
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Hallvard Torsvik Bamrud
Martin Clementz
Henrik Werner Lervåg
Oscar Stentun Stadskleiv

An Empirical Analysis of the
Differences Between Terraform
Security Scanners

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Tor Ivar Melling
May 2024

Hallvard Torsvik Bamrud
Martin Clementz
Henrik Werner Lervåg
Oscar Stentun Stadskleiv

An Empirical Analysis of the
Differences Between Terraform
Security Scanners

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Tor Ivar Melling
May 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

An Empirical Analysis of the Differences
Between Terraform Security Scanners

Hallvard Torsvik Bamrud
Martin Clementz

Henrik Werner Lervåg
Oscar Stentun Stadskleiv

Spring 2024

Abstract
Infrastructure as Code (IaC) tools such as Terraform, are powerful tools that could
help infrastructure provisioners create and manage digital infrastructure. The use of
these tools enables the provisioner to configure their infrastructure for their specific
purpose. However, these tools do not guarantee a secure infrastructure, as miscon-
figurations could be overlooked. The use of Static Application Security Testing
(SAST) tools can help identify misconfigurations and vulnerabilities before the in-
frastructure is deployed. In this thesis, our forcus is on evaluating three of the most
popular SAST tools for Terraform configurations which use the Azure Resource
Manager (AzureRM); Checkov, Terrascan and tfsec.

For this purpose, we created a data collection and testing framework to collect
“maintained” projects. We identified 800 repositories that fit our criteria, and used
these to evaluate and compare the three SAST tools.

To evaluate the tools we consider factors such as their rule coverage, ease of use,
and their abilities to find security concerns in a variety of different repositories. We
used a data-centric approach for this evaluation. Based on our findings, Checkov
was the strongest of the tools, finding a total of 28 787 security concerns in 639 of
the repositories. Terrascan identified 4 484 in 581 repositories, and tfsec identified
4 660 in 334 repositories. Checkov consistently identified more security concerns
for all categories, except the secrets category where it performed equal to tfsec.
Terrascan and tfsec were quite close in regards to the amount of security concerns
found. However, tfsec had on average a higher amount found in the repositories
where it identified at least one security concern. In addition to having the highest
amount of rules, highest coverage and most security concern detections, Checkov
was also the most stable of the tools tested.

After reviewing our results we found that Checkov was the most useful of the tools.
We suggest that infrastructure provisioners use a combination of Checkov and Ter-
rascan, as this gives a 99.7% coverage rate, which justifies the added performance
cost.

i

Sammendrag
Infrastruktur som kode-verktøy (IaC-verktøy) som Terraform er kraftige verktøy
som kan hjelpe driftere med å opprette og vedlikeholde sin digitale infrastruktur.
Bruken av disse verktøyene tillater drifterne å konfigurere infrastrukturen i hen-
hold til deres spesifikke behov. Likevel, vil ikke disse verktøyene garantere en
sikker infrastruktur, og feilkonfigureringer kan bli oversett. Ved å ta i bruk statisk
kodeanalyse-verktøy (SAST-verktøy) kan drifterne identifisere potensielle feilkon-
figureringer og svakheter før infrastrukturen rulles ut. I dette studiet, er hoved-
fokuset å sammenligne tre av de mest populære SAST verktøyene for Terraform
konfigurasjoner som bruker Azure Resource Manager (AzureRM); Checkov, Ter-
rascan og tfsec.

Til dette formålet har vi laget et rammeverk for datainnsamling og testing, som
samlet inn “vedlikeholdte” prosjekter. Vi identifiserte 800 kodebaser som passet
til våre kriterier. Disse kodebasene brukte vi for å evaluere og sammenligne de tre
SAST verktøyene.

For å evaluere verktøyene har vi evaluert antall kodebaser hvor verktøyene klarte
å identifisere minst én sikkerhetsrisiko. Her så vi på faktorer som regeldekning,
brukervennlighet og hvor mange sikkerhetsrisikoer de var i stand til å finne. Vi
brukte en datasentrisk tilnærming i evalueringsprosessen. Basert på våre funn, er
Checkov det beste verktøyet, med totalt 28 787 funn av sikkerhetsrisikoer i 639 av
kodebasene. Terrascan identifiserte 4 484 i 581 kodebaser, og tfsec identifiserte 4
660 i 334 av kodebasene. Checkov identifiserte konsekvent flere sikkerhetsrisikoer
i alle kategorier, bortsett fra i kategorien “secrets” hvor den presterte på nivå med
tfsec. Terrascan og tfsec presterte nokså likt i forhold til antall sikkerhetsrisikoer de
klarte å identifisere. Tfsec hadde imidlertid et høyere gjennomsnittlig antall funn i
kodebaser hvor den fant minst en sikkerhetsrisiko. I tillegg til å ha flest antall regler,
høyest dekningsgrad og flest identifiserte sikkerhetsrisikoer, var Checkov også det
mest stabile verktøyet vi testet.

Basert på resultatene våre, fant vi ut at Checkov var det nyttigste verktøyet. Vi
anbefaler infrastrukturdriftere å bruke en kombinasjon av Checkov og Terrascan, da
dette gir en dekningsgrad på 99.7%, som rettferdiggjør den ekstra ytelseskostnaden.

ii

Preface
This thesis is authored by Hallvard Torsvik Bamrud, Martin Clementz, Henrik
Werner Lervåg and Oscar Stentun Stadskleiv as a bachelor’s thesis in the bache-
lor’s degree programme Digital Infrastructure and Cyber Security at The Norwe-
gian University of Science and Technology in Trondheim. The thesis was written
in the spring of 2024. As the authors of the thesis we wish to thank our supervisor
Tor Ivar Melling for his guidance, recommendations and advice during the writing
of this thesis. This thesis is a modified version of Tor Ivar Melling’s bachelor thesis
suggestion for IaC.

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Thesis Topic . 1
1.3 Problem Statement . 1

1.3.1 Research Questions . 2
1.4 Objective and Scope . 2
1.5 Verbiage . 3
1.6 Thesis Outline . 4

2 Theory 6
2.1 Concepts and Definitions . 6
2.2 Terraform Security Scanner Tools 7
2.3 Related Work . 8

3 Method 9
3.1 Data Collection . 9

3.1.1 The Criteria . 9
3.1.2 Technical Data Collection Process 10
3.1.3 Security Aspects of the Data Collection Process 15

3.2 Data Analysis Methodology . 16
3.2.1 Categorise Security Checks 16
3.2.2 Technical Analysis Methodologies 17

4 Results 18
4.1 Checkov . 18
4.2 Terrascan . 19
4.3 Tfsec . 21
4.4 Comparison . 22

4.4.1 Security Concern Detection Coverage and Overlap 22
4.4.2 Security Concern Distribution based on our Categories . . . 24
4.4.3 A Closer Look at Specific Checks 26

5 Discussion 28
5.1 RQ1 - Challenges of Collecting Data 28
5.2 RQ2 - Performance Impact . 31
5.3 RQ3 - Main Differences Observed Between the Different SAST Tools 32
5.4 Assumptions and Interpretations 34
5.5 Threats to Validity . 35
5.6 Ethical Considerations . 36

6 Conclusion 37

iv

6.1 Limitations and Future Work . 37
6.2 RQ4 - Recommendations . 37

7 Bibliography 39

Appendix A Repository Discovery and Data Collection Framework 44

Appendix B Project Handbook 44

Appendix C List of Checks in Checkov 45

Appendix D List of Checks in Checkov 2 48

Appendix E List of Checks in Terrascan 49

Appendix F List of Checks in tfsec 53

v

Acronyms and Glossary
RQ - Research Question

IaC - Infrastructure as Code

SAST - Static Application Security Testing

HCL - HashiCorp Configuration Language

CI/CD - Continuous Integration and Continuous Delivery

OPA - Open Policy Agent Framework

CLI - Command-Line Interface

API - Application Programming Interface

Git - Distributed version control platform for files

Rate limiting - Method to limit network traffic where the amount of requests are
limited to a max amount per unit of time.

Alert fatigue - Fatigue originating from reading through too many alerts

Fork - “A fork is a new repository that shares code and visibility settings with the
original ‘upstream’ repository.” [1]

vi

1 Introduction
In this section we provide the background and topics for our thesis as well as our
research questions. We establish the objective and scope, and explain some verbiage
choices relevant for the reader. Finally, we outline the layout of this thesis.

1.1 Background

Infrastructure as Code (IaC) tools allows infrastructure provisioners to create and
manage complex cloud infrastructure over time with version control systems. The
ability to configure complete and complex systems demands technical knowledge
from the provisioner on how to configure their IaC-code securely. There are mul-
tiple Static Application Security Testing (SAST) tools that promise to solve this
problem and catch misconfigurations in IaC-code. These tools are often incorpo-
rated in continuous integration tests and allow provisioners to catch security issues
in their configuration before they are applied to their infrastructure.

Choosing what security tool to use when testing IaC code is challenging. To our
knowledge there are no empirical study with a main focus on comparing the strengths
and weaknesses of each tool. The provisioner has to choose based on experience
and open sources to find out which tool or set of tools could identify most of the mis-
configuration in their IaC code. Instead of choosing one tool, the provisioner could
also combine multiple tools to detect more misconfigurations. This could help de-
tect more security concerns, but at the cost of duplicate findings, alert fatigue and
performance.

1.2 Thesis Topic

This thesis covers the topics IaC, cloud infrastructure security, SAST tools, Ter-
raform and data collection from public repositories. Our main focus will be to try
to determine which single SAST tool or combination of tools would be the optimal
solution to help infrastructure provisioners secure their IaC configurations.

1.3 Problem Statement

This thesis delves into some of the complexities of securing IaC repositories using
SAST tools. To address this, we have formulated the following problem statement:

What are the differences between the Terraform security scanners Checkov, Terras-
can and tfsec, and which single tool or combination of these tools do we recommend
to implement into IaC workflows?

1

1.3.1 Research Questions

We have broken the problem statement down into the following research questions
(RQs):

RQ1: What are the challenges and difficulties of collecting and subsequently analysing
data from publicly accessible code repositories? With this question we wish to
explore challenges which present themselves when working on a dataset made of
publicly accessible code repositories, with our three chosen SAST tools.

RQ2: What is the Performance Impact of Using Terraform Security Scanners on
Build and Deployment Pipelines? This question explores the impact on Continuous
Integration/Continuous Deployment (CI/CD) processes, including performance and
speed.

RQ3: What are the main differences between the different SAST tools in terms of
their rulesets and performance? This RQ aims to showcase the differences between
the tools, with a focus on rulesets, categories and performance. This will be done
by discussing the tools individually before comparing them to each other.

RQ4: What single scanner or combination of scanners provide the best security
guidelines for IaC repositories? This question will act as the conclusion of our
work, answering which tool or combination of tools we found to be most effective.
We will also give our advise on what combination of tools we suggest provisioners
should use.

1.4 Objective and Scope

Objective

This thesis aims to conduct a comprehensive comparison of three of the most popu-
lar security scanners for IaC configuration files: Checkov, Terrascan and tfsec. The
primary goal is to document the strengths and weaknesses of each tool, to help in-
frastructure provisoners choose which tool or tools they should incorporate in their
workflow. This research aims to contribute to a broader understanding of how se-
curity is managed in IaC environments, and provide useful insights into the current
state of IaC security. These observations could help guide the development of future
tools and practices for enhancing security in automated infrastructure management.

Scope

This thesis looks at publicly available repositories from two popular Git providers,
GitHub and GitLab. Private repositories are not in the scope, as we do not have
access to a large amount of private repositories containing IaC code. Publicly avail-
able repositories are easier to run SAST tools on, as their licence grants us access
to download their source code.

2

We further narrow our scope by only looking at one popular IaC language in com-
bination with a single cloud provider. Through discussion with our supervisor we
decided to limit the scope to analysing configurations that use Terraform with the
AzureRM provider.

Further narrowing of the scope was applied to only look at three SAST tools for
Terraform: Checkov (v3.2.74), Terrascan (v1.19.1) and tfsec (v1.28.5). These tools
are widely used and are among the most popular code scanning tools for Terraform.
Looking at the GitHub star count from their own repositories confirms that the tools
are widely used. Checkov has 6.6 thousand stars [2], Terrascan has 4.5 thousand [3]
and tfsec has 6.6 thousand [4]. More specific considerations for deciding the scope
are listed below.

• Project deadline. This thesis is written as a bachelor thesis. We therefore
have limited time to conduct our research into all security aspects of the IaC
tools landscape. This was the main reason we decided to use only three secu-
rity scanners, and to just look at one IaC tool in combination with one cloud
provider.

• IaC tool popularity. According to Statista, Terraform is the second most
used configuration language, with a usage of 30% [5], making any security
findings relevant to many users. It is also ranked by 6sense as the number one
in market share in the configuration management market, with a 32% market
share [6]. The configuration language’s popularity makes it realistic to find
enough open source data to analyse, as well as making our findings relevant
for many users.

• Cloud provider popularity. Azure is the second largest provider of cloud
services in terms of market share globally [7], making security findings rele-
vant to many users. The reason for choosing Azure over AWS is that we are
more familiar with Azure from prior experiences.

• Lack of research. We were not able to find any research that completed a
comprehensive empirical comparison of Terraform security scanners. Some
comparisons exist, which is discussed further in section 2.3, but not to the
scale of this thesis.

1.5 Verbiage

Security Concern

In this thesis we have chosen to use the term “security concern” to describe the se-
curity flaws, holes, faults, weaknesses, vulnerabilities and concerns we find in our
dataset. It is important to note that the “concerns” are perceived by the software
we use, as flaws, but in the context they are used they may not pose any risk. Rah-

3

man et.al. performed a study, looking at the security smells they could identify in
open source repositories. After the study they asked the owners of the repositories
whether they agree with their findings in fact being flaws. 30.2% of participants
disagreed with the researchers [8]. Our study uses a different dataset and different
checks from the aforementioned paper. However, we do recognise that what we and
our software sees as flaws may not pose a risk, and if the developers are aware and
cautious of them, they may not be flaws or concerns at all. Therefore, when we use
the term “security concern” going forward, this is in the context of it being some-
thing the scanning tools flag as flaws. However, whether they are actual concerns
for the security, might be up for a debate. What we find might not be considered as
a concern from the developer at all, but rather their intended design.

Checks

Checkov refers to the tests they run as checks, as do tfsec, but Terrascan uses the
word policy for the tests they run. To avoid any confusion we have chosen to stan-
dardise this and use the word check from here on out in the thesis when we refer to
either of these.

1.6 Thesis Outline

Introduction
In the introduction, we introduce our thesis through background, thesis topic, prob-
lem statement, research questions, objective and scope and thesis outline.

Theory:
In the theory section, we explain some fundamental and more complex theory used
in the thesis. This will give a good base of understanding, to make the thesis more
comprehensible. This section also includes an overview of some of the related
works that inspired our thesis.

Method:
In the method section, we explain how data collection and data analysis is con-
ducted. The entire data collection process is explained. This includes criteria for
which repositories are selected. In the data analysis part of this section the pro-
cess of each security scanner is explained, as well as the creation of the combined
categories, created to unify the results from the different tools.

Results:
In the results section, we present the results from the analysis. This includes graphs
to convey the results clearly, as well as comparisons between the different scanners.

Discussion:
In the discussion section, we discuss the results and further elaborate on the reason-
ing behind some of the choices that were made. RQ 1, 2 and 3 will be answered and

4

further discussed in this chapter, with a subsection each.

Conclusion:
In the conclusion section, we conclude the thesis by stating ideas for future work
and giving our answer to RQ4 as well as concluding the project as a whole.

5

2 Theory
This chapter contains the theory that the thesis is based on. It consists of two parts.
The first part lays the foundation needed to follow the thesis. This is done by elab-
orating on concepts and definitions used. It contains terms the reader should know
and also contributes to the understanding of why the methods used in the next chap-
ter was chosen. The second part takes a look at related work, where similar projects
and reports are mentioned. These reports created the base for this thesis by enlight-
ening what results had been found prior and what areas could be expanded upon.

2.1 Concepts and Definitions

IaC

Kief Morris explains Infrastructure as Code as “an approach to infrastructure au-
tomation based on practices from software development. It emphasizes consistent,
repeatable routines for provisioning and changing systems and their configuration.
You make changes to code, then use automation to test and apply those changes to
your systems.”[9]. This enables developers to apply changes in the infrastructure
by the press of a button. However it also means a single bad line of code could lead
to an entry point for an attacker.

Terraform

Terraform is a declarative configuration language [10] that uses HashiCorp Config-
uration Language (HCL). Declarative in this sense means the developer only needs
to state what they want in the completed infrastructure: amounts of servers and vir-
tual machines, what network devices should connect to and more. The developer
can build the entire infrastructure or remove it by a simple command at any given
moment. Terraform uses “providers”, a plugin for interaction with remote systems
[11]. Many major cloud providers have already created blocks that can be used with
their cloud systems, and anyone can develop and distribute their own provider.

Azure

Microsoft Azure is the second largest cloud provider, with a 24% market share in the
Cloud provider market [7]. The Azure Resource Manager (AzureRM) is the fourth
most installed Terraform provider [12]. Azure is a cloud provider which allows
its users to commission resources in the cloud that can be used for infrastructure,
development and compute, among other things [13].

6

Continuous Integration and Continuous Delivery

Continuous integration and continuous delivery (CI/CD) “aims to streamline and
accelerate the software development lifecycle” [14]. CI refers to integrating code
changes into the main branch of a shared code repository frequently, and having
automated testing when changes are committed and/or merged. CD refers to au-
tomating infrastructure provisioning and the application release process. [15]

GitHub Actions

GitHub Actions allows developers to automate, customise and execute software de-
velopment workflows in their repositories. GitHub Actions are written with YAML
syntax, and developers can create their own actions, or use premade actions created
by other developers [16].

GitHub Actions Matrices

Matrices in GitHub Actions allow developers to create multiple jobs automatically
by defining input parameters. The jobs created will include all possible combi-
nations of those inputs. The jobs are independent of each other and can be run
simultaneously. For example a matrix with a one-dimensional list with two items as
input will create two jobs.[17]

Static Code Analysis

Static code analysis is most commonly performed by running static code analysis
tools on non-running code, with the objective of uncovering possible weaknesses or
vulnerabilities [18].

