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Abstract

The use of automated valuation models for price estimation in the real estate in-

dustry is a valuable and important asset, but precise predictions remain a challenging

task. Traditional valuation models are mainly based on structured data from hous-

ing advertisements to predict housing prices. However, these advertisements also

have listing texts that hold important information about a housing unit’s condition

and attractiveness. This thesis aims to utilize large language models to extract

valuable features from the textual part of the housing advertisement. Furthermore,

by combining the extracted features with the structured information, it is possible

to develop a new automated valuation model that might o↵er enhanced price pre-

dictions. It was found that the large language model’s ability to return accurate

feature values from the listing text was overall high, but could vary based on what

information that were extracted. Further observations revealed that the listing text’s

contents varied considerably from one housing advertisement to another, making a

substantial amount of information unavailable for the language model resulting in

features with low variation in the data. Despite this, the valuation model improved

by 20.14 % for RMSE and 17.46 % for MAPE when the features extracted by the

large language model were included, compared to the model without these features.

This shows significant potential for implementing large language models for fea-

ture extraction to enhance the accuracy of valuation models used in the real estate

industry.
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Sammendrag

Bruken av automatiserte verdsettingsmodeller for prisestimering er et viktig verktøy

i eiendomsbransjen, men nøyaktige estimeringer har vist seg å være en utfordrende

oppgave. Tradisjonelt har verdsettingsmodeller benyttet strukturerte data fra bol-

igannonser for å estimere boligpriser, men disse annonsene inneholder ogs̊a mye

nyttig informasjon i tekstbeskrivelsene av boligene. Dette prosjektet har som mål å

bruke spr̊akmodeller til å hente ut nyttige parametere fra tekstbeskrivelsene av bol-

igannonser. Videre skal denne informasjonen kunne brukes sammen med de struk-

turerte dataene for å øke tre↵sikkerheten til verdiestimeringen av boligen. Det viser

seg at spr̊akmodellen returnerer data av høy kvalitet fra tekstbeskrivelser, men med

noe variasjon basert p̊a hvilken informasjon som ønskes å hentes ut. Undersøkelser

viser imidlertid at p̊a grunn av formuleringer og innholdet i tekstbeskrivelser i bol-

igannonser er det en del informasjon som ikke er tilgjengelig i alle annonser. Selv

med noe varierende data viser det seg at nøyaktigheten til verdsettingsmodellen

øker med 20.14 % for RMSE og 17.46 % for MAPE n̊ar man bruker parametere hen-

tet ut av spr̊akmodeller, sammenlignet med uten. Dette viser det store potensialet

spr̊akmodeller har for å hente ut informasjon fra tekstbeskrivelser som kan brukes å

øke presisjonen til verdsettingsmodeller.
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Chapter 1

Introduction

This thesis investigates how the performance of automated valuation models (AVM)

could be enhanced by introducing large language models (LLM) for feature extrac-

tion. The motivation behind the work done is described in this chapter by discussing

the importance of AVMs and the real estate market in Oslo, Norway. Furthermore,

the problem description is formulated, before the method and report structure are

described.

1.1 Background and Motivation

The private real estate market has seen significant growth over the last years and

making accurate price predictions is an important asset for both buyer and seller.

Traditional AVMs are mainly based on structured data about the housing unit such

as total area, build year, and number of rooms to estimate the housing value. This

information is often based on structured information from publicly available data

such as housing advertisements from finn.no. However, these advertisements also

have listing texts which contain a considerable amount of unstructured data such as

text descriptions and captions from pictures. Even though the unstructured data

isn’t necessarily readily quantifiable, it holds important information about the hous-

ing’s condition and attractiveness. Sophisticated methods using LLMs are required

to analyze, extract, and quantify the important information the unstructured data

contains.

Since its start in 2020 has solgt.no delivered services related to the real estate market.

They started with iBuying1 before they in May 2024, changed this business model

1Business model for buying properties, then flip them for a higher price.

1



to deliver software as a service (SaaS) where they o↵er several insightful features

for the real estate market. In connection with this, they want to investigate the

possibilities of using LLMs to analyze and extract important information from the

listing texts in housing advertisements. This information will be combined with

existing structured information and then be used to develop an AVM, which their

customers can use to get a precise estimated price on a housing they are interested

in.

This is a new field and the combination of using LLM extracted features, and existing

features for price prediction, has not been tried to the same extent before.

1.2 Problem Description

This project aims to investigate the degree to which unstructured data, such as

listing titles, descriptions, and picture captions from housing advertisements, can

be integrated and utilized e↵ectively to enhance the performance of an AVM in

estimating the turnover value of housing.

To extract the unstructured data, a program that takes the listing text of a housing

advertisement as input and uses an LLM to return quantitative values based on the

advertisement’s content, needs to be developed. Prompt engineering based on avail-

able literature should be performed to make the LLM return precise and consistent

values. To ensure the quality of the values, the feature extraction process should be

validated and compared to the actual information.

Housing advertisements consist of both structured and unstructured data. Solgt.no

has a large dataset with structured information from the advertisements, used to

develop their AVM. The objective is to validate the e↵ectiveness and reliability of a

new AVM, by integrating both structured and unstructured data from the housing

advertisements. This includes the best combination of these types of data to achieve

the most precise housing valuations. The goal is both to validate the new AVM’s

performance and investigate how the combination of structured and unstructured

data can enhance the accuracy of the valuation. The list below summarizes the

problem with additional information, while Figure 1.1 illustrates the process.

• Perform a literature study on methods for structuring unstructured informa-

tion using LLMs including information extraction and prompt engineering.

• Develop a pipeline that accesses OpenAIs GPT-models, takes housing advert-

2



isement as input and returns quantitative values.

• Perform prompt engineering based on the available literature, to receive quality

data from the LLM and collect data from the pipeline.

• Validate the e↵ectiveness and reliability of the LLM.

• Develop an AVM that uses structured data from solgt.no and unstructured

data from the LLM.

• Validate the e↵ectiveness and reliability of the AVM.

Visualization of the process 

Unstructured 
Information

AVM

finn.no

LLM

LLM-Features with 
Quantitative Values

Housing 
Advertisement

1 2 n...

Structured 
InformationListing Text

What to extract from 
Listing Text

Figure 1.1: Visualization of the process.
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1.3 Delimitations

This study is limited to using OpenAI’s GPT models for information extraction from

the listing texts. There are several other options when it comes to LLMs and other

Natural Language Processing (NLP) methods, but due to accessibility, performance,

and what’s clarified in the problem description, other options are not considered in

this thesis.

1.4 Structure

The report is structured with respect to the scope of this thesis. First is the relevant

theory described in Chapter 2, before explaining the datasets in Chapter 3. The

methodology is divided into two phases, the first one for the LLM in Chapter 4

followed by results in Chapter 5, and the second for the AVM in Chapter 6 followed

by its results in Chapter 7. Further are the discussion and conclusion in Chapter 8

and 9.

The work done in this thesis is partially based on observations from the preliminary

project carried out in the fall of 2023 [1]. Some similarities will therefore occur in

the following sections:

• Section 2.2 Fundamentals of LLMs

• Section 2.3 Fundamentals of Machine Learning

• Section 8.3 Sustainable Development Goals

4



Chapter 2

Theory

This chapter presents a literature review and foundational theories regarding the

capabilities of LLMs in information retrieval and AVMs’ usage in housing price

prediction. It begins with a thorough review of existing literature in the field,

highlighting key observations within language models and machine learning. In

addition, the theoretical framework and other observations in the same field are

derived.

2.1 Literature Review

The idea of using computers to mimic human language using NLP has a long history.

In the 1960s Joseph Weizenbaum developed the first chatbot called ELIZA [2], and

was a simple simulated conversation program between human and machine [3]. The

NLP technology has been significantly developed, with modern LLMs such as BERT1

and GPT2 demonstrating unique and powerful abilities for both text understanding

and generating.

Within the GPT series, the OpenAI GPT-3 model contains 175 billion parameters

and has shown strong performance on various NLP tasks, and even matched fine-

tuned systems in some cases [4]. These newer and larger-sized models enable learning

situations such as zero-shot and few-shot, with impressive results in Information

Extraction (IE) tasks [5]. The newer and bigger GPT-3.5 and GPT-4 models used

in ChatGPT3, outperform the older GPT-3 model giving a greater potential for

1Bidirectional Encoder Representations from Transformers is a model developed by Google.
2Generative pre-trained transformers is a model developed by OpenAI.
3Used in ChatGPT
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information retrieval from real estate advertisements [6].

Literature states that fine-tuned models for specific tasks usually outperform the

general pre-trained models [7]. The fine-tuning requires high-quality data for the

particular task to better understand the process and context, which leads to e↵ective

and accurate results. Narrowness in the specific task, on the other hand, will limit

the model’s versatility by only being able to extract one type of information. This

means that if several features were to be extracted, it would be needed one model

for each feature.

Prompt engineering has proven to be important for getting precise responses with

high quality from the GPT models [8]. This approach includes formulating and

designing the prompt4 in a way that will result in the desired output. The prompt

will guide the model more e↵ectively and is seen as a good alternative for fine-tuning

models by unlocking the potential in the GPT models for a certain task [9].

The idea of feature extraction from the textual part of housing advertisements has

been tried before both with and without the use of LLMs [10] [11]. The preliminary

project showed promising results when extracting values from the textual part, but

a recurring error was the inconsistency of the model output [1].

The article ”Fine-tuning BERT for a regression task: is a description enough to

predict a property’s list price?” by Anthony Galtier demonstrates the use of LLMs

to extract information from the textual part of the housing advertisements, and

using this info to predict the housing units price with strong results [12]. As the title

states, only the textual information from the listing texts was used, not additional

structured information about the housings. To the best of knowledge, no other

studies have been found to combine both features extracted from listing texts, and

structured data about the housing unit for price estimation to the same extent as

this thesis.

Earlier stages of price estimation using AVMs were based on hedonic price models

where the price is expressed by a function with characteristics such as the area in

square meters, number of rooms, and proximity to public transport [13]. Literature

from the early 2000s suggested that Artificial Neural Network (ANN) have great

potential compared to the traditional hedonic models [14].

In later years, when it comes to housing price prediction based on existing data,

ANNs and non-linear machine learning techniques have outperformed traditional

regression models, despite some inconsistency in the results [15]. Even though these

4Input
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models have shown good results, some skepticism based on the inconsistency of the

results has been discussed [16].

Several ML models have been used with varying success. Still, the techniques that

stand out with good performance are model algorithms such as Random Forests,

XGBoost, and LightGBM [17]. All di↵erent models have their pros and cons, and

when combined we have a technique called Stacked Generalization or Stacked Re-

gression Models5. This technique has been slightly better at predicting housing

prices than each model individually [17] [18].

In addition to the use of a strong-performing model, has use of additional features for

improved price estimation also had an e↵ect on the output. Literature suggests that

the inclusion of condition attributes significantly increases the model’s performance

[19]. On the other side, the inclusion of energy labels won’t a↵ect to model output

to the same extent as the housing standard [20].

