of a d-tuple Q of selfadjoint operators that generate
d unitary groups that commute according to Θ′ such that

‖P∞k −Qk‖ ≤ 5√
2
‖Θ−Θ′‖1/2

for all k = 1, . . . , d. If P is of infinite multiplicity, P∞ can be replaced by P .

Proof. Let xk, yk, zk denote the vectors from Lemma 2.3, and form the unitary groups

uΘ = (W (tx1), . . . ,W (txd)) and uΘ′ = (W (tz1), . . . ,W (tzd)),

which commute according to Θ and Θ′, respectively (Lemma 2.2). From

pΓ(H)W (tzk)|Γ(H) = e
−‖p⊥tzk‖

2

2 W (pHtzk) = e−t
2 ‖Θ−Θ′‖

4 W (txk)

we have uΘ ≺c uΘ′ for c = ‖Θ−Θ′‖
4

.
Now we apply Lemma 2.3 with z1, . . . , zd in place of x1, . . . , xd and the roles of Θ and Θ′

reversed, to find another d-tuple vΘ = (v1, . . . , vd) of unitary groups that commute according

to Θ and satisfy uΘ′ ≺c vΘ with c = ‖Θ−Θ′‖
4

. But by the Stone-von Neumann theorem3,

uΘ ∼ vΘ and so uΘ′ ≺c uΘ. It follows that dD(u, v) ≤ ‖Θ−Θ′‖
4

< ∞. By Theorem 1.7
we conclude that there exist strongly continuous d-tuples U ∼ uΘ and V ∼ uΘ′ of infinite
multiplicity whose generators are perturbations of one another by bounded operators of
norm less than or equal to 5√

2
‖Θ − Θ′‖1/2. By the Stone-von Neumann theorem again, the

generators of U are (unitarily equivalent to) an infinite ampliation of P1, . . . , Pd.
If P is of infinite multiplicity, then P ∼ue P

∞.

In particular, the infinite ampliation of P is a bounded perturbation of d strongly com-
muting selfadjoint operators.

Note that the above result was obtained by Gao [2, Theorem 3.2] with the bound

‖Pk −Qk‖ ≤ 9(d− 1) max
`
|θk,` − θ′k,`|1/2

(here and for the rest of the discussion we assume that P is of infinite multiplicity). The
bounds are not directly comparable because in Gao’s result the bound depends on k. How-
ever, if max` |θk,` − θ′k,`| is independent of k (for example if θk,` = θ for all k < `), or if we
only compare our result with

max
k
‖Pk −Qk‖ = 9(d− 1) max

k,`
|θk,` − θ′k,`|1/2,

2Note that a real antisymmetric d× d-matrix Θ with odd d can never be nonsingular; indeed, since iΘ is
hermitian, the nonzero eigenvalues of Θ must be purely imaginary, and since Θ is real they must come in
pairs λ, λ ∈ iR. Thus, if d is odd, 0 is necessarily an eigenvalue.

3More precisely, its simple consequence that there is a unique irreducible representation of the algebra
generated by d unitary groups that commute according to a nonsingular Θ, see [2, Proposition 3.1] and, con-
sequently, every infinite multiplicity representation is unitarily equivalent to the infinite ampliation thereof.
The most common formulation of the Stone-von Neumann Theorem, see e.g. [6, Theorem 14.8], only refers

to the special case Θ =

(
0 −I
I 0

)
.
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our bound is significantly better for large d. Indeed, for the real antisymmetric matrix
Γ := Θ−Θ′, whose nonzero eigenvalues always come in pairs λ, λ ∈ iR (cf. Footnote 2),

‖Θ−Θ′‖2 = ‖Γ‖2 = max
λ∈σ(Γ)

|λ|2 ≤ 1

2

∑
λ∈σ(Γ)

|λ|2 =
‖Γ‖2

HS

2
≤ d(d− 1)

2
max
k,`
|θk,` − θ′k,`|2

and we can thus achieve by Theorem 2.4

‖Pk −Qk‖ ≤
5√
2

4

√
d(d− 1)

2
max
k,`
|θk,` − θ′k,`|1/2 < 3

√
dmax

k,`
|θk,` − θ′k,`|1/2

for all k. The difference is even more striking in the special case Θ = θJ and Θ′ = θ′J with

J =

(
0 −I
I 0

)
and θ, θ′ ∈ R, where we achieve

‖Pk −Qk‖ ≤
5√
2
|θ − θ′|1/2

for all k, which does not depend on d at all.
Letting d = 2 and θ12 = −θ21 = 1 we recover [5, Theorem 3.1] with the somewhat better

bound 5√
2
≈ 3.54 (in the remark on page 637 of their paper, Haagerup and Rørdam note

that they can improve the constant 9 that appears in [5, Theorem 3.1] to
√

45 ≈ 6.71).
It is also noteworthy that our estimate in Theorem 2.4 does not depend on d. This makes

some hope that with our methods a similar result can be obtained for d = ∞. However,
the infinite-dimensional analogue of the Stone-von Neumann theorem is known to be false,
see e.g. Summer’s nice survey [9]. Therefore, the proof does not directly generalize, not
even if one assumes the uk to be given as Weyl operators in Fock representation uk(t) =
W (txk), xk ∈ `2(N), from the start.
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