
The Meshwork Ledger, its Consensus and Reward
Mechanisms

Mayank Raikwar∗, Danilo Gligoroski∗
∗Norwegian University of Science and Technology (NTNU) Trondheim, Norway

Email: {mayank.raikwar,danilog}@ntnu.no

Abstract—We propose a new blockchain ledger concept called
“Meshwork ledger” and a corresponding consensus algorithm.
Meshwork is a network of coequal client nodes that contribute
to the endorsement of the transactions by providing digital
signatures to a validator node that collects them in an aggregate
signature scheme. The essential sustainability component of the
ledger is the reward mechanism for the meshwork client nodes.
The prime design objective is the coequality of all client nodes,
meaning there is no advantage for getting rewards if the client
is an early adopter, if the client has collected a significant stake
of rewards or if the client just joined the meshwork.

The consensus algorithm is based on aggregate multi-
signatures. A joint aggregate signature on a block of transactions
is constructed with the signatures collected from the mesh client
nodes in a multi-signature scheme. A signature provided on the
block by a client node is acknowledged as approval. The core
idea of the consensus is to race for the maximum number of
signatures (approvals) on a block from the mesh clients, in order
to append the block in the blockchain. The race in the consensus
is among particular types of nodes called validator nodes that try
to collect a maximum number of approvals (signatures) from the
mesh clients. Clients that participated in the aggregate signature
organized by the winner validator node get some reward as a
small share of the total transaction fee. These reward transactions
are performed in an off-chain manner, using a commit-chain.

Compared with other blockchain consensus algorithms, the
meshwork consensus algorithm is faster, significantly more
energy-efficient and scalable.

I. INTRODUCTION

Blockchain technology has evolved rapidly in the past
decade. As a paradigm, it offers many unique features such
as a distributed and trusted ledger of transactions without any
need for a trusted third party, immutability of the ledger,
pseudo-anonymous and anonymous transactions, smart and
secure contracts, to name a few. The peers participating in
the blockchain maintain the ledger, and each peer has a local
copy of the ledger. These peers collectively adhere to some
predetermined set of rules to ensure the consistency of the
ledger. The mechanism to determine this set of rules is the core
of the blockchain and is known as consensus mechanism. The
first consensus mechanism proposed in the use of blockchain
is Proof of Work (PoW) in Bitcoin [1].

Many consensus mechanisms have been introduced after
Bitcoin PoW with their unique functionality. For example,
there are numerous mechanisms that use different and complex
compositions of cryptographic hash functions: QuarkCoin [2]
using a chain of six hash functions, DASH [3] with eleven
hash functions denoted as X11, and Verge [4] with even 17

hash functions (X17). The motives for their proposals were to
offer PoW consensus protocols that will be fair for all users
of the blockchain (not just only to early adopters, nor just to
the powerful hardware miners). A general property of those
consensus protocols is that they suffer from huge energy and
computational power waste.

However, we can say that the short (slightly more than
one decade) history of blockchain and cryptocurrencies [5],
is a history of failed attempts to construct a sustainable
blockchain that will address the issue of fairness by preventing
the appearance of powerful hardware miners that can mine the
blocks with hash computing rates that are several orders of
magnitude higher than the ordinary users that would use just
CPUs (and maybe GPUs).

The energy waste problem of PoW was addressed in several
other consensus mechanisms such as Proof of Stake (PoS) [6],
Proof of Stake Velocity (PoSV) [7], in mechanisms that use
verifiable random functions such as in Algorand [8] and in
the Secure Proof of Stake (SPoS) [9], in mechanisms that use
trusted random functions such as in Proof of Luck (POL) [10],
and in Proof of Elapsed Time (POET) [11]. Some of the
proposed consensus protocols, to boost their energy efficiency,
have also proposed the use of special nodes (master nodes in
DASH [3] or validator nodes in Libra [12]).

Needless to say, the solutions addressing the energy problem
of the original PoW consensus, did not offer solution for the
fairness problem, since the owners of big stakes of coins would
have significant advantage to get newly minted coins.

Since our Meshwork ledger heavily relies on aggregate
multi-signatures, next, we describe a few works done on
multi-signatures and their application to the blockchain. Boneh
at el. [13] constructed a multi-signature scheme using BLS
signatures, which provides public-key aggregation and secu-
rity against rogue public-key attack. The scheme supports a
fast verification of transactions and reduces the blockchain
size. Algorand [8] presented a forward-secure multi-signature
consensus scheme Pixel [14]. Pixel signatures reduce the
storage, bandwidth, and verification costs in the blockchain.
They integrated the Pixel signature with Algorand blockchain
and showed a substantial reduction in the block size and the
verification time. Another work of a multi-signature scheme in
the blockchain is Decisional Diffie-Hellman based construction
of multi-signatures [15].

The use of aggregate signature in consensus algorithms got



much attention from academia and industry. Theta blockchain
ledger protocol [16] adapted the concept of aggregate sig-
natures in the BFT consensus algorithm and introduced a
multi-level BFT consensus mechanism. They proposed an
aggregated signature gossip protocol to reduce the communi-
cation complexity of the consensus. However, we notice that
Theta blockchain ledger might suffer from a high signature
verification cost when the number of guardian nodes in the
system increases as more number of pairing operations are
needed. PCHAIN [17] also introduced PDBFT2.0 [18] to
reduce the communication complexity and hardware require-
ments in blockchain consensus using the aggregate signatures,
but it also suffers from high signature verification cost. The
other related works in this domain are [19], [20], [21], [22],
[23], [24]. Another interesting related work is the new Schnorr
multi-signature scheme with deterministic signing [25].