2.2 Fundamentals of LLMs

Within the field of artificial intelligence (AI), LLMs are specialized models for un-

derstanding and generating text that mimics natural language. These models are

trained on extensive amounts of data, enabling them to predict the next word in a

sentence or sequence with impressive accuracy. Based on input received from the

user, the models can then generate content- and context-relevant text, making them

a powerful tool for linguistic tasks and applications. The models’ learning e�ciency

and adaptability are central to developing intuitive human-like AI systems.

Di↵erent models have di↵erent areas of use within NLP tasks and are usually di-

vided into categories such as masked or generative models. The first is focused on

prediction tasks and context understanding, based on the training data, while gen-

erative models are designed to generate new data from the training data, such as

text sequences. The field of NLP also uses a great variety of other techniques and

model types for di↵erent language tasks.

2.2.1 GPT Models

Thanks to ChatGPT, the GPT models are one of the most used and well-known

LLMs. The GPT models represent a significant advancement in NLP based on

5Technique that combines several models.

7



the Transformer architecture, first introduced by Google in the paper ”Attention is

All You Need” [21]. This architecture is designed around the idea of attention, a

mechanism within the model that weighs the importance of di↵erent words within

the same input to a varying degree. This enables models contextual understanding,

capturing dependencies and relationships between words in a sequence, regardless

of their distance from each other [21].

A part of this thesis aims to utilize the capabilities of the newer GPT models from

OpenAI such as GPT-3.5-Turbo and GPT-4. The only way of accessing these mod-

els is through OpenAIs Application Programming Interface or API for short. In

late January 2024, the newest model in the GPT-3.5 series gpt-3.5-turbo-0125 was

released, but there are several other variations of both GPT-3.5 and GPT-4 avail-

able as well [22]. What sets them apart is how the API is accessed and the cost

associated with their use.

Earlier models access the Completions API endpoint, but the later models access the

Chat Completions API endpoint which has a di↵erent interface. The first provides

completion for a single prompt as input and is what was used in the preliminary

study. The last requires the input to be structured in a way that represents the

message history of a conversation, including how the system should behave and the

content of the message [23].

2.2.2 Tokens

Within the field of NLP, models process text in parts called tokens, which commonly

represent a symbol, word, or part of a word. Language models today are based on

these tokens to analyze and find context and relations in a sentence [24]. OpenAI

also uses tokens to price the models according to the number of tokens in an input

message, and the corresponding output response. There are big di↵erences in pricing

between each model, where the gpt-3.5-turbo-0125 model costs $0.50/1M tokens for

the input, and $1.50/1M tokens for the output, while other could cost 10-20 times

as much. Table 2.1 below lists the newest and most common GPT models, where

prices are given per million tokens6 [25].

6Pricese are as of June 2024
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Table 2.1: GPT model pricing per 1 million tokens.

Model Input Output

gpt-4o $5 $15
gpt-4-turbo $10 $30
gpt-3.5-turbo-0125 $0.50 $1.50

2.2.3 Prompt Engineering

Prompt engineering is an approach to leveraging and improving the performance of

LLMs for specific tasks. It involves creating the prompt that’s given to a model in

such a way that will result in the desired output. With good prompt engineering,

the performance and e�ciency of the model can increase significantly potentially

reaching the abilities of cutting-edge fine-tuned7 models. Where fine-tuning often

limits the model for a single specific task, prompt engineering allows the model to

perform multiple tasks without needing a separate fine-tuned model for each task

[9]. Prompt engineering is a critical part of this thesis and is crucial for the results

and consistency. The formulations of the inputs are described later in this thesis in

5.

2.3 Fundamentals of Machine Learning

Within AI, Machine Learning (ML) is the field of study referring to using statistical

tools and algorithms that learn and understand the patterns in data. By generalizing

the patterns from the training, ML algorithms can perform tasks on unseen data

without explicit instructions [26]. These tools used to train the algorithm are mainly

divided into two categories, supervised and unsupervised. In unsupervised learning,

the algorithms use a dataset containing several features and then learn the properties

and structure of the dataset. Supervised learning algorithms also use a dataset with

several features, but the features are also given a label or target [26]. As this thesis

aims to predict housing prices based on existing data, it falls under the category of

supervised learning.

The overall goal of supervised learning is to develop models that can accurately

predict outcomes based on inputs. In terms of this thesis, the model will predict

7Fine-tuning is the process of optimizing a model for a specific task, by further training the
model on a new dataset.
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y as a quantitative value, based on a set of predictors x1, x2, ..., xp. In its most

generalized form, when assuming there exists a relationship between y and xp, it

can be expressed in the following way:

y = f(xp) + ✏, (2.1)

where y is the target, xp is predictors, f is the function that the algorithm aims to

learn, and ✏ is the error8 [27].

When it comes to ML, the main concern is the accuracy and reliability of predictions,

rather than the underlying nature of the relationship between input and the target.

The prediction of y is based on the predictors and can be described by the following

expression:

ŷ = f̂(x), (2.2)

where ŷ is the prediction of y, and f̂ is the estimated function of f that minimizes

the prediction error the most.

2.3.1 Data Partitioning

In machine learning, data partitioning is a fundamental practice of dividing a dataset

into subsets for more accurate evaluation of a model’s training and performance. It’s

split into three subsets, a training set, a validation set, and a testing set to make

sure the model generalizes well to new, unseen data [28].

The training set is used to train the model and is usually between 65-85% of the

total dataset. Both size, quality, and variety of the data are crucial for the model’s

ability to make accurate decisions and learn. The validation set is usually between

10-25% of the total dataset and is used to provide an evaluation of the model’s

performance while training and helping to tune the parameters. The test set is used

to give an unbiased evaluation of the final model’s performance. This set is kept

isolated from the training and valuation set to assess the performance of the finished

model. Usually, around 10-25% of the total dataset is used for testing. In this thesis,

the dataset was split to 85% for training and validation, and the remaining 15% of

the dataset was used for testing.

8Deviation between the predicted value and target value. The error is independent of xp and
has statistically mean zero [27].
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2.3.2 Resampling method

Resampling methods are used to ensure that models perform well on new and un-

seen data, especially when the dataset used is of a smaller size. There are several

approaches, but common to all of them is that they re-use the training data by con-

tinuously drawing out samples from it to replicate new validation sets [27]. There

are several resampling methods, among the most commonly used is k-Fold Cross-

Validation (k-fold CV).

K-fold CV includes dividing the training set into k folds, or parts. These folds are

more or less the same size, where the first fold is used as the validation set or hold-

out set, and the remaining folds are used to fit the model. The prediction error,

Mean Squared Error (MSE) is then calculated on the hold-out set, and then the

process is repeated k times, one for each fold [27]. K-fold CV is what is used in this

thesis and can be illustrated by the following relation.

CV(k) =
1

k

kX

i=1

MSEi (2.3)

2.3.3 Data Preprocessing

Data preprocessing is a critical part of preparing the data for an ML training process.

As this thesis aims to predict housing prices as numerical values, all features the

model is trained on, also need to be numerical. In Chapter 3 the dataset and features

used by the LLM and AVM will be explained in detail, but some information is

derived in this section.

Solgt.no has a dataset consisting of information gathered from housing advertise-

ments, including features like date sold, address, size, housing type, ownership type,

and year built.

Ordinal Encoding

Ordinal Encoding (OE) is a simple technique where each category in a feature is as-

signed an integer value and is especially useful when there is a natural order between

each category [29]. For example, features consisting of dates can be converted to

integers, that can represent days since a given reference date. That simply converts

the information from the format YYYY-MM-DD to an integer.
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One-Hot Encoding

One-Hot Encoding (OHE) is a way of giving categorical features numerical values

through a numeric array without any inherent order between categories, making it

preferable for nominal data [29]. An example can be the feature housing type where

the category column is replaced by columns for each category, and binary values

are assigned to the corresponding category. Table 2.2 illustrates OHE where the

housing type is replaced by colors.

Table 2.2: Illustration of One-hot Encoding.

Color ColorRed ColorBlue ColorGreen

Red 1 0 0
Blue 0 1 0
Green 0 0 1

2.3.4 Feature Engineering

Feature engineering is an important step of further preparing the dataset for training

in ML [30]. It involves creating new features by transforming existing features that

improve the predictive performance of the model [30]. The goal is to make the

relationship between the data points easier for the model to learn the underlying

patterns, thereby improving the model’s accuracy and e�ciency. An example is to

use the feature build year and calculate the age of a housing.

2.3.5 Overfitting

Within the field of ML overfitting is a common problem where the trained model

follows the error or noise in the training data too closely [27]. This will result in the

model not generalizing well to new unseen data, because of the model’s complexity.

An indication of overfitting is when the model has low error on the training data,

but high error on the test data. Both data prepossessing and feature engineering

are critical parts within ML to make the model find the underlying patterns of the

data, instead of the noise [31].
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2.4 Machine Learning Model - XGBoost

There are several popular algorithms used for ML tasks, including Random Forest

and Extreme Gradient Boosting, among others. Extreme Gradient Boosting or

XGBoost is used for supervised learning problems, which is what is used for housing

price estimation in this thesis. As mentioned earlier in this chapter, supervised

learning uses a dataset with several features xp to predict a target value ŷ. XGBoost

was introduced in 2016 by Chen and Guestrin [32], but is based on the work of

Friedman from 1999 regarding Gradient Tree Boosting [33].

Gradient Boosting is an ML technique that’s based on decision trees and the concept

of boosting. Decision trees work by splitting up the input data into smaller parts

based on features. This breaks down complicated decisions by dividing them into

a series of several simpler choices [26]. Gradient Boosting utilizes decision trees

as ”weak” learners by combining them in a sequence. Each tree in the sequence

aims to correct the error from the previous tree, thereby ”boosting” the model by

progressively reducing each tree’s weakness, at the end resulting in a stronger model

[34].

The XGBoost model has several additional advantages compared to Gradient Boost-

ing, such as speed due to its ability for parallel processing, in addition to perform-

ance, and flexibility making it beneficial for complex datasets and problems [32].

The following objective function is what XGBoost minimizes during training [32].

Obj =
nX

i=1

L(yi, ŷi) +
X

k

⌦(fk) (2.4)

where ⌦(f) = �T +
1

2
�kwk2 (2.5)

In Equation (2.4) and (2.5) L(yi, ŷi) is the loss function that calculates the deviation

between the predicted and target value, and ⌦(fk) is the regularization term used

on each tree to reduce overfitting. T is the number of terminal nodes or leaves in

each tree fk, while the parameters � and � control the complexity of the tree.

2.4.1 Automatic Hyperparameter Optimization

Many ML algorithms perform well after training, but the performance can benefit

significantly with tuned hyperparameters. These are parameters that are set before

training and used to control how the model trains in terms of behavior and e�ciency.
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The parameters can be set and tested manually, but using algorithms to tune them

is beneficial for both performance and e�ciency [26].

Based on the number of hyperparameters the most common algorithms are grid

search and randomized search, where grid search usually are used when there are

around three hyperparameters, and randomized search are used when there are more

hyperparameters [26]. The grid algorithm works by systematically testing every

possible combination and thereby finding the best possible combination of parameter

values. The drawback is that the computational cost grows exponentially with the

number of hyperparameters as O(nm), where m is the number of hyperparameters,

and n is the number of possible values for each hyperparameter [26].

