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Abstract
This thesis is inspired by a project conducted in the course ”Applied Ma-

chine Learning with Project” (IDATT2502) which involved using Gabor fil-

ters for image classification and exploring the effect of classifying these

images with different levels of noise A. The focus of this thesis is on the

parallelized application of the new Gabor-like filters. These filters are de-

veloped and implemented using the algorithms described in the article by

Devakumar and Eidheim (Devakumar & Eidheim, 2024).

Different parallel hardware options, including Graphics processing unit (GPU),

Field Programmable Gate Array (FPGA), and Application-specific integrated

circuit (ASIC), for parallelizing the filter application have been explored.

However, due to time constraints, implementations have been made only

for Central Processing Unit (CPU) and GPU. Multiple versions have been

developed for both the CPU and the GPU, for a thorough comparison of

the implementations and their performance on different hardware. For the

CPU, there are three implementations: a sequential version in Python us-

ing NumPy, another sequential version in Rust, and a parallelized version

in Rust utilizing Rayon. The GPU implementations have been written in

both Rust and C++. Different shaders, which are code for GPU execution,

have been developed and tested1.

The processing time for the implementations has been collected from the

platforms to determine which was more effective. This was achieved using

the hardware clocks on each platform to measure the time taken for each

run of the filter application. The results show that the GPU outperforms

the CPU as long as the time of the memory transfer between the CPU and

GPU is shorter than the computation time of the CPU. Another indication

from the results is the substantial variation in computational performance

observed when implementing diverse parallelization strategies.

1The source code for all implementations, along with information about dependencies for
execution and tests, can be found at https://github.com/s24-idatt2900-072/parallelization
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Sammendrag
Denne bacheloroppgaven er inspirert av et prosjekt gjennomført i emnet

”Anvendt maskinlæring med prosjekt” (IDATT2502), som omhandlet bruk

av Gabor-filtre for bildeklassifisering og utforsking av effekten av støy på

disse bildene, se vedlegg A. Fokuset i denne oppgaven er på den parallel-

liserte anvendelsen av de nye Gabor-lignende filtrene. Disse nye filtrene

er utviklet og implementert ved å bruke algoritmen som finnes i artikkelen

av Devakumar og Eidheim (Devakumar & Eidheim, 2024).

De ulike parallelle maskinvarealternativene GPU, FPGA og ASIC for å par-

allelisere filteranvendelsen er utforsket. På grunn av tidsbegrensninger er

implementeringer kun gjort for CPU og GPU. Flere versjoner er utviklet

for hver av disse for en grundig sammenligning av deres ytelse. Vers-

jonene for CPU er én sekvensiell versjon i Python ved bruk av NumPy, en

annen sekvensiell versjon i Rust, og en parallelisert versjon i Rust ved bruk

av Rayon. GPU-implementeringene er skrevet i Rust og C++. Forskjellige

shaders, som er kode for GPU, er utviklet og testet 2.

Prosesseringstiden for versjonene er samlet inn fra plattformene for å fast-

slå hvilken som var mer effektiv. Dette ble oppnådd ved å bruke maskin-

vareklokkene på hver plattform for å måle tiden som ble brukt for hver

kjøring av filteranvendelsen. Resultatene viser at GPU-en overgår CPU-en

så lenge tiden for minneoverføringen mellom CPU-en og GPU-en er kortere

enn prosesseringstiden til CPU-en. En annen indikasjon fra resultatene er

den betydelige variasjonen i ytelsen til beregningene som observeres ved

implementering av de ulike paralleliseringsstrategiene.

2Kildekoden for alle versjoner, sammen med informasjon om avhengigheter for utførelse
og tester, kan finnes på https://github.com/s24-idatt2900-072/parallelization
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Assignment Details
The task was originally given in Norwegian and has been translated by the

group:

Description of the assignment and problem

This task involves parallelizing different methods on CPU, GPU, and/or

other specially designed hardware. The focus is on highly parallel methods

that use a lot of data and can require a lot of memory. It is interesting how

these methods can be implemented in C, C++, and/or Rust, and find out

which frameworks or libraries that are most appropriate to use.

The project is particularly interesting in relation to new machine-learning

methods that are being developed in our research environment. A possible

direction is therefore to try out heavier methods for image analysis which,

for example, may be better suited in relation to noise and adversarial

attacks than today’s solutions.

Project focus

The main focus of the thesis was looking at the parallelization of a new

machine-learning method on the CPU and GPU using Rust as the main pro-

gramming language. A C++ implementation was also necessary to com-

pare today’s Rust against a more evolved programming language. Early in

the project period, the team investigated the potential of using specially

designed hardware, but this was deemed to be too challenging. The po-

tential in specially designed hardware will therefore be discussed from a

theoretical point of view instead.
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1. Introduction
Machine learning models for image recognition, such as Convolutional

Neural Network (CNN), have become increasingly popular in recent years.

However, CNN has still some issues. Firstly, they have shown problems

with image recognition on images with noise and are prone to adversarial

attacks (Momeny et al., 2021). Additionally, CNNs have been criticized for

not being biologically plausible (Eidheim, 2022).

In the fall of 2023, a project was presented to a group of four students

in the course IDATT2502 - Applied Machine Learning with Project. The

supervisor was Ole Christian Eidheim, and the project built upon the use of

Gabor filters to recognize images in the MNIST dataset without backward

propagation. It was created to provide a proof of concept based on an

idea by Eidheim. The model uses Gabor filters to better simulate a more

biologically plausible machine learning model and be more robust against

noise. The paper is included as appendix A.

The results of the project in IDATT2502 were promising but had some

limitations. One significant issue was the time complexity of training the

model, which was implemented in Python using only the CPU. This restric-

tion limited the number of filters that could be used in the simple model.

The future work concluded that optimizing the calculations to better scale

with more Gabor filters would improve the performance of the model. Since

the calculations to apply a Gabor filter are independent, it is theoretically

possible to calculate every filter on every image simultaneously.

The power of the CPU is not sufficient in the field of machine learning,

while the GPUs has been used to train models because of its computational

power (Jeon et al., 2021). This led to the thought that the optimization

of training the model made in IDATT2502 could be done on specialized

hardware for parallel algorithms such as GPU, FPGA, and ASIC. This raised

the question of how one can implement independent machine-learning

calculations that use no backward propagation.

This thesis investigates how independent calculations in machine learn-

ing models that do not use backward propagation can be optimized for

specialized hardware designed for parallelization. It explores designing an

implementation that utilizes the hardware in the best possible manner

and evaluates how much faster it is compared to existing implementations

made on the CPU.

1
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1.1 Structure

2 Theory and relevant literature:

Present relevant theory and literature for understanding the development

of algorithms designed to run on parallel hardware such as a GPU.

3 Methodology and process:

This section describes how the project was planned, the work methodo-

logy, the choice of technology, and the scientific approach.

4 Results:

The results from all of the tests are presented with tables and figures for

clear visualization and easy interpretation. Non-scientific results such as

administrative details, are also included.

5 Discussion:

This section provides a discussion and reflection on the results presented

in the previous section. The results are explained based on the current

theoretical understanding.

6 Conclusion and further work:

This section evaluates how well the suggested approaches address the

problem presented in the introduction. It also discusses potential future

work that could lead to a better understanding of and higher computational

power for independent machine learning calculations.

7 Societal Impact:

Discusses the potential environmental and societal impact of the results

of the project.



2. Theory
This chapter will present the necessary knowledge required to go further

in-depth on the topics of parallel computing on different hardware, and

their application in machine learning. The theory described here will lay the

foundation for the knowledge required to answer the problem described in

the task description, introduced in Section Assignment Details.

2.1 Central Processing Unit

The CPU is the main component of a computer and is responsible for most

of the processing in the system. It does so by interpreting signals from

both the software and hardware of the system (ARM, 2024b).

The CPU is made up of several components, with one of the most cru-

cial ones being the Arithmetic Logic Unit (ALU). The ALU is responsible

for performing all arithmetic and logical operations, from basic operations

such as addition to more complex operations such as bit manipulation.

This component is central in most operations executed by the CPU, as it

processes both register-to-memory and register-to-register instructions.

It cooperates closely with the other components of the CPU, receiving in-

structions from the control unit and utilizing data stored in the registers

(Tanenbaum, 2013, p. 55-60).

The control unit is responsible for fetching and decoding instructions from

the memory of the computer and directing them to the appropriate com-

ponents. It handles the execution flow of the CPU by managing the flow

of instructions and data between the ALU, registers, and memory (Tanen-

baum, 2013, p. 55).

Registers in the CPU are responsible for fast access to data and instructions

that the CPU needs immediately. There are several registers but they can

often be generalized into two types of registers. General-purpose registers

are responsible for storing key local variables and intermediate results of

calculations. The other kind of generalized registers is the special-purpose

registers, including important features such as the program counter and

the stack pointer (Tanenbaum, 2013, p. 349-351).

The definition of an instruction set is a collection of all the operations

the CPU can execute. These operations might include arithmetic or logical

tasks performed by the ALU. This set of instructions varies between the dif-

3
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Figure 2.1: The organization of a simple computer with one CPU and two I/O

devices. Owner (Tanenbaum, 2013, p. 56)

ferent CPU architectures and defines how the CPU handles the instruction

(Tanenbaum, 2013, p. 344-351).

The rate at which the CPU can execute these instructions is determined by

the clock frequency of the CPU. The clock frequency is measured in giga-

hertz (GHz) and determines the number of operations the CPU can perform

each second. Therefore, a higher clock count frequency will result in faster

execution speed, but will also consume more power and generate higher

temperatures, which can lead to potential throttling (‘Understanding CPU

Clock Speed’, 2024).

While the clock frequency indicates the execution speed of a single core,

multi-core processors address processing efficiency in a fundamentally

different manner. A multi-core processor can schedule tasks independ-

ently, which enhances system performance without the need to increase

the clock speed. These extra cores can utilize pipelining, which is a tech-

nique where multiple instructions are overlapped in execution (Patterson

& Hennessy, 2014, p. 272-286).

2.2 Graphics Processing Unit

The GPU is another important component of the computer primarily hand-

ling tasks such as image processing and 3D rendering. Beyond these func-
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tions, the GPU is also a specialized electronic circuit designed to process

complex mathematical calculations (Tanenbaum, 2013, p. 582).

One of the key attributes of the GPU is its parallel processing architec-

ture based on Single Instruction, Multiple Data (SIMD), which consists

of numerous processing units each performing an operation each cycle

(Tanenbaum, 2013, p. 583). This allows the GPU to process multiple op-

erations concurrently, making it efficient in the computation of complex

calculations. While this allows for efficient graphics display output, it also

enhances the overall system performance by offloading the CPU (Tanen-

baum, 2013, pp. 70–73).

The main components the GPU is made up of include its cores, the Video

Random Access Memory (VRAM), and the bus interface. The cores, which

can be general-purpose or specialized depending on the architecture, are

primarily responsible for computational tasks. The VRAM serves as tempor-

ary storage for data being processed on the GPU. Lastly, the bus interface

provides the connection between the GPU and the rest of the system and

is responsible for the data transfer between GPU and system memory.

Over the years the GPU has evolved from fixed-function units to program-

mable units. This evolution allowed GPUs to not only manage graphics but

also made it possible for it to handle tasks normally performed by the

CPU. This is the fundamentals of General-purpose computing on graphics

processing unit (GPGPU) (Tanenbaum, 2013, pp. 582–585).

The GPUs range of use has evolved as GPGPU became available. This

evolution opened up other fields of computation to utilize the processing

powers of the GPU. The GPU can now perform a more broad range of com-

putational tasks in parallel. This makes it faster at running highly parallel

algorithms compared to the CPU when run at a certain scale (Tanenbaum,

2013, pp. 582–585).

2.3 FPGA and ASIC

FPGA is a type of integrated circuit that lets the user reconfigure the hard-

ware itself after being manufactured. The internal connections and logic

components of the FPGA can be adjusted to suit the user’s needs, which

allows for a variety of digital circuits and functions. This degree of flexibility

makes FPGAs especially suitable for prototyping, education, and research

(ARM, 2024c).



Chapter 2: Theory 6

Figure 2.2: The reconfigurable architecture of an FPGA consisting of several logic

blocks and interconnections. Owner (Semiconductor, 2024)

In contrast to FPGA, ASIC is designed with the purpose of a fixed func-

tionality. An ASIC is an integrated circuit that is designed for performing

a particular task. This specialization allows ASIC to perform exceptionally

well for these tasks, making them ideal for repetitive tasks that need to

be executed rapidly but also reliably (ARM, 2024a).

2.4 Parallelization

Parallelization is a technique used to increase efficiency by dividing a larger

task into smaller, more manageable subtasks. These subtasks can then be

executed simultaneously across multiple computing units. This approach

is popular in modern computing, especially with the demand for fast pro-

cessing of larger volumes of data (Robey & Zamora, 2021, pp. 2–6).

2.4.1 Distributed vs Shared Memory Architectures

Parallel programming can be implemented using either distributed memory

or shared memory architectures. Distributed memory architectures typic-

ally consist of a collection of nodes, each with its local memory, connected

with other nodes through a network. This architecture is scalable, as each

node operates independently from the others (Robey & Zamora, 2021,

pp. 22).

In contrast, in shared memory architectures, multiple nodes have a shared

memory space. This simplifies the problem of data sharing by making the

memory accessible to all nodes. Synchronization between processes is
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therefore important, to ensure correct program execution and data con-

sistency (Robey & Zamora, 2021, pp. 22–23).

2.4.2 Parallelization on CPU

Parallelization on the CPU utilizes the multi-core structure of modern CPUs

to execute tasks concurrently across the cores. This approach optimizes

the use of resources, reduces idle times, and improves execution speed.

Attempting to parallelize a task beyond the number of available cores can

result in frequent context switching, creating overhead and taking a toll

on the benefits of parallelization.

Effective parallelization relies on balancing the workload to ensure all cores

are optimally utilized without overwhelming the system (Tanenbaum, 2013,

pp. 554–574).

2.4.3 Parallelization on GPU

The GPU excels at processing large amounts of data in parallel by taking

advantage of the vast amount of cores. This parallel architecture makes

GPUs well-suited for accelerating data processing. Unlike the CPU, where

excessive parallelization beyond the available number of cores can lead

to overhead and frequent context switching, the GPU benefit from divid-

ing the task into as many subtasks as possible. The low cost of context

switching on the GPU allows for rapid switching between tasks, thereby re-

ducing the impact of latency from memory operations. This keeps the GPU

busy, effectively hiding the latency caused by memory access and keeps it

continuously computing without the need to wait for data. This makes the

GPU exceptionally well-suited for data processing tasks (ENCCS, 2024).

2.4.4 Parallelization on FPGA and ASIC

FPGAs and ASICs offer specialized solutions for hardware acceleration in

computing systems. They excel in handling tasks in parallel while ensuring

high performance and low latency.

FPGAs are especially suited for parallelizable tasks due to their reconfigur-

able nature. By leveraging their customizable architecture data processing

can be enhanced and one can potentially expect higher efficiency com-

pared to processing the data on the CPU and possibly the GPU. The key to

this performance boost lies in its array of configurable logic blocks and pro-

grammable interconnections, which allows for flexible data routing. Each

of these blocks can individually be programmed to perform a task con-
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currently. Customized data paths can therefore be created, enhancing the

parallel execution flow.

Furthermore, FPGAs often serve as prototyping platforms in the develop-

ment of ASICs (Markovic et al., 2007). This allows for thorough testing

and optimization of the ASIC before assembling the final circuit, which is

crucial due to the non-reconfigurable characteristics and higher production

cost compared to FPGA. The developed ASIC will generally offer better per-

formance and power efficiency than their FPGA prototype counterpart. This

stems from ASIC being specialized to perform specific operations, making

it able to operate at higher speeds and lower latency. Therefore, ASIC’s

are ideal for tasks involving high-volume, repetitive data processing.

2.5 GPU Architecture

When a program is to perform calculations, it first initializes a function on

the GPU known as a shader. Unlike typical CPU operations, the shader is

not set to run sequentially, but in parallel utilizing thousands of threads

that are distributed across its cores. This parallel execution model makes

the GPU suitable for handling complex computations efficiently, increasing

processing speed compared to the CPU.

2.5.1 Memory and data transfer

The GPU has its own dedicated memory separate from the host. Therefore,

data must be transferred between the host and the GPU using buses. This

approach is generally slower than the transfers between the CPU and the

Random Access Memory (RAM). Therefore, for smaller calculations, this

slower transfer rate overshadows the computational gains from computing

on the GPU (Ansorge, 2022, pp. 318–319).

2.5.2 Threads

The threads in the GPU are much lighter than their CPU counterparts. To

further organize and streamline this process, the threads are grouped in

units.

These thread groups play an important role in the GPU architecture to

achieve optimal performance. They run and execute the same instruction

concurrently, ensuring effective management and processing of the data,

especially for uniform operations. To maximize the performance of the

thread group, its threads must access data that is adjacent in memory.

