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Abstract— Objective: Learning-based methods have achieved remarkable performances on depth 

estimation. However, the premise of most self-learning and unsupervised learning methods is built on 

rigorous, geometrically-aligned stereo rectification. The performances of these methods degrade when 

the rectification is not accurate. Therefore, we explore an approach for unsupervised depth estimation 

from stereo images that can handle imperfect camera parameters. Methods: We propose an unsupervised 

deep convolutional network that takes rectified stereo image pairs as input and outputs corresponding 

dense disparity maps. First, a new vertical correction module is designed for predicting a correction map 

to compensate for the imperfect geometry alignment. Second, the left and right images, which are 

reconstructed based on the input image pair and corresponding disparities as well as the vertical 

correction maps, are regarded as the outputs of the generative term of the generative adversarial network 

(GAN). Then, the discriminator term of the GAN is used to distinguish the reconstructed images from 

the original inputs to force the generator to output increasingly realistic images. In addition, a residual 

mask is introduced to exclude pixels that conflict with the appearance of the original image in the loss 

calculation. Results: The proposed model is validated on the publicly available Stereo Correspondence 

and Reconstruction of Endoscopic Data (SCARED) dataset and the average MAE is 3.054 mm. 

Conclusion: Our model can effectively handle imperfect rectified stereo images for depth estimation.  

Keywords— unsupervised learning, depth estimation, stereo matching, laparoscopic image, imperfect 

rectified stereo images 

 

1. Introduction 

Depth estimation from color images, i.e., predicting their per-pixel absolute distances to the camera, is 

an important topic in the field of computer vision. It has many applications in practice, such as 

autonomously driving vehicles, robot-assisted surgery, and augmented reality (AR). For AR-based 

computer-assisted laparoscopic surgery [1], estimating the depth of the surgical site's surface is a critical 

step. It can serve as a foundation for reconstructing the intraoperative organ surface, and then, the surface 
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can be used for registration with the preoperative models derived from computed tomography or 

magnetic resonance image scans. 

 With the help of two eyes, humans perform well with regard to perceiving the exact positions of 

objects. Similarly, a stereoscopic vision system can be used to estimate the depth of a scene depending 

on a stereo pair of images, with the prerequisite that it must find a sufficient number of matched features 

between the left and right images, i.e., stereo matching. The goal of stereo matching is to compute the 

disparity d per pixel in the reference image (usually referred to as the left image), where disparity is 

defined as the horizontal displacement between the corresponding pixels on one horizontal scan  line of 

the rectified stereo image. 

 Traditional stereo matching algorithms struggle to find enough feature points in textureless, 

repetitive or highly reflective regions. In contrast, deep learning methods have been approved for learning 

powerful representations directly from raw color images in many application fields. However, vast 

amounts of corresponding per-pixel ground truth data are required for training supervised-based learning 

methods [2, 3]. Special devices, such as light detection and ranging (LiDAR) systems or Microsoft Kinect 

for real-world scenarios, are required to collect the ground truth data. Whereas, it is not trivial to obtain 

such data in laparoscopic settings, and the sizes of depth sensors hinder them from reaching the 

abdominal cavity to collect clinical datasets from real scenes for training. To alleviate this contradiction, 

some researchers use real laparoscopic images to synthesize ground truth depth data for training purposes  

[4]. To date, there is no existing human laparoscopic dataset that has associated ground truth depth or 

disparity datasets for training depth prediction models. 

 Nevertheless, this dilemma also promotes the development of self- or unsupervised learning-based 

methods for depth prediction. One family of unsupervised methods treats depth estimation as an image 

reconstruction problem during the training process. A premise of these methods is that a rectified pair of 

stereo images is required for feeding the network during the training stage, and this can guarantee that 

the corresponding pixels lie on the same horizontal scan-line, i.e., the epipolar constraint. Given a pair 

of rectified stereo color images 𝐼𝑙 and 𝐼𝑟, once the disparity 𝑑𝑙 of a particular pixel located at (𝑖, 𝑗) 

in the left image is available, its corresponding pixel position in the right image can also be calculated as 

(𝑖 − 𝑑𝑙, 𝑗); thus, based on the right color image and the disparity map of the left image, a reconstructed 

image 𝐼′𝑙  can be synthesized and vice versa. By minimizing the reconstructed and original color images, 

the disparity image can be predicted. Furthermore, according to the camera focal length 𝑓  and the 

baseline 𝑏  between the stereo rig cameras, the depth 𝐷  can be calculated readily according to the 

following equation: 𝐷 = 𝑏𝑓 𝑑⁄ . 

 However, many state-of-the-art (SOTA) methods struggle to process imperfect rectified stereo 

images; these difficulties are caused by suboptimal or faulty camera calibration, where the intrinsic and 

extrinsic parameters may be incorrectly estimated. This is very common when calibrating stereo cameras, 

as the calibration algorithm [5] is not guaranteed to run without any errors. A pictorial description of an 

imperfect rectified stereo image is shown in Fig. 1. Under the premise of a perfectly rectified stereo 

image pair (Fig. 1 (a)), the matching between 𝐼𝑙1  and 𝐼𝑟1  (or 𝐼𝑙2  and 𝐼𝑟2 ) is constrained by a 

horizontal scan line. The distance 𝑑1 between 𝐼𝑙1 and point 𝐼𝑟1
′ , which is the location of 𝐼𝑟1 mapped 

to the left view, is defined as the disparity of point 𝐼𝑙1. When the camera calibration parameters are 

imperfect (Fig. 1 (b)), the corresponding pixel of one particular pixel in the stereo image pair might not 

be located on the same horizontal scan-line, namely, it might result in a vertical shift. Therefore, the 

image reconstruction step of the unsupervised learning model training does not make sense under this 

situation. 
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Fig. 1 Illustration of the alignment of corresponding pixels in rectified stereo images: (a) perfect rectified 

stereo image pair and (b) imperfect rectified stereo image pair 

 In summary, the main contributions of this paper are as follows:  

⚫ Without ground truth labels, we propose an unsupervised depth estimation method for stereo 

endoscopic images that achieves SOTA performances. The reconstructed and original images 

are approached within an adversarial learning framework to produce a real appearance, which 

can estimate accurate disparities indirectly. 