Closed Card Sorting

Card sorting is an exercise in which the participants get a set of cards/data and label
them into groups. In closed card sorting these groups or categories are predefined,
whereas in open card sorting there are not predefined groups or categories [19].

2.2 Terraform Security Scanner Tools

Checkov

Checkov is a tool used to statically analyse IaC code [20]. It searches for security
concerns in the code and reports these concerns with a severity level and what se-
curity concern rule the configuration violated. Checkov allows developers to create
custom checks using Python and YAML.

7

Terrascan

Terrascan is a static code analysis tool for detecting security concerns in Terraform
configurations. It supports different Terraform providers and can be extended with
custom checks written in the Rego language with JSON rule files. Terrascan has a
CLI tool and an official GitHub Action which provisioners can use in their CI/CD
pipelines [21].

Tfsec

Tfsec is a static code analysis tool for detecting security concerns in Terraform
configurations. It is built on the defsec engine and is extendable with new rules
and Terraform providers [22, 23]. Tfsec is an open source project which accepts
contributions, making it possible for the community to add new security checks
written with JSON or YAML [24].

2.3 Related Work

There have been several studies on IaC security using datasets consisting of pub-
lic code repositories. We took inspiration from some of these studies for our own
repository collection [25, 26, 27, 28]. Iosif et al. (2022) looked at Terraform code
with the AWS provider, testing with Checkov, Terrascan and tfsec [28]. Verdet et
al. (2023) tested Terraform code with the AzureRM provider (in addition to AWS
and Google Cloud) using Checkov [27]. These studies deal with a lot of the same
type of data as we do, in addition to utilising the same tools, thus providing valuable
insights we have utilised in our own thesis. In their study Iosif et al. (2022) also
conducted a short comparison of the three SAST tools they used. This provided
valuable perspectives for our thesis, as well as motivation to perform a more in-
depth comparison between the SAST tools. They concluded that the best solution
would be to use a combination of the three tools. In addition to these studies there
are several less formal works, such as posts in tech-blogs that have conducted com-
parisons of IaC scanning tools [29, 30, 31]. While these do not have the depth and
formality of a research paper, their results are still valuable to us both to compare
our own findings with, and to get a sense of what characteristics other users value
in a scanning tool.

8

3 Method
In this section we delve into the methods we used to conduct the research for this
thesis. We discuss which criteria we have set for the repository collection process,
how the technical data collection and testing processes have been conducted and
lastly which methods have been used for the data analysis.

3.1 Data Collection

The data collected for this thesis is gathered from GitHub and GitLab, and is com-
prised of Terraform files that uses the AzureRM provider. In order to only use
relevant data we have put restrictions on which repositories to accept, using the cri-
teria we establish in this section. Another part of the data collection process is how
we gather the repositories that meet our requirements and subsequently how these
are tested. Lastly we will look into the security aspects of the data collection.

3.1.1 The Criteria

In this thesis our focus is on maintained projects, similar to the engineered projects
defined by Munaiah, N. et al. as “a software project that leverages sound software
engineering practices in one or more of its dimensions such as documentation, test-
ing, and project management” [32]. The repositories we consider to be maintained
projects are held to a somewhat lower standard than what Munaiah, N. et al. de-
fines as their criteria for engineered projects. The reason for this is that we wish
to have a large enough dataset to properly test the three scanning tools. The point
of the study is to test how these tools respond to different sorts of security con-
cerns, not how professionally the repositories are managed. Therefore, having less
professional or engineered projects included in the dataset was something we did
not consider to invalidate the research. We do however wish to test the tools on
active and legitimate projects, so we have chosen criteria that will filter out peoples
homework, experimental configurations etc.

Taking inspiration from prior research [32, 33, 34] we established the criteria below.

• Criteria 1 - Not a fork:
The repository can not be a fork.

• Criteria 2 - Number of contributors:
For a repository to be accepted it will need to have more contributors than the
threshold of 3.

• Criteria 3 - Total number of commits:
The repository will need to have more than 20 commits.

• Criteria 4 - Duration:
The repository has to be older than 26 weeks

9

• Criteria 5 - Recent activity:
For the repository to be considered active it needs to have had activity within
the last year.

• Criteria 6 - Issues:
The project needs to have 10 or more issues.

3.1.2 Technical Data Collection Process

We created a data collection and testing framework to collect and process the repos-
itories that fell within the scope of this thesis. The framework finds desired repos-
itories from GitHub and GitLab and run specified security checks on discovered
repositories matching the collection criteria. The results are stored in a database for
further analysis. This framework can be found in appendix A.

The framework is built to be extendable with new repository discovery methods for
the same or new Git providers. The framework is easily extendable with new static
code analysis tests on the discovered repositories. The data collection and testing
parts of the framework are run independently.

The testing framework works in stages. When a stage is finished it moves on to the
next stage. This was achieved by building the framework on top of GitHub Actions.
GitHub Actions provides a simple abstraction for parallelising workloads across
virtual machines [35] and the ability to run the workloads using GitHub runners
[36] or locally run them using Act [37]. Figure 1 shows a simplified structure of
how the framework’s data collection process works.

1. Start workflow 2. Repo Discovery
3. Secu-

rity Testing 4. Database

Figure 1: Data collection process

The first step of the workflow in figure 1 uses the GitHub Actions “workflow dispatch”
feature [38] to initialise the data collection process with a specific repository discov-
ery method, using the method’s name as input. This makes it possible to initialise
different data collection processes independently. In our thesis we are focusing on
GitHub and GitLab, and added the names of the repository discovery methods we
created as inputs.

Initialising a discovery method starts the corresponding discovery process in step 2
in figure 1. The purpose of a discovery method is to find all the public repositories
from the selected Git hosting provider that matches our criteria which was estab-
lished in section 3.1.1. However, due to the Git providers API limitations, which
are discussed further in section 5.1 we found it necessary to add more discovery
methods for a single Git provider.

10

The first discovery method for GitHub consist of querying their code search API.
This API allows authenticated users to get repositories that contain code the user
wants to find. We used the search query azurerm extension:tf finding all
.tf files on GitHub containing the string “azurerm”. This would according to
the API [39] get the correct results, but when testing their API, we got only 669
repositories from this query. We have a hypothesis that there should be well over
669 repositories on GitHub containing HCL files with the string “azurerm”, so we
created a second discovery method for GitHub.

The second discovery method for GitHub consist of querying their repository search
API. This API allows authenticated users to get repositories matching criteria the
user wants. We used the search query language:hcl pushed:\>2023-04

-01 matching all repositories that have HCL as their most used language and
some Git activity since last year. The API found 127 089 repositories matching this
criteria.

Due to limitations on the search API it would not be possible to get more than 1 000
results per query [40]. To get each search query from 127 089 results down to 1 000
we used the query functionality to query date ranges pushed:FROM-DATE..TO

-DATE . This would limit the scope of the search without compromising on the
findings. We implemented a divide and conquer algorithm [41] to do this search
efficiently and get all the repositories that had been updated in the past year. The
algorithm works by calling the search function recursively and dividing the time
scope in half until the total results are under 1 000. The found repositories are
returned and merges together into one list.

For GitLab we created one discovery method that consists of querying their repos-
itory search API. This API allows unauthenticated and authenticated users to get
repositories marching the user’s criteria. We searched for all repositories having
HCL as their primary language and their last activity being after the 1st of April
2023.

The repository discovery methods need to implement their own filtering ruleset be-
cause of the differences in the Git providers’ API. In figure 2 we have outlined
how the different methods filter out repositories after the initial discovery. The only
difference is the order of when the filter rules are applied. The same ruleset is ap-
plied to all methods which will result in the same final results regardless of when a
repository was filtered out.

The repository discovery methods are implemented in TypeScript and runs using the
Bun JavaScript runtime [42]. The use of a typed high level programming language
makes the code easy to read and work with. The use of Bun is to improve the
performance and memory while doing network requests [43]. Network requests are
the main computation this process does since it mostly fetches data from the APIs.

11

Fetch all reposito-
ries with hcl files
that includes the
string ”azurerm”

Filter out forks

Filter out
newer than 26
week projects

Filter out project
with less than
3 contributors

Filter out projects
with less than

20 total commits

Filter out projects
with less than
10 total issues

Filter out projects
that did not

have activity in
the past year

(a) GitHub Code search

Fetch all repos-
itories with hcl
files that have
had activity in
the past year

Filter out
newer than 26
week projects

Filter out project
with less than
20 commits

Filter out project
with less than
3 contributors

Filter out forks

Filter out projects
with less than
10 total issues

Filter out projects
that does not
include the

string ”azurerm”

(b) GitHub repository search

Fetch all repos-
itories with hcl
files that have
had activity in
the past year

Filter out
newer than 26
week projects

Filter out project
with less than
20 commits

Filter out project
with less than
3 contributors

Filter out forks

Filter out projects
with less than
10 total issues

Filter out projects
that does not
include the

string ”azurerm”

(c) GitLab

Figure 2: Repository discovery methods

The repository fetching job outputs a list containing URLs for repositories that
match our criteria.

Through the filtering process the results for each step is uploaded to the database.
If a repository passes a filter it will log that in the database.

Discovery Process Results

The discovery process for each of the discovery methods worked as expected. Table
1 shows how the results from the repository collection are affected by the filtering
rules applied to the initial dataset from the APIs. The rules in the first column refers
to the rules from the stages in figure 2.

The table shows that most of the filtering rules was applied successfully. We can
see that some repositories was discarded at each stage. This is expected as each rule
combines with the previous and sets a overall stricter criteria on the repository.

Filtering rule 3 in the GitHub discovery methods seems to not work. This rule is

12

“not a fork” and we expected that at least some repositories would be discarded by
this rule. This is further discussed in 5.5. The implementation of this rule was based
on the GitHub API response schema [40] and checked the boolean value of fork

on the repository object. This value was false on all repositories we discovered from
GitHub.

Rule GitHub code search GitHub repository search GitLab

0 669 127 089 9 844
1 669 74 012 5 674
2 557 21 398 2 727
3 269 6 000 1 377
4 266 6 000 1 045
5 143 4 094 77
6 115 706 7

Discovered repositories 115 706 7

Table 1: Repository discovery results for our different discovery strategies

Because we implemented two strategies for GitHub, we expect there to be overlap
in the discovered repositories. Table 2 shows the amount of unique repositories
discovered from each provider.

GitHub GitLab

Total 793 7

Table 2: The total amount of discovered repositories

Technical Testing Process

The technical testing process occurs in step 3 in figure 1, and a more in-depth
overview of what occurs in this step can be seen in figure 3. The testing steps
for each of the tools follows the same pattern, but there are slight differences in how
each of the tools are used within the workflow.

13

Start Checkov
testing

Start timer

Start Checkov job

Stop timer

Upload Checkov
results to database

Start tfsec testing

Start timer

Start tfsec job

Stop timer

Upload tfsec
results to database

Start Terras-
can testing

Start timer

Start Terrascan job

Stop timer

Upload Terrascan
results to database

Figure 3: Security testing process

Before the workflow can run the security tests the framework transforms the list
containing URLs into GitHub Action matrices [35]. Using matrices on Action jobs
allows them to be run in parallel, which enables the framework to do concurrent
static code analysis on the discovered repositories.

The process of transforming the list of repositories to a valid matrix is done by cre-
ating nested matrices. A matrix containing other matrices is used to bypass GitHub
Actions’ limit on matrix sizes of 256 items. While a 1-layer matrix can create 256
jobs, a 2-layer nested matrix can create 65 536 (256 x 256) jobs.

The security testing job is now set up correctly to run parallel security testing on
the discovered repositories. We chose to test a maximum of 22 repositories at the
same time, making the whole security testing process take 1 hour 19 minutes and
47 seconds.

The security testing workflow that runs the three scanner tools on a repository are set
up to run the tools sequentially. It works by first downloading the testing framework
and installing the necessary dependencies. After the framework is set up correctly
it will download the source code of the repository it is going to test.

The fist security scanning tool to be tested is Checkov. We first have to specify
which checks we want to run, which is all AzureRM checks from Checkov. After
this a timer is started, and then the Checkov GitHub Action from thebridgecrew
[44] is run, which is where the checks are run. When the checks are finished the
timer is stopped, and then the results are uploaded to the database.

The tfsec checks are run after the Checkov checks. The tfsec steps are similar to
the Checkov steps, with the exception that we do not need to specify which checks
we want to be run. The first step is to start the timer, then we run the tfsec GitHub
Action from Aqua Security [45]. When the checks are finished we stop the timer,
and then we upload the results to the database.

The last tool we run is Terrascan. These tests have to be run in a different manner
than the previous two. There exists a Terrascan GitHub Action [46], but it does not

14

allow us to change the format of the output (besides creating a SARIF file). We need
the output of the tests in JSON format for us to be able to parse through them and
upload the results to our database. For this reason we have not used the Terrascan
GitHub Action, but rather installed the tool in the workflow and run it through a
command. Although the steps for running these tests are somewhat different to the
steps for Checkov and tfsec, it will work in practically the same way as if we had
used the Terrascan GitHub action. The first step we do is to install the Terrascan
tool. We then start the timer and then the tests are run with a command that specifies
only to run Azure tests on Terraform files. We then run a test to see that the checks
have finished and the results have been written to a JSON file. After this we stop the
timer and lastly the results in the JSON file are parsed and uploaded to the database.

3.1.3 Security Aspects of the Data Collection Process

The repositories we are checking for security concerns are real public code reposito-
ries with code that are potentially being used in active infrastructures. If we release
information about any of these repositories having security concerns it could harm
the repositories. It is therefore important for us to treat this data with care and in
a way that does not leak any information to the outside world. We have therefore
taken some security precautions to ensure the security of the repositories in our
dataset.

Private repository: The code repository we have written our own code in is a
private GitHub repository which are only accessible by the authors of this thesis.

Password protected database: The database we have used for storing data about
the different repositories and test results is a password protected database. The
password is a 20 character long randomly generated password including special
characters. Only the authors of this thesis have access to the database and the raw
results.

No publication of repository-specific data: We will not be publishing any repos-
itory specific data, such as name of repositories, names of contributors etc. There-
fore we will not publish any information which can connect a specific repository to
a specific security concern. We will also delete the raw data after the delivery of our
thesis.

15

3.2 Data Analysis Methodology

This section describes the scope of our security testing and how we collect the re-
sults. We use three different security tools that has their own set of misconfiguration
checks. This section lists each tool’s checks grouped by their internal category. The
checks are further categorised to fit a common categorisation set by us. In appendix
C, D, E and F all checks that we run are listed, with their original and new category
specified.

3.2.1 Categorise Security Checks

Each tool has their own internal way of representing a misconfiguration, which
makes it difficult to compare the raw output from the tools. We created common
categories to solve the problem of comparing security findings. The common cate-
gories are based on a combination of the tools’ internal categorisation from Checkov
and Terrascan. The individual tests have been distributed in the common cate-
gories based on their former categories for Checkov and most Terrascan checks.
For Terrascan checks with the former category “Infrastructure Security” and all tf-
sec checks, we used closed card sorting to place them in the new categories. Tfsec
does not have internal categories and there is a large span of different tests in the
“Infrastructure security” category from Terrascan, which is why we sorted them this
way. Table 3 shows the common categories we established.

Common categories Checkov Terrascan tfsec
General Security General security Infrastructure Security -

Kubernetes Security Best Practices
Application Security Compliance Validation

Misc*
Networking Networking Infrastructure Security -

Identity and Access Management Identity and Access Management Identity and Access Management -
Encryption and Data Protection Encryption Data Protection -

Logging and Monitoring Logging Logging and Monitoring -
Backup Backup and Recovery Convention Resilience -
Secrets Secrets - -

Table 3: Common and original categories
*: We made this category to cover Checkov policies with custom categories.
-: No category

In table 4, the amount of misconfiguration rules per category per tool is shown.
We see that Checkov has an equal amount of, or more rules than the others in all
categories, except networking, where Terrascan has the most. It is also worth noting
that tfsec has no checks in the backup category, and Terrascan has no checks in the
secrets category. All of the rules were given categories after they were uploaded to
the database, using an SQL update query.

16

Categories Checkov Terrascan tfsec Total
General Security 98 8 7 113

Networking 92 138 12 242
Identity and Access Management 23 11 18 52
Encryption and Data Protection 31 5 2 38

Logging and Monitoring 17 13 11 41
Backup 15 3 0 18
Secrets 2 0 2 4
Total 278 178 52 508

Table 4: Amount of rules per category for the different tools

3.2.2 Technical Analysis Methodologies

All relevant data from GitHub and GitLab is stored in a database. From this database,
we can retrieve our results, and filter the results to properly record statistics. As we
are comparing the tools and checks in different categories, we made sure to have
columns specifying these in the database, enabling concise database queries. To
get a good overview of the differences and similarities, we used Microsoft Excel to
format graphs and tables in a different view than just the raw data results. We chose
to look at the result through several different statistical views for the project. This
includes column and bar graphs, both for the individual tools, and a comparisons
through clustered graphs.

17

4 Results
In this chapter, we will take a look at the results of the individual tools one by one,
followed by a comparison of their results.

4.1 Checkov

Checkov was able to identify at least one security concern in 639 of the 800 reposi-
tories giving a coverage of 79.86%. In total, it was able to identify 28 787 security
concerns in these repositories. This gives an average of 45.05 security concerns for
each repository that has at least one concern, or an overall average of 35.98 based
on all repositories. The distribution of these checks between categories can be seen
in figure 4. This shows that Checkov was able to find a lot within the general se-
curity and networking categories, while only one concern was found in the secrets
category.

Figure 4: Graph showing the distribution of security concerns Checkov was able to
identify by category.

There is a major difference between the different repositories when it comes to
size, complexity and different implementations. Although Checkov identified the
average amount of security concerns per repository with at least one concern to
be 45.05, the median for these repositories were only 17. This shows that there
is a vast difference between the repositories where it identified the most, opposed
to the least amount. As this is the case, we made a graph that shows how many
repositories contain a certain amount of concerns. Figure 5 shows the distribution of
these concerns. From the graph, we can see that there is a clear correlation between
the amount of repositories and the amount of concerns found. Checkov identified

18

less than 45 security concerns in 80% of the repositories where it identified at least
one security concern. There is a spike with 17 repositories that has between 171
and 175 security concerns. This is a spike that came from a vulnerable-by-design
repository which has been cloned and used as a base for multiple demo repositories.