Even though threads in the same group execute the same task, this ap-
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proach may also lead to divergence. Divergence occurs when there are

conditional statements present in the instruction set, causing threads to

follow different execution paths. This will cause the unit to diverge into

different branches. When this happens, a branch will enter the conditional

section, causing the others to be idle until the diverged branch has finished

the section (ENCCS, 2024). This behavior is illustrated in Figure 2.3.

Figure 2.3: Visual representation of single-instruction multiple-thread. Owner (Fa-

tahalian, 2011)

2.5.3 Block

A block consists of several thread groups and functions as a larger collec-

tion of threads that can run independently of other blocks. As a result of

this, complex operations can be executed in a parallel manner over greater

parts of the memory.

Blocks can also synchronize the threads they contain through barriers. A

barrier is a synchronization technique that ensures all threads in a block

have reached a certain point in the execution before advancing. This syn-

chronization is necessary for maintaining data consistency and correct ex-

ecution order among all the threads (ENCCS, 2024).

2.5.4 Cores

GPU cores are the computing units responsible for executing data oper-

ations. Each core on a GPU can handle multiple threads simultaneously,

making the GPU highly effective for parallel computing. These cores are

designed to effectively perform floating point operations, central to graph-

ics rendering and scientific calculations.
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Types of cores

There are several different cores within GPU hardware, each designed for

a specific computational task. Commonly used in machine learning applic-

ations are Compute Unified Device Architecture (CUDA) cores and Tensor

cores, both developed by NVIDIA. CUDA cores are versatile, and designed

to handle general-purpose computing. Tensor cores, on the other hand,

are specialized for matrix operation, making them suitable for machine

learning algorithms. These cores sacrifice accuracy for speed as one of

many ways to speed up the computation of matrix calculations (Ansorge,

2022, pp. 358–359).

2.5.5 Compute Unit

A Compute Unit is another critical unit of a GPU, functioning as a cluster of

GPU cores that concurrently execute operations on data in parallel. Each

Compute Unit is comprised of multiple cores, typically optimized for certain

types of tasks to be run in parallel, enhancing the GPU’s ability to perform

complex computations.

In addition to the cores, each Compute Unit is equipped with its own

memory resources, including registers and shared memory. This shared

memory is essential for providing the threads with rapid data access, sig-

nificantly reducing latency when compared to accessing the GPU’s main

memory.

The Compute Units also play a vital role in thread scheduling within the

GPU. They manage how and when to run the threads, based on the re-

sources available and the prioritization of the tasks. Each Compute Unit

can have several blocks running at the same time, but blocks can not be

split among Compute Units. Effective scheduling is essential to ensure high

throughput and to balance the load across the GPU (ENCCS, 2024).

2.6 Foundations of Parallel Programming

Parallel programming is the practice of writing code that can execute inde-

pendent tasks concurrently. In contrast to sequential programming, par-

allel programming introduces new problems that need to be addressed.

These problems are related to concurrency, synchronization, and data

sharing across different executions. If these concerns are not addressed

the program will behave in unexpected ways. As the nature of each par-

allel hardware architecture is different, they also have different ways to

address these concerns. This section will go into detail on how relevant

hardware deals with parallel programming.
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2.6.1 Parallel programming on the CPU

When introducing parallelism to CPU-programming, it is important to un-

derstand some concepts especially when it comes to shared data across

different threads. To address these problems related to shared memory,

some tools are introduced. A commonly used strategy to manage prob-

lems like race condition is to utilize synchronization variables. Instead of

relying on techniques like busy wait, consuming CPU resources while wait-

ing to synchronize one can utilize synchronization variables like mutex

locks. These ensure that only one thread can access a critical section of

the code at a time, especially read-write operations to shared variables.

This synchronization of threads is what makes parallel execution on the

CPU predictable (Anderson & Dahlin, 2015, p. 45-96).

2.6.2 Programming on the GPU

It is essential to know several key concepts to understand how the exe-

cution on the GPU will behave when writing code for the GPU. Execution

is made up of a group of threads forming a block, and a group of blocks

making the execution grid. The number of dispatches in each dimension

for a shader determines the number of blocks within that execution grid

for the respective dimensions. A dispatch is the process of executing the

grid of blocks to run the shader on the GPU. The total number of threads

for a dispatch is determined by the number of blocks within the execution

grid, as visualized in 2.4.

Figure 2.4: The three-level hierarchy of GPU programming. Owner (Navarro et

al., 2021)

Each thread possesses its own set of private variables that indicate where

it resides within the grid. One variable identifies which block the thread be-

longs to, and another specifies the position of the thread inside the block.

These variables have three dimensions: x, y, and z. Depending on the al-

gorithm, these variables are usually used to index into shared memory,

allowing for computations on this memory area. Utilizing the unique com-

bination of these variables can make the execution on shared memory
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race-safe, as each thread operates on its section of the shared memory.

Depending on the programming language used for GPU programming,

there are various methods to synchronize the threads in the execution

grid. Among these, synchronization barriers are a commonly used tool.

While different types of barriers exist, it is important to note that they

can only synchronize at block level. By utilizing the barriers appropriately,

threads working on the same memory can be synchronized to avoid a race

condition (ENCCS, 2024).

2.6.3 Designing FPGA and ASIC

FPGA and ASIC are not programmable in the same way as the CPU and

GPU. Their design process, and the reconfiguration of an FPGA, is typically

done with a Hardware description language (HDL). HDL is a computer lan-

guage used to describe and structure the logic and behavior of electronic

circuits. Tools exist for designing integrated circuits with HDL that also of-

fer testing of the designs by simulating their behavior. This simulation is

an essential part of the design process (Xilinx Inc., 2024).

The outcome of the design process is what determines the performance of

the FPGA or ASIC in parallel processing. Designing a parallel solution for

an integrated circuit involves the construction of a data flow that computes

in parallel without introducing race conditions. Data races can occur when

two rules, defined in the HDL implementation, match the same input data

and try to update the same element. Critical errors can be introduced in

many ways, as a circuit can be both synchronous and asynchronous. A

synchronous circuit uses a clock signal to synchronize changes, while an

asynchronous circuit can contain state elements that change at any time

(Truong & Hanrahan, 2019). If these issues are addressed, the limit to

how parallel one can design the integrated circuit is determined by the

available hardware resources.

2.7 Machine learning

The primary objective of this thesis is not to improve an existing machine-

learning model. However, it is motivated to address a challenge encountered

in a type of machine learning model known as the CNN. These vulnerabilit-

ies include noise and adversarial attacks, which can degrade the perform-

ance of the model. With this in mind, some general insight into machine

learning principles and terminologies will help to understand this thesis.
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2.7.1 CNN model

CNN, is a machine learning model primarily used for image recognition.

It uses back-propagation to train filters called kernels that are structured

as a neural network for classification. A neural network is in simple terms

a graph with weights that leads to the guess of the classification. Back-

propagation is an algorithm to adjust these weights of the neural network

for better classification (Wang et al., 2024).

A CNN is represented in Figure 2.5. The first layer uses 32 kernels to

produce 32 new image matrices described through the kernel feature ex-

traction. This is the process of finding the most descriptive attributes of

the image.

Figure 2.5: A visual representation of a simple CNN model with two convolution

layers. The first layer has 32 kernels and the second has 64. Two Max-pool and

one dense. Owner (Eidheim, 2023)

The initial kernels in a CNN model are typically trained to identify edges

and lines(Stewart, 2019). However, the reliability of CNN models can be

compromised by several issues. As mentioned in the introduction, one

of these issues is how the model struggles to accurately classify images

that contain noise or are subject to adversarial attacks (Momeny et al.,

2021). Additionally, the model is criticized for not being biologically plaus-

ible.(Eidheim, 2022).

Applying a kernel in a CNN model involves performing the convolution

operation over a small portion of the image, and then sliding the kernel

over the entire image. The convolution operation involves multiplying the

kernel with the pixel values in sub-regions of the image and summing the

results. This produces a new matrix of the features, as illustrated below.
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Figure 2.6: CNN dot product with filter in the top left corner of the image. Owner

(Wang et al., 2024)

Figure 2.7: CNN dot product with the filter one stride to the right of the image.

Owner (Wang et al., 2024)

Figure 2.8: CNN dot product with the filter in the center of the image. Owner

(Wang et al., 2024)

The feature matrix is then max-pooled. This means that the most de-

scriptive features are stored in a new more dense matrix that reduces the

spatial dimension. Max-pooling saves memory and achieves faster training

time. This helps against overfitting the classification model and provides

a broader perspective. This technique employs a grid that traverses the

feature matrix and extracts the highest values as shown in Figure (Zafar

et al., 2022). Since the calculations in the CNN do not need to be precise

for an accurate model, there can be some deviation from the correct cal-

culation. The key aspect of max-pooling is that the highest value within

a region is greater than the others. This prioritizes computational speed

over precision, which reduces training time, as f64 requires more clock
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cycles to calculate than f32 (Gupta et al., 2015).

Figure 2.9: Illustration of how max-pooling in CNN is done. Each color represents

a grid that selects the highest value Owner (Kılıç, 2023).

2.7.2 Gabor filters

A Gabor filter is a linear filter that excels at detecting edges and textures

and is often used for feature extraction. The impulse response of the filter

is characterized by the sinusoidal wave convoluted by a Gaussian func-

tion, and the filters evaluate the image around a fixed point. Two principal

parameters of the Gabor filter are its orientation and wavelength. The

orientation parameter affects the sensitivity of the filter to the angles in

the image, while the wavelength parameter influences the scale at which

the filter operates. The structural and functional capabilities of Gabor fil-

ters can resemble edge and width detection in the human visual system.

Because of these properties, Gabor filters can be used to emphasize or

remove certain features. An image of poor quality, such as one with noise

and blurred edge separations, can be improved using Gabor filter (Dak-

shayani et al., 2022).

A research paper demonstrated that the fixed values of Gabor filters can

be used to reduce training time and energy consumption in a CNN model.

By replacing the kernels in the first and deeper layers with Gabor filters,

the study observed improved training time ranging from 1.4 up to 2.23

times faster, where the performance degradation ranged from 0 to 3%

compared to the baseline. Because the Gabor filters are only made once

and do not need to be trained, time is saved by not adjusting the values

of the kernels that consist of Gabor filters (Sarwar et al., 2017).
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2.7.3 Gabor-like filters

At NTNU, a new type of filter has been developed that shares similarities

with the Gabor filters. These filters are designed for detecting edges and

simple shapes and can adjust their frequency and orientation to register

different types of shapes. Derived from a mathematical formula, these fil-

ters do not need to be trained and only need to be generated once, similar

to Gabor filters. The implementation of these filters in image recognition

models can reduce the total time needed for training the model (Devaku-

mar & Eidheim, 2024).

2.7.4 Photoreceptors

In the retina, the part of the eye responsible for registering light, there

are two types of photoreceptors: cones and rods. Rods are light-sensitive

nerves that are good at detecting shapes and movement, with about 125

million rods in each eye. Cones, of which there are about six million in

each eye, are less sensitive but register the frequency of color (University

of Oslo, Institute of Biosciences, 2019). Together, a total of 130 million

photoreceptors work simultaneously to register light and convert it into

electrical impulses sent to the visual cortex of the brain, and interoperated

into vision. The visual field of the eye is strongest at the fixation point and

diminishes with distance, but can still recognize larger objects (Høvding &

Sandvig, 2020).

An optimal filter bank of Gabor filters has proven to be a good represent-

ation of the visual cortex (Daugman, 1985). This relates to the Gabor-like

filter, which is based on the same principles. The new Gabor-like filters

would simulate the connection between the photoreceptors in the human

eye and the visual cortex because they can register many frequencies and

work independently from each other.

A proof of concept created in a group project in a machine learning course

at NTNU indicated that using Gabor filters can help with the classification

of images with noise, Appendix A. They used Gabor filters instead of the

new Gabor-like filter. However, the Gabor-like filter can be better suited

for classification and resilience to noise, and the calculations for applying

these filters are the same. These filters are applied to the entire image,

primarily registering the center but also capturing strong features at the

edges. In contrast, the filters of a CNN model register features in a small

area at the time, as previously illustrated.

One benefit of this proof of concept is its flat structure, consisting of a

single layer. All the filters can be applied to all images simultaneously.
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The result consisting of all the features can then be max-pooled independ-

ently in parallel. This is an improvement over the training time for a CNN

model where the image has to go through each layer and then undergo

backpropagation. CNN models, such as AlexNet. have a limited number of

kernels for feature extraction in each layer, with AlexNet having 96 kernels

in the first layer (Khandelwal, 2020). A more biologically plausible model

would require more filters than the current CNN models to simulate the

millions of photoreceptors and visual cortex effectively.

2.7.5 Cosine Similarity

The Gabor-like filter consists of a two-dimensional matrix with size X ×X

containing complex numbers (real + imaginary). To apply the filter onto

an image the filter matrix performs element-wise multiplication with the

image values, as illustrated below

Image =

[
a11 a12

a21 a22

]
and Absolute values =

[
b11 b12

b21 b22

]

Image× Absolute values =

[
a11 × b11 a12 × b12

a21 × b21 a22 × b22

]
= Filtered Image

The matrix A is the image, while the matrix B represents the absolute

values of the filter’s complex numbers. The element-wise multiplication of

these matrices produces a new matrix with the same dimensions as the

image, describing the image through the filter.

For information retrieval, cosine similarity is used to measure how well

the filter fits the image, as it indicates how similar the vectors are. Two

vectors with the same direction have 0 degrees between them, resulting

in cos(0) = 1, describing a strong similarity between the two vectors. The

formula for this is:

cos θ =

∑d
i=1 FilteredImagei × reali√∑d

i=1 FilteredImage2i ×
√∑d

i=1 real
2
i

(2.1)

Where FilteredImage is the filtered image flattened, and real is the flattened

version of the filter’s real parts.

The calculation of the cosine similarity value is completely independent of

each other. This means every picture with every filter can be calculated at

the same time in any order. This makes it completely parallel and has the

potential for computation with highly parallel hardware.
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2.8 Data analysis

This project has resulted in a dataset containing a significant collection of

data points of the processing speed of the experiments, presented in de-

tail in Section 3.5.2. While individual data points may lack inherent visual

appeal, improving data readability and facilitating comprehensive visual-

ization and analysis is essential. Various techniques will be used on the

collected data to achieve this goal. These techniques are explained in the

sections below.

2.8.1 Standard deviation

Standard deviation is a way to measure the amount of variation for a given

variable, and in this thesis, the variation in computation time across in-

dividual runs with the same set of instructions. A low standard deviation

indicates that the values are usually close to the mean, while a high stand-

ard deviation indicates greater dispersion from the mean. The standard

deviation is represented by the symbol σ and calculated by the equation

below, where µ is the mean, xi is each data point and N is the number of

data points (Navidi, 2011, pp. 96–98):

σ =

√ ∑N
i=1(xi − µ)2

N

2.8.2 Interpolation

Interpolation is the mathematical technique to estimate values between

data points. It achieves this by constructing a function, Q, that passes

through the distinct data points, (x0, y0) < (x1, y1) < . . . < (xn, yn), in such a

way that the interpolation requirements are satisfied (Levy, 2012).

Q(xj) = yj , 0 ≤ j ≤ n

An interpolant, denoted by the function Q, is any function, linear, polyno-

mial, or a spline, that satisfies the specified requirements.

2.9 Related work

In this section, articles with relevant topics to this thesis will be presented.

This will provide a good background for other perspectives and findings

related to the topics discussed in this thesis. The section will also draw

parallels and distinctions between the articles and this thesis.
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2.9.1 Accelerating Robot Dynamics Gradients on a CPU,

GPU, and FPGA

Similar to the objectives of this thesis, the referenced article (plancherb1,

2024), explores methods to accelerate the execution of a specific algorithm

tailored to different hardware, comparing the computation times of the

implementations. In contrast to this thesis, the algorithm implemented in

the article is an implementation of the gradient of rigid body dynamics. A

review of the source code of the article reveals that the algorithms share

similarities in their mathematical operations.

The article presents the design of three implementations tailored for three

different computing platforms, the CPU, the GPU, and the FPGA. The article

concludes that both the GPU and FPGA outperform the optimized CPU,

achieving up to three times the speedup. Another interesting find by their

experiments is that the FPGA seems to outperform the GPU at low numbers

of parallel computations, while the GPU scales better to higher numbers

of parallel computations (Plancher et al., 2021).

2.9.2 A comparative evaluation of the GPU vs. the CPU

for parallelization of evolutionary algorithms through

multiple independent runs

Another relevant article is (Syberfeldt & Ekblom, 2017), which compares

the general performance, not hardware specific, of the CPU and the GPU by

looking at multiple independent runs. The article tries to provide insight

into which computational hardware is most efficient. It differs from this

thesis in how the hardware is compared. While this thesis compares the

performance of the CPU and the GPU using a specific, highly parallelizable

case, the article takes a more general approach with different scenarios.