The random algorithm is as mentioned useful when having a larger number of hyper-

parameters as it randomly selects combinations of them. This makes the algorithm

test a wide range of possibilities without evaluating every possible combination, and

nevertheless finding a close to optimal combination of hyperparameters. Random-

ized search therefore o↵ers a well-balanced trade-o↵ between computational cost and

model accuracy [35].

Figure 2.1: Grid Search Versus Random Search. The figure is inspired by work
done by Bergstra and Bengio [35].
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Chapter 3

Data

As mentioned in the introduction in Chapter 1, the overall goal is to validate if the

AVM is more accurate with additional features extracted by the LLM. In order to lay

the best foundation for the AVM, the quality of the LLM-features must therefore

be as high as possible. The feature extraction process done by the LLM will be

described in later sections. In this chapter, the datasets used in this thesis are

described.

3.1 About The Data

The datasets were provided by solgt.no and are in two parts, one part used by

the LLM, and one part used for developing the AVM. The data in the datasets

are both based on residential housing advertisements from finn.no1, sold between

January 2022 to March 2023 in Oslo, Norway. In total, the datasets overlap with

9,842 individual transactions each but are based on the same housing advertisements

identified by a finncode2.

The data used by the LLM consisted of all the textual information from the housing

advertisements distributed on the features finncode, title, description, and image

captions. Together the three latter will be referred to as the housing advertisements

listing text in this thesis. The data in the listing text consists of clean and full

sentences from the advertisements, without any unnecessary whitespace.

The dataset used by the AVM consists of a total of 25 features including finncode,

address, date sold, and sale price. Furthermore, the dataset has quantitative data

1finn.no is a popular platform for listing real estate for sale in Norway.
2A finncode is a unique sequence of numbers used to identify each advertisement on finn.no.
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such as size, floors, number of rooms and bedrooms, bathrooms, and build year. In

addition, the ownership type, housing type, and geographical features like district,

longitude, and latitude are in the dataset.

Common to both the listing texts and dataset is that they are based on identical

housing transactions. In Figure 3.1, a heat map over Oslo visualizes the frequency

of property transactions in the city. Warmer colors represent a higher number of

transactions in a particular area. This distribution is to get an idea of where in

the city the transactions have taken place, with a majority in the city center and

towards the east.

Meanwhile Figure 3.2 represents the distribution of housing prices expressed in

MNOK3 from the dataset, showcasing how the prices are distributed in the dataset.

This shows that the majority of the transactions were in the range of 3.5 to 5 MNOK

in the period from January 2022 to March 2023.

Figure 3.1: Heat-map over the residential property transactions in Oslo, used in
the dataset. A warmer color indicates a higher number of transactions in the area.

3Million NOK
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Figure 3.2: The distribution of housings by price in the dataset.

Table 3.1 shows a summary of the dataset and its important statistics for each of

the 24 usable features. This includes information about the housing such as size,

rooms, bathrooms, and housing type. In addition, information about the area and

location of the housing such as the address, postal code, longitude, and latitude are

displayed. Additional information about the features is explained in the footnotes

under the table.

The data in the dataset has several missing values that need to be handled to have

a fully usable dataset. Furthermore, some values need to be pre-processed in order

to be processed by an ML algorithm as it’s raw and unfiltered. The dataset will also

be expanded with additional features the LLM extracts from the advertisements.

All of this is going to be explained and derived in later chapters.
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Table 3.1: Summary of the statistical information of all features in
the dataset. The setup of this table is inspired by ”House price pre-
diction with gradient boosted trees under di↵erent loss functions”
by Hjort et al. [36].

Feature Unit Min Mean Max Type

Price1 MNOK 1.65 4.95 19.35 Numerical
Common Debt2 MNOK 0 0.30 5.94 Numerical
Common Costs3 NOK 530 4,557 21,490 Numerical
Housing Type4 – – – – Categorical
Ownership Type5 – – – – Categorical
Building Type Code6 – – – – Categorical
Energy Label7 – – – – Categorical
Build year – 1860 1958 2023 Numerical
BRA8 m2 2 65 365 Numerical
PROM9 m2 13 63 365 Numerical
Lot Size10 m2 0 105 4142 Numerical
Floor11 – 1 2.98 19 Numerical
Rooms12 – 0 2.71 7 Numerical
Bedrooms13 – 0 1.74 6 Numerical
Bathrooms14 – 0 0.76 3 Numerical
WC15 – 0 0.80 4 Numerical
Elevator – – – – Binary
Balcony – – – – Binary
Parking16 – – – – Binary
Longitude Degrees – – – Numerical
Latitude Degrees – – – Numerical
Postal Code17 – – – – Numerical
District18 – – – – Numerical
Date Sold – – – – Date
Address – – – – String

1 Price including depth given in million NOK.
2 The common loan of the housing association.
3 Monthly common costs.
4 Housing types: Detached home, duplex, row house, apartment, and other.
5 Ownership types: Housing cooperative, sole ownership, and other.
6 A standard for categorizing building types according to their primary use
or function. This includes the land, size, and addresses [37].

7 Energy labels are a scale from A to G for housing’s expected energy con-
sumption.

8 The size of the total area in m2.
9 The size of the living area in m2.
10 The size of the lot in m2.
11 The floor the housing is located on. For detached homes, the floor is set to
1. If a housing has multiple floors, the lowest floor is used.

12 Total number of rooms in the housing.
13 Number of bedrooms in the housing.
14 Number of full bathrooms in the housing.
15 Number of additional bathrooms in the housing.
16 If there are parking facilities adjacent to the home.
17 A standard four-digit code that indicates a geographical area in Norway.
18 District or Basic Statistical Unit is a numerical id for ”grunnkrets”, used
for geographical areas for statistical and property purposes in Norway.
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3.2 Software

The development of the software used in this thesis is done using the programming

language Python. Two programs were made, one for the feature extraction process

and one for the AVM development. The first program used the openai package

which includes a framework for setting up and accessing the GPT models through

OpenAI�s API, more on this in the next chapter [38]. For developing the AVM,

the package sklearn was used which provides a toolbox for development and visu-

alizations of results [39]. Furthermore was the package xgboost used to access the

XGBoost model used in this thesis [40].

Both programs including development, training, and testing were done on a Mac-

Book Pro with a six-core CPU and 16 GB of RAM. For the size of the dataset used

in this thesis, this worked just fine.
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Chapter 4

Methodology Phase One: Feature

Extraction with LLM

The work done in this thesis will be divided into two phases, split between two

chapters. Phase One, covered in this chapter, describes the methodology behind

implementing and utilizing AI and the GPT models to extract information from

housing advertisements listing texts. The first section will cover what information

the model aims to extract, and later sections cover how the models are accessed and

an analysis of the result. Phase Two, covered in Chapter 6 covers the implementation

of the AVM and is partially based on the results from this chapter.

The analysis in Phase One aims to investigate how well GPT models can understand

and extract information from the listing texts in housing advertisements, compared

to the actual information. This is done by developing a program that takes the full

listing text as input, sends it to the model, and systematically saves all extracted

numerical values in an output file. These values will correspond to a set of new fea-

tures that will be used in testing after Phase Two. The analysis includes comparing

the data with manually labeled data and tuning the model through prompt engin-

eering to increase quality and accuracy. Figure 4.1 displays a simple visualization

of the program.
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Simple Program Representation

LLM Program
Listing Text Feature Values

Figure 4.1: Simple Program Representation of LLM.

4.1 Feature Extraction Using LLM

Housing advertisement websites such as the well-established finn.no but also the

newer hjem.no1 have both structured information and unstructured information in

the listing texts. The listing text in these advertisements, including image captions

and descriptions, has important information about the housing in it. The idea

is to make a program that utilizes AI’s NLP characteristics to turn the textual

information into quantitative values, by defining a set of rules for the model to

follow for each feature. In this way, the program will take the full listing text as

input, and the model will return a score for each feature based on the rules for each

of them. The structured part of the advertisement is already collected by solgt.no

and is part of the dataset explained in Chapter 3.

4.1.1 Features To Extract

The chosen features that the LLM extracts are based on recommendations and

wishes from solgt.no and what is believed to a↵ect the prediction of the price the

most, both positively and negatively. This is supposed to give a more accurate

housing price prediction in the end. All features that the LLM extracts and an

explanation of them are listed in Table 4.1. The rules that the LLM follows will be

described in Chapter 4.2.

1In the start of 2024 hjem.no was released as a competitor to finn.no, but is based on the same
set up in terms of information in the housing advertisements.
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Table 4.1: Features for the LLM to extract. All features have numerical values.

Feature Explanation

Parking Best parking option in the area.
Kitchen Year of the last upgrade.
Bathroom Year of the last upgrade.
Fireplace Number of fireplaces.
Storage Number of storage units.
Storage Size Total size of storage units in m2.
Outdoor Area Type of outdoor area.
Outdoor Area Size Total size of outdoor area in m2.
Housing Standard Overall impression of housing.

4.2 LLM Program

This section provides a detailed description of the program for feature extraction.

Figure 4.2 visually illustrates the program, while the following sections will explore

and describe every aspect of the program. The program takes one housing advert-

isement from the dataset of 10,000 at a time and saves the results in a new file as

new features. For the sake of simplicity, the program is explained in terms of one

advertisement.

LLM Program

Read Dataset 

Get Model Behavior 

Create Message

GPT API

Extract Feature 
Values

Save Feature Values 
to Output File

Prepare Listing Text

Figure 4.2: LLM Program
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4.2.1 Data Preparation

The first part of the program reads the dataset with the housing advertisements.

As described earlier the dataset consists of the title, image captions, and description

that are combined into what is referred to as the advertisement listing text. As the

data consists of clean full sentences it isn’t necessary with any other processing of

the data. It is from this text the LLM should be able to return values based on each

feature’s distinct rules.

4.2.2 Creating Message

After assembling the listing text, the data is ready for the GPT model. The next

part of the program consists of accessing the GPT model, as well as generating

a response from it. The newer models use what is called Chat Completions API

endpoint, which requires a special way of defining the model’s input. To generate a

response from the LLM, the input must be constructed in a way that represents the

model’s behavior. This is an instruction for how the model should behave to the

prompt or input. In this case, the prompt is the listing text, and the model behavior

is a text defining how the listing text should be analyzed. This combination of

model behavior and prompt are called message and are defined in the following way.

message=[

{"role": "system", "content": f"{model_behavior}"},

{"role": "user", "content": f"{prompt}"},

]

The model behavior is a string constructed as a set of rules for the model to follow

for each feature. The full set of rules is formulated in Appendix A. This describes in

detail what the model can expect as input, in this case, a listing text. Furthermore,

the string includes how the model should return the extracted information based on

the rules for each feature. In total, the program accesses the GPT model once per

program cycle, in other words, one message per listing text. The process of prompt

engineering to get desired output values in the right format is described in Chapter

5. Figure 4.3 illustrates the process of making a message.

The model behavior a continuation from the preliminary project, and the formula-

tion in this thesis are therefore similar to the prompts from the project [1].