Figure 5: Checkov: Amount of repositories within ranges of security concern count,
with a cumulative percentage of total amount of repositories represented.

4.2 Terrascan

Terrascan was able to identify at least one security concern in 581 of the 800 repos-
itories, giving it a coverage of 72.63%. It was able to identify a total of 4 481
security concerns in these repositories, resulting in an average of 7.72 security con-
cerns per repository where it identified at least one, or an overall average of 5.61
based on all repositories. The distribution of concerns by category can be seen in
figure 6. From this we can see that Terrascan finds a considerable amount in the
networking and identity and access management categories, with fewer results in
the other categories, and none in the secrets category as it did not have any checks
in this category.

19

Figure 6: Graph showing the distribution of security concerns Terrascan was able
to identify by category.

Due to the major difference between the different repositories when it comes to
size, complexity and different implementations, a count or average might not be the
best metric to go by. Although Terrascan was able to identify an average of 7.72
for repositories it detected at least one security concern in, the median for these
repositories were only 4. The difference in average as opposed to median shows
that there is a great deal of variance, and that there are a few repositories which
increase the average substantially. The distribution of repositories that contain a
certain amount of concerns are shown in figure 7. Here we can see that there is
a clear correlation between the amount of repositories and the amount of concerns
found. The vast majority of repositories only contain a few security concerns each,
where 80% of repositories contains less than 10 security concerns.

20

Figure 7: Terrascan: Amount of repositories within ranges of security concern
count, with a cumulative percentage of total amount of repositories represented.

4.3 Tfsec

Of the 800 repositories analysed, tfsec was able to identify at least one security
concern in 334 of these. Giving a coverage percentage of 41.75%. It was able
to identify a total of 4 660 security concerns in these repositories. This gives an
average of 13.95 security concerns per repository where it was able to identify at
least one, or an overall average for all repositories of 5.83. The distribution between
categories of these checks, is shown in figure 8. Tfsec was able to find a lot within
identity and access management, and networking, with only one found in secrets. It
did not have any checks that fell within the backup category.

Figure 8: Graph showing the distribution of security concerns tfsec was able to
identify by category.

21

Tfsec identified the average amount of security concerns per repository to be 13.95
(for repositories where it was able to identify at least one), with a median value of
5. This shows that there is a substantial difference between the repositories where
it identified the most, as opposed to the least amount of security concerns. Figure 9
shows the distribution of the security concerns. The graph shows a clear correlation
between the amount of repositories and the amount of concerns found. In tfsec, as
with the other tools, it is evident that the vast majority of repositories contain only
a few security concerns, with 80% of the repositories having fewer than 15 security
concerns. There is a spike with 15 repositories that has between 86 and 90 security
concerns. This is a spike that came from a vulnerable-by-design repository which
has been cloned and used as a base for multiple demo repositories.

Figure 9: Tfsec: Amount of repositories within ranges of security concern count,
with a cumulative percentage of total amount of repositories represented.

4.4 Comparison

4.4.1 Security Concern Detection Coverage and Overlap

In assessing security concern detection across repositories, it’s vital to consider the
coverage and overlap between the three tools. The coverage is based on how many
of the 800 repositories they were able to find at least one security concern within.
Checkov was able to identify this in 639 repositories, Terrascan 581, and tfsec was
only able to identify security concerns in 334 of the repositories.

The coverage percentages are measured as repositories where the tool identified
one or more security concerns divided by the total count of repositories. Checkov
boasts the highest coverage rate at 79.9%, followed relatively closely by Terrascan
at 72.6% and tfsec trailing behind at 41.8%. More on why tfsec scores such a low
coverage rate, is discussed in section 5.3.

22

The average time is based on the time to scan through a complete repository, and
only includes times from repositories where the tool was able to identify security
concerns. The average times are visualised in figure 10. Tfsec was the fastest tool
with an average time to scan a repository at a mere 4.16 seconds, with Terrascan at
12.60 and Checkov following behind at 13.94 seconds. From these observations, tf-
sec uses roughly a third of the time compared to the other tools, which are relatively
similar in scanning time.

Figure 10: Average time to run the tool against a repository

Table 5 provides a more comprehensive breakdown of security concern detection
and overlap between the three scanning tools. Each column depicts a specific sce-
nario. These scenarios include repositories devoid of security concerns detected by
any of the tools, repositories where either just one or two of the tools were able to
identify any security concerns, and where all tools detected security concerns. The
”Combined” row aggregates the repository count.

For instance, none of the tools were able to identify any security concerns in 112
repositories, and they all agreed that there were security concerns in 281 reposito-
ries. The overlap is most apparent in the columns where either two or all three were
able to identify security concerns.

In the column where 2 of the tools were able to find security concerns, there is
significant overlap. There was a total of 304 repositories in this column of the table.
The sum of all the repositories the individual tools found is 608, which indicates
that there is a notable degree of redundancy in the findings, further indicating a
substantial overlap in their detection capabilities. Again, Checkov proves to be the
most thorough as it found security concerns in 298 of the total 304 repositories.
Meaning that Terrascan and tfsec were only able to agree on 6 repositories where
Checkov was unable to find any security concerns. Overall, this indicates that cross-

23

referencing among the tools can increase their reliability, reducing the risk of false
negatives.

Tools 0 1 2 3 Total
Combined 112 14.0% 103 12.9% 304 38.0% 281 35.1% 800 100.0%
Checkov 60 7.5% 298 37.3%

Terrascan 41 5.1% 259 32.4%
tfsec 2 0.3% 51 6.4%

Table 5: Number of tools finding at least one error

In table 6 we takes a look at what percentage of the repositories the tools found
zero security concerns in. Another interesting metric to observe, is the difference
between the total rules and the amount of rules that were triggered once or more.
In Checkov and tfsec, most of the rules from the ruleset found security concerns.
In Terrascan however, only 45 of the total 178 got any hits. Why this was the case,
will be further discussed in 5.3

Metric Checkov Terrascan tfsec
Zero security concern 20.1% 27.4% 58.3%

Avg. security concern # 45.05 7.72 14.95
total rules 278 178 52

rules that were triggered once or more 259 45 51

Table 6: SAST tool comparison: clean repositories, average security concerns, and
rule trigger statistics

4.4.2 Security Concern Distribution based on our Categories

When comparing the performance of Checkov, Terrascan, and tfsec across differ-
ent categories of security concerns, significant variations emerge, highlighting their
respective capabilities and focus areas.

As table 7 and figure 11 shows, the performance differences are quite noticeable.
Checkov demonstrates a robust detection capability across a wide range of cate-
gories, particularly excelling in general security (11 688) and networking (8 453).
This indicates its comprehensive coverage in these critical areas. Terrascan, on the
other hand, displays notable strengths in identity and access management and net-
working, uncovering 1 872 and 1 961 security concerns respectively. Tfsec also
contributes to the identification of security concerns, particularly in identity and
access management (2 353) and networking (1 280).

In some categories, the difference in performance is highly noticeable. For in-
stance, Checkov identifies 2 034 security concerns in encryption and data protec-
tion, whereas Terrascan and tfsec only find 65 and 21 respectively. This suggests

24

that Checkov may offer a more extensive coverage or sensitivity to security con-
cerns related to encryption and data protection practices. This disparity between
how many security concerns they were able to find is present in other categories as
well, with Checkov often finding way more security concerns than the other tools.

Despite Checkov and tfsec having checks for the secrets category, only two hits
were observed in total, where the two tools found one each in different reposito-
ries. This indicates that these tests might be too lenient, or that only a few of the
tested repositories contained any security concerns that would be detected for this
category.

Figure 11: Total amount of security concerns found by each tool in each category

Tools Checkov Terrascan tfsec Total
General Security 11 688 62 445 12 195

Networking 8 453 1 961 1 280 11 694
Identity and Access Management 3 201 1 872 2 353 7 430
Encryption and Data Protection 2 034 65 21 2 120

Logging and Monitoring 1 643 335 560 2 538
Backup 1 763 189 0 1 952
Secrets 1 0 1 2
Total 28 787 4 484 4 660 37 931

Table 7: Total amount of security concerns the tools were able to identify by cate-
gory

Moreover, analysing the total number of security concerns detected and the average
per repository provides additional insights into the tools’ efficacy. Checkov identi-

25

fies a total of 28 787 security concerns, with an average of 45.05 security concerns
per repository with at least one security concern. Terrascan uncovers 4 484 secu-
rity concerns in total, averaging 7.72 security concerns per repository with at least
one security concern, while tfsec detects 4 660 security concerns in total, averaging
13.95 security concerns per repository with at least one security concern. Table 8
shows the amount of unique repositories that gets at least one hit from tests within
the given categories. More details can be found in table 6. These figures underline
the variations in the observed amounts of security concerns found by each tool.

Tools Checkov Terrascan tfsec
Identity and Access Management 371 516 281

Networking 525 369 240
General Security 610 28 43

Logging and Monitoring 215 162 117
Backup 380 108 0

Encryption and Data Protection 359 22 20
Secrets 1 0 1

Table 8: Amount of unique repositories with a security concern in a given category
per tool

4.4.3 A Closer Look at Specific Checks

In this section, the focus is on the specific checks. We look at how many times a
check has encountered a security concern in the entire dataset. In figure 12 the 10
checks with the highest hit count is shown.

26

Figure 12: Graph showing the 10 checks with the highest hit count

Both Checkov and Terrascan checks are represented in this graph, with Terrascan
having the check with the highest amount of hits. As seen earlier, Checkov has the
most amount of checks with a high number of hits, having 8 of the top 10. While
it seems like Terrascan has multiple checks with a high number of hits, that is not
entirely the case. Even though the two yellow bars in the graph has 1 722 and 1 264
hits, the next Terrascan check only has 264. Tfsec has no checks with as many hits
compared to the others, with the most prominent one having 531 hits, which places
it as number 16.

27

5 Discussion
In this part of the thesis we will discuss the results we have gotten from the study,
as well as our experience working with this material. We will answer RQs 1-3, and
discuss how we have come to these answers. Then we will discuss assumptions and
interpretations, threats to validity and ethical considerations related to our study.

5.1 RQ1 - Challenges of Collecting Data

RQ1: What are the challenges and difficulties of collecting and subsequently analysing
data from publicly accessible code repositories?

RQ1 answer summary: The challenges and difficulties we experienced in regard to
repository collection were in identifying the repositories we wanted to analyse, and
adhering to the limitations of the GitHub and GitLab APIs. These were primarily
limitations in filter capabilities and rate limiting of requests. The challenges we
faced while testing the data revolved around using a self-made testing framework,
whether the information extracted had substance, differences in the SAST tools’
rulesets and indications that some tools were failing. We experienced some chal-
lenges with configuring Terrascan in the testing framework, but we were able to
work around these challenges and make the tool run in our framework.

Repository Collection

The main challenge of collecting data from public repositories lies in identifying
the repositories we want to analyse. The challenges stem from limitations placed
upon the public-facing APIs from the Git providers. This includes not having the
capabilities to filter and query data for an advanced filtering process. Limitations
we identified included the following: not having the filtering capabilities needed,
limitations on data extracted per query, rate limiting requests, giving incorrect data,
server errors on normal requests, and poor documentation of these behaviours and
limits.

The public-facing API from both Git providers we tested did not have the filter-
ing capabilities to filter for the criteria we set in section 3.1.1. Even though both
providers have built-in filtering options, these were not sufficient for this thesis’
needs. This limitation led to the repository discovery process having to query the
public facing APIs several times per repository, to get enough information to satisfy
each discovery method’s filters.

The consequence of the need to query the API endpoints many times was reaching
the rate limit. Since our initial testing showed that there were 127 089 repositories
on GitHub, we parallelised the filtering process code to run on different threads to
make it faster. With our 8 threads we made about 14 400 request to the GitHub API

28

per hour, but the limit was 5 000 req/hour [47]. This limitation was bypassed with
the use of multiple GitHub account access tokens and making three threads share a
common token. This limitation was solvable, but important to keep in mind when
collecting data from open sources.

Both Git providers’ APIs had limits on the amount of data that could be retrieved
per query. They shared a common pagination interface where the maximum amount
of items per query was 100. This meant that the initial discovery process for GitLab
iterated through 1 270 pages of repositories, discovering 100 repositories per page.
The GitHub search API had further limitations, such as the maximum amount of
results for a given search query being 1 000, equating to 10 pages. This meant
that it was not possible to retrieve data from page 11, even though there was more
data. This led to us developing a divide and conquer method for retrieving initial
repositories. Even though we found ways around the limitations, we still found it
challenging to work around these APIs.

Other challenges when it came to API limitation were unexpected internal server
errors. We experienced random internal server errors when using the GitLab search
API with normal queries. These queries seemed to work after some retries even
though nothing was changed on our part. We suspect that this unexpected behaviour
was caused by a bug in the GitLab platform, something we could not do anything
about. Our solution was to try again up to 10 times if a HTTP status code 500
(Internal Server Error) occurs and wait 10 seconds between each retry. Although
the server said that it failed, this solution managed to retrieve all the repositories.
For those who are going to collect data from these sources in the future it is worth
noting that you can not always trust the http status codes.

Looking at the filtering results in table 1, it is apparent that some of the filters were
not applied correctly or had no effect on GitHub discovery methods. The ”not a
fork” criteria had no effect on the repositories. We consider this odd behaviour
since this criteria manged to filter out 91% of repositories from the previous step
(70 repositories) in the GitLab filtering script. This makes us suspect that we 1.
implemented the check incorrectly, 2. GitHub’s API specification is wrong or 3.
GitHub’s search API does not list forks. We believe the first option is unlikely since
the code checks the fork attribute, which when true, signifies that the repository
is a fork. The second option is not probable because we tested that the API and
the fork attribute was true when the repository was a fork, and false otherwise.
We consider the third option to be the most probable. The API verified that no
forked repositories had made it past our filters. This is again an indication that there
simply were no forked repositories to filter out rather than there being an error with
the filter.

29

Collecting Information from Discovered Repositories

The main challenge of extracting data from repositories lied in both creating our
testing framework and configuring this correctly, as well as whether or not the in-
formation extracted had substance. Even though the security tools used to analyse
the repositories were set up according to their documentation, there could have been
information we missed or nuances in their setup that could have affected the results.
These facts are important to keep in mind when looking at the results.

As discussed in section 1.5 we have used the term “security concern” to reference
the violations that are flagged by the SAST tools. We also discussed how these
security violations are configurations that the SAST tools view to be issues or vul-
nerabilities, but are not necessarily issues that pose any real threat. Tools finding
such security concerns could therefore get a higher count of discovered security
concerns, even though what they found may not be real issues. When looking at
the results the reader should have this in mind, as the security concern count may
be skewed to make SAST tools with looser rulesets appear better than those with
stricter rules. This is due to them flagging more security concerns that are merely
bad or questionable practices, but not real issues. On the other hand, we have not
manually gone in-depth into the security concern hits and can not say for certain
that this is the case. We do not however, view this as a threat to the validity of our
research, as the scope of this study is not to solely review critical violations.

One of the concerns we have about our framework is that the security concern find-
ings for tfsec was not uploaded to the database correctly. Our findings show that
tfsec did not find any non provider-specific issues. Tfsec has a total of 51 security
concern detection rules with a “azure” label and only 1 detection rule with a “gen-
eral” label. Our findings show that the detection rule with a “general” label was not
found in any of the 334 repositories tfsec found security concerns in. Seeing as it is
only 1 security rule in the secrets category that is not provider specific, it is possible
that this rule simply did not get any hits, rather than there being an error in the run.

We ran the security tools according to their documentation and configured them to
be resilient to faulty repositories, however, some of the tools were still failing on
certain repositories. This was a big challenge we could not solve, as it was the tool
itself that broke during the testing phase. When the tools broke, they did not give
a result that we could upload to the database, resulting in no findings for that tool
on that repository. Our study only compares the effect of each tool and whether it
identified security concerns. If the tool breaks on a repository it does not find any
concerns and will therefore not upload any findings to the database. We recommend
that others who conduct similar studies keep track of when the security scanning
tool breaks.

30

Challenges with the SAST Tools

For Checkov and tfsec testing we have used the official GitHub Actions. There is
also an official GitHub Action for Terrascan, but this does not allow change of the
output format. There is an option to generate a .sarif file with the test results,
but this file does not contain the same information as when Terrascan is run from
the command line with the JSON format selected. In this study we needed the test
results delivered in JSON format, so we had to run the tool with a command instead
of the GitHub Action.

Terrascan has 5 possible exit codes: 0, 1, 3, 4, 5. Besides 0 and 1, the exit codes are
used to inform whether Terrascan identified violations but not errors, errors but not
violations, or a combination of both [48]. This use of non-zero exit codes causes the
GitHub Action to perceive the job as having errors, which again causes it to mark the
job as failed and skip related jobs. This is a problem because the job has not actually
failed, it has worked as it is supposed to, but GitHub Actions still views it as a failed
run. We worked around this by using the continue-on-error: true flag,
which makes the job continue even when it gets an error. This is not a good fix,
as the job will also continue if there is a legitimate error. It is not necessarily a
bad idea to have the error codes configured like this. In most cases users will not
use Terrascan to scan hundreds of repositories like we do, but rather check only
one repository. Having exit codes which throws errors when security concerns are
discovered can therefore be a good thing, as it can prevent the faulty code to be
pushed to the production environment. We would however, have liked to see there
being a soft-fail option, as there is in Checkov [49] and tfsec [50], which
would allow the tool to continue the job with errors.

5.2 RQ2 - Performance Impact

RQ2: What is the Performance Impact of Using Terraform Security Scanners on
Build and Deployment Pipelines?

RQ2 answer summary: All the tools demand little time to complete their scans
and can run concurrently with other processes in a workflow, minimising potential
delay. The performance impact of integrating SAST tools into a CI/CD pipeline is
therefore low.

Our analysis indicates that the slowest tool requires an average of 13.94 seconds
to check a repository, while the fastest tool only needs 4.16 seconds per repository.
Moreover, these tests can be run independent of existing pipelines and can therefore
run concurrently alongside existing processes, minimising potential delay. This,
combined with the low amount of time even the slowest tool needs, makes the per-
formance impact of integrating SAST tools into an existing CI/CD pipeline low. It
is worth noting that the speed results we obtained from these scans may have been

31

affected by the number of repositories being tested simultaneously.