Both the article and this thesis use several independent runs to determine

the performance of the hardware. The article concludes that while the GPU

is powerful, it is not always the best option for parallelization, as the CPU

outperforms the GPU in certain scenarios.

2.9.3 A Parallel ASIC Architecture for Efficient Fractal

Image Coding

The relevancy of this article is related to its focus on a parallel ASIC ar-

chitecture. Instead of processing images to extract an image’s features,

this article focuses on encoding the images using quad-tree fractal cod-

ing as the method. Fractal encoding, despite its advantages, is not used

that much because of the slow and complex nature of the compression
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algorithm. Because of this, fractal coding is typically used as an archival

strategy, where compression is performed once and decompressed mul-

tiple times. This is the problem that the article tries to solve by utilizing

the highly parallelizable property of the compression algorithm.

The article presents an ASIC architecture for quad-tree fractal coding that

compresses images in near real-time. This is achieved by designing a par-

allel architecture and optimizing the compression algorithm for parallel

computation. The results found in the article show a near real-time encod-

ing of grayscaled images as large as 256 x 256 pixels using the parallelized

ASIC design (Acken et al., 1998).

2.9.4 Design of a Gabor Filter-Based Image Denoising

Hardware Model

This article starts by introducing the problem with noise in images from

methods such as ultrasound and CT scans, suggesting denoising these

images will make the analysis of the images more efficient. To achieve

this denoising of the images, Gabor filters are presented as a solution for

feature extraction. The reason that Gabor filters are used is that the fre-

quency and orientation expression of the filters are identical to the human

visual system.

The article then proceeds to present a design for an image-denoising hard-

ware accelerator based on Gabor filters. The results presented in the article

suggest good performance on edge detection on images with noise. The

limitations of the design are related to on-chip memories, as the input

images are buffered when edge detection is performed. The article then

concludes by suggesting that the proposed design can be integrated into

an FPGA for further improvements (Dakshayani et al., 2022).

In contrast to this thesis which looks at the parallelization of image pro-

cessing methods, this article focuses on the actual problem of image pro-

cessing. The similarities between the article and this thesis come out in

the proposed design of a hardware architecture of the Gabor filter module.

Both articles present the potential gains from implementing such methods

on an integrated circuit such as FPGA.



3. Method
In this section, the different research methods used during the study will

be explored. Research methods often reference the strategies, processes,

and techniques utilized to gather the data used for further analysis to

uncover new knowledge or to obtain a deeper knowledge of a subject

(University of Newcastle Library, 2024). Therefore, the choice of research

method is an important matter, as it will deeply affect the validity and

reliability of the findings of the study. In the following sections, there will

be given a thorough review and explanation of the methodical choices

made throughout the project period.

3.1 Theoretical Foundation

Due to the inherently theoretical nature of the thesis, before any program-

ming was initiated, a comprehensive review of the literature and academic

reports was conducted to establish a robust theoretical foundation for all

members of the group. This involved extensive research on computer fun-

damentals, GPU programming, FPGA and ASIC, publications addressing

the potential efficiency gain of parallel computing, and advancements in

the field of GPU technology.

Throughout the search for information, the scope had to be carefully ad-

justed to ensure both theoretical and technological findings were valid and

up to date. For this, the group utilized both academic literature and aca-

demic search engines and databases, such as IEEE Xplore. Considering

the rapid enhancements in GPU technology in recent years it was also im-

portant for the group to make sure any source of information was fairly

recent to ensure its validity.

Through this approach, the group developed a deeper understanding of

the theory on how the GPU can be utilized for complex computational de-

manding tasks. Information from detailed studies conducted on parallel

computing, memory management, and algorithm optimization provided

the group with greater knowledge on the matter. This strategy helped the

group grasp the concepts and underlying principles related to potential

performance gain on the GPU compared to the CPU. It enlightened the

group on how the machine learning algorithms can fully utilize the power

of the GPU.

21
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3.2 Research Methodology

When aiming to enhance machine learning methods by utilizing parallel-

ization, one faces a complex challenge where multiple factors come into

play simultaneously. Therefore, a robust research methodology is required

to ensure the provided solution is not only efficient but also reliable and

scalable.

This project utilizes the Design Science Research (DSR) framework, which

forms the connection between scientific research and system develop-

ment. DSR is a research methodology where the development of a tech-

nological artifacts is considered a part of the knowledge development pro-

cess. While expanding on the knowledge about the development process is

important, DSR also aims to generate knowledge through the development

process itself (Brocke et al., 2020).

3.2.1 Design Science Research

DSR is a problem-solving paradigm that focuses on facing real-world is-

sues, while at the same time developing knowledge through innovative

development. It emphasizes the creation of new solutions, ranging from

ideas and models to practical implementations.

The primary objective of DSR is to give insight that explains exactly how

and why the developed solutions work in their respective environments.

This form of research method contributes to the understanding of the prac-

tical application of the implemented solution, and how this insight may

inspire innovations.

For this project, with the enhancement of machine learning methods in

focus, the DSR method provided an appropriate framework. The structure

of DSR did not only support the complexity of the project but also en-

forced the iterative nature of the technological development. By adhering

to DSR guidelines, this thesis aims to make practical contributions through

the development of enhanced machine learning methods, and theoretical

contributions by expanding knowledge on programming and parallelization

techniques on the GPU (Brocke et al., 2020).

3.2.2 Adaption to DSR

The DSR research methodology systematically addresses the problem state-

ment through six steps, aiming to develop new solutions, while at the same

time contributing to scientific knowledge.

In the initial phase of the project, a more refined problem statement was
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derived from the task description. This problem statement laid the found-

ation for the subsequent research. From this detailed problem statement,

specific research challenges were identified and addressed using the DSR

methodology.

Following the refinement of the problem statement, the DSR methodology

aims to extract research problems from this statement. These are essen-

tially smaller, more manageable parts of the problem the project aims

to solve. This segmentation ensures a focused approach, ensuring each

problem is systematically handled through the DSR process. Initially, the

group extracted a set of research problems, which evolved and expanded

as the project progressed. This will be explained in detail through the six

steps of the DSR methodology:

1. Identify the research problem: Through a thorough analysis of

the problem statement, the research problems were identified. This

helped find the core issues and critical aspects of the project. This

approach ensured that the research objectives were aligned with the

real-world needs of the problem statement.

2. Define Objectives of a Solution: Objectives were derived from the

refined problem statement and specific research problems, consider-

ing what could realistically be achieved throughout the project period.

Each artifact had a set of defined objectives to outline its theoretical

capabilities.

3. Design and Development: This involves creating an artifact, which

is a constructed solution, specifically designed to address the research

problem An artifact can be in any shape or form, ranging from con-

ceptual ideas to specific code implementations, or any other format

that would be beneficial to the research.

4. Demonstration: The artifact is tested using mock data in a simulated

scenario to demonstrate its practical applicability and functionality.

This is an important step, as the initial design of an artifact is rarely

perfect, and it is therefore often important to take a step back and

iterate on the design based on the demonstration.

5. Evaluation: The artifact is assessed for efficiency, functionality, and

its ability to solve the research problem. This also involves testing

the artifact in a simulated test scenario, focusing on evaluating its

performance and usability.

6. Communication: The final step involves documenting and present-

ing the knowledge obtained and the practical implications of the de-

veloped artifact to both academic readers and potential stakeholders.



Chapter 3: Method 24

Figure 3.1: DSR Process Sequence. Owner (Brocke et al., 2020)

Reiteration is fundamental in the DSR methodology, as it is common to

revisit and refine a prior step throughout the stages of the process. Feed-

back and new insights lead to enhancements in the artifact, adjustments of

the objectives, or even redefinition of the research problem, ensuring the

solution remains in line with the evolving understanding of the research

problem (Brocke et al., 2020).
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3.2.3 Evaluation in DSR

Figure 3.2: Illustration of Evaluation Activities within DSR. Owner (Brocke et al.,

2020)

Figure 3.2, found in (Brocke et al., 2020), illustrates four evaluation types

within DSR. These are used to ensure that the artifacts developed by the

group meet both the theoretical and practical applications to assist in solv-

ing the problem.

The first type is the ex-ante evaluation of problem identification. This en-

sures that the research problem is well-defined and aligns with the re-

search goals before any work is initiated, setting the foundation for the

design process.

The second type is the evaluation of the design, which occurs after the

design phase of the artifact. It examines whether the proposed design is

likely to solve the identified problem, assessing its theoretical foundation

and alignment with the objectives set for the artifact.

The third type is the evaluation of instantiation, conducted after the im-

plementation of the artifact. The functionality of the artifact is then tested

in a fixed environment to ensure it’s functioning as expected.
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The final type is the ex-post evaluation of use, performed once the artifact

is in use in a real-case scenario. This evaluation is important as it gives

insight into how well the artifact solves the initial problem in its intended

environment.

These evaluations reflect the iterative nature of the research process dur-

ing the project period, which has been comprised of a series of devel-

opment cycles. Each cycle involved adapting this evaluation style to un-

derstand the efficiency and relevance of each artifact to the Assignment

Details (Brocke et al., 2020).

3.2.4 Integration of DSR

Figure 3.3: Design Science Framework for the project. Owner (Brocke et al., 2020)

Figure 3.3, adapted from (Brocke et al., 2020) to fit the group’s devel-

opment process, illustrates how the group adapted the DSR framework

to meet project needs, emphasizing the iterative process and feedback

mechanism.

The process began by analyzing the environment where the solution would

be implemented. This involved an assessment of the roles, knowledge, and

capabilities of the group members, as well as the group’s strategy and

culture. This thorough understanding of theoretical and practical needs

prepared the group for the challenges ahead.
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The knowledge base established from the initial research laid the ground-

work for the first design phase, initiating the cyclic approach of the DSR

methodology. Here. artifactss were developed based on both the theory

obtained and the problem statement. Each artifact then underwent sim-

ulated runs and experimental evaluations to assess their efficiency and

functionality. This played a crucial role in enhancing the overall perform-

ance of an artifact ensuring continuous improvement through feedback

during the cyclic approach (Brocke et al., 2020).

3.3 Choice of Technology

Choosing appropriate technologies is essential for the success of any pro-

ject, requiring careful consideration of trends, compatibility, and scalab-

ility. This section outlines the technological tools and frameworks used,

with a focus on their contribution to the project goals and their impact on

performance, reliability, and usability. The reasons for these decisions are

detailed in the following subsections, giving an evaluation of their impact

on project outcomes in subsequent sections.

3.3.1 Administrative technology

For most of the administrative parts that needed coordination in this pro-

ject, we decided to use Microsoft 365 due to its comprehensive selec-

tion of software and tools. Microsoft Teams was used to store all adminis-

trative documents and to schedule meetings with the group’s supervisor.

Microsoft Word was utilized for writing all administrative documents, ex-

cept for this thesis. Furthermore, we used Microsoft Excel to manage the

group’s time sheets to track time spent on the project.

During the period Discord was used as the group’s primary communication

channel among group members. Discord is an online platform that allows

for communication over voice, video, and text. It was chosen over Teams

due to the group members being more experienced with Discord, making

it the more suitable communication platform.

3.3.2 Technology utilized during development

In the development of the project, various technologies were used to en-

hance efficiency, collaboration, and project management. This section de-

tails the primary tools and systems used throughout the development pro-

cess.
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Integrated Development Environment

For the project, Visual Studio Code (VS Code) was utilized as the primary

Integrated Development Environment (IDE). VS Code is a lightweight and

powerful IDE and was chosen due to its support of a wide range of pro-

gramming languages.

Version Control

To manage and collaborate on the codebase, the group used Git as the ver-

sion control system. Known for its robustness and flexibility, Git makes it

possible to track changes and branch out to implement new features seam-

lessly. This simplifies group development, as it prevents conflicts within the

main codebase.

To host the project in an online repository for easy access for all members,

the group used GitHub. This allowed for an efficient development process

as all members had access to the latest version of the codebase at all

times.

3.3.3 Rust

Rust was chosen as the primary programming language for this thesis due

to its system-level programming capabilities. Additionally, its recent ad-

vancements in GPU programming, despite being in an early phase, made

it a suitable choice. This choice aligned with the thesis’ objective of par-

allelization of machine learning methods using system-level programming

languages.

Initially, CPU implementations of the algorithms were developed to es-

tablish a baseline for performance comparison. This implementation used

Rayon, a data-parallelism library that guarantees data-race-free execution

by converting sequential computations into parallel (Nikolai Vazquez and

Josh Stone, 2024).

In addition to the CPU implementation, a GPU-accelerated implementation

was also created, using the wgpu library. The wgpu is a graphics library

based on the WebGPU API (wgpu Team, 2024), designed to provide high-

performance, cross-platform graphics and computing capabilities. To ef-

fectively utilize the resources of the GPU, the WebGPU Shading Language

(WGSL) was used.

WebGPU Shading Language

WGSL is the shading language for WebGPU used to write shaders that

run on the GPU. WGSL is an imperative programming language that has
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a sequential execution flow. It is essential for tasks that require parallel

processing utilizing WebGPU.

In this project, WGSL is utilized to manage and execute command pipelines

efficiently. Through dispatch commands, which serve as triggers, the ex-

ecution of the specific pipeline stages associated with a specific shader is

initiated. This allows for defining shaders that handle complex data pro-

cessing tasks (World Wide Web Consortium (W3C)), 2023).

3.3.4 Python

Python was used to develop an implementation of the application of the

Gabor-like filters, serving as benchmark for comparison with other CPU im-

plementations. Python was chosen because of libraries like NumPy, which

were leveraged to simplify and optimize the application of the filters. By

comparing the performance of Python with Rust, valuable insights could

be gained into the trade-offs between high-level language simplicity and

system-level programming efficiency.

3.3.5 C++

The C++ implementation was developed to challenge the Rust implement-

ation. C++ was chosen due to its maturity as a programming language,

having been around for decades, and its extensive documentation on CUDA

programming. Its long history in the programming community made it a

reliable and well-suited option for comparison.

The C++ version was designed to mirror the Rust implementation closely.

By being based solely on the Rust version, the goal was to evaluate and

compare how much data each implementation could handle at a time and

the total processing time required. This comparison aimed to highlight the

strengths and weaknesses of both languages in terms of performance and

efficiency in handling the computations of large sets of data.

3.3.6 Testing environment

For testing purposes, two environments were selected to ensure a compre-

hensive evaluation. One testing platform was provided by a group mem-

ber. Additionally, the group had access to the NTNU’s IDUN High-performance

computing (HPC) cluster, so it was decided to use a node from this cluster

as the second testing platform. This allowed for a robust comparison of

performance across different hardware configurations.
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Specification

Platform
Platform 1 Platform 2

CPU i7-12700k Xeon(R) Gold 6248R

Cores
8 Performance (P)

4 Efficient (E)

16

out of 24

Max clock (GHz)
4.9 (P)

3.8 (E)
4000

Base clock (GHz)
3.6 (P)

2.7 (E)
3.0

Threads 20 16

Memory (GB) 32 1400

GPU RTX 3080 A100

Boost clock (MHz) 1710 1410

Base clock (MHz) 1440 765

Memory clock (MHz) 1188 1215

Memory Size (GB) 10 40

Memory Type GDDR6X HBM2e

Memory Bus (bit) 320 5120

Bandwidth (GB/s) 760.3 1560

CUDA Cores 8704 6912

Tensor Cores 272 432

Compute Units 68 108

CUDA Cores per

Compute Unit
128 64

Tensor Cores per

Compute Unit
4 4

Table 3.1: Summary of Hardware Specifications

3.4 Development

The application of Gabor-like filters is highly parallel and has significant

potential for image classification. An algorithm for applying the filters in

parallel is desirable due to the large amount of data that must be pro-
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cessed during training. An efficient algorithm on the GPU for parallel filter

application can significantly shorten training time.

During the development of several algorithms, the team used the prin-

ciples of the leanmodel, as outlined in the book ”Lean Thinking” byWomack

and Jones from 2003 (Rolstadås, 2022). Although there are various in-

terpretations of the lean methodology, the team followed the following

principles:

1. Define customer value – value is always defined based on customer

needs and is itself the core of the lean philosophy.

2. Map the value stream – identify all activities products must go through

to completion.

3. Create flow - adapt the production processes so that the value flow

is as flexible as possible.

4. Use a management model based on suction - Kanban management.

5. Strive for perfection - establish and plan for continuous improvement.

Since this is a research project there is no final product and no customer.

However, the value is in the result of the project and representing the

results in a structured manner so that others can use the group’s findings

for future research and development. The result stems from comparing

the methods that exist today with the group’s developed algorithms on

the GPU and possible solutions in the future.

