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Abstract: As the prevalence of Internet of things (IoT) continues to increase, there is a corresponding escalation in
security concerns. Given that many IoT devices lack robust security features, the need for specialized security
testing tools has become evident. In this paper, we introduce an open-source automated penetration testing tool
named IoTective for smart home environments in response to the increasing security concerns surrounding IoT
devices. IoTective aims to discover devices in Wi-Fi, Bluetooth, and Zigbee networks, identify vulnerabilities,
and gather valuable information for further analysis. IoTective streamlines the initial stages of reconnaissance,
planning, and scanning, which provides a good support for a variety of devices and protocols common used
in smart home environments. With a focus on ease of use and flexibility, the tool provides an intuitive user
interface and customizable scanning capabilities. We evaluated the effectiveness of IoTective and explored the
impact on overall security posture. Ethical considerations for automated penetration testing are also discussed.

1 INTRODUCTION

The Internet of Things (IoT) has evolved and ex-
panded over the years, driven by technological ad-
vances such as the development of wireless tech-
nologies like Wi-Fi, Bluetooth, and Zigbee. In re-
cent years, IoT applications such as smart home au-
tomation, Industrial Internet, and connected cars have
entered the market. The growing accessibility of
cloud computing and big data analytics has further
driven the expansion of IoT, making it applicable
across diverse domains, including agriculture, man-
ufacturing, healthcare, and transportation (Khanna
and Kaur, 2019)(Tekeste Habte et al., 2019)(Zantalis
et al., 2019).

With the escalating prevalence of IoT devices, se-
curity and privacy concerns have grown (Alrawais
et al., 2017)(Lee et al., 2019). The surge in IoT
devices, often lacking security considerations, raises
substantial security issues, especially when these de-
vices access sensitive information on home networks.
Penetration testing is a cybersecurity method to eval-
uate the security of a computer system. It involves
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identifying vulnerabilities within the system and at-
tempting to exploit these vulnerabilities to gain unau-
thorized access (Shah and Mehtre, 2015). While sev-
eral cybersecurity-related tools exist such as Nmap1,
Wireshark2, and Metasploit3, there is still a growing
demand for more specialized tools capable of auto-
mated security testing in home environments. This
demand arises from the diverse range of devices
and heterogeneous network protocols used in smart
homes. Existing penetration testing tools do not ad-
equately address the unique challenges posed by IoT
devices, necessitating the development of specialized
tools.

The paper aims to contribute to this space by creat-
ing an open-source automated penetration testing tool
called IoTective, which is tailored for testing the secu-
rity of IoT devices in smart home environments. The
paper addresses several research questions, includ-
ing the identification of common vulnerabilities in
smart home environments and the effectiveness of au-
tomated penetration testing compared to manual test-
ing. Furthermore, it discusses the impact on overall
security posture and ethical considerations.

1Nmap https://nmap.org/
2Wireshark https://www.wireshark.org/
3Metasploit https://www.metasploit.com/
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Our primary objective is to develop an automated
tool to assist penetration testers in the initial stages
of reconnaissance, planning, and scanning. IoTective
simplifies the process of collecting information about
a target network, making it more accessible and more
efficient. Additionally, it provides support for a vari-
ety of devices and protocols commonly found in IoT
environments, which thereby enhances its applicabil-
ity.

IoTective is designed for ease of use and flexibility
by prioritizing an intuitive user interface and provid-
ing customizable scanning capabilities. Ultimately,
we aim to provide users with a useful and efficient
tool for automatically identifying potential security
issues in smart home environments. Furthermore, to
emphasize responsible usage, our tool employs pas-
sive techniques to minimize risks by collecting infor-
mation and discovering vulnerabilities without log-
ging private data. Users must have authorized access
to the network, with the tool restricted to private IP
addresses and refraining from any probing over the
Internet.

We demonstrate the effectiveness of IoTective
through a case study in a real-world smart home en-
vironment. The generated report presents a compre-
hensive range of information gathered from various
sources, protocols, and devices, effectively showcas-
ing the capabilities of IoTective.

The rest of the paper is organized as follows: Sec-
tions 2 and 3 introduce smart homes and their security
issues, respectively. Section 4 presents related work.
In Section 5, we introduce the design of IoTective.
Section 6 presents the implementation details and the
effectiveness of IoTective through a case study. In
Section 7, we discuss the impact of automated pene-
tration testing on security posture and ethical consid-
erations. Finally, we conclude this paper and outline
future work in Section 8.