Furthermore, the utilisation of SAST tools can significantly benefit developers striv-
ing to establish secure IaC environments. By integrating these tools early in the
development cycle, developers can proactively identify and rectify security vulner-
abilities. This could help ensure a robust foundation for their infrastructure de-
ployments. This proactive approach not only enhances security practices but also
streamlines the development process by addressing potential security concerns be-
fore they escalate.

5.3 RQ3 - Main Differences Observed Between the Different SAST
Tools

RQ3: What are the main differences between the different SAST tools in terms of
their rulesets and performance?

RQ3 answer summary: There is a difference in the amount of rules the tools have
in their rulesets, security concerns the tools were able to find and repositories the
tools were able to find security concerns in. Checkov scores the highest in all of
these measures, Terrascan places second in size of ruleset and coverage, while tfsec
places second in total security concern count. There are also differences in coverage
when categories are taken into consideration, but here as well, Checkov places
highest in all categories except for the secret category where it has the same amount
as tfsec.

As shown in sections 4.4.1 and 4.4.2, there is a distinct difference in the amounts of
security concerns the tools were able to find in the repositories. Part of this comes
down to how many of the repositories they were able to complete their scans for.
As mentioned in section 5.1, the investigation into the main differences between the
three SAST tools begins with an overview of the results, highlighting differences
in detection capabilities across repositories. This stark contrast in coverage sets the
stage for a deeper exploration into the underlying factors driving these discrepan-
cies.

Checkov

Checkov has a ruleset consisting of 278 total rules for Azure. This is by far the
largest ruleset out of the three tools. If we look at table 4, we can see that it has
quite good coverage in all categories except for secrets, where it only has two rules.

Comparing the ruleset with the results, a similar pattern emerges. As shown in sec-
tion 4.4.1, Checkov was able to identify a wide range of concerns, and consistently
found more security concerns than the other tools across the categories. There is
also a clear correlation between the number of checks in a given category and the
amount of security concerns it is able to find in the given category. The main focus

32

areas of Checkov seems to be in the general security and networking categories,
where it found the most amount of security concerns along with having the highest
amount of rules.

In our testing, Checkov also seemed to be the most stable of the three tools. It had
the lowest number of problems encountered, where it timed out or threw errors.
Checkov also has some convenient features such as AI integration to automatically
give suggestions for code replacement whenever it finds an error [51].

Terrascan

Terrascan’s ruleset was the second largest with a rule count of 178 for Azure. From
table 4, it is clear that in contrast to Checkov, these were not evenly distributed, with
138 networking rules, leaving only 40 spread out for the other categories. However,
the number of tests does not fully explain this large disparity, as the vast majority
of these rules are more strict than what the other tools have for their rules in the
same category. As for the other categories, the remaining rules are relatively evenly
split. However, Terrascan completely lack specific rules related to finding security
concerns in the secrets category.

We found that only 45 rules out of the total 178 rules were triggered once or more
using Terrascan’s ruleset. This could be due to the fact that Terrascan has very
specific checks. For example a lot of the network checks are configured to only
check one port each. With network being the category with the most checks, it is
possible that none of the repositories had most of the port misconfigurations. This
can explain why some of the 133 of the checks correctly got zero hits. However, as
we have not done an in-depth analysis of the checks that got no hits, we are unable
to confirm this.

When comparing the ruleset with the results seen in section 4.4.1, there is some level
of correlation between the number of rules and the number of security concerns
found. However, it is not as clear as with Checkov. Networking ended up having
the highest number of findings, while identity and access management ended up
following closely behind despite having way fewer rules. It also seemed like the
tool underperformed in several of the other categories, coming in behind the other
tools.

Tfsec

Tfsec had the smallest ruleset of the three tools by a significant margin, with only
52 tests for Azure, including their non provider-specific secrets rule. This leaves
only 51 tests specifically designated for Azure. The rules are relatively evenly
spread, with identity and access management and networking having the highest
rule counts. However there are some clear lacks, especially for backup where there

33

was no checks, and for encryption and data protection as well as secrets where it
only had two tests for each category.

Comparing the ruleset with the results shown in section 4.4.1, we can see that there
is a clear correlation, with no significant outliers. We can also see that despite
its lower rule count and that it was unable to find security concerns in as many
repositories, the total number of concerns it was able to find was quite comparable
to Terrascan. Tfsec and Terrascan seemed to be relatively evenly matched in most
categories. Counting only repositories with at least one security concern hit, tfsec
ended up finding more security concerns per repository on average than Terrascan.
Tfsec found on average 14.0 whereas Terrascan only found 7.7. This could indicate
that each rule is more thorough than the rules from the other tools.

Tfsec found security concerns in the fewest repositories, with only 334, compared
to Checkov’s 639 and Terrascan’s 589. At first glance, this seemed to be caused by
the tool not functioning properly. However, tfsec has a feature that when enabled,
will ignore invalid Terraform files in a repository and continue testing the valid files.
We did not disable this feature since we wanted to test functional IaC projects. The
outcome was that tfsec was not able to find any configuration mistakes in reposi-
tories with invalid Terraform configuration, while the other tools which are more
resilient by default, reported errors even in invalid Terraform files. We consider it
likely that our results might have been swayed in favour of the other tools that com-
plete their checks, even when faced with repositories containing invalid Terraform
files.

It should be mentioned that tfsec is in some ways outdated as Aqua security, the
developers of tfsec, has begun to merge the tool into their more comprehensive
Trivy suite. Aqua’s attention is no longer on tfsec, and only Trivy continues to get
new official updates. The merging of these tools seemed unfinished, therefore we
chose to use the tried and tested tfsec in our study. Trivy also seems to not be in
full release state, as its current version number is 0.51.1 [52] (as of the 19th of May
2024). We recommend that others who intend to conduct similar studies consider
using Trivy as a SAST tool for Terraform.

5.4 Assumptions and Interpretations

Seeing as our study is an empirical data-centric study, we have strived to make as
few assumptions as possible regarding our results. There have however been some
assumptions in regards to what the results suggest in terms of SAST tool quality.
We have equated violation count and coverage with quality, thereby assuming that
each test result is valid and not a duplicate.

We have also made another significant choice in terms of interpretations, which
is that we measure all security concerns equally and do not consider severity level.

34

This means that we do not have insight into how the coverage is distributed between
the tools if we were to use severity level as a metric. This could uncover other
valuable insights in regards to which tools is better at finding security concerns in
each severity level.

5.5 Threats to Validity

Similar Repositories

With our filtration we did not collect forks in our repository collection. However,
upon closer manual inspection of the security concerns, we found repositories with
similar results. When further investigating these repositories, we found that one
was a clone of the other, and that there were likely more clones in our dataset. In
our experience clones are very difficult to automatically filter out in the dataset.
This means that a few of the repositories in practice might get their security con-
cern statistics added twice or more, as their clones might contain the same security
concerns.

However, as the similar repository still fits all of the criteria, it could be important
to allow it into the analysis. A cloned repository that is still active, should strive to
limit its security concerns even though they came from the cloned repository. The
problem occurs when a repository is cloned within the last year, and then aban-
doned. The commits and names of the contributors could be cloned from another
repository, without anything new having been added. In that case it would just end
up being duplicate data in our analysis, which could skew the results in favour of
one of the tools.

Risks of False Positives and Negatives

In our study we have checked 800 public code repositories and got 37 931 security
concern hits. This is a lot of repositories and security concerns. We have not re-
viewed the results we got besides the statistical analysis we did. This means that
we have not manually or otherwise gone into the repositories and the individual test
results to confirm that each hit is valid, and that no security concern have been over-
looked. Therefore there is a possibility that there are false positives or negatives in
our test data that we have not accounted for. This could skew the results we have
gotten, and because we do not know if this is the case, we also do not know in which
direction the data could potentially have been skewed. On the other hand we can
also not confirm that this has happened at all, and it is therefore possible that there
are no false positives or negatives.

35

5.6 Ethical Considerations

In this project, the main ethical consideration is the privacy of the repositories that
were collected data from. We opted to mention neither the names of repositories nor
repository owners in this study. The reason for this anonymisation, is to avoid leak-
ing information about which repositories contain security concerns. Even though
the repositories are public, we strive to avoid disclosing any more information than
what was necessary to conduct our study.

36

6 Conclusion

6.1 Limitations and Future Work

As our research focused solely on Checkov, Terrascan and tfsec, there is potential
for future work to analyse and compare other tools in addition to these. Tfsec has
migrated to Trivy, meaning in a future analysis, the use of Trivy could also replace
tfsec completely. Future tools and updates could become better than currently avail-
able ones, and could be worth studying.

While the tools we tested identifies security concerns, future work could focus on
identifying more strictly defined security issues. Our conclusion is based on the
tools’ own reported security concerns, but future work could do the comparison of
tools on a dataset with known security issues that has known consequences. This
research would contribute to identifying what SAST tools are best at finding more
critical issues, eliminating the impact variation in rulesets has on the results. A way
that this can be done is by only looking at security concerns above a certain severity
level.

We identified that failing security tools was a challenge when it came to collect-
ing data from open source repositories. We recommend that future work consider
adding logging to the data collection process to keep track of how the tools behave
on the given repositories, and whether it breaks or not. This will help the researchers
identify and fix issues with their data collection process and allow them to be more
confident in their results.

6.2 RQ4 - Recommendations

RQ4: What single scanner or combination of scanners provide the best security
guidelines for IaC repositories?

RQ4 answer summary: We conclude that a combination of Checkov and Terrascan
provides the most comprehensive guideline for a safe IaC repository.

This section will elaborate on what we found to be the strongest tool, and what
combination of tools will best secure a repository consisting of Terraform code
using the AzureRM provider.

Section 4.4.1 shows security concern detection coverage and overlap. The results
from this section clearly shows which tool has the overall highest coverage, which is
Checkov. Another factor to consider is that Checkov appeared to be the most stable
of the tools. We encountered errors or challenges with both Terrascan and tfsec, and
these tools also appeared to occasionally break, causing them to not complete the
scans. We did not encounter such issues with Checkov, and it was generally easy
and stable to use. This is why we deem it as the most useful tool.

37

However, we experienced that as Terrascan was able to find security concerns in
some of the repositories where Checkov found no concerns, we argue that a combi-
nation of the two would be the best solution when both coverage and performance is
taken into consideration. This is because this combination provides almost perfect
coverage (99.7%) which justifies the added performance cost. This is further sup-
ported by the fact that Terrascan complements Checkov by having precise checks
with a narrow focus in the network category, whereas Checkov has broader checks
in this category.

Tfsec completes its tests the fastest. However, as tfsec intentionally avoids checking
repositories with invalid Terraform configurations, it is difficult to get a complete
overview of how well it really works. In our study, tfsec only found security con-
cerns in 2 of the 800 repositories where neither Checkov nor Terrascan found any
concerns. This only adds up to a potential lost coverage percentage of 0.3% by not
including tfsec.

If the only goal of the provisioner is to test the repository as thoroughly as possi-
ble, using all three tools would be the optimal solution. However, reading through
the outputs from all the tools can lead to alert fatigue. If they value high perfor-
mance and less alerts, our results suggest that tfsec finds security concerns in too
few repositories where Checkov and Terrascan are unable to identify any, to justify
using it. From our results, we conclude that the best single SAST tool to include is
Checkov. However, if there is a need for better coverage, a combination of Checkov
and Terrascan is recommended.

38

7 Bibliography

References
[1] GitHub. Fork a repository. (N/A). URL: https://docs.github.com/

en/pull-requests/collaborating-with-pull-requests/

working-with-forks/fork-a-repo. (Visited: 20.05.2024).
[2] Bridgecrew. Checkov. 2024. URL: https://github.com/bridgecrewio/

checkov. (Visited: 06.05.2024).
[3] Tenable. Terrascan. 2024. URL: https://github.com/tenable/

terrascan. (Visited: 06.05.2024).
[4] Aqua Security. tfsec. 2024. URL: https://github.com/aquasecurity/

tfsec. (Visited: 06.05.2024).
[5] Lionel Sujay Vailshery. “Usage of cloud configuration tools worldwide in

2023, current and planned”. In: (2023). URL: https://www.statista.
com/statistics/511293/worldwide-survey-cloud-devops-

tools/. (Visited: 28.04.2024).
[6] 6sense. Terraform. 2024. URL: https://6sense.com/tech/configuration-

management/terraform-market-share.
[7] Felix Richter. “Cloud Infrastructure Market - Amazon Maintains Cloud Lead

as Microsoft Edges Closer”. In: (2024). URL: https://www.statista.
com/chart/18819/worldwide-market-share-of-leading-

cloud-infrastructure-service-providers/. (Visited: 28.04.2024).
[8] Akond Rahman, Chris Parnin, and Laurie Williams. “The Seven Sins: Se-

curity Smells in Infrastructure as Code Scripts”. In: (2019), p. 172. DOI:
10.1109/ICSE.2019.00033.

[9] Kief Morris. Infrastructure as Code Dynamic Systems for the Cloud Age.
O’Reilly Media, Inc., 2020. ISBN: 9781098114671.

[10] hashicorp. Terraform Language Documentation. (N/A). URL: https://
developer.hashicorp.com/terraform/language. (Visited:
06.05.2024).

[11] Hashicorp. Provider Requirements. 2024. URL: https://developer.
hashicorp.com/terraform/language/providers/requirements.
(Visited: 06.05.2024).

[12] Ryan Fee. The Top 20 Terraform Providers. 2021. URL: https://www.
scalr.com/blog/top- 20- terraform- providers. (Visited:
20.05.2024).

[13] Azure. What is Azure? (N/A). URL: https://azure.microsoft.
com/en- us/resources/cloud- computing- dictionary/

what-is-azure/. (Visited: 06.05.2024).
[14] Redhat. What is CI/CD? Dec. 2023. URL: https://www.redhat.com/

en/topics/devops/what-is-ci-cd. (Visited: 06.05.2024).

39

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
https://github.com/bridgecrewio/checkov
https://github.com/bridgecrewio/checkov
https://github.com/tenable/terrascan
https://github.com/tenable/terrascan
https://github.com/aquasecurity/tfsec
https://github.com/aquasecurity/tfsec
https://www.statista.com/statistics/511293/worldwide-survey-cloud-devops-tools/
https://www.statista.com/statistics/511293/worldwide-survey-cloud-devops-tools/
https://www.statista.com/statistics/511293/worldwide-survey-cloud-devops-tools/
https://6sense.com/tech/configuration-management/terraform-market-share
https://6sense.com/tech/configuration-management/terraform-market-share
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://doi.org/10.1109/ICSE.2019.00033
https://developer.hashicorp.com/terraform/language
https://developer.hashicorp.com/terraform/language
https://developer.hashicorp.com/terraform/language/providers/requirements
https://developer.hashicorp.com/terraform/language/providers/requirements
https://www.scalr.com/blog/top-20-terraform-providers
https://www.scalr.com/blog/top-20-terraform-providers
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd

[15] GitLab. What is CI/CD? (N/A). URL: https://about.gitlab.com/
topics/ci-cd/. (Visited: 06.05.2024).

[16] Github. GitHub Actions documentation. (N/A). URL: https://docs.
github.com/en/actions. (Visited: 06.05.2024).

[17] Github. Using a matrix for your jobs. (N/A). URL: https : / / docs .
github.com/en/actions/using-jobs/using-a-matrix-

for-your-jobs. (Visited: 06.05.2024).
[18] Ryan Dewhurst. Static Code Analysis. (N/A). URL: https://owasp.

org/www- community/controls/Static_Code_Analysis.
(Visited: 06.05.2024).

[19] Samhita Tankala and Katie Sherwin. Card Sorting: Uncover Users’ Mental
Models for Better Information Architecture. Feb. 2023. URL: https://
www.nngroup.com/articles/card-sorting-definition/.
(Visited: 06.05.2024).

[20] Checkov. What is Checkov? (N/A). URL: https://www.checkov.io/
1.Welcome/What%20is%20Checkov.html. (Visited: 06.05.2024).

[21] Terrascan. Contributing. May 2022. URL: https : / / github . com /
tenable/terrascan/blob/master/CONTRIBUTING.md. (Vis-
ited: 06.05.2024).

[22] Aqua Security. Architecture. Nov. 2023. URL: https://github.com/
aquasecurity / defsec / blob / master / ARCHITECTURE . md.
(Visited: 06.05.2024).

[23] Aqua Security. Contributing. Nov. 2023. URL: https://github.com/
aquasecurity / defsec / blob / master / CONTRIBUTING . md.
(Visited: 06.05.2024).

[24] Aqua Security. Custom Checks. 2024. URL: https://aquasecurity.
github.io/tfsec/v1.28.5/guides/configuration/custom-

checks/. (Visited: 06.05.2024).
[25] Nuthan Munaiah et al. “Curating GitHub for engineered software projects.”

In: Empir Software Eng 22, 3219–3253 (2017). URL: https://doi.
org/10.1007/s10664-017-9512-6.

[26] Akond Rahman, Chris Parnin, and Laurie Williams. “The Seven Sins: Secu-
rity Smells in Infrastructure as Code Scripts”. In: (2019), pp. 164–175. DOI:
10.1109/ICSE.2019.00033.

[27] Alexandre Verdet et al. Exploring Security Practices in Infrastructure as
Code: An Empirical Study. 2023. arXiv: 2308.03952 [cs.CR].

[28] Andrei-Cristian Iosif et al. “A Large-Scale Study on the Security Vulnerabil-
ities of Cloud Deployments”. In: Ubiquitous Security. Ed. by Guojun Wang
et al. Singapore: Springer Singapore, 2022, pp. 171–188. ISBN: 978-981-19-
0468-4.