The lean methodology emphasizes learning from one’s mistakes through

trial and error, which complements the DSR approach effectively. Given

the team had no prior experience programming on the GPU there have

been a lot of errors and bugs to correct and the team has quickly learned

from their mistakes and wrote several shaders to test different solutions.

Due to the limited time of the project, the team focused only on tasks

directly related to the task description to collect quality data. The group

developed a structure that can be used for classification purposes, though

not the classification itself. One of the main objectives was to test per-

formance for optimal throughput, leading to an iterative process of coding,

testing, and rewriting to improve throughput.

Effective communication was crucial for maintaining good structure. The

group worked together physically and used Discord for informal commu-

nication, Teams for storing important documents and planning meetings,

and Git for version control of the code to ensure consistency. This clear

structure facilitated task prioritization and made it easy for team members

to assist one another.
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A general plan was made in January and visualized in a Gantt chart, see

Appendix B. Since the group had no prior experience with GPGPU, the

chart was a rough estimate expected to have errors. This plan consistently

changed based on the results and workflow of the group, guided by the

feedback of the supervisor. As new priorities came along, tasks with little

to no value to the end goals were eliminated.

3.4.1 Images and filters

In the performance analysis of the different implementations, realistic data

was needed to get an accurate evaluation of the performance. The images

used for development and testing throughout this thesis stem from the

MNIST dataset (Deng, 2012). The filters were generated utilizing the al-

gorithms presented in the research conducted at NTNU, as described in

(Devakumar & Eidheim, 2024). These filters are designed to have an odd

height and width dimension, to ensure there is a center in the filter gen-

erated.

The size of the images from the MNIST dataset is 28×28 in size. To en-
sure compatibility between the images and the filters, the MNIST images

needed to be zero-padded. Therefore, the size has been 29×29 for both
the images and filters throughout the project.

The images and filters generated are reused once they exceed a specified

amount. Image reuse occurs when the number of images reaches a certain

threshold, which varies by implementation. Filter reuse happens when the

number of filters exceeds 1,000. This approach focuses on reducing the

data processing time of each run. It is important to distinguish between

the data processing time, which involves data loading, and the actual pro-

cessing time dedicated to applying filters. The primary focus of this thesis

is not related to the result of the image processing itself, but the processing

time required for the processing of the images.

3.4.2 Parallelization strategies

Since the group had no experience utilizing the GPU for general-purpose

computing, the first step was to research the wgpu library and successfully

execute simple programs on the GPU. Subsequent steps involved more re-

search on GPGPU for better insight and inspiration on different approaches.

This utilization of DSR can be reflected in the pattern of research and de-

velopment for the rest of the project.

The first implementations were created in the Rust programming language

using the wgpu to execute the shader code on the GPU. Later on, the group
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translated one shader into C++ using CUDA.

3.4.3 GPU

During the development phase, various algorithms utilizing the GPU were

created to test different strategies using the computational power of the

GPU. These strategies varied based on the volume of data transferred

between the CPU and the GPU, and the workload assigned to each thread.

One optimization involved minimizing the steps required to calculate the

cosine similarity. The filters were normalized before being transferred to

the GPU, which is reasonable as the real part of the filter remains constant

for every image and is not affected by the value of the image, unlike the

absolute part of the filter.

This simplifies the cosine similarity calculation to:

cos θ =

∑d
i=1 Filtered Imagei ×

reali√∑d
i=1 real

2
i√∑d

i=1 Filtered Image
2
i

(3.1)

Since the normalization of the real part is done during the filter generation,

the normalized real filters are just like any other matrix with real values in

it. This reduces the amount of cycles needed to do the calculation on the

GPU.

The formula can be as shown below:

cos θ =

∑d
i=1 Filtered Imagei × normalized Reali√∑d

i=1 Filtered Image
2
i

(3.2)

In the context of image classification, it’s not necessary to use all of the

values generated from the cosine similarities between an image and the

filters. The results from the cosine similarity are therefore max pooled to

the highest value of those filters. Since the classification of images is not

the focus of this thesis, a constant number of elements that is max pooled

was selected. It was decided on a max pool chunk of 500 as this choice

strikes a balance of highlighting the performance implications of the max

pooling operation and compatibility between the number of images and

filters involved in the analysis.
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Cosine Similarity Shader Strategy

To evaluate how memory transfers impacted the total processing time

of the calculation of the cosine similarity operations, two strategies were

used: ”One image and all filters” and ”All images and all filters”.

For ”One image and all filters”, during the initialization, all required buffers

are allocated and the filters are transferred to the memory of the GPU.

The filters remain on the GPU for the entirety of the calculation process.

Following the initialization, one image is transferred at a time to the GPU, to

perform the cosine similiary. Then when it is done, the results are returned

to the CPU. Due to the approach requiring a for-loop to transfer the images

from the CPU to the GPU, it is not fully parallel. However, once the image

is transferred to the GPU, the operations performed are parallel.

As for ”All images and all filters”, all images and filters are transferred to

the GPU during initialization. It is therefore using more of the memory of

the GPU, but reducing the number of memory transfers compared to the

one-image-all-filters strategy. This approach executes in a more parallel

fashion on the GPU as all the operations run concurrently for each image.

There were implemented three types of shaders for all images and all

filters strategy, where one of them was a continuation of the One-image-

all-filters shader strategy.

The strategy of one image and one filter seemed redundant based on the

numerous memory transfers and the gain in computational time would

be insignificant since the calculation for one image and one filter is not

computationally demanding. It would only parallelize the calculation of

the cosine similarity on the GPU where multiple threads work on the same

cosine similarity and not run them simultaneously. Because it would have

to call it in a double for loop, first for the images then for the filter.

The second consideration is how much work should one thread do. Is it

best to let multiple threads work on the same memory and have syn-

chronization or let the thread work with it is own memory space with no

synchronization?

One Image and All Filters

The one-image-all-filters strategy has a dispatch in only x dimension that

equals the number of filters. Each execution block has access to one image

data and one filter. To add the two together and get the cosine similarity

two while-loops are implemented, one reduces the data and stores it in a

temporary buffer, and the second while-loop sums the temporary buffer

to a single value that is then stored in the output buffer. Both while-loops
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use barriers to synchronize the instruction between the threads that read

from the same memory addresses.

Further development on the one-image-all-filters strategy made it possible

to transfer all the images and all of the filters at the same time and then

reduce the total number of data transfers. This would work similarly to

the previous implementation, where the main difference is the dispatch.

It is in both x and y dimensions, where x equals the number of filters

and y the number of images. This made it possible to add an offset to

select the image and the correct filter to apply. One execution block is

responsible for calculating one cosine similarity, meaning synchronization

between threads was still necessary.

All Images and All Filters

Three shaders have been developed to optimize cosine similarity calcula-

tions with unique thread and block distribution strategies on the GPU. They

are named based on how they distribute workload within a block. The for-

loop shader, lacking parallelization between threads within a block; the

optimized one-image-all-filters or while-loop shader, detailed previously;

and the parallel shader, distributing the workload across threads in a block.

The for-loop and the parallel shader will be described in more detail below.

The for-loop shader dispatches in x and y dimensions, where the x dimen-

sion is for identifying filters and y for the images. The amount of threads

spawned inside the execution block decides how many cosine similarity

products the execution block can calculate. Each thread runs a for-loop

that performs the entire calculation and does not branch out or sleep.

There is no need for a temporary buffer or thread synchronization Since

each thread only works on its section of memory. Later in the project, this

shader was copied from Rust to C++ and ran using CUDA. This enables

the testing of not only logic but also different language’s performance and

its optimization on the GPU.

The third shader, referred to as the parallel shader, dispatches in x and

y dimensions, with the x dimension for images and the y dimension for

filters. The shader calculates three cosine similarities per execution block,

meaning the dispatch in the y dimension is the number of filters divided by

three. The shader divides the amount of work per thread using a for loop.

Each thread has a start and a stop index on the image matrix, iterating

over the values with the corresponding filter value. The thread then stores

this value in a temporary buffer. When the buffer is full, one thread sums

up the values in the temp buffer to get the complete cosine similarity. Due

to the temporary buffer, a barrier is required for synchronization among
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the threads in the same execution block. With this strategy, each thread

can perform more work, and each execution block can do more in total

compared to the other while-loop implantation that only calculates one

cosine similarity per execution block.

Max pool strategies

The strategy related to the max pooling of the cosine similarities results

is also split into two: a parallel and a looped shader. All of the different

shader strategies above are combined with the simpler looped max pooling

shader except the third shader explained above.

Looped max pool shader

The looped shader works similarly to the looped cosine similarity shader

explained in Section 3.4.3. The only difference here is that the shader

only dispatches in x dimension as the shader only needs to work in one

dimension to max-pool. Here each thread runs the whole computation of

reducing the cosine similarity values in a chunk of 500 down to the largest

value. Just like the other one, the looped max pool shader doesn’t need

to store temporary values in a buffer or synchronize the threads because

one thread does the whole calculation.

Parallel max pool shader

The third cosine similarity shader explained in Section 3.4.3, is the inspir-

ation for the parallel max pooling shader. It works similarly but only in

one dimension instead of two. Each computation block is responsible for

max pooling five chunks compared to the looped version where each block

computes 256 chunks.

All of the different shaders make it possible to test for different bottlenecks

of GPGPU programming. What affects the processing time? Is it the data

transfers, the number of blocks, the number of barriers for synchroniza-

tion or is it the how much one thread does? The table below provides a

summary of the different implementations.
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Summerizing the sheer strats

Name HW Method
Data

transfers

Threads

per CS

CS per

Block

Block

barriers

Python CPU SEC no transfer

one thread

does

all calculations

– —

Rust CPU SEC no transfer

one thread

does

all calculations

– –

Rust-par CPU PAR no transfer

Rayon handles

the distribution

on the cpu

–
Rayon handles

race condition

Rust-one-image GPU PAR
one image

all filters
256 1 5

Rust-opt-one-img GPU PAR
all images

all filters
64 1 2

Rust-parallel GPU PAR
all images

all filters
85 3 1

Rust-loop GPU PAR
all images

all filters
1 256 0

Rust-loop-opt GPU PAR
all images

all filters
1 64 0

C++-loop GPU PAR
all images

all filters
1 256 0

Table 3.2: A table of all the implementations and their shader strategies. HW =

Hardware, CS = Cosine similarity

3.4.4 CPU

The CPU implementations were developed for two primary reasons. Firstly,

the process of applying one filter to one image is relatively straightfor-

ward, facilitating sequential calculations with accurate cosine similarities.

These calculations served as benchmarks for the GPU implementations.

Secondly, the CPU implementations allowed for performance benchmark-

ing across different programming languages, providing insights into both
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sequential and parallel processing times.

The languages utilized are Python with the NumPy library, rust, and C++.

Rust included a parallel implementation using the Rayon library, which

evenly distributes the workload across all CPU cores. Both Python and

C++ are well-established in the field of machine learning, making them

suitable for comparison against the current Rust implementations. This

comparison aims to evaluate the traditional performance and efficiency of

Rust relative to these traditional machine-learning languages.

3.4.5 Testing

Since the group is working with technology that they have not worked

with before, it is important to test and verify the different methods and

strategies. To achieve this the group utilized testing. As mentioned previ-

ously in Section 3.4.4, the CPU implementation was used to calculate the

expected result for the other implementations. By doing this, the group

could confirm that the different shader designs worked as intended by

producing the correct results. The method used for these tests where in-

tegration testing as the tested result is from the whole computational pro-

cess of processing the images, max pooling the processed results and then

retrieving the result back to the CPU from GPU memory.

It is difficult to both test and debug the behavior of a shader since shaders

run on the GPU. Because of that, there is no way of running unit tests for

the shaders. This is one of the many reasons for utilizing integration tests

as the testing method. Another reason is that integration tests can test the

whole process as one combined unit validating that the different shaders

and operations work properly together.

3.5 Data Collection and Analysis

The data collection involved the processing of a predefined number of im-

ages through a research run. The number of images remained constant for

the entire research run, while the number of filters increased every 60 it-

erations within those configurations. During these 60 iterations, the cosine

similarity operation was performed between each image and all the filters,

followed by the max pooling of these results. The choice of 60 iterations

was based on statistical guidelines for normal approximation (‘Calculating

Confidence Intervals’, n.d.). This was important when establishing a re-

liable baseline for the average runtime of this configuration on the given

hardware. After completing the 60 runs with the specified configuration,

the number of filters incrementally increased and would go on for another
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60 runs until it reached the used-defined max filter limit. This process has

been visualized in Algorithm 1.

Algorithm 1 Image Processing with Dynamic Filter Adjustment

Input: nimages, nfilters_initial,∆nfilters, npool_size, nfilters_max
1: nfilters ← nfilters_initial
2: while nfilters ≤ nfilters_max do
3: for i = 1 to 60 do
4: Process all nimages images with nfilters filters
5: Calculate cosine similarity
6: Apply max-pooling of size npool_size
7: end for
8: nfilters ← nfilters +∆nfilters
9: end while

3.5.1 Empirical and Quantitative Data

Empirical data has been gathered through experimentation with the differ-

ent implementations developed throughout the development process. Dur-

ing research runs, data is obtained in real-time by writing to CSV, providing

insights into the machine learning algorithm under various loads. This em-

pirical data is also quantitative, represented in a numerical format, and is

therefore appropriate for statistical analysis. This data is crucial as it is

the objective analysis of these that represents the findings of the research

conducted.

A sequence of identical experiments would then be performed on the dif-

ferent hardware shown in Table 3.1. This ensured data collected was com-

parable for all experiments across the different platforms.

3.5.2 Experiments

To gather data that can be used for a thorough comparison of the different

parallelization strategies and hardware performance, several experiments

had to be conducted. The different experiments and a description of what

those experiments were supposed to find out or test are listed below:
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ID Images
Filters

Start

Filters

End

Increment

Amount

Pool

Size
Hardware

1 1000 100 2500 10 500 CPU

2 500 1 500 1 500 CPU & GPU

3 100 10 5000 10 500 CPU & GPU

4 10 000 500 100 000 500 500 GPU

5 10 000 500 100 000 500 500 GPU

Table 3.3: Summary of Experiments

Where img is the number of images, start is the start amount of filters,
and end is the ending amount of filters, increment amount is how many
filters are added each time, pool size is the number of elements being
max pooled and hardware is the targeted hardware for the experiment.

All experiments work with a specified constant number of images and an

increasing number of filters. Because of this, the result is expected to be

linear as this approach has a time complexity of O(n) despite the algorithm

having a time complexity of O(n ×m) given that all the images have the

same size.

Experiment 1: Comparison of different CPU implementations

This experiment looks at a smaller number of computations between filters

and images to target the CPU and compare the performance of different

implementations. This experiment is meant to showcase today’s methods,

Python with NumPy, compared to a similar version in Rust and a parallel-

ized version in Rust.

Experiment 2: Comparing CPU with GPU

The number of images processed in this experiment is less than in the

experiment above. The reason for this and the reason for the low num-

bers of filters, both start, end, and increment, is because of the targeted

hardware, the CPU and the GPU. This experiment is trying to showcase the

computational power difference between the CPU and the GPU, i.e. when

the GPU is the better hardware option for the computation amount.

Experiment 3: Comparing different shader implementations on the

GPU

As this thesis deals with different shader designs and implementations for

running on the GPU, this experiment is run to showcase the performance of
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the different strategies compared to each other. This will tell what strategy

is best suited for computing on the GPU. The number of images and filters

is low as the point of this experiment becomes clear within the given range.

Experiment 4: Exploring the limits of the GPU

This experiment targets the GPU and tries to find the limit of what the GPU

is capable of. Therefore all three numbers, images, filters, and the incre-

ment amount, are high enough to capture the whole range of performance

from the GPU without having the computation take several days.

Experiment 5: Exploring the parallel shaders

The last experiment explores the performance of a parallel shader design

in contrast to a looped design. This will indicate which variant is the most

suitable for the given task. In the looped version, the calculations are pro-

cessed separately. i.e. that one thread is responsible for one entire calcu-

lation. while The parallel variant divides an entire calculation into several

threads. This results in data having to be temporarily stored in a tempor-

ary buffer on shared memory and threads having to be synchronized to

calculate the last part as explained in the Section 3.4.3.

3.5.3 Timing of Computation

For accurate timing of the experiments, the project utilized the built-in

hardware clock of the computers. Further, it was necessary to determine

the relevant points within the experiment to begin and end the timing. It

was decided that the timing should start once the images and filters were

loaded into the main memory of the platform, and stop once the final

results were returned. This approach was decided because, while the CPU

has direct access to the main memory, the data needs to be transferred to

the GPU before it can be processed, as mentioned in Section 2.5.1. Since

the calculated results reside in the memory of the GPU, the CPU can not

access them before they are returned from the GPU. Therefore, the timing

of the data transfer between the main memory and the memory of the

GPU was also included.

