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Abstract Extensive regions in the permafrost zone are projected to become climatically unsuitable to
sustain permafrost peatlands over the next century, suggesting transformations in these landscapes that can
leave large amounts of permafrost carbon vulnerable to post‐thaw decomposition. We present 3 years of eddy
covariance measurements of CH4 and CO2 fluxes from the degrading permafrost peatland Iškoras in Northern
Norway, which we disaggregate into separate fluxes of palsa, pond, and fen areas using information provided by
the dynamic flux footprint in a novel ensemble‐based Bayesian deep neural network framework. The 3‐year
mean CO2‐equivalent flux is estimated to be 106 gCO2 m

− 2 yr− 1 for palsas, 1,780 gCO2 m
− 2 yr− 1 for ponds, and

− 31 gCO2 m
− 2 yr− 1 for fens, indicating that possible palsa degradation to thermokarst ponds would strengthen

the local greenhouse gas forcing by a factor of about 17, while transformation into fens would slightly reduce the
current local greenhouse gas forcing.

Plain Language Summary Arctic and sub‐arctic regions on the southern border of the permafrost
zone often feature peatlands with a patchy surface of peat mounds, thaw ponds, and surrounding fens. As the
permafrost underneath peat mounds thaws, these areas transform and can change their emission or uptake of
greenhouse gases like CO2 and methane. Assessing this gas exchange on the patchy surface is difficult because
our measurement techniques cannot directly observe the variability in space and time. We collected 3 years of
gas exchange measurements at a Norwegian permafrost peatland and developed a new method using a
collection of uncertainty‐aware neural networks to predict the greenhouse gas exchange of different surface
types. Our work suggests that large amounts of methane are emitted by ponds and fens, while the elevated peat
mounds have almost no methane emissions. For CO2, we see that ponds are strong emitters, while fens take up
substantial amounts as their vegetation absorbs this gas. We are still unsure when the peat mounds will collapse
and if they turn into ponds or fens, but we can say that pond formation would give a 17 fold increase in
greenhouse gas emissions, while fen formation would slightly reduce today's emissions of permafrost peatlands.

1. Introduction
Permafrost peatlands are considered to be some of the most dynamic and rapidly changing ecosystems in the
permafrost zone (Olefeldt et al., 2016). These ecosystems cover large areas in often harsh and inaccessible arctic
regions, playing an important role in the global carbon cycle as they have historically accumulated large amounts
of soil organic carbon which is vulnerable to microbial re‐mobilization upon climate warming (Oechel
et al., 2000; Schuur et al., 2015). The characteristic palsa peat mounds—elevated by excess ground ice in the
permafrost—are increasingly subject to thawing and degradation, resulting in thermokarst pond or wetland
formation (Borge et al., 2017; Grosse et al., 2013; Luoto & Seppälä, 2003; Martin et al., 2021; Sannel &
Kuhry, 2011). While irreversible palsa collapse is widely anticipated in large regions of the pan‐Arctic over the
coming century (Aas et al., 2019), the dynamics of the degradation as well as the state and fate of their carbon
stocks remain elusive.

The emission and uptake of the greenhouse gases carbon dioxide (CO2) and methane (CH4) is associated with a
stark heterogeneity as a result of the patchy surface cover consisting of different plant and microbial communities,
which can inform possible future trends of land‐atmosphere interactions through space‐for‐time substitutions
(e.g., Jiao et al., 2023). While moist or inundated areas typically feature microbes with anaerobic metabolisms
producing CH4, drier areas are dominated by aerobic soil respiration that produces CO2 and may even consume
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considerable amounts of atmospheric CH4 (Voigt et al., 2019, 2023). Thermokarst ponds are typically super-
saturated in dissolved CO2 and CH4, and emissions can be associated with diffusive fluxes (Matveev et al., 2016;
Serikova et al., 2019) as well as gas ebullition (Burke et al., 2019; Walter et al., 2006). The pathways of gas
production, consumption, dissolution, transport, and emission in permafrost peatlands depend on a complex
interplay of biogeochemical processes that are influenced by a plethora of interacting environmental factors,
including soil, surface, and atmospheric conditions. As a result, CO2 and CH4 exchange can vary tremendously on
small spatio‐temporal scales, which complicates the representative (unbiased) quantification of the greenhouse
gas budgets of permafrost peatlands based on sparse flux measurements. Consequently, the quantification of the
greenhouse gas balances not only reflects the ecosystem in its environmental setting, but can also depend strongly
on the method used to estimate them.