2 SMART HOMES

A smart home is a specific application of IoT tech-
nology focused on the residential environment. It in-
volves the use of internet-connected devices to enable
remote control and automation of appliances and sys-
tems, including lighting, heating, security, and enter-
tainment. The goal of smart homes is to enhance resi-
dents’ quality of life by providing convenience, com-
fort, energy efficiency, and entertainment (Li et al.,
2021).

The popularity of smart home technology has
surged, especially among younger generations, driven
by the rapid development of IoT and innovations in

artificial intelligence. A 2020 report by Strategy An-
alytics projected a significant increase in spending on
smart home technologies, from $120 billion in 2021
to $175 billion by 2025 (Ablondi and Narcotta, 2020).
It is anticipated that by 2025, nearly 390 million
homes worldwide will have at least one type of smart
system installed, accounting for 19% of all house-
holds.

Smart home automation systems typically utilize
a central hub or controller that connects to various
devices and systems in the home. This hub en-
ables remote control and monitoring of these systems
through a smartphone application, tablet, or com-
puter. Some smart home automation systems also
feature voice control capabilities, allowing homeown-
ers to use voice commands to manage their devices.
Moreover, smart home automation can involve the use
of sensors, such as motion detectors, to automate spe-
cific functions, like turning on lights when someone
enters a room. Additionally, these systems can be in-
tegrated with other connected devices, such as smart
thermostats and locks, providing a more comprehen-
sive and seamless automation of home functions and
enhancing user convenience.

3 SECURITY ISSUES IN SMART
HOMES

H. Touqeer et al. (Touqeer et al., 2021) provided
a comprehensive overview of security challenges in
IoT environments and described potential attacks at
the application layer, perception layer, network layer,
and physical layer of these environments. Consider-
ing that smart homes are one of the IoT applications,
those attacks are applicable to smart home environ-
ments.

Furthermore, many vulnerabilities associated with
the network protocols used in smart home environ-
ments have been reported. For instances, Zigbee is
exposed to a suite of vulnerabilities. One such in-
stance was discovered by Wara et al. (Wara and Yu,
2020) which included a replay attack on the Zigbee
protocol in IoT applications. The authors were able
to re-transmit captured packets to victim devices and
demonstrated this on Phillips Hue bulbs and Xbee
S1 and S2C modules. Zigbee is based on the IEEE
802.15.4 protocol specification, which lacks robust
replay attack protection. This vulnerability has been
exploited multiple times, often using the KillerBee
tool (Pan, 2021). In addition, Zigbee maintains an as-
sociation table that records all child nodes associated
with the parent. A problem with the implementation
is that the records are not deleted when a child node



leaves the network after a power failure. Attackers
can exploit this by causing a frequent replacement of
child nodes, which consequently fills up the associa-
tion table, making it impossible for new child nodes
to join the network. Other attacks targeting Zigbee
can be found in (Hussein and Nhlabatsi, 2022) (Okada
et al., 2021) (Morgner et al., 2017).

Bluetooth Low Energy (BLE), also known as
Bluetooth Smart, is a wireless communication tech-
nology specifically designed for low-power, low-data-
rate applications (Heydon and Hunn, 2012). BLE is
also one of commonly used protocols in smart home
environments. The survey conducted by Casar et al.
(Cäsar et al., 2022) extensively examines the weak-
nesses and vulnerabilities present in BLE technol-
ogy. The authors delve into known vulnerabilities
and attacks that have been discovered during the eval-
uation of BLE development. Some of the promi-
nent attacks against BLE include sniffing, man-in-the-
middle (MITM), and jamming. The authors also iden-
tify various weaknesses, particularly those related to
privacy. These weaknesses encompass issues such
as device tracking, the ability to infer user behavior
through traffic analysis, and the disclosure of user
location through mobile applications. Furthermore,
Barua et al. (Barua et al., 2022) provided an overview
of the threat model against BLE devices and discussed
some of the relevant vulnerabilities found in BLE.

Davis et al. (Davis et al., 2020) conducted a smart
home case study, identifying several vulnerabilities in
smart bulbs across four aspects: physical, network,
software, and encryption by utilizing Common Vul-
nerabilities and Exposures (CVE) and National Vul-
nerability Database (NVD). In addition, a vulnerabil-
ity discovered in Philips Hue published in December
of 2020 made the devices vulnerable to a DoS attack
4. By performing an SYN flood on port tcp/80, the
Phillips Hue’s hub will not respond until the flood-
ing has stopped. During the attack, users are unable
to control the lights or use the vendor’s cloud ser-
vices. Another CVE published in January of the same
year showed that the Philips Hue was vulnerable to a
heap-based buffer overflow attack, enabling attackers
to perform remote code execution 5. A DoS attack is
also possible for the Sengled Zigbee Smart Bulb de-
vices 6.