The only exception to this approach is found in Experiment 5, described

in Section 3.5.2, which focused solely on the computation time itself, ex-

cluding any data transfer times.
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3.5.4 Data analysis

The theoretical background for the different data analysis techniques used

throughout this thesis is presented in Section 2.8. The collected data is

stored in CSV files with the format displayed in the table below.

Filter

Amount
Run ID

Time

(Microseconds)

Average

Time

500 1 259 0

.. .. .. ..

0 60 280 0

0 0 0 270

1000 1 359 0

.. .. .. ..

Table 3.4: The format for the data saved on each run in a CSV file with example

data.

The example data, as presented in the table above 3.4, consists of the 60

runs discussed in Section 3.5 and illustrated in Algorithm 1. These runs

involved a specific number of filters before the average time is stored and

the new 60 runs start with a larger amount of filters. All runs here have

the same amount of images processed.

In this thesis, the techniques for data analysis are a combination of inter-

polation and standard deviation calculations. The analysis interpolates the

average run times derived from the 60 iterations for each experimental

configuration, as referenced in 1. To quantify the variability in these runs,

the standard deviation of the run times is calculated. This is visually repres-

ented in the graphs as a shaded area surrounding the interpolated graph,

illustrating the variability of the data. The reason for choosing interpolation

instead of regression, despite both being able to showcase the character-

istics of the collected data, is that interpolation fills in the gaps between the

data points instead of modeling the relationship between filters processed

and computation time.

3.6 Team process

The group consists of three students, each pursuing a degree in Computer

Science, with some experience working together on previous projects. Due
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to this prior experience, the group did not require any team-building ex-

ercises to efficiently work together. Regardless, the group did have some

social gatherings after work hours throughout the project period. All mem-

bers of the group are independent students used to initiating work and

analyzing various obstacles they encounter. Therefore, it was decided to

have a flat structure and not appoint any group leader for the project.

However, some roles were defined to ensure that team meetings with the

supervisor were more structured and concise.

Each member of the group had similar relevant experience for this thesis,

though with some variation. For instance, in terms of system-level pro-

gramming, one member had experience in both C++ and Rust, while the

two others each had experience in each of their respective languages.

3.6.1 Division of Labor and Roles

At the beginning of the project period, roles and responsibilities were

defined to make the overall workflow more efficient. The responsibilities

were based on past knowledge and experience and ensured that every-

one contributed equally to the end goal. The member with experience in

both Rust and C++ programming took charge of the GPU implementa-

tion in Rust. As one of the members had prior experience with working

with filters for image recognition, it was natural that that member took

responsibility for this area.

The roles meant to structure team meetings with the supervisor, men-

tioned in the section above, are the referent, the meeting coordinator,

and the meeting organizer. The meeting organizer sets up the upcoming

meetings with time and date and is responsible for that everyone who

intends to join the meeting gets the meeting notice. The meeting coordin-

ator takes the meeting through the pre-planned meeting schedule while

the referent takes notes for later use so that anyone missing the meeting

can read up on what was discussed.

3.7 Procedures

Early in the project, the group established procedures to make everyday

interactions and assignments more clear and effective. These procedures

were related to meetings, attendance, behavior, and document manage-

ment, detailing both the methods and the reasoning for their implementa-

tion. An example of a procedure regarding meeting protocols says that the

notice of a meeting should be sent via email at least 48 hours in advance

of the meeting.
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3.7.1 Working Hours

As the group had no office to work in, the group resorted to booking group

rooms at NTNU as an alternative. Due to the high demand for these group

rooms, NTNU only allows for bookings up to two weeks in advance. This

meant the group had to strategically distribute booking responsibilities

among the group members to ensure a workspace each day. As a result of

this, the group established a solid work routine, with working hours from

09:00 to 17:00. Towards the end of the project period these hours were

occasionally extended to ensure the high quality of the thesis.



4. Results

The results present the findings from the research conducted and are cru-

cial for supporting the discussions later in the thesis. This chapter is struc-

tured to give an overview of the different aspects of the overall result.

The results section of the thesis contains administrative, engineering, and

scientific results to give a comprehensive understanding of the research

conducted. The experiments and the data collected from the research will

be presented with the aid of visual tools such as tables and graphs to

facilitate easier understanding and analysis of the data.

4.1 Scientific Results

This section will provide the collected processing results from the exper-

iments introduced in Section 3.3. The data gathered from the two plat-

forms, as displayed in Table 3.1, will be visualized using the analytical

techniques presented in Section 3.5, interpolation combined with stand-

ard deviation. All figures show the different implementations and versions

processing time, except Figure 4.1.5 which shows computational times for

the two different shader strategies.

4.1.1 CPU

This section presents the result gathered from Experiment 1 (Section 3.5.2),

conducted on both platforms. This experiment has a constant number of

images, one thousand, with increasing numbers of filters from 10 to 2,500

in steps of 10. Figure 4.1 shows data gathered from Platform 1 while Fig-

ure 4.2 shows data from Platform 2. The red graph is the Python im-

plementation utilizing NumPy to perform the calculations while the other

graphs are implemented in Rust. The green is the sequential Rust imple-

mentation, and the blue is the parallel Rust implementation using Rayon

for parallelization.

45
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Figure 4.1: The performance of the CPU on Platform 1

Figure 4.2: The performance of the CPU on Platform 2

All implementations show a linear trend of increasing processing time as

the number of filters increases on both platforms, with the parallel Rust

version demonstrating the best results. Both sequential implementations

(green and red) perform worse than the parallel implementation, with Py-

thon being the least efficient. There is some variation in the performance of
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the Python implementation (red) while both Rust implementations remain

stable. This variation is more present on Platform 1 shown in Figure 4.1

while still maintaining better performance than Platform 2 as Figure 4.2

shows.

4.1.2 CPU versus GPU

The graphs shown in Figure 4.3 and Figure 4.4 compare the performance

CPU and GPU on Platform 1 and Platform 2 for Experiment 2 presented

in Section 3.5.2. This experiment has a constant number of images, 500,

with an increasing number of filters from one to 500 in steps of one. The

experiment was done using three different implementations: a Rust im-

plementation in parallel utilizing the CPU (red), and GPU implementation

in Rust utilizing the for-loop shader (blue), and a C++ implementation

utilizing CUDA (green).

Figure 4.3: The performance of the implementations CPU and GPU on Platform 1

On Platform 1, the C++ implementation exhibits the lowest processing

time. The Rust for-loop implementation displays significantly variable per-

formance across the run with a generally higher processing time. The CPU

parallel implementation exhibits a consistently increasing linear processing

time, surpassing both the Rust for-loop and the C++, with a slightly in-

creasing variability in processing time and standard deviation throughout

the experiment.
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Figure 4.4: The performance of the implementations CPU and GPU on Platform 2

For Platform 2, the C++ implementation still shows the lowest processing

time, although with more variability in both performance and standard

deviation. In contrast, the Rust for-loop implementation displays more

consistent performance, although with some variability. The CPU imple-

mentation shows more consistent performance than on Platform 1, with

an increase in standard deviation in processing time towards the end of

the experiment.

In Experiment 2, the CPU implementation shows a linear increase in pro-

cessing time along with an increase in standard deviation. Conversely,

the Rust GPU for-loop implementation displays a high degree of variability

on Platform 1, with a significant standard deviation, indicating fluctuat-

ing performance variability. On Platform 2, the Rust GPU for-loop imple-

mentations show a slightly higher linear increase with a smaller standard

deviation.

In contrast, the C++ GPU implementation, like the CPU, also has a linear

trend, but with a significantly slower increase rate, maintaining its speed

even with increasing dataset size. One can also observe an evenly fluc-

tuating standard deviation for the C++, which is much more visible on

Platform 2 than Platform 1, but less frequent than the Rust for-loop.

The C++ implementation remains faster than the CPU implementation

throughout the entirety of the run. On Platform 1, it takes about 60 filters

before the CPU implementations get slower than the C++ implementa-
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tion, while on Platform 2, it happens at around 100 filters. For the Rust

GPU for-loop implementation, the CPU becomes slower after approxim-

ately 200 filters on both platforms. However, it is the C++ implementation

that performs best throughout the entire experiment.

4.1.3 Shader Strategy

The graphs shown in Figure 4.5 and Figure 4.6 compare the performance

results of Experiment 3, where 100 images are processed, starting with 10

filters and increasing by 10 filters until reaching 5000 filters, as described

in Section 3.5.2. Different GPU shader strategies and the implementation

in parallel on the CPU are tested on both Platform 1 and Platform 2. The

experiment was performed using three shader implementations: the Rust

for-loop shader (blue), the Rust one-image-all-filters shader (purple), the

optimized Rust one-image-all-filters shader (red), as well as the Rust par-

allel CPU implementation (green).

Figure 4.5: The performance of different shader strategies on Platform 1

Figure 4.5 shows the performance of the different shader strategies on

Platform 1. The graph displays that the Rust one-image-all-filters shader

without optimization consistently has the highest processing time, increas-

ing faster than the others with the number of filters. The optimized ver-

sion shows a significant improvement over the original but still displays a

slower processing time than the Rust for-loop shader strategy. The Rust

for-loop shader remains stable throughout the experiment. CPU parallel
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implementation increased linearly starting as the fastest implementation,

but soon got surpassed by both the Rust optimized one-image-all-filters

shader and the for-loop shader.

Figure 4.6: The performance of different shader strategies on Platform 2

Figure 4.6 presents the performance of the various shader strategies on

Platform 2. The Rust one-image-all-filters shader exhibits the overall highest

processing time, with substantial fluctuations and spikes, especially around

2000 and 3000 filters. In the optimized Rust one-image-all-filters demon-

strated better performance, equal to the performance of the Rust for-loop

shader. The Rust for-loop shader shows stable performance with minor

variations in standard deviation. The Rust parallel CPU implementation

increases linearly and consistently, achieving the lowest processing time

across all the implementations.

4.1.4 Limits of GPGPU

Figure 4.7 and Figure 4.8 shows the performance of the different GPU im-

plementations from Experiment 4 presented in Section 3.5.2. This experi-

ment has a constant number of images, 10,000 with an increasing number

of filters from 500 to 100,000 in steps of 500. On both platforms, the red,

blue, and purple are different shaders run with Rust and the green is one

of the same shaders run with C++. The three different shaders are the

for-loop shader (blue for Rust and green for C++), parallel shader (red),

and optimized one-image-all-filters (purple). All Rust runs stop at 53,500
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filters because of a memory limitation with the current implementation.

Figure 4.7: Interpolated processing times for various GPU programming imple-

mentations on Platform 1.

The graph shown in Figure 4.7 displays the processing times of Platform 1.

The C++ implementation had a linear increase throughout the experiment.

The same goes for the Rust for-loop implementation, except for two anom-

alies observed around 15,000 and 30,000 filters where the processing time

suddenly increased. The same anomalies are seen in the optimized Rust

one-image-all-filters implementations, which consistently have higher pro-

cessing times. The Rust parallel shader has the slowest processing time

out of the shaders, with similar spikes at 15,000 and 30,000 filters. Unlike

the others, at around 30 to 35 thousand filters, this implementation slows

down, stabilizes, and then shows a slower increase.
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Figure 4.8: The performance of the GPU on Platform 2

The processing time of the shaders on Platform 2 is displayed in Figure 4.8.

Similar trends as on Platform 1 can be observed, although with some devi-

ations. As for the aforementioned anomaly, it can still be observed for the

Rust shaders at around 15,000 and 30,000 filtes. The C++ implementa-

tion displayed a linear increase up until around 60,000 filters, at this point,

it started to show a spike in processing time, followed by an inconsistent

performance for the remaining part of the experiment. The Rust for-loop

and optimized one-image-all-filters experienced similar trends, with the

latter being the slower of the two shaders. As for the Rust parallel shader,

it displayed a linear increase in processing time up until around 30 to 35

thousand filters, where the increase rate slows down.

4.1.5 Parallel versus Sequential Shader

This section displays the results from conducting Experiment 5 presen-

ted in Section 3.5.2. This experiment has a constant number of images,

10,000, with an increasing number of filters from 500 to 100,000 in steps

of 500 trying to showcase the performance difference between a sequential

and a parallel shader design. Figures 4.9 and 4.10 show the computation

time of both shaders for calculating the cosine similarity while Figures 4.11

and 4.12 shows the computation time of both max-pool shaders. Every

shader in this section is run with Rust. The parallel shader design has the

color blue while the sequential is green.
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Figure 4.9: Interpolated computation times for the Cosine Similarity shaders for

Platform 1.

Figure 4.10: Interpolated computation times for the Cosine Similarity shaders for

Platform 2.

The cosine similarity shaders on both platforms shows a similar perform-

ance whereas the sequential shader utilizing a for-loop for the whole cal-

culation performs the best. Both graphs have a linear trend while Platform
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2 has some spikes and drops in performance on both designs. The par-

allel shaders begins to plateau around 30 to 35 thousand filters on both

platforms with Platform 1 flattening out more.

Max Pooling Perfomance

Figure 4.11: Interpolated computation times for the max pooling shaders for Plat-

form 1.
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Figure 4.12: Interpolated computation times for the max pooling shaders for Plat-

form 2.

The max-pool shader on both platforms shows the opposite result of the

cosine similarity with the parallel design performing the best on both plat-

forms. Here in figures 4.11 and 4.12 the parallel shader design has almost

a constant computational time regardless of the increase in processing

data. There are some spikes and drops in performance with Platform 2

having the most fluctuating computational time and one high deviation

around 46 thousand filters. Both sequential max-pool shaders perform

worse than the parallel ones with Platform 1 being the overall worst having

a linear increase in computational time while Platform 2’s run is almost a

flat graph.

4.1.6 Other findings

This section presents some other findings throughout the project. These

findings were found with a constant number of images, ten thousand, and

an increasing number of filters from 500 to 100,000 in steps of 500. Here

Figures 4.13 and 4.14 show the difference in the performance of the for-

loop shader in Rust when adjusting the dispatches on the GPU. Addition-

ally, Figures 4.15 and 4.16 show the fluctuating performance of the C++

runs with the same shader on both platforms.
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Figure 4.13: Interpolated processing times for adjusted dispatch GPU program-

ming implementations for Platform 1.

Figure 4.14: Interpolated processing times for adjusted dispatch GPU program-

ming implementations for Platform 2.

Figure 4.14 shows an increase in performance for the adjusted-dispatch-

run (green) compared to the same shader with an overestimate in the

number of dispatches. On the other hand, figure 4.13 only shows a larger

variation in performance for the adjusted-dispatch-run instead.
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Figure 4.15: Interpolated processing times for C++ GPU programming utilizing

CUDA for Platform 1.

Figure 4.16: Interpolated processing times for C++ GPU programming utilizing

CUDA for Platform 2.
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Figure 4.15 shows the stable and almost zero variation between three

separate runs with C++ implementation of the for-loop shader. Figure 4.16

on the other hand, shows the variation in two separate C++ runs. The

green graph displays the run processed in day time while the blue more

stable run was processed at night time.

4.2 Engineering Results

Subsequently, this section will focus on the engineering aspects of the

project, highlighting the development and testing of the different solutions.

This also includes a review of the project’s original objectives, as defined

at the beginning of the project period.

4.2.1 Project Objectives

The primary objective for this project was to parallelize machine learning

methods using different programming languages, such as C, C++, Rust,

and/ or other specialized hardware.

The group also established a set of impact, performance, and process ob-

jectives to evaluate both the group and the implementations at the end of

the project period. The impact objectives focused on enhancing machine

learning methods using different programming languages. A long-term ob-

jective was to reduce power consumption from complex calculations which

would give societal benefits given the increasing use of Artificial Intelli-

gence (AI). The group also aimed to increase their knowledge on the topics

of GPU hardware, system programming, and parallel programming.

The performance goals included the implementation of a solution that

could perform the cosine similarity operation followed by the max pooling

operation on the GPU in parallel, and ensure concise results across mul-

tiple experiments. This also included the objective of obtaining a deeper

understanding of the field of GPU.

Lastly, the process objectives aimed to enhance the group’s expertise in

system programming and parallel computing.

4.2.2 Status at Delivery

At the end of the project period, the group had successfully developed

several implementations across different programming languages. These

included CPU implementations made for sequential experiments in Python

using NumPy, C++, and Rust, as well as an implementation running par-

allel on the CPU in Rust. For computations on the GPU, the group had
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developed one implementation in C++ utilizing CUDA, alongside several

implementations in Rust to explore different optimization techniques. The

results of these implementations are presented in section 4.1.

During the project period, the group made the strategic decision to move

away from the idea of implementing a specialized hardware solution, using

FPGA and potentially ASIC. This will be further discussed in section 5.2

4.2.3 Comparison of Objectives and Results

When evaluating the results against the objectives set by the group, it’s

clear the group has made significant advancements towards them. The

overall impact goal was to enhance machine learning methods by utilizing

the GPU, which was achieved through the implementations in C++ and

Rust, which surpassed traditional CPU implementations.