OpenAI o↵ers several models in di↵erent price ranges, limitations, and performance,

23



but the model used in this thesis is OpenAIs GPT-3.5 model gpt-3.5-turbo-0125 with

a limitation of 16,000 input tokens. Both model behavior and prompt are considered

as input, so the program also handles cases where the total of input tokens exceeds

the limit. The output from the LLM is a string with all features and correspond-

ing scores in the following format, ’parking’:’p score’, ’kitchen’:’k score’,

’bathroom’:’b score’ and so on for all features, where ’x score’ are the values

the LLM returns as most probable based on model behavior.

LLM Creating Message

API

Get Model Behavior

Input tokens 
exceeding max? 

YesNo

Skip Listing Text, 
Return 0

Max 16,000 Input 
Tokens

Get Listing Text

Save Output

Figure 4.3: Visualization of the program’s method for preparing and creating a
message for the LLM. This also shows how the program handles when a message
exceeds the input token limit.

Finn.no is a Norwegian online marketplace for listing a wide range of products and

services, including real estate. The majority of these housing advertisements are
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written in Norwegian Bokm̊al2, and the model behavior is therefore also written in

the same language, as the advertisements are from Oslo, Norway. This is to match

the model behavior and prompt, as it is easier to check if the model has missed some

information when checking the results from the output.

4.2.3 Value Extraction

The output from the LLM is a string with all features and corresponding scores as

described in the last section. The next part of the program analyses the output string

from the LLM by cycling through the features and extracting the corresponding

scores. These output scores are saved systematically in a .CSV3 file and will result

in the new LLM-features for the AVM, as explained in Table 4.1.

2Bokm̊al and Nynorsk the two written languages in Norway. The latter is only used in the
western part of the country.

3CSV is a file format that is used to store large amounts of data in a tabular form. In terms of
this thesis, each feature represents one column.
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Chapter 5

Results Phase One: Feature

Extraction with LLM

In this chapter, the results from the GPT model will be analyzed. Each result for

each feature extracted by the model will be described in detail, but firstly some

observations during the development of the program are derived.

5.1 Testing During Development

During the development of the program, extensive prompt engineering was done to

make the model behavior as precise as possible. As mentioned in Chapter 2, this is a

process of formulating the input in a way that results in the desired output. Earlier

drafts of the model behavior were simple and vague and had several deficiencies

that resulted in varying output format and values. As mentioned in Chapter 2, the

preliminary project had the same issue due to an older model and di↵erent endpoint,

and showed inconsistency in the results [1]. For this thesis, the earlier draft made

these values di�cult to interpret and use in a good way as the output format varied

greatly. The latest version of the model behavior was based on observations from

earlier drafts and was more direct and concise, resulting in a more consistent output

format and values. An excerpt from the early and final drafts goes as follows,

Early draft: ”Teksten er et utdrag fra en boligannonse. Vi ønsker å score for kjøkken

basert p̊a teksten. Returner året kjøkkenet ble bygget/pusset opp. Returner et .json

objekt der score er året.”

Final draft: ”Din oppgave er å analysere innholdet i boligannonsen. Du skal return-
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ere følgende informasjon om boligen p̊a følgende format: (...) ’kitchen’: ’k score’,

(...). ’k score’ er det fulle årstallet kjøkkenet er fra eller sist det ble renovert, pusset

opp eller oppgradert, eventuelt boligens bygge̊ar. Hvis årstall ikke er nevnt, returner

0.”

An observation from earlier drafts is that the model often returned a full sentence

instead of the year, and the year was often confused with other years from the

advertisement text. The final draft makes the model more consistent and follows

the defined format. This has been a crucial part of the thesis and the observations

and formulations have consisted of trial and error, as well as recommendations from

OpenAI for formulating inputs [9], as mentioned in Chapter 2.

5.2 Testing Process For The LLM

An important part of the thesis was to validate the e↵ectiveness and reliability of the

LLM. This is done by conducting several tests with the LLM and comparing them

to manually labeled data. The manually labeled data consists of information from

200 housing advertisements based on the same rules described by model behavior

used by the LLM.

In total, 15 tests were conducted and analyzed all with the same identical model

behavior and the same 200 housing advertisements. The test was grouped into three

groups with five tests per group, as illustrated in Table 5.1. This was done in order

to be able to compare the results directly both to the manually labeled data and to

each group. Several methods were used to validate the results based on the format

of each feature such as precision-recall methods, correlation, and percent-wise ac-

curacy compared to the manually labeled data. The 200 advertisements resulted in

200 API requests, one per program cycle.

Table 5.1: Illustration of the testing process. The total of 15 tests was divided
into three groups of five tests each.

Test Groups Tests

Group 1 Test 1 - 5
Group 2 Test 6 - 10
Group 3 Test 11 - 15
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5.3 Feature-Wise Results

Figure 5.1 displays the average feature-wise accuracy of the model when compared

to the manually labeled data. The figure displays the percentage of matching values

compared to manual labeling, but due to how the data is analyzed it isn’t necessarily

a good way to present results for all features. Especially for feature parking and

housing standard the results are seemingly worse than the other features, but in

the sections below the results will be derived further.

5.3.1 Percent-Wise Accuracy

The data in Figure 5.1 display the results from Test 1 to Test 5 in Group 1.

The overall outcome showed a strong performance for the majority of the fea-

tures extracted. The features kitchen, bathroom, fireplace, storage size and

outdoor area size, had all over 90 % match with the manually labeled data. This

indicates that the model e↵ectively handles the defined task from the model beha-

vior and prompts for these features in the tests well. For kitchen and bathroom

the model extracts a year for the last significant upgrade and returned a strong

performance of 93.0 % and 90.8 % compared to the labeled data, respectively.

Figure 5.1: The average feature-wise model accuracy compared to manually
labeled data for Group 1, Test 1 - 5.
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Figure 5.1 only displays the results from Group 1, but when all tests across the

groups are compared to each other, the output returned for all features is relatively

consistent. The biggest di↵erence between the results was 5.0 percentage points

for housing standard where the weakest result was 31.5 % in Test 10 and the

strongest was 36.5 % in Test 11. The average di↵erence between the weakest and

strongest results for all features was 2.2 percentage points. The average feature-wise

model accuracy for all tests is summarized in Table 5.2, as well as each feature�s
correlation compared to the manually labeled data. This is an indication of how

well the LLM-data follows the labeled data.

Table 5.2: Average feature accuracy and correlation compared to manually labeled
data.

Features Accuracy Correlation

Parking 29.37 % 0.7920

Kitchen 92.87 % 0.8730

Bathroom 90.70 % 0.8400

Fireplace 95.47 % 0.8455

Storage 73.37 % 0.6080

Storage Size 95.70 % 0.8282

Outdoor Area 70.53 % 0.7032

Outdoor Area Size 93.57 % 0.9801

Housing Standard 33.67 % 0.7146

5.3.2 Precision-Recall

The feature fireplace had an average accuracy of 95.47 %, but an observation

from the labeled data showed all samples either had a fireplace or not1. The feature

is therefore treated as a binary feature when analyzing the results. In total 77.00 %

of the samples did not have a fireplace, and in such cases where one observation is

significantly more frequent than the other, the precision-recall method is a way of

validating the results from the model [41].

When extracting information, recall measures the amount of relevant results re-

turned, while precision measures the relevancy of the results. Precision-recall dis-

plays a trade-o↵ where high recall and low precision return many results with mostly

incorrect predictions. If the precision is high and recall is low the system will return

few results, but with mostly correct predictions. Therefore, a strong system has high

1Of the nearly 10,000 samples used later in the thesis, 0.60 % has two or more fireplaces.
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precision and high recall [26]. Precision (P ) and recall (R) are a number between 0

and 1 and are given by the following equations

P =
Tp

Tp + Fp
, (5.1)

R =
Tp

Tp + Fn
, (5.2)

where Tp are true positives, Fp are false positives, and Fn are false negatives. To

summarize the performance with a single number one can calculate the harmonic

mean of the precision and recall. This is referred to as the Fscore and is given by the

following equation [26],

Fscore =
2PR

P +R
. (5.3)

During the testing process, 14 of the 15 tests conducted produced the exact same pre-

dictions for fireplace showing both consistency and strong results where Fscore =

0.9072, with P = 0.8627 and R = 0.9565. Test 12 deviated from the other test with

a slightly lower precision of 0.8462 resulting in a Fscore of 0.8980.

Most housings either have a fireplace or not, and very few have multiple fireplaces

which was the case in this dataset. As described in Table 3.1, the dataset consists of

mostly smaller apartments where a fireplace isn’t common. If it had been assumed

that no housing had a fireplace, the test would have returned a 77 % accuracy,

meaning that the GPT model performs well, as the Fscore indicates.

5.3.3 Correlation

As briefly mentioned earlier the accuracy and correlation of each feature were listed

in Table 5.2. The table reveals that the features parking and housing standard had

significantly lower accuracy than the other features. In contrast, these features had

more complex rules described in the model behavior. By calculating the correlation

coe�cient the trends in the data are captured, even though the complicated rules

and criteria might be hard to hit exactly. The coe�cients for both features showed a

relatively high correlation, and therefore a stronger performance than the accuracy

first indicated.

Figure 5.2 displays the correlation coe�cient for parking between the weakest (a)

and strongest (b) test, respectively. Compared to the manually labeled data the
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weakest and strongest test resulted in a correlation coe�cient of 0.7897 and 0.8085.

This indicates a stronger relationship and result than the percent-wise accuracy

indicated.

When it comes to feature housing standard, the correlation is plotted in Figure

5.3, and shows the weakest (a) and strongest (b) test for the feature. The cor-

relation coe�cients for the plots were 0.7163 and 0.7235 which indicate a stronger

relationship and performance than the percent-wise accuracy first indicated.

(a) (b)

Figure 5.2: Correlation of Parking compared to manually labeled data.

(a) (b)

Figure 5.3: Correlation of Housing Standard compared to manually labeled data.

As language models have some uncertainty and unpredictability in the model’s re-

sponse the correlations and results will vary. The average correlation coe�cients for

parking and housing standard for each group are summarized in Table 5.3 bellow.

Observations form the tests suggests that a weaker performance for one feature also

resulted in a weaker result for the other feature, the same goes for the stronger
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performance. An example is Group 2 where both parking and housing standard

had a higher correlation coe�cient than the other groups.

Table 5.3: Average of the correlations between LLM and manually labeled data.
(Average of the correlations.)

Groups Parking Standard

Group 1 0.7744 0.7041

Group 2 0.8057 0.7251

Group 3 0.7958 0.7146

Average 0.7920 0.7146

In a separate analysis of the output data, the average of the output scores was

calculated, before calculating the correlation between this average and the manu-

ally labeled data. This resulted in correlation coe�cients of 0.7925 and 0.7227 for

parking average and housing standard average in Group 1 respectively. The

results are illustrated in Figure 5.4 and summarized in Table 5.4. When comparing

these results to the results above, the latter analysis results in a slightly higher cor-

relation coe�cient for both features and scores higher in all groups for both features.