Using the manual chamber technique Nykänen et al. (2003) estimated that palsa surfaces with shrub vegetation in
northern Finland were sinks of (atmospheric) carbon, whereas palsa surfaces with sparse vegetation were carbon
sources. In their study, the annual emissions of CH4 ranged from 1.0 gC m− 2 yr− 1 on top of the palsas to
24.7 gC m− 2 yr− 1 at the palsa margins. However, the manual chamber technique only allows for sporadic spatio‐
temporal sampling, and unwanted disturbances by the manual deployment of the chamber are inevitable
(Kutzbach et al., 2007), adding uncertainty to the estimated annual budgets. Year‐round automatic chamber
measurements in the Stordalen permafrost peatland in Sweden indicate CO2 sinks and CH4 sources in the mire,
with a net carbon balance of − 13 gC m− 2 yr− 1 for palsa areas and − 91 gC m− 2 yr− 1 for fen areas (Holmes
et al., 2022). While such estimates are derived from near‐continuous flux measurements, the long‐term presence
of the chamber base can disturb the ecosystem as it locally increases air temperature similar to an open‐top
chamber (Frei et al., 2020) and a fair number of automatic chambers are required to obtain spatially represen-
tative estimates. Moreover, potentially important flux hotspots in wetlands can be unsuitable for the operation of
an automatic flux chamber, because water levels can be too high or too variable. Measurements with the micro‐
meteorological eddy covariance (EC) technique (Baldocchi, 2020) in a nearby palsa‐dominated area in Stordalen
indicate a sink of CO2 with an annual balance amounting to between − 20 and − 95 gC m

− 2 yr− 1 across the years,
as well as relatively stable CH4 emissions of between 18 and 22 gC m

− 2 yr− 1 (Christensen et al., 2012). The
anemometer and gas analyzer needed for EC measurements can in principle be operated year‐round, but unfa-
vorable micro‐meteorological conditions due to a lack of stationarity or weak turbulent mixing will inevitably
cause gaps in the flux time series. As these gaps tend to occur systematically, for example, in very stable con-
ditions during nights or wintertime, gap‐filling is needed to avoid biased seasonal or annual flux budgets. While
EC measurements are widely regarded as the most accurate flux measurements on the landscape scale, it must be
noted that the flux footprint of the measurements changes continuously depending on the wind conditions. So
unless the ecosystem around the flux tower can be considered spatially homogeneous, the flux time series will
contain confounding effects of both spatial and temporal variability. A possible indication of this effect can be
seen in the EC measurements from a Siberian palsa mire reported by Olchev et al. (2022), where CH4 fluxes show
alternating uptake and release fluxes, possibly as a result of the surface heterogeneity. A simple flux footprint
disaggregation by wind sector can be a viable option in special cases (Griebel et al., 2016; Pirk et al., 2023), but a
generally accepted disaggregation method remains lacking.

Levy et al. (2020) present a Bayesian method to infer spatial heterogeneity in surface fluxes from individual
control variables at an EC tower using the information provided by the temporally changing footprint. As the
surface fluxes of CO2 and CH4 result from a complex interplay of biogeochemical processes, the more advanced
parameterizations encoded in process‐based land‐surface models (Lawrence et al., 2019; Qiu et al., 2018) or non‐
linear data‐driven models such as deep neural networks (Krizhevsky et al., 2012; LeCun et al., 2015; Mur-
phy, 2023) can be appropriate options. Neural networks can in principle approximate any functional relationship
between inputs (predictors) and outputs (fluxes) (Hornik et al., 1989), but their parameters (weights of the
network edges and bias terms of the nodes) are less interpretable than those used in process‐based models
(Rudin, 2019). In practice, finding a suitable network architecture for a given problem can be challenging and
training these networks may require vast amounts of data for complex relationships. To alleviate these challenges,
one may incorporate Bayesian inference into the training process of the network by treating the model parameters
as random variables with probability distributions representing their uncertainty. Such Bayesian neural networks
(BNNs) produce uncertainty‐aware outputs and—while being an old concept (MacKay, 2003; Neal, 1996)—are
becoming increasingly popular in machine learning where uncertainty awareness is becoming a vital
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consideration (Ghahramani, 2015). In Earth system science, BNNs remain a relatively unexplored topic (Clare
et al., 2022; Lopez‐Gomez et al., 2022), despite the popularity of deep learning (Reichstein et al., 2019).