4CVE-2018-7580 Detail https://nvd.nist.gov/vuln/
detail/CVE-2018-7580

5CVE-2020-6007 Detail https://nvd.nist.gov/vuln/
detail/CVE-2020-6007

6CVE-2022-47100 Detail https://nvd.nist.gov/vuln/
detail/CVE-2022-47100

4 RELATED WORK

PENIOT 7 is an open-source penetration testing tool.
It tests commonly used protocols such as Advanced
Message Queuing Protocol (AMQP), Message Queu-
ing Telemetry Transport (MQTT), Constrained Ap-
plication Protocol (CoAP), and BLE. The tool aims
for semi- or fully automatic generic security at-
tacks on IoT devices, offering protocol-specific at-
tacks through a graphical interface. Users select
an attack, input required information, and receive a
downloadable report after completion. The authors
planned additional features, including sniffing and at-
tacks against Zigbee and RPL, but due to time con-
straints and lack of required hardware, they were not
implemented. Besides, PENIOT has not undergone
extensive development since its launch and, as of the
time of writing this paper, it still relies on Python ver-
sion 2.7.

HomePwn 8 is a security testing tool primarily de-
signed for discovery and device enumeration and of-
fers support for only sniffing and MAC spoofing. It
supports MQTT, mDNS, Wi-Fi, and BLE, provides
an interactive command line interface, and supports
attacks like replay, injection, and eavesdropping. The
tool also provides documentation and resources for
users to understand the vulnerabilities and their poten-
tial impact. HomePwn was written to support Python
3.6; however, it remained unchanged without receiv-
ing any updates in the past 3-4 years.

KillerBee 9 is an open-source framework and test-
ing tool designed for exploring and exploiting the se-
curity of Zigbee and IEEE 802.15.4 networks. De-
veloped in Python, KillerBee allows researchers and
security professionals to sniff, inject, and manipulate
Zigbee network traffic in real time. The tool can also
be used to conduct replay attacks, capture network
keys, and perform other forms of network analysis.
KillerBee only provides a classic command line inter-
face, and it was originally written in C and is currently
being ported to Python 3.5 or higher.

EXPLIoT 10 is an open-source framework de-
signed for security testing and exploiting IoT products
and infrastructure. It was written in Python 3, offering
both interactive and non-interactive command line in-
terfaces. EXPLIoT aims to support various IoT proto-
cols, hardware platforms, and IoT products. However,
some plugins necessitate hardware connectors to in-

7PENIOT: Penetration Testing Tool for IoT https://
github.com/yakuza8/peniot

8HomePwn - Swiss Army Knife for Pentesting of IoT
Devices https://github.com/Telefonica/HomePWN

9KillerBee https://github.com/riverloopsec/killerbee
10EXPLIoT https://expliot.io/
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teract with the relevant protocol, and the functionality
may vary for each supported protocol. Despite these
considerations, EXPLIoT appears to be a comprehen-
sive framework due to its extensive protocol support
and wide range of attacks.

Different from the aforementioned frameworks,
IoTective employs protocols such as mDNS, Zig-
bee, Wi-Fi, and Bluetooth primarily for scanning and
sniffing purposes. Furthermore, our tool incorporates
a Graphical User Interface (GUI) implemented within
the terminal environment, offering users the ability to
interact with the tool using cursor-based actions. This
design positions it as a hybrid interface, seamlessly
combining features of both GUI and interactive com-
mand line interfaces. Notably, IoTective is developed
to be compatible with the latest iteration of the Python
programming language, specifically Python 3.11.

5 IoTective

Figure 1 illustrates the overall design of IoTective,
which consists of four phases: Initialization, Scan-
ning, Sniffing, and Reporting.

Figure 1: The overall design of IoTective.

In the initialization phase, users have the option
to tailor their testing by choosing from four avail-
able options: Network scanning, Wi-Fi sniffing, Blue-
tooth sniffing, and Zigbee sniffing. Network scan-
ning involves conducting an ARP (Address Resolu-
tion Protocol) scan to collect information about ser-
vices, ports, operating systems, and known vulnera-
bilities associated with the services in the target smart
home environment. Wi-Fi sniffing involves using
packet capture to identify the hosts connected to the
access point through Wi-Fi. Bluetooth scanning con-
ducts a regular Bluetooth scan to gather information
about services and their characteristics. Zigbee sniff-
ing utilizes packet capture to provide an overview
of Zigbee devices and their communications on each
channel.