This indicates that averaging the LLM-outputs might reduce noise and unusual de-

viations from the labeled dataset.

(a) (b)

Figure 5.4: Correlation of the average parking and Housing Standard compared
to manually labeled data.
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Table 5.4: Correlation of the average scores given by the LLM compared to manu-
ally labeled data. (Correlation of the average.)

Groups Parking Standard

Group 1 0.7925 0.7227

Group 2 0.8147 0.7451

Group 3 0.8096 0.7355

Average 0.8056 0.7344

Since the last analysis indicated a better performance when averaging the LLM-

output, the same was done for all features for all tests. After calculating the average

of all 15 tests and then calculating the correlation, the coe�cients for all features

showed an increase. As mentioned this indicates a reduction in noise and deviations

from the manually labeled data. Table 5.5 compares both approaches derived in

this section.

Table 5.5: Comparison between average correlation, and correlation of the average.

Features Average Correlation Correlation of the Average

Parking 0.7920 0.8186

Kitchen 0.8730 0.8740

Bathroom 0.8400 0.8450

Fireplace 0.8455 0.8461

Storage 0.6080 0.6171

Storage Size 0.8282 0.8547

Outdoor Area 0.7032 0.7463

Outdoor Area Size 0.9801 0.9812

Housing Standard 0.7146 0.7474

5.3.4 Runtime and Cost

As mentioned the tests above are done with 200 housing advertisements, which had

an average runtime of 4,33 minutes and cost of $0.21 per test. The total number of

listing texts given by solgt.no is 9,984 all of which were sent through the program

and analyzed by the LLM. This resulted in 9,984 API requests totaling 23.68 million

tokens, with 23.0 million input tokens, and 0.68 million output tokens. The total

cost of these was $24.33 with a computational time of 4.3 hours.
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5.4 LLM Discussion and Observations

The LLM shows strong overall performance with high accuracy and high correlation

for all features when compared to the manually labeled data. This is a good indica-

tion of how well the GPT model understands the goal, and its ability to extract the

correct value from the listing test.

Even with the strong performance, there are some important observations from the

listing texts and the results. The listing text provided by solgt.no did not include

all text from the housing advertisements. Both the sections key information and

facilities2 were left out of the provided advertisements, leaving out some additional

information that could improve the results of the LLM further.

Another observation from the housing advertisement revealed generally varying in-

formation about the facilities, sizes of outdoor spaces, and recent upgrades. Where

some had detailed information about everything, and others o↵ered nothing. Table

5.6 illustrates the variation in the data.

The table shows the number of times the information about a given feature isn’t

available, or the model could extract it. The manually labeled data in the first

row of the table emphasizes that 47.00 % and 26.00 % of the listing text didn’t

have information on when the last upgrade of the kitchen and bathroom was. This

correlates well with the GPT model’s ability to extract the same information, as the

last two rows in the table suggest. When it comes to the storage area and outdoor

area, the manually labeled data suggests that in 79.50 % and 38.00 % of the housing

advertisements, the area isn’t mentioned. Furthermore, if a measurable storage area

or outdoor area is mentioned in the listing texts, 40.00 % and 26.50 % of these sizes

aren’t, mentioned. Again the GPT model’s ability to extract information suggests

the same.

Table 5.6: Lack of information from the housing advertisement.

Kitchen Bathroom Storage Size Outdoor Size

Labeled (200 Samples) 47.00 % 26.00 % 79.50 % 38.00 %

Test Sets (200 Samples) 51.50 % 33.00 % 76.50 % 37.00 %

AVM Set (10 K Samples) 47.38 % 32.71 % 70.05 % 38.49 %

Another observation from the listing text was that if the year wasn’t explicitly

mentioned in context, the model had di�culty returning the correct year for the

2Facilities often summarizes the information from the housing advertisement.
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kitchen and bathroom. In addition, if a housing had several upgrades over multiple

years the model didn’t always choose the most recent for kitchen and bathroom.

Despite this, the model shows strong performance in finding the correct information.

The model’s ability to extract the number of storage units was also relatively high,

resulting in a correlation of 0.6080 compared to the manually labeled data. The

same goes for the outdoor area, with a correlation of 0.7032 the model shows a

strong performance.

When it comes to the formulation of the listing text, it generally under-communicates

the standard of a housing condition if the condition is considered worse. If the hous-

ing condition is considered better, the opposite goes and the listing text focuses on

the details. It’s the same case for parking, where worse parking options are often

under-communicated. This makes it hard for the LLM to distinguish the di↵erences

in the lower end.
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Chapter 6

Methodology Phase Two:

Automated Valuation Model

The work done in Phase Two covers the implementation and training of the AVM

and is partially based on observation and results from Phase One. This included

making a program that takes a selection of features from the dataset and the LLM

as input, training the model based on the features, and calculating the model’s per-

formance. The first section includes preparing the data through data pre-processing

and feature engineering. Later sections include partitioning the data and training

the model.

The analysis in Phase Two aims to investigate how the features extracted by the

LLM influence the AVM and validate the e↵ectiveness and reliability of the AVM.

A simple illustration of the program from features to trained model is explained in

Figure 6.1.

Simple Program Representation of AVM

AVM Program

LLM-Features

Price Prediction

Initial Features

Figure 6.1: Simple Program Representation of AVM.
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6.1 Available Features To The AVM

The features available have been presented earlier and are a combination of the ori-

ginal dataset, and what the LLM extracted from the housing advertisements. The

Table 4.1 and Table 3.1 from earlier chapters explain all the features available to

the AVM, and the combined available features are listed in Table 6.1. As the fea-

ture address is unique to all housings and is given as a string, the feature isn’t

suitable for the model as it only takes numerical values. Instead a combination of

lng and lat will give a representation of the location of the housing, in addition to

district id which represents a small geographical area. The total of available fea-

tures is then 33, including 24 features from the original dataset and nine extracted

by the LLM.

Table 6.1: All available features for the AVM.

Features from dataset Features from LLM

balcony housing type parking llm
1

bathrooms lat kitchen

bedrooms lng bathroom

BRA lot size fireplace

build year ownership type storage

building type code parking
2

storage size

common costs postal code outdoor area

common debt price outdoor area size

district id PROM housing standard

elevator rooms

energy label sold date

floor WC

6.2 Program for Model Training and Tuning

This section provides a detailed explanation of the program for training and tuning

the AVM. The following sections will describe di↵erent aspects and parts of the

program, from preparing the data, training the model, and evaluating the model’s

performance. For a visual explanation of the program see Figure 6.2. The program

1Parking from the LLM is given as a numeric value. Earlier in the thesis referred to as parking.
2Parking in the dataset is given as boolean.
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is based on a subset of the features from the 9,842 housing advertisements and

produces an estimation of how well the model works on new and unseen data.

Visualization of the AVM Program

Handle NaN Values

Featurized Textual Data

AVM

Price Prediction

LLM-Features Initial Features 

Structured Data

Data Preprocessing

Feature Engineering

Handle Outliers

Training Model

Hyperparameter Tuning

Figure 6.2: Program representation of the AVM program.

6.2.1 Handling NaN Values

The first part of the program reads the datasets and assembles the data frame based

on the features chosen for the model. Since the dataset has several missing values,

these are needed to be handled in order to train the model. There are several ways

of handling these, but the simplest way is to delete the entire row when a missing

value is registered. As our dataset is of a smaller size, doing so would reduce the

dataset by 12.35 % to 8,623 samples and would a↵ect the model performance negat-
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ively. Because of the di↵erences in the features and their domain, the missing values

are handled di↵erently based on the features the missing values belong to. The

results in Chapter 5 indicated that the LLM had di�culty returning values for some

of the LLM-features. As LLMs do have a certain randomness, it’s not surprising

that the model missed some values when extracting them from the listing text. The

”missing” values of kitchen and bathroom from the LLM-features were handled to

compensate for the LLM output. Totally nine of the available features had miss-

ing values and are summed up in Table 6.2, where they are split between mode3,

mean4, and median5 as these had best results. The two LLM-features kitchen and

bathroom have the by far highest amount of ”missing” values due to the lack of

information in the listing texts as discussed in Chapter 5.

Table 6.2: Handling NaN/missing values

Feature Number of NaN NaN Replacement

bedrooms 213 mode

district id 45 mode

building type code 353 mode

common costs 28 mean

BRA 119 mean

build year 12 mean

lot size 861 mean

kitchen 4730 median

bathroom 3266 median

6.2.2 Data Preprocessing

After preparing the dataset and handling missing values, some features undergo data

preprocessing which transforms data into a usable format. In this case the features

sold date, housing type and ownership type undergo preprocessing to convert

date/time and categorical values to usable formats.

The feature sold date is converted to sold date days, transforming the data from

Year-Month-Date format to numerical values representing days since the housing is

sold, from a reference day. This makes the new feature a direct indication of when

3Mode is the value that appears most frequently.
4Mean is the average value.
5Median is the middle value in a sorted list.
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a property is sold, describing changes in the real estate market.

Both housing type and ownership type are features with categorical values, that

undergo OHE to prepare them for the model training process. As mentioned in

Chapter 2 and illustrated in Figure 2.2, one-hot encoding creates a binary column

for each category in a feature. The original feature housing type is replaced with

five new columns, and ownership type is replaced with three new columns, enabling

the model to handle the categorical values. These columns are given in Table 6.3.

Table 6.3: One-Hot Encoding of the features housing type and ownership type.

Feature

housing type ownership type

detached co-op

duplex sole

row other

apartment

other

6.2.3 Feature Engineering

Feature engineering are used to prepare the data further and increase the data qual-

ity in the dataset. As derived in Chapter 2, feature engineering involves changing

the relationship between the data points for a feature to make it easier for the model

to learn the patterns on the data. From the available features in Table 6.1, kitchen,

bathroom, and build year are all features where the values are a year. These values

have been converted to age, directly providing information on how old the kitchen,

bathroom, or building is by transforming the data and reducing the model’s com-

plexity by eliminating the need to handle this relationship. After calculating the age,

by simply subtracting the feature year from the current year, the original features

are replaced by kitchen age, bathroom age, and building age.

6.2.4 Remove Outliers

Even though handling missing values, data preprocessing, and feature engineering

ensure that the data are in the right format, there are still data points for each

feature that deviate significantly from other data in the dataset. These di↵erences,
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referred to as outliers, are not meant to be in the dataset and can negatively impact

model performances.

In this thesis, Isolation Forest (IF) has been used to identify and remove outliers

in the dataset. This method has been proven to be e↵ective and preferred over

other approaches, especially for datasets with many abnormal deviations [42]. By

conducting a test it was found that the Isolation Forest model found 1,041 possible

outliers, meaning 10.58 % of the dataset. Because of the sample size of the total

dataset, removing too many data points would remove real values and thereby the

diversity in the data.

Further testing found that removing 9.5 % of the possible outliers both gave the

best results while keeping the majority of the dataset. This resulted in filtering out

1 % corresponding to 99 samples from the original dataset reducing it from 9,842 to

9,743.