A. Our Contribution
We propose a new permissioned public blockchain ledger

concept called “Meshwork ledger” with two design goals:
1) Its consensus protocol is fair to all ledger members i.e.;

there exists a coequality for all client nodes: there is no
advantage for getting rewards if the client is an early
adopter, if the client has collected a significant stake of
rewards, or if the client has just joined the meshwork;

2) Its consensus protocol is energy efficient, and there is no
advantage if the client has powerful hardware or a single
CPU or MCU just capable to produce digital signatures.

The sustainability of the “Meshwork ledger” is guaranteed
by its reward mechanism, which is also designed to be fair
to all meshwork client nodes. To achieve the design goals for
the consensus algorithm, we use aggregate multi-signatures.
The idea is to construct a joint aggregate signature on a block
of transactions with the signatures collected from the mesh
client nodes in a multi-signature scheme. One single signature
on the block of transactions produced by a single client node
is acknowledged as approval. Then, the main novel idea in
our consensus proposal is to race for the maximum number of
signatures (approvals) on a block of transactions from the mesh
clients. The race in the consensus is among particular types
of nodes called validator nodes that try to collect a maximum
number of approvals (signatures) from the mesh clients. Clients
that participated in the winning aggregate signature get some
reward as a small and equal share of the total transaction
fee. These reward transactions are nano-valued transaction. As
there are many of these transactions, the transactions can be
performed in off-chain manner. We reviewed all the possible
off-chain transaction solutions and concluded that the best way
to perform all these nano-value transaction for our model in a
cost-effective manner is commit-chain [26].

Last but not least, we also provide complexity and security
analysis of our consensus protocol. In the security analysis,
we enlighten possible attack scenarios in the protocol and the
prevention mechanism followed in the consensus protocol. We
also conducted a few experiments for the robustness of the
system.

II. PRELIMINARIES

1) Bilinear Maps: G1 and G2 are two multiplicative groups
of prime order q with generators g1, g2 correspondingly. A map
e : G1 ×G2 → Gt has the following properties:
• Bilinearity: ∀u ∈ G1, v ∈ G2 and a, b ∈ Zp : e(ua, vb) =
e(u, v)ab;

• Non-degeneracy: e(g1, g2) 6= 1Gt
.

We say the pair (G1,G2) is a pair of bilinear groups iff the
group operations in G1 and G2, and the bilinear map e are
efficiently computable.
2) Multi-Signature Scheme: For individual transaction/block
signing and verification we use the BLS signature scheme [27],
and for the multi-signature scheme, we use the aggregate
signature scheme proposed by Boneh et al [28]. In our case,
all the signers sign the same message in the aggregate sig-
nature scheme while ensuring security. BLS signature scheme
requires bilinear map e described as above alongwith a full-
domain hash function for signing process H : {0, 1}∗ → G1.
BLS signature scheme works as follows:

• KeyGen: For a user, choose random sk
$←− Zq , compute

pk ← gsk2 ∈ G2, the user’s keypair is (pk, sk).
• Sign(sk,M ): For a user, given secret key sk and a message
M ∈ {0, 1}∗, signature on M is σ ← H(M)sk ∈ G1.

• Verify(pk,M, σ): Given a user’s public key pk, a message
M , accept the signature σ, if e(σ, g2) = e(H(M), pk).

Signature Aggregation: Given n signatures σ1, σ1, . . . , σn on
message M by n users, the procedure for signature aggregation
of n signatures works as: σ ←

∏n
i=1 σi. The aggregate

signature is σ ∈ G1.
Aggregate Verification: To verify the aggregate signature
σ, given the original message M and the n public keys
pk1, pk2, . . . , pkn for all n users, the verifier checks if:

e(σ, g2)
?
= e(H(M), pk1)e(H(M), pk2) . . . e(H(M), pkn)

?
= e(H(M),

n∏
i=1

pki)
?
= e(H(M), apk)

If the equation holds, the verifier “Accept” the signature, else
“Reject”. In the above equation, apk ∈ G2 and stands for
aggregate public key.

This simple aggregation scheme suffers from rogue public-
key attack where an attacker takes the public key pk of an
honest user Alice, and constructs his public key pk∗ as gα2 ·
(pk)−1 (where α $←− Zq). Then, given a message M ∈ {0, 1}∗,
attacker presents an aggregate signature σ := H(M)α ∈ G1

claiming that he and Alice, both has signed the message M .
However in reality, Alice did not sign the message M but the
aggregate verification holds as

e(σ, g2) = e(H(M)α, g2) = e(H(M), gα2 )

= e(H(M), pk · pk∗)
Few defense mechanisms [29], [30] against this attack were
proposed which require each user to prove the possession of
the corresponding secret key (PoP). We also apply the PoP in
Meshwork ledger for each party.



ValidatorClient
Request to join

Send (σ, pk)

Choose sk $←− Zq
pk ← gsk2 ∈ G1

σ ← Hr(pk)
sk ∈ G1

Verify σ:
If yes,“accept”
else,“reject”

Fig. 1. Client Registration Protocol

Why BLS Multi-Signature
• BLS Multi-signatures are non-interactive and easy to follow

in nature, therefore, it is easier to perform the signature and
key aggregation without any additional round.

• BLS signatures do not rely on random number generator
and BLS signatures are single curve points, so its size is
two times shorter than Schnorr or ECDSA signature [31].