⚫ A vertical correction module is proposed to solve the issue of imperfect rectified stereo images, 

which is a highly critical problem for endoscopic surgery due to the high resolution of these 

stereo images. To the best of our knowledge, this is the first work in the literature to tackle this 

problem for learning- based methods in an end-to-end manner. Moreover, superior 

performance is obtained on imperfect rectified images by the proposed method compared with 

the performances of existing methods. 

⚫ According to the global and local residual of the reconstructed image, a residual mask is 

introduced for excluding pixels that conflict with the appearance of the original image to 

prevent contamination in the loss calculation. 

 

2. Related work 

For minimally invasive surgery, stereo laparoscopes have been introduced to provide surgeons with a 3D 

view of the surgical site, and this acts as the fundamental input of stereo algorithms to recover the 3D 

geometry of the site without using any external devices. We review previous works focusing on depth 

prediction with deep learning models and their applications in the area of laparoscopic or endoscopic 

images. These methods can be partially grouped into traditional stereo matching algorithms, supervised 

and unsupervised learning approaches. 

 Traditional stereo matching algorithms: Traditional algorithms for searching for connections 

between pairs of stereo images can be divided into local and global approaches. Stoyanov et al . [6] 

presented a semi-dense reconstruction method for robotic-assisted surgery by first identifying a set of 

candidate feature matches as seeds. Zero-mean normalized cross correlation (ZNCC) was used as a 

dissimilarity measure to effectively cope with poor illumination and low numbers of texture regions. 

Then, disparity information was propagated around the seeds to reconstruct a semi-dense surface. The 

initial feature point matching results can influence the performance of this approach. Therefore, to 

maintain reliable matches, in [7], Bernhardt et al. adopted three strict confidence criteria to find optimal 

correspondence points and discard the outliers in each pair of images. Although the most reliable matches 

are kept in this method, for homogeneous surfaces, this method may not find enough matching points. 

To improve the block matching approach's matching percentage, Penza et al. [8] proposed two methods 

that follow the traditional approach of the block matching algorithm and census transform and then 

refined a disparity image using the simple linear iterative cluster (SLIC) algorithm. Although these 



4 
 

methods yield robust results, they rely on the fact that they find corresponding pixels in stereo images, 

and this assumption is vulnerable to failing when matching points in homogeneous surfaces. 

 In contrast, global methods have been proposed for dense stereo matching. For example, Chang et 

al. [9] introduced a dense stereo reconstruction approach by constructing a cost volume and performing 

convex optimization to solve a Huber-L model. The results demonstrated that the staircasing effect can 

be overcome to reconstruct a smooth surface in a surgical scene. Similarly, also from the point of global 

optimization, Wang et al. [10] developed a variational disparity estimation method for minimizing a 

global energy function over a stereo laparoscopic entire image to reconstruct the surface of a patient's 

liver. By defining a reasonable cost function with a data term, which is given by the original and gradient 

images, and a regularization term to constrain the disparity, their method achieved promising results on 

laparoscopic images. Nevertheless, the consumption of computing resource by their global method is 

remarkable, especially when processing high-resolution images, as this hinders the method from 

achieving real-time performance. Moreover, multi-view stereo methods, such as simultaneous 

localization and mapping (SLAM) [11, 12], can be used to reconstruct 3D structures in real time and 

estimate the poses of cameras. We refer the reader to the comprehensive review papers [13, 14] regarding 

3D surface reconstruction in laparoscopic surgery with traditional stereo imaging for more information.  

 Supervised learning methods: With the success of deep learning, recent work has progressed in 

terms of merging learning-based approaches into the traditional stereo algorithm to achieve improved 

performances. Zbontar et al. [15] presented a Siamese convolutional neural network (CNN) to extract 

patch-wise features that are then processed by the classic step of computing the stereo matching cost. 

Then, a series of postprocessing steps are performed to refine the disparity map. Following the work of 

Eigen et al. [2], many researchers have trained networks using per-pixel ground truth depth data and 

developed approaches for solving the stereo matching problem end-to-end without any postprocessing 

[3, 16]. However, as mentioned in the introduction, it is very difficult to obtain enough ground truth data 

for training a supervised depth estimation model, especially in surgical applications. 

 Unsupervised learning methods: Recovering depth information from color images in an 

unsupervised or self-supervised learning manner is an attractive approach. In general, unsupervised 

estimation approaches can be divided into two different types, including direct and indirect disparity 

estimation. Deep stereo matching models [17, 18] have been proposed to estimate disparity maps directly. 

A survey by Scharstein and Szeliski [19] summarized that stereo matching algorithms include four steps: 

matching cost computation, cost aggregation, disparity computation and disparity refinement. Among 

these steps, the core task of a stereo algorithm is computing the corresponding pixels in pairs of images. 

 Different from direct approaches, indirect methods treat disparity (or depth) estimation as an image 

reconstruction problem. Garg et al. [20] proposed an innovative approach by training a model with pairs 

of rectified stereo images, where the supervised signal comes from the photometric error between the 

original input and the reconstructed image generated by the predicted disparity map of the network. 

Godard et al. [21] followed the same idea of image reconstruction for depth estimation. They solved the 

problem of [20], in which they could not fully differentiate between images during image reconstruction 

using bilinear sampling. Moreover, they introduced left-right disparity checking during the training stage 

and adopted DispNet [22] as the backbone network to achieve SOTA performance. Ye et al. [23] proposed 

a self-learning framework for surgical scene depth estimation using the same training process as in  [20, 

21]. Due to the absence of ground truth data, they adopted the structural similarity index (SSI) as the 

metric for evaluating the accuracy of the predicted disparity map. Recently, Liu et al. [24] presented a 

self-supervised approach to train a CNN model from monocular endoscopy data, in which they took the 



5 
 

results from the multi-view stereo method as supervised signals to train the depth estimation model. 

Similarly, Luo et al. [25] fused results from the traditional stereo method into the training stage of their 

model, in which the traditional stereo method was used to generate proxy disparity labels while their 

erroneous predictions were removed via a confidence measure. Then, these generated proxy disparity 

labels acted as auxiliary supervised signals to train the depth estimation model. To promote the precision 

of depth estimation, Mahjourian et al. [26] introduced validity masks to avoid penalizing areas that could 

not be seen in both views. Godard et al. [27] proposed a novel auto-masking approach to ignore pixels 

in training frames where no relative camera motion occurs. 