The performance objectives of developing an implementation that could

perform cosine similarity and max pooling operations in parallel on the GPU

were also achieved, as proved with the C++ and Rust implementations.

These solutions did not only show the efficiency benefits of the GPU but

also showed how the GPU performs better on larger data sets as shown in

section 4.1.

4.3 Administrative Results

For the administrative aspect of results, the focus will be on management

and resource utilization within the project. An overview of the distribution

of time across the group members and different phases of the project will

be presented.

4.3.1 Project Plan

During the initial phase of the project, the group created a GANTT chart

to illustrate the expected time usage per activity for the coming semester

found in Appendix B. This chart was a rough estimate due neither of the

group members had conducted scientific research of this kind before the

project.

Due to this, there was a deviation between the estimation and reality seen

in table 4.3.2.

4.3.2 Time Management

During the project period, the group logged hours spent each day. This

gives a clear understanding of how time was distributed throughout the
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semester.

Figure 4.17: Logged hours amongst the group members

Activity Estimated Time Spent Actual Time Spent

Self education 360 148

Programming 720 469

Data analysis 36 20

Project reporting 396 777

Team meetings 0 39

Table 4.1: Comparison of estimated versus actual time spent

4.3.3 Development Methodology

The integration of the DSR and the Lean methodology have been essential

for the development process of the project. Each methodology contributed

to an effective, structured, and flexible development cycle, which was vital

given the complex assignment.

DSR introduced a systematic approach to attack the task description. This

was crucial for structuring the project in clear, manageable phases. It also

encouraged a continuous improvement cycle for each phase of the devel-

opment. This ensured the development of artifacts aligned with the original

task description. This also helped maintain focus on the aspects crucial for

the task, which improved development in the development process.

The Lean methodology complemented DSR by introducing principles that

optimized resource usage within the group and prioritized development

in line with the project’s needs and constraints. Frequent work sessions
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and close collaboration among the group members were some of the key

contributions of the Lean principles. Meeting regularly to work together al-

lowed for quickly addressing challenges andmaking the necessary changes,

enhancing the productivity of the group, while ensuring the project stayed

on track. This allowed for fast iterations and adjustments based on the

feedback and results of the development and the testing. This turned out

to be beneficial for the group given the steep learning curve of the GPU

programming.

By emphasizing values defined by the project’s potential contribution to

the field of machine learning, Lean ensured that each step in the develop-

ment process was targeted and contributed to the end goal of the project.

This helped eliminate unnecessary tasks and maximized the collected con-

tributions of the group.

The use of Lean’s iterative approach to development ensured continuous

improvement of the implementations. These cycles of programming, test-

ing, and improving were essential for the optimization of the performance

of the solution.

The project was driven by a cooperative group environment and made pos-

sible through the methodologies used. Tools such as Discord, for informal

communication, Teams for document management and meeting planning,

and Git for version control, illustrated the application of Lean methodology

in daily practice.





5. Discussion
The discussion section of the thesis will delve into the various results of

the project and evaluate them. It is through this analysis that one gains

a deeper understanding of the impact of the project, the effectiveness of

the methods implemented, and the technical advancements made.

5.1 Administrative

This section will explore the administrative results of the project. Topics

such as project management, time allocation, and deviation (from time

management).

5.1.1 Project Time Estimations and Deviations

To highlight the differences between the estimated project times and the

actual time spent on activities, this subsection compares the Gantt chart

projections with the real project timeline.

During the planning of the project, the group estimated significant time

for self-education, with the steep learning curve of GPU programming.

However, the actual time spent turned out to be considerably less than

expected. This is due to the application of the DSR research methodology,

where the practical creation of artifacts contributed significantly to the

group’s understanding of the topic. This hands-on learning through testing

and experimentation, proved to be more efficient than theoretical study

alone.

Furthermore, the group underestimated the amount of time that would

end up going to project reporting, given the theoretical complexity of the

research-focused thesis. This resulted in a misalignment between the es-

timated and actual workload, which forced the group to work longer hours

in the final stages of the project period.

The group overlooked including group meetings with the supervisor in the

Gantt chart, as it did not occur to the members at the time. This oversight

resulted in a discrepancy, as a significant amount of hours went into plan-

ning and attending these meetings, as well as writing meeting minutes.

63
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5.2 Engineering

The engineering subsection will cover the technical execution of the pro-

ject, highlighting the development and implementation phases.

5.2.1 Achievement of Project Objectives

Specific impact, performance, and process-driven objectives were defined,

throughout the project. The primary performance objective was the effect-

ive utilization of the GPU to enhance the specified machine learning meth-

ods. This objective was achieved through the development of successful

implementations in C++ and Rust. These implementations demonstrated

superior performance when compared to traditional CPU-based solutions,

especially when executing the cosine similarity and max pooling opera-

tions. A notably positive and surprising outcome was how flexible the GPU

implementation was. It managed to handle larger sets of images and filters

with relative ease.

In terms of impact goals, the project aimed to enhance the performance of

the specified machine learning methods by utilizing the GPU. The GPU im-

plementations, as previously mentioned, achieved a significant improve-

ment when compared to the CPU implementation. This aligns with the

objectives of developing more efficient machine learning methods.

In parallel with the work on the implementations, the group also gained

knowledge that helped work towards the educational objectives which was

a part of the impact objectives.

Therefore, comparing the objectives set by the group before the project

period against the results achieved, one can say it’s been a successful

endeavor. The group has managed to achieve all objectives which proves

the effectiveness of the research and the development methodology.

5.2.2 The shift away from FPGA and ASIC

Initially, the group wished to, in addition to the Rust and C++ solutions,

implement a solution for FPGA and potentially ASIC due to their promising

capabilities in parallel programming as presented in section 2.9.

Access to FPGA was available through NTNU’s IDUN Cluster, making it a

potential option for the project. However, after a dialog between the group

and the primary FPGA specialist at IDUN, the decision was made to move

away from this option. The primary reasoning behind this shift was the

resource constraints, particularly time and lack of knowledge in the field.

Attempting to implement a solution utilizing FPGA would therefore have
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made too much of a risk to the rest of the project. This strategic choice

allowed the group to reallocate time and resources towards developing

solutions for the GPU.

5.3 Scientific

This subsection will present a detailed discussion covering the results presen-

ted in section 4.1. The analysis and interpretation of the data will be dis-

cussed, and it is through this the potential for further research and devel-

opment will be highlighted.

5.3.1 Overall findings

Some aspects of the results repeat themselves on all the graphs on both

platforms from the different experiments presented in section 3.3. These

general findings across the two platforms will be discussed here before

delving into findings in the specific experiments and comparisons of the

platforms.

The standard deviation of the runs conducted on the GPU using Rust seems

to be constantly high compared to the other runs. There can be various

causes for this. One of them is that Rust is in an early lifecycle phase

compared to other system programming languages like C and C++, es-

pecially wgpu on version 0.19.3 during this project. Some drawbacks can

be expected because wgpu is an early version abstraction layer for GPU

programming.

One of these drawbacks discovered in this project is related to retriev-

ing memory from the GPU to the CPU. When creating a layout of buffers

for execution on the GPU using wgpu usage of these buffers needs to be

defined. Storage is used when the buffer contains some data from the CPU,

copy-src is used to be able to copy the data from buffer to another as the

source, copy-dst is used as the destination of this data transfer, and map-

read is used to map the contents from the GPU over to the CPU making

that buffer unusable for the GPU as long as the buffer is mapped. To be

able to retrieve data from the GPU to the CPU using wgpu the data needs

to be mapped to the CPU and when the whole buffer is mapped retrieved

to CPU memory. Because this is the only way, a buffer needs to have the

storage usage for it to store data, and map-read to be retrieved. As of

now, the combination of these two is not beneficial unless the system has

shared memory between CPU and GPU. Therefore to be able to retrieve

the data a staging buffer needs to be created with the usages copy-dst and

map-read. Then the data gets copied over to this staging buffer before it
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gets mapped to the CPU. This could result in the larger standard deviation

shown in the graphs as well as why Rust is that much slower compared

to the C++ implementation that utilizes a specialized library for a specific

architecture, CUDA.

The other drawback related to wgpu is that it is an abstraction layer for

several different hardware architectures. It is not certain that being an

abstraction layer over several architectures comes with some loss in per-

formance, but this is usually expected. This could be another reason that

the C++ implementation outperforms the Rust when both versions use the

same shader, as the C++ uses CUDA which is assumed to be specialized

for NVIDIA architectures because they are the developers as well.

5.3.2 CPU

Delving into the performance of the various CPU implementations shows

a large difference in processing time depending on the implementation.

This is shown in Figure 4.1 and Figure 4.2. All implementations show a

linear trend, but the Python implementation on both platforms has some

variation. There is a large difference in processing speed despite all imple-

mentations showing a linear trend.

The implementation performing the worst is the one in Python, despite

it utilizing the NumPy library to perform the calculations. As most of the

NumPy are written in C and C++ it is interesting to see that the sequen-

tial Rust implementation performs that much better. There can be many

reasons for this, but it is most likely related to Python being an interpreted

language. Interpreted languages are slower than compiled languages like

Rust. But also linked to the large amount of data needed for the algorithm

to be executed. This data must then be transferred from Python to the cor-

responding C and C++ code in NumPy resulting in some overhead. This

data transfer between two languages could also be the reason for the large

variation compared to the other implementation’s performance.

As expected, the parallel implementation performed the best with a low

increase in processing time for Experiment 1, shown in Section 3.5.2. This

result suggests that a parallel approach is best suited for a machine learn-

ing method like the one used in this thesis.

5.3.3 CPU versus GPU

The graphs seen in Figure 4.3 and Figure 4.4, show that little processing

is needed for the GPU to outperform the CPU and showcase its computa-

tional power. The fastest, shader C++ for-loop, has a distinct intersection
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at around 50 filters because of its consistency and low standard deviation.

The rust for-loop has such a high standard deviation with no clean inter-

section but roughly outperforms the CPU from 250 - 300 filters. The CPU

implementation has a low standard deviation because there are no notice-

able memory transfers and two simple for-loops that do the calculations.

The reason for the high standard deviation in rust-for-loop is uncertain but

can be related to the early stages of wgpu and its memory transfer from

the CPU memory and the layers of abstraction for communicating to the

GPU. The consistency of C++ can be because of optimizations in terms

of memory transfer in CUDA and communication as CUDA is owned by

NVIDIA.

5.3.4 Shader Strategy

The one-image-all-filters performs more memory operations between the

CPU and the GPU than the other strategies. These memory operations are

what make the utilization of the GPU poor as most of the time used un-

der processing is related to writing memory to the GPU and retrieving it.

The one-image-all-filters strategy performs poorly compared to the “all

images all filters” strategy and even the parallel CPU implementation. This

is related to the other strategy’s memory efficiency by only sending and

retrieving data from the GPU once and giving the GPU more data to par-

allelize at once utilizing the hardware more.

When it comes to the all-images-all-filters strategy, it becomes clear that

this strategy utilizes the characteristics of the GPU better than the one-

image-all-filters strategy. This strategy uses two of the GPU’s three di-

mensions to calculate the cosine similarities from all images with all filters.

Using two dimensions this way makes the GPU process the calculations like

it is a double for-loop in a parallel way all at once. Both figures, Figure 4.5

and Figure 4.6 show that modifying the one-image-all-filters shader to

process all images with all filters is a better strategy as it outperforms the

other shader by around seven times at the end of the run on platform 1,

and even more on platform 2.

Utilizing the GPU, by calculating all the features from all images and all

filters, is the best strategy when it comes to computation time but comes

at a price of complexity. As this strategy utilizes two dimensions to process

the data, it becomes more complicated to both make the shader race-

free and not introduce other undefined behavior. This becomes even more

difficult when considering that debugging on the GPU is hard, as mentioned

in Section 3.4.5.
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5.3.5 Limits of GPGPU

3.5.2 explores the limitations of the GPU when it comes to parallel al-

gorithms like the one implemented in this thesis. As expected, all imple-

mentations have a linear trend. When the number of filters applied to the

images increases, so does the processing time. The most obvious finding

from looking at the graphs in Figure 4.7 and Figure 4.8 is that the parallel

implementations perform worse than the looped-shader design implemen-

ted in both Rust and C++. This aspect is discussed in the section below

and will not be the focus point here. The focus points are instead deviation

from the linear trend, the memory limitations for GPU-programming, and

the large variation in performance when the dispatches are adjusted to

exactly what is needed.

Deviation from a Linear Trend

There are a couple of instances where the different implementations devi-

ate from the linear trend. The most notable is the parallel implementation

that almost begins to plateau at around 35,000 filters. This is discussed in

Section 5.3.6.

By once more taking a close look at the graphs on the GPU performance

from Figure 4.7 and Figure 4.8 shows a deviation from the linear trend

appears at the same spot for all the Rust implementations. This happens

at around 15,000 filters and again at 30,000 across both platforms. This

deviation comes in the form of a spike in processing times as all imple-

mentations increase before stabilizing back to the linear trend. While the

exact cause is uncertain, one plausible explanation is that around 15,000

filters, a significant number of blocks are dispatched to the GPU, leading to

context switching between these blocks. This sudden increase in context

switching could contribute to the observed spikes in processing times at

around 15 and 30 thousand.

The spikes could also be related to the use of Rust and its libraries, as

these spikes only occur for the Rust implementations. The C++ imple-

mentation utilizing the same shader as one of the Rust implementations

has no visible spike before the Rust runs stop. The C++ run on platform 2

starts spiking and dropping after the Rust runs stop, this will be discussed

in Section 5.3.7. It is difficult to say why the Rust implementations have

sudden spikes at a set pattern while the C++ implementation is rather

stable. There could be many reasons for this, but the most obvious reason

is that the wgpu library used for GPU-programming is on version 0.19.3

during this thesis, so version 1 has not yet been published. This early ver-

sion suggests that the code is not as optimized as maybe the C++ version
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is.

Memory Limitations

When looking at the graphs seen in Figure 4.7 and Figure 4.8, comparing

the GPU implementations performance of both platforms the most obvious

finding is that the Rust implementations stop at 53,500 filters. The reason

for Rust stopping is that the output buffer created for storing the calculated

results exceeds the limitation of the size of a shared memory buffer. This

limitation gathered from the system using the WGSL library is weird as

the C++ implementation using the CUDA library on the same system is

capable of processing more than the doubled amount of filters. Why this

is the case is uncertain as CUDA is not open source, but is assumed to

also be related to wgpu’s early version or related to how CUDA manages

memory.

Performance Variation

Some minor testing where done to see the difference in performance by

adjusting the dispatches to match the given number of calculations for

the looped shader implementation in Rust. The results from this test are

shown in the graphs in Figure 4.13 and Figure 4.14. The adjusted dispatch

run has a larger variation in its linear trend compared to the one that

dispatches the number of images and filters in the x and y directions on

platform 1.

Why does the adjusted dispatch run vary so much? This variation is most

likely related to a thread divergence phenomenon shown in Figure 2.3.

Too many threads spawned vary depending on the number of calcula-

tions planned with adjusted dispatch. These superficial threads will result

in thread divergence, and as the number of these threads vary so will the

number of divergences and the performance. The same concept is also

why the other one is so stable, as it always dispatches a constant num-

ber of superficial threads resulting in the same thread divergence and the

stable linear trend.

Platform 2 shows the more expected result, which is that the adjusted

dispatches perform overall better than the run that dispatches more than

needed. This is explained as more dispatched will result in higher over-

head, especially when extra dispatches are unused and only tribute to

thread divergence.
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5.3.6 Parallel Shader versus Sequential

The all-images-all-filters shader strategy can be implemented in several

ways. The three implementations this thesis covers utilize a for-loop to

process the whole image with the filter, and two parallel shaders that split

the image processing into several parts introducing temporarily shared

memory storage and synchronization. Both designs are implemented for

the cosine similarity and the max pooling operations. The graphs presented

in Section 4.1.5 illustrate the performance difference between these two

strategies by comparing the computation time of the for-loop shader and

the similar implementation in parallel.

The main difference between the two shaders and their strategy is related

to work distribution between threads. The looped shader has fewer threads

that do more work. This implementation does not need synchronization

and storing unfinished calculations on shared block memory. While the

parallel shader does the opposite, more threads do less work.

Cosine Simularity

The downside to this parallel design is the need for synchronization to

finish the whole calculation as the method that is used throughout this

thesis is a reduction operation. This makes the calculations of one image

and one filter split between several threads dependent on each other to

be reduced to the final value. This synchronization is one of the reasons

that the parallel shader performance is worse than the looped design.

The gain of parallelizing the processing of an image and filter inside the

thread block gets overshadowed by the cost of synchronizing the threads.

An interesting find here is in the graphs for the cosine similarity graphs

shown in Figure 4.9 and Figure 4.10 which shows that the parallel design

begins to plateau and almost stops increasing the computational time of

image processing between 30,000 and 35,000. The gain of parallelizing

the computation becomes almost larger than the cost of synchronization

combined with the increase of data being processed.