III. MESHWORK LEDGER

A. Entities in the Ledger

In Meshwork ledger model, we have two primary entities
client and validator node participating in the blockchain:
1) Client Node: Client nodes are the ones that invest a
tiny computational power to sign a block, and for that gets
rewarded. A client node can have a few connections with
different validator nodes. For registration, client nodes have
to go through strong authentication checks to prevent the
Sybil attack [32], followed by key registration protocol using
PoP with a validator node to prevent the rogue-key attack as
depicted in Figure 1. Client nodes also execute transactions
with other client and validator nodes in the system.
Client Registration Protocol It is an interactive protocol
between a client node and a validator node as depicted in
Figure 1. In this process, a client node registers itself by
proving the knowledge of its secret key to a validator node by
signing its public key. To completely prevent rogue public-key
attack, the registration protocol uses a different hash function
Hr : {0, 1}∗ → G2 for creating signatures over the public key.
This hash function can be constructed from hash function H
using domain separation. Thus, the client generates a signature
using Hr on its public key, and if verified, the validator
stores the user’s public key. The client node also has a public
identifier associated with it, which is a hash of its public key.
The specific hash function is global for all client nodes. Thus,
rather than sending long public keys, these short identifiers are
used for communication.

Note: The Client Registration Protocol is an important
component for the overall security of the Meshwork ledger, but
it is not an exclusive and non-replaceable component. Namely,
our meshwork can use some pre-existing client registration
protocols based on a national digital identity [33].
2) Validator Node: Validator nodes are the major players
for reaching the consensus in the distributed ledger. Each

validator node maintains its ledger of blocks. Validator nodes
join the system according to the objective participation criteria,
and these nodes have a stake in bootstrapping the blockchain
system. Therefore, these nodes have to lock up some minimum
amount of stake in the system for a period of time. Each
validator node has a pair of public-private keys. The validator
nodes publish their public key along with the Proof of Pos-
session (PoP) of the corresponding secret key. Here, the PoP
scheme is similar to the PoP used in Figure 1. Validator nodes
can also perform transactions in the network. In a consensus
round, validator nodes perform signature aggregation on the
block, thus validator nodes invest resources towards achieving
the consensus. Accordingly, each validator node should be
equipped with enough computational power and storage space.
There are fewer validator nodes than the client nodes, and each
validator node maintains several client node connections. A
validator node also has its publicly available list of connected
client nodes along with their corresponding public keys and
public Identifiers.
Validator Registration Protocol: To join the pool of validator
nodes in the system, a new node has to pass a strong authen-
tication check and also give proof about having enough stake
and enough storage and computational power.

B. Assumptions in the Meshwork ledger

• The network is partially synchronous, which means the
message transmission between two directly linked nodes
arrives within a specified period.

• The majority of the validator nodes are honest for the
security against byzantine fault and the local clock of each
validator node is loosely synchronized.

• The blockchain should be account-based and smart-contract
enabled e.g., Ethereum [34].

Validator Network

Leader at round r

aggSig2

aggSig1

aggSig3

aggSigFinal = ∏"#$
% aggSigi

Client nodes Client nodes

Client nodes Client nodes

Fig. 2. Overview of Consensus at round r

Bootstrapping the System During the deployment of the
system, a common genesis block is given to all the validator
nodes. This genesis block specifies a number s denoting the
minimum number of signatures required from each validator
node during a consensus round. The value s is updated
from time to time, depending on several factors including the
number of participating entities in the system.



C. Consensus Algorithm

The consensus algorithm involves the active participation
of validator nodes as well as client nodes of blockchain. The
core idea of the algorithm is to collect the maximum number of
signatures on a block from the nodes participating in consensus
round r as depicted in Figure 2. The taxonomy of the symbols
used in Meshwork ledger is listed in Table I. There are n

Symbols Definition

G1/G2/GT Multiplicative groups of order q
g1, g2 Generator of group G1/G2 respectively
e Bilinear map
(PK,SK) Public and secret key
H,Hr Hash functions for signature and client key registration

V Validator node
C Client node
σ A BLS signature
s Number of required signatures from a validator node

aggSig Aggregate signature
aggPK Aggregate public key
Bk kth Block in the blockchain
τblock Time to wait to receive the new proposed block
τagg Time to wait to receive all the aggregate signatures
Tolerance Upper bound how many times a client node can send the

same signature to multiple validator nodes

TABLE I
LIST OF SYMBOLS IN THE MODEL

validator nodes V1, V2, . . . , Vn and each validator node Vi has
some client nodes Ci1, Ci2, . . . , Cij (where j � n) connected
to it. The detailed algorithm is as follows:
• In a consensus round r, a validator node Vk (where k ∈
[1, n]) is elected as the leader of the round. The leader node
(block proposer) collects different transactions, writes the
recent value of s and prepares a block Bk. After the block
preparation, block proposer Vk sends the block Bk to all
validator nodes. Leader Vk is excluded from the task of
contacting its client nodes in round r.

• After receiving the block Bk, each validator node Vi checks
the minimum number of signatures s required for the block
Bk from its side. The validator node Vi randomly selects
a client node set {Cim} (where m ≤ j but m ≥ s). The
validator node signs the block and creates a signature σVi .
The main goal of each validator node Vi is to collect at least
s signatures from its connected client nodes.

• Each validator node Vi collects the signatures
σi1, σi2, . . . , σim on block Bk from its selected client
nodes Ci1, Ci2, . . . , Cim. Then Vi verifies all the individual
signatures σi1, σi2, . . . , σim, and further creates aggregate
signature aggSigi from the verified signatures including
its own signature σVi

, and aggregate public key aggPKi

from PKi1, PKi2, . . . , PKim and PKVi
. Then Vi sends

aggSigi, aggPKi and a list of client public key Identifiers
Li (IDi1, IDi2, . . . , IDim) to the block proposer Vk.

• Each validator node Vi also gives a Proof of Inclusion PCil

to each of its client nodes Cil. This proof corresponds that
the client signature σil (for l = 1 . . .m) has been included in

the aggregated signature aggSigi. This proof is a signature
over the signature σil which is PCil

= Sign(skVi , σil) and
verifiable using the public key pkVi of Vi.