6.2.5 Data Partitioning and Resampling Method

In this thesis, the training and test split of the data is 85 % for training and the

remaining 15 % of the data for testing. The testing set is what the model uses to

compute the error and performance of the model, and was chosen as it provides a

good balance between having su�cient data for testing and training.

As mentioned earlier, the resampling method for validation used during training is

K-fold CV. The number of folds is set to k = 5, which provides a strong balance

between computational e�ciency and the number of samples per fold. This choice

o↵ers a well-balanced trade-o↵ between the amount of training data and validation

data, as the number of folds reduces the variance of the performance estimate. A

higher number of folds could increase the robustness of the estimate, it also would

increase the computational cost. To prevent overfitting the models are trained with

early stopping, which is a mechanism that stops the model training before it learns

the patterns in the data too well. At this point, the base model with the chosen

features is done and tested towards the testing set.

6.2.6 Hyperparameter Tuning

To enhance the model’s performance, the XGBoost model has several hyperpara-

meters that need to be tuned. The chosen parameters are listed in Table 6.4, and are

based on observations from existing literature and the documentation for the model
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[43] [44] [45]. To prepare for the tuning process each hyperparameter is defined

with a set of values, and then di↵erent combinations of these values constitute the

optimization process. These values range based on the literature mentioned and the

dataset size. In addition to enhancing the model’s performance, will this also reduce

the overfitting of the model [45]. As mentioned in Chapter 2, there are beneficial

to use the random search algorithm for the number of hyperparameters chosen as

this will find the good values for hyperparameters much faster than grid search [35].

This means that even with fewer hyperparameter combinations tried, the random

search fits the model comparable to what grid search would. In this case, 100 di↵er-

ent combinations of hyperparameters are tried out. Table 6.4 and Table 6.5 explain

and display the di↵erent hyperparameter ranges.

Table 6.4: The range and explanation of the hyperparameters are from the XG-
Boost documentation [45].

Hyperparameter Range Explanation

learning rate [0, 1] Learning rate
gamma [0, 1] Minimum loss reduction required for partition
min child weight [0, 1] Minimum sum of instance weight in child
subsample [0, 1] Ratio of training set sampled for each tree
colsample bytree [0, 1] Ratio of columns when constructing a tree
max depth [0, 1] Maximum depth of the tree
n estimators [0, 1] Number of trees
alpha [0, 1] L1 regularization term on weights
lambda [0, 1] L2 regularization term on weights

Table 6.5: The hyperparameter tuning range is based on the literature mentioned
in this section.

Hyperparameter Value Range

learning rate (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
gamma (0.0, 0.1, 0.2, 0.3, 0.4, 0.5)
min child weight (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
subsample (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)
colsample bytree (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)
max depth (3, 4, 5, 6, 7, 8, 10)
n estimators (100, 200, 300, 400, 500, 600, ..., 1800, 1900, 2000)
alpha (0, 0.01, 0.1, 1, 10, 100)
lambda (0, 0.01, 0.1, 1, 10, 100)
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6.3 Model Evaluation

The model used in this thesis, XGBoost, aims to reduce the Mean Squared Error

(MSE) between the prediction and actual value but default. As this thesis seeks

to investigate what impact the features extracted by the LLM have on the AVM,

it is therefore natural to use MSE or Root Mean Squared Error (RMSE), which is

directly linked to MSE, to measure the AVMs performance. In addition, further

comparisons between the output of the AVMs are also Mean Average Error (MAE)

and Mean Average Percentage Error (MAPE) used. RMSE is given by the following

formula

RMSE =

vuut 1

n

nX

i=1

(yi � ŷi)2, (6.1)

where n is number of observations, yi is true value, and ŷi is predicted value [46].

To get clearer and easier comparisons the percentage deviation between the RMSE

and the average target value are used in this thesis. This is referred to as RMSE%

in this thesis and is given by the following

RMSE% =
RMSE

average target
⇥ 100. (6.2)

When it comes to Mean Average Error (MAE) and Mean Average Percentage Error

(MAPE) they are given by the following

MAE =
1

n

nX

i=1

|yi � ŷi|, (6.3)

MAPE =
1

n

nX

i=1

����
yi � ŷi

yi

����⇥ 100, (6.4)

where n is number of observations, yi is true value, and ŷi is predicted value [47]. By

comparing the di↵erent error measures the impact and distribution of the errors can

be explained. MAE is a measure of the average size of errors, without considering if

the error is positive or negative. The same goes for MAPE, but given as a percentage

error from the true value, giving a relative measure of the size of the error. RMSE

measures the square root of the average squared error. Equation (6.1) describes how
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large errors or outliers6 are given a higher weight, making it penalize larger errors

to a greater extent than MAE [46].

6Significant errors are often referred to outliers.
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Chapter 7

Results Phase Two: Automated

Valuation Model

In this chapter, the testing and results from the AVM will be presented and ana-

lyzed. The work and observations done in Phase One and Phase Two of this thesis

are combined to produce comparable results. Firstly the testing process and assump-

tions for the process are explained, this includes some observations of the model’s

performance. Secondly, models are trained on di↵erent combinations of the initial

features and compared to the inclusion of LLM features. Lastly, the performance

observations are discussed and put in context wit observations from Phase One.

7.1 AVM Testing Process

The main part of this thesis is to validate the e↵ectiveness and reliability of the

AVM, when the features extracted by the LLM are used. To compare the model

performances several tests are conducted with di↵erent combinations of the features

available, both without the LLM-features and with them.

The models trained are based on the same 9,743 samples in the dataset, and the same

data preprocessing and feature engineering as the program described in Chapter 6.

In addition, the data partitioning and resampling methods are also identical in all

tests. The features used in training are the only aspect that is di↵erent during the

processes, and both models are tuned through hyperparameter tuning. The range

of the hyperparameter values can be found in Table 6.5 in Chapter 6.

The testing process started with training the AVM on all available features and then
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checking each feature’s importance. The LLM-features importance and impact on

the AVM output were investigated by removing and analyzing one LLM-feature at a

time, and then calculate the model’s new performance. Later the models are mainly

trained on a subset of the features available, and there are several feature selection

techniques to filter out the weak features. As the main goal of this thesis is to

investigate to what degree the LLM-features impact the AVM, the feature selection

process hasn’t been described in detail, as this is outside the scope of this thesis.

Observations show a slight di↵erence in the performance between the training set

and test set for all models trained. Although hyperparameter tuning corrects parts

of the deviation, the model fits the training set lightly better than the test, indicating

a mild sign of overfitting. Even with this small indication the model fits the test

set relatively well, suggesting a respectable performance on unseen data and viable

results.

7.2 AVM Comparisons

Each model is trained on all or a subset of the initial features from the dataset from

Table 6.1, and is compared to di↵erent combinations of the LLM features. This will

show the impact of the LLM-features in a clear and systematic way.

7.2.1 Test 1 - All LLM-features

For the first model, all 24 of the initial features available were used and were

hyperparameter-tuned to enhance the model performance. The trained and tuned

model, referred to as the base model, resulted in an RMSE% of 10.53 % and a

MAPE of 6.36 % compared to the test set. When adding all nine LLM-features the

model was trained on a total of 35 features and the model performance resulted in

an RMSE% of 9.40 % and a MAPE of 5.35 %. This increased the model accuracy

for both measures by 1.13 and 1.01 percentage points respectively, resulting in an

improvement of 10.73 % for RMSE% and 15.88 % for MAPE. Table 7.1 summarizes

the result from Test 1.

Table 7.1: AVM results compared to base model for Test 1.

Base AVM Di↵erence Improvement

Test 1
RMSE% 10.53 % 9.40 % -1.13 10.73 %
MAPE 6.36 % 5.35 % -1.01 15.88 %
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Figure 7.1: Feature Importance of AVM in Test 1.

Figure 7.2: Feature Importance of AVM with LLM-features in Test 1.
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Figure 7.1 and Figure 7.2 visualize the feature importance for the AVM and the

AVM with LLM-features respectively. The plots show how much each feature im-

proves the performance of the model where the features are listed on the x-axis, and

the importance score is on the y-axis. The second plot only displays 25 of the most

important features due to the lack of space. It is clear from both figures that the fea-

tures rooms, housing type apartment, PROM, and lng are the features that have the

greatest impact on both models. On the other end, the least impactful features are

slightly di↵erent for each of the models. For the AVM sold date days have the least

impact on the model, in addition to housing type detached, housing type other,

and ownership type co-op which was omitted from the figure. An observation dur-

ing the test was that all samples from the dataset had the same ownership type,

making the feature ownership type constant, which means it doesn’t contribute to

the performances of any of the models.

The housing types mentioned above also have the least impact on the AVM with

LLM-features. In addition storage, bathrooms and storage size are also weak

for the latter model in this test. Furthermore, among the bottom third of the

weakest feature importances for this model was a total of five LLM-features. This

includes kitchen age, bathroom age, and outdoor area size in addition to the

two LLM-features mentioned above.

Figure 7.3 and Figure 7.4 are SHAP (SHapley Additive exPlanations) summary

plots for the AVMs. These plots also display the importance of features but with

the degree of change and their direction for the 15 most impactful features. The

y-axis shows the level of importance, and the x-axis indicates the degree of change.

Each dot represents one data point for each feature from the dataset, and the color

indicates the value of the data point, where red is a higher and blue is a lower value.

The plot shows that PROM, lng and BRA are among the most impactful features, as the

feature importance plots above also showed. The size of a housing is understandably

an important factor when estimating its housing. When considering the SHAP plot

for the AVM with LLM-features suggests that housing standard and parking llm

have a relatively strong impact on the model’s output, while other features more

or less stay the same. This is in line with the model performance enhancement as

described in Table 7.1. When analyzing longitude further, one can see that lower

data point values mostly have positive SHAP values and higher data point values

have negative SHAP values. As a smaller longitude means further to the west, the

figure indicates that housing location in the east-west plane significantly impacts

the model output. This is in line with the statistics of the real estate market trends

in Oslo [48].
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Figure 7.3: SHAP Values for AVM in Test 1.

Figure 7.4: SHAP Values for AVM with LLM-features in Test 1.
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(a) (b)

Figure 7.5: Residual plot and its distribution.

(a) (b)

Figure 7.6: Prediction versus actual values.

(a) (b)

Figure 7.7: Learning curves
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Figure 7.5 compares the residual1 plots for the models, for both training and test

set. In Figure 7.6 the prediction versus the actual values are displayed. In both

figures (a) are more noisy and have more outliers, while (b) have a more compact

plot. Even though the test set has several outliers, the majority of the data points

are more compact when compared to (a) for both figures. These outliers are due to

some rare cases where all LLM-featrues was 0. The overall observations are in line

with the results of RMSE % and MAPE indicating a more accurate price estimation

when the LLM-features are included.

The learning curves in Figure 7.7 describe the learning process where a bigger gap

between the training curve and the learning curve (Cross-validation score) indicates

overfitting of the model. A perfect model would have an accuracy score of 1, while

worse performing model would have an accuracy score towards 0. As described

earlier, the models fit the test data relatively well, but the gap can indicate a slight

overfitting of the models.

