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Abstract 
Seaweed cultivation is increasingly recognised for its potential to support the bioeconomy 

and reduce our dependence on fossil fuels. Over the past two decades, the industry has 

experienced rapid growth, with a tripling in production volumes. Norway's seaweed 

cultivation sector possesses ideal conditions for industrialising and scaling up production. 

However, achieving this requires automated monitoring techniques to manage large-

scale production effectively. The recent availability of low-cost underwater vehicles, 

coupled with significant advancements in machine learning-based image processing, has 

the potential to revolutionise underwater monitoring in the near future. 

In this study, we investigate in situ biomass monitoring of cultivated Saccharina latissima 

canopies using underwater red-green-blue (RGB) imaging and the Segment Anything 

Model (SAM), a state-of-the-art foundation model for image segmentation. To achieve 

this, we utilised a mini- remotely operated vehicle (ROV) for image sampling of side and 

top-down views of vertically-oriented canopies growing along horizontally-oriented 

cultivation lines. The SAM was used to segment a small section of the canopy, for its 

pixel area to be spatially calibrated to area estimations in in dm2 m-1  and correlated with 

field-measured biomass. In situ chlorophyll a concentrations and turbidity (proxies for 

phytoplankton biomass and particle concentrations) were monitored to evaluate and 

quantify their impact on image quality and canopy segmentation accuracy. 

The side view area proved to be a robust proxy for biomass, showing a strong positive 

power relationship (r2 = 0.769). The top-down view area demonstrated a noticeably 

weaker power relationship with biomass (r2 = 0.365). However, the top-down view area 

demonstrated a strong power relationship to sporophyte density (r2 = 0.676), indicating 

that canopy width correlates well with sporophyte distribution along the cultivation line.  

Our work extends previous research that employed conventional segmentation 

techniques, such as shift clustering, colour segmentation and adaptive thresholding, for 

kelp canopy area segmentation. The SAM consistently achieved high accuracy in 

segmenting the kelp canopies, even from substantially degraded images. Our findings 

indicate that a foundation model for image segmentation like the SAM enhances the 

adaptability, efficiency, and accuracy of canopy segmentations compared to conventional 

segmentation techniques. To further improve accuracy and minimise the need for manual 

supervision, the SAM can be fine-tuned specifically for kelp canopy segmentations in the 

waters of Frøya. For this purpose, we have released together with this thesis our dataset 

of 108 canopy replicate images and their corresponding segmentations.  

Our findings support evidence that area estimations from underwater imagery of kelp 

canopies can serve as a robust proxy for canopy biomass. This demonstrates the future 

potential of deriving structural canopy metrics from underwater imaging to offer new 

insights into S. latissima distribution and growth patterns. Our work presents a novel 

step toward automated, large-scale, in situ monitoring of cultivated kelp canopies. 

However, our current approach faces several constraints, such as operational limitations 

in the field and semi-automatic processing. We envision that our work can serve as a 

foundation for overcoming these limitations by implementing autonomous sensory 

systems and advanced machine learning processing. 
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Sammendrag 
Dyrking av tang og tare anerkjennes i økende grad for sitt potensial til å bidra til 

bioøkonomien og redusere vår bruk av fossile brensler. I løpet av de siste to tiårene har 

industrien opplevd en hurtig vekst, med en tredobling i produksjonsvolum. Norges 

taredyrkingssektor har ideelle forhold for å industrialisere og skalere opp produksjonen. 

For å oppnå dette er det imidlertid nødvendig med automatiserte overvåkningsteknikker 

for å effektivt håndtere en storskala produksjon. Den nye tilgjengeligheten på rimelige 

undervannsfarkoster, kombinert med betydelige fremskritt innen maskinlæringsbasert 

bildebehandling, har potensial til å revolusjonere undervannsovervåkning i nær fremtid. 

I dette studiet undersøker vi in situ biomasseovervåkning av den dyrkede taren 

Saccharina latissima ved bruk av undervanns rød-grønn-blå (RGB) bilder og Segment 

Anything Model (SAM), en banebrytende modell for bildesegmentering. For å oppnå dette 

brukte vi en fjernstyrt undervannsfarkost (ROV) for å samle bilder av side- og ovenfra-

ned-perspektiv på vertikalt orienterte tare som vokser langs horisontalt orienterte 

dyrkingsliner. SAM ble brukt til å segmentere en liten replika av taren på dyrkningslinjen, 

slik at pikselområdet kunne omgjøres til arealestimater i dm2 m-1 og korreleres med 

feltmålt biomasse. In situ konsentrasjoner av klorofyll a og turbiditet (proxy for 

fytoplanktonbiomasse og partikkelkonsentrasjon) ble overvåket for å evaluere og 

kvantifisere deres innvirkning på bildekvalitet og nøyaktighet av tare-segmentering. 

Side-perspektiv arealet viste seg å være en robust proxy for biomasse, med en sterk 

positiv potensrelasjon (r2 = 0,769). Ovenfra-ned-perspektivet viste en merkbart svakere 

potensrelasjon med biomasse (r2 = 0,365). Imidlertid viste topp-ned-arealet en sterk 

potensrelasjon til sporofytt-tetthet (r2 = 0,676), noe som indikerer at tareformasjonens 

bredde korrelerer godt med sporofyttfordelingen langs dyrkningsliner. 

Vårt arbeid viderefører tidligere forskning som brukte konvensjonelle 

segmenteringsteknikker for å tare-segmentering. SAM oppnådde konsekvent høy 

nøyaktighet i segmenteringen av tareveksten, selv fra vesentlig degraderte bilder. Våre 

funn indikerer at en grunnmodell for bildesegmentering, som SAM, forbedrer 

fleksibiliteten, effektiviteten og nøyaktigheten til tare-segmenteringer sammenlignet med 

konvensjonelle segmenteringsteknikker. For å ytterligere forbedre nøyaktigheten og 

minimere behovet for menneskelig tilsyn, kan SAM finjusteres spesifikt for tare-

segmentering i havområdene rundt Frøya. Til dette formålet har vi utgitt vårt datasett 

med 108 dyrkningsline bilder med sine tilhørende segmenteringer sammen med denne 

avhandlingen. 

Våre funn underbygger beviset på at arealestimater fra undervannsbilder av tarevekst 

kan fungere som en robust proxy for tarevekstbiomasse. Dette demonstrerer det 

fremtidige potensialet for å uthente strukturelle taremålinger fra undervannsbilder for å 

gi ny innsikt i S. latissima-distribusjon og vekstmønster. Vårt arbeid presenterer et skritt 

i retning automatisert, storskala, in situ overvåking av dyrket tare. Imidlertid står vår 

nåværende tilnærming overfor flere begrensninger, som operasjonelle restriksjoner i 

feltet og semi-automatisk prosessering. Vi ser for oss at vårt arbeid kan brukes som et 

grunnlag for å overvinne disse begrensningene ved å implementere autonome 

sensorsystemer og avansert maskinlæringsbehandling.  
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1.1 Seaweed aquaculture 

Marine macroalgae (seaweeds) are multicellular aquatic photosynthetic organisms and 

the dominant primary producer in the coastal zone (Krause-Jensen & Duarte, 2016). 

Coastal communities have, for more than 10 000 years, been harvesting seaweed and 

using it for domestic purposes, such as food, feed and medicine (Dillehay et al., 2008). 

The use of seaweed is especially widespread in East Asia, where it has been an essential 

part of their cuisine for over a thousand years (Hwang et al., 2019). In addition to a long 

history of wild harvesting, East Asian countries have been pioneers in developing 

methodologies for seaweed cultivation over the last century, changing seaweed 

production from a simple collection of natural resources into an industrial farming 

industry. In combination with modern processing methods, seaweed is today utilised in 

sectors such as human food, livestock feed and renewable feedstocks (Yong et al., 

2022). 

As the world’s population is rapidly growing, it remains a significant challenge to reduce 

the pressure on Earth’s natural resources while at the same time supporting the 

increasing demand for energy and food (Davis et al., 2016; Lee et al., 2019). The 

flexibility of seaweed highlights its potential to support the growing bioeconomy by acting 

as a low-trophic-level feedstock and reducing our dependence on fossil fuels. Despite 

solid management strategies, wild seaweed resources will not be sufficient to meet this 

future demand (Steen et al., 2016; Monagail et al., 2017; Lauzon-Guay et al., 2021). 

Seaweed aquaculture, on the other hand, is gaining attention as a unique, scalable, and 

sustainable approach to this dilemma (Duarte et al., 2021). As evidenced in the newest 

seaweed market report from the World Bank (2023), the industry has significantly grown 

in the past two decades, with production volume tripling. The report further states that, 

as of 2020, global seaweed aquaculture produced 35.1 million tons of wet-weight 

biomass, accounting for nearly 30 percent of total aquaculture production. Despite of this 

high volume, seaweeds accounted for only 5.9% of aquaculture production value. In both 

volume and value, Asian producers dominate the seaweed market, holding over 98 % of 

the global market share (World Bank, 2023). Current production volumes outside of Asia 

are low, but a significant growth rate is predicted, particularly in parts of Europe and 

America, where industry, government, and academia are aligning their efforts (Kraan, 

2020). The European Union refers to the algae sector as an “untapped resource” and 

considers it a key pillar in its blue bioeconomy strategy (European Commission, 2023). 

The UN Global Compact is going as far as calling it a “Seaweed Revolution” for the 

industry’s potential to contribute to the United Nations Sustainable Development Goals 

(Lloyd’s Register Foundation, 2020).  

1.2 Seaweed aquaculture in Norway  

Seaweed cultivation in Norway started on an experimental scale in 2005, with key 

stakeholders from research and private sectors collaborating to develop cultivation 

technology for scaling up biomass production (Stévant et al., 2017). The initial 

motivation for increasing production was to use kelp carbohydrates to produce biofuel. 

However, due to the high short-term production costs, using biomass solely for biofuel 

1 Introduction  

https://www.sciencedirect.com/topics/engineering/photosynthetic-organism
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was deemed economically unachievable. Consequently, prioritising products that could 

generate economic viability in the short term was recommended as an initial step 

(Skjermo et al., 2014).  

Seaweed cultivation in Norway is currently focused on two species of brown seaweed 

(Phaeophyceae), namely the kelp Saccharina latissima (sugar kelp) and Alaria esculenta 

(winged kelp), selected for their high biomass yields (Skjermo et al., 2014; Cai et al., 

2021). Sales figures from 2022 indicate a total volume of 221 tons of wet weight, valued 

at NOK 4.2 million, comprising 161 tons of S. latissima and 60 tons of A. esculenta 

(Directorate of Fisheries, 2024). Biomass is primarily used for human consumption, but 

an increasing range of products are being developed, including animal feed, fertiliser, 

cosmetics and pharmaceuticals.  

Norway’s long coastline, favourable water conditions and leading expertise in marine 

operations provide excellent prerequisites for industrialising the seaweed cultivation 

industry (Skjermo et al., 2014). Although the Norwegian seaweed cultivation industry is 

still in its early stages, it has generated significant positive attention through optimistic 

policy narratives and media coverage (Albrecht & Lukkarinen, 2020). This optimism is 

further reinforced by several reports from Norwegian research institutes, which project a 

growth potential of annual production volumes of 20 million tons by 2050 (Olafsen et al., 

2012; Skjermo et al., 2014; Broch et al., 2019), although there is some debate regarding 

the realism of these projections (Albrecht, 2023). Norwegian seaweed aquaculture has 

the potential to become a major contributor to the European movement towards a blue 

bioeconomy. However, several challenges need to be solved for that to happen.    

To realise the promising potential of the Norwegian seaweed industry, technological 

solutions are essential for reducing production costs and ensuring consistent biomass 

quality and yield. Although the general market demand for seaweed is rising in the 

Western world (World Bank, 2023), Norwegian seaweed aquaculture remains unprofitable 

on the small scale it currently operates. New engineering solutions, automatisation, and 

robotics technology are pointed out as key to conquering several challenges of achieving 

large-scale industrial seaweed production (Kim et al., 2017). Saether et al. (2024) state 

that the cultivation technology used in the Western world is time and resource-intensive, 

yielding low production volumes. This is exemplified by a low degree of automation 

throughout the production cycle, from seedling cultivation to farm operations, 

monitoring, harvesting, and processing. Skjermo et al. (2014) states that large-scale 

production must also be predictable. To achieve this, the authors highlight the need for 

automated biomass monitoring during the sea-based on-growing phase.   

1.3 Conventional seaweed biomass monitoring and remote 

sensing approaches   

Current industry practices for monitoring biomass and growth yield primarily depend on 

visual or destructive in-field (in situ) measurements of a small sub-section of the farm, 

using this as a proxy for overall conditions (Overrein et al., 2024). This labour-intensive 

and time-consuming approach is constrained to a small sample size that does not show a 

reliable picture of the entire farm, even on the small scales of today’s industry (Overrein 

et al., 2024). A monitoring system that provides relevant and objective data for farm 

management and operations is crucial for transitioning towards more knowledge-driven 

and automated practices (Føre & Alver, 2023). This underlines the need for scalable and 
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automated monitoring techniques to handle large-scale production without sacrificing 

accuracy.  

To address some of the limitations of field-based monitoring, remote sensing is 

increasingly replacing or supplementing conventional methods in aquatic studies 

(Cavanaugh et al., 2021; Rowan & Kalacska, 2021). The benefits of remote sensing 

include its efficiency, large-scale coverage and flexibility (Ashraf et al., 2010; Free et al., 

2020). In a review of remote sensing of submerged aquatic vegetation, including 

seaweed, Rowan & Kalacska (2021) showed that remote sensing has already been 

applied to determine distribution, canopy density, cover classes, health and species. The 

application of remote sensing for assessing biophysical properties at higher resolutions, 

like canopy biomass or growth rates, is yet to be extensively explored. However, there 

has been some research on monitoring surface-level traits that can be visually observed, 

such as biomass (Gao et al., 2018; Free et al., 2020). This applies to surface-canopy 

forming kelps that have been monitored with a variety of aerial imaging technology to 

document changes in canopy area and biomass for wild kelp, as well as to estimate the 

harvestable biomass of cultivated kelp (Cavanaugh et al., 2021). 

Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs) are 

monitoring platforms that can be used for remote sensing from the water column, which 

makes them suitable for collecting high-resolution data. Underwater vehicles provide 

easier access to aquatic environments that would traditionally have to be accessed by 

divers or submerged equipment. An ROV is operated from a base station on the surface, 

usually placed on a boat or the shoreline. The ROV is connected to the base station by a 

tether that transmits commands from the controls to the ROV and sends video and data 

back to the operator in real time. AUVs operate without direct connection to an operator, 

using onboard systems for navigation, power and data storage. They are capable of 

performing operations with varying degrees of autonomy, enabling them to execute pre-

set tasks with little to no direct human involvement (Sørensen et al., 2020). ROVs and 

AUVs can be equipped with a variety of payload sensors (e.g., optical, acoustic, and 

environmental) to best suit the specific operation, using remote sensing and/or in situ 

sampling. ROVs and AUVs are commonly deployed to gather underwater imagery through 

optical sensors (Johnsen, Mogstad, et al., 2020). Pilot studies on optical monitoring of 

wild kelp distribution illustrate the use of both an AUV equipped with red-green-blue 

(RGB) cameras (Bewley et al., 2012) and a ROV outfitted with an underwater 

hyperspectral imager (Summers et al., 2022).  

Stenius et al. (2022) proposed a system for autonomous seaweed farm inspection, 

featuring a method for monitoring biomass with an AUV outfitted with side-scan sonars. 

Sonar technology is effective for estimating the biomass of macroalgae species with gas-

filled pneumatocysts, as they produce strong acoustic returns (Wilson, 2011). However, 

the two species most commonly cultivated in Norway (S. latissima and A. esculenta) lack 

these. Addressing this research gap is crucial for the Norwegian seaweed industry 

(Skjermo et al., 2014), as increased automation and monitoring frequency would provide 

a faster rate of knowledge for optimising growth, yield predictions and planning of farm 

logistics (Overrein et al., 2024). 

1.4 Underwater imaging and computer vision segmentation  

Recent technological advancements in aerial and satellite imaging have established these 

approaches as essential tools for terrestrial monitoring and management (Rowan & 
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Kalacska, 2021). Unfortunately, their effectiveness is significantly reduced in marine 

environments as there exist several additional constraints in underwater imaging 

(Johnsen et al., 2020). This is primarily due to the optical properties of water, which 

affect how light propagates through the medium. The inherent optical properties (IOPs) 

of water describe how light is absorbed and scattered by water molecules and suspended 

particles (e.g. phytoplankton, coloured dissolved organic material (cDOM), and total 

suspended matter (TSM) and do depend on the ambient light conditions. The apparent 

optical properties (AOPs) depend both on the components of the medium (the IOPs) and 

on the directional structure of the light. This interplay between IOPs and AOPs results in 

rapid light attenuation through the water column, causing a reduction in light intensity, 

colour absorption and blurring effects, complicating the capture of clear, accurate 

underwater images. The effect of the AOPs limits the range at which optical sensors can 

capture high-resolution data (Ludvigsen & Sørensen, 2016), necessitating a platform that 

positions the sensor close to the object of interest. In the case of monitoring submerged 

kelp with data from underwater imaging, underwater vehicles, specifically ROVs and 

AUVs, are frequently applied for their manoeuvring capabilities.   

To obtain quantitative data from optical imaging is challenging (Ludvigsen & Sørensen, 

2016), but the rapidly evolving field of computer vision (CV) has facilitated the 

development of numerous new methods for the automatic processing and analysis of 

footage from aquaculture farms (Føre & Alver, 2023). CV enables computers to interpret 

and understand visual information from images or videos using advanced algorithms and 

mathematical models. Recent advancements in artificial intelligence, especially within the 

sub-field of machine learning, have highlighted CV as an increasingly important field for 

research and development (Yan, 2023). CV can be used for extracting a broad range of 

quantifiable data from visual inputs, such as pattern recognition, movement tracking and 

object detection (Yan, 2023). Image segmentation is the foundational process behind 

object detection. It divides the image into distinct regions with similar characteristics 

such as colour, intensity, or texture. These segmented regions act as blocks of 

information for subsequent classification or spatial processes.  

A novel advancement in object detection is the Segment Anything Model (SAM) (Kirillov 

et al., 2023), which leverages deep learning and state-of-the-art neural networking to 

address a wide array of segmentation tasks. The SAM introduces a user-guided 

(promptable) segmentation framework capable of handling new tasks and datasets 

beyond its initial training. To achieve this, the SAM has been trained on the largest 

segmentation dataset to date, comprising over 1 billion segmentations in 11M images. It 

serves as a foundation model for object-based segmentation tasks as an alternative to 

task-specific models made for individual contexts. However, for scenarios where the 

foundation model fails, the SAM framework is made to be specialised (fine-tuned) by 

training on task-specific images, building on top of its massive foundation. This can be 

useful when dealing with scenarios not well represented in the SAMs original training set, 

such as underwater imaging.  

While the optical properties of water make underwater imaging a challenging field in 

computer vision research (McGlamery, 1980), recently development has transitioned 

several theoretical concepts into commercially applied product (Yang et al., 2020; Føre & 

Alver, 2023). Although this is currently mostly in fish-based aquaculture, using robotics 

in combination with underwater imaging has also led to several projects in seaweed 

aquaculture, mostly related to object detection.  
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1.5 In situ seaweed biomass monitoring using underwater 

imaging  

In a study conducted by Bell et al. (2020) a small dataset of underwater imagery 

captured by an RGB camera mounted on an ROV was used to train a deep-learning 

segmentation model for object detection at an offshore seaweed cultivation farm. The 

model successfully classified kelp juveniles, tags and longlines by segmenting the 

observed object area. The automated analysis of underwater colour imagery through 

machine-learning models shows potential for frequent monitoring of juvenile kelp on 

offshore farms. Even though the study focused on object classification, its success in 

segmenting the pixel area of kelp juvenile illustrates the potential of using CV and deep-

learning models for structural metric estimations. The spatial calibration of pixel area to 

metric area has been frequently used for area estimations from remote sensing imagery. 

Jin et al. (2023) used object-based segmentation to identify seaweed farms areal extent 

and spatial distribution. However, very little research has been done on area estimations 

from segmented underwater imaging of cultivated kelp.  

Gerlo et al. (2023) proposed a method for monitoring the growth of cultivated S. 

latissima canopies by deriving area estimations from underwater RGB stereo imaging. 

The canopy area from side view images was annotated and used to train a deep-learning 

model to automate the task. The model demonstrated high precision in segmenting the 

canopy coverage, achieving an Intersection over Union (IoU) of 90% to the manual 

annotations. The stereo imaging allowed for triangulation techniques to estimate the 

distance from the camera to the canopy, facilitating the conversion of pixel area into 

square meters. These underwater images were captured from a boat using a submerged 

camera setup, marking a preliminary step toward applying similar image processing 

techniques from an underwater vehicle. Overrein et al. (2024) used a mini-ROV to 

capture RGB images of kelp canopies to derive canopy area estimations and evaluate its 

viability as a proxy for biomass. The authors used conventional segmentation techniques, 

such as shift clustering, colour segmentation and adaptive thresholding, to calculate 

canopy pixel area and converted it to square meters using a scale bar. Their correlation 

analysis showed a strong relationship between the area estimations and its 

corresponding field-measured biomass (r2 = 0.95), indicating that canopy area can be a 

robust proxy for biomass.  
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1.6 Aims of this study 

The primary aim of this study was to investigate in situ biomass monitoring of cultivated 

kelp using underwater RGB imaging and the SAM, a state-of-the-art foundation model for 

image segmentation. For this purpose, we employed a mini-ROV to image side and top-

down views of the cultivation line. The SAM was used to derive the pixel area of small 

canopy sections, which was spatially calibrated to area estimations and correlated with 

field-measured biomass. 

In support of this aim, the study focused on the following objectives: 

1. Compare the relationship between canopy area estimations from side and top-

down views and field-measured biomass with conventional biomass estimations.  

2. Evaluate and quantify the impact of measured IOPs, specifically Chl a and 

turbidity, on image quality and observed accuracy of the SAM-derived 

segmentations. 

3. Compare the performance of the SAM against conventional segmentation 

techniques used by Overrein et al. (2024), focusing on observed segmentation 

accuracy and ease of use.  
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2.1 Study area and sampling methods  

The fieldwork for this study was carried out at the seaweed cultivation farm Måsskjæra, 

owned by Seaweed Solution (SES) and located on the island of Frøya, on the outer coast 

of Trøndelag, mid-Norway (Figure 2.1a). The island of Frøya is considered a marine 

biological hotspot due to its shallow, irregular bathymetry and significant water mixing, 

resulting in high primary production and biological diversity (Fragoso et al., 2021). The 

hydrography of the region is predominantly influenced by two major currents: the 

brackish-influenced Norwegian Coastal Current (NCC) and the saline and nutrient-rich 

Norwegian Atlantic Current (NAC) (Skagseth et al., 2011). The NCC transports low 

salinity water northwards along the Norwegian coast, accumulating freshwater from local 

runoffs along the way (Skagseth et al., 2011). Beneath NCC, the NAC usually flows, but 

during spring and summer, occasional upwelling of its warm and nutrient-rich water 

occur (Skagseth et al., 2011). This dynamic interplay between the currents contributes to 

making the area optimal for both wild harvest and aquaculture activities, as evidenced by 

previous research (Tiller et al., 2015; Ervik et al., 2018).  

Data collection was conducted six days at intervals of 2 to 4 weeks from March to June 

2023, consistent with the growth period of S. latissima in spring (Førde et al., 2016). The 

sampling dates were chosen to assess whether the proposed biomass estimation is 

suitable across a variety of environmental conditions (e.g. before the phytoplankton 

spring bloom versus during the bloom) and seaweed growth densities (e.g. from 

sporophyte juveniles to “bushy” canopies). 

2 Material and methods  
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Figure 2.1: Map of a) mid-Norway showing the location of Frøya at the coast of Trøndelag 

(square) and b) the island of Frøya with the location of Måsskjæra seaweed cultivation farm (star) 

and Sula meteorological station (collection of wind data) (cross). Lastly, an illustration c) of 

Måsskjæra seaweed cultivation farm and the collection site Måskjæra Inside (MI). Illustration by 

Overrein et al. (2024). 

Due to the exposed location of the fieldwork, data sampling was constrained to days with 

weak wind speed (< 10 m s-1) to ensure safe working conditions. Image sampling was 

timed to coincide with slack tide, the short time period with still water between changing 

tides, aiming for the most vertical orientation of S. latissima. However, due to logistical 

challenges with weather and boat availability, imaging surveys also occurred in other 

tidal conditions (Table 2.1)  
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Table 2.1: Overview of field day number, date, time of ROV transect, tidal level (cm), average and 

maximum wind speed (Sula meteorological station) and cloud coverage (Ørland meteorological 

station) for all sampling days at Måsskjæra seaweed cultivation farm. 

 

2.1.1 Imaging survey   

The mini-ROV BlueyeX3 (Blueye Robotics AS, Trondheim, Norway) was employed as a 

mobile sensor platform and a camera for underwater imaging (Figure 2.2). The ROV's 

built-in RGB camera captures imagery in Full High-Definition spatial resolution (1920 x 

1080 pixels) at 25~30 frames per second, featuring a 115-degree field of view and tilt 

capabilities of 30° up and down. Additionally, the ROV was outfitted with a vertically 

mounted external camera with the same spatial resolution to capture top-down images. 

The design of the ROV prioritises user-friendliness, featuring an intuitive "plug and play" 

mobile application that facilitates individual operation through an Xbox controller 

interface. This system connects to the ROV via a tethered base station. When deployed 

from a vessel in field conditions, its compact design and automated positioning system 

make it well-suited for manoeuvring between the cultivation lines, ensuring operational 

effectiveness even in challenging environmental conditions (e.g. strong tidal currents and 

low water visibility). 

 

Figure 2.2: The mini-ROV BlueyeX3 and its top-down facing external camera (and unused light 
source) together with its base station.  
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Large plastic strips were attached to the cultivation line before the image survey to 

outline three 1-m replicates of the kelp canopy along the cultivated line (herein referred 

to as canopy replicates). In addition to the strips, floaters (~ 5 cm diameter) were added 

because of previous challenges related to detecting the outline of the canopy replicate in 

the images, since the canopies “bushiness” at the later stages of the cultivation can 

envelop the strips (Overrein et al., 2024). In our image analysis, the 1-m distance 

between the floaters served as a size reference for spatial calibration of the segmented 

pixel area.    

 

Figure 2.3: Illustration of a canopy replicate outlined with floaters as a size reference, 

corresponding with an in situ ROV image showing both field-of-view and canopy replicate area. 

After outlining the canopy replicates, the ROV was deployed from a small vessel near the 

collection site MI and manoeuvred towards the selected cultivation line with the three 

canopy replicates. Given the varying conditions in currents and water visibility, trial runs 

were initially conducted to adjust the ROV thrust settings for optimal manoeuvrability. 

The ROV was navigated along the cultivation line with the internal camera pointed 

towards the kelp canopies hanging vertically from the cultivation line (Figure 2.4a) to 

capture the canopy replicates length (side view). Following this, the ROV was driven 

straight above the cultivation line with the external camera pointing downwards to 

capture the same canopy's depth (top-down view) (Figure 2.4 b)  
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Figure 2.4: Simplified illustration of how imaging surveys of the kelp canopy replicates were 

conducted with ROV-transects capturing a) side view video and b) top-down view video. 

2.1.2 Field-based measurements  

Following each imaging survey, the three canopy replicates were harvested by hand for 

immediate field-based measurements. Each canopy replicate was harvested and weighed 

to derive wet-weight biomass per meter. Following this, all sporophytes over 15 cm from 

each canopy replicate were counted and sorted by their lamina length – from the tip of 

the lamina to the beginning of the holdfast (Figure 2.5a). For field-based length 

measurements, 10 sporophytes were selected from the sorted individuals to represent 

the population size (Figure 2.5b). These 10 individuals from each canopy replica were 

then measured for laminal length and maximum lamina width (Figure 2.5).  
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Figure 2.5: Overview of the various field measurements and examples of a) a harvested and 

sorted canopy replicate and b) 10 selected individuals for length measurements.  

2.1.3 Environmental variables  

To establish a foundation for evaluating the effects of water visibility on image quality 

and segmentation accuracy, a submersible fluorescence sensor (C3, Turner Designs, 

USA) was connected to the frame rope at station MI at a depth of ~3 meters, 

corresponding to the depth of the S. latissima canopies on the cultivation line. The sensor 

measured chlorophyll a fluorescence (calibrated to [Chl a] in mg m-3) as a proxy for 

phytoplankton biomass, turbidity (Relative Fluorescence Unit, calibrated to Formazin 

Turbidity Unit (FTU)) for suspended particle concentration, and temperature (°C). Data 

measurements occurred at a 10-minute interval from mid-February to mid-June to 

capture the varying water conditions throughout the sampling period. Furthermore, wind 

speed (average hourly interval in meters per second from the same time period) was 

acquired from the Sula meteorological station (https://seklima.met.no/), located west of 

Frøya (Figure 2.1b).  

2.2 Image extraction 

The initial step for image extraction involved using basic video editing software, in this 

case Shotcut (Version 23.12; Meltytech LLC, 2024), to remove irrelevant footage from 

the full video recordings. With the relevant video segments isolated (the ones that 

contain frames of the canopy replicates), one frame (image) per second is extracted from 

the footage. From these images, three images per canopy replicate were selected for side 

and top-down views (Figure 2.6) 

The selection criteria ensured that the images:  

- Displayed the markers for outlining the replicate and size referencing. 

- Captured the full length and width of the canopy replicate. 

- Featured a perpendicular view of the kelp to minimise perspective distortion. 

- Cantered the replicate within the image to reduce distortion from the camera’s 

dome. 

- Were distinct from one another to provide perspective diversity within the 

replicate. 
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This procedure generated 18 images for each sampling day (3 × 3 × 2: 3 images of the 3 

canopy replicates and their 2 canopy views), cumulatively resulting in a dataset of 108 

canopy replicate images (18 images × 6 sampling days). The images in the dataset were 

systematically labelled for subsequent image analysis; indicating the field day on which 

they were captured, the specific replicate meter and its canopy view. 

 

 

Figure 2.6: Pipeline of the process from unedited ROV-video to 1) isolated transects comprising 

frames of the canopy replicate, to 2) extraction of 1 frame s-1 and finally 3) the selection of 3 

frames for further processing.   