40

https://about.gitlab.com/topics/ci-cd/
https://about.gitlab.com/topics/ci-cd/
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://docs.github.com/en/actions/using-jobs/using-a-matrix-for-your-jobs
https://docs.github.com/en/actions/using-jobs/using-a-matrix-for-your-jobs
https://docs.github.com/en/actions/using-jobs/using-a-matrix-for-your-jobs
https://owasp.org/www-community/controls/Static_Code_Analysis
https://owasp.org/www-community/controls/Static_Code_Analysis
https://www.nngroup.com/articles/card-sorting-definition/
https://www.nngroup.com/articles/card-sorting-definition/
https://www.checkov.io/1.Welcome/What%20is%20Checkov.html
https://www.checkov.io/1.Welcome/What%20is%20Checkov.html
https://github.com/tenable/terrascan/blob/master/CONTRIBUTING.md
https://github.com/tenable/terrascan/blob/master/CONTRIBUTING.md
https://github.com/aquasecurity/defsec/blob/master/ARCHITECTURE.md
https://github.com/aquasecurity/defsec/blob/master/ARCHITECTURE.md
https://github.com/aquasecurity/defsec/blob/master/CONTRIBUTING.md
https://github.com/aquasecurity/defsec/blob/master/CONTRIBUTING.md
https://aquasecurity.github.io/tfsec/v1.28.5/guides/configuration/custom-checks/
https://aquasecurity.github.io/tfsec/v1.28.5/guides/configuration/custom-checks/
https://aquasecurity.github.io/tfsec/v1.28.5/guides/configuration/custom-checks/
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1109/ICSE.2019.00033
https://arxiv.org/abs/2308.03952

[29] Sam Gabrail. Which IaC Scanning Tool is the Best?: Comparing Checkov
vs tfsec vs Terrascan. (N/A). URL: https://www.env0.com/blog/
best-iac-scan-tool. (Visited: 06.05.2024).

[30] Abhishek Dubey. IaC Security Analysis: Checkov vs. tfsec vs. Terrascan –
A Comparative Evaluation. Apr. 2024. URL: https://opstree.com/
blog/2024/04/30/iac-security-analysis-checkov-vs-

tfsec-vs-terrascan-a-comparative-evaluation/. (Visited:
06.05.2024).

[31] Mariusz Michalowski. Infrastructure as Code (IaC) Scanning Tools. Jan.
2024. URL: https://hackernoon.com/infrastructure-as-
code-iac-scanning-tools. (Visited: 06.05.2024).

[32] Nuthan Munaiah et al. “Curating GitHub for engineered software projects.”
In: Empir Software Eng 22, 3219–3253 (2017), p. 3222. URL: https://
doi.org/10.1007/s10664-017-9512-6.

[33] Akond Rahman, Chris Parnin, and Laurie Williams. “The Seven Sins: Se-
curity Smells in Infrastructure as Code Scripts”. In: (2019), p. 170. DOI:
10.1109/ICSE.2019.00033.

[34] Amritanshu Agrawal et al. “We don’t need another hero?: the impact of
“heroes” on software development”. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering: Software Engineering in Prac-
tice. ICSE ’18. ACM, May 2018, p. 247. DOI: 10.1145/3183519.
3183549. URL: http : / / dx . doi . org / 10 . 1145 / 3183519 .
3183549.

[35] GitHub. Using a matrix for your jobs. (N/A). URL: https://docs.
github.com/en/actions/using-jobs/using-a-matrix-

for-your-jobs. (Visited: 06.05.2024).
[36] GitHub. Using GitHub-hosted runners. (N/A). URL: https://docs.

github.com/en/actions/using-github-hosted-runners/

about-github-hosted-runners. (Visited: 06.05.2024).
[37] Nektos. Act. 2024. URL: https://github.com/nektos/act. (Vis-

ited: 06.05.2024).
[38] GitHub. Events that trigger workflows. (N/A). URL: https://docs.

github.com/en/actions/using-workflows/events-that-

trigger-workflows#workflow_dispatch. (Visited: 06.05.2024).
[39] GitHub. Searching code (legacy). (N/A). URL: https://docs.github.

com/en/search-github/searching-on-github/searching-

code#search-by-language. (Visited: 20.05.2024).
[40] GitHub. REST API endpoints for search. Nov. 2022. URL: https : / /

docs.github.com/en/rest/search/search?apiVersion=

2022-11-28. (Visited: 06.05.2024).
[41] Douglas R Smith. “The design of divide and conquer algorithms”. In: Science

of Computer Programming 5 (1985), pp. 37–58.

41

https://www.env0.com/blog/best-iac-scan-tool
https://www.env0.com/blog/best-iac-scan-tool
https://opstree.com/blog/2024/04/30/iac-security-analysis-checkov-vs-tfsec-vs-terrascan-a-comparative-evaluation/
https://opstree.com/blog/2024/04/30/iac-security-analysis-checkov-vs-tfsec-vs-terrascan-a-comparative-evaluation/
https://opstree.com/blog/2024/04/30/iac-security-analysis-checkov-vs-tfsec-vs-terrascan-a-comparative-evaluation/
https://hackernoon.com/infrastructure-as-code-iac-scanning-tools
https://hackernoon.com/infrastructure-as-code-iac-scanning-tools
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1145/3183519.3183549
https://doi.org/10.1145/3183519.3183549
http://dx.doi.org/10.1145/3183519.3183549
http://dx.doi.org/10.1145/3183519.3183549
https://docs.github.com/en/actions/using-jobs/using-a-matrix-for-your-jobs
https://docs.github.com/en/actions/using-jobs/using-a-matrix-for-your-jobs
https://docs.github.com/en/actions/using-jobs/using-a-matrix-for-your-jobs
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
https://github.com/nektos/act
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#workflow_dispatch
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#workflow_dispatch
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#workflow_dispatch
https://docs.github.com/en/search-github/searching-on-github/searching-code#search-by-language
https://docs.github.com/en/search-github/searching-on-github/searching-code#search-by-language
https://docs.github.com/en/search-github/searching-on-github/searching-code#search-by-language
https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28
https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28
https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28

[42] Bun. Bun is a fast JavaScript all-in-one toolkit. (2024). URL: https://
bun.sh/. (Visited: 06.05.2024).

[43] Md Feroj Ahmod. “JAVASCRIPT RUNTIME PERFORMANCE ANALY-
SIS: NODE AND BUN”. In: (2023). URL: https://urn.fi/URN:
NBN:fi:tuni-202306136706.

[44] Bridgecrew. checkov-action. 2022. URL: https://github.com/bridgecrewio/
checkov-action. (Visited: 27.04.2024).

[45] Aqua Security. tfsec-action. 2023. URL: https://github.com/aquasecurity/
tfsec-action. (Visited: 06.05.2024).

[46] Tenable. terrascan-action. 2021. URL: https://github.com/tenable/
terrascan-action. (Visited: 06.05.2024).

[47] GitHub. Rate limits for the REST API. Nov. 2022. URL: https://docs.
github.com/en/rest/using-the-rest-api/rate-limits-

for-the-rest-api?apiVersion=2022-11-28. (Visited: 08.05.2024).
[48] tenable. Documentation. 2022. URL: https://runterrascan.io/

docs/_print/. (Visited: 06.05.2024).
[49] PRISMA CLOUD. Hard and soft fail. (N/A). URL: https://www.checkov.

io/2.Basics/Hard%20and%20soft%20fail.html. (Visited:
20.05.2024).

[50] Aqua security. Parameters. 2021. URL: https://aquasecurity.github.
io/tfsec/v0.61.1/getting-started/usage/. (Visited: 20.05.2024).

[51] Checkov. OpenAI. (N/A). URL: https : / / www . checkov . io / 4 .
Integrations/OpenAI.html. (Visited: 06.05.2024).

[52] Aqua Security. aquasecurity/trivy/releases. 2024. URL: https://github.
com/aquasecurity/trivy/releases. (Visited: 08.05.2024).

42

https://bun.sh/
https://bun.sh/
https://urn.fi/URN:NBN:fi:tuni-202306136706
https://urn.fi/URN:NBN:fi:tuni-202306136706
https://github.com/bridgecrewio/checkov-action
https://github.com/bridgecrewio/checkov-action
https://github.com/aquasecurity/tfsec-action
https://github.com/aquasecurity/tfsec-action
https://github.com/tenable/terrascan-action
https://github.com/tenable/terrascan-action
https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-api?apiVersion=2022-11-28
https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-api?apiVersion=2022-11-28
https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-api?apiVersion=2022-11-28
https://runterrascan.io/docs/_print/
https://runterrascan.io/docs/_print/
https://www.checkov.io/2.Basics/Hard%20and%20soft%20fail.html
https://www.checkov.io/2.Basics/Hard%20and%20soft%20fail.html
https://aquasecurity.github.io/tfsec/v0.61.1/getting-started/usage/
https://aquasecurity.github.io/tfsec/v0.61.1/getting-started/usage/
https://www.checkov.io/4.Integrations/OpenAI.html
https://www.checkov.io/4.Integrations/OpenAI.html
https://github.com/aquasecurity/trivy/releases
https://github.com/aquasecurity/trivy/releases

List of Figures
1 Data collection process . 10
2 Repository discovery methods . 12
3 Security testing process . 14
4 Graph showing the distribution of security concerns Checkov was

able to identify by category. 18
5 Checkov: Amount of repositories within ranges of security concern

count, with a cumulative percentage of total amount of repositories
represented. 19

6 Graph showing the distribution of security concerns Terrascan was
able to identify by category. 20

7 Terrascan: Amount of repositories within ranges of security con-
cern count, with a cumulative percentage of total amount of reposi-
tories represented. 21

8 Graph showing the distribution of security concerns tfsec was able
to identify by category. 21

9 Tfsec: Amount of repositories within ranges of security concern
count, with a cumulative percentage of total amount of repositories
represented. 22

10 Average time to run the tool against a repository 23
11 Total amount of security concerns found by each tool in each category 25
12 Graph showing the 10 checks with the highest hit count 27

List of Tables
1 Repository discovery results for our different discovery strategies . . 13
2 The total amount of discovered repositories 13
3 Common and original categories *: We made this category to cover

Checkov policies with custom categories. -: No category 16
4 Amount of rules per category for the different tools 17
5 Number of tools finding at least one error 24
6 SAST tool comparison: clean repositories, average security con-

cerns, and rule trigger statistics . 24
7 Total amount of security concerns the tools were able to identify by

category . 25
8 Amount of unique repositories with a security concern in a given

category per tool . 26

43

Appendices

A Repository Discovery and Data Collection Frame-
work

Our code repository is attached in the submitted Zip-file.

B Project Handbook
Our project handbook is attached in the submitted Zip-file.

44

C List of Checks in Checkov

Old category New category Rule name Rule ID Rule description
General security General security N/A CKV AZURE 1 Ensure Azure Instance does not use basic authentication(Use SSH Key Instead)
Encryption Encryption and data protection N/A CKV AZURE 2 Ensure Azure managed disk have encryption enabled
Encryption Encryption and data protection N/A CKV AZURE 3 Ensure that ‘supportsHttpsTrafficOnly’ is set to ‘true’
Kubernetes General security N/A CKV AZURE 4 Ensure AKS logging to Azure Monitoring is Configured
Kubernetes General security N/A CKV AZURE 5 Ensure RBAC is enabled on AKS clusters
Kubernetes General security N/A CKV AZURE 6 Ensure AKS has an API Server Authorized IP Ranges enabled
Kubernetes General security N/A CKV AZURE 7 Ensure AKS cluster has Network Policy configured
Kubernetes General security N/A CKV AZURE 8 Ensure Kubernetes Dashboard is disabled
Networking Networking N/A CKV AZURE 9 Ensure that RDP access is restricted from the internet
Networking Networking N/A CKV AZURE 10 Ensure that SSH access is restricted from the internet
Logging Logging and monitoring N/A CKV AZURE 11 Ensure no SQL Databases allow ingress from 0.0.0.0/0 (ANY IP)
Logging Logging and monitoring N/A CKV AZURE 12 Ensure that Network Security Group Flow Log retention period is ‘greater than 90 days’
Identity and access management Identity and access management N/A CKV AZURE 13 Ensure App Service Authentication is set on Azure App Service
Networking Networking N/A CKV AZURE 14 Ensure web app redirects all HTTP traffic to HTTPS in Azure App Service
Networking Networking N/A CKV AZURE 15 Ensure web app is using the latest version of TLS encryption
Identity and access management Identity and access management N/A CKV AZURE 16 Ensure that Register with Azure Active Directory is enabled on App Service
Networking Networking N/A CKV AZURE 17 Ensure the web app has ‘Client Certificates (Incoming client certificates)’ set
Networking Networking N/A CKV AZURE 18 Ensure that ‘HTTP Version’ is the latest if used to run the web app
Networking Networking N/A CKV AZURE 19 Ensure that standard pricing tier is selected
Networking Networking N/A CKV AZURE 20 Ensure that security contact ‘Phone number’ is set
Networking Networking N/A CKV AZURE 21 Ensure that ‘Send email notification for high severity alerts’ is set to ‘On’
Networking Networking N/A CKV AZURE 22 Ensure that ‘Send email notification for high severity alerts’ is set to ‘On’
Logging Logging and monitoring N/A CKV AZURE 23 Ensure that ‘Auditing’ is set to ‘Enabled’ for SQL servers
Logging Logging and monitoring N/A CKV AZURE 24 Ensure that ‘Auditing’ Retention is ‘greater than 90 days’ for SQL servers
General security General security N/A CKV AZURE 25 Ensure that ‘Threat Detection types’ is set to ‘All’
General security General security N/A CKV AZURE 26 Ensure that ‘Send Alerts To’ is enabled for MSSQL servers
General security General security N/A CKV AZURE 27 Ensure that ‘Email service and co-administrators’ is ‘Enabled’ for MSSQL servers
Networking Networking N/A CKV AZURE 28 Ensure ‘Enforce SSL connection’ is set to ‘ENABLED’ for MySQL Database Server
Networking Networking N/A CKV AZURE 29 Ensure ‘Enforce SSL connection’ is set to ‘ENABLED’ for PostgreSQL Database Server
Networking Networking N/A CKV AZURE 30 Ensure server parameter ‘log checkpoints’ is set to ‘ON’ for PostgreSQL Database Server
Networking Networking N/A CKV AZURE 31 Ensure configuration ‘log connections’ is set to ‘ON’ for PostgreSQL Database Server
Networking Networking N/A CKV AZURE 32 Ensure server parameter ‘connection throttling’ is set to ‘ON’ for PostgreSQL Database Server
Networking Networking N/A CKV AZURE 33 Ensure Storage logging is enabled for Queue service for read, write and delete requests
Networking Networking N/A CKV AZURE 34 Ensure that ‘Public access level’ is set to Private for blob containers
Networking Networking N/A CKV AZURE 35 Ensure default network access rule for Storage Accounts is set to deny
Networking Networking N/A CKV AZURE 36 Ensure ‘Trusted Microsoft Services’ is enabled for Storage Account access
Logging Logging and monitoring N/A CKV AZURE 37 Ensure that Activity Log Retention is set 365 days or greater
Logging Logging and monitoring N/A CKV AZURE 38 Ensure audit profile captures all the activities
Identity and access management Identity and access management N/A CKV AZURE 39 Ensure that no custom subscription owner roles are created
General security General security N/A CKV AZURE 40 Ensure that the expiration date is set on all keys
General security General security N/A CKV AZURE 41 Ensure that the expiration date is set on all secrets
Backup and recovery convention Backup N/A CKV AZURE 42 Ensure the key vault is recoverable
Misc General security N/A CKV AZURE 43 Ensure Storage Accounts adhere to the naming rules
Networking Networking N/A CKV AZURE 44 Ensure Storage Account is using the latest version of TLS encryption
Secrets Secrets N/A CKV AZURE 45 Ensure that no sensitive credentials are exposed in VM custom data
Networking Networking N/A CKV AZURE 47 Ensure ‘Enforce SSL connection’ is set to ‘ENABLED’ for MariaDB servers
Networking Networking N/A CKV AZURE 48 Ensure ‘public network access enabled’ is set to ‘False’ for MariaDB server
General security General security N/A CKV AZURE 49 Ensure Azure linux scale set does not use basic authentication(Use SSH Key Instead)
General security General security N/A CKV AZURE 50 Ensure Virtual Machine Extensions are not Installed
Networking Networking N/A CKV AZURE 52 Ensure MSSQL is using the latest version of TLS encryption
Networking Networking N/A CKV AZURE 53 Ensure ‘public network access enabled’ is set to ‘False’ for mySQL servers
Networking Networking N/A CKV AZURE 54 Ensure MySQL is using the latest version of TLS encryption
General security General security N/A CKV AZURE 55 Ensure that Azure Defender is set to On for Servers
General security General security N/A CKV AZURE 56 Ensure that function apps enables Authentication
General security General security N/A CKV AZURE 57 Ensure that CORS disallows every resource to access app services
Networking Networking N/A CKV AZURE 58 Ensure that Azure Synapse workspaces enables managed virtual networks
Networking Networking N/A CKV AZURE 59 Ensure that Storage accounts disallow public access
General security General security N/A CKV AZURE 60 Ensure that Azure Defender is set to On for App Service
General security General security N/A CKV AZURE 61 Ensure function apps are not accessible from all regions
Logging Logging and monitoring N/A CKV AZURE 62 Ensure that App service enables HTTP logging
Networking Networking N/A CKV AZURE 63 Ensure that Azure File Sync disables public network access
Logging Logging and monitoring N/A CKV AZURE 64 Ensure that App service enables detailed error messages
Logging Logging and monitoring N/A CKV AZURE 65 Ensure that App service enables failed request tracing
General security General security N/A CKV AZURE 66 Ensure that ‘HTTP Version’ is the latest, if used to run the Function app
Networking Networking N/A CKV AZURE 67 Ensure that PostgreSQL server disables public network access
General security General security N/A CKV AZURE 68 Ensure that Azure Defender is set to On for Azure SQL database servers
Networking Networking N/A CKV AZURE 69 Ensure that Function apps is only accessible over HTTPS
General security General security N/A CKV AZURE 70 Ensure that Managed identity provider is enabled for app services
General security General security N/A CKV AZURE 71 Ensure that remote debugging is not enabled for app services
Encryption Encryption and data protection N/A CKV AZURE 72 Ensure that Automation account variables are encrypted
Encryption Encryption and data protection N/A CKV AZURE 73 Ensure that Azure Data Explorer (Kusto) uses disk encryption