Here, we present 3 years of EC fluxes of CO2 and CH4 collected at a permafrost peatland in northern Norway. We
develop a new flux disaggregation method using ensemble‐based Bayesian deep learning with predictors from in‐
situ measurements and satellite remote sensing to estimate uncertainty‐aware fluxes separately for palsa, pond,
and fen areas. We use historic aerial photography as well as a modern drone‐based survey of terrain changes to
characterize the permafrost degradation and inform future scenarios for the carbon balance of permafrost peat-
lands through a space‐for‐time substitution.

2. Materials and Methods
2.1. Site Description and Surface Characterization

Our study is conducted at the Iškoras permafrost peatland (69.34°N, 25.30°E, 380 m a.s.l., shown in Figure S1 in
Supporting Information S1), which is located on the Finnmarksvidda mountain plateau in northern Norway. The
climate here is classified as subarctic or polar, with a mean annual air temperature of − 1.2°C and a mean annual
precipitation of 417 mm for the period 1991–2020 (measured at weather station SN97251 approximately 15 km
north of Iškoras). The years of our study period feature no outliers in mean annual air temperature and total annual
precipitation, and are relatively similar to the long‐term mean conditions. The site lies just above the current tree
line with mountain birch trees, and features typical upland tundra vegetation. The palsas are typically charac-
terized by lichens and evergreen dwarf shrubs (Empetrum nigrum, Rhododendron tomentosum, Rubus cha-
maemorus, Vaccinium vitis‐idaea). The shallow ponds can feature a base moss layer (Sphagnum spp.), and fen
areas are dominated by sedges and cottongrass (Carex rotundata, Eriophorum scheuchzeri, Eriophorum russo-
leum, Eriophorum vaginatum). The site features sporadic permafrost with organic‐rich peat soils with a peat depth
of around 155 cm (Kjellman et al., 2018) and active layer depths of up to 90 cm on the palsas.

We geo‐referenced a historic aerial photograph taken in 1955 by the Norwegian Mapping Authority (Figure 1b,
Kartverket survey WF‐688 H‐13) and conducted multiple drone surveys during our 3‐year study period. We
produced digital elevation models using the structure‐from‐motion technique (Ullman, 1979) from our drone
imagery from 2019 to 2022, which we subtracted to estimate the surface subsidence. We classified the landscape
at the site into three discrete surface types (palsas, ponds, fens) based on a visual inspection of our ortho‐rectified
drone imagery from 2019 (Figure 1a).

2.2. Eddy Covariance Flux Measurements

The EC flux system shown in Figure 2a was established at the Iškoras site in March 2019. The data period in the
present study covers 3 years, that is, until March 2022. The EC system consists of a CSAT3 three‐dimensional
sonic anemometer (Campbell Scientific, USA), an Li‐7200 closed‐path infrared gas analyzer for CO2, as well as
an Li‐7700 open path gas analyzer for CH4 (both Li‐Cor, USA). The system is supplied with an off‐grid power
supply based on a wind generator and solar panels. An electronic relay is used to turn off the EC system when the
battery voltage of the power supply becomes too low, while the sensors and logger of the ancillary measurements
(described in Text S2 in Supporting Information S1), which consume only a fraction of the power of the EC
system, continue to operate. We processed the EC raw data to 30 min flux estimates following the conventional
ECmethodology (Gu et al., 2012). After filtering the flux time series for unfavorable measurement conditions, for
example, due to a lack of stationarity or turbulent mixing (see Text S1 in Supporting Information S1 for details),
we are left with 11,334 and 4,743 valid half‐hourly flux estimates for CO2 and CH4, respectively.