7.2.2 Test 2 - Subset of LLM-features

Test 1 indicated that the LLM-features had a positive impact on the model’s per-

formance in total, but the four features bathroom age, kitchen age, storage size,

and outdoor area size still showed low a feature importance compared to others.

In Test 2 these weak features were removed and compared to the same base model

as in Test 1.

The removal of the weaker LLM-features resulted in an RMSE% of 8.14 % and a

MAPE of 5.59 % compared to the test set. When compared to the base model,

this showed an increased accuracy by 2.39 and 0.71 percentage points, resulting in

an improvement of 22.70 % for RMSE% and 12.11 % for MAPE. The results are

summarized in Table 7.2 below, and also compared to results from Test 1.

Table 7.2: AVM results compared to base model for Test 1 and Test 2.

Base AVM Di↵erence Improvement

Test 1
RMSE% 10.53 % 9.40 % -1.13 10.73 %

MAPE 6.36 % 5.35 % -1.01 15.88 %

Test 2
RMSE% 10.53 % 8.14 % -2.39 22.70 %

MAPE 6.36 % 5.59 % -0.77 12.11 %

1Residual is the di↵erence between the actual true value and estimated value.
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(a) (b)

Figure 7.8: Residual plot and its distribution.

(a) (b)

Figure 7.9: Prediction versus actual values.

(a) (b)

Figure 7.10: Learning curves
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Figure 7.8 and Figure 7.9 compare the results from the base model in Test 1, and

the improved model after eliminating weaker LLM-features. Once again the (b)

plots show an improvement over the base model, also when compared to the AVM

with LLM-featurs from Test 1. When comparing both AVMs with LLM-features,

the model from Test 2 has a 13.40 % improvement for RMSE%, while the MAPE

is slightly worse at a -4.49 % change. Despite these results, Figure 7.10 (b) shows

a smaller gap between the learning and training curves, indicating a better fit and

total improvement of the model.

7.2.3 LLM-Feature Impact

To investigate which LLM-features are most important for the base model, their

performances are plotted as SHAP Dependence Plots compared to the actual housing

price. Figure 7.11 (a) display performance of housing standard which indicates a

clear positive relationship compared to actual housing price. In (b) the parking llm

is displayed and shows a slightly di↵erent, but also positive, relationship. The plot

starts more flat before increasing significantly with a higher value, which corresponds

to a ”better” parking option. This indicates that parking isn’t as impactful for the

lower feature values.

(a) (b)

Figure 7.11: SHAP Dependence Plot.

The plot in Figure 7.12 (a) and (b) show kitchen age and bathroom age. Both

of these plots are relatively flat but have a slight negative trend. This reveals a

negative correlation between each feature and the actual housing price. Both plots

are relatively flat until the age of 15 years, before trending downwards. As both

features start with a relatively flat trend, they are not as impactful and important

to the model for housings younger than 15 years.
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(a) (b)

Figure 7.12: SHAP Dependence Plot.

The plots in Figure 7.13 are the SHAP plots for storage size and outdoor area size.

Both have noisy results, especially for higher feature values, which impacts the model

negatively as it isn’t consistent with its values for the same preconditions. Plot (a)

are generally flat indicating a weak impact on the model’s output, while (b) has a

slight positive trend, but a lot of noise. The irregularities in both plots make it hard

for the features to contribute positively to the model.

Further observations for the remaining LLM-features show a relatively strong per-

formance by the feature fireplace with a clear positive correlation, while outdoor area

and storage were weaker only contributing slightly. Common to the last two was

a relatively flat plot with many data points on a few values.

(a) (b)

Figure 7.13: SHAP Dependence Plot.
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7.2.4 Test 3 - Subset of Initial and LLM-features

Based on the observations it is a clear indication that some of the LLM-features

have positive e↵ects on an AVM. After testing each individual LLM-feature with

the base model from Test 1, it shows that all of them have a clear positive impact

on the base AVM on their own, except storeage size and outdoor area which

didn’t significantly a↵ect the model.

A feature selection method has been used to find a subset of all available features,

including LLM-features, for the model to enhance its performance. This process

removed the housing standards detached and other as well as ownership type.

Additionally, four2 LLM-features, bathroom age, kitchen age, storage size, and

outdoor area size, were also filtered out.

Without the LLM-features, this model returned an accuracy of 9.98 % in terms or

RMSE% and an MAPE of 6.53 %. The feature combination when introducing the

LLM-fetrues resulted in a strong performance with an RMSE% of 7.97 % and MAPE

of 5.39 %. This is an accuracy improvement of 20.14 % for RMSE% and 17.46 %

for MAPE. This is the strongest model presented and has the smallest gap between

training and test curves, both increasing the accuracy and minimizing signs of over-

fitting. Compared to the base model in Test 1, by introducing LLM-features and

undergoing feature selection the AVM showed an accuracy improvement of 24.31 %

for RMSE% and 15.25 % for MAPE. The results are summarized in Table 7.3 below.

Table 7.3: AVM results compared to base model for Test 1, Test 2 and Test 3.
Additionally the model in Test 3 is also compared to the subset AVM.

Base AVM Di↵erence Improvement

Test 1
RMSE% 10.53 % 9.40 % -1.13 10.73 %

MAPE 6.36 % 5.35 % -1.01 15.88 %

Test 2
RMSE% 10.53 % 8.14 % -2.39 22.70 %

MAPE 6.36 % 5.59 % -0.77 12.11 %

Test 3
RMSE% 10.53 % 7.97 % -2.56 24.31 %

MAPE 6.36 % 5.39 % -0.97 15.25 %

Subset AVM

Test 3
RMSE% 9.98 % 7.97 % -2.01 20.14 %

MAPE 6.53 % 5.39 % -1.14 17.46 %

2The four features removed are the same four that were pointed out as the weakest contributors.
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Chapter 8

Discussion

In this chapter, all the results from Phase Two are discussed and put in context to

the outcome presented in Phase One. This will highlight the correlations between

the findings in both phases, in addition to critically evaluating the use of AI in the

real estate market.

8.1 Feature Impact on LLM and AVM

The analysis and results done throughout this thesis demonstrate the large impact

and potential AI has on price estimation in the real estate market. By introducing

property-specific features whose values are extracted by a GPT-model, the accur-

acy generally has increased the performance significantly. Even with the overall

performance gain when including LLM-features in an AVM, there is a distinction

between the contributing features.

There is a link between the results in Phase One and the results in Phase Two, but

there are several factors that play a huge role in a feature’s ability to contribute

positively to an AVM. The information provided in a real estate advertisement,

the formulation of the listing texts, the LLM’s ability to understand the goal, and

its ability to extract the correct information are all important to have the best

foundation for the AVM.

As described in Chapter 5 the majority of features extracted showed a high accuracy,

and all had a relatively strong correlation coe�cient. Even with these results, the

output of the AVM had varying outputs indicating that it isn’t necessarily a direct

link between the performance in Phase One and Phase Two.
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8.1.1 Output Comparison of Phase One and Phase Two

The feature housing standard led to significant performance gain and was the

LLM-feature with the highest impact. Its impact is in line with results from a newer

study by Oust et al., concluding that the condition of a housing gave consistent

performance gain across all models they tested [19]. From Phase One, the feature

showed a relatively strong performance in terms of an average correlation of 0.7146,

indicating that the LLM hits close to the score given in the manually labeled data.

Since the labeled data is based on impressions from the listing text that can be

di↵erent for each reader, the correlation is a strong performance as it follows the

same impression to a large extent. The same goes for parking llm, also with a

strong average correlation of 0.7920, the feature increased the AVMs performance

as the second most important LLM-feature. On the other hand, even with the

high correlation, the LLM’s ability to accurately extract values was the worst of all

features, which suggests a bigger potential for the feature.

Among the features with the highest accuracy from Phase One had fireplace an

accuracy of 95.5 %, and a high combined precision-recall score (F-score) of 0.9072.

This was also the only feature that could be seen as binary, as only 0.60 % of the

samples had more than one fireplace, meaning the remaining 99.4 % of the housing

advertisements either had or didn’t have a fireplace. By putting these results in

context with the impact of the AVM, one can argue that a high F-score for features

with binary values seems to have a positive e↵ect on the AVMs output. On the other

hand, as this is the only LLM-feature where this is the case it cant be determined

with certainty, but by looking at other non-LLM-features with binary values used

to train the AVM they also have a positive impact on the model.

When it comes to the other high accuracy features kitchen, bathroom, storage size,

and outdoor area size, even with high correlation coe�cients between 0.8282 and

0.9801, are the results worse than other features. All four of the features had a clear

negative impact on the model’s output. As the LLM ability to extract the correct

information, and other features with the same accuracy and correlation scored way

better, there are other factors that play a role in the weak impact on the AVM.

During that analysis of the LLM performance in Chapter 5 it was discovered that

a good portion of the listing texts lacked the information the LLM was meant to

collect, meaning the listing texts themselves seem to have an impact. The missing

values made the LLM return blank values (”0”) for these features. Further inspec-

tion found that the features with the most amount of missing values due to lack

of information in the listing text were the same four features that had the most
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missing values and were mentioned in Table 5.6. The poor performance of these

features when used in the AVM might be explained by the shortage of variation in

the data, due to the missing values. Totally, in nearly 80 % of the listing texts, the

size of the storage unit wasn’t mentioned, while on the other hand, only 26 % of the

listing texts didn’t mention any recent upgrades of the bathroom, which also had a

significant negative impact. Furthermore, the kitchen which wasn’t mentioned in 50

% of the data, had nearly the same negative impact on the model, as the bathroom

feature had. Even though the AVM program handles these values (NaN values), are

the portions with missing values were too big to positively a↵ect the AVM.

The remaining features storage and outdoor area had both around 70 % accuracy

in Phase One, and a positive impact on the AVM in Phase Two. Their correlation

was 0.6080 and 0.7032, and even though the number of storage units had a lower

correction, the AVMs performance was greater with storage than outdoor area.

This could be because the latter is given as numerical values for several categories,

while the other is the number of storage units in a housing. As the number of storage

units in an apartment is often limited to a maximum of two or three, it’s possibly

easier for the AVM to find the patterns in this data, rather than in the data of the

outdoor area. Another reason might be how the LLM interprets the listing texts

if several outdoor areas are mentioned. Language models do not necessarily return

the same value for the same input, making it harder for the AVM to find a clear

path during training.

8.1.2 Other Factors

The last section implies that both the information and quality of listing texts and

the model’s ability to extract the correct values are important to have a positive im-

pactful feature for an AVM. During the analysis done in this thesis, several hundred

housing advertisements have been read on finn.no, and there are several observations

that stand out.

The housing advertisements on finn.no don’t have a fixed format and the wording

and formulation are therefore di↵erent from advertisement to advertisement. This is

because they are written by di↵erent real estate agents and brokerage firms, which

all have their style of writing. Common to all, and as mentioned earlier, is that the

housing advertisements provided seem to under-communicate the condition of the

housing unit if it is considered worse. If the housing condition is considered better,

the listing text focuses more on the details. This is in line with the observation

from Phase Two, where housing standards with lower scores impact the AVM less,
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and higher scores more. All of the above influences the LLM and its ability to

extract values, in addition to the feature quality of the AVM. The listing texts

themself therefore have an important and moderate impact on certain features such

as kitchen and bathroom where details are necessary. The same goes for other

features such as parking llm, where better parking options usually were clearly

mentioned and explained, but worse or no parking options usually were under-

communicated or not mentioned at all.