45

Encryption Encryption and data protection N/A CKV AZURE 74 Ensure that Azure Data Explorer uses double encryption
Encryption Encryption and data protection N/A CKV AZURE 75 Ensure that Azure Batch account uses key vault to encrypt data
Networking Networking N/A CKV AZURE 76 Ensure that UDP Services are restricted from the Internet
Application security General security N/A CKV AZURE 77 Ensure FTP deployments are disabled
General security General security N/A CKV AZURE 78 Ensure that Azure Defender is set to On for SQL servers on machines
General security General security N/A CKV AZURE 79 Ensure that ‘Net Framework’ version is the latest, if used as a part of the web app
General security General security N/A CKV AZURE 80 Ensure that ‘PHP version’ is the latest, if used to run the web app
General security General security N/A CKV AZURE 81 Ensure that ‘Python version’ is the latest, if used to run the web app
General security General security N/A CKV AZURE 82 Ensure that ‘Java version’ is the latest, if used to run the web app
General security General security N/A CKV AZURE 83 Ensure that Azure Defender is set to On for Storage
General security General security N/A CKV AZURE 84 Ensure that Azure Defender is set to On for Kubernetes
General security General security N/A CKV AZURE 85 Ensure that Azure Defender is set to On for Container Registries
General security General security N/A CKV AZURE 86 Ensure that Azure Defender is set to On for Key Vault
General security General security N/A CKV AZURE 87 Ensure that app services use Azure Files
Networking Networking N/A CKV AZURE 88 Ensure that Azure Cache for Redis disables public network access
Networking Networking N/A CKV AZURE 89 Ensure that only SSL are enabled for Cache for Redis
General security General security N/A CKV AZURE 90 Ensure that Virtual Machines use managed disks
Encryption Encryption and data protection N/A CKV AZURE 91 Ensure that managed disks use a specific set of disk encryption sets for the customer-managed key encryption
Backup and recovery convention Backup N/A CKV AZURE 92 Ensure that My SQL server enables geo-redundant backups
General security General security N/A CKV AZURE 93 Ensure that automatic OS image patching is enabled for Virtual Machine Scale Sets
Encryption Encryption and data protection N/A CKV AZURE 94 Ensure that MySQL server enables infrastructure encryption
Encryption Encryption and data protection N/A CKV AZURE 95 Ensure that Virtual machine scale sets have encryption at host enabled
Networking Networking N/A CKV AZURE 96 Ensure that Azure Container group is deployed into virtual network
Networking Networking N/A CKV AZURE 97 Ensure Cosmos DB accounts have restricted access
Networking Networking N/A CKV AZURE 98 Ensure that Cosmos DB accounts have customer-managed keys to encrypt data at rest
Networking Networking N/A CKV AZURE 99 Ensure that Azure Cosmos DB disables public network access
Backup and recovery convention Backup N/A CKV AZURE 100 Ensure that PostgreSQL server enables geo-redundant backups
General security General security N/A CKV AZURE 101 Ensure that Azure Data Factory uses Git repository for source control
Networking Networking N/A CKV AZURE 102 Ensure that Azure Data factory public network access is disabled
Encryption Encryption and data protection N/A CKV AZURE 103 Ensure that Data Lake Store accounts enables encryption
Networking Networking N/A CKV AZURE 104 Ensure that Azure Event Grid Domain public network access is disabled
Networking Networking N/A CKV AZURE 105 Ensure that API management services use virtual networks
Networking Networking N/A CKV AZURE 106 Ensure that Azure IoT Hub disables public network access
Networking Networking N/A CKV AZURE 107 Ensure that key vault allows firewall rules settings
Networking Networking N/A CKV AZURE 108 Ensure that key vault enables purge protection
Logging Logging and monitoring N/A CKV AZURE 109 Ensure that key vault enables soft delete
Backup and recovery convention Backup N/A CKV AZURE 110 Ensure that key vault key is backed by HSM
Networking Networking N/A CKV AZURE 111 Ensure that SQL server disables public network access
General security General security N/A CKV AZURE 112 Ensure that key vault secrets have “content type” set
Networking Networking N/A CKV AZURE 113 Ensure that AKS enables private clusters
Networking Networking N/A CKV AZURE 114 Ensure that AKS uses Azure Policies Add-on
Networking Networking N/A CKV AZURE 115 Ensure that AKS uses disk encryption set
Networking Networking N/A CKV AZURE 116 Ensure that Network Interfaces disable IP forwarding
Networking Networking N/A CKV AZURE 117 Ensure that Network Interfaces don’t use public IPs
Application security General security N/A CKV AZURE 118 Ensure that Application Gateway enables WAF
Networking Networking N/A CKV AZURE 119 Ensure that Azure Front Door enables WAF
Networking Networking N/A CKV AZURE 120 Ensure that Application Gateway uses WAF in “Detection” or “Prevention” modes
Networking Networking N/A CKV AZURE 121 Ensure that Azure Front Door uses WAF in “Detection” or “Prevention” modes
Networking Networking N/A CKV AZURE 122 Ensure that Azure Cognitive Search disables public network access
Encryption Encryption and data protection N/A CKV AZURE 123 Ensures that Service Fabric use three levels of protection available
General security General security N/A CKV AZURE 124 Ensures that Active Directory is used for authentication for Service Fabric
General security General security N/A CKV AZURE 125 Ensure that My SQL server enables Threat detection policy
General security General security N/A CKV AZURE 126 Ensure that PostgreSQL server enables Threat detection policy
Backup and recovery convention Backup N/A CKV AZURE 127 Ensure that MariaDB server enables geo-redundant backup
Encryption Encryption and data protection N/A CKV AZURE 128 Ensure that PostgreSQL server enables infrastructure encryption
General security General security N/A CKV AZURE 129 Ensure that ‘Security contact emails’ is set
Secrets Secrets N/A CKV AZURE 130 Ensure that ‘Security contact emails’ is set
General security General security N/A CKV AZURE 131 Ensure cosmosdb does not allow privileged escalation by restricting management plane changes
Application security General security N/A CKV AZURE 132 Ensure Front Door WAF prevents message lookup in Log4j2. See CVE-2021-44228 aka log4jshell
Networking Networking N/A CKV AZURE 133 Ensure that Cognitive Services accounts disable public network access
Application security General security N/A CKV AZURE 134 Ensure Application Gateway WAF prevents message lookup in Log4j2. See CVE-2021-44228 aka log4jshell
Backup and recovery convention Backup N/A CKV AZURE 135 Ensure that PostgreSQL Flexible server enables geo-redundant backups
Identity and access management Identity and access management N/A CKV AZURE 136 Ensure ACR admin account is disabled
Identity and access management Identity and access management N/A CKV AZURE 137 Ensures that ACR disables anonymous pulling of images
Networking Networking N/A CKV AZURE 138 Ensure ACR set to disable public networking
Identity and access management Identity and access management N/A CKV AZURE 139 Ensure that Local Authentication is disabled on CosmosDB
Identity and access management Identity and access management N/A CKV AZURE 140 Ensure AKS local admin account is disabled
Identity and access management Identity and access management N/A CKV AZURE 141 Ensure Machine Learning Compute Cluster Local Authentication is disabled
Networking Networking N/A CKV AZURE 142 Ensure AKS cluster nodes do not have public IP addresses
Networking Networking N/A CKV AZURE 143 Ensure that Public Access is disabled for Machine Learning Workspace
Networking Networking N/A CKV AZURE 144 Ensure Function app is using the latest version of TLS encryption
Logging Logging and monitoring N/A CKV AZURE 145 Ensure server parameter ‘log retention’ is set to ‘ON’ for PostgreSQL Database Server
Networking Networking N/A CKV AZURE 146 Ensure PostgreSQL is using the latest version of TLS encryption
Networking Networking N/A CKV AZURE 147 Ensure Redis Cache is using the latest version of TLS encryption
Encryption Encryption and data protection N/A CKV AZURE 148 Ensure that Virtual machine does not enable password authentication
General security General security N/A CKV AZURE 149 Ensure Machine Learning Compute Cluster Minimum Nodes Set To 0
Encryption Encryption and data protection N/A CKV AZURE 150 Ensure Windows VM enables encryption
Encryption Encryption and data protection N/A CKV AZURE 151 Ensure Client Certificates are enforced for API management
Encryption Encryption and data protection N/A CKV AZURE 152 Ensure Client Certificates are enforced for API management
Networking Networking N/A CKV AZURE 153 Ensure web app redirects all HTTP traffic to HTTPS in Azure App Service Slot
Networking Networking N/A CKV AZURE 154 Ensure the App service slot is using the latest version of TLS encryption
Networking Networking N/A CKV AZURE 155 Ensure debugging is disabled for the App service slo
Logging Logging and monitoring N/A CKV AZURE 156 Ensure default Auditing policy for a SQL Server is configured to capture and retain the activity logs

46

General security General security N/A CKV AZURE 157 Ensure that Synapse workspace has data exfiltration protection enabled
Networking Networking N/A CKV AZURE 158 Ensure that databricks workspace is not publi
Logging Logging and monitoring N/A CKV AZURE 159 Ensure function app builtin logging is enabled
Networking Networking N/A CKV AZURE 160 Ensure that HTTP (port 80) access is restricted from the interne
Networking Networking N/A CKV AZURE 161 Ensures Spring Cloud API Portal is enabled on for HTTP
Networking Networking N/A CKV AZURE 162 Ensures Spring Cloud API Portal Public Access Is Disable
General security General security N/A CKV AZURE 163 Enable vulnerability scanning for container images.
General security General security N/A CKV AZURE 164 Ensures that ACR uses signed/trusted images
Networking Networking N/A CKV AZURE 165 Ensure geo-replicated container registries to match multi-region container deployments
Misc General security N/A CKV AZURE 166 Ensure container image quarantine, scan, and mark images verified
General security General security N/A CKV AZURE 167 Ensure a retention policy is set to cleanup untagged manifests.
Kubernetes General security N/A CKV AZURE 168 Ensure Azure Kubernetes Cluster (AKS) nodes should use a minimum number of 50 pods.
Kubernetes General security N/A CKV AZURE 169 Ensure Azure Kubernetes Cluster (AKS) nodes use scale sets
General security General security N/A CKV AZURE 170 Ensure that AKS use the Paid Sku for its SLA
Networking Networking N/A CKV AZURE 171 Ensure AKS cluster upgrade channel is chose
General security General security N/A CKV AZURE 172 Ensure autorotation of Secrets Store CSI Driver secrets for AKS clusters
Encryption Encryption and data protection N/A CKV AZURE 173 Ensure API management uses at least TLS 1.2
Networking Networking N/A CKV AZURE 174 Ensure API management public access is disable
General security General security N/A CKV AZURE 175 Ensure Web PubSub uses a SKU with an SLA
Identity and access management Identity and access management N/A CKV AZURE 176 Ensure Web PubSub uses managed identities to access Azure resources
General security General security N/A CKV AZURE 177 Ensure Windows VM enables automatic updates
General security General security N/A CKV AZURE 178 Ensure linux VM enables SSH with keys for secure communication
General security General security N/A CKV AZURE 179 Ensure VM agent is installed
General security General security N/A CKV AZURE 180 Ensure that data explorer uses Sku with an SLA
Identity and access management Identity and access management N/A CKV AZURE 181 Ensure that data explorer/Kusto uses managed identities to access Azure resources securely.
Networking Networking N/A CKV AZURE 182 Ensure that VNET has at least 2 connected DNS Endpoint
Networking Networking N/A CKV AZURE 183 Ensure that VNET uses local DNS addresse
Identity and access management Identity and access management N/A CKV AZURE 184 Ensure ‘local auth enabled’ is set to ‘False’
Networking Networking N/A CKV AZURE 185 Ensure ‘Public Access’ is not Enabled for App configuratio
Encryption Encryption and data protection N/A CKV AZURE 186 Ensure App configuration encryption block is set.
Backup and recovery convention Backup N/A CKV AZURE 187 Ensure App configuration purge protection is enabled
General security General security N/A CKV AZURE 188 Ensure App configuration Sku is standard
Networking Networking N/A CKV AZURE 189 Ensure that Azure Key Vault disables public network acces
Networking Networking N/A CKV AZURE 190 Ensure that Storage blobs restrict public acces
Identity and access management Identity and access management N/A CKV AZURE 191 Ensure that Managed identity provider is enabled for Azure Event Grid Topic
Identity and access management Identity and access management N/A CKV AZURE 192 Ensure that Azure Event Grid Topic local Authentication is disabled
Networking Networking N/A CKV AZURE 193 Ensure public network access is disabled for Azure Event Grid Topi
Identity and access management Identity and access management N/A CKV AZURE 194 Ensure that Managed identity provider is enabled for Azure Event Grid Domain
Identity and access management Identity and access management N/A CKV AZURE 195 Ensure that Azure Event Grid Domain local Authentication is disabled
General security General security N/A CKV AZURE 196 Ensure that SignalR uses a Paid Sku for its SLA
Networking Networking N/A CKV AZURE 197 Ensure the Azure CDN disables the HTTP endpoin
Networking Networking N/A CKV AZURE 198 Ensure the Azure CDN enables the HTTPS endpoin
Encryption Encryption and data protection N/A CKV AZURE 199 Ensure that Azure Service Bus uses double encryption
Networking Networking N/A CKV AZURE 200 Ensure the Azure CDN endpoint is using the latest version of TLS encryptio
Encryption Encryption and data protection N/A CKV AZURE 201 Ensure that Azure Service Bus uses a customer-managed key to encrypt data
Identity and access management Identity and access management N/A CKV AZURE 202 Ensure that Managed identity provider is enabled for Azure Service Bus
Identity and access management Identity and access management N/A CKV AZURE 203 Ensure Azure Service Bus Local Authentication is disabled
Networking Networking N/A CKV AZURE 204 Ensure ‘public network access enabled’ is set to ‘False’ for Azure Service Bu
Networking Networking N/A CKV AZURE 205 Ensure Azure Service Bus is using the latest version of TLS encryptio
Backup and recovery convention Backup N/A CKV AZURE 206 Ensure that Storage Accounts use replication
Identity and access management Identity and access management N/A CKV AZURE 207 Ensure Azure Cognitive Search service uses managed identities to access Azure resources
General security General security N/A CKV AZURE 208 Ensure that Azure Cognitive Search maintains SLA for index updates
General security General security N/A CKV AZURE 209 Ensure that Azure Cognitive Search maintains SLA for search index queries
Networking Networking N/A CKV AZURE 210 Ensure Azure Cognitive Search service allowed IPS does not give public Acces
General security General security N/A CKV AZURE 211 Ensure App Service plan suitable for production use
General security General security N/A CKV AZURE 212 Ensure App Service has a minimum number of instances for failover
Networking Networking N/A CKV AZURE 213 Ensure that App Service configures health chec
General security General security N/A CKV AZURE 214 Ensure App Service is set to be always on
Encryption Encryption and data protection N/A CKV AZURE 215 Ensure API management backend uses https
Networking Networking N/A CKV AZURE 216 Ensure DenyIntelMode is set to Deny for Azure Firewall
Encryption Encryption and data protection N/A CKV AZURE 217 Ensure Azure Application gateways listener that allow connection requests over HTTP
Encryption Encryption and data protection N/A CKV AZURE 218 Ensure Application Gateway defines secure protocols for in transit communication
Networking Networking N/A CKV AZURE 219 Ensure Firewall defines a firewall polic
Networking Networking N/A CKV AZURE 220 Ensure Firewall policy has IDPS mode as den
Networking Networking N/A CKV AZURE 221 Ensure that Azure Function App public network access is disable
Networking Networking N/A CKV AZURE 222 Ensure that Azure Web App public network access is disable
Encryption Encryption and data protection N/A CKV AZURE 223 Ensure Event Hub Namespace uses at least TLS 1.2
Logging Logging and monitoring N/A CKV AZURE 224 Ensure that the Ledger feature is enabled on database that requires cryptographic proof and nonrepudiation

of data integrity
Backup and recovery convention Backup N/A CKV AZURE 225 Ensure the App Service Plan is zone redundant
Kubernetes General security N/A CKV AZURE 226 Ensure ephemeral disks are used for OS disks
Kubernetes General security N/A CKV AZURE 227 Ensure that the AKS cluster encrypt temp disks, caches, and data flows between Compute and Storage

resources
Backup and recovery convention Backup N/A CKV AZURE 228 Ensure the Azure Event Hub Namespace is zone redundant
Backup and recovery convention Backup N/A CKV AZURE 229 Ensure the Azure SQL Database Namespace is zone redundant
Backup and recovery convention Backup N/A CKV AZURE 230 Standard Replication should be enabled
Backup and recovery convention Backup N/A CKV AZURE 231 Ensure App Service Environment is zone redundant
Kubernetes General security N/A CKV AZURE 232 Ensure that only critical system pods run on system nodes
Backup and recovery convention Backup N/A CKV AZURE 233 Ensure Azure Container Registry (ACR) is zone redundant
General security General security N/A CKV AZURE 234 Ensure that Azure Defender for cloud is set to On for Resource Manager
General security General security N/A CKV AZURE 235 Ensure that Azure container environment variables are configured with secure values only
Networking Networking N/A CKV AZURE 236 Ensure Storage Account is using the latest version of TLS encryption

47

D List of Checks in Checkov 2

Old category New category Rule name Rule ID Rule description
Encryption Encryption and Data Protection N/A CKV2 AZURE 1 Ensure storage for critical data are encrypted with Customer Managed Key
General Security General Security N/A CKV2 AZURE 2 Ensure that Vulnerability Assessment (VA) is enabled on a SQL server by setting a Storage Account
General Security General Security N/A CKV2 AZURE 3 Ensure that VA setting Periodic Recurring Scans is enabled on a SQL server
General Security General Security N/A CKV2 AZURE 4 Ensure Azure SQL server ADS VA Send scan reports to is configured
General Security General Security N/A CKV2 AZURE 5 Ensure that VA setting ‘Also send email notifications to admins and subscription owners’ is set for a SQL

server
General Security General Security N/A CKV2 AZURE 6 Ensure ‘Allow access to Azure services’ for PostgreSQL Database Server is disabled
General Security General Security N/A CKV2 AZURE 7 Ensure that Azure Active Directory Admin is configured
Logging Logging and monitoring N/A CKV2 AZURE 8 Ensure the storage container storing the activity logs is not publicly accessible
General Security General Security N/A CKV2 AZURE 9 Ensure Virtual Machines are utilizing Managed Disks
General Security General Security N/A CKV2 AZURE 10 Ensure that Microsoft Antimalware is configured to automatically updates for Virtual Machines
Encryption Encryption and Data Protection N/A CKV2 AZURE 11 Ensure that Azure Data Explorer encryption at rest uses a customer-managed key
Backup and Recovery Conven-
tion

Backup N/A CKV2 AZURE 12 Ensure that virtual machines are backed up using Azure Backup