If users choose the Zigbee sniffing option, they
must select a corresponding adapter, which is also a
requirement shared with network scanning and Wi-Fi
sniffing. In contrast, Bluetooth adapters can be con-
figured automatically by IoTective. After configura-
tion, the tool proceeds based on the user selection and

preference.
Moving on to the scanning phase, as illustrated in

Figure 2, IoTective initiates an ARP scan to quickly
discover all live hosts by obtaining their IP and MAC
addresses. Each IP address is then targeted for an
extensive nmap enumeration. This enumeration may
take varied time based on connection speed. IoTec-
tive is configured to probe the top 2000 ports of each
host to identify running services. Note that these ports
are set by Nmap and is a common way of using the
tool for optimizing efficiency. This number strikes a
balance between an exhaustive list, which would be
time consuming, and allowing the discovery of more
obscure ports, such as port 8123 used by Home As-
sistant. The enumeration also involves guessing the
host’s operating system and determining the accuracy
of that guess.

Figure 2: The Scanning phase of IoTective.

Following device enumeration, IoTective focuses
on finding the Philips Hue Bridge, which is a hub
connecting and controlling Philips Hue smart bulbs
and lights. This choice is made considering that the
Philips Hue Bridge is a widely used and popular cen-
tral component in the Philips Hue smart lighting sys-
tem, representing a common device in smart home
environments. IoTective initiates the process with an
mDNS lookup, a protocol often used by IoT devices
for local network service discovery and recommended
by Philips Hue11. The subsequent steps depend on
whether the bridge is discovered. If it is found, Io-
Tective proceeds to retrieve the configuration of the
devices. Otherwise, IoTective utilizes a GET request
on the broker server URL, which provides the private
IP address of any Philips Hue bridge on the network.

11How to develop for Hue? https://developers.meethue.
com/develop/get-started-2/
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The bridge configuration is then acquired by query-
ing https://⟨BRIDGE PRIVATE IP ADDRESS⟩/api/
0/config using the acquired IP address.

Figure 3: The Sniffing phase of IoTective.

If any of the four scanning/sniffing options is cho-
sen in the Initialization phase, IoTective proceeds to
the Sniffing phase, as depicted in Figure 3.

For Wi-Fi monitoring, IoTective collects informa-
tion by identifying the Wi-Fi network name, or Ex-
tended Service Set Identifier (ESSID), of the con-
nected network. This name may either be the default
set by the manufacturer or customized by the network
administrator. While the network name helps in iden-
tifying the network, the actual data transmissions are
tagged with a different identifier, the Basic Service
Set Identifier (BSSID), which is unique to each access
point (AP). This is because multiple APs can share
the same ESSID to create a single, seamless network
across a larger area, allowing devices to connect to the
Internet regardless of which specific access point they
are connected to. After identifying all BSSIDs asso-
ciated with the ESSID, IoTective collects capture data
packets related to these BSSIDs. Any unique hosts
communicating via these BSSIDs are considered to
be connected hosts.

Bluetooth sniffing is a straightforward process. It
begins with a standard Bluetooth scan, allowing Io-
Tective to recognize all Bluetooth devices in the sur-
rounding area. Following this, the tool initiates con-
nections with each device, seeking to gather addi-
tional information about the services and character-
istics associated with each one.

In Zigbee sniffing, IoTective systematically
checks every ZigBee channel one by one. This is
done to capture traffic across the entire ZigBee spec-
trum to ensure no communications are missed. Note
that ZigBee networks operate across various chan-
nels in the radio frequency spectrum, primarily in the
2.4 GHz band. As IoTective scans each channel, it
identifies and records information about each host it

finds, including their personal area network identifier
(PAN ID). All information gathered during the Sniff-
ing phase is added to the report before proceeding to
the final phase.

In the last phase, the Reporting phase, IoTec-
tive takes the report as input and generates a JSON
file. This decision is driven by the capability of Tex-
tual12, a rapid application development framework for
Python, to automatically generate a navigation user
interface. This feature enhances user experience by
facilitating the navigation of information and devices
in the report.

6 IMPLEMENTATION AND CASE
STUDY

IoTective is developed using Python 3.11 on Kali
Linux. Python 3.11 is the latest version at the time
of writing. Python is an ideal language for penetra-
tion testing tools due to its user-friendly syntax, flex-
ibility, and rich libraries. On the other hand, Kali
Linux is a Debian-based Linux distribution designed
for security-related tasks. It comes pre-installed with
numerous security tools and utilities, making it a pop-
ular choice among cybersecurity professionals, ethi-
cal hackers, and individuals interested in testing and
securing computer systems.