The total flux estimate from EC is the mathematical convolution of the surface flux distribution with the flux
footprint function, which we estimate using the flux footprint model by Kljun et al. (2015). The resulting footprint
weight‐maps are combined with the surface type classification (see Section 2.1 and Figure 1a) to estimate the
weight of the contribution of each of the three surface types (wpalsa, wponds, wfen) to each 30‐min EC flux estimate.
The resulting average distribution (climatology) of these dynamic footprint weights is shown in Figure 1d.

2.3. Bayesian Neural Networks

For our BNN flux disaggregation model we use a fully connected feedforward neural network, also known
as a multilayer perceptron, with 10 predictors as inputs (ancillary variables) and one total flux as output
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(either CO2 or CH4, so we train two BNNs separately), as depicted in Figure 2b. We use a total of 300
nodes placed in five hidden layers with respectively 96, 48, 12, 48, and 96 nodes per layer, resembling the
architecture of an auto‐encoder (Goodfellow et al., 2016). This architecture results in a total of Np = 11,919
parameters (network weights and biases) collectively denoted through the random vector θ ∈RNp that we
infer. As is usually the case in deep learning there are thus more parameters than data points (Mur-
phy, 2022), in which case the Bayesian approach adopted herein helps to regularize the problem and avoid
overfitting (MacKay, 2003; Murphy, 2023). At each node, the inputs are multiplied by weights, summed,
combined with an additive bias term, and passed through an activation function to produce the node's
output. For all the hidden layers we employ the widely used Rectified Linear Unit (ReLU) non‐linear
activation function defined as ReLU(x) = max(0, x). Our BNN can be thought of as having two output
layers with linear activation functions: the first output layer consists of three nodes, predicting the CO2 or

Figure 1. Surface characterization of the Iškoras permafrost peatland. (a) Ortho‐rectified aerial photographs from 2019 with contour lines for palsa (orange) and pond
(blue) areas (all other areas are classified as fen). The white cross marks the location of the flux tower, from which the black lines show an example of the 75%, 85%, and
95% contours of the cumulative flux footprint function for 25 July 2019, 16:00 UTC. Colored crosses indicate independent validation flux measurements by chambers
(red), dissolved gas concentrations in ponds (cyan), and snowpack profiles (pink). (b) Ortho‐rectified aerial photographs taken in 28 July 1955, overlain with the same
contour lines for palsa and pond extent in 2019. (c) Vertical difference between elevation models from September 2022 and 2019 indicating surface subsidence.
(d) Averaged footprint weights of all valid flux measurements plotted by the corresponding wind sectors. Colors indicate the footprint‐weighted contribution of each
surface type.
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CH4 fluxes for each of the three surface types based on the dynamic inputs x(t) and the (static) uncertain
network parameters θ. In the second output layer, these fluxes are averaged using the deterministic dynamic
footprint weights ws(t) for each surface type at the corresponding 30‐min interval (see Section 2.2), pre-
dicting the total flux Ftotal that can be compared to observations from the EC system, that is,

Ftotal (ws, x, θ) = wpalsa Fpalsa(x, θ) + wponds Fponds(x, θ) + wfen Ffen(x, θ) (1)

This innovative network architecture with two consecutive output layers serves as the basis for the envisioned flux
disaggregation between the three surface types. Note that this disaggregation assumes that the within‐class flux is
spatially homogeneous and can thus only estimate the spatial average of within‐class flux dynamics.