 In recent years, generative adversarial networks (GANs) [28] have been employed for unsupervised 

depth prediction and have shown promising performance [29]. The GAN framework was first proposed 

by Goodfellow et al. [28] and was based on the idea of training two subnetworks, a generator and a 

discriminator, to compete with each other simultaneously in a game. Since then, GANs have been applied 

to various generation tasks, one of which is the generation of laparoscopic/endoscopic images [4, 30] for 

certain target tasks. Pilzer et al. [29] integrated GANs into an indirect unsupervised depth prediction 

method and presented an architecture consisting of two generative subnetworks jointly trained with 

adversarial learning for the purpose of estimating disparity maps. However, similar to other indirect 

unsupervised depth prediction approaches, their approach requires rectified stereo images as input to 

constrain the search for corresponding pixels to the same horizontal scan-line, videlicet, it fails to 

estimate reasonable disparities using stereo images with imperfect rectification. To solve the problem of 

imperfectly rectified stereo images, Nguyen et al. [31] presented a set of modified matching cost 

functions, such as the absolute difference (AD), squared difference (SD) and ZNCC, for stereo matching 

methods. While they attempted to address the imperfect rectification problem in a traditional manner, we 

propose a trainable vertical correction module and insert it into a GAN framework for unsupervised 

disparity estimation; this is an end-to-end, simple yet effective and efficient deep learning-based method. 

 

3. Proposed methods 

In this section, the problem to be solved is first introduced, and then an overview of the proposed 

approach is presented. Next, we introduce the proposed vertical correction module , which addresses 

imperfect rectified stereo images, the residual mask, which excludes high bias regions during training, 

and the loss function of the network. 

3.1 Problem Formulation 

 The aim of this work is to predict the disparity maps of surgical sites from stereo laparoscopic image 

pairs. Given a pair of rectified stereo images (𝐼𝑙, 𝐼𝑟), our goal is to learn a function 𝑓𝜃  that can predict 

the per-pixel disparity 𝑑 = 𝑓𝜃(𝐼𝑙, 𝐼𝑟), where 𝜃 denotes a set of parameters. 

 Most supervised methods attempt to estimate 𝑓𝜃  such that the estimated disparity 𝑑 is as close to 

the ground truth disparity 𝑑 as possible. In other words, the loss function 𝐿(𝐼𝑙, 𝐼𝑟) = 𝑙(𝑓𝜃(𝐼𝑙, 𝐼𝑟), 𝑑) is 

minimized, where 𝑙 is a measure of the distance between the estimated disparity 𝑑 and the ground truth 

disparity 𝑑. To supervise the training of the network without knowing 𝑑, an image reconstruction-based 

self-supervision strategy is adopted. 

 Once the disparity 𝑑𝑙 of the left image is estimated, applying it to the right image would enable us 

to reconstruct a new left image 𝐼𝑙 = 𝑅(𝐼𝑟,𝑑𝑙), where 𝑅 indicates the reconstruction function. Similarly, 

the reconstructed right image can also be obtained by 𝐼𝑟 = 𝑅(𝐼𝑙, 𝑑𝑟). If the estimated disparity 𝑑 is 

close to the ground truth 𝑑, the discrepancies between the reconstructed image 𝐼𝑙/𝐼𝑟 and the original 

image 𝐼𝑙/𝐼𝑟 can be minimized. In this work, for our research problem (see Fig. 1 (b)) in which the 
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rectified stereo image pair may have vertical pixel shifts, we define a new variable 𝑉 to address the 

vertical shift of every pixel. Therefore, the reconstruction is redefined as 𝐼𝑙 = 𝑅(𝐼𝑟,𝑑𝑙, 𝑉𝑙) and 𝐼𝑟 =

𝑅(𝐼𝑙, 𝑑𝑟, 𝑉𝑟), where 𝑉𝑙 and 𝑉𝑟 denote the vertical shifts of the left and right images, respectively. Finally, 

the loss function of our problem is defined based on the reconstruction residual between the reconstructed 

image (𝐼𝑙, 𝐼𝑟) and the original image (𝐼𝑙, 𝐼𝑟), which can be written as 𝐿(𝐼𝑙, 𝐼𝑟) = 𝑙(𝐼𝑙, 𝐼𝑟, 𝐼𝑙, 𝐼𝑟) and is 

utilized as a supervised signal for optimizing the network to generate an accurate disparity. 

 In addition, to further improve the accuracy of the disparity, a GAN framework is adopted. In this 

way, the combined disparity estimation and image reconstruction process is regarded as a generative 

network G that takes a rectified stereo image pair as input and outputs the reconstructed images. The 

reconstructed images and the corresponding reference images are set as the input of the discriminator. 

The discriminator can help to distinguish the reconstructed image from the real image, and so it can 

further supervise the network to generate reconstructed images that are as real as possible. 

3.2 Network Architecture 

 An overview of the proposed network structure is depicted in Fig. 2. It can be roughly divided into 

two parts: a generative network and a discriminator network. Specifically, the network takes a rectified 

color stereo image pair 𝐼𝑙 and 𝐼𝑟 as input. The first stage is the performance of feature extraction on 

the input stereo images based on a ResNet [32] backbone network, and a feature map with 1/4 the size 

of the input image is then output. The two branches of the feature extraction network representing the 

left and right images share weights. The second stage is the construction of the cost volumes, and the 

previous left and right feature maps are first concatenated to form a five-dimensional cost volume for 

each view. The third stage is disparity estimation, during which serial three-dimensional convolutions 

are applied to the cost volumes to generate a coarsely-estimated initial disparity map. Moreover, this 

initial disparity map is then set as the input of a refinement module to acquire an accurate disparity map. 

The initial and refined disparity maps are fused with a 1x1 convolution operation to form the final 

disparity estimation. 

 However, as presented and discussed previously (Fig. 1), the corresponding pixels of the rectified 

stereo image pair may not lie on the same horizontal scan-line due to imperfect camera parameters. As a 

result, the disparity estimated from the third stage would tend toward an unreasonable matching under 

this situation (see the results of Fig. 6); thus, we introduce a vertical correction module (VCM) to tackle 

this issue. 