IoTective requires the user to have a wireless
adapter, a Zigbee adapter, and a Bluetooth adapter
capable of monitoring mode. This enables the tool
to conduct wireless, Zigbee, and Bluetooth network
analyses, capturing and scrutinizing network traffic to
identify potential vulnerabilities. Additionally, the in-
clusion of Bluetooth support enables the tool to scan
and analyze Bluetooth Low Energy (BLE) devices.

To demonstrate the effectiveness of IoTective in
identifying vulnerabilities and weaknesses in smart
home environments, we deployed it in a real smart
home setup. The environment included a Ethernet-
connected Philips Hue Bridge, a Philips Hue Bloom
light, a Philips Hue motion sensor, a Philips Hue
smart plug, as shown in Fig 4. Additionally, the en-
vironment comprised other devices not visible in the
figure, such as a Samsung TV, smartphones, comput-
ers, and a Raspberry Pi running Home Assistant and
Pi-hole. Home Assistant 13 controlled the Philips Hue
Bridge and connected IoT devices, while Pi-hole14

served as a network-wide advertisement and malware
blocker. The Raspberry Pi operated on the Raspbian

12Textual https://textual.textualize.io/
13Home Assistant https://www.home-assistant.io/
14Pi-hole https://pi-hole.net/
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OS, with both Home Assistant and Pi-hole set up as
Docker instances. This comprehensive setup repre-
sented a diverse range of devices commonly found
in smart home environments, enabling IoTective to
thoroughly assess and identify potential vulnerabili-
ties across different types of connected devices.

Figure 4: A simplified illustration of the smart home envi-
ronment used.

6.1 The Initialization phase

To assess the the capability of IoTective, we activated
all the options in the Initialization phase, as shown in
Figure 5. This allows us to gain a comprehensive view
of the tested smart home environment. It is clear that
the interface of IoTective is user-friendly as it did not
require users to input any commands, thus lowering
the barrier for conducting penetration testing.

Figure 5: The initialization interface of IoTective.

6.2 The Scanning phase

The Scanning phase began with an ARP scan to
quickly identify and link all IP addresses to their cor-
responding MAC addresses in the local network. This
scan enables the identification of all connected de-

vices, with MAC addresses providing vendor infor-
mation. The scanning result was presented in an easy-
to-read table on the command line interface of IoTec-
tive, as shown in Figure 6. From the scan, we ob-
served seven active hosts in the network, each accom-
panied by its respective MAC and IP addresses. The
last column provides additional information about the
vendor, which facilitates the identification of devices
based on their manufacturer.

Figure 6: Results of the ARP scan shown on the command
line interface of IoTective.

After identifying the connected hosts, IoTective
proceeded to perform a comprehensive Nmap scan for
each device. This scan gathered information about
the operating systems, open ports, running services
on each port, and any known vulnerabilities associ-
ated with these services. Figure 7 shows the scan-
ning results for the Raspberry Pi, a device running the
Home Assistant software. The results revealed four
open ports, with port 8123 being particularly note-
worthy. This port is commonly used by Home Assis-
tant for web services over HTTP, which is known as
an insecure protocol due to the lack of encryption for
data transmission. Additionally, the scan identified
77 known vulnerabilities associated with the services
running on this port.

Figure 7: Results of the Nmap scan for the Raspberry Pi
deployed in the tested smart home.

Figure 8 shows the scanning results for the Philips
Lighting BV host in the network. As expected, the
host was identified as a Philips Hue bridge, with the
operating system recognized as Philips Hue Bridge
2.0. The host had open ports 80 and 443, indicating
the presence of a web server.



Figure 8: The result of the Nmap scan for the Philips Light-
ing BV host deployed in the tested smart home.

Once all the devices were enumerated, IoTective
searched for a Philips Hue bridge on the network.
Without prior knowledge of whether a Philips Hue
bridge exists, the tool initiated an mDNS (Multi-
cast DNS) lookup using the address ” hue. tcp.local”,
commonly associated with Philips Hue devices. How-
ever, since the mDNS query did not yield a response,
IoTective then resorted to a cloud lookup by sending
a GET request to https://discovery.meethue.com. As
the bridge periodically queries the cloud to announce
its private network address, if the bridge exists, the
cloud lookup returns the device’s private network ad-
dress.