• The leader Vk collects the received aggregate signatures
aggSig1, aggSig2, . . . , aggSign, along with aggregate pub-
lic keys and identifiers from all the validator nodes in a First
come, First served basis. In the beginning, the leader resets
a variable TotalAggSig that keeps track of the number of
unique aggregated signatures for that round. The leader also
checks the following conditions:

1) The received aggregate signatures aggSigi (for i =
1 . . . n, i 6= k ) are valid.

2) For each validator node Vi, check whether the total
number of public key identifiers is si ≥ s. If so, it updates
the variable TotalAggSig:

TotalAggSig ← TotalAggSig + Unique(si)

where Unique(si) ⊆ si is a subset of si that have not
submitted its signatures to multiple validator nodes.

• The leader is also keeping track of how many aggregate
signatures it collected so far:

1) There should be at least 2
3 of (n− 1)s unique signatures

in all the aggregate signatures received by Vk i.e.,
TotalAggSig ≥ 2

3 (n− 1)s

2) Determine a list D of clients that submitted two or more
signatures to two or more validator nodes.

• If all the above conditions satisfy, the leader
Vk constructs final aggregate signature aggSig
from signatures aggSig1, aggSig2, . . . , aggSign
and final aggregate public key aggPK from
public keys aggPK1, aggPK2, . . . , aggPKn (where
n 6= k). Finally, Vk constructs the final block
Bround = (Bk, aggSig, aggPK) by appending the
final aggregate signature aggSig, final aggregate public key
aggPK to the proposed block Bk.

• Leader Vk also gives a Proof of Inclusion Pi (where Pi =
Sign(skVk

, aggSigi)) of the aggregate signature aggSigi to
node Vi which confirms that the aggSigi is included in the
final aggregate signature aggSig.

• Leader Vk attaches the block Bround to its blockchain and
broadcasts the block Bround in the blockchain network.
It also sends the list D to all the validator nodes. After
receiving the block Bround, each node Vi verifies the block
by verifying the final signature aggSig using aggPK. If the
block verifies, the node Vi attaches the block Bround to its
blockchain. Each validator node also checks the received list
D and keeps a record for clients that sent the same signatures
to multiple validator nodes.

D. Reward System
One of the primary goals of this consensus algorithm is

to consume significantly less amount of computational power.
The total reward in each consensus round is the sum of the
transaction fees associated with the transactions of the block.
Then the reward is dispersed among the nodes who participated
in the consensus on that block. The validator nodes invest more



resources to get the signatures from their client nodes, and to
aggregate the client signatures, so the validator nodes get more
reward than the client nodes.

In each round, the leader node makes reward transactions
to the validator nodes, which are recorded in the blockchain.
These reward transactions are further distributed by each
validator node to its client nodes that participated in the
signing. Hence each validator node creates many client node
transactions, and so the total client node transactions created
by all the validator nodes are many in numbers.

Let say the total reward in a consensus round r is X , then
the distribution of reward X will be as follows:
• Each validator node VL and its client nodes CL1, . . . , CLm

get the accumulated share of reward as j = X
n

• This share j is further distributed among a validator node
VL and its client nodes CL1, . . . , CLm in following way:

1) Each validator node VL gets share as t ∗ j.
2) Each client node CLi gets share as (1−t)∗j

m (considering
m client nodes connected to VL participated in round r)

Here t is the reward distribution parameter.
Note: In the line of our design goal of the Meshwork

ledger to be fair for early and late adopters that are meshwork
clients as well as for the validator nodes, the incentives for
validator nodes are also tweakable with the parameter t. This
t is recalculated periodically and involves the energy and
communication costs spend by the validator nodes. The process
of including all client node reward transactions in the main
blockchain is a severe bottleneck for the scalability. To tackle
this, we adopted the off-chain solution, commit chain [26].
As the reward transactions for the client nodes are nano-value
transactions, and the client nodes might not always be online,
then to off-loading the transactions in off-chain, commit-chain
fits as the viable option.

IV. CONSENSUS IN THE MESHWORK LEDGER

Algorithm 1 illustrates the steps involved in the consensus.
In this section, we describe all the consensus algorithm func-
tions as LeaderElection, CreateBlock, ClientSelection,
Sign and V erify in detail. It also defines other necessary
factors of our Meshwork ledger.
A. Leader Election

In each consensus round, a validator node is chosen as
a leader by the function LeaderElection(). The leader is
responsible for the creation and finalization of the block. There
are different mechanisms in different PoS blockchains for
leader election. Many of the PoS blockchains [35] are using
verifiable random function [36] for electing the leader. For
our Meshwork ledger, we follow the leader election using an
efficient robust round-robin selection technique [37] with some
modification. In short, leader candidates are selected according
to their age in a round-robin manner. After the candidates’
selection, a set of endorsers give a quorum of confirmations
for the leader candidates. The one having the majority of
confirmation becomes the leader node. In our model, we follow
the same idea with some modifications to prevent the malicious

Algorithm 1: Consensus Algorithm
Input : round, s, {V1, V2, . . . , Vn}
Output: Bround, D

1 Vk ← LeaderElection(round, V1, V2, . . . , Vn);
2 Vk runs CreateBlock(tx1, tx2, . . . , txu) and output Bk;
3 Vk sends block Bk to other validator nodes and waits for

τagg time to receive the required number of signatures;

4 Vi actions:;
5 for each validator node Vi from V1, V2, . . . , Vn, except Vk do
6 run ClientSelection(Ci1, Ci2, . . . , Cim);
7 wait for τblock time to receive new block Bk;
8 if receive Bk then
9 (aggSigi, aggPKi, {IDj}i)← Sign(Bk, s);