The BNN parameters are initialized by drawing from a standard normal distribution as the (regularizing weakly
informative) prior distribution (Banner et al., 2020). Unlike the more conventional approach of training a neural
network by optimizing the parameters via backpropagation, we train our network parameters using (approximate)
Bayesian inference techniques developed for geophysical data assimilation (Evensen et al., 2022), namely an
iterative ensemble Kalman method (Emerick & Reynolds, 2013) (see details in Text S3 in Supporting Infor-
mation S1). To better represent the typically multi‐modal posterior parameter distributions (Izmailov et al., 2021),
we repeat the BNN training 100 times with different random seeds to capture local modes and combine these 100
local ensembles to form one global ensemble, as a so‐called deep ensembles approximation (Lakshminarayanan
et al., 2017; Wilson & Izmailov, 2020) of the posterior predictive distribution (see Text S3 in Supporting In-
formation S1). For the ensemble data assimilation‐based BNN training, we assume a typical zero mean additive
Gaussian observation error model with observation error standard deviations of 0.1 μmol m− 2 s− 1 for CO2 and
2.5 nmol m− 2 s− 1 for CH4. As predictors, we use air, surface, and soil temperature (Tair, Tsurf, and Tsoil,
respectively), vapor pressure deficit (VPD), shortwave and longwave incoming radiation (SWin and LWin,
respectively), albedo, fractional snow‐covered area (FSCA), the Normalized Difference Vegetation index
(NDVI), and soil volumetric water content (VWC), estimated from in‐situ measurements and remote sensing data
as described in Text S2 in Supporting Information S1. Figure S2 in Supporting Information S1 shows the scatter
plot matrix of the predictors, fluxes, and footprint weights, which are all archived and available (Pirk, 2023). As
the predictors are available continuously for the entire 3 year campaign, the BNN can simultaneously perform
both flux disaggregation and gap‐filling.

A performance evaluation for the prediction of the total flux using a common 80%–20% train‐test split (Mur-
phy, 2022) indicates good prediction accuracy and generalization, with normalized root mean square error values
of between 5% and 11% for both train and test data sets (Figure S4 in Supporting Information S1). The coefficients
of determination (R2) for CO2 range between 0.7 and 0.8. For CH4, we notice that while the dynamics of daily
average fluxes are well captured in the BNN model (0.71 < R2 < 0.72), the model performs notably worse for the
dynamics of the instantaneous 30‐min fluxes (0.28 < R2 < 0.29), see discussion in Section 3.3.

Figure 2. Flux estimation system. (a) The eddy covariance tower at the Iškoras permafrost peatland. (b) Conceptual
architecture of our Bayesian neural network with uncertainty‐aware parameters θ to estimate fluxes F of three different
surface types and their weighted average with weights ws based on the footprint model.
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2.4. Independent Flux Validation

As an independent validation of the disaggregated flux results, we conducted manual measurement campaigns
to estimate fluxes on the plot scale using flux chambers, dissolved gas concentrations, and snowpack gra-
dients. The sampling locations were distributed around the EC tower as shown in Figure 1a. Chamber flux
measurements of CO2 and CH4 were performed in palsa and fen areas on 2–3 July 2021, and 11 September
2021. We used a Li‐7810 gas analyzer (Li‐Cor, USA), with a plexiglass chamber covering 25 × 25 cm2, and
followed Pedersen et al. (2010) to estimate fluxes from the measured concentration sequences. Dissolved
concentrations of CO2 and CH4 were measured in the surface waters in three ponds (not including the largest
pond) with the acidified headspace technique (Valiente et al., 2022) at five occasions during the snow‐free
season, ranging between 40 and 520 μmol L− 1 for CO2, and between 1.1 and 26 μmol L

− 1 for CH4. Pond
fluxes were estimated from these dissolved gas concentrations following the methodology in Clayer
et al. (2021), using the surface renewal gas exchange model by MacIntyre et al. (2010) for the gas transfer
velocity, accounting for the small pond sizes (Vachon & Prairie, 2013) and the typically low wind speeds at
Iškoras (Crusius & Wanninkhof, 2003). We conducted a survey of snowpack CH4 concentrations on 14 March
2023, to estimate the magnitude and direction of wintertime CH4 fluxes for all three surface types. Here, we
used a portable CH4 laser spectrometer (MIRA Strato, Aeris Technologies, USA) and estimated diffusive CH4
emission from snowpack concentration gradients using the methodology described in Pirk et al. (2016) (see
Figure S5 in Supporting Information S1 for examples of concentration time series as well as snowpack density
and temperature profiles).