 Four different scales of the feature map from the feature extraction network for each camera view 

are set as inputs of the left and right VCM branches. Then, a subsequent two-dimensional convolution 

and deconvolution operation is applied on these multiscale feature maps to produce correction maps, 𝑉𝑙 

and 𝑉𝑟, for each view. The pixel value in the correction map represents the vertical shift distance to 

compensate for the nonhorizontal alignment effect caused by imperfect stereo rectification. To achieve a 

fine-grained disparity map, the left and right correction maps (𝑉𝑙 and 𝑉𝑟), the estimated disparity maps 

from the third stage (𝑑𝑙 and 𝑑𝑟), and the input stereo image pair (𝐼𝑙, 𝐼𝑟) are sent to the fourth stage, 

where the images corresponding to the left and right views (𝐼𝑙, 𝐼𝑟) can be reconstructed based on the 

definitions of disparity and bilinear interpolation. Finally, these reconstructed images (𝐼𝑙, 𝐼𝑟), along with 

their corresponding original stereo images (𝐼𝑙, 𝐼𝑟), are fed into a discriminator network 𝔇 to distinguish 

whether they are true or fake. In this way, the discriminator network can improve the disparity estimation 

stage and output a highly realistic disparity map. 
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Fig. 2 Illustration of our proposed unsupervised depth estimation network. The disparity is first estimated 

from rectified stereo images. Then, the image reconstruction module is utilized to estimate synthetic 

left/right images, which are computed by the estimated right/left disparities, the proposed vertical 

correction module and the corresponding reference left/right images. The reconstruction-based losses 

and the discriminator are applied, acting as the supervision signal to train the network 

3.3 Vertical Correction Module 

 Additional details regarding the vertical correction module are presented in this section.  

 Fig. 3 shows an example of an imperfect rectified stereo image pair from the SCARED [33] dataset. 

It can be seen distinctly that the same feature point is not located on the same horizontal scan line even 

when rectification is performed. Specifically, the corresponding pixels shift a certain distance in the 

vertical direction. This conflicts with the requirements of many SOTA unsupervised depth methods, and 

thus, those methods cannot estimate the disparity accurately. 

 

Fig. 3 An example of an imperfect rectified stereo image taken from the SCARED dataset. The yellow 

line represents the same scan line, and the dot markers are the same feature points (green in the left view 

and red in the right view) 

 Based on this observation, we propose a trainable vertical correction module to learn the shift 

distance of every pixel in the vertical direction, which can be used to reconstruct realistic images through 

bilinear resampling and drive the disparity prediction module to output an accurate disparity map. To 

fully utilize the feature information extracted from the input image, the feature extraction module outputs 

four different scales of the feature map for each view, and these are set as the input of the VCM. As 

shown in Fig. 4, first, we apply a convolution operation with a kernel of size 3×3 and concatenate feature 

maps with the same size. After the concatenation operation, convolution and batch normalization are 

used before the deconvolution operation. Finally, we employ a convolution with a sigmoid activation 
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function to output the correction map. 

 

Fig. 4 Structure of the vertical correction module (VCM) for disparity. Different colors denote different 

operations, commented with the name of the operation, number of filters used, kernel size and stride 

3.4 Residual Mask 

 To exclude the regions that are not visible due to parallax in both stereo views during training, we 

follow the same strategy as that in [26] to generate the validity mask. In [26], Mahjourian et al. validated 

that such pixels degrade the performance of the model if they participate in the loss calculation. Moreover, 

we propose residual masks based on the local and global residuals to ignore pixels for which their 

reconstruction residuals exceed a preset threshold.  

 Considering the original image (either the left image or the right image) 𝐼 and the reconstructed 

image 𝐼, for one particular pixel position (𝑖, 𝑗), the local residual can be defined as 𝛿𝑖𝑗 = 𝐼𝑖𝑗 − 𝐼𝑖𝑗 , and 

the global residual 𝜑 =
1

Ω
∑ |𝐼𝑖𝑗 − 𝐼𝑖𝑗|(𝑖,𝑗)∈Ω , where Ω denotes the whole region of the image. We assign 

a weight 𝑊𝑖𝑗  per pixel according to the local residual 𝛿𝑖𝑗  and the global residual 𝜑  with 𝑊𝑖𝑗 =

exp [− 𝛿𝑖𝑗 (𝜑 + 𝜎⁄ )], where 𝜎 is a small constant value to prevent division by zero. The global residual 

𝜑 is deterministic for a reconstructed image 𝐼, so the per-pixel weight is inversely proportional to the 

local residual 𝛿𝑖𝑗; thus, we define a residual mask as: 

𝑀𝑟𝑒𝑠_𝑖𝑗 = {
0,    𝑊𝑖𝑗 < 𝜏

1,    𝑊𝑖𝑗 ≥ 𝜏
 ， (1) 

where 𝜏 is a preset constant value. We set 𝜏 = 0.95 in our experiments. Furthermore, a validity mask 

𝑀𝑣𝑎𝑙𝑖𝑑 can be obtained according to [35], so the final residual mask 𝑀 per pixel is given by: 

𝑀 = 𝑀𝑣𝑎𝑙𝑖𝑑 ∗ 𝑀𝑟𝑒𝑠 (2) 

 An example of a validity mask [26] and our proposed residual mask is illustrated in Fig. 5, and the 

pixels in the white region of the mask are used to calculate the final loss. 

 

Fig. 5 Example of a validity mask and our proposed residual mask: (a) the rectified left view image, (b) 

the predicted disparity map of our model, (c) validity mask by [26] and (d) our proposed residual mask 

3.5 Loss Function 

 We introduce the definition of the loss function in this section. The loss function used for our 

unsupervised depth estimation network consists of four different terms. 

 Image reconstruction term. The network tries to learn to estimate the disparity map for one view, 
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and based on this disparity, it generates an image by sampling pixels from the opposite stereo image. 