Having confirmed the presence of a Philips Hue
bridge on the network and obtained its associated pri-
vate network address, IoTective gained crucial infor-
mation. Each Philips Hue bridge features an API that
allows other applications, such as Home Assistant
or custom-developed software, to control connected
smart devices. Most API commands require authenti-
cation and authorization by the application. However,
the ”config” query serves as an exception, providing
significant information about the bridge. This infor-
mation was acquired by querying https://⟨BRIDGE
PRIVATE IP ADDRESS⟩/api/0/config, and the out-
come is presented in Figure 9.

The configuration information includes properties
such as model ID, bridge ID, and name. Of par-
ticular significance for both the users and IoTective
are the API version and software version, as certain
CVEs are associated with specific versions of the API
and software used by the Philips Hue bridge. En-
suring that the API and software versions are current
and patched is crucial for safeguarding against CVEs
like CVE-2020-6007 (a buffer overflow vulnerabil-
ity), and CVE-2017-14797 (deficiency in transport
layer encryption).

6.3 The Sniffing phase

After the scanning phase, IoTective progressed to
the Sniffing phase, starting with the capture of Wi-

Figure 9: Configuration information gathered from Philips
Hue bridge API.

Fi packets. It determined the BSSIDs of the access
point to which the wireless adapter was connected.
This was achieved by capturing IEEE 802.11 broad-
cast packets on each channel and filtering them based
on the access point’s ESSID. This approach is used
to avoid relying solely on the BSSID provided dur-
ing Wi-Fi connection, as many routers support both
2.4 GHz and 5 GHz bands under the same ESSID.
Each band has its distinct BSSID, and filtering based
on only one of them could potentially result in miss-
ing relevant packets.

After identifying all the BSSIDs, the tool pro-
ceeded to capture packets on each channel, applying
filters based on the BSSIDs to determine the band to
which each connected device was connected. Despite
the encrypted nature of the packets limiting the ac-
quisition of new information, IoTective successfully
established a mapping between MAC addresses and
the addresses discovered during the Scanning phase.
However, IoTective could only discover two out of
four connected hosts, which is likely attributed to
the 10-second time frame for capturing packets on
each channel, as not all devices may transmit pack-
ets within that short period.

After identifying Wi-Fi hosts, IoTective pro-
ceeded to perform Bluetooth sniffing. It captured
information such as device name, company name,
device local name (i.e., human-readable name), sig-
nal strength, and service UUIDs (Universally Unique
Identifiers). IoTective then attempted to establish a
connection with each device to acquire additional in-
formation, including services and characteristics. The
scan detected a total of 44 Bluetooth devices, with
only three of them permitting access to information
regarding their services and characteristics.

Finally, IoTective proceeded with Zigbee packet
capture on each Zigbee channel to identify devices
associated with each channel. This phase requires a
Zigbee USB dongle with packet capture capabilities,
such as the Texas Instruments CC253115. The dongle

15Texas Instruments CC2531. https://www.ti.com/
product/CC2531

https://discovery.meethue.com
https://<BRIDGE_PRIVATE_IP_ADDRESS>/api/0/config
https://<BRIDGE_PRIVATE_IP_ADDRESS>/api/0/config
https://www.ti.com/product/CC2531
https://www.ti.com/product/CC2531


had been flashed with a custom firmware designed for
this specific purpose. Although the encrypted nature
of the packets limits the available information, IoTec-
tive successfully identified crucial details including
the channel, protocol version, PAN ID, etc. The scan
discovered hosts distributed across channels 15, 20,
and 25, with a total of five devices.

6.4 The Reporting phase

Once the scanning and sniffing phases are completed,
IoTective offers users a convenient way to access the
scan results through the ”View Reports” option. The
reports are listed chronologically, with the most re-
cent report displayed at the top, as shown in Figure
10. Each report includes the date, time, and enabled
scan types for reference.

Figure 10: List of reports generated by IoTective.

By opening a specific report, users can view the
information obtained during the scan (for example,
see Figure 11). The report is generated using Mark-
down language and presents the data in a structured
format, allowing for easy navigation between devices.
In this particular run, Bluetooth enumeration was per-
formed separately, so the report states that Bluetooth
scanning was not conducted. The scanning and sniff-
ing processes took a total of 29 minutes and 55 sec-
onds, with Wi-Fi and Zigbee accounting for 24 min-
utes and 41 seconds, while Bluetooth scanning took 4
minutes and 14 seconds.

Examining the Zigbee device section of the re-
port reveals detailed information about each device,
as presented in the table shown in Figure 12. This
table includes relevant details such as the PAN ID,
router capacity, device capacity, Link Quality Indica-
tor (LQI), and protocol version, etc. By analyzing the
channel number and PAN ID, users gain insights into
nearby Zigbee networks. If they have a Zigbee device
capable of packet injection, further active tests can be

Figure 11: Scan information displayed in the report.

conducted using tools like KillerBee.

