
IoT-23032-2022.R2 1

Abstract — The integration of sensor nodes with public

blockchains is possible with the help of low-power communication

networks that use Bluetooth Low Energy and LoRa. However,

power-consuming Wi-Fi is still the main means of communication

for the existing sensor nodes, especially in urban environments.

Typically high power consumption, private key disclosure, and

high transaction fees are the issues that prevent battery-powered

sensor nodes from being integrated with a public blockchain.

Therefore, this paper proposes a data protection protocol that is

able to secure the data integrity of the stored sensor data, help to

reduce transaction fees, and prolong battery life for IoT devices

that are used with public blockchain networks. A proof of concept

is presented using an ESP32S2 device to evaluate and verify the

performance of the proposed data storage protocol. A smart

contract is designed and analyzed using a formal smart contract

analysis tool. A decentralized web application is designed to

display and verify the sensor data extracted from the public

blockchain. The power consumption, memory usage, and security

of the proposed solution are evaluated. The evaluation results

show that data integrity can be achieved even for low-power sensor

nodes that connect to public blockchains via Wi-Fi network.

Index Terms—Blockchain, Data Integrity, IoT

I. INTRODUCTION

ata associated with decentralized applications can be

stored in several ways - either on the blockchain itself, a

method which is called on-chain storage, or using external

databases, making this an off-chain solution. Since on-chain

storage becomes expensive for large amounts of data, off-chain

solutions such as CouchDB, StateDB, etc., can be used to store

vast amounts of sensitive data in a cost-efficient manner.

However, raw data stored using off-chain storage is susceptible

to modification or deletion by attackers. Hence, on-chain

storage becomes essential for certain IoT applications, such as

Structural Health Monitoring (SHM) [1, 2], where an

immutable record and transparent public access is required. IoT

This paragraph of the first footnote will contain the date on which you

submitted your paper for review. This work was supported by the International

Scholar Exchange Fellowship program at the Chey Institute for Advanced

Studies. This work was further carried out during the tenure of an ERCIM

‘Alain Bensoussan’ Fellowship Programme.

J. H. Khor is with University of Southampton Malaysia, Eko Botani 3,

Taman Eko Botani, 79100 Iskandar Puteri, Malaysia and with the Barun ICT

Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul,

South Korea (e-mail: J.Khor@soton.ac.uk)

 M. Sidorov is with Norwegian University of Science and Technology,

Høgskoleringen 1, Trondheim, Norway. (e-mail: michail.sidorov@ntnu.no).

M. T. Ong is with Digipen-The One Academy, Block B4, Leisure

Commerce Square, No.9, Jln PJS 8/9, 46150 Petaling Jaya, Selangor.