Therefore, the more accurate the disparity map is, the more similar the original image and reconstructed 

image are. Under this hypothesis, the image reconstruction appearance loss term can be defined with the 

𝐿1  norm as 𝐿𝑟𝑒𝑐1 = ‖𝐼𝑙 − 𝐼𝑙‖ + ‖𝐼𝑟 − 𝐼𝑟‖ , where ‖ ‖  is the 𝐿1  norm operation. Furthermore, we 

adopt the loop consistency constraint [34] for the image photometric loss, i.e., given an image, we can 

reconstruct its two versions by using the estimated disparity map and the opposite stereo image. 

Specifically, the reconstructed left image 𝐼𝑙 is generated by sampling the right image 𝐼𝑟 with disparity 

𝑑𝑙. On the other hand, based on the left image 𝐼𝑙 and the right disparity map 𝑑𝑟, the right image 𝐼𝑟 can 

be synthesized. Then, we sample the synthesized right image 𝐼𝑟 with the disparity map 𝑑𝑙, and a new 

version of the left image 𝐼′𝑙 can also be constructed. Thus, the loop consistency term is given as 𝐿𝑟𝑒𝑐2 =

‖𝐼𝑙 − 𝐼′𝑙 ‖. Therefore, the image reconstruction term is defined as:  

𝐿𝑟𝑒𝑐 = 𝐿𝑟𝑒𝑐1 + 𝐿𝑟𝑒𝑐2. (3) 

 Left-right disparity consistency term. Similiar to the loop consistency constraint, we can synthesize 

a new version of the left disparity map 𝑑′𝑙 by sampling the right disparity map 𝑑𝑟 with the estimated 

disparity map 𝑑𝑙. Following the same approach, the new disparity map 𝑑′𝑟 matched to the right image 

can also be generated. Thus, the left-right disparity consistency term is defined as:  

𝐿𝑙2𝑟 = ‖𝑑𝑙 − 𝑑′𝑙‖ + ‖𝑑𝑟 − 𝑑′𝑟‖. (4) 

 Vertical shift constraint term. Due to the presence of imperfect rectified stereo images, we 

introduce the VCM to learn the per-pixel vertical shift. For one particular pixel, the shift direction of the 

left view is reversed to that of the right view (see Fig. 1). According to this observation and denoting the 

consistency check as 𝐿𝑣𝑐𝑚, we define the vertical shift constraint loss as: 

𝐿𝑣𝑐𝑚 = ‖|𝑉𝑙| − |𝑉𝑟|‖, (5) 

where 𝑉𝑙 and 𝑉𝑟 denote the left and right vertical shift maps, respectively. 

 Generative adversarial term. To benefit from the advantage of the adversarial learning strategy and 

to generate a highly realistic image, the reconstructed image 𝐼𝑙 and the true left image 𝐼𝑙 are fed into a 

generative subnetwork 𝔇𝑙 to discriminate whether 𝐼𝑙 is fake or true, and the subnetwork outputs a 

scalar value. The same is true for 𝐼𝑟  and 𝐼𝑟 . Following the formulation of [28], we formulate the 

generative adversarial term as follows: 

𝐿𝑔𝑎𝑛 = 𝔼𝐼𝑙~𝑝(𝐼𝑙)[log𝔇𝑙(𝐼𝑙)] + 𝔼𝐼𝑟~𝑝(𝐼𝑟) [log (1 − 𝔇𝑙(𝐼𝑟))] + 

             𝔼𝐼𝑟~𝑝(𝐼𝑟)[log𝔇𝑟(𝐼𝑟)] + 𝔼𝐼𝑙~𝑝(𝑙)[log (1 − 𝔇𝑟(𝐼𝑙))],  (6) 

where the cross-entropy loss is adopted to measure the expectations of 𝐼𝑙  and 𝐼𝑟  against the 

distributions of 𝑝(𝐼𝑙) and 𝑝(𝐼𝑟), respectively. 

 The full loss functions. For the image reconstruction, left-right disparity consistency and vertical 

shift constraint loss terms, we multiply each of them by the residual mask to exclude invalid or high 

residual pixels and prevent them from contaminating the loss calculation. Thus, 𝐿𝑟𝑒𝑐, 𝐿𝑙2𝑟 and 𝐿𝑣𝑐𝑚 

are rewritten as follows: 

𝐿𝑟𝑒𝑐 = ‖𝑀𝑙 ∙ (𝐼𝑙 − 𝐼𝑙)‖ + ‖𝑀𝑟 ∙ (𝐼𝑟 − 𝐼𝑟)‖ + ‖𝑀𝑙 ∙ (𝐼𝑙 − 𝐼′𝑙)‖ (7) 

𝐿𝑙2𝑟 = ‖𝑀𝑙 ∙ (𝑑𝑙 − 𝑑′
𝑙)‖ + ‖𝑀𝑟 ∙ (𝑑𝑟 − 𝑑′

𝑟)‖ (8) 

𝐿𝑣𝑐𝑚 = ‖𝑀𝑙 ∙ 𝑀𝑟 ∙ (|𝑉𝑙| − |𝑉𝑟|)‖. (9) 

The full loss function can be written as: 

𝐿 = 𝛼1𝐿𝑟𝑒𝑐 + 𝛼2𝐿𝑙2𝑟 + 𝛼3𝐿𝑣𝑐𝑚 + 𝛼4𝐿𝑔𝑎𝑛, (10) 

where 𝛼𝑖, 𝑖 = 1, … 4 is the weight for balancing different loss terms. 
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4. Experiments 

Based on efforts by the Intuitive Surgical Inc., the stereo correspondence and reconstruction of 

endoscopic data (SCARED) dataset [33] was created for depth estimation from laparoscopic images. The 

SCARED contains images of the abdominal anatomy of in vivo pigs, which were obtained by using a da 

Vinci Xi endoscopy and a projector. There are nine sub-datasets from different pigs, including seven sub-

datasets for training and two for evaluating the performance of the proposed method. Within each sub-

dataset, there are five keyframes: the associated camera calibration file and camera transformation matrix 

of every frame relative to its initial camera position, as well as the video file and point clouds seen by 

the left camera and the right camera, respectively. 

 We use the OpenCV library (https://opencv.org) to extract frames from the video file and divide the 

original video frame into left and right views (the top half for the left view and the bottom half for the 

right view) with a 1280×1024 pixel resolution for the monocular frame, and rectification is also 

performed during the process. The experiments are performed based on the SCARED dataset. We 

downsample the image to 1/4 of its original size, 320×256 pixels, for training. 