General Security General Security N/A CKV2 AZURE 13 Ensure that sql servers enables data security policy
Encryption Encryption and Data Protection N/A CKV2 AZURE 14 Ensure that Unattached disks are encrypted
Encryption Encryption and Data Protection N/A CKV2 AZURE 15 Ensure that Azure data factories are encrypted with a customer-managed key
Encryption Encryption and Data Protection N/A CKV2 AZURE 16 Ensure that MySQL server enables customer-managed key for encryption
Encryption Encryption and Data Protection N/A CKV2 AZURE 17 Ensure that PostgreSQL server enables customer-managed key for encryption
Networking Networking N/A CKV2 AZURE 19 Ensure that Azure Synapse workspaces have no IP firewall rules attached
Logging Logging and monitoring N/A CKV2 AZURE 20 Ensure Storage logging is enabled for Table service for read requests
Logging Logging and monitoring N/A CKV2 AZURE 21 Ensure Storage logging is enabled for Blob service for read requests
Encryption Encryption and Data Protection N/A CKV2 AZURE 22 Ensure that Cognitive Services enables customer-managed key for encryption
Networking Networking N/A CKV2 AZURE 23 Ensure Azure spring cloud is configured with Virtual network (Vnet)
General Security General Security N/A CKV2 AZURE 24 Ensure Azure automation account does NOT have overly permissive network access
General Security General Security N/A CKV2 AZURE 25 Ensure Azure SQL database Transparent Data Encryption (TDE) is enabled
General Security General Security N/A CKV2 AZURE 26 Ensure Azure PostgreSQL Flexible server is not configured with overly permissive network access
General Security General Security N/A CKV2 AZURE 27 Ensure Azure AD authentication is enabled for Azure SQL (MSSQL)
General Security General Security N/A CKV2 AZURE 28 Ensure Container Instance is configured with managed identity
General Security General Security N/A CKV2 AZURE 29 Ensure AKS cluster has Azure CNI networking enabled
General Security General Security N/A CKV2 AZURE 30 Ensure Azure Container Registry (ACR) has HTTPS enabled for webhook
General Security General Security N/A CKV2 AZURE 31 Ensure VNET subnet is configured with a Network Security Group (NSG)
General Security General Security N/A CKV2 AZURE 32 Ensure private endpoint is configured to key vault
General Security General Security N/A CKV2 AZURE 33 Ensure storage account is configured with private endpoint
Networking Networking N/A CKV2 AZURE 34 Ensure Azure SQL server firewall is not overly permissive
Identity and Access Management Identity and Access Management N/A CKV2 AZURE 35 Ensure Azure recovery services vault is configured with managed identity
Identity and Access Management Identity and Access Management N/A CKV2 AZURE 36 Ensure Azure automation account is configured with managed identity
Encryption Encryption and Data Protection N/A CKV2 AZURE 37 Ensure Azure MariaDB server is using latest TLS (1.2)
General Security General Security N/A CKV2 AZURE 38 Ensure soft-delete is enabled on Azure storage account
Networking Networking N/A CKV2 AZURE 39 Ensure Azure VM is not configured with public IP and serial console access
Identity and Access Management Identity and Access Management N/A CKV2 AZURE 40 Ensure storage account is not configured with Shared Key authorization
Identity and Access Management Identity and Access Management N/A CKV2 AZURE 41 Ensure storage account is configured with SAS expiration policy
General Security General Security N/A CKV2 AZURE 42 Ensure Azure PostgreSQL server is configured with private endpoint
General Security General Security N/A CKV2 AZURE 43 Ensure Azure MariaDB server is configured with private endpoint
General Security General Security N/A CKV2 AZURE 44 Ensure Azure MySQL server is configured with private endpoint
General Security General Security N/A CKV2 AZURE 45 Ensure Microsoft SQL server is configured with private endpoint
General Security General Security N/A CKV2 AZURE 46 Ensure that Azure Synapse Workspace vulnerability assessment is enabled
Identity and Access Management Identity and Access Management N/A CKV2 AZURE 47 Ensure storage account is configured without blob anonymous access

48

E List of Checks in Terrascan

Old category New category Reference ID Rule ID Rule description
Infrastructure Security Networking asdf accurics.azure.NS.361 AC AZURE 0131 Ensure ‘Enforce SSL connection’ is set to ‘ENABLED’ for MySQL Database Server.
Logging and Monitoring logging and monitoring accurics.azure.LOG.357 AC AZURE 0136 Ensure that ‘Auditing’ Retention is ‘greater than 90 days’ for MSSQL servers.
Logging and Monitoring logging and monitoring accurics.azure.MON.355 AC AZURE 0137 Ensure that ‘Auditing’ is set to ‘On’ for MSSQL servers
Data Protection encryption and data protection accurics.azure.EKM.156 AC AZURE 0143 Ensure that ‘Unattached disks’ are encrypted in Azure Managed Disk
Infrastructure Security Networking accurics.azure.NS.382 AC AZURE 0158 Ensure AKS cluster has Network Policy configured.
Infrastructure Security general security accurics.azure.NS.383 AC AZURE 0161 Ensure Kube Dashboard is disabled
Data Protection encryption and data protection accurics.azure.EKM.26 AC AZURE 0163 Ensure that the expiration date is set on all secrets
Data Protection encryption and data protection accurics.azure.EKM.25 AC AZURE 0164 Ensure that the expiration date is set on all keys
Logging and Monitoring logging and monitoring accurics.azure.EKM.20 AC AZURE 0169 Ensure that logging for Azure KeyVault is ‘Enabled’
Data Protection encryption and data protection accurics.azure.EKM.164* AC AZURE 0170 Ensure the key vault is recoverable - enable “Soft Delete” setting for a Key Vault
Infrastructure Security Networking accurics.azure.NS.32 AC AZURE 0184 Ensure to filter source Ips for Cosmos DB Account
Resilience backup accurics.azure.AKS.3 AC AZURE 0185 Ensure Container Registry has locks
Identity and Access Management identity and access management accurics.azure.EKM.164* AC AZURE 0186 Ensure that admin user is disabled for Container Registry
Infrastructure Security Networking accurics.azure.NS.147 AC AZURE 0189 Ensure Azure Application Gateway Web application firewall (WAF) is enabled
Infrastructure Security Networking AC AZURE 0270 AC AZURE 0270 Ensure CIFS / SMB (Tcp:3020) is not exposed to entire internet for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0271 AC AZURE 0271 Ensure CIFS / SMB (Tcp:3020) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0272 AC AZURE 0272 Ensure CIFS / SMB (Tcp:3020) is not exposed to private hosts more than 32 for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0273 AC AZURE 0273 Ensure Cassandra (Tcp:7001) is not exposed to entire internet for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0274 AC AZURE 0274 Ensure Cassandra (Tcp:7001) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0275 AC AZURE 0275 Ensure Cassandra (Tcp:7001) is not exposed to private hosts more than 32 for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0276 AC AZURE 0276 Ensure Cassandra OpsCenter (Tcp:61621) is not exposed to entire internet for Azure Network

Security Rule
Compliance Validation general security accurics.azure.CAM.162 AC AZURE 0277 Ensure that Cosmos DB Account has an associated tag
Identity and Access Management identity and access management accurics.azure.NS.169 AC AZURE 0280 Restrict Azure SQL Server accessibility to a minimal address range
Infrastructure Security Networking AC AZURE 0285 AC AZURE 0285 Ensure SSH (Tcp:22) is not exposed to entire internet for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0286 AC AZURE 0286 Ensure SSH (Tcp:22) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0287 AC AZURE 0287 Ensure SSH (Tcp:22) is not exposed to private hosts more than 32 for Azure Network Security

Rule
Infrastructure Security Networking accurics.azure.NS.370 AC AZURE 0309 Ensure default network access rule for Storage Accounts is set to deny.
Infrastructure Security Networking AC AZURE 0342 AC AZURE 0342 Ensure that RDP access is restricted from the internet for Azure Network Security Rule
Infrastructure Security Networking accurics.azure.NS.161 AC AZURE 0356 Ensure that Azure Virtual Network subnet is configured with a Network Security Group
Infrastructure Security Networking AC AZURE 0357 AC AZURE 0357 Ensure that request initiated from all ports () for all destination ports () is restricted from the

internet for Azure Network Security Rule
Identity and Access Management identity and access management accurics.azure.IAM.368 AC AZURE 0366 Anonymous, public read access to a container and its blobs can be enabled in Azure Blob

storage. This is only recommended if absolutely necessary.
Infrastructure Security Networking accurics.azure.NS.4 AC AZURE 0370 Ensure default network access rule for Storage Accounts is not open to public
Infrastructure Security general security accurics.azure.NS.2 AC AZURE 0371 Ensure ‘Trusted Microsoft Services’ is enabled for Storage Account access
Data Protection encryption and data protection accurics.azure.EKM.7 AC AZURE 0373 Ensure that ‘Secure transfer required’ is enabled for Storage Accounts
Compliance Validation general security accurics.azure.LOG.356 AC AZURE 0375 Ensure that ‘Auditing’ Retention is ‘greater than 90 days’ for SQL servers.
Logging and Monitoring logging and monitoring accurics.azure.MON.354 AC AZURE 0376 Ensure that ‘Auditing’ is set to ‘On’ for SQL servers
Compliance Validation general security accurics.azure.IAM.138 AC AZURE 0377 Avoid using names like ‘Admin’ for an Azure SQL Server admin account login
Identity and Access Management identity and access management accurics.azure.IAM.10 AC AZURE 0378 Ensure that Azure Active Directory Admin is configured for SQL Server
Infrastructure Security Networking accurics.azure.NS.21 AC AZURE 0380 Ensure that no SQL Server allows ingress from 0.0.0.0/0 (ANY IP)
Identity and Access Management identity and access management accurics.azure.NS.5 AC AZURE 0381 Ensure entire Azure infrastructure doesn’t have access to Azure SQL ServerEnsure entire Azure

infrastructure doesn’t have access to Azure SQL Server
Logging and Monitoring logging and monitoring accurics.azure.MON.157 AC AZURE 0383 Ensure that ‘Threat Detection’ is enabled for Azure SQL Database
Compliance Validation general security accurics.azure.IAM.137 AC AZURE 0384 Avoid using names like ‘Admin’ for an Azure SQL Server Active Directory Administrator

account
Security Best Practices general security accurics.azure.OPS.349 AC AZURE 0385 Ensure that standard pricing tiers are selected
Logging and Monitoring logging and monitoring accurics.azure.MON.353 AC AZURE 0386 Ensure that ‘Send email notification for high severity alerts’ is set to ‘On’
Identity and Access Management identity and access management accurics.azure.IAM.388 AC AZURE 0388 Ensure that there are no guest users
Identity and Access Management identity and access management accurics.azure.NS.272 AC AZURE 0389 Ensure that Azure Resource Group has resource lock enabled
Identity and Access Management identity and access management accurics.azure.NS.166 AC AZURE 0390 Ensure there are no firewall rules allowing Redis Cache access for a large number of source IPs
Identity and Access Management identity and access management accurics.azure.NS.31 AC AZURE 0391 Ensure there are no firewall rules allowing unrestricted access to Redis from other Azure

sources
Identity and Access Management identity and access management accurics.azure.NS.30 AC AZURE 0392 Ensure there are no firewall rules allowing unrestricted access to Redis from the Internet
Security Best Practices general security accurics.azure.NS.13 AC AZURE 0393 Ensure that Redis is updated regularly with security and operational updates.Note this feature

is only available to Premium tier Redis Caches.
Infrastructure Security Networking accurics.azure.EKM.23 AC AZURE 0394 Ensure that the Redis Cache accepts only SSL connections
Resilience backup accurics.azure.BDR.163 AC AZURE 0407 Ensure that Geo Redundant Backups is enabled on PostgreSQL
Identity and Access Management identity and access management accurics.azure.EKM.1 AC AZURE 0408 Ensure ‘Enforce SSL connection’ is set to ‘ENABLED’ for PostgreSQL Database Server
Logging and Monitoring logging and monitoring accurics.azure.LOG.364 AC AZURE 0409 Ensure server parameter ‘log checkpoints’ is set to ‘ON’ for PostgreSQL Database Server
Logging and Monitoring logging and monitoring accurics.azure.LOG.155 AC AZURE 0410 Ensure server parameter ‘log retention days’ is greater than 3 days for PostgreSQL Database

Server
Logging and Monitoring logging and monitoring accurics.azure.LOG.154 AC AZURE 0411 Ensure server parameter ‘log duration’ is set to ‘ON’ for PostgreSQL Database Server
Logging and Monitoring logging and monitoring accurics.azure.LOG.153 AC AZURE 0412 Ensure server parameter ‘log disconnections’ is set to ‘ON’ for PostgreSQL Database Server
Logging and Monitoring logging and monitoring accurics.azure.LOG.152 AC AZURE 0413 Ensure server parameter ‘log connections’ is set to ‘ON’ for PostgreSQL Database Server
Logging and Monitoring logging and monitoring accurics.azure.LOG.151 AC AZURE 0414 Ensure server parameter ‘connection throttling’ is set to ‘ON’ for PostgreSQL Database Server
Logging and Monitoring logging and monitoring accurics.azure.NS.11 AC AZURE 0418 Enable Network Watcher for Azure subscriptions. Network diagnostic and visualization tools

available with Network Watcher help users understand, diagnose, and gain insights to the net-
work in Azure.

49

Resilience backup accurics.azure.NS.342 AC AZURE 0419 Ensure that Network Security Group Flow Log retention period is ‘greater than 90 days’ for
Azure Network Watcher Flow Log

Infrastructure Security Networking AC AZURE 0421 AC AZURE 0421 Ensure server is not exposed to private hosts more than 32 for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0422 AC AZURE 0422 Ensure VNC Server (Tcp:5900) is not exposed to private hosts more than 32 for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0423 AC AZURE 0423 Ensure VNC Server (Tcp:5900) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0424 AC AZURE 0424 Ensure VNC Server (Tcp:5900) is not exposed to entire internet for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0425 AC AZURE 0425 Ensure VNC Listener (Tcp:5500) is not exposed to private hosts more than 32 for Azure Net-

work Security Rule
Infrastructure Security Networking AC AZURE 0426 AC AZURE 0426 Ensure VNC Listener (Tcp:5500) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0427 AC AZURE 0427 Ensure VNC Listener (Tcp:5500) is not exposed to entire internet for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0428 AC AZURE 0428 Ensure Telnet (Tcp:23) is not exposed to private hosts more than 32 for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0429 AC AZURE 0429 Ensure Telnet (Tcp:23) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0430 AC AZURE 0430 Ensure Telnet (Tcp:23) is not exposed to entire internet for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0431 AC AZURE 0431 Ensure SaltStack Master (Tcp:4506) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0432 AC AZURE 0432 Ensure SaltStack Master (Tcp:4506) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0433 AC AZURE 0433 Ensure SaltStack Master (Tcp:4506) is not exposed to entire internet for Azure Network Secu-

rity Rule
Infrastructure Security Networking AC AZURE 0434 AC AZURE 0434 Ensure SaltStack Master (Tcp:4505) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0435 AC AZURE 0435 Ensure SaltStack Master (Tcp:4505) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0436 AC AZURE 0436 Ensure SaltStack Master (Tcp:4505) is not exposed to entire internet for Azure Network Secu-

rity Rule
Infrastructure Security Networking AC AZURE 0437 AC AZURE 0437 Ensure SQL Server Analysis (Tcp:2383) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0438 AC AZURE 0438 Ensure SQL Server Analysis (Tcp:2383) is not exposed to public for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0439 AC AZURE 0439 Ensure SQL Server Analysis (Tcp:2383) is not exposed to entire internet for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0440 AC AZURE 0440 Ensure SQL Server Analysis (Tcp:2382) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0441 AC AZURE 0441 Ensure SQL Server Analysis (Tcp:2382) is not exposed to public for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0442 AC AZURE 0442 Ensure SQL Server Analysis (Tcp:2382) is not exposed to entire internet for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0443 AC AZURE 0443 Ensure SNMP (Udp:161) is not exposed to private hosts more than 32 for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0444 AC AZURE 0444 Ensure SNMP (Udp:161) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0445 AC AZURE 0445 Ensure SNMP (Udp:161) is not exposed to entire internet for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0446 AC AZURE 0446 Ensure SMTP (Tcp:25) is not exposed to private hosts more than 32 for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0447 AC AZURE 0447 Ensure SMTP (Tcp:25) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0448 AC AZURE 0448 Ensure SMTP (Tcp:25) is not exposed to entire internet for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0449 AC AZURE 0449 Ensure Puppet Master (Tcp:8140) is not exposed to private hosts more than 32 for Azure Net-

work Security Rule
Infrastructure Security Networking AC AZURE 0450 AC AZURE 0450 Ensure Puppet Master (Tcp:8140) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0451 AC AZURE 0451 Ensure Puppet Master (Tcp:8140) is not exposed to entire internet for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0452 AC AZURE 0452 Ensure Prevalent known internal port (Tcp:3000) is not exposed to private hosts more than 32

for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0453 AC AZURE 0453 Ensure Prevalent known internal port (Tcp:3000) is not exposed to public for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0454 AC AZURE 0454 Ensure Prevalent known internal port (Tcp:3000) is not exposed to entire internet for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0455 AC AZURE 0455 Ensure PostgreSQL (Udp:5432) is not exposed to private hosts more than 32 for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0456 AC AZURE 0456 Ensure PostgreSQL (Udp:5432) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0457 AC AZURE 0457 Ensure PostgreSQL (Udp:5432) is not exposed to entire internet for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0458 AC AZURE 0458 Ensure PostgreSQL (Tcp:5432) is not exposed to private hosts more than 32 for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0459 AC AZURE 0459 Ensure PostgreSQL (Tcp:5432) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0460 AC AZURE 0460 Ensure PostgreSQL (Tcp:5432) is not exposed to entire internet for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0461 AC AZURE 0461 Ensure POP3 (Tcp:110) is not exposed to private hosts more than 32 for Azure Network Secu-

rity Rule
Infrastructure Security Networking AC AZURE 0462 AC AZURE 0462 Ensure POP3 (Tcp:110) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0463 AC AZURE 0463 Ensure POP3 (Tcp:110) is not exposed to entire internet for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0464 AC AZURE 0464 Ensure Oracle DB SSL (Udp:2484) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0465 AC AZURE 0465 Ensure Oracle DB SSL (Udp:2484) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0466 AC AZURE 0466 Ensure Oracle DB SSL (Udp:2484) is not exposed to entire internet for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0467 AC AZURE 0467 Ensure Oracle DB SSL (Tcp:2484) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0468 AC AZURE 0468 Ensure Oracle DB SSL (Tcp:2484) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0469 AC AZURE 0469 Ensure Oracle DB SSL (Tcp:2484) is not exposed to entire internet for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0470 AC AZURE 0470 Ensure NetBIOS Session Service (Udp:139) is not exposed to private hosts more than 32 for