The parallel design, as presented in Section 3.4.3, uses a block-level shared

memory to store the unfinished cosine similarities temporarily. This sets

a higher demand on the hardware as each block allocates some bytes for

this staging buffer. This has shown throughout the development phase to

potentially be too demanding as several of the group’s computers have

not been able to run this design as the demand becomes too large at a

certain amount of data that the computation on the GPU crashes.
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Max Pool

An interesting finding, shown in the max pooling graphs in Figure 4.11

and Figure 4.12, is that the design which performs worse when it comes

to calculating the cosine similarity performs better at max pooling. There

could be several reasons for this, but it is most likely because max pooling

requires the use of if-statements. As presented in Section 2.5.2 and shown

in Figure 2.3 if-statements can result in thread divergence, taking a toll

on the performance of the GPU.

Several if-statements and subsequently thread divergences will occur de-

pending on the data being processed by the threads. As threads naturally

diverge with an algorithm such as max pooling, the looped design with

fewer threads will result in a higher portion of the calculation being idle. In

contrast to the looped design, the parallel design will spawn more threads

resulting in a smaller portion of the calculation being idle.

Synchronization Barriers

Both the max pooling and the cosine similarity calculations performed in

parallel utilize a barrier for the synchronization of threads at the block

level. This is one of the main reasons for the parallel cosine similarity

design being slower than the looped design.

Why is the use of a barrier in the parallel max pooling design not visible?

There can be multiple explanations for this, but it is most likely related to

the dimensions that each design computes in. The parallel cosine similarity

shader dispatches and spawns threads in two dimensions, x and y. This

makes a block-level barrier synchronizing blocks x×y times separately in-
stead of just x times as in the parallel max pool design. As fewer blocks

need to synchronize, less overall toll on processing time.

5.3.7 The Different Platforms

This subsection elaborates on the configuration of both platforms as shown

in Table 3.1, and discusses their impact on the results from experiments

presented in 3.5.2. Platform 1 is equipped with an i7-12700k CPU, featur-

ing a hybrid architecture of 8 performance cores and 4 efficiency cores,

totaling 12 cores. The 8 performance cores support hyperthreading, al-

lowing for a total of 20 threads. The maximum clock speed is 4.9 GHz

for its performance cores and 3.8 GHz for its efficiency cores. This CPU

is made for high-performance consumer-grade usage that requires rapid

processing. Platform 2 with a Xeon 6248R CPU, prioritizes stability and

consistent performance over peak processing speed. It features 16 cores



Chapter 5: Discussion 72

and 16 threads with a maximum clock speed of 4 GHz, making it optim-

ized for long-duration tasks under continuous load. Due to being a rented

node on NTNU’s IDUN HPC cluster, it only has access to 16 of the actual

24 cores of the CPU.

The superior performance of Platform 1 in the sequential CPU experiments,

displayed in 3.5.2, can simply be explained by the higher clock speed of

its CPU compared to the CPU of Platform 2.

As for the CPU parallel part of the experiment, Platform 1 remained the

better-performing platform. Even though the Xeon processor of Platform

2 boasts more total cores, the CPU of Platform 1 supports hyperthreading,

resulting in a total of 20 threads. This combined with the higher clock speed

of the performance cores makes Platform 1 perform better than Platform

2 also on CPU demanding tasks in parallel.

Platform 1 is equipped with an NVIDIA RTX 3080 GPU, which is a consumer-

grade high-performance GPU. The GPU features high clock speeds and a

vast amount of CUDA cores, making it suitable for fast processing tasks

requiring fast processing.

In contrast, Platform 2, equipped with an NVIDIA A100 GPU, is designed

for HPC. The A100 GPU, while having a lower clock speed, has a greater

amount of Tensor cores than the RTX 3080 GPU. These cores, as men-

tioned in the subsection 2.5.4, are highly efficient for performing algorithms

involving matrix operations.

CPU

Apart from the processing speed itself, the results from the CPU experi-

ment graphs shown in Figure 4.1 and Figure 4.2 show that the implement-

ations experienced similar trends relatively equally across the platforms.

The Rust implementations showed a consistent standard deviation in run

speed on both platforms. On the other hand, the Python implementation

utilizing NumPy, showed an increasing standard deviation throughout the

experiment. The pattern was not observed in the Rust implementation.

This variation in the Python implementation can be related to the underly-

ing differences in how the Python interpreter interacts with the hardware.

NumPy, primarily making system calls to underlying C-libraries, introduces

an extra layer of abstraction to the interpretation compared to the Rust im-

plementations. While the Rust implementations have been compiled with

the release flag, making them directly optimized to maximize hardware

utilization, NumPy does not necessarily get the same level of optimiza-

tion. This could be what is giving the Rust implementations more stable
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and predictable performance measurements.

Another contributing factor may be the properties of the respective CPUs.

While Platform 1 is equipped with a high-performance consumer-grade

CPU, capable of executing at higher clock speed, it will also come with in-

creased power consumption and heat generation. This can lead to thermal

throttling, which makes the CPU automatically reduce its clock speed to

prevent overheating. This will result in varying performance during intens-

ive tasks.

Platform 2, utilizing a Xeon CPU, is designed for more consistent per-

formance for longer durations. This architecture makes the CPU handle

heat regulation and power consumption more efficiently, reducing thermal

throttling and ensuring consistent performance levels.

This analysis suggests the CPU architectures and their handling of heat

and power consumption are considerable factors that affect the variability

in performance in the Python implementation, especially in scenarios with

a higher amount of filters.

CPU versus GPU

Once again, one can observe the trends in the CPU graphs shown in Fig-

ure 4.3 and Figure 4.4. On Platform 1, the experiment starts with a con-

sistent standard deviation which increases over time. On Platform 2, the

standard deviation remains steady for the duration of the experiment, as

previously explained.

As for the difference in GPU graphs across the platforms, it can be ex-

plained by the architectural differences between the GPUs. Generally, Plat-

form 1 outperforms Platform 2, due to its higher clock speed on both the

CPU and GPU, along with the higher amount of CUDA cores. This indicates

an underutilization of the Tensor cores of the A100 GPU on Platform 2 dur-

ing the experiments, which will be further discussed as a potential source

of error in Section 5.3.8.

In the case of the Rust for-loop implementation, Platform 1 displays more

variability in both performance and greater standard deviation throughout

the experiment, compared to Platform 2. This variability can be due to the

memory bandwidth differences described in Table 3.1. Despite having a

lower clock speed, Platform 2, with its double bandwidth capability had a

more stable performance throughout the experiment. This can likely be

explained by the combination of high clock speed and lower bandwidth on

Platform 1 leading to throttling on the GPU.

Regarding the C++ implementation using CUDA, it displays better per-
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formance on Platform 1 than on Platform 2. This is likely due to the higher

amount of CUDA cores on the GPU. CUDA is developed by NVIDIA, poten-

tially offering better abstraction and allowing for more efficient utilization

of the GPU compared to wgpu. This results in greater performance and

reduced standard deviation for the experiment on Platform 1 compared to

Platform 2.

Although CUDA likely offers a more efficient abstraction than wgpu, the

exact level of abstraction is unclear, making any comparison speculative.

Shader Strategy

The results from the experiments related to the performance of specific

shaders are displayed in Figure 4.5 and Figure 4.6. The one-image-all-

filters shader performed significantly worse than all the other shaders.

Therefore, the group decided not to conduct further research on this shader

and instead focused on the others. Due to this decision, no in-depth ana-

lysis was conducted to identify the cause of the poor performance.

For the other shaders, consistent processing times were observed between

the CPU and the GPU. This consistency was due to the low number of im-

ages and filters used in this experiment. On Platform 2, both the Rust

for-loop and One-image-all-filters maintained a low standard deviation

throughout the experiment. In contrast, on Platform 1, these shaders ex-

perienced an increasing standard deviation over time, as discussed in Sec-

tion 5.3.7.

Parallel versus Sequential Shader

The Optimized-one-image-all filters and Parallel implementations are de-

signed to leverage concurrent computing on the GPU to speed up the pro-

cessing but to achieve this they have dedicated temporary buffers spe-

cified in each block. These temporary buffers live and die with the block.

Therefore, these implementations benefit from larger and faster memory

to initiate more temporary buffers at the same time. This is because each

block runs on a compute unit, and more compute units make it possible to

run more blocks at the same time. Therefore a limited number of compute

units and memory space needed for the temporary buffers will affect the

computation time of this strategy.

Platform 2 has more memory, higher memory bandwidth, and more com-

pute units than Platform 1, as shown in Table 3.1. This means more pro-

cessing can be done in parallel with more demanding memory per block

resulting in Platform 2 performing better at both the parallel-designed

shaders shown in Figure 4.7 and Figure 4.8.
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Continuing to inspect the same graph as the paragraph above, a huge dif-

ference between the two systems is spotted. The C++ implementation on

Platform 2 deviates from the linear trend after the Rust runs stop. This was

first thought to be a one-off result as the implementation has performed

stable on Platform 1 throughout the whole project. However, further test-

ing of the C++ implementation, shown in Figure 4.15 and Figure 4.16, still

shows a similar variation on Platform 2 while Platform 1 remains stable. It

is difficult to determine why Platform 2 varies so much after the Rust runs

stop. A reason for this can be related to Platform 2 being a shared resource

server. This may be why the second C++ run on Platform 2 is more stable

as this run was processed at night time in contrast to day time. Another

possible reason for this variation could be related to the memory aspect.

There is probably a reason that the Rust runs stop, as it is because of a

limitation set by the system by using the wgpu library. If this limitation is

related to the system it could explain why the behavior becomes so un-

predictable, but this also indicates that the C++ run on Platform 1 should

have a larger variation which it does not. It is uncertain why the C++ run

behaves as it does on Platform 2.

Inspecting all the parallel versus sequential graphs in Section 4.1.5 shows

that Platform 1 performs worse than Platform 2 for the looped max-pooling

shader. There are several potential reasons for this large difference in

performance between the systems.

Firstly, Platform 1 has more cores per compute unit, resulting in more

threads running in parallel at the same time. When performing many if-

statements, having more threads in parallel within the same unit likely

leads to more thread divergence, which could contribute to the perform-

ance gap.

Secondly, Platform 1 has fewer compute units than Platform 2. This means

Platform 1 has fewer execution blocks running concurrently, as one block

requires resources from a compute unit. The combination of increased

thread divergence and fewer execution blocks running simultaneously could

explain the large difference in performance between the platforms when

processing the looped max-pooling shader.

5.3.8 Sources of Error

When testing algorithms one has to be aware of how results can be af-

fected by real-world inconsistencies and human flaws. In this section, we

discuss what types of inconsistencies and errors can affect the result of

this project.
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Hardware

Platform 1, which was one of the primary test environments, was a per-

sonal computer and not a part of a dedicated test bench. Although the

platform was exclusively used for running experiments during the test

phase, occasional use for other tasks was avoidable. This might have intro-

duced minor fluctuations in processing time due to background processes

consuming system resources. However, no resource-intensive applications

that would affect the results were active during the test phase. Therefore,

any impact on the overall results is expected to be minimal.

For Platform 2, as it was a part of the NTNU’s IDUN HPC cluster it was

not possible to monitor the platform in a way you can with self-owned

hardware. Additionally, the group only had access to 16 of the 24 total

cores of the CPU, limiting the possibility of fully controlling and observing

the performance of the platform during the experiments.

Experience

Before the project, none of the group members had any experience with

GPU programming, which resulted in a significant learning curve in the

initial phase. Throughout the project, the members have studied the topic

of GPU programming relentlessly to acquire as much knowledge as possible

on the subject. A variety of theoretical sources were used, as described in

the section 3.1.

Despite these efforts, a solution implemented by someone more proficient

in GPU programming might result in different or perhaps more effective

results.

Use of Cores

The experimental results highlight the significant performance advantages

of the GPU implementations due to their superior parallel computing cap-

abilities. Figures 4.3 and 4.4 in Section 4.1.2 illustrate that all the GPU

implementations outperform their CPU counterparts.

What is more interesting is how Platform 1, equipped with an RTX 3080

GPU with 8704 CUDA cores, generally outperformed Platform 2. Despite

Platform 2 having a greater number of Tensor cores, it did not result in

better performance in the experiments.

This discrepancy indicates that CUDA cores play a more crucial role in

accelerating the machine learning methods used in the experiments. Given

that the A100, with its 432 Tensor cores specialized in tensor operations,
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generally underperformed compared to Platform 1, it suggests that these

cores were underutilized in the test environment.

To give an exact number on the utilization of the specific type of GPU cores

turned out to be challenging. Therefore, the insights provided are based

on assumptions from the results, rather than from direct measurements.

This analysis underscores the importance of the architectural differences

between CUDA and Tensor cores into account when attempting to improve

machine learning algorithms through GPU parallelization.





6. Conclusion
The benefits of parallel programming are demonstrated in the results of

this thesis. Even the simplest sequential implementation in Rust has a

faster processing time than the Python implementation utilizing NumPy,

which is considered the standard for implementing the machine learning

method used in this thesis.

The results also indicate that GPGPU is well-suited for such highly parallel-

izable algorithms that involve only simple calculations. The parallel nature

of the GPU is what makes it outperform the CPU even with a relatively low

amount of data, as shown in Figure 4.1 and Figure 4.2. This potential that

the GPU shows, compared to the CPU, can be utilized in many different

ways. This thesis presents, implements, and tests several shader-design

suggestions for utilizing the GPU for such algorithms in Rust. These dif-

ferent designs consist of simple implementations and more complex ones

using synchronization barriers and temporary buffers. An in-depth com-

parison of these different designs is presented and discussed showing the

simple shader design being the overall fastest implementation. The same

shader is also implemented in C++ using CUDA, demonstrating even bet-

ter performance here.

The potential of implementing machine learning methods, such as the one

in this thesis on parallel hardware has shown good performance and makes

it interesting to explore other parallel architectures. Therefore, expanding

the exploration to FPGA and ASIC architectures, as this thesis intended

to do, holds promise for unlocking similar performance gains and efficien-

cies as what the GPU shows. Harnessing the inherent parallelism of these

specialized hardware platforms could potentially lead to even more optim-

ized and efficient implementations of algorithms, as demonstrated in this

thesis.

6.1 Future Work

There are plenty of unexplored directions and aspects related to the topics

of this thesis that would benefit from being further explored. Firstly, if

the implementations used in this thesis were to be continued, then an

exploration into implementing and testing the algorithm with larger images

and filters to gauge the potential there is an interesting improvement.
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This thesis focuses on the parallelization of individual calculations based

on cosine similarity which has potential for future machine learning meth-

ods. Future work includes the practical application of the parallelized cosine

similarity in machine learning methods themselves and exploring their po-

tential. This involves developing and testing a model using the new Gabor-

like filters for image classification like Appendix A tried to achieve with

Gabor filters. An interesting extension is to introduce noise into the im-

ages being classified, as Gabor filters have shown promising results in this

area (Dakshayani et al., 2022).

A more time-consuming but potentially the most interesting direction is

to explore the potential of implementing the algorithm on an integrated

circuit such as an FPGA and or ASIC. These implementations will have less

overhead compared to those on either the CPU or GPU. This is because,

instead of programming code for the hardware to run, the hardware itself is

”programmed” and designed to take input, process it in parallel, and then

produce the output. There is a lot of potential and exploration needed in

such a direction since the performance of a FPGA or ASIC seems promising

but has not yet been tested with the algorithm addressed in this thesis.

While working on this thesis, it was discovered early on that the current

GPU implementations likely do not utilize Tensor cores effectively or at all

for the matrix operations. This became evident because Platform 2, which

has more Tensor cores, generally performed worse than Platform 1, which

has more CUDA cores. Given that Tensor cores are generally faster for the

types of operations used in this thesis, the performance gap should not be

that significant. Therefore, there is potential in optimizing the algorithms

used in this thesis to better leverage Tensor cores, either instead of or

in combination with CUDA cores, as the algorithm prioritizes speed over

accuracy.

This thesis has delved into mostly Rust but some C++ and Python. Because

of the lack of exploration in languages other than Rust, there is some

potential exploration to be done here by looking at other languages and

frameworks and then gauging their performance. In addition, coming back

and testing the algorithm with a newer version of the libraries used in

this thesis when they are developed could also be interesting as the main

library in Rust wgpu has yet to publish version one.

Lastly, as the algorithm used in this thesis relies heavily on memory explor-

ing the potential of optimizing the overall memory usage is an interesting

direction for further work. This is especially interesting with the current

Rust implementations as they all stop at around 53,500 filters because of

memory exceeding. This is not entirely correct as there is more memory on
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the system, but either wgpu is not optimized enough, or other strategies

need to be implemented.





7. Societal Impact
Machine learning and deep learning have risen in popularity the recent

years, leading to an exponential growth in training data, model paramet-

ers, and system resources. This requires more computational power to

train the models for better accuracy. However, this increased demand for

power negatively impacts the carbon footprint associated with the infra-

structure, development, and inference of AI models.