3. Results and Discussion
3.1. Disaggregated Fluxes of Palsas, Ponds, and Fens

The estimated mean flux dynamics shown in Figures 3a–3f indicate a clear separation of fluxes from the three
surface types achieved by our BNN model. All surface types show a seasonal cycle of CO2 and CH4 flux dy-
namics. In summertime, after snow melt‐out, CO2 fluxes exhibit diurnal cycles as expected for northern latitude
ecosystems. For CH4, there is a relatively weak indication of such diurnal cycles for pond and fen surfaces,
possibly due to the diurnal cycle of the ground temperature regulating CH4 production rates.

The (posterior ensemble mean) CO2 flux of dry palsa areas ranges from − 2.4 to 1.4 μmol m− 2 s− 1 during the
3 year study period. Palsa CH4 fluxes are relatively insignificant, but show persistent negative values with a
(posterior median) temporal average of − 1.8 (− 4.8, 1.2) nmol m− 2 s− 1, where the credible interval in brackets
shows the posterior 25th and 75th percentile. This CH4 uptake is consistent with our validation chambers
measurements in summertime with estimates of − 1.2 (− 1.8, − 0.5) nmol m− 2 s− 1 and snowpack gas gradients in
wintertime with estimates of − 0.04 (− 0.09, 0.01) nmol m− 2 s− 1 as shown in Figure S6 in Supporting
Information S1.

Thermokarst ponds are estimated to emit CO2 at rates of up to 5.0 μmol m
− 2 s− 1, which is relatively high

compared to flux estimates from thermokarst ponds in permafrost peatlands in Canada (around 2.8 μmol m− 2 s− 1

(Matveev et al., 2016)) and Sweden (average of 3.2 μmol m− 2 s− 1 (Kuhn et al., 2018)) that are based on
measurements that typically exclude ebullition. The magnitude and seasonal pattern of our BNN emission es-
timates are in very good agreement with our independent flux estimates from the dissolved gas measurements
(Figure S6 in Supporting Information S1). The observed diurnal cycle of the summertime CO2 emission from the
ponds could be due to periodic overturning of the water column or photo dissociation of dissolved organic
carbon in the surface water. Parts of this carbon can originate from collapsing palsa edges releasing labile
organic carbon (Patzner et al., 2022), as documented for our site in Figure 1c. Pond CH4 fluxes reach up to
73 nmol m− 2 s− 1, which is on the lower end of the range supported by our dissolved gas measurements, which
may be attributed to differences between ponds as no water samples could be taken from the largest pond that
dominates the pond flux signal in our EC measurements. The relative seasonal CH4 flux patterns still agree well,
also with the wintertime average snowpack flux estimates of 1.4 (0.1, 1.6) nmol m− 2 s− 1 as shown in Figure S6
in Supporting Information S1. For reference, Matveev et al. (2016) report maximum diffusive CH4 emissions
from the aforementioned Canadian thermokarst ponds of around 120 nmol m− 2 s− 1, which is notably higher than
our maximum pond CH4 flux.
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Among the three surface classes, fens feature the largest maximum CO2 uptake (7.0 μmol m
− 2 s− 1, i.e., three

times higher uptake flux than the palsas) and the largest maximum CH4 release (134 nmol m
− 2 s− 1, i.e., almost

two times higher release flux than the ponds). The estimated CO2 fluxes are consistent with our chamber fluxes in
summertime (Figure S6 in Supporting Information S1), and the large estimated CH4 fluxes are also corroborated
by summertime chamber fluxes (average of 133 (86, 171) nmol m− 2 s− 1) and snowpack fluxes in wintertime
(average of 8.0 (4.5, 9.7) nmol m− 2 s− 1).

The annual budgets of all these fluxes are relatively similar across the 3 years of our measurement campaign
which featured no outliers in the climatic conditions, which is in line with findings from other multi‐year flux
studies in the sub‐Arctic (e.g., Christensen et al., 2012). The cumulative carbon balance of each surface type is
dominated by CO2 fluxes (Figures 3g and 3h). Palsa surfaces are moderate carbon sources (35 gC m

− 2 yr− 1 on
average), while fen areas feature a strong carbon sink (− 131 gC m− 2 yr− 1 on average, after accounting for CH4
release). Ponds, while only a small area in the EC footprint and therefore most uncertain, are strong carbon
emission hotspots, releasing on average 420 gC m− 2 yr− 1 to the atmosphere as CO2 and CH4 combined. For CH4,
the relative difference between surface types is larger than for CO2, with fens emitting most (on average
14 gC m− 2 yr− 1), followed by ponds (7.5 gC m− 2 yr− 1), and a small CH4 sink in palsa areas (− 0.7 gC m