10 send (aggSigi, aggPKi, {IDj}i) to node Vk;
11 end
12 end
13 Vk actions:;
14 TotalAggSig ← 0;
15 for tuples (aggSigi, aggPKi, {IDj}i) received from the

validator nodes Vi do
16 · V erify(aggSigi, aggPKi, Bk);
17 · Check if si ≥ s, where si is the number of client

identifiers from Vi;
18 · Determine the number of unique signatures coming

from Vi, Unique(si);
19 · TotalAggSig ← TotalAggSig + Unique(si);
20 if TotalAggSig ≥ 2

3
(n− 1)s then

21 exit for;
22 end
23 end
24 Vk prepares the final block

Bround = (Bk, aggSig, aggPK), appends it to its
blockchain and sends to the other validator nodes;

25 Vk also sends list of double signees D to all Vi;

leader or leader crash issue. We define a threshold value tE
for the number of endorsements and we select an expected
number of leader candidates based on tE . The value tE varies
and computed for each round. Hence, in our model, we have
three sets of validator nodes after the leader election process:

1) Leader validator node is the deterministic leader candi-
date resulted from the robust round-robin technique.

2) Backup validator nodes are the validator nodes which
passes the threshold criteria tE of endorsements.

3) Remaining validator nodes are the nodes which are either
not selected in the robust round-robin technique or did not
pass the threshold tE .

The leader validator node defined as Vk in Section III-C is
responsible for proposing a block and collecting the required
number of signatures from other validator nodes. Backup
validator nodes {Vb} and remaining validator nodes participate
in consensus to get the aggregate signature on the proposed
block by the main leader node. Backup validator nodes are
also responsible for the following things:

• If the leader node crashes or if backup validator nodes
do not receive any new block within τblock time, then a
backup validator node having the next highest quorum of



confirmations becomes the leader, announces itself as a
leader, and executes the consensus protocol.

• Backup validator nodes continuously monitor the behavior
of the leader node, and the leader is caught if it performs
malicious activities. For example, if a leader node is mali-
cious, it can give different blocks to different validator nodes
but it will be caught by the backup validator nodes and later
it will be penalized in the system.

B. Block Proposal and Client Selection

The leader of the consensus round collects the transactions
from the client and validator nodes and prepares the block
using CreateBlock() function. The leader also appends value
s, the minimum number of signatures required from each
validator node, in the block. This current s should be the latest
value for the next few consensus rounds. The other validator
nodes wait for a definite amount of time for the new block to
receive. A validator node might not receive the latest block in a
specific amount of time due to some network-related problems
like network congestion, etc.

After receiving the new block from the leader node, each
validator node runs ClientSelection() function. The strategy
under this is to select at least s client nodes to sign the block is
Round Robin With a Reset strategy. That means every validator
node keeps track of how many rounds the clients were waiting
to sign some block. Validator picks randomly s out of those
clients that had the highest waiting time. Once a client is
chosen to sign, its waiting time is reset to 0.
C. Block Signing and Verification

The validator nodes announce the new consensus round
to its connected client nodes. The selected client nodes by
a validator node sign the block and send it to the validator
node. A validator node waits for a certain amount of time to
receive at least the minimum number of required signatures
from its client nodes. Then finally, the validator node verifies
all the client signatures and prepares an aggregate signature
from those, along with an aggregate public key using Sign()
function and sends the aggregate signature and key, along with
the client node public identifiers to the leader node.

The leader node receives the different aggregate signatures
along with other details from different validator nodes. The
leader node first verifies all the aggregate signatures using the
function V erify(). Further, the leader node checks whether
these aggregate signatures qualify the criteria for the minimum
number of required signatures for aggregation. If all the
verification conditions meet, then the leader prepares the final
block by appending other necessary details to the original
block.
D. Race Conditions

The race in the Meshwork ledger is among validator nodes
that are racing to collect at least s signatures and to be included
in the leader signature aggregation that tries to collect at least
2
3 (n− 1)s unique signatures. We find that in comparison with
the classical PoW consensus races, our race conditions have
significantly less consumed energy.

The majority of 2/3 is a tweakable parameter and can be
increased to 3/4 or some other value, but we do not recommend
it to be less than 2/3.
E. Safety and Liveness of Consensus

In every consensus algorithm, safety and liveness are es-
sential factors. These things majorly depend on the network
synchronicity and the number of honest participants in the
consensus. Particularly for our consensus:
• Safety in the blockchain context, ensures that the honest par-

ticipants in consensus should work on the same blockchain.
Hence, safety considers the past and take actions based on
history. That means if an honest participant accepts a new
block in its blockchain, then in the future, this block will
always be in the blockchain of other users. In Meshwork
ledger, a block will be in the blockchain if it gets on an
average at least 2

3s signatures from each of the validator
(Including its client nodes’ signatures) in the blockchain.
This argument implicitly points out that there must be at
least 2

3 honest participants during the consensus round in
the model and hence, ensures safety in the model.

• Liveness ensures that the major participants will be in charge
of keeping the system alive; hence it considers the future.
That means the validator nodes will always make progress
in the blockchain. From the duty of a leader node or backup
validator nodes, a new block will always be created and
added to the blockchain in a consensus round when at least
2
3 participants in the round are honest.

F. Coequality of mesh clients

The coequality of every mesh client is ensured by the pro-
cedure ClientSelection(Ci1, Ci2, . . . , Cim) which is invoked
at line 6 of the algorithm. The core property of this function is
that it selects at least s client nodes to sign the block in a Round
Robin With Reset manner. In such a way, every mesh client
that was once selected to contribute in an aggregate signature
(and possibly get a reward) will have to wait for several rounds
until other mesh clients from that validator node also get its
fair share of contribution.
G. Parameters in the Meshwork Ledger

There are a few parameters in Meshwork ledger. Signature
and timeout parameters play a vital role in reaching consensus
and achieve safety and liveness properties. Details of these
parameters are as follows:
• Signature parameter “s”: The parameter s representing the

minimum number of signatures required from each validator
is updated from time to time (e.g., Weekly or monthly).
This update also depends on the density of the network.
If the number of participants (validator and client nodes)
increases/decreases in a considerable amount, the parameter
s is updated accordingly in a quick manner.