For example, in 18 months, Meta increased its infrastructure capacity by

2.9 times for training models and 2.5 times for inference (Wu et al., 2022).

The AI model Meena had a carbon footprint equivalent to an average pas-

senger vehicle driving 242,231 miles. However, to understand the carbon

footprint one must have a holistic approach, and not just look at one as-

pect such as training the model but include the infrastructure created for

both training and deploying these models (Wu et al., 2022).

7.1 Environmental impact of AI

This thesis focuses on optimizing the calculation of a potential newmachine-

learning model using Gabor-like filters, which can reduce both training time

and power consumption. This is based on the findings that Gabor filters

in the first layer and a mix of Gabor filters and CNN kernels deeper in the

model has little impact on the accuracy of the model and the same time

reduces training time and power consumption (Sarwar et al., 2017). This

is because the biggest power consumption stems from back-propagation,

which involves gradient computation and weight updates of the convolu-

tional and fully connected layers.

The study concludes that specialized hardware can have beneficial results

in this mixture of Gabor filters and CNN kernels (Sarwar et al., 2017). The

new machine learning model that can be developed based on this thesis

can help with reducing the training time further. This is because the new

model is flat and does not require back-propagation, as the Gabor-like

filters are fixed and have no training time.

While this thesis uses only the GPU to test computational power without

measuring power consumption, dedicated hardware such as an ASIC would

likely offer higher computational power and lower power consumption due

to the fixed nature of Gabor-like filters, similar to the conclusion of previ-
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ous studies (Sarwar et al., 2017). Efficient use of the hardware and energy

in the development and use of AI aligns with the United Nations (UN) Sus-

tainable Development Goal 12 (Responsible Consumption and Production),

promoting sustainable infrastructure and development of the AI industry.

It also supports Norway’s goal of reducing total greenhouse gas emissions

by 50% to 55% compared to 1990 levels (Norsk regjering, 2023) (FN-

sambandet, 2023a).

7.2 Economic impact

Reducing energy consumption in data centers can result in significant cost

savings on electricity. This also has the potential to reduce the workload

on non-optimal hardware in AI, leading to a more sustainable infrastruc-

ture. Such infrastructure lasts longer and saves resources and money by

avoiding the need to build unnecessary large centers. By using optimized

hardware that utilizes the energy better and with higher computational

power for that specific task, data centers can operate more efficiently.

Google’s development of a specialized ASIC, known as a Tensor Processing

Unit (TPU) has successfully achieved these goals. This development aligns

with Amdahl’s Law which states: ”low utilization of a huge, cheap resource

can still deliver high, cost-effective performance.” (Jouppi et al., 2017)

7.3 AI in medecine

Recent advancements in deep learning have shown promising results in

medicine, especially in tasks where image analysis is important for dia-

gnostics, such as radiology. Models are often trained on a labeled dataset,

but they can also be trained on unlabeled data consisting of numbers and

text. This has improved other fields in medicine such as biochemistry, and

genomics, and predicted outcomes from medical signal data, such as EEG,

electrocardiogram, and audio data. These models have proven the ability

to draw conclusions based on data patterns that humans normally would

not see (Rajpurkar et al., 2022). In radiology, image noise is an inevitable

challenge. The Gabor filter has proven effective at feature extraction on

noisy images images (Dakshayani et al., 2022). With the use of the new

Gabor-like filters a new image recognition model can potentially improve

the use of machine learning in medicine by analyzing images in radiology

and similar fields of image analysis. This correlates to UN sustainable de-

velopment goal 3 (Ensure healthy lives and promote well-being for all at

all ages), which focuses on improving medicine research and the overall

health of every age. (FN-sambandet, 2023b)
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7.4 Data integrity and research benefits

The results are based on statistical models that ensure data integrity, as

explained in Section 3.5. The group has used and followed the structure of

DSR to present trustworthy results that can be used for further research.

This approach ensures the group remains non-biased and does not cherry-

pick results to better fit their desired outcomes. Cherry-picking can lead

to incorrect results, wrong conclusions, and wasted resources.

The implementations have also been tested to ensure the calculations are

performed correctly and that the data is representative of an actual model.

This ensures a non-biased interpretation of the result and reliable testing.
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Abstract

In CNN, all the filters used are learned through back-propagation. The goal of this project
was to generate fixed Gabor-filters and use the results of these to classify the MNIST-digits
through max-pooling and K-means clustering. Studying the Gabor-filters and improving it’s
efficiency is interesting as it’s widely used in image analysis, and it’s given a considerable
amount of attention because they closely resemble the human visual system. And because
the filter are aimed at mimicking the visual cortex, it also tries to mould itself to suit
different scenarios where it does not perfectly fit.(Joshi, 2014) The results of this study
shows that Gabor-filters can be implemented with quite a simple model that works well for
image recognition that is not very susceptible to noise. If you want to try and reproduce
the results, you can do so by looking at the repository1 for the project.

1The source code to reproduce the results can be found at https://gitlab.stud.idi.ntnu.no/idatt25021/cnn
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1 Introduction

Authors have claimed that simple cells in the visual cortex of mammalian brains can be modeled by Gabor
functions.(Daugman, 1985)(Marčelja, 1980) Thus, image analysis with Gabor-filters is thought by some to
be similar to the perception in the human visual system and they can therefore be named biologically based
Gabor-filters. The Gabor-filters are orientation-sensitive filters, used for edge and texture analysis. The way
a Gabor-filter works is that it detects different shapes, sizes and smoothness levels in the image, and the
filter can be viewed as a sinusoidal plane of a particular frequency and orientation.(Kafuo A. & Gonifeda A.,
2017)

Normally with CNN, you would use few filters along with back-propagation to classify pictures. In this
assignment the group has worked on creating various Gabor-filters to attempt to make it less susceptible to
noise, as this is a known flaw of CNN. It’s these filters that have been applied to the MNIST dataset, with
max pooling and K-means clustering. The MNIST dataset is a collection of handwritten digits (0 through
9) and is commonly used for training various image processing systems. The Gabor-models from this study
have been trained and tested on this dataset.

2 Related Work

Gabor-filters are generally used for feature extraction and texture analysis in image processing. More specif-
ically, these filters can be used for noise removal and edge detection in images. The way these filters work
have been compared to that of the human visual system and how our eyes process what they see. This is
due to the properties of such filters, with their spatial locality and orientation. (Olshausen & Field, 1996)

There has been prior research as to evaluate the effects of Gabor-filter parameters on texture classification. In
texture classification, in particular, Gabor filters show a strong dependence on a certain number of parameters,
the values of which may significantly affect the outcome of the classification procedures.(Bianconi F., 2007)
From this study it indicates that the frequency and gamma values of the filters affect the results the most.

Due the Gabor-filter’s rise in popularity there’s been a lot of biologically inspired research, a field inspired by
how biology works, such as object recognition. William Hamilton wrote about the importance of biologically
inspired object recognition. He states that the biological vision systems are still far superior to the current
state-of-the-art computer vision systems.(Hamilton, 2013) Nevertheless, Gabor-filters are still important due
to their ability to closely mimic the human visual processing and it’s ability to adapt. Therefore, the Gabor-
filters show a lot of potential for different applications. Hamilton used two different algorithms combined
together with Gabor-filters, one that is supposed to mimic biological systems, and one that didn’t. His
results made it clear that the biological system got a lot better results, and strengthens the theory that these
filters work in similar ways to out eyes. His object recognition algorithm was tested on the Caltech-101 data
set which contains pictures belonging to 101 categories.

The neurons in the visual cortex has a similar way of working to max pooling, though slightly different. Both
the neurons and max-pooling share conceptual similarities of feature selection, in-variance and efficiency in
handling information. They aren’t identical, but can be compared to draw parallels between biological neural
processing and artificial operations. Cells in the primary visual cortex of higher mammals can be separated
in two groups, simple and complex cells, where simple cells sends signals to complex cells and the complex
cells select the strongest signals from the simple cells.(Boutin et al., 2022) K-means clustering has been used
in the study to summarize a large amount of data under the assumption that the clustered data set centroids
gives a summarizing of the clustered data set. Although not traditional, this use of clustering is a way of
reducing the size of the data while minimizing data loss. (Ahmed & Mahmood, 2014)
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3 Methods

Throughout the project there were several iterations of the method used for feature extraction. In this
section the description is for each main iteration.

The key concept of all of them is how the Gabor-filters are applied on the image to extract its features. The
filters are placed at a given point in the pictured, and a scalar value is computed from the area the filter
"sees". The computation of this value is done by the formula below.

cos θ = a · b
∥a∥ × ∥b∥

Through the project there were used 216 different filters in all of the iterations, with different parameters
in theta, lambda, sigma, gamma and psi to create different filters. For each of the iterations, as all of them
uses K-means clustering, the group has attempted to find the optimal amount of clusters through testing.
This will be further discussed in the result section.

Figure 1: All 216 Gabor-filters generated. Each of the parameters have been given a set of values, and the
filters are the result of the Cartesian product of these parameters

3.1 First Iteration - Simple Gabor

The first iteration used the 216 filters in the center of the padded image from 28x28 to 29x29. That is done
because the library that produce the Gabor-filters only generate in odd numbers and made 29x29 sized filters.
Then the images are normalized by dividing by 255 to convert pixel values to a range of 0.0 to 1.0. This is
a common practice in image processing to work with standardized floating-point numbers. The filters were
then applied and made a list of length 216 containing a scalar value from each filter. This list contains the
features of the image. Then, for every digit, the model uses K-means clustering with k-amount of clusters to
reduce the 216 dimensional space from 5421 to k data points. These cluster-centers describe a single digit
of the trained model, and is applied to each of the digits.

The model predicts what number the image is by applying the filters and plotting the features in the 216
dimensional space, then find the closest cluster-center among all the digits’ cluster-centers for that image’s
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features. This is the main reason for using K-means clustering to reduce the size of the trained data, and
thus the amount of checks.

3.2 Second Iteration - Gabor Mesh

The third iteration added two new concepts. The model was expanded to apply the filters in a honeycomb
structure around the center of the image. Six new points were added with approximately equal distance to
the center. For future reference, these points will be referenced to as centers. To apply the filters on these
new centers, the image is further padded to 57x57. When a filter is applied to a shifted center, the image to
be filtered is cut down to 29x29 again, with a new center as shown below.

Figure 2: Image containing the digit 5, applied with honeycomb structuring. The gray parts are only for
visualization, and are actually black when the filters are applied

The filters are then applied to this shifted image for each center. This produces 216 features for each image,
per center. To reduce the dimensionality and increase how well the images are described, the model applied
max pooling on the filtered values to reduce each image down to four features per center after filtering.
For our model, this is equal to one descriptive feature per orientation. These orientations correspond to
horizontal lines, vertical lines and diagonal lines in both directions. The result of each max pooling for each
center per image is concatenated back into an array of 28, which is equal to four features times seven clusters.
K-means clustering is used in the same way as before for testing and reduction of the data.
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3.3 Third Iteration - Gabor Mesh 5x5

For the third iteration, the Gabor-model is extended in regard to how the filters are applied. For each of the
centers, the image is applied in a 5x5 grid, with center in each of these pixels. The area of this grid for each
center is shown in Figure 3.

Figure 3: Honeycomb grid structure

For each of these centers, the filters are applied 25 (5x5) times. The maximum value, meaning the optimal
position of that filter, is then selected through max pooling. This is then added to the list as normal, and
the result of the filtration is still 216 features. Each of these features are thought to be optimized for the
given filter and center. This is then processed with max pooling and K-means clustering as in the previous
iteration.

4 Results and Discussion

As stated in the methods section, the optimal amount of clusters were found through testing. This was done
for both the Gabor-filter with and without noise. The results conclude that using a total of 91 clusters for
K-means clustering is most optimal when using Gabor-filter Mesh 5x5. However using 66 clusters is most
optimal when using Gabor-filter with Mesh. This result was found by training the model and testing the
images with different values for k in K-means clustering. These tests were run again on the Gabor-model
with Mesh 5x5 with increasing levels of sigma. This was doen to further improve our model when dealing
with higher levels of noise. The results of these tests are shown in the plot below, with the values in the
table. The levels of noise for each sigma is also displayed.
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Figure 4: Most optimal amount of clusters for different levels of noise

Figure 5: Different levels of sigma/noise applied to an image containing the letter four.
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After receiving the optimal amount of clusters, three different Gabor-models were tested and compared to
a normal CNN model. The three different Gabor-models differ in the way they apply filters to the images.
The three models are the results of the three iterations of the study. How filters are applied in each of these
models are described in the Methods section.

Figure 6: Here are the accuracy’s of the different models with increasing noise. CNN is trained on 60000
images and tested on 10000, while the different Gabor models are trained on 54210 images and tested on
250 images. The accuracy’s are in decimal, and the sigma values are the standard deviation of the Gaussian
normal distribution.

CNN outperforms the Gabor-models when applying noise < 0.4 to the test pictures according to the group’s
study. However, as seen on the result plot above, the Gabor-model with mesh and Gabor-model with mesh
5x5 outperforms CNN as soon as the applied noise is over sigma=0.4.

9



To visualize the data from the model, the group used t-SNE for the cluster-centers and a summarization in
the Fourer room for the filters. These plots describe how active our filters are in different regions, and how
closely the images are clustered together.

Figure 7: t-SNE plot. This visualizes a multidimensional space, which are the features of the images from
the K-means clustering. Here we can see some clear clusters for the different images

Figure 8: This is a Fourier domain coverage. It visualizes where the filters are most active, and one can see
that the angles used in the filters show the most activation. The colors in the plot describe how active the
sum of filters are, with lighter colors showing more activation.
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5 Conclusion and Future Work

The results in the previous section show a working Gabor-model that is less affected by noise than CNN. The
final model also achieves quite high accuracies for the MNIST digits without noise, with 96.4% being the
best result. The final results were quite good for such a simple model with "only" 216 filters used. Although
it’s not the most complex dataset, this shows the potential of what filters like this can do.

There are many ways of improving the performance of this specific model, both in terms of speed and
accuracy. In terms of speed, there are probably many clever ways of optimizing the performance. For the
groups’s Python model, better use of numpy is the most obvious one. Numpy was used for many of the matrix
operations, but probably not optimally. To make up for a slow training- and testing process, multi-threading
was softly implemented. This is also another point of improvement for this Python implementation. Ideally,
one would consider using another programming language for this task, such as C. Python was chosen due
to experience with it and an expectation of using more libraries for the Gabor-filters and such. This turned
out to be less used than expected, and therefore not necessary.

For the performance of the model in terms of accuracy, the group discussed increasing the amount of filters,
with the amount of orientations being the main focus. This can improve how the filters detects edges and
identifies different numbers even more. Looking more at the honeycomb structure is also a part that could be
subject to improvement. Increasing the amount of honeycomb centers and changing the value of the radius
between them could potentially improve how and where the filters find their features. For future work, one
could also look more into optimal clusters. This was found to drastically improve the accuracy with a simple
optimization technique, and can probably become even better. Looking more into max pooling, and taking
other factors into considerations here could also be interesting to look at. The possibilities are endless.
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Oppgaver

Start Slutt Varighet Etikett Vert. Posisjon Vert. Linje

08.01.2024 26.01.2024 19 Reading documentation -18 -18

15.01.2024 03.02.2024 20 Research and planning -28 -10

04.02.2024 24.02.2024 21 Rust implementation -38 -10

25.02.2024 02.03.2024 7 Test and optimalization -48 -48

03.03.2024 30.03.2024 28 Further development -58 -58

31.03.2024 06.04.2024 7 Test and optimalization -68 -10

07.04.2024 10.04.2024 4 Comparing of versions -78 -78

15.04.2024 28.04.2024 14 Finalizing implementation -88 -10

18.03.2024 21.05.2024 65 Writing -38 50

Sett inn nye rader over denne

Milepæler
Dato Etikett Posisjon

08.01.2024 Start, jan 8 30

02.03.2024 First implementation  feb 4 25

06.04.2024 Second implementation  apr 6 20

21.05.2024 Finished  mai 21 15

Sett inn nye rader over denne

Reading documentation

Research and planning

Rust implementation

Test and optimalization

Further development

Test and optimalization

Comparing of versions

Finalizing implementation

Writing 

Start, jan 8 First implementation 
feb 4

Second 
implementation 

apr 6
Finished  mai 21

20.12.2023 09.01.2024 29.01.2024 18.02.2024 09.03.2024 29.03.2024 18.04.2024 08.05.2024 28.05.2024 17.06.2024

Bachelor project





C. Project Handbook
This appendix has been excluded from the report on the grounds of sens-

itive information. It can be found in the .zip folder.
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D. System

Documentation
This appendix has been excluded from the report on the grounds of sens-

itive information. It can be found in the .zip folder.
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