− 2 yr− 1).
These CH4 annual budgets are in general similar to those reported in a arctic‐boreal synthesis compiled by Kuhn
et al. (2021), which reports CH4 emissions with an interquartile range between 4.5 and 29 gC m

− 2 yr− 1 for fens,
3.3 and 52 gC m− 2 yr− 1 for diffusion and ebullition from small peatland ponds, and − 0.3 to 0.5 gC m− 2 yr− 1 for
dry tundra.

Figure 3. Flux dynamics and budgets. (a–f): Posterior mean CO2 (left) and CH4 (right) flux predictions for the three surface types as fingerprint plots using the same
color scale. (g–h): Corresponding cumulative CO2 and CH4 fluxes with uncertainty bands representing the posterior ensemble's interquartile range. Stipulated vertical
lines indicate 1‐year intervals for which the numbers indicate annual budgets.

Geophysical Research Letters 10.1029/2024GL109283

PIRK ET AL. 7 of 11

 19448007, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
109283 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [15/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3.2. Climate Feedbacks and Geomorphological Trajectory

Thermokarst ponds and lakes are currently estimated to cover about 7% of the permafrost region, and wetland
thermokarst landscapes (including fens) cover a similar proportion of about 8% (Olefeldt et al., 2016). However,
most areas of Fennoscandia and Western Siberia are projected to become climatically unsuitable to sustain
permafrost peatlands over the next century, suggesting transformations in the landscapes that can leave an
estimated 39 Gt of permafrost carbon (equivalent to twice the amount of carbon stored in European forests)
vulnerable to post‐thaw decomposition (Fewster et al., 2022; Hugelius et al., 2020). Our CO2 and CH4 flux
budgets allow for a direct assessment of the fate of these carbon stocks in permafrost peatlands, and their effect on
the atmospheric energy budget through greenhouse gas forcing. To this end, we combine the mean annual CO2
and CH4 budgets of each surface type to CO2‐equivalent fluxes using a 100‐year global warming potential for
CH4 of 27 (Forster et al., 2021). Thus, the 3‐year mean (credible interval) CO2‐equivalent flux is estimated to be
106 gCO2 m

− 2 yr− 1 (− 252 to 469 gCO2 m
− 2 yr− 1) for palsas, 1,780 gCO2 m

− 2 yr− 1 (725–2,834 gCO2 m
− 2 yr− 1)

for ponds, and − 31 gCO2 m
− 2 yr− 1 (− 375 to 274 gCO2 m

− 2 yr− 1) for fens. The present day areal fraction of
surface types contributing to the EC signal (52% palsa, 7% ponds, and 41% fen according to our EC footprint
climatology shown in Figure 1d) suggests that the Iškoras site is currently a source of atmospheric carbon with a
CO2‐equivalent flux of 167 gCO2 m

− 2 yr− 1. Using a space‐for‐time substitution, the ratios of the CO2‐equivalent
fluxes indicate that palsa degradation to thermokarst ponds would lead to a 17 fold increase in the local green-
house gas forcing, while palsa transformation into fens would reduce the local greenhouse gas forcing to slightly
negative values.

Simulations by Aas et al. (2019) indicate that the degradation of permafrost peatlands in northern Norway is likely
to accelerate in the next three to four decades. If and when palsa degradation creates ponds or fens will depend on
the degradation rate and the amount of excess ice at the site (fast collapse at ice‐rich sites likely favors pond
formation). The geophysical interplay of processes causing lake formation and subsequent terrestrialization
through drainage and infilling with fen vegetation is, however, still hard to predict. This complexity is exem-
plified by Nitze et al. (2018) who report both increasing and decreasing trends in limnicity (i.e., the areal fraction
of ponds and lakes) for different parts of the permafrost region. Moreover, even an overall constant limnicity in a
region can mask extensive lake drainage combined with new thermokarst lake formation (Sannel & Kuhry, 2011).
Future studies combining even more Earth observations could help to refine our understanding of permafrost
peatlands and upscale our benchmark of the greenhouse gas exchange beyond our EC footprint.