4.1 Implementation Details 

 Our model is implemented based on [18] using TensorFlow [35]. A ResNet-50 backbone network 

is adopted for feature extraction, and the left image and right image feature extraction branches share 

weights. Furthermore, four different scales of the feature map from the feature extraction backbone 

network are set as the inputs of the VCM. The left and right feature maps from the feature extraction 

module are concatenated to form a five-dimensional cost volume in the form of [batch_size, 

max_disparity_number, height, width, feature_map_number], with one cost volume for each view. In our 

experiments, we set batch_size = 2, max_disparity_number = 128 and feature_map_number = 128, and 

the image size [height, width] for the cost volumes is resized to 1/4 of the size of  the input training sample.  

 Then, a three-dimensional convolution is applied to these two cost volumes to output the initial 

estimated disparity map. This initial disparity map is then fed into a refinement network to obtain an 

accurate disparity map. The initial and refined disparity maps are fused with a 1×1 convolution to achieve 

the final disparity map. For the discriminators 𝔇𝑙 and 𝔇𝑟, we employ the same network structure as 

that in [29], which has five consecutive convolutional operations followed by batch normalization. Each 

convolution is performed with a kernel size of 3, a stride size of 2 and a padding size of 1. The 

implementation of the vertical correction module is shown in Fig. 4. All the convolution operations in 

the VCM have the same kernel size, stride size and padding size. We set a vertical shift constant (in our 

experiments, this is set as 5) for the last convolution, which uses the sigmoid function as the activation 

function, to control the correction range.  

 For the reconstruction and warping operations, a bilinear sampler is used as [21], and we modify 

the bilinear sampler by combining it with the vertical shift. The parameters of the employed loss function 

are 𝛼1 = 1.0, 𝛼2 = 0.001, 𝛼3 = 0.1, and 𝛼4 = 0.0001 .  

4.2 Experimental Setup 

 We train our model with a standard training procedure by initializing the network with random 

weights and training it for 5 epochs. Three types of dataset splits are performed to verify the performance 

of our proposed model and those of other methods. One split is done to obtain a pure imperfect dataset, 

one split follows the instructions of the MICCAI 2019 SCARED challenge, and the third split is a random 

split of the dataset. 

 Pure imperfect dataset split (denoted as split_1)  We check the SCARED dataset thoroughly 

and find that subdatasets 4 and 5 are imperfect rectified stereo images. The distribution of the training 
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sample is shown in Table 1. We use dataset 4 and keyframe 1 to keyframe 3 in dataset 5 as the training 

sample and keyframe 4 and keyframe 5 in dataset 5 as the testing sample. There are 5341 stereo image 

pairs for training and 413 stereo pairs for testing in split_1. 

Table 1 Training sample distribution of pure imperfect rectified stereo images in SCARED  

 K1 K2 K3 K4 K5 

D4 729 541 408 349 1 

D5 198 1674 1441 412 1 

D denotes dataset, K denotes keyframe 

 MICCAI 2019 SCARED sub-challenge dataset split (denoted as split_2)  In this dataset split, 

we follow the requirements of the MICCAI 2019 Stereo Correspondence and Reconstruction of 

Endoscopic Data Sub-Challenge, which is part of the Endoscopic Vision Challenge. Sub-datasets 1 to 7 

are used for training, sub-datasets 8 and 9 are the testing samples, and there are 22,985 stereo pairs in the 

training data and 5,925 stereo pairs in the testing data. 

 Random dataset split (denoted as split_3)  In this split, we randomly select a portion of 

samples from dataset 1 to dataset 7 from the SCARED as the testing dataset (5%) and the rest as the 

training dataset (95%). Similiar to split_1, we compare our method to the four previously introduced 

SOTA unsupervised methods (see Fig. 9) in this split. 

4.3 Evaluation Metrics 

 To evaluate the performance of the proposed method, we compare it with four SOTA unsupervised 

methods [18, 21, 29, 36]. The evaluation is implemented on all three data splits. In addition, we compare 

our method with the three top-performing methods, which can represent the SOTA performances for 

stereo matching on endoscopic data. 

 Three popular measures are utilized to quantitatively evaluate the reconstruction results. The point 

clouds of each camera frame are saved in the tiff file format for the SCARED dataset. The ground truth 

of the depth value for every pixel can be retrieved from these files. We adopt the mean absolute error 

(MAE) as the evaluation metric for accuracy, and this is the same approach as in the SCARED sub-

challenge. The MAE is defined as in equation (11). 

MAE =
1

𝑁
∑ |𝑧̂𝑖,𝑗 − 𝑧𝑖,𝑗|(𝑖,𝑗)∈Ω  , (11) 

where 𝑧̂ is the ground truth depth, 𝑧 is the predicted value, and N is the number of valid pixels in region 

Ω. We also use the root mean square error (RMSE) and the point-to-point mean absolute distance error 

(MADE) for the accuracy evaluation of three-dimensional reconstructed points, both of which are 

defined as: 

RMSE = √
1

𝑁
∑ (𝑧̂𝑖,𝑗 − 𝑧𝑖,𝑗)

2
𝑖,𝑗∈Ω , (12) 

MADE =
1

𝑁
∑ √[𝑥𝑖,𝑗 − 𝑥𝑖,𝑗]

2
+ [𝑦𝑖,𝑗 − 𝑦𝑖,𝑗]

2
+ [𝑧̂𝑖,𝑗 − 𝑧𝑖,𝑗]

2
(𝑖,𝑗)∈Ω . (13) 

4.4 Experimental Results 

 In this section, the qualitative and quantitative experimental results, which include four parts, are 

demonstrated and analyzed. First, we compare our proposed method to other unsupervised methods on 

an imperfect dataset split to illustrate the performance of the proposed vertical correction module. Then, 

we compare our method to the SOTA methods on the SCARED challenge split. Third, we also compare 

our method with other unsupervised methods on a random split of the dataset. Finally, we conduct 
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ablation studies on the network to analyze the effectiveness of the GAN framework and the proposed 

VCM. 

 Results on Imperfect Datasets (split_1)Table 2 illustrates the quantitative results of different 

unsupervised depth estimation methods based on the training process with pure imperfect rectified 

image pairs. Our model can dramatically improve upon the performances of the other methods under 

imperfect rectified stereo image pairs. For example, a 27% improvement is achieved on keyframe 

4 over Godard et al.'s method [21] in terms of MAE. In addition, the qualitative results in Fig. 6 

clearly show that when training based on the imperfect dataset split, the reconstruction-based 

indirect method cannot produce meaningful estimation results. By introducing a vertical correction 

module and adversarial learning, our proposed method can estimate smoother and more accurate 

disparities than those of other methods. 

Table 2 Quantitative results based on the pure imperfect training/testing dataset split  

  Godard [21] Wong [36] Pilzer [29] Skinner [18] Ours 

D5 
K4 7.92 12.34 8.94 10.20 5.82 

K5 2.88 6.21 6.00 4.59 1.54 

MAE (mm) 5.40 9.28 7.47 7.40 3.68 

 To further investigate the estimated depth accuracy for a particular pixel, we resample a portion of 

the grid in one testing frame and plot the depth values for comparison. Fig. 7 shows the predicted depth 

values and ground truths of the sampled pixels. Intuitively, the proposed method demonstrates superior 

performance. 

 Results on the MICCAI 2019 SCARED Sub-Challenge (split_2) To further evaluate the 

performance of our proposed method, we follow the instructions of the MICCAI 2019 SCARED sub-

challenge and compare the proposed method with the top 3 existing methods in this challenge. Table 3 

reports the results over different keyframes in the SCARED datasets. The proposed unsupervised method 

achieves comparable performance to those of the SOTA methods, and small differences in MAE are 

observed. The visual results predicted from test datasets of our method are presented in Fig. 8. For 

visualization purposes, we convert the estimated disparity map to a point cloud based on the given camera 

parameters, and this indicates promising performance. 

Table 3 Results of our proposed method and the baseline method based on the requirements of 

MICCAI 2019 Stereo Correspondence and Reconstruction of Endoscopic Data sub -challenge 

 D8 (test dataset 1) D9 (test dataset 2) 
MAE 

 K1 K2 K3 K4 K5 K1 K2 K3 K4 K5 

Trevor Zeffiro 7.91 2.97 1.71 2.52 2.91 5.39 1.67 4.34 3.18 2.79 3.54 

J.C. Rosenthal 8.25 3.36 2.21 2.03 1.33 8.26 2.29 7.04 2.22 0.42 3.74 

Congcong Wang 6.30 2.15 3.41 3.86 4.80 6.57 2.56 6.72 4.34 1.19 4.19 

Dimitris Psychogyios 1 7.73 2.07 1.94 2.63 0.62 4.85 0.65 1.62 0.77 0.41 2.33 

Dimitris Psychogyios 2 7.41 2.03 1.92 2.75 0.65 4.78 1.19 3.34 1.82 0.36 2.63 

Sebastian Schmid 7.61 2.41 1.84 2.48 0.99 4.33 1.10 3.65 1.69 0.48 2.66 

Godard et al [21] 39.00 21.86 21.06 28.05 14.78 23.70 7.99 14.44 2.67 10.24 18.38 

Pilzer et al [29] 19.77 30.07 30.29 16.85 57.74 31.00 20.87 13.54 22.59 73.43 31.62 

Wong et al [36] 39.53 24.85 20.20 25.24 12.37 29.33 11.95 18.60 4.40 13.99 20.05 

Skinner et al [18] 8.95 2.83 2.41 2.46 2.61 6.10 0.99 3.08 0.90 1.27 3.16 

Ours 8.62 2.69 2.36 2.29 2.51 6.06 0.95 2.97 0.86 1.23 3.05 
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Fig. 6 Visual comparison between other unsupervised methods and ours. For pure imperfect rectified 

stereo images, our results have the smoothest and most reasonable surfaces 

 

 

Fig. 7 Comparison of per-pixel predicted depth values. The points where the depth values are zero or 

NaN in the ground truth are excluded from the sample position (the red line represents the ground truth) 

 Results on the Random Dataset Split (split_3)Table 4 lists the quantitative results on dataset 

split_3 obtained by different unsupervised learning methods. It can be found that the proposed method 

achieves the best performance. The absolute improvements of the proposed method over the second-best 

method are 7%, 7% and 5% in terms of the MAE, RMSE, and MADE, respectively. Some reconstruction 
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results of each method are illustrated in Fig. 9. The performances of the other methods are degraded for 

challenge cases, as highlighted by the red rectangle. The proposed method can still perform well under 

those challenging cases, thereby indicating that the robustness of this method is higher than that of the 

other methods. 

Table 4 Prediction errors on split_3 obtained by the unsupervised methods  

Method MAE (mean±STD) RMSE (mean±STD) MADE (mean±STD) 

Wong et al. 6.24±6.69 11.38±9.13 8.24±6.55 

Godard et al. 5.46±6.05 10.23±8.69 7.42±5.94 

Pilzer et al. 5.97±6.74 10.33±9.49 7.92±6.60 

Skinner et al. 5.76±6.63 9.96±9.34 7.71±6.54 

Ours 5.05±4.47 9.21±5.46 7.06±4.91 

 Ablation Studies To investigate the different network modules proposed in our method, we 

perform an ablation study by adding each module to the baseline network and evaluating them on the 

split_1 and split_2 data splits. The performances of different combinations of the proposed modules are 

shown in Table 5 and Table 6. 

 From Table 5, we can observe that the GAN and VCM improve the results by 27% and 29%, 

respectively, over that of the baseline method. A combination of the GAN and VCM increases the MAE 

score by 50%, and this confirms the effectiveness and benefits of the proposed method and the proposed 

VCM for imperfect rectified datasets. From Table 6, we can observe that the GAN framework, the VCM 

module and their combination can slightly improve upon the baseline methods, with absolute 

improvements of 2.6%, 2.8%, and 3%, respectively. Noticeably, the proposed VCM is designed for 

imperfect rectified datasets. 