Azure Network Security Rule

50

Infrastructure Security Networking AC AZURE 0471 AC AZURE 0471 Ensure NetBIOS Session Service (Udp:139) is not exposed to public for Azure Network Secu-
rity Rule

Infrastructure Security Networking AC AZURE 0472 AC AZURE 0472 Ensure NetBIOS Session Service (Udp:139) is not exposed to entire internet for Azure Network
Security Rule

Infrastructure Security Networking AC AZURE 0473 AC AZURE 0473 Ensure NetBIOS Session Service (Tcp:139) is not exposed to private hosts more than 32 for
Azure Network Security Rule

Infrastructure Security Networking AC AZURE 0474 AC AZURE 0474 Ensure NetBIOS Session Service (Tcp:139) is not exposed to public for Azure Network Secu-
rity Rule

Infrastructure Security Networking AC AZURE 0475 AC AZURE 0475 Ensure NetBIOS Session Service (Tcp:139) is not exposed to entire internet for Azure Network
Security Rule

Infrastructure Security Networking AC AZURE 0476 AC AZURE 0476 Ensure NetBIOS Datagram Service (Udp:138) is not exposed to private hosts more than 32 for
Azure Network Security Rule

Infrastructure Security Networking AC AZURE 0477 AC AZURE 0477 Ensure NetBIOS Datagram Service (Udp:138) is not exposed to public for Azure Network
Security Rule

Infrastructure Security Networking AC AZURE 0478 AC AZURE 0478 Ensure NetBIOS Datagram Service (Udp:138) is not exposed to entire internet for Azure Net-
work Security Rule

Infrastructure Security Networking AC AZURE 0479 AC AZURE 0479 Ensure NetBIOS Datagram Service (Tcp:138) is not exposed to private hosts more than 32 for
Azure Network Security Rule

Infrastructure Security Networking AC AZURE 0480 AC AZURE 0480 Ensure NetBIOS Datagram Service (Tcp:138) is not exposed to public for Azure Network Se-
curity Rule

Infrastructure Security Networking AC AZURE 0481 AC AZURE 0481 Ensure NetBIOS Datagram Service (Tcp:138) is not exposed to entire internet for Azure Net-
work Security Rule

Infrastructure Security Networking AC AZURE 0482 AC AZURE 0482 Ensure NetBIOS Name Service (Udp:137) is not exposed to private hosts more than 32 for
Azure Network Security Rule

Infrastructure Security Networking AC AZURE 0483 AC AZURE 0483 Ensure NetBIOS Name Service (Udp:137) is not exposed to public for Azure Network Security
Rule

Infrastructure Security Networking AC AZURE 0484 AC AZURE 0484 Ensure NetBIOS Name Service (Udp:137) is not exposed to entire internet for Azure Network
Security Rule

Infrastructure Security Networking AC AZURE 0485 AC AZURE 0485 Ensure NetBIOS Name Service (Tcp:137) is not exposed to private hosts more than 32 for
Azure Network Security Rule

Infrastructure Security Networking AC AZURE 0486 AC AZURE 0486 Ensure NetBIOS Name Service (Tcp:137) is not exposed to public for Azure Network Security
Rule

Infrastructure Security Networking AC AZURE 0487 AC AZURE 0487 Ensure NetBIOS Name Service (Tcp:137) is not exposed to entire internet for Azure Network
Security Rule

Infrastructure Security Networking AC AZURE 0488 AC AZURE 0488 Ensure MySQL (Tcp:3306) is not exposed to private hosts more than 32 for Azure Network
Security Rule

Infrastructure Security Networking AC AZURE 0489 AC AZURE 0489 Ensure MySQL (Tcp:3306) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0490 AC AZURE 0490 Ensure MySQL (Tcp:3306) is not exposed to entire internet for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0491 AC AZURE 0491 Ensure Mongo Web Portal (Tcp:27018) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0492 AC AZURE 0492 Ensure Mongo Web Portal (Tcp:27018) is not exposed to public for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0493 AC AZURE 0493 Ensure Mongo Web Portal (Tcp:27018) is not exposed to entire internet for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0494 AC AZURE 0494 Ensure Microsoft-DS (Tcp:445) is not exposed to private hosts more than 32 for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0495 AC AZURE 0495 Ensure Microsoft-DS (Tcp:445) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0496 AC AZURE 0496 Ensure Microsoft-DS (Tcp:445) is not exposed to entire internet for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0497 AC AZURE 0497 Ensure Memcached SSL (Udp:11215) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0498 AC AZURE 0498 Ensure Memcached SSL (Udp:11215) is not exposed to public for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0499 AC AZURE 0499 Ensure Memcached SSL (Udp:11215) is not exposed to entire internet for Azure Network Se-

curity Rule
Infrastructure Security Networking AC AZURE 0500 AC AZURE 0500 Ensure Memcached SSL (Udp:11214) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0501 AC AZURE 0501 Ensure Memcached SSL (Udp:11214) is not exposed to public for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0502 AC AZURE 0502 Ensure Memcached SSL (Udp:11214) is not exposed to entire internet for Azure Network Se-

curity Rule
Infrastructure Security Networking AC AZURE 0503 AC AZURE 0503 Ensure Memcached SSL (Tcp:11215) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0504 AC AZURE 0504 Ensure Memcached SSL (Tcp:11215) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0505 AC AZURE 0505 Ensure Memcached SSL (Tcp:11215) is not exposed to entire internet for Azure Network Se-

curity Rule
Infrastructure Security Networking AC AZURE 0506 AC AZURE 0506 Ensure Memcached SSL (Tcp:11214) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0507 AC AZURE 0507 Ensure Memcached SSL (Tcp:11214) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0508 AC AZURE 0508 Ensure Memcached SSL (Tcp:11214) is not exposed to entire internet for Azure Network Se-

curity Rule
Infrastructure Security Networking AC AZURE 0509 AC AZURE 0509 Ensure MSSQL Server (Tcp:1433) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0510 AC AZURE 0510 Ensure MSSQL Server (Tcp:1433) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0511 AC AZURE 0511 Ensure MSSQL Server (Tcp:1433) is not exposed to entire internet for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0512 AC AZURE 0512 Ensure MSSQL Debugger (Tcp:135) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0513 AC AZURE 0513 Ensure MSSQL Debugger (Tcp:135) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0514 AC AZURE 0514 Ensure MSSQL Debugger (Tcp:135) is not exposed to entire internet for Azure Network Secu-

rity Rule
Infrastructure Security Networking AC AZURE 0515 AC AZURE 0515 Ensure MSSQL Browser (Udp:1434) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0516 AC AZURE 0516 Ensure MSSQL Browser (Udp:1434) is not exposed to public for Azure Network Security Rule

51

Infrastructure Security Networking AC AZURE 0517 AC AZURE 0517 Ensure MSSQL Browser (Udp:1434) is not exposed to entire internet for Azure Network Secu-
rity Rule

Infrastructure Security Networking AC AZURE 0518 AC AZURE 0518 Ensure MSSQL Admin (Tcp:1434) is not exposed to private hosts more than 32 for Azure
Network Security Rule

Infrastructure Security Networking AC AZURE 0519 AC AZURE 0519 Ensure MSSQL Admin (Tcp:1434) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0520 AC AZURE 0520 Ensure MSSQL Admin (Tcp:1434) is not exposed to entire internet for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0521 AC AZURE 0521 Ensure LDAP SSL (Tcp:636) is not exposed to private hosts more than 32 for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0522 AC AZURE 0522 Ensure LDAP SSL (Tcp:636) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0523 AC AZURE 0523 Ensure LDAP SSL (Tcp:636) is not exposed to entire internet for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0524 AC AZURE 0524 Ensure Known internal web port (Tcp:8080) is not exposed to private hosts more than 32 for

Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0525 AC AZURE 0525 Ensure Known internal web port (Tcp:8080) is not exposed to public for Azure Network Secu-

rity Rule
Infrastructure Security Networking AC AZURE 0526 AC AZURE 0526 Ensure Known internal web port (Tcp:8080) is not exposed to entire internet for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0527 AC AZURE 0527 Ensure Known internal web port (Tcp:8000) is not exposed to private hosts more than 32 for

Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0528 AC AZURE 0528 Ensure Known internal web port (Tcp:8000) is not exposed to public for Azure Network Secu-

rity Rule
Infrastructure Security Networking AC AZURE 0529 AC AZURE 0529 Ensure Known internal web port (Tcp:8000) is not exposed to entire internet for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0530 AC AZURE 0530 Ensure Hadoop Name Node (Tcp:9000) is not exposed to private hosts more than 32 for Azure

Network Security Rule
Infrastructure Security Networking AC AZURE 0531 AC AZURE 0531 Ensure Hadoop Name Node (Tcp:9000) is not exposed to public for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0532 AC AZURE 0532 Ensure Hadoop Name Node (Tcp:9000) is not exposed to entire internet for Azure Network

Security Rule
Infrastructure Security Networking AC AZURE 0533 AC AZURE 0533 Ensure DNS (Udp:53) is not exposed to private hosts more than 32 for Azure Network Security

Rule
Infrastructure Security Networking AC AZURE 0534 AC AZURE 0534 Ensure DNS (Udp:53) is not exposed to public for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0535 AC AZURE 0535 Ensure DNS (Udp:53) is not exposed to entire internet for Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0536 AC AZURE 0536 Ensure Cassandra OpsCenter (Tcp:61621) is not exposed to private hosts more than 32 for

Azure Network Security Rule
Infrastructure Security Networking AC AZURE 0537 AC AZURE 0537 Ensure Cassandra OpsCenter (Tcp:61621) is not exposed to public for Azure Network Security

Rule

52

F List of Checks in tfsec

Old category New categories rule name rule ID rule description
N/A Identity and Access Management azure-appservice-require-client-cert AVD-AZU-0001 Web App accepts incoming client certificate
N/A Identity and Access Management azure-appservice-account-identity-

registered
AVD-AZU-0002 Web App has registration with AD enabled

N/A Identity and Access Management azure-appservice-authentication-enabled AVD-AZU-0003 App Service authentication is activated
N/A Networking azure-appservice-enforce-https AVD-AZU-0004 Ensure the Function App can only be accessed via HTTPS. The default is false.
N/A Networking azure-appservice-enable-http2 AVD-AZU-0005 Web App uses the latest HTTP version
N/A Networking azure-appservice-use-secure-tls-policy AVD-AZU-0006 Web App uses latest TLS version
N/A Identity and Access Management azure-storage-no-public-access AVD-AZU-0007 Storage containers in blob storage mode should not have public access
N/A Networking azure-storage-enforce-https AVD-AZU-0008 Storage accounts should be configured to only accept transfers that are over secure connections
N/A Logging and Monitoring azure-storage-queue-services-logging-

enabled
AVD-AZU-0009 When using Queue Services for a storage account, logging should be enabled.

N/A General Security azure-storage-allow-microsoft-service-
bypass

AVD-AZU-0010 Trusted Microsoft Services should have bypass access to Storage accounts

N/A Networking azure-storage-use-secure-tls-policy AVD-AZU-0011 The minimum TLS version for Storage Accounts should be TLS1 2
N/A Networking azure-storage-default-action-deny AVD-AZU-0012 The default action on Storage account network rules should be set to deny
N/A Identity and Access Management azure-keyvault-specify-network-acl AVD-AZU-0013 Key vault should have the network acl block specified
N/A Identity and Access Management azure-keyvault-ensure-key-expiry AVD-AZU-0014 Ensure that the expiration date is set on all keys
N/A Identity and Access Management azure-keyvault-content-type-for-secret AVD-AZU-0015 Key vault Secret should have a content type set
N/A Identity and Access Management azure-keyvault-no-purge AVD-AZU-0016 Key vault should have purge protection enabled
N/A Identity and Access Management azure-keyvault-ensure-secret-expiry AVD-AZU-0017 Key Vault Secret should have an expiration date set
N/A General Security azure-database-threat-alert-email-set AVD-AZU-0018 At least one email address is set for threat alerts
N/A Logging and Monitoring azure-database-postgres-configuration-

log-connections
AVD-AZU-0019 Ensure server parameter ’log connections’ is set to ’ON’ for PostgreSQL Database Server

N/A Identity and Access Management azure-database-enable-ssl-enforcement AVD-AZU-0020 SSL should be enforced on database connections where applicable
N/A General Security azure-database-postgres-configuration-

connection-throttling
AVD-AZU-0021 Ensure server parameter ’connection throttling’ is set to ’ON’ for PostgreSQL Database Server

N/A Identity and Access Management azure-database-no-public-access AVD-AZU-0022 Ensure databases are not publicly accessible
N/A General Security azure-database-threat-alert-email-to-

owner
AVD-AZU-0023 Security threat alerts go to subcription owners and co-administrators

N/A Logging and Monitoring azure-database-postgres-configuration-
log-checkpoints

AVD-AZU-0024 Ensure server parameter ’log checkpoints’ is set to ’ON’ for PostgreSQL Database Server

N/A Logging and Monitoring azure-database-retention-period-set AVD-AZU-0025 Database auditing rentention period should be longer than 90 days
N/A Networking azure-database-secure-tls-policy AVD-AZU-0026 Databases should have the minimum TLS set for connections
N/A Logging and Monitoring azure-database-enable-audit AVD-AZU-0027 Auditing should be enabled on Azure SQL Databases
N/A General Security azure-database-all-threat-alerts-enabled AVD-AZU-0028 No threat detections are set
N/A Identity and Access Management azure-database-no-public-firewall-access AVD-AZU-0029 Ensure database firewalls do not permit public access
N/A Identity and Access Management azure-authorization-limit-role-actions AVD-AZU-0030 Roles limited to the required actions
N/A Logging and Monitoring azure-monitor-activity-log-retention-set AVD-AZU-0031 Ensure the activity retention log is set to at least a year
N/A Logging and Monitoring azure-monitor-capture-all-regions AVD-AZU-0032 Ensure activitys are captured for all locations
N/A Logging and Monitoring azure-monitor-capture-all-activities AVD-AZU-0033 Ensure log profile captures all activities
N/A Networking azure-synapse-virtual-network-enabled AVD-AZU-0034 Synapse Workspace should have managed virtual network enabled, the default is disabled.
N/A Identity and Access Management azure-datafactory-no-public-access AVD-AZU-0035 Data Factory should have public access disabled, the default is enabled.
N/A Encryption and Data Protection azure-datalake-enable-at-rest-encryption AVD-AZU-0036 Unencrypted data lake storage.
N/A Secrets azure-compute-no-secrets-in-custom-

data
AVD-AZU-0037 Ensure that no sensitive credentials are exposed in VM custom data

N/A Encryption and Data Protection azure-compute-enable-disk-encryption AVD-AZU-0038 Enable disk encryption on managed disk
N/A Identity and Access Management azure-compute-disable-password-

authentication
AVD-AZU-0039 Password authentication should be disabled on Azure virtual machines

N/A Logging and Monitoring azure-container-logging AVD-AZU-0040 Ensure AKS logging to Azure Monitoring is Configured
N/A Networking azure-container-limit-authorized-ips AVD-AZU-0041 Ensure AKS has an API Server Authorized IP Ranges enabled
N/A Identity and Access Management azure-container-use-rbac-permissions AVD-AZU-0042 Ensure RBAC is enabled on AKS clusters
N/A Networking azure-container-configured-network-

policy
AVD-AZU-0043 Ensure AKS cluster has Network Policy configured

N/A Logging and Monitoring azure-security-center-alert-on-severe-
notifications

AVD-AZU-0044 Send notification emails for high severity alerts

N/A General Security azure-security-center-enable-standard-
subscription

AVD-AZU-0045 Enable the standard security center subscription tier

N/A General Security azure-security-center-set-required-
contact-details

AVD-AZU-0046 The required contact details should be set for security center

N/A Networking azure-network-no-public-ingress AVD-AZU-0047 An inbound network security rule allows traffic from /0.
N/A Identity and Access Management azure-network-disable-rdp-from-internet AVD-AZU-0048 RDP access should not be accessible from the Internet, should be blocked on port 3389
N/A Logging and Monitoring azure-network-retention-policy-set AVD-AZU-0049 Retention policy for flow logs should be enabled and set to greater than 90 days
N/A Identity and Access Management azure-network-ssh-blocked-from-internet AVD-AZU-0050 SSH access should not be accessible from the Internet, should be blocked on port 22
N/A Networking azure-network-no-public-egress AVD-AZU-0051 An outbound network security rule allows traffic to /0.
N/A Secrets general-secrets-no-plaintext-exposure N/A Sensitive data should not be exposed in plaintext.

53

	Introduction
	Background
	Thesis Topic
	Problem Statement
	Research Questions

	Objective and Scope
	Verbiage
	Thesis Outline

	Theory
	Concepts and Definitions
	Terraform Security Scanner Tools
	Related Work

	Method
	Data Collection
	The Criteria
	Technical Data Collection Process
	Security Aspects of the Data Collection Process

	Data Analysis Methodology
	Categorise Security Checks
	Technical Analysis Methodologies

	Results
	Checkov
	Terrascan
	Tfsec
	Comparison
	Security Concern Detection Coverage and Overlap
	Security Concern Distribution based on our Categories
	A Closer Look at Specific Checks

	Discussion
	RQ1 - Challenges of Collecting Data
	RQ2 - Performance Impact
	RQ3 - Main Differences Observed Between the Different SAST Tools
	Assumptions and Interpretations
	Threats to Validity
	Ethical Considerations

	Conclusion
	Limitations and Future Work
	RQ4 - Recommendations

	Bibliography
	Appendix Repository Discovery and Data Collection Framework
	Appendix Project Handbook
	Appendix List of Checks in Checkov
	Appendix List of Checks in Checkov 2
	Appendix List of Checks in Terrascan
	Appendix List of Checks in tfsec