3.3. Bayesian Deep Learning for Flux Disaggregation

Using the BNN model for flux gap‐filling and disaggregation yields considerable flexibility, generalization, and
predictive accuracy, but comes at the cost of limited interpretability (Rudin, 2019), as the parameters of this black
box model are not directly associated with any real‐world process. At the same time, to the best of our knowledge,
no interpretable mechanistic modeling approaches exist for EC flux disaggregation. In the interim, the BNN
proposed herein serves as an uncertainty‐ and sparsity‐aware data‐driven approach that can help guide future
method developments. For example, the relatively large posterior predictive uncertainty in pond fluxes and annual
budgets emerges naturally in our BNN model as a consequence of the limited information content in the mea-
surements (because ponds only cover about 7% of the EC footprint) and the difficulty to describe important
processes like ebullition with the available predictors. Ponds are now identified as the key remaining uncertainty
in this landscape, so that future studies can target this landscape element more specifically The flux disaggre-
gation approach can also be used to validate emerging drone data assimilation‐based flux estimation methods
(Pirk et al., 2022), guide land surface model developments (Aas et al., 2019), and incorporate uncertainty in flux
gap filling approaches (Pirk et al., 2023).

Neural networks are in principle universal function approximators (Hornik et al., 1989), but we must assume that
unobserved fluxes follow the same predictor relationship as the observed fluxes. The good generalization seen in
our train‐test split evaluation (Figure S4 in Supporting Information S1) suggests that our CO2 and CH4 flux data
sets are sufficiently representative. Interestingly, our BNN model for CH4 flux has a low value of R

2 (around 0.3)
for instantaneous CH4 fluxes compared to daily average fluxes (R

2 around 0.7), which could be related to “un-
predictable” ebullition events, or, more generally, to important but unobserved predictor variables. Compared to
CO2, CH4 dynamics likely have a stronger dependency on processes occurring in the soil (Treat et al., 2015),
where conditions change on small spatial scales and only few sensors were available, so that many of the control
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mechanisms are only indirectly captured through our surface and atmospheric sensors. A spatially distributed
network of soil sensors could be employed to reduce the associated uncertainty.

Despite the partly opposing flux directions (release vs. uptake) between the three surface types, the BNN flux
disaggregation yields realistic flux magnitudes without clear indications of equifinality problems (e.g., large
fluxes in opposing directions). Future work could explore other network architectures for flux data analysis, such
as recurrent or convolutional networks, combined with marginal likelihood methods for hyperparameter and
architecture optimization (Murphy, 2023). Another aspect with potential for improvement is the assumption of
deterministic footprint weights ws between the ultimate layers of the BNN. Here, future studies could use an
ensemble of footprint models representing the uncertainty in the footprint input parameters using uncertain
hyperparameters that are then inferred from the measurements together with the other network parameters. Such
approaches could result in even better calibration of flux uncertainties.

4. Conclusions
Representative, high resolution, and uncertainty‐aware flux estimates are invaluable to confidently assess land‐
atmosphere interactions in heterogeneous and dynamic ecosystems like permafrost peatlands. To achieve this
goal, we developed an ensemble‐based BNNmodel for EC flux disaggregation, which we compared against three
other flux estimation methods. These independent flux estimates are compatible with our BNN results, but their
large spatial variability also demonstrate the challenges to obtain landscape‐scale flux measurements with manual
sampling techniques.

Our BNN results indicate that while palsa areas have a near‐zero annual CH4 balance, the fens and ponds that form
upon palsa degradation emit large amounts of CH4. Fens compensate this greenhouse gas forcing with a strong
annual CO2 sink, while ponds are also strong—yet uncertain—CO2 emission hotspots. Our flux results indicate
that palsa degradation to thermokarst ponds would lead to a 17 fold increase in the local greenhouse gas forcing,
while transformation into fens would reduce the local greenhouse gas forcing.

Data Availability Statement
Processed flux and ancillary data are available in Pirk (2023). The code for flux inference is available in Pirk and
Aalstad (2023).
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