During the testing process of the LLM, it was discovered that a weaker performance

for parking llm also gave a weaker performance for housing standard and vice

versa. This can indicate that if the LLM is struggling to extract the correct value

for one feature, it does the same for the other. On the other hand, as both features

have complex feature rules, they are both dependent on information-rich listing text.

These listing texts usually describe all aspects of a housing unit including parking

in detail. The lack of information for both features in a listing text seems like a

more viable option as the listing text has been a reason for weaker performance for

other features as well.

The LLM performs well overall with both high accuracy and correlation compared

to the manually labeled data, but when conducting several tests one can experience

that the data extracted does vary to a certain degree for each test. By running

through the same data several times, and averaging out the values, the noise and

inconsistency in the output are filtered out and will be more suited for an AVM.

Even though this has proven to increase the correlation for every feature compared to

labeled data in this thesis, it will become costly as OpenAIs API is expensive to use.

By averaging out five tests, the cost will be five times as expensive. Furthermore to

collect enough data to train an even more accurate and viable model, and to prevent

overfitting, this cost would be even greater. As solgt.no envision using the model on

several hundred thousand to millions of housing advertisements in the next years,

the cost of running the advertisements several times would be unacceptable.

A solution to this could be hosting a similar open-source model in-house, but the

availability of relevant models as well as computational power could be an obstacle.

As this thesis utilizes the GPT-model gpt-3.5-turbo-1106, other model’s perform-

ances and ability to extract the correct values can’t be determined. Another option

could be to rent computational power through the web, but this also comes at a cost

based on the amount needed to extract the data with an LLM and train an AVM.

Also here could the available open-source language models be a hindrance.

It’s obvious from the results in this thesis that the quality of the values extracted
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by the LLM comes down to two things, prompt engineering and the listing texts

themselves. The prompt engineering done in Chapter 5 shows strong results with

high accuracy and correlation towards the labeled data. The quality of the listing

texts is an important aspect as described in this chapter, where some features might

have high accuracy and correlation, but might as well have little variation in the

dataset. There is a clear relationship between the features with great variety in the

data and their impact on the AVMs output. In the last test form Chapter 7 was it

proven that by introducing the features extracted by the LLM the price estimation

was 20.14 % more accurate in terms of RMSE and 17.46 % more accurate for MAPE,

than without these features. The deviation was reduced to 7.97 % for RMSE% and

to 5.39 % for MAPE.

8.2 Further Work

This thesis has had some limitations in some areas of the research. There have

been few studies in the same field, and of the studies available most have been from

2023 or 2024 making it hard to validate their quality. AI is a field that is under

continuous development and during the work in this project, several new models

have been presented by OpenAI.

The suggested further work would be to examine other options of accessing models,

that potentially could be cheaper to run and operate. There are several opportunities

for utilizing LLMs both locally and through online resources. Furthermore would be

to inspect other features that could be extracted from the listing texts, and further

analyze how the contents in the listing texts could a↵ect an AVM. Another goal

should be to gather a greater set of data points than used in this thesis, to train an

AVM. This would give a better understanding of how each LLM-feature influences

the model’s output.

As AI and LLMs get more powerful it’s possible to utilize even more information from

the housing advertisements. In addition to the textual description in the housing

advertisements, it also contains several images that new AI technology could utilize

to extract additional information such as conditions and floor plans.
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8.3 Sustainable Development Goals

Due to their variety and information rich text are housing advertisements a great

resource of finding trends in society. The following sections will explain the project’s

relevance to the United Nations Sustainable Development Goals.

Both Goal 9 ”Industry, Innovation, and Infrastructure” and Goal 11 ”Sustainable

Cities and Communities” are relevant to this thesis. Using AI and LLMs to extract

information can give an innovative insight into infrastructure, housing trends, devel-

opments, and the environmental impact of communities. This directly follows the

target of the goals mentioned.

(a) (b)

Figure 8.1: United Nations Sustainable Development Goal number 9 and number
11 [49]1.

1“The content of this publication has not been approved by the United Nations and does not
reflect the views of the United Nations or its o�cials or Member States” [49].
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Chapter 9

Conclusion

In this thesis, the goal was to develop an AVM that utilizes an LLM to capture

and return quantitative values from the unstructured data in housing advertisement

texts for real estate price prediction in Oslo, Norway.

Phase One of this project was to develop a program that accesses an LLM, takes a

housing advertisement as input, and returns quantitative values from the unstruc-

tured data in the listing text. These values formed LLM-features that should be

validated to ensure the LLMs reliability. After going through extensive prompt

engineering, the model’s overall performance was found to be good and within reas-

onable limits compared to manually labeled data. The majority of the features show

an accuracy of over 90 %, while the remaining features have a relatively high cor-

relation coe�cient. Even though there are some di↵erences for each feature, overall

results indicate that the model handles the task and input in a good way for all

features tested in this thesis.

Phase Two of the project was to develop an AVM that used both existing features

and the new LLM-features extracted in Phase One during training and validate the

e↵ectiveness and reliability of the new features. After going through data prepos-

sessing and feature engineering, the trained AVM increased the overall performance

when using the LLM-featrues. Further testing discovered that using a subset of the

LLM-fetures increased the AVM performance by 20.14 % for RMSE% to 7.97 %,

and 17.46 % for MAPE to 5.39 %. The features with the most positive impact were

housing standard and parking llm.

By comparing the results from Phase One and Phase Two it was discovered that

a good feature performance in Phase One didn’t necessarily mean a good feature

performance in Phase Two. The features kitchen, bathroom, storage size and
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outdoor area size all had strong performance in Phase One, but were omitted

in the AVM due to negative impact on the model. Further investigation revealed

that large portions of the listing texts didn’t include necessary information for the

features, resulting in little variation in the data due to the ”missing” values, even

when these values are handled.

As the LLM’s ability to extract values is high, the information available in the

listing texts has proven to be a critical part of the AVM’s performance. Despite

this, the introduction of highly impactful LLM-features does increase the AVM’s

performance significantly and has a great potential for price estimation in the real

estate industry.
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Appendix

A Model Behavior for LLM

The following is the default model behavior for the LLM. It is constructed as one

string, including a set of rules for each feature the model extracts. For simplicity it

is given as sections here. The model behavior a continuation from the preliminary

project, and the formulation in this thesis are therefore similar to the prompts from

the project [1].

Format

Din oppgave er å analysere innholdet i boligannonsen. Du skal returnere følgende

informasjon om boligen p̊a følgende format: ’parking’: ’p score’, ’kitchen’: ’k score’,

’bathroom’: ’b score’, ’fireplace’: ’f score’, ’storage’: ’s score’, ’storagesize’: ’ss score’,

’outdoorarea’: ’o score’, ’outdoorareasize’: ’os score’, ’dwellingstandard’: ’d score’.

Verdiene til ’x score’ er alltid et tall som velges p̊a følgende måter:

Parking

’p score’ er det alternativet mellom 1 og 7 som passer best fra følgende liste, svar

kun med tallet. Gjelder kun parkering til bil:

1 Ingen parkering eller parkering ikke nevnt.

2 Det er parkering eller gateparkering i omr̊adet, men ikke eksklusivt for boligen.

3 Borettslaget/sameiet har flere parkeringsplasser p̊a deling, borettslaget disponerer

flere parkeringsplasser.

4 Boligen har muligheten til å leie en parkeringsplass.
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5 Borettslaget/sameiet har parkeringsplasser som er tildelt basert p̊a venteliste/ansiennitet,

6 Boligen har egen utendørs parkering eller biloppstillingsplass eller carport, hver

seksjonseier har parkering, leiligheten har medfølgende parkeringsplass.

7 Boligen har egen parkering i en garasje.

Kitchen

’k score’ er det fulle årstallet kjøkkenet er fra eller sist det ble renovert, pusset opp

eller oppgradert, eventuelt boligens bygge̊ar. Hvis årstall ikke er nevnt, returner 0.

Bathroom

’b score’ er det fulle årstallet badet er fra eller sist det ble renovert, pusset opp eller

oppgradert, eventuelt boligens bygge̊ar. Hvis årstall ikke er nevnt, returner 0.

Fireplaces

’f score’ er antall peiser/ildsteder/vedovner. Om det ikke er nevnt er f score=0. Er

peis nevnt, men antallet ikke kommer tydelig frem, anta at antallet er 1.

Storage Unit

’s score’ er antall boder boligen disponerer. Om bod er nevnt, men antallet ikke

kommer frem er s score=1.

Storage Unit Size

’ss score’ er størrelsen i kvadratmeter p̊a boden. Er det flere boder er det totalt

kombinert areal av bodene. Kommer ikke størrelsen tydelig fram er ss score=0.

Outdoor Area

’o score’ er det alternativet mellom 0 og 10 som passer best fra følgende liste, svar

kun med tallet:

0 Uteomr̊ade ikke nevnt.
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1 Privat bakg̊ard.

2 Felles bakg̊ard.

3 Privat hage.

4 Felles hage.

5 Privat terrasse.

6 Felles terrasse.

7 Privat balkong.

8 Felles balkong.

9 Privat takterrasse.

10 Felles takterrasse.

Outdoor Area Size

’os score’ er størrelsen i kvadratmeter p̊a balkongen, terrassen eller takterrassen har.

Har boligen flere er det kombinert areal av balkongene, terrassene eller takterrassene.

Er det hage, bakg̊ard eller liknende, returner 0.

Housing Standard

’d score’ der score er det alternativet mellom 0 og 9 som passer best fra følgende

liste, svar kun med tallet:

0 Ikke mulig å fastsl̊a standard.

1 Boligen krever totalrenovering, den har alvorlige problemer og mangler som krever

omfattende arbeid.

2 Boligen har lav standard som trenger betydelige oppgraderinger og renovering for

å bli beboelig.

3 Enkel standard der boligen er funksjonell, men har behov for modernisering og

mindre reparasjoner.

4 Moderat standard der boligen er i grei tilstand, men har behov for estetiske opp-

dateringer og enkelte reparasjoner.
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5 God standard der boligen er velholdt med noen moderne fasiliteter, men kan ha

behov for mindre oppgraderinger.

6 Meget god standard der boligen har flere oppdaterte funksjoner, god vedlike-

holdsstatus og kun mindre behov for oppgraderinger.

7 Høy standard der boligen er nylig oppusset eller bygget med kvalitetsmaterialer,

moderne fasiliteter og lite til ingen behov for oppgraderinger.

8 Svært høy standard der boligen fremst̊ar som luksuriøs med toppmoderne fa-

siliteter, eksklusive materialer og detaljer av høy kvalitet.

9 Eksepsjonell standard der boligen har unike kvaliteter, skreddersydde løsninger,

høy teknologi og bruk av de mest eksklusive materialene og fasilitetene tilgjengelig.
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