Figure 12: Zigbee device information displayed in the re-
port.

If we move to the network device section, we can
see all the network devices discovered by IoTective,
including the Raspberry Pi device and its information,
as shown in Figure 13.

Figure 13: Information about Raspberry Pi device gathered
by IoTective.

During runtime, IoTective gains visibility into
open ports on the host and the corresponding services
running on those ports. For each open port, the report
presents a list of potential vulnerabilities. Addition-
ally, the report includes information on the Common
Platform Enumeration (CPE), which standardizes the
naming of software applications, operating systems,
and hardware platforms. In this context, the CPE
refers to the service operating on the respective port.



Users can utilize this information for further analysis,
such as examining the source code of the software.
In the case of the Home Assistant service running on
the Raspberry Pi, IoTective detected 77 CVEs. In the
report, each CVE entry provide information such as
the CVE ID, the Common Vulnerability Scoring Sys-
tem (CVSS) score (offering a numerical representa-
tion of the vulnerability’s severity), vulnerability type,
and an indication of whether an exploit for the known
vulnerability exists.

Figure 14: The identified CVE-2016-5636 on the Home As-
sistant service.

One example is CVE-2016-5636, as shown in Fig-
ure 14, which relates to a vulnerability found in cer-
tain earlier versions of Python. This vulnerability in-
volves an integer overflow issue that could potentially
trigger a heap-based buffer overflow, enabling a re-
mote attacker to exploit the vulnerability. It is im-
portant to note that although this CVE is associated
with Python 3.10 in the identified CPE, it does not
exclusively apply to the Home Assistant software im-
plementation. Instead, it is relevant to any software
utilizing Python as a programming language. Further
investigation of the CVE ID reveals that this vulnera-
bility only affects Python versions below 3.5.2, indi-
cating that it does not pose a direct risk to the current
Python installation used by Home Assistant.

Figure 15 illustrates the information gathered
from a Sony WH-1000XM4 wireless Bluetooth head-
set. This data provides valuable insights for the user
to understand the device’s capabilities and function-
alities. The gathered information reveals that the de-
vice is a product made by the Sony Corporation with
the name ”LE WH-1000XM4,” which represents the
simplified name of the product. The local name,
which is usually a shorter or alternative name that can
be changed by the user, remains unchanged in this
case and is identical to the Bluetooth MAC address
of the device.

In Bluetooth technology, Received Signal
Strength Indicator (RSSI) indicates the signal
strength on the receiving unit’s antenna, providing an
estimation of the signal’s quality and proximity of
the Bluetooth device. On the other hand, TX power
refers to the amount of energy transmitted by the
sending unit’s antenna. Service UUIDs, represented
as 128-bit values, are used to uniquely identify

Figure 15: Information gathered from Sony WH-1000XM4
headset.

different Bluetooth services or profiles offered by
a device. Each Bluetooth device may support one
or more services, and each service is identified by a
unique UUID. When scanning a Bluetooth device,
the list of service UUIDs provides information about
the available services that the device supports. This
information is useful for determining the capabilities
and functionalities of the Bluetooth device.

Figure 16 illustrates an example of one of the ser-
vices identified on the Sony headset. Each service is
accompanied by a description, which in this case is
”Google Inc.” This could indicate that the headset has
some sort of integration with Google, which aligns
with the presence of Google Assistant as a feature ser-
vice on the Sony WH-1000XM4 headset.

Figure 16: Service information gathered from Sony WH-
1000XM4 headset.

Services further consist of ”characteristics,” which
are individual data elements within a Bluetooth ser-
vice that contain specific information or attributes.
Both the service itself and each characteristic have
unique UUIDs. An interesting attribute for the user to
consider is the properties associated with each char-
acteristic. These properties indicate the capabilities
of each characteristic, specifying what actions can be
performed, such as write, read, or notify. This infor-
mation can be valuable for further testing, enabling
the user to explore possible device modifications or
gather additional information.

By examining the gathered Bluetooth device in-



formation, users gain insights into the manufacturer,
names, signal strength, transmission power, supported
services, and their associated characteristics. This
knowledge allows for a better understanding of the
device’s capabilities, potential integration, and possi-
ble actions that can be performed with the Bluetooth
device.

The combination of network scanning, Wi-Fi
sniffing, Zigbee sniffing, and Bluetooth sniffing en-
ables IoTective to provide a comprehensive view of
connected devices and their services. The report gen-
erated presents a comprehensive range of informa-
tion gathered from various sources, protocols, and de-
vices, showcasing the capabilities of IoTective.