• Timeout parameters: In our consensus, we have a few
timeout parameters. The parameter τblock defines the time to
wait for the proposed block to reach to a validator node in
a consensus round. Another timeout parameter τagg estab-
lishes the time to expect by the leader node in a consensus



Reg
ist

er

Off-
ch

ain
 Tr

an
sfe

r

Deposit Funds

Withdraw/Exit Request Withdraw/Exit Request

Register

Receive Transfer

Checkpoint 
Submission

Dispute
Handling

Validator node
(Sender)

Client node
(Receiver)

Operator

Smart Contract on Blockchain

Fig. 3. Overview of Reward Mechanism through Commit-Chain

round to receive all the aggregate signatures from the other
validator nodes. Both parameters should be reasonably and
carefully decided using the Poisson distribution to assure the
liveness of the system.

• Reward distribution parameter “t”: It is decided in each
consensus round based on the average number of client
nodes connected to the validator nodes. In general, 0 > t ≤
0.2. The leader node includes t along with the signature
parameter s in the block proposal. Therefore, validator and
client nodes can locally estimate the share they might receive
after the successful consensus round.

V. REWARD MECHANISM USING COMMIT CHAIN

Compared to traditional PoS models, our system has many
nano-value reward transactions. Thus, the reward should be
distributed cost-effectively, which should incur almost zero
transaction fees. Hence we adopted a commit-chain distribu-
tion for the reward transfer. The reward transfer mechanism
performed by commit-chain NOCUST requires an operator.
The execution of the commit-chain protocol is performed in
rounds, which are called eons. Each eon of the commit-chain
will have many consensus rounds of the main blockchain
protocol. Therefore, after completing each eon, the nodes par-
ticipated in the consensus rounds within that eon will receive
the sum of the rewards earned in those consensus rounds. All
these nano-value reward transactions can be made zero-fee
transactions reliably depending on the operator fee schedule.
The correct execution of these transactions is enforced by the
smart contracts of the main blockchain, but the transactions are
performed on the commit chain. Following is the overview of
the reward transaction mechanism using commit-chain:
Register All validator and client nodes create an account
with the commit-chain operator via off-chain messages, hence
register themselves to perform transactions on commit-chain.
Deposit After a consensus round, each validator node locks
the amount of reward transaction (Originated from the leader
validator node to other validator nodes) in the commit-chain.
Transfer To distribute the reward money to the client nodes,
each validator node authorizes itself to the operator to debit
its account and credit the client nodes’ accounts.

Withdraw/Exit To withdraw the balance from the commit-
chain or to exit the commit-chain, the validator or client nodes
submit the off-chain request to the operator.
Checkpoint Constant size periodic checkpoints are used by
the operator to commit the latest states of all the validator and
client node accounts using a smart contract. This checkpoint
is the root of the Merkle tree aggregating client and validator
nodes state and balances. Each of the checkpoints requires an
on-chain transaction.
Challenge/Response Challenge-response dispute mechanism
is enforced by commit chain using the smart contract in case
of operator misbehave.
The above operations are depicted in Figure 3. Moreover, a sin-
gle operator for the off-chain solution becomes a central point
of failure. Depending on the number of nodes participating in
the blockchain, a few commit chains (less than the number of
validator nodes) or watchtowers can be deployed to remove the
single point of failure, but that will incur an extra cost. Hence
in our model, the fairness of the reward mechanism depends
on the fairness of the used commit-chain.

VI. COMPLEXITY ANALYSIS OF THE CONSENSUS

Communication Complexity In every consensus protocol,
many iterations of communication are required to reach the
final consensus and append the block in the blockchain. In
Meshwork ledger, each validator node has to send the new
proposed block to its connected client nodes. Therefore O(sn)
number of messages will be transmitted to propagate the
block in the system. The same will apply for receiving the
aggregate signatures from the validator nodes. So in total, the
communication complexity of the network will be O(sn).

Computational Complexity The signature process requires
computation to create the signature and to verify them. On
average, each validator node receives s signatures and verify
them using 2s pairing computations. Nevertheless, in total, the
number of pairing computations will be n∗2s = O(sn). After
receiving all the aggregate signatures, the leader has to perform
2n pairing computations for verification. Hence in total, the
computational complexity in terms of pairing operations in a
consensus round will be O(sn).

VII. SECURITY

A. Security Model:

1) Malicious Validator Node: If a validator node Vm acts
maliciously and does not include its client node Cmj’s sig-
nature in the aggregate signature aggSigm, the client node
can raise this issue in the blockchain network using its Proof
of Inclusion PCmj . Therefore, the verification of PCmj is
performed by the other validator nodes. If the proof PCmj

is
verified and the client node signature (Can be checked by client
node public identifier IDCmj

) is not found in the aggregate
signature, then the validator nodes agree on penalizing the
validator node Vm.

2) Malicious Client Node: A client node Cm can act
maliciously by submitting the same signature σCm

multiple
times in a consensus round to earn more reward. However,



as in a consensus round, each validator node gets a list D
from the leader specifying the public key identifiers of the
client nodes that submitted signatures on the same block to
validator nodes. The validator nodes at the final stage keep
a clean local house by keeping a record for the number of
double signatures incidents for its client nodes. If the number
of incidents caused by a client node exceeds a Tolerance, the
client node is permanently blocked in the system.