Table 5 Ablation study on the split_1 data split 

  Baseline +GAN +VCM +GAN/VCM 

D 5 
K 4 10.02 8.12 8.10 5.82 

K 5 4.59 2.48 2.29 1.54 

MAE (mm) 7.31 5.30 5.20 3.68 

 

Table 6 Ablation study on the split_2 data split 

  Baseline +GAN +VCM +GAN/VCM 

D 8 

K_0 8.95 8.68 8.85 8.62 

K_1 2.83 2.72 2.75 2.69 

K_2 2.41 2.34 2.26 2.36 

K_3 2.46 2.31 2.28 2.29 

K_4 2.61 2.67 2.48 2.51 

D 9 

K_0 6.10 6.04 5.98 6.06 

K_1 0.99 0.96 0.95 0.95 

K_2 3.08 2.97 3.10 2.97 

K_3 0.90 0.87 0.88 0.86 

K_4 1.27 1.22 1.19 1.23 

MAE (mm) 3.16 3.08 3.07 3.05 
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Fig. 8 Qualitative results of the compared unsupervised depth estimation methods and ours 
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Fig. 9 Qualitative results of compared unsupervised depth estimation methods and ours  

 

5. Discussion 

The comparison methods [21, 29, 36] in Table 2 are a family of unsupervised networks for depth 

prediction that share the same style, and they require rectified stereo images for training. The common 

premise is that the same feature point must be located on the same horizontal scan line, and this is a 

similar condition to that of the stereo method in [18]. However, it is obvious that the split_1 dataset (see 

Fig. 3 for more information) cannot meet this requirement. Without this precondition, the results in Fig. 

6 show that the estimated disparity maps are rough, and these methods cannot find the matched points in 

the same scan line; this is caused by imperfect rectification resulting from the use of imperfect camera 

parameters. Thanks to our proposed VCM- and GAN-based training scheme, our model's results are 

smoother and more reasonable than those of other methods. The quantitative results in Table 2 also 

confirm the validity of our proposed model, which can dramatically improve upon the performances of 

the baseline models under imperfect rectified stereo image pairs. 

 It is worth mentioning that, the results denoted with the dotted box in Table 3 were submitted after 

the MICCAI 2019 challenge day. Dimitris Psychogyios 1 uses Deep Pruner [37] model and pretrained 

on Sceneflow dataset [22], Dimitris Psychogyios 2 makes use of Hierarchical deep Stereo Matching 

network (HSM) [38], these two methods both ignored the interpolation frames as well as dataset 4 and 5 

due to imperfect camera calibration. Sebastian Schimid takes the method similar to pwc-net [39] and 
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gwc-net [40]. These three results submitted after challenge day are supervised-based learning methods. 

The top-ranked method on challenge day in Table 3 is built on PSMNet [3], which is also a supervised 

deep learning architecture, while our method can be trained in an unsupervised manner. This is a very 

promising method, as mentioned in the previous section. It is very difficult to obtain a per-pixel ground 

truth dataset to train supervised learning methods in the field of laparoscopic or endoscopic surgery, but 

our method provides a new option for training without ground truth data, and it can achieve the same 

performance as that of the SOTA supervised method. 

 In summary, the proposed method obtains remarkable improvements over the performances of the 

baseline methods on imperfect rectified images (split_1). In addition, thanks to the trainable vertical 

correction module and adversarial learning scheme, even when the training dataset is mixed with 

imperfectly and perfectly rectified stereo images (split_2 and split_3), our proposed model can slightly 

improve upon the performances of the baseline methods for general datasets. Moreover, the extensive 

ablation study conducted in the above subsection clearly demonstrates that when the VCM and 

adversarial learning are combined, our method can achieve the best performance. All the obtained 

quantitative and qualitative experimental results confirm the effectiveness and benefits of the proposed 

method. 

 In our experiments (Table 3), we notice that the SOTA monocular methods (Wong et al . [36], 

Godard et al. [21] and Pilzer et al. [29]) cannot predict depth values at the correct scale when applying 

the models to different scene datasets. Without other auxiliary methods to confirm the scale, the 

monocular methods have difficulty recovering the surface of the surgical site correctly at an accurate 

depth scale. In addition, in Table 3, the MAE for keyframe 1 of every dataset is obviously larger than 

those of the other keyframes. After checking the datasets frame by frame, we find that the focal length 

of the camera is changed when collecting these datasets, while the estimated depth is recovered according 

to the given fixed-depth focal length, and this is the main reason for the observed performance 

degradation. It is a very common operation to adjust the focal length of the camera during laparoscopic 

or endoscopic surgery. Unfortunately, none of the participants in the MICCAI 2019 SCARED sub-

challenge can address this issue correctly. How can the correct depth be inferred under various focal 

lengths? This will also be part of our future work. 

 While the proposed approach achieves promising results, there are several limitations that require 

further investigation in future work. First, the proposed method cannot properly address the edges of 

different tissues or organs and retains some holes in these regions. Second, it cannot recover the depth 

correctly when the camera is zoomed in or zoomed out. It requires the camera parameters to remain 

unchanged after calibration when converting the disparity to depth using the offline calibrated focal 

length. Possible idea for overcoming those limitations could be introducing an edge-aware refinement 

term into the framework to improve the prediction of the edge region. For the second problem, while 

keeping the focal length of the camera fixed is not realistic, one possible solution could be introducing 

an object of known size into the scene. Third, as mentioned in [38], as the camera calibration is a 

homography transformation, the imperfect alignment may include vertical and horizontal shift, while we 

only consider the vertical correction, future work will also focus on this problem. In addition, involving 

interframe, inter-video geometric constraints are another potential approach. Thus, for future work, we 

plan to investigate these two limitations. In addition, an exploration of the interframe temporal 

information for the purpose of depth estimation could also be studied.  

 

6. Conclusion 
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 In this paper, we focus on developing an unsupervised learning framework for the depth estimation 

of endoscopic stereo image pairs that can handle imperfect rectified images. By introducing a vertical 

correction module and adversarial learning, our model can address imperfect rectified stereo images, 

even when the training sample contains a mixture of perfect and imperfect samples. Our model can also 

predict disparities more accurately and smoothly. Moreover, a residual mask is proposed to exclude 

outliers for improved loss computations. Our method can achieve comparable results to those of the 

SOTA supervised learning method. 
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