2.3 Image analysis 

2.3.1 Segmentation and area estimation 

The canopy replicate pixel area was segmented using OpenCV's open-source annotation 

tool Computer Vision Annotation Tool (CVAT). The CVAT provided a user interface for the 

SAM, facilitating semi-automatic and promptable segmentation (Figure 2.7). When 

inputting an image, the image encoder automatically generates an image embedding 

while the prompt encoder embeds user-provided prompts in the format of positive and 

negative clicks (kelp canopy or not kelp canopy). The two are combined in a lightweight 

mask decoder that iteratively predicts the segmentation coverage with each added 

prompt until a satisfactory segmentation is provided. This allowed for efficient corrections 

in cases where the initial canopy segmentation was inaccurate. As the SAM does not 

differentiate between the specific canopy replicate area and the observed canopy in 

general, its segmentation also covers parts of the canopy outside the defined 1-m 

markers. 
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Figure 2.7: Simplified overview of how the Segment Anything model (SAM) is applied to segment 

the observed kelp area. The image encoder outputs an image embedding that can be adjusted by 

various user-provided prompts (in this case clicks) to produce segmentation masks at close to real-

time speed. Illustration adapted from Kirillov et al. (2023). 

When the canopy pixel area was accurately covered in the segmentation, a slicing tool 

available from the CVAT interface was used to remove the parts of the segmentation that 

were outside of the outlined canopy replicate (Figure 2.8). A polyline was drawn in the 

image between the two outlining floaters, serving as a size reference for spatial 

calibration. The output of the annotations was exported from CVAT and converted to a 

CSV file for processing. The CSV was processed in a script to spatially calibrate each 

segmentations pixel area to area in dm2 m-1 using its corresponding scale bar, resulting 

in canopy replicate area estimations from a side and top-down view (herein referred to 

as canopy area estimations from side view/top-down view images).   

The canopy area estimations from side view imaging represent the width and length of 

the canopy replicates (dm2). To estimate the replicate’s average depth (dm), the area of 

the top-down images was divided by the constant replicate length of 1 meter. As a proxy 

for canopy replicate volume (dm3), the side view area estimations were multiplied by 

their corresponding average depth.  
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Figure 2.8: Pipeline of the cropping initial output of the Segment Anything Model (SAM) derived  

segmentations (Figure 2.7) and subsequent pixel area conversion to canopy area estimation in dm2 

m-1  

2.3.2 Image quality evaluation     

As a subjective evaluation of the impact of measured IOPs, specifically [Chl a] (a proxy 

for phytoplankton biomass) and turbidity (suspended particle concentrations), on image 

colour and sharpness during the study period, the observed image quality for each field 

day was considered. To supplement this with quantitative measurements, an imaging 

metric analysis (Figure 2.9) was performed using the image dataset toolkit Encord Active 

(Version 0.1.84; Encord, 2023). The canopy replicates side view images from all field 

days were imported and processed using the Encord Actives library of preset image 

metric calculations (Green Values, Blue Values, Sharpness, and Blur), proving 

standardised scores for each category across all images. Sharpness and Blur have a 

perfect negative correlation, but were both included for illustrative purposes. 
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Figure 2.9: Pipeline illustrating how the side view images from all field days were imported and 

processed using Encord Actives library of preset image metric calculations to provide standardised 

scores for each category across all images.  

2.4 Method comparison of segmentation accuracy and viability    

Our method for deriving canopy area estimations using the SAM builds on the approach 

developed by Overrein et al. (2024). Their sampling method shared the same study area, 

field measurements, object of interest (1-m replicates of cultivated S. latissimia 

canopies), temporal range and side view perspective. Their study employed conventional 

segmentation techniques to derive canopy area estimations and we evaluated the SAMs 

performance by processing their dataset of 54 side view images (6 images × 1 canopy 

replicate × 7 sampling days). The observed segmentation accuracy was visually 

evaluated and the relationship between both canopy areal estimations and field-

measured biomass was compared.  

2.5 Statistical analyses  

To investigate the relationships between the image quality metrics (Green Value, Blue 

Value, Sharpness and Blur), a principal component analysis (PCA) was conducted using 

the PRIMER-e software (Version 7; Clarke & Gorley, 2014). This multivariate statistical 

technique was used to identify the key components explaining the most variance in 

image colour and sharpness during the study period. The PCA was performed on 

standardised data to ensure that each metric contributed equally to the analysis. The 

results were visualised in a biplot, introducing bubbles representing [Chl a] on top of the 

PCA to discern the associations between the key image metrics and the field days 

corresponding [Chl a] nightly average (from 00:00 to 07:00).  

The effectiveness of using canopy area estimations and our canopy volume proxy as 

indicators for field-measured biomass was investigated through power regression 

analyses. The regressions were performed and visualised using Microsoft Excel (Version 

2403; Microsoft, 2024), with correlations plotted on a log-log scale to linearise the 

relationship for easier interpretation. The strength of the relationships was determined by 

the coefficient of determination (r2). The same approach was used to examine the 

relationship between field-measured lamina length and field-measured biomass, 

providing a comparison for the fit of manually field-measured as a proxy for biomass. 
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3.1 Environmental variables 

The daily average wind speed varied greatly throughout the sampling season from ~1.5 

m s-1 to multiple peaks above 12 m s-1, reflecting the fluctuating weather patterns in the 

Frøya region (Figure 3.1a). Due to operational restrictions during such peaks, the 

average wind speed on sample days varied from 1.8 m s-1 (April 18th) to 7.6 m s-1 (March 

16th).  

Chl a and turbidity showed varying concentrations throughout the field period with 

occasional peaks. After relatively low [Chl a] (~0.4 mg m-3) from mid-February to March, 

a major peak was observed at the beginning of April (up to 5.5 mg m-3). After the peak, 

[Chl a] levels fluctuated between 1.0 mg m-3 and 2.8 mg m-3 throughout the rest of the 

field season. Turbidity followed a similar trend throughout the sampling period, with the 

exception of two independent peaks, one short in early March (> 0.2 FTU) and one long 

in mid-to-late June (> 0.2 FTU) (Figure 3.1b).   

Seawater temperature maintained a stable level between 5°C and 6°C until the beginning 

of April before a gradual increase up to ~11.5°C at the end of June (Figure 3.1c). 

 

3 Results  
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Figure 3.1: The environmental variables from mid-February to late-June 2023 with vertical lines 

marking each field day. The grey column represents sensor downtime. A) Average wind speed (m 

s-1) was measured at Sula meteorological station, while B) [Chl a] (mg m-3) (red), turbidity (FTU) 

(black), and C) seawater temperature (°C) was measured at Måsskjæra seaweed farm.  

3.1.1 Observed image quality 

When evaluating the image dataset used for canopy area estimations, differences in the 

image quality among sampling days were observed. High image quality, indicating high 

water visibility, was observed at the beginning of the season (March 16th and March 

29th). From April 18th, the canopy sharpness was reduced, but the image quality was still 

good enough to outline the canopy replicate (Fig. 3.2). In the later part of the season, 

specifically April 25th, May 23rd, and June 08th, the image quality was consistently low, 

with all images displaying a distinct green hue and reduced sharpness. This indicates a 

significant decrease in water visibility compared to the beginning of the season. 
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Figure 3.2: Examples of side view and top-down view images collected each day to illustrate the 

change in observed image quality throughout the field season. *The distinct blur in the top-down 

image from 08.06 is related to a camera malfunction, not water visibility. 

3.1.2 Image quality metrics  

The side view images of the canopy replicates showed distinct groupings of image 

metrics scores from the same field day, indicating consistent image quality within dates 

but variability across the study period. The x-axis (PC1) represents the component 

explaining 67.7% and a cumulative proportion of 100% together with the two additional 

PC axes (Table 3.1).  

Table 3.1: List of the factors comprising the principal component analysis (PCA) illustrated in 

Figure 3.3 

 

 

Axis PC1 PC2 PC3
Eigenvalues 2130.00 699.00 320.00

Proportion of variance (%) 67.70 22.20 10.20

Cumulative proportion (%) 67.70 89.80 100.00

Variables 

Green Values 0.121 -0.993 0.001

Blue Values 0.422 0.051 -0.905

Sharpness 0.635 0.078 0.301

Blur -0.635 -0.078 -0.301
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Sharpness and Blue Values are strongly aligned with PC1. As the inverse of Sharpness, 

Blur correlates negatively with PC1. The images show a chronological trend, with images 

from early in the season scoring highest in Sharpness, with an increase in Blur and 

decrease in Sharpness and Blue Values as the season progressed (Figure 3.3). This 

corresponded with the increase in [Chl a] and turbidity during the same period. Images 

from March 16th and 29th have especially high Sharpness and Blue Values, while images 

from April 25th, May 23rd and June 8th showed consistently low levels.   

The second axis (PC2) showed variations in Green Value, which were highest on May 

23rd. The bubble symbols representing [Chl a] illustrate this trend, with high Green 

Values corresponding to high [Chl a].  

 

Figure 3.3: Principal component analysis (PCA) illustrating the key components explaining the 

most variance in image quality for canopy side view images throughout the field season. The 

temporal increase in Blur corresponds to the increased [Chl a] and turbidity during the study 

period. 

3.2 Lamina-length correlated to field-measured biomass  

The field-measured biomass from the canopy replicates ranged from 0.78 kg m-1 to 6.60 

kg m-1, with a general trend of increasing biomass as the season progressed. A similar 

trend is seen in the field-measured lamina length, with an average lamina ranging from 

36.8 cm to 89.2 cm (standard deviation ranging from 11.2 cm to 32.8 cm). The 

correlation of field-measured lamina length and biomass demonstrated a positive power 

relationship ( r2=0.622, p<0.01, Figure 3.4). 

 



28 

 

 

Figure 3.4: Log-log plot visualising the relationship of the field-measured average lamina length 

(cm) and its corresponding field-measured biomass (kg m-1). 

3.3 Canopy estimations correlated to field-measurements 
Table 3.2 Overview of the canopy estimations and corresponding units  

 

3.3.1 The SAM segmentation quality    

In general, water visibility decreased from the beginning to the end of the season. The 

impact of water visibility in the SAM-derived segmentation was visually assessed by 

qualitatively evaluating whether the segmentation (red polygon) and size reference (blue 

polyline) correctly aligned with the canopy replicate (Figure 3.5). 

Although images were significantly degraded towards the end of the study, displaying a 

distinct green hue and reduced sharpness, the segmentations still aligned well with the 

canopy replicates (see example in Figure 3.5). 

Canopy estimations Description 
Side view area (dm2 m-1) Segmentation pixel area converted to area

Top-down view area (dm2 m-1) Segmentation pixel area converted to area

Volume proxy (dm3 m-1) Side veiw area (dm2) x (Top-down area / Length of Top-down area) 
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Figure 3.5: Examples of segmentations from images of side and top-down views collected to 

illustrate the consistently satisfactory segmentation quality throughout the study period season. 

*The distinct blur in the top-down image from 08.06 is related to a camera malfunction, not water 

visibility.  

3.3.2 Canopy area estimation from side view images    

Canopy area estimations from side view images ranged from 24.26 dm2 to 141.23 dm2 

(standard deviation from 0.88 dm2 to 11.54 dm2). When correlating the canopy area with 

biomass, a strong power relationship is observed (r2=0.769, p<0.01, Figure 3.6a) 

As a comparison, the canopy area also demonstrated a positive power relationship with 

field-measured length (r2=0.656, p<0.01, Figure 3.6b) 
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Figure 3.6: Log-log plot visualising the relationship between the canopy area estimations from 

side view images and its corresponding a) field-measured biomass (kg m-1) and b) field-measured 

lamina length (dm). 

3.3.3 Canopy area estimations from top-down view images    

Canopy area estimations from top-down view images ranged from 19.45 dm2 to 53.63 

dm2 (standard deviation from 0.35 dm2 to 3.25 dm2). There was no top-down view 

footage on March 16th. When correlating canopy area from top-down view images with 

biomass a weak power relationship is observed (r2=0.365, p = 0.052, Figure 3.7a).  

Canopy estimations from top-down view images was compared to the corresponding 

field-measured sporophyte density to discover a strong positive power relationship 

(r2=0.676, p<0.01, Figure 3.7b) 
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Figure 3.7: Log-log plots visualising the relationship between canopy area estimations from top-

down view images and its corresponding a) field-measured biomass (kg m-1) and b) field-measured 

sporophyte density. 

 

3.3.4 Canopy volume proxy  

The correlation analysis between the canopy volume proxy and field-measured biomass 

displayed a positive power relationship (r2 = 0.681, p<0.01, Figure 3.8).  
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Figure 3.8: Log-log plot visualising the relationship between the canopy volume proxy and its 

corresponding field-measured biomass (kg m-1). 

3.4 Comparison of segmentation approaches for canopy area 

3.4.1 Observed segmentation accuracy    

In conditions with high water visibility, both the SAM and the conventional segmentation 

techniques implemented by Overrein et al. (2024) provided segmentations of observed 

high segmentation accuracy. However, during conditions of low water visibility, the 

conventional segmentation techniques missed substantial parts of the canopy area, while 

the SAM maintained a high segmentation accuracy (see examples in Figure 3.9). 
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Figure 3.9: Canopy side view images segmented with the Segment Anything Model (SAM) (blue 

line) and the conventional segmentation techniques (red line) used by Overrein et al (2024), to 

illustrate the change in observed segmentation quality throughout the study period. 
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3.4.2 Comparison of CV-derived area estimations from different methods   

The SAM-derived area estimations used in this study (Figure 3.10a) and the CV-derived 

area estimations from Overrein et al (2024) (Figure 3.10b) demonstrate a similarly 

strong power relationship to field-measured biomass, with the SAM achieving a stronger 

correlation(. The average standard deviation for Overrein’s CV-derived area was 5.06 

dm2 (range from 2.34 dm2 to 9.16 dm2) while, for the SAM-derived area, it was 4.67 dm2 

(range from 1.62 dm2 to 11.12 dm2)       

 

Figure 3.10: Log-log plot comparing the SAM approach for area estimations (blue) used in this 

study to the conventional segmentation techniques (red) used by Overrein et al. (2024) by 

correlating the canopy area estimations from side view images to field-measured biomass (kg m-1).   
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4 Discussion  

4.1 Kelp canopy biomass estimations from in situ underwater 

RGB imagery 

Our correlation analysis showed a positive power relationship (r2 = 0.769, n = 18) 

between the side view area estimations and field-measured biomass. This correlation is 

stronger than the one observed between manually-derived lamina length and field-

measured biomass (r2 = 0.622, n = 18), suggesting that canopy area estimations are a 

more robust proxy for canopy biomass than lamina length. Our findings are comparable 

to the strong relationship (r2 = 0.887, n = 7) between area estimations and field-

measured biomass shown by Overrein et al. (2024), where the authors used 

conventional segmentation techniques, such as shift clustering, colour segmentation and 

adaptive thresholding, to calculate pixel area. The study by Overrein et al. (2024) and 

this thesis demonstrate the potential of deriving structural metrics from underwater 

imagery for kelp canopy biomass estimations. However, both studies were done in a 

small sub-section of the cultivation farm, where only a few lines were assessed. Further 

validation through large-scale experiments is necessary to reduce the statistical 

uncertainty related to the relatively small sample size used in these studies. A challenge 

with large-scale experiments using remote sensing to asses biophysical properties (e.g. 

biomass and lamina length) of submerged aquatic vegetation, like S. latissima canopies, 

is the substantial amount of supplementary data needed to produce accurate results 

(Rowan & Kalacska, 2021). Our small-scale and preliminary monitoring study required 

significant work efforts to sample field-measured wet weights to validate the biomass 

estimations and monitor environmental variables to evaluate the effect of IOPs on 

segmentation quality. Despite of the challenges, the development of an automated and 

scalable monitoring method remains a prerequisite to achieving a cost-effective and 

large-scale production (Skjermo et al., 2014). 

Agriculture have faced similar challenges in large-scale biomass estimations of crop 

canopies. Traditional methods of crop biomass measurements, which involve harvesting, 

drying, and weighing plant samples, are accurate but inherently destructive, labour-

intensive, and time-consuming. Consequently, these traditional methods are impractical 

for large-scale spatial and temporal measurements (Wang et al., 2016). To address this, 

remote sensing applications have been extensively used due to their ability to collect 

scalable temporal and spatial information at a relatively low cost (Ene et al., 2018). 

Maimaitijiang et al. (2019) employed stereo imaging from an unmanned aerial vehicle 

(UAV) to create high-density point clouds of soybean canopies. Their study showed that 

2D canopy structure metrics, such as mean canopy height and projected basal area, 

correlated well with field-measured biomass (r2=0.801 and 0.702, respectively). 

However, as identified by the authors, both measurements are derivatives of one-

dimensional pixel information, which tends to reach a plateau as biomass continues to 

increase.  

The top-down view imaging of the kelp canopies has a comparable canopy view angle to 

aerial monitoring of projected basal area, but big differences in spatial resolution. The 

power relationship between the kelp canopy top-down view area and field-measured 

biomass was noticeably lower (r2 = 0.365) than what has been observed for aerial 



36 

 

above-ground biomass estimations of crop canopies (Maimaitijiang et al., 2019). During 

slack tide, the kelp canopy is vertically-orientated, meaning that only the width, rather 

the length, is captured by top-down imaging. Our findings indicate that at the high 

spatial resolution of our study, canopy length, as captured by side view imaging, has a 

greater impact on kelp canopy biomass than canopy width.   

The canopy top-down view area showed a robust power relationship to density (r2 = 

0.676), indicating that the canopy width or “bushiness” correlates well with the density of 

sporophytes on the cultivation line. Monitoring this relationship is valuable for assessing 

density distribution across the farm, which can help to evaluate, for instance, the impacts 

of different seedling techniques, cultivation trials, or the influence of abiotic factors on 

kelp growth. Bell et al. (2020) illustrated the feasibility of repeated sporophyte density 

monitoring by detecting and classifying kelp juveniles along a horizontal cultivation line 

using side-view imaging from an AUV and machine learning processing.  

Our canopy volume proxy was derived by multiplying the canopy side view area by the 

average width of its corresponding top-down view area. The canopy volume proxy 

showed a positive power relationship (r2=0.681) to field-measured biomass, which was 

stronger than the power relationship (r2 = 0.622) shown by manual length, but weaker 

than the power relationship (r2 = 0.769) shown by side view area. This differs from the 

previously mentioned study by (Maimaitijiang et al., 2019), where UAV-based canopy 

volume estimations from high-density point clouds derived from photogrammetric stereo 

images showed a stronger correlation to biomass (r2 = 0.849) than canopy height and 

projected basal area in predicting above-ground biomass (r2=0.801 and 0.702, 

respectively). The authors reason that this could be explained by the volume estimations 

closer resemblance to the complex 3D structure of crop canopies. Unlike crop canopies, 

which are typically cultivated in fields over a continuous coverage or in structured rows, 

kelp canopies are cultivated on submerged substrates like lines or nets constantly 

affected by water currents. In our study, the kelp canopies are grown along horizontal 

cultivation lines, resulting in a distinctly different and arguably more complex 3D 

structure than crop canopies. More sophisticated techniques, such as stereo imaging,  

could be employed to improve the concept of our kelp canopy volume estimations. A 

preliminary investigation of the use of underwater stereo imaging to derive areal 

information about kelp canopies has been conducted by Gerlo et al. (2023), but to our 

knowledge, no RGB stereo imaging derived kelp canopy volume estimations have yet 

been performed.  

4.2 Effect of environmental variables on SAM-derived 

segmentations  

Our study observed a connection between measured IOPs ([Chl a] and turbidity) and 

image quality. The high image quality displayed during the two first field days (March 

16th and March 29th) was likely due to high water visibility, resulting from low 

concentrations of the IOPs, such as Chl a, cDOM and TSM (Johnsen et al., 2020). As the 

concentration of the Chl a and turbidity increased from winter to summer, the observed 

image quality subsequently decreased. The image degradation resulted from increased 

light attenuation as photons were absorbed and/or scattered by the IOPs as they 

travelled through the water column (Kjerstad et al., 2014). As light attenuation increases 

exponentially with distance (Jerlov, 1951), the effect was amplified at the end of the 
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growth cycle because a longer distance between the ROV and the kelp canopy is needed 

to capture the full length of a kelp that is reaching almost 2 m (Overrein et al., 2024). 

The composition of IOP varies within water types (blue oceanic water versus greenish 

coastal waters) (Morel & Prieur, 1977), making underwater imaging effective at seaweed 

farms located in clear offshore waters and challenging in turbid, brackish coastal waters 

(Overrein et al., 2024). Our study was conducted in the waters of Frøya, a region known 

for its high productivity, with the occurrence of phytoplankton blooms from late March 

until June-July (Fragoso et al., 2021). This is aligned with the growth period of S. 

latissima at cultivation farms in the Trøndelag region (Førde et al., 2016), indicating that 

low water visibility can deteriorate underwater imaging quality during the later stages of 

the growth period.  

Our image quality metric analysis illustrated a clear relationship between [Chl a] and 

image blur. In this study, high [Chl a] generally resulted in higher levels of Green Values, 

corresponding to the green hue present in Chl a-dominated waters (IOCCG, 2000). In 

general, a temporal trend was observed: Images from early in the season exhibited high 

Sharpness and Blue Values, with a distinct increase in Blur as the season advanced. This 

effect correlates with the rising levels of [Chl a] and turbidity measured, which cause 

increased absorption and scattering of underwater light. As the image quality metric 

calculations are a selection of the pre-set algorithms in the Encord Active library, it has to 

be taken into account that they serve a general purpose and are not explicitly customised 

for underwater images. By employing the same principles of pixel-based analysis, 

underwater image quality metrics aim to quantify image degradation typical for 

underwater environments, such as absorption, scattering, and colour attenuation (Lu et 

al., 2017). Subjective underwater quality metrics determined by visual inspection are 

considered to provide the most reliable results, but are expensive, time-consuming and 

impractical for real-time implementation and system integration (Han et al., 2020). The 

importance of objective image quality metrics in underwater environments is 

underscored as a critical component in underwater image processing, classification, and 

analysis, particularly for engineering and monitoring tasks (M. Yang & Sowmya, 2015).  

Underwater image processing includes techniques such as underwater image 

enhancement, which involves algorithms for contrast enhancement and colour correction, 

aiming to reverse the image degradation caused by the water column (van de Weijer et 

al., 2007). While some models indirectly estimate the effects of the water column 

(Giardino et al., 2012), Rowan & Kalacska (2021) suggests that better results could be 

achieved by including directly measured parameters. Measuring the absorption and 

scattering coefficients during imaging can be used for pre-processing adjustments to 

restore an approximation of the original colours and contrast of the images (Kjerstad et 

al., 2014). Our imaging data are complemented by continuous measurements of [Chl a] 

and turbidity, but not cDOM. While restoring image quality was outside the scope of this 

study, future research should evaluate the costs associated with acquiring supplementary 

data for image enhancement against the potential benefits for subsequent analysis. An 

alternative approach to mitigating the problem of image degradation is to deploy 

inexpensive water sensors at the farm and use the data to optimise the timing of image 

surveys (Bell et al., 2020). 

The SAM-derived segmentations aligned consistently with the observed kelp coverage to 

a satisfactory degree despite significant variations in image quality across the season. 

However, achieving satisfactory segmentation required a varying degree of human 
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supervision. In conditions of high water visibility, the SAM predicted a satisfactory 

segmentation with few prompts (<5), likely because the high sharpness and contrast of 

the image enabled efficient edge detection. Under conditions of low water visibility, the 

SAM often over- or underestimated the observed kelp area, failing to accurately detect 

the boundary between kelp and background without the guidance of multiple prompts 

(>5) to achieve a satisfactory result. This interactive prompt engineering enables the 

SAM to adapt to a wide range of segmentation tasks (Kirillov et al., 2023), as 

demonstrated by its performance under distinctly different water conditions. The CV 

techniques used by Overrein et al. (2024) required tuning of individual parameters to 

each field day's varying image quality. While this provided adaptability for groups of 

images, it also made the process heavily reliant on human supervision. The lack of 

adjustability for individual images may have contributed to their significant 

underestimations of observed canopy areas in conditions of low water visibility. 

4.3 Future perspectives for biomass estimation of cultivated 

kelp 

Employing a mini-ROV as the sensor platform for our image surveys provided high-

resolution data at a suitable spatial scale for our preliminary investigations. However, a 

ROV poses several constraints for large-scale monitoring, including the requirement for 

human intervention, restricted battery duration, and limited tether length (Sørensen et 

al., 2020). Given that seaweed farms already cover extensive areas and envision further 

upscaling (Skjermo et al., 2014), employing an ROV for underwater imaging is confined 

to subsections of the farm (Overrein et al., 2024). Studies within this spatial range could 

benefit from improvements in ROV autonomy. Automating tasks such as manoeuvring, 

inspection, and sampling could reduce the need for surface support, hence lower costs, 

while also making a significant progression toward the integration of AUVs and persistent 

underwater vehicles (Ludvigsen & Sørensen, 2016). Large-scale underwater monitoring 

would need to employ sensor platforms with a higher spatial coverage, such as AUVs. 

Although the cost of AUVs has limited their use in aquaculture operations, several small 

and cost-effective vehicles are entering the market, potentially revolutionising the 

collection of acoustic and colour imagery in the near future (Bell et al., 2020). Illustrating 

this potential, Stenius et al. (2022) propose a system for using AUVs to inspect seaweed 

farms automatically. In their validation trials, the AUV locates the pre-programmed GPS 

position of the farm and navigates along the cultivation lines using a side-scan sonar. 

Incorporating this setup for imaging surveys would allow us to gather data similar to our 

vertical footage and overcome current spatial limitations, enabling large-scale, 

autonomous and high-resolution underwater monitoring. 

Biomass monitoring from underwater imaging of whole seaweed farms needs automated 

canopy detection and area segmentation. In its present form, the SAM require consistent 

manual supervision to provide satisfactory segmentations, making its low throughput a 

constraint for large-scale monitoring. In order to increase its performance and lower the 

need for human intervention, the foundational version of the SAM could be employed to 

train a model on our dataset of 108 canopy replicate images to be fine-tuned for that 

purpose. This process is conducted using a natural training algorithm that generates a 

sequence of prompts for each image and compares the model's predicted segmentation 

with the corresponding ground truth (Kirillov et al., 2023). The ground truth is a 

previously established “perfect” segmentation of the specified object(s). The model 
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assesses its performance based on the percentage overlap between the two, represented 

as IoU. Based on this evaluation, the model iteratively refines its parameters to increase 

accuracy for segmentation tasks represented in the training data. The DeepLabv3+ 

(Chen et al., 2018) segmentation architecture was employed to develop a fine-tuned 

model for segmenting foreground objects in underwater images, significantly improving 

the model's standard mean IoU from 44.4% to 91.9% on a dataset of 300 in situ images 

(Drews-Jr et al., 2021). This deep learning architecture has also been employed to 

develop a fine-tuned model for segmenting kelp canopy coverage, achieving an IoU of 

90% (Gerlo et al., 2023), thus demonstrating its potential for future automation in this 

field. To fine-tune the SAM on our dataset, establishing an objective ground truth is 

necessary. Even with human supervision, defining a "perfect" segmentation coverage 

would become challenging in images with significantly degraded quality and increased 

distance to the kelp, particularly common later in the season. An alternative approach to 

provide accurate ground truths is to simulate training data. Duarte et al. (2016) 

developed a simulator capable of transforming a clear image into a turbid underwater 

image of the same scene. This could be applied as it is or adjusted based on our IOP 

measurements to our high-water clarity images to generate training data for turbid 

conditions to fine-tune and evaluate the SAM model performance.   

A challenge with underwater in situ mapping of kelp is its constant movement due to 

waves and tidal currents (Summers et al., 2022). We conducted our imaging survey 

under low wind conditions and during slack tide to minimise these forces on both the kelp 

and the ROV, aiming for consistently comparable results. As slack tides only occur during 

a limited time frame, employing this approach at a farm-level scale presents a challenge. 

The top-down view imaging is particularly sensitive to this issue, as even a slight drift in 

the kelp canopy could result in significant changes in the observed canopy area. 

Exploring alternative sensor platforms, resolution levels and tidal conditions is 

recommended to address this. As an alternative to the mini-ROV, an unmanned surface 

vehicle (USV) would enable comparable high-resolution top-down underwater imaging at 

a faster rate and over a larger area (Ludvigsen & Sørensen, 2016). Employing a low-

flying UAV would further increase spatial coverage, but this would come at the cost of a 

lower spatial resolution and the added challenge of surface reflectance. Bell et al. (2020) 

highlights UAV imagery as the most viable solution for observing biomass quantity and 

condition of the floating surface canopies of cultivated Macrocystis pyrifera (giant kelp) at 

offshore farms. To investigate this approach for monitoring the submerged canopies of S. 

latissima at coastal locations, UAV surveys could be conducted during strong tidal 

currents when the kelp canopies are likely to be more horizontally oriented, thereby 

presenting a larger area closer to the water surface. 
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The canopy area estimations from side view images offered a more reliable proxy for 

biomass than manually measured lamina length, suggesting its potential to complement 

and replace traditional biomass estimations. While the canopy area estimations from top-

down view images did not strongly correlate with biomass, it demonstrated a strong 

relationship to sporophyte density. Our preliminary results demonstrate the future 

potential of deriving structural canopy metrics from underwater imaging to gain new 

insights into S. latissima distribution and growth patterns along cultivation lines. 

The evaluation of our image dataset demonstrated a clear impact of Chl a and turbidity 

concentrations on observed image quality, with high concentrations resulting in a green 

hue and reduced sharpness. Despite this, the SAM consistently achieved a satisfactory 

accuracy in its kelp canopy segmentations, even from substantially degraded images. 

However, it required additional manual supervision. The level of accuracy could be 

further improved and quantified using machine learning and underwater image 

enhancement techniques.   

Our study has continued the work of Overrein et al. (2024), and our results support their 

claim that CV-derived area estimations from underwater imagery of kelp canopies can 

serve as a robust proxy for canopy biomass. Our use of mini-ROV imaging surveys 

facilitates non-destructive and repeatable underwater monitoring. We have built upon 

their original approach by incorporating top-down view imaging, deriving a canopy 

volume proxy, quantifying image quality metrics and utilising the SAM for canopy area 

segmentation. Our findings indicate that using the SAM, a promptable foundation model 

for image segmentation, for canopy area segmentations increased the adaptability, 

efficiency and accuracy compared to previously employed conventional segmentation 

techniques. To further reduce the need for manual supervision, we have released 

together with this thesis our dataset of 108 canopy replicate images and its 

corresponding segmentations, which can be used to fine-tune a model specialised for 

canopy segmentations in the waters of Frøya.  

This study presents a novel step toward automated and large-scale in situ monitoring of 

cultivated kelp canopies. However, our current approach faces several constraints, such 

as operational limitations in the field and semi-automatic processing. We envision that 

our work can serve as a foundation to overcome these limitations by implementing 

autonomous sensory systems and advanced machine learning processing.  

  

5 Conclusion 
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