7 DISCUSSION

Although automated penetration testing is effective in
identifying a broad range of vulnerabilities in smart
home environments, its effectiveness is contingent
upon the quality of the test cases and the skill of users.
Manual testing is indispensable for uncovering com-
plex vulnerabilities that cannot be identified through
automated means alone. While IoTective addresses
the initial phases of information gathering and scan-
ning, further analysis is needed for the assessment to
be comprehensive. Therefore, a combination of au-
tomated and manual testing is recommended for con-
ducting thorough security assessments of smart home
environments.

Automated penetration testing has a positive im-
pact on the security posture of a smart home envi-
ronment. It identifies vulnerabilities, provides re-
mediation recommendations, reduces the attack sur-
face, reveals security gaps, and offers ongoing in-
sights into the environment’s security. However, it is
important to acknowledge that automated penetration
testing should not be the sole security measure in a
smart home environment. Implementing other mea-
sures such as regular software updates, strong pass-
words, and network segmentation is essential to en-
sure comprehensive security.

When it comes to ethical considerations, the de-
velopment and use of automated penetration testing
tools hold the potential to benefit both legitimate users
and malicious actors. Therefore, ethical considera-
tions are paramount to ensure that these tools are em-
ployed exclusively for ethical purposes. This involves
obtaining user consent, preventing potential damage,
and restricting access to the environment used for test-
ing.

One crucial ethical consideration involves the risk
of collateral damage. Automated penetration testing

tools can inadvertently disrupt network services or
disable critical functions. Testing must be conducted
within a controlled environment to minimize the po-
tential for unintended damage. This challenge was en-
countered during the development of IoTective, par-
ticularly in scoping the tool to specifically scan for
relevant Bluetooth and Zigbee devices. While striv-
ing for automation and minimal user input, filtering
out devices outside the scope proved challenging due
to limited information. As a compromise, IoTective
collects information from all devices in the vicinity
but does so with minimal disruption, focusing on au-
thorized information from publicly available sources.

Protecting users’ privacy is another critical ethical
consideration. Automated penetration testing tools
may collect sensitive information, such as passwords
or personal data, during the testing process. It is im-
perative to ensure that any data collected remains con-
fidential and is not used for unauthorized purposes. In
the case of IoTective, no sensitive data is collected as
it does not attempt to exploit target devices. Only au-
thorized information is gathered and analyzed using
publicly available sources.

Furthermore, automated penetration testing
should only be conducted with explicit consent from
users. Providing clear information about the purpose
of the testing, potential risks involved, and the steps
taken to minimize those risks is vital. Users should
have the option to opt-out of testing if they are
uncomfortable with it. Additionally, testing should
comply with relevant laws and regulations, such as
data protection laws and regulations governing the
use of automated tools for security testing. Lastly,
it is essential to ensure that automated penetration
testing is conducted transparently and accountably.
This includes documenting the testing process, the
obtained results, and the steps taken to address
identified vulnerabilities in a clear and accessible
manner.

8 CONCLUSIONS AND FUTURE
WORK

In this paper, we have introduced IoTective, which
is an open-source automated penetration testing tool
for identifying vulnerabilities in smart home environ-
ments. While many existing tools focus on providing
a wide range of features, relying on analysts to select
and perform specific tasks, IoTective takes a different
approach by emphasizing automation and user expe-
rience. It does not aim to match the power and thor-
oughness of tools. Instead, it focuses on automating
aspects of the penetration testing process that demand



minimal expertise and involve substantial manual ef-
fort. As a result, IoTective can be seen as a valu-
able supplement to these other tools, which excel in
more specialized and aggressive security testing. By
automating repetitive and time-consuming tasks, Io-
Tective streamlines the initial stages of IoT device as-
sessment, enabling users to focus on more advanced
security analysis and exploitation techniques. The
use case demonstration illustrates IoTective’s ability
to automate the discovery of network interfaces and
devices, enhancing usability through flexible scan op-
tions and user-friendly reports.

In our future work, we would like to further en-
hance and extend IoTective by investigating more ef-
ficient solutions for capturing Bluetooth and Zigbee
network information, providing exploitation capabil-
ity, and incorporating support for additional commu-
nication protocols commonly used in smart home en-
vironments, such as Z-wave or other proprietary pro-
tocols. Additionally, we plan to establish a process
for regular updates and maintenance to ensure that
IoTective stays current with the latest security vul-
nerabilities, attack techniques, and changes in device
firmware and communication protocols.
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