3) Security against Existential Forgery: In the Meshwork
ledger, an adversary (a malicious validator) can try to forge
a multi-signature on a block choosing some subset of its
client nodes. The forgery of multi-signature can be reduced
to the Computational Diffie-Hellman (CDH) Problem [28].
The forgery can be defined as; For n signers, an adver-
sary must forge a multi-signature σ ∈ G1 on message M
under the public keys pk1, . . . , pkn. To see how forgery is
equivalent to solving CDH problem, the following descrip-
tion justifies the point: Given randomly chosen g, gsk1 , h(=
H(M)), the adversary can randomly generate (n − 1) key
pairs (sk2, pk2) . . . (skn, pkn). Then adversary creates a multi-
signature σ which should satisfy the the verification equation.

e(σ, g2) =

n∏
i=1

e(h, pki) =

n∏
i=1

e(hski , g2) = e(

n∏
i=1

hski , g2)

which means σ =
∏n
i=1 h

ski ,
From the above check for signature σ, if it passes that

means adversary has computed hsk1 , given randomly chosen
g, gsk1 , h which is equivalent to solving CDH problem.

B. Attacks

• Validator-Specific attacks: In many of the PoS based sys-
tems, the validator nodes try to collude and earn a bigger
reward by increasing their total stake in the system. In
our system, as the reward is equally distributed among the
validator nodes, so in case of collusion, the validator nodes
have to share the joint reward, and that will be less than
the reward of any other validator node. Hence, any kind of
collusion does not bring any advantage in terms of reward.

• Network-Level attacks: In case of a network partition
(Eclipse attack), until the number of received aggregate
signatures and client node identifiers satisfy the consensus
rules to accept the block, the consensus is reached. The
consensus will not be achieved in other scenarios of a
network partition, and the system will go in recovery mode.

• Sybil attack: Sybil attack is prevented in the system using
strong authentication checks for client and validator nodes.

VIII. TECHNICAL DETAILS AND EXPERIMENTS

We conducted experiments to test the robustness and effi-
ciency of the Meshwork ledger. The experiments were car-
ried out on a MacBook Pro system having 2.3 GHz Intel
Core i5 processor and 8 GB 2133 MHz memory. So far,
we have designed a validator network which is connected
with client nodes using Docker containers. Validator nodes
perform the BLS signature aggregation. In our experiments,

0 500 1,000 1,500 2,000 2,500
0

200

400

600

800

1,000

1,200

Number of Signatures

Si
gn

at
ur

e
A

gg
re

ga
tio

n
C

os
t

(i
n

m
s)

Fig. 4. BLS signature aggregation cost vs Number of signatures

we analyze the cost of signature aggregation and verification
in each consensus round by varying the number of nodes
participating in the consensus. The signature aggregation cost
depends on the number of signatures to be aggregated, hence
signature aggregation cost increase linearly with the number
of nodes/signatures. Figure 4 depicts the implementation result
of signature aggregation cost (in milliseconds). In contrast, the
verification cost does not depend on the number of nodes, as
we are verifying a single aggregate signature. An aggregated
BLS signature verification requires the computation of two
bilinear pairing operations. We are using ate pairing scheme
in our implementation, and the verification cost of aggregate
BLS signature is 3.54±0.07 milliseconds. For storing the data
in our account-based blockchain nodes, we use persistent key-
value and fast database store leveldb [38] (see also [39]).

IX. CONCLUSION

We proposed the “Meshwork ledger” which establishes a
network of coequal client nodes that contribute to the en-
dorsement of the transactions by providing digital signatures
to a validator node that collects them in an aggregate signature
scheme. We also proposed a reward mechanism for the mesh-
work client nodes. That reward mechanism had a prime design
objective to offer coequality for all client nodes. Our goal was
to design a blockchain ledger where there is no advantage for
getting rewards if the client is an early adopter, if the client
has collected a significant stake of rewards or if the client just
joined the meshwork.

The pillar design component in our consensus algorithm
is the use of the aggregate multi-signatures. The core idea
of the consensus is to race for the maximum number of
signatures (approvals) on a block from the mesh clients, to
append the block in the blockchain. The race in the consensus
is among validator nodes that try to collect a maximum number
of approvals (signatures) from the mesh clients. The future
direction of work for our consensus algorithm is to perform
a detailed scalability analysis, to evaluate the performance of
consensus in a large network, and to compare it with existing
consensus algorithms to advance its adoption in the practical
world of implementation.



REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf,” 2009.

[2] V. Buterin, “QuarkCoin: Noble Intentions, Wrong Approach,” Bitcoin
Magazine, Dec 2013, [Online; accessed 3-Jun-2019].

[3] E. Duffield and D. Diaz, “Dash: A payments-focused cryptocur-
rency,” Whitepaper, https://github.com/dashpay/dash/wiki/Whitepaper,
2018, [Online; accessed 3-Jun-2019].

[4] CryptoRekt, “Official Verge Blackpaper 5.0,” Blackpaper, https://
tinyurl.com/y88sd7ze, Jan 2019, [Online; accessed 14-Jun-2020].

[5] M. Raikwar, D. Gligoroski, and K. Kralevska, “SoK of Used Cryptog-
raphy in Blockchain,” IEEE Access, vol. 7, pp. 148 550–148 575, 2019.

[6] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” self-published paper, August, vol. 19, 2012.

[7] L. Ren, “Proof of stake velocity: Building the social currency of the
digital age,” Self-published white paper, 2014.

[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine Agreements for Cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, ser. SOSP ’17.
New York, NY, USA: ACM, 2017, pp. 51–68.

[9] A. Kiayias, I. Konstantinou, A. Russell, B. David, and R. Oliynykov, “A
Provably Secure Proof-of-Stake Blockchain Protocol.” IACR Cryptology
ePrint Archive, vol. 2016, p. 889, 2016.

