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ABSTRACT: Cardiovascular disease is the most common cause of death worldwide, 
especially beyond the age of 65 years, with the vast majority of morbidity and mortality 
due to myocardial infarction and stroke. Vascular pathology stems from a combination of 
genetic risk, environmental factors, and the biologic changes associated with aging. The 
pathogenesis underlying the development of vascular aging, and vascular calcification 
with aging, in particular, is still not fully understood. Accumulating data suggests that 
genetic risk, likely compounded by epigenetic modifications, environmental factors, 
including diabetes and chronic kidney disease, and the plasticity of vascular smooth 
muscle cells to acquire an osteogenic phenotype are major determinants of age-
associated vascular calcification. Understanding the molecular mechanisms underlying 
genetic and modifiable risk factors in regulating age-associated vascular pathology may 
inspire strategies to promote healthy vascular aging. This article summarizes current 
knowledge of concepts and mechanisms of age-associated vascular disease, with an 
emphasis on vascular calcification. 

Highlights 
• The pathogenesis underlying the development of vascular aging, and vascular 

calcification with aging, in particular, is still not fully understood. 
• Genetic risk, likely compounded by epigenetic modifications, environmental 

factors, including diabetes mellitus and chronic kidney disease, and the 
plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype 
are major determinants of age-associated vascular calcification. 

• Arterial smooth muscle cell phenotypic switching contributes significantly to 
vascular aging—manifested as abnormal conduit vessel physiology and 
mechanical integrity due to arteriosclerotic calcification, fibrosis, matrix 
remodeling, and impaired contractile functions. 

Cardiovascular disease is the leading cause of death worldwide and increases with age, 
in large part due to the cumulative effects of risk factors, such as hypertension, 
hyperlipidemia, diabetes, tobacco use, and sedentary behavior. However, with 
advancing age, even individuals without traditional risk factors gradually develop 
vascular pathology including arterial fibrosis, stiffness, and calcification, increasing the 
risk of serious cardiovascular events. The importance of understanding the interplay 
between vascular biology and aging, independent of traditional risk factors, is of utmost 
importance. 

Isolating vascular aging as an independent biological variable is challenging for several 
reasons. First, vascular aging is often accompanied by one or more cardiovascular 
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disease risk factors. Second, there is likely a synergistic effect of both the duration and 
number of cardiovascular risk factors that make it challenging to fully adjust for such 
variables. Although studies of aging exist, they are prone to survival bias in that only 
individuals who survived until older age can be studied if not enrolled earlier in life. 
Studies, such as the PESA (Progression and Early Detection of Subclinical 
Atherosclerosis)1 and the Asklepios Study,2 were designed to circumnavigate these 
challenges to study the interactions of age and inflammation with cardiovascular 
hemodynamics and development of atherosclerosis. Studies of human longevity are 
also challenging due to the costly and time-consuming nature of studying an individual 
human over a lifespan, and long-lived individuals may have different genetic longevity 
variants and protein signatures.3–5 

Improving our understanding of vascular aging and its role in cardiovascular disease 
progression, morbidity, and mortality is essential. The following review discusses what 
is currently known regarding the biology of vascular aging, clinical manifestations of 
age-associated vascular disease with a focus on calcification, the impact of genetic risk 
on vascular aging, and the environmental and molecular factors that may influence 
vascular aging and promote longevity (Figure). 

Clinical Manifestations of Age-Associated Cardiovascular Calcification 
Arterial stiffening and calcification are characteristics of vascular aging, serve as 
important predictors of cardiovascular morbidity and mortality, and are exacerbated by 
cardiovascular disease risk factors and metabolic syndromes.6–9 Arterial calcification is 
closely associated with atherosclerotic plaque evolution, and the area of coronary artery 
calcification (CAC) quantified on noncontrast cardiac computed tomography has a direct 
relationship with histopathologic coronary plaque area.10 Autopsy studies have 
consistently shown a strong association between calcification of the coronary arteries 
and atherosclerosis.11 Calcification is often categorized as intimal, typically associated 
with atherosclerotic plaque, or medial, often a more diffuse arteriosclerotic process 
marked by vascular stiffening and associated with conditions such as chronic kidney 
disease (CKD) and diabetes. 

CAC volume and vulnerable plaques with a lipid-rich core, thin cap, or spotty or micro 
calcifications are associated with the risk of future atherosclerotic cardiovascular 
disease (ASCVD) events.12–15 However, within a given coronary artery, there is a wide 
variation between the degree of plaque calcification and severity of luminal stenosis on 
invasive coronary angiography due in part to individual variations in coronary artery 
remodeling.16 

Noninvasive methods to evaluate coronary heart disease risk, such as exercise stress 
testing, typically only identify patients with advanced, obstructive atherosclerotic 
disease. This is of relevance as myocardial infarctions may occur when a 
nonobstructive atherosclerotic plaque ruptures.17 Thus, there has been great interest in 
characterizing atherosclerosis in its pre-flow limiting phase so that intensified preventive 
strategies can be instituted. Measurement of CAC volume on computed tomography 
imaging often improves the accuracy of cardiovascular risk assessment in intermediate-
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risk adults and may help to determine which patients may benefit from initiation of or 
intensification of risk factor modification strategies such as lipid-lowering, aspirin, or 
antihypertensive therapies.18–20 

Prospective studies of CAC and incident cardiovascular disease risk from the Multi-
Ethnic Study of Atherosclerosis and other observational cohorts show a very strong 
correlation between increased CAC and the risk of future cardiovascular disease 
events.21 CAC scores greater than the 75th percentile for age, sex, and ethnicity or 
more than 100 indicate an elevated 10-year ASCVD risk and should lead to more 
improved lifestyle habits and strong consideration of statin therapy in intermediate-risk 
adults.20 CAC percentiles based on age, sex, and ethnicity are better predictors of 
lifetime risk, whereas CAC scores provide the best estimate of absolute risk in the next 
decade.19 

Traditionally, CAC scores have been used to determine the need for initiating statin 
therapy. However, evidence suggests that while high-intensity statin therapy lowers 
cardiovascular event risk, it paradoxically may modestly increase CAC and potentially 
stabilize existing atherosclerotic plaques.22,23 Although CAC volume has been 
associated with increased CVD risk, CAC density is inversely associated with CVD 
risk.24 Statin-induced atherosclerotic plaque calcification has been attributed to 
increased plaque alkaline phosphatase activity25 and disinhibition of the macrophage 
Rac (Ras-related C3 botulinum toxin substrate)–IL-1β (interleukin-1 beta) signaling 
axis.26 

Emerging data has indicated that CAC scores can help in prioritizing the need for more 
intensive medications in higher-risk individuals who have above average-amounts of 
CAC for their age, gender, and ethnicity. These medications may include glucagon-like 
peptide 1 receptor agonists or SGLT-2 (sodium-glucose cotransporter 2) inhibitors in 
adults with diabetes or PCSK-9 (proprotein convertasesubtilisin/kexin type 9) inhibitors 
in adults with suboptimal LDL (low-density lipoprotein)-cholesterol lowering on 
maximally tolerated statin therapy. Cainzos-Achirica et al27 have made a compelling 
case for measuring CAC to more accurately allocate medications and to use the CAC 
score to enrich study populations of primary prevention randomized controlled trials with 
participants at higher absolute risk of cardiovascular events. Conversely, a CAC score 
of zero is a powerful negative predictor of future cardiovascular events in older patients, 
such that it is reasonable to consider withholding statin therapy in the absence of other 
risk factors.28 Additional study of individuals who age without developing vascular 
calcification would be of interest. 

Measurement of CAC is well-validated for risk stratification in middle to older-age adults. 
Incorporating CAC scores improves risk stratification for incident sudden cardiac death 
beyond traditional ASCVD risk factors in individuals with low-to-intermediate risk.29 Until 
recently, there was limited data in adults with an age <40 years. Javaid et al30 recently 
studied the prognostic importance of CAC in nearly 20 000 asymptomatic adults aged 
30 to 45 years without known ASCVD. They found that any CAC in this age range 
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placed females at >90th percentile (high lifetime risk). The presence of any CAC placed 
White males at the 90th percentile by age 34 years and Black males by age 37 years. 

Extracoronary cardiovascular calcification, including aortic,31 peripheral vascular,32 and 
valvular, also predicts cardiovascular risk. Calcific aortic valve stenosis is the most 
common valvular heart disease in the Western world, and progressive fibrocalcific 
changes in the valve leaflets may lead to partial aortic outflow tract 
obstruction.33 However, aortic valve sclerosis (calcification and thickening of the aortic 
valve), even in the absence of hemodynamically significant obstruction of left ventricular 
outflow track, is independently associated with an increased risk of ASCVD events.34–
36 Research is ongoing to determine if aortic valve calcium scoring using cardiac 
computed tomography may be useful for risk stratification and to identify those at 
increased risk of developing significant aortic valve stenosis.37 

A striking demonstration of accelerated vascular calcification in adults is calciphylaxis—
a rare but devastating condition that is predominantly seen among patients with end-
stage kidney disease who have typically been dialysis-dependent for over 2 to 3 
years.38 The primary clinical manifestation of calciphylaxis is painful skin ulcers caused 
by cutaneous ischemia. These patients, almost universally, have diffuse extraskeletal 
calcification. In addition to metabolic abnormalities of calcium and phosphate 
metabolism originating from the end-stage kidney disease, over 40% of patients with 
calciphylaxis have diabetes, and as many as 30% have been exposed to warfarin 
before the development of calciphylaxis.39,40 

Warfarin, a vitamin K antagonist, may impair the gamma-carboxylation of a potent 
calcification inhibitor known as MGP (matrix gla protein). This may further accelerate the 
process of vascular calcification among patients who are predisposed to it from their 
underlying comorbidities. At present, there is no approved treatment for calciphylaxis, 
although anecdotal reports of successful resolution of calciphylaxis lesions with 
treatments such as vitamin K supplementation and kidney transplantation provide 
potential insights into strategies to reduce calcification and eventually improve clinical 
outcomes.41,42 

Biology of Vascular Aging 
Vascular aging is a biological variable, conceptually distinct from chronological aging, 
whereby sequential and progressive changes in a cell or whole organism lead to an 
increased risk of dysfunction, disease, and death.43–45 Hallmarks of biological aging 
include cellular dysfunction and vulnerability to cell death, and many of these hallmarks 
also contribute to vascular dysfunction and calcification.46–48 

Telomeres shorten with every cellular replication cycle leading to reduced proliferative 
capacity of cells.49,50 The single-strand ends of telomeres are protected to prevent the 
chromosomal ends from appearing as double-stranded DNA breaks, which otherwise 
trigger DNA damage responses.51 Breakdown of these telomere caps can lead to age-
related vascular dysfunction, including increased cellular senescence, oxidative stress, 
and inflammation.52,53 
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Senescent cells are not inert and may extrude chemical mediators that further 
propagate an inflammatory phenotype to neighboring cells.54 Vascular smooth muscle 
cells (SMCs) exhibit markers of senescence and calcify in response to uptake of 
endothelial-derived exosomes.55,56 In addition, microparticles from older individuals’ 
senescent endothelial cells induce vascular SMC calcification,57 and human vascular 
function in vivo inversely correlates with the presence of senescence markers in 
endothelial cells.58 In mice, senolytic drugs, which induce death of senescent cells, 
restore vascular function in aged mice.59 

Accumulation of DNA damage, whether due to exogenous factors (such as ionizing 
radiation), replication errors, or impaired repair, contributes to cellular dysfunction in part 
due to the generation of reactive oxygen and nitrogen species and may also lead to 
cardiovascular calcification.60,61 Increased oxidative stress is also a major factor 
promoting loss of vascular SMC contractility and increased osteogenic differentiation 
and calcification, characteristics of vascular aging.8,62 

Inflammaging, or the age-related increase in proinflammatory markers in the blood and 
tissues,63 is likely both a biomarker of biological aging as well as cause of age-related 
cardiovascular pathology. Inflammaging may occur due to increased production of 
inflammatory mediators, such as from senescent cells, or due to impaired inflammatory 
resolution,64,65 as was recently reviewed in detail elsewhere as a target in 
atherosclerosis.66 That endothelial cells stimulated with TNF (tumor necrosis factor) α 
released microparticles containing BMP2 (bone morphogenetic protein 2), which in turn 
were phagocytosed by vascular SMCs and enhanced osteogenesis supports the role for 
inflammaging in promoting age-associated arterial calcification.67 BMP2 is also 
proinflammatory and induces endothelial activation, suggesting these local inflammatory 
perturbations could autofeedback and escalate age-associated calcification.68 CRP (C-
reactive protein) has been implicated in promoting age-associated vascular SMC 
osteogenic transdifferentiation via the Fc fragment of IgG receptor IIa and the p38 
mitogen-activated protein kinase pathway.69 

Epigenetic marks on histones can dictate global gene expression patterns.44 These 
epigenetic modifications correlate with biological age and more accurately predict 
lifespan than chronological age.70–72 Epigenetic programming occurs during 
development and informs cellular phenotypes. Recent studies show that these 
developmental programs, or the loss of them, help to drive vascular cell dysfunction, 
including calcification and the loss of the contractile phenotype of vascular SMCs.73–79 

Genetic Risk and Cardiovascular Disease 
While many traditional risk factors become more clinically relevant in middle age, one’s 
genetics are present from birth. Polygenic scores (PGS, also known as genetic risk 
scores or polygenic risk scores) build on results from genome-wide association studies 
(GWASs) to allow estimation of one’s cumulative genetic risk for a given end 
point.80 PGS enable identification of patients at high risk for common, complex 
diseases, such as cardiovascular disease (CVD), much like carriers of a Mendelian 
mutation. PGS also allow for improved reclassification of patients with cardiovascular 
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disease and early onset myocardial infarction and early onset coronary heart 
disease.81,82 

For example, in the UK Biobank, participants with a PGS for coronary artery disease in 
the top 5% of the cohort’s PGS distribution have a >3-fold risk for coronary artery 
disease compared with the rest of the population.83 This is similar to the coronary artery 
disease risk conferred by mutations in genes causing familial hypercholesterolemia, yet 
20× as many individuals fall into this polygenic high-risk category as carry a familial 
hypercholesterolemia mutation.83,84 Moreover, PGS have stronger risk stratification 
power in younger populations than older ones.85 PGS have been found to predict 
incident CAC86–88 and can be useful in predicting the optimal age for CAC 
screening.89 Favorable lifestyles mitigate the susceptibility to CAC even if genetic risk is 
elevated.90 

The Finnish GeneRISK study, a web-based communication tool (KardioKompassi), 
aims to assess the clinical utility of PGS by providing personalized 10-year CVD risk to 
a prospective cohort of 7342 individuals.91 After only 1.5 years, 71% of the participants 
were reassessed, and genetic risk was found to motivate positive health behavior. In 
another study with a prospective observational cohort of 3800 individuals, knowledge of 
having a high coronary artery disease PGS was associated with earlier initiation (52 
years versus 65 years) and use of a lipid-lowering therapy (42.4% versus 28.5%).92 

The potential clinical utility of PGS is often quantified with the net reclassification index 
(NRI), the percent of patients who would be reclassified into a different risk category 
upon addition of the PGS to conventional CVD risk prediction models (Table 1). An 
important limitation is that PGSs have mostly been derived from populations of 
European genetic ancestry and are generally not available at large commercial labs for 
clinical use. However, the American Heart Association recently issued a scientific 
statement with guidance for their use.93 

Genetics Underpinnings of Cardiovascular Calcification 
In contrast to the use of polygenic scores based on common genetic variation to predict 
risk, certain gene defects are responsible for rare, Mendelian disorders of premature 
vascular pathology (Table 2). For example, rare diseases resulting in premature 
vascular calcification stem from abnormalities in the extracellular ATP metabolic 
pathway.101 ATP is released from cells under conditions of stress or death and can act 
in a paracrine manner through its cognate receptors or be metabolized to its constituent 
parts by a series of ectonucleotidases.102 Several ATP metabolites regulate vascular 
calcification.103 Calcium and inorganic phosphate are the building blocks of calcification, 
but an endogenous inhibitor of mineral nucleation is pyrophosphate, which is the 
product of the breakdown of ATP by ENPP1 (ectonucleotide 
pyrophosphatase/phosphodiesterase 1).103 In a murine model of Hutchinson-Gilford 
progeria syndrome with accelerated vascular aging, pyrophosphate treatment inhibited 
arterial calcification.104 
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In generalized arterial calcification of infancy, mutations in ENPP1 lead to a deadly 
disease of extensive medial arterial calcification in large arteries, which presents in 
infancy, and it is the lack of local production of extracellular pyrophosphate that drives 
this devastating phenotype.113 The other product of ENPP1 is AMP (adenosine 
monophosphate), which is further metabolized to inorganic phosphate and adenosine 
by the ectonucleotidase CD73.103 Inactivating mutations in the gene encoding for CD73 
lead to medial arterial calcifications in adulthood that phenocopy the pathologies seen in 
patients with diabetes and ESRD.114,116 In this disease (termed Arterial Calcification due 
to Deficiency of CD73), mechanistic studies have uncovered that the lack of adenosine 
signaling via the A2bAR (A2b adenosine receptor) drives the osteogenic transition of 
these SMCs.117 Calcified femoropopliteal arteries from patients with non-genetic forms 
of medial arterial calcification exhibit signatures of this rare disease, suggesting the 
mechanism that operates in this pathology.118,119 Pseudoxanthoma elasticum is 
characterized by microvascular arterial calcification in childhood and is caused by 
mutations in the ATP binding cassette subfamily C member 6 (ABCC6); however, the 
factor being transported is debated.115,120 Singleton-Merton syndrome is caused by a 
missense mutation in interferon-induced helicase C domain 1 (IFIH1),121 and 
Hutchinson-Gilford progeria syndrome is caused by a splice defect in lamin A 
(LMNA)122,123; both disorders manifest with premature and extensive aortic and valvular 
calcification. The relationships of these genes to adult, age-related calcific disorders, 
however, remain uncertain. 

GWAS have identified several seemingly unrelated genes implicated in CAC. The first 
GWAS for CAC identified two loci at 6p24 and 9p21.105 The former is nearest to the 
phosphatase and actin regulator 1 (PHACTR1) gene, which plays a role in endothelial 
cell survival. Targeted deletion at this locus increases the expression of nearby gene 
endothelin 1 (EDN1), a potent vasoconstrictor known to promote atherosclerosis.106 In 
an exome-wide association meta-analysis, protein-coding variants 
in APOB and APOE were also associated with CAC among patients without overt 
coronary heart disease, thus linking CAC, perhaps unsurprisingly, with lipid 
metabolism.107 

More recently identified is the association between clonal hematopoiesis of 
indeterminate potential with CAC. Clonal hematopoiesis of indeterminate potential 
carriers had 3.3 times higher CAC than noncarriers.124 Insufficiency of tet 
methylcytosine dioxygenase 2 (TET2), a gene commonly mutated in clonal 
hematopoiesis of indeterminate potential, exaggerated atherosclerosis in mice,124 which 
has been attributed to TET-2–deficient macrophages exhibiting an increase in 

NLRP (nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain 
containing) 3 inflammasome-mediated IL-1β secretion.125 Finally, MGP is considered to 
be one of the strongest endogenous inhibitors of vascular calcification, and putatively 
disruptive polymorphisms in MGP correlate strongly with subclinical CAC.126 These 
findings highlight the diversity of known cell types (eg, endothelial, SMC, hematopoietic) 
and signaling pathways involved in CAC development. 
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GWAS have also identified an abdominal aortic calcification risk locus on chromosome 
7 in the intergenic region between histone deacetylase 9 (HDAC9) and twist family 
bHLH (basic helix-loop-helix) transcription factor 1 (TWIST1).108 Knockdown 
of HDAC9 reduced calcification, contractility, and RUNX2 expression of aortic SMCs 
induced to undergo osteogenic transformation.108 Conversely, overexpression 
of HDAC9 amplified RUNX2 expression and increased 
calcification.108 Analogously, Hdac9-null mice were protected from calcification and 
mortality compared to haploinsufficient and wild-type mice in a model of medial vascular 
calcification (MGP deficiency).108 HDAC9 also promotes endothelial-to-mesenchymal 
transition and unfavorable atherosclerotic plaque composition.109 In rat SMC 
calcification assays, TWIST1 knockdown increased calcification, and overexpression 
decreased calcification.110 

Aortic valvular calcification has been associated with the lipoprotein a (LPA) locus on 
chromosome 6 at genome-wide significance, and minor alleles in this locus confer as 
much as a 2-fold increase in the odds of aortic valvular calcification and an increased 
risk for aortic stenosis.111 Mendelian randomization analysis demonstrated a causal role 
for genetically determined Lp(a) (lipoprotein [a]) levels in the development of aortic 
valvular calcification. In the same study, two variants near the proinflammatory gene, 
interleukin 36 gamma (IL1F9), were associated with mitral annular calcification at a 
genome-wide level of significance. 

In a separate GWAS of calcific aortic stenosis, the association of aortic valvular disease 
with LPA was redemonstrated, and 2 additional risk loci near palmdelphin (PALMD) and 
testis expressed 41 (TEX41) were identified.112 These loci are also associated with 
bicuspid aortic valve and congenital septal defects, potentially implicating cardiac 
developmental pathways in calcific aortic valve disease. 

Environmental and Modifiable Factors That Accelerate Calcification 
There are several clinical conditions where vascular calcification is markedly 
accelerated, including metabolic abnormalities, such as diabetes and CKD.127 In these 
conditions, calcification, and mortality do not track with chronological age, as observed 
in the general population. Instead, patients show accelerated cardiovascular mortality, 
such that young adults with end-stage kidney disease requiring chronic dialysis have a 
risk of cardiovascular mortality similar to octogenarians.128,129 Emerging evidence 
suggests that accelerated vascular aging may contribute to the development of vascular 
calcification and increased mortality in these patient groups.130–133 

Using human tissue samples, several studies have documented the presence of DNA 
damage (gH2AX [gamma H2 histone family member X] and 8-oxo-Dg [8-oxo-2’-
deoxyguanosine]) and senescence markers, such as the cell cycle regulators p21 and 
p16, in calcified arteries of patients with CKD and diabetes.133 Compelling evidence 
comes from studies of the arteries of children with CKD on dialysis, which showed 
elevated oxidative DNA damage and senescence in medial vascular 
SMCs.131 Numerous ex vivo and in vitro studies of SMCs have shown that several 
environmental factors contribute to oxidative stress and DNA damage in these disease 
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states. These include elevated glucose and dysregulated mineral metabolism, with 
elevated phosphorus thought to be a driver of premature aging, as well as various 
uremic toxins and mitochondrial damage.127,134–138 

DNA damage signaling and cellular senescence drive several processes that lead to 
vascular SMC calcification, including osteogenic differentiation and cell death. Two key 
DNA damage signaling pathways upstream of vascular SMC osteogenic differentiation 
are ataxia telangiectasia mutated and PARP (poly-ADP ribose polymerase), and 
blocking either of these pathways can alleviate mineralization both in vitro and in vivo in 
models that mimic the dysregulated mineral metabolism observed in CKD.77,139 

These signaling pathways exert their effects on osteogenic differentiation of SMCs in 
several ways, and many of them converge to the Runx2 (runt-related transcription 
factor-2), the major transcription factor driving osteogenic phenotype transition.140–
146 Oxidative stress-induced Runx2 upregulation plays an essential role in vascular 
SMC calcification, while SMC-specific Runx2 deletion protects from the development of 
vascular calcification in atherosclerosis and CKD.144–146 Multifaceted posttranslational 
modifications of Runx2, including phosphorylation, acetylation, ubiquitination, and O-
GlcNAcylation (O-linked-N-acetylglucosaminylation), modulate Runx2 protein stability, 
cellular localization, and its interaction with other transcription factors and target genes 
that are critical for its osteogenic transcriptional activity.138 

Recent studies have linked protein O-GlcNAcylation with Runx2 upregulation and SMC 
calcification in diabetes.147–150 In addition, Runx2 is a component of the DNA damage 
response. In response to elevated calcium and phosphate, Runx2 becomes poly-ADP-
ribosylation, leading to the selective activation of its downstream osteogenic targets.146 

Another mechanism whereby metabolic changes can influence vascular calcification 
include epigenetic modifications to DNA or histones. In many instances, these pathways 
also intersect with DNA damage signaling and senescence. Sirtuins, a family of histone 
deacetylases, play a role in regulating the DNA damage response and senescence in 
vascular SMCs and hence osteogenic differentiation and calcification. Sirt1 (sirtuin 1) is 
reduced in the vasculature of patients with diabetes, and its activation leads to efficient 
DNA repair and normalizes vascular SMC phenotype.151 Similarly, sirtuin 6 is reduced in 
the vessels of patients with CKD. Studies in vitro show that sirtuin 6 acts to deacetylate 
Runx2, leading to its nuclear export and degradation, thus preventing osteogenic 
differentiation.152 

An additional feature of the persistent DNA damage and cellular senescence is 
activation of the SASP (senescence-associated secretory phenotype) and activation of 
innate immune signals by vascular SMC, including IL-6 and BMP2 as relevant to 
arteriosclerotic calcification.131,153 The connections to osteogenic BMP-Msx-Wnt (bone 
morphogenic protein, msh homeobox 1, wingless) signaling are presented below. 

Activation of the BMP2/Msx/Wnt signaling pathways increases SMC calcification in vitro 
and in vivo.154–157 Wnts are secreted, fatty acylated glycoproteins that signal through G-
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protein coupled receptors of the Fzd (Frizzled) family or via GPR124 (probable G-
protein–coupled receptor 124).158–160 Signaling is modulated by coreceptors including 
LDL related proteins LRP5 (low-density lipoprotein receptor-related protein) and LRP6 
and several transmembrane receptor tyrosine kinase-like proteins.161,162 Wnts are fatty 
acylated and very hydrophobic, associated with membranes, extracellular vesicles, and 
lipoprotein particles.163 The vertebrate genome encodes 19 Wnt ligands and 10 Fzd 
receptors with downstream signaling relays characterized as either canonical (requiring 
β-catenin) or noncanonical (calcium/NFAT [nuclear factor of activated T cells], Jun [fos-
binding protein p39] kinase, planar cell polarity).164,165 Alternative Wnt signaling through 
transcriptional coactivators YAP (yes-associated protein 1) and TAZ (WW-domain 
containing transcriptional regulator 1) resulting in osteogenic differentiation has also 
been described.164,166 

The first robust clue that Wnt signaling might be involved in vascular aging phenotypes 
came from the work of Mani et al.167 They identified that a missense mutation in LRP6 
(R611C) resulted in precocious osteoporosis and coronary artery disease in an Iranian 
kindred. This hypomorphic allele causes dysregulated signaling bias between canonical 
and noncanonical Wnt relays in vascular SMCs as necessary to stabilize 
phenotype.168 Consistent with this, others demonstrated that loss of SMC LRP6 
increases noncanonical Wnt signals that activated SMC osteochondrogenic gene 
expression, and promoted vascular calcification, and arteriosclerotic stiffening in mice 
susceptible to atherosclerosis.169,170 

Interestingly, expression of noncanonical Wnt ligands is increased in calcific aortic valve 
disease and with cardiac fibrosis.171–174 Age-related mitochondrial dysfunction and ER 
stress bias towards noncanonical Wnt signaling as well.175,176 These data suggest that 
development of LRP6 mimetics, or other strategies that restrain specific aspects of 
noncanonical Wnt signaling, may help prevent or mitigate progression of cardiovascular 
fibrocalcific disease processes with aging.177 

A common theme in all of the age-associated cardiovascular Wnt-opathies is activation 
of innate immunity, a key feature of inflammation, and some features of cell senescence 
(vide infra).177–179 Pathogen- and senescence-associated programs elevate the 
expression of Wnt genes either directly or indirectly via TNF, IL1-β, or RAGE (receptor 
for advanced glycation endproducts) ligands including oxylipids.177 Importantly, 
senescent cells that accrue in aging tissues actively contribute to the inflammatory 
phenotypes.180–183 A gene set containing numerous direct BMP/Wnt modulators (eg, 
Bmp2, Wnt2 [wingless2], Wnt16, Dkk1 [Dickkopf WNT signaling pathway inhibitor 1], 
etc) and targets of noncanonical Wnt action was shown to demarcate senescent cells in 
multiple tissues.181 However, the conflicting literature on the role of Wnt agonists in 
promoting or preventing cell senescence suggests that canonical-noncanonical 
signaling bias and duration of signal exposure deserve additional investigation.184,185 

Therapeutic Considerations 
There are no currently approved therapies specifically targeting prevention or promoting 
regression of vascular or valvular calcification for the general population at any age. 
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Metformin is associated with reduced coronary calcification in animal and human 
studies186,187; possible mechanisms included reduced osteoprotegerin188 production and 
decreased oxidative stress.189,190 Senolytic combinations of dasatinib and quercetin 
were shown to reduce vascular calcification in animal models, attributed to reduced 
oxidative stress.59,191 Also in animal models, PARP inhibition with specific inhibitors or 
minocycline192 reduced vascular calcification, as has pyrophosphate 
administration.104 No therapy is available to treat valvular calcification except surgical 
and transcatheter interventions. Ample opportunities remain to apply known 
mechanisms of aging and calcification to clinical cardiovascular care. 

Conclusions and Perspective 
In this review, we provide a high-level summary of the current knowledge of vascular 
aging, emphasizing the clinical manifestations, genetic diatheses, environmental risk 
factors, and emerging molecular mechanisms of cardiovascular calcification. Age-
associated pathways critical to the development of vascular calcification are highlighted, 
including DNA damage repair and senescence signals, innate immunity, activating 
BMP2-Msx-Wnt pathways, and the Runx2 transcription factor. Arterial SMC phenotypic 
switching contributes significantly to vascular aging, manifested as abnormal conduit 
vessel physiology and mechanical integrity due to arteriosclerotic calcification, fibrosis, 
matrix remodeling, and impaired contractile functions. Although key discoveries have 
been made, much remains to be learned concerning the regulation of arteriosclerotic 
calcification and its relationship to the vascular SMC phenotype with aging. 

For instance, both Runx2 and Msx2 (msh homeobox 2) directly reduce the expression 
of SMC contractile markers and promote the osteogenic phenotype, and Runx2 and 
Msx2 proteins interact to form a transcriptional complex.144,193–195 However, O-
GlcNAcylation via Ogt (O-linked N-acetylglucosamine) has also emerged as an 
important regulator for the master SMC transcription factors, including myocardin, SRF 
(serum response factor), and KLF4 (Kruppel-like factor 4).148,149 However, the reasons 
why activities of Runx2, Msx2, and Ogt in the SMC lineage—absolutely required for 
osteogenic differentiation and matrix deposition—can become dissociated from arterial 
matrix mineralization in some settings remains to be determined.196 Incorporation of 
multiomics, systems biology, single-cell sequencing, and computational studies are 
novel approaches for the identification of new pathways, candidate drug targets, and 
repurposing of old drugs to treat vascular and valvular calcification.194,197,198 

Endothelial cell dysfunction, with or without the endothelial-mesenchymal transition, 
also impacts the SMC phenotype via juxtacrine/paracrine signals that control osteogenic 
potential and maybe one such determinant.199,200 Likewise, key components of the 
vascular extracellular matrix such as nitrogen-2 also control SMC plasticity, and 
matricrine cues in cardiovascular aging are poorly characterized.201 Of note, in utero or 
childhood environmental exposures impair endothelial functions decades later in 
adulthood.202,203 

Therefore, a better understanding of the vascular epigenetic landscape that regulates 
vascular SMC phenotypic plasticity during health span and lifespan will be needed to 
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mitigate age-associated vascular dysfunction. Finally, it has become abundantly 
apparent that duration of cardiometabolic insult exposure204 and sex significantly impact 
age-dependent responses, and women experience a much steeper increase in 
cardiovascular disease severity with age, later in life.205 Other age-related 
vasculopathies exhibit sex dimorphism as well, including aneurysmal remodeling, that is 
determined by sex chromosome content.206 Thus, additional studies are warranted to 
uncover in even greater detail the mechanisms controlling vascular SMC phenotypic 
stability vs. plasticity, phenotypic switching with osteogenic reprogramming, and 
vascular mineralization as a function of environment, cardiometabolic insult, matricrine 
cues, (epi)genetics, age, and sex. Insights from these studies will afford novel targets 
and therapeutic strategies necessary to halt, or potentially reverse, processes of age-
associated vascular calcification. 
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Figure. Vascular aging and aging-accelerated vascular disease. Genetic and environmental factors induced endothelial cell dysfunction and 

vascular smooth muscle cell phenotypic modulation that leads to vascular remodeling and development of cardiovascular disease. 
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Table 1. Net Reclassification Index of Polygenic Risk Scores 
 

Publica)on  Score descrip)on  Outcome  Group (ancestry)  No. of samples  Con)nuous NRI, %  Categorical NRI, %  

Elliot et al*94 Lassosum Incident CAD in UK 
Biobank 

Events (EUR) 6272 15.4 (13.0 to 17.9) 4.4 (3.5 to 5.3) 

Nonevents (EUR) 346 388 15.8 (15.5 to 16.1) −0.4 (−0.5 to −0.4) 

All (EUR) 352 600 31.2 (28.7 to 33.7) 4.0 (2.1 to 4.9) 

All (EUR) 4168  1.8 (−0.2 to 3.6) 

All (EUR) 2101  0.1 (−3.8 to 7.6) 

Mars et al82 LDpred from external  
GWAS 

Incident CHD in FIN- 
RISK 

Events (FIN) 1209  0.9 (−0.02 to 2.0) 

Nonevents (FIN) 18 956  0.2 (−0.1 to 0.5) 

All (FIN) 20 165  1.1 (−0.1 to 2.2) 

Hindy et al95 LDpred from Khera  
et al 

Incident CAD in Malmö 
Diet and Cancer Study 

Events (EUR) 815  17.3 (8.8 to 19.9) 

Nonevents (EUR) 4870  −0.9 (−1.8 to −0.2) 

All (EUR)    16.5 (7.6 to 18.2) 

LDpred from Khera  
et al 

Incident CAD in UK 
Biobank 

Events (EUR) 7708  9.1 (7.7 to 10.5) 

Nonevents (EUR) 317 295  −0.6 (−0.7 to −0.6) 

All (EUR) 325 003  8.5 (7.1 to 9.8) 

Riveros- 
McKay*96 

Novel PRS Incident CAD in  
UKBiobank 

Events 4122  5.97 (4.83 to 7.12) 

Nonevents 24 434  −0.09 (−0.26 to 0.08) 

All 186 451  5.88 (4.73,7.04) 

Sun et al†97 metaPRS Incident CVD in  
UKBiobank 

Events (EUR) 5680 10.2 (7.2 to 13.2) 0.3 (−0.7 to 1.2) 

Nonevents (EUR) 300 974 12.6 (12.2 to 13.0) 2.2 (1.8 to 2.6) 

Weale et al98 LDpred of custom 
GWAS summary  
sta-s-cs 

Incident CVD combined 
across UKBiobank, 
MESA, ARIC 

Events (EUR) 2096  2.7 (1.17 to 4.22) 

Events (AFR) 309  2.24 (0.39 to 4.08) 

Lu et al99 Custom PRS of CAD 
and CAD-related traits 
in EAS and EUR 

Incident CAD in China- 
PAR 

Events (EAS) 840 15.7 (7.7 to 22.2) 3.2 (0.9 to 5.8) 

Nonevents (EAS) 32 859 10.1 (9.1 to 11.1) 0.3 (0.1 to 0.5) 

All (EAS) 33 699 25.8 (18.5 to 32.5) 3.5 (1.2 to 6.0) 

S-enfeldt, et 
al‡100 

6 PGS from PGS catalog Incident MACE in  
UKBiobank 

Nonevents (majority  
EUR) 

371 909  0.05 (0.03 to 0.12) 

Events (majority EUR) 23 790  1.12 (0.62 to 1.54) 

All (majority EUR) 394 713  1.16 (0.66 to 1.59) 

NRI for ASCVD-PCE vs PCE with polygenic score in several cohorts with various polygenic 
scores and primary outcomes used. Categorical NRI uses the 7.5% 10-year risk of ASCVD 
threshold unless otherwise noted. ACC/AHA indicates American College of 
Cardiology/American Heart Association; AFR, African genetic ancestry; ARIC‚ Atherosclerosis 
Risk in Communities study; ASCVD, atherosclerotic cardiovascular disease; BMS‚ Bristol 
Myers Squibb; CAD, coronary artery disease; CHD, coronary heart disease; CVD, 



cardiovascular disease; EAS, East Asian genetic ancestry; EUR, European genetic ancestry; 
GWAS, genome-wide association studies; MACE, major adverse cardiac event; MESA‚ Multi-
Ethnic Study of Atherosclerosis; NRI, net reclassification index; PCE, Pooled Cohorts Equation; 
PGS, polygenic scores; and SRA‚ sponsored research agreement. 

* NRI multiplied by 100 as pseudo percentage with range −200 to 200. 

† Comparison made between conventional risk factors alone and with polygenic score. 
Categorical NRI using <5%, 5% to 7.5%, and ≥7.5% 10-year risk thresholds according to 2019 
ACC/AHA guidelines. 

‡ Comparison made between a neural network CVD risk predictor with and without additional 
polygenic score predictors. Categorical NRI using 10% risk thresholds. 

 
 
  



Table 2. Gene+c Determinants of Vascular and Valvular Calcifica+on 
 

Genome-wide significant loci  

Calcific disorder  

Gene/locus (lead single 
nucleo)de polymorphism)  

Gene/locus descrip)on  Study  

Coronary artery 
calcifica-on 

PHACTR1/EDN1 (rs9349379; chr 6) Phosphatase and ac-n regulator 1; EDN1, a vasoconstrictor O’Donnell et al,105 Gupta et al106 

 9p21 (rs1333049; chr 9) CDKN2A/CDKN2B O’Donnell et al105 

 APOB (rs5742904; chr 2) ApoB Natarajan et al107 

 APOE (rs7412; chr 19) ApoE Natarajan et al107 

Abdominal aor-c 
calcifica-on 

HDAC9/TWIST1 (rs57301765; chr 
7) 

Histone deacetylase 9; modulator of osteogenic phenotype; 
promotes endothelial-to-mesenchymal transi-on twist family bHLH 
transcrip-on factor 1 

Malhotra et al,108 Lecce et al,109 
Nurnberg et al110 

Aor-c valvular 
calcifica-on 

LPA (rs10455872; chr 6) Lipoprotein a; causal role for Lp(a) in AV calcifica-on Thanassoulis et al,111 Helgadozr et 
al112 

 PALMD (rs7543130; chr 1) Palmdelphin, also associated with congenital heart disease Helgadozr et al112 

 TEX41 (rs1830321; chr 2) Tes-s expressed 41; also associated with congenital heart disease Helgadozr et al112 

Mitral valvular 
calcifica-on 

IL1F9 (rs17659543; chr 2) Interleukin 36 gamma; proinflammatory Thanassoulis et al111 

Mendelian disorders  

Calcific disorder Gene(s) Descrip-on Study 

 GACI ENPP1 or ABCC6 Ectonucleo-de pyrophosphatase/phosphodiesterase 1; ATP 
binding casseje subfamily C member 6; purine and pyrophosphate 
metabolism 

Rutsch et al113 

 ACDC CD73 (aka NT5E) Ecto-5’-nucleo-dase or cluster of differen-a-on 73; purine 
metabolism 

St. Hilaire et al114 

  Pseudoxanthoma 
elas-cum 

ABCC6 ATP binding casseje subfamily C member 6; purine and 
pyrophosphate metabolism 

Jansen et al115 