[10] M. Milutinovic, W. He, H. Wu, and M. Kanwal, “Proof of Luck: An
Efficient Blockchain Consensus Protocol,” in Proceedings of the 1st
Workshop on System Software for Trusted Execution, ser. SysTEX ’16.
ACM, 2016, pp. 2:1–2:6.

[11] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “On Security
Analysis of Proof-of-Elapsed-Time (PoET),” in Stabilization, Safety, and
Security of Distributed Systems, P. Spirakis and P. Tsigas, Eds. Springer
International Publishing, 2017, pp. 282–297.

[12] Libra Association, “The Libra Blockchain,” June 2019. [Online].
Available: https://libra.org/en-US/

[13] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures
for smaller blockchains,” in Advances in Cryptology – ASIACRYPT
2018, T. Peyrin and S. Galbraith, Eds. Cham: Springer International
Publishing, 2018, pp. 435–464.

[14] M. Drijvers, S. Gorbunov, G. Neven, and H. Wee, “Pixel: Multi-
signatures for consensus,” Cryptology ePrint Archive, Report 2019/514,
2019, https://eprint.iacr.org/2019/514.

[15] D.-P. Le, G. Yang, and A. Ghorbani, “Ddh-based multisignatures with
public key aggregation.” IACR Cryptol. ePrint Arch., vol. 2019, p. 771,
2019.

[16] J. Long and R. Wei, “Scalable bft consensus mechanism through
aggregated signature gossip,” in 2019 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), May 2019, pp. 360–367.

[17] “Pchain,” 2018. [Online]. Available: https://pchain.org
[18] Graytrain, “PDBFT2.0 — Pchain’s Revolutionary Consensus Algorithm

For Solving The Trilemma,” November 2019. [Online]. Available:
https://tinyurl.com/y58v6koa

[19] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille, “Simple schnorr multi-
signatures with applications to bitcoin,” Designs, Codes and Cryptogra-
phy, vol. 87, no. 9, pp. 2139–2164, Sep 2019.

[20] G. Fuchsbauer, M. Orrù, and Y. Seurin, “Aggregate cash systems: A
cryptographic investigation of mimblewimble,” in Advances in Cryptol-
ogy – EUROCRYPT 2019, Y. Ishai and V. Rijmen, Eds. Cham: Springer
International Publishing, 2019, pp. 657–689.

[21] Y. Zhao, “Practical aggregate signature from general elliptic curves,
and applications to blockchain,” in Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security, ser. Asia CCS
’19. New York, NY, USA: ACM, 2019, pp. 529–538.

[22] G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. K. Reiter, D. Seredinschi, O. Tamir, and A. Tomescu, “SBFT: a
scalable decentralized trust infrastructure for blockchains,” CoRR, vol.
abs/1804.01626, 2018.

[23] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency
via collective signing,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, Aug. 2016, pp. 279–
296.

[24] R. El Bansarkhani and J. Sturm, “An efficient lattice-based multisignature
scheme with applications to bitcoins,” in Cryptology and Network

Security, S. Foresti and G. Persiano, Eds. Cham: Springer International
Publishing, 2016, pp. 140–155.

[25] J. Nick, T. Ruffing, Y. Seurin, and P. Wuille, “Musig-dn: Schnorr
multi-signatures with verifiably deterministic nonces,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1717–1731. [Online]. Available:
https://doi.org/10.1145/3372297.3417236

[26] R. Khalil, A. Gervais, and G. Felley, “Nocust-a securely scalable
commit-chain,” Cryptology ePrint Archive, Report 2018/642, Tech. Rep.,
2018.

[27] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in Advances in Cryptology — ASIACRYPT 2001, C. Boyd, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 514–532.

[28] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Advances in
Cryptology — EUROCRYPT 2003, E. Biham, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 416–432.

[29] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters, “Sequential
aggregate signatures and multisignatures without random oracles,” in
Advances in Cryptology - EUROCRYPT 2006, S. Vaudenay, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 465–485.

[30] T. Ristenpart and S. Yilek, “The power of proofs-of-possession: Securing
multiparty signatures against rogue-key attacks,” in Advances in Cryp-
tology - EUROCRYPT 2007, M. Naor, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 228–245.

[31] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital sig-
nature algorithm (ecdsa),” International journal of information security,
vol. 1, no. 1, pp. 36–63, 2001.

[32] J. R. Douceur, “The sybil attack,” in Peer-to-Peer Systems, P. Druschel,
F. Kaashoek, and A. Rowstron, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 251–260.

[33] P. A. Grassi, M. E. Garcia, and J. L. Fenton, “Draft nist special
publication 800-63-3 digital identity guidelines,” National Institute of
Standards and Technology, Los Altos, CA, 2017.

[34] V. Buterin et al., “Ethereum: A next-generation smart con-
tract and decentralized application platform,” URL https://github.
com/ethereum/wiki/wiki/% 5BEnglish% 5D-White-Paper, 2014.

[35] W. Li, S. Andreina, J.-M. Bohli, and G. Karame, “Securing proof-
of-stake blockchain protocols,” in Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology, J. Garcia-Alfaro, G. Navarro-
Arribas, H. Hartenstein, and J. Herrera-Joancomartı́, Eds. Cham:
Springer International Publishing, 2017, pp. 297–315.

[36] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,”
in 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039), Oct 1999, pp. 120–130.

[37] M. Ahmed-Rengers and K. Kostiainen, “Don’t mine, wait in line: Fair
and efficient blockchain consensus with robust round robin,” 2020.

[38] A. Dent, Getting started with LevelDB. Packt Publishing Ltd, 2013.
[39] M. Raikwar, D. Gligoroski, and G. Velinov, “Trends in development of

databases and blockchain,” in 2020 Seventh International Conference on
Software Defined Systems (SDS), 2020, pp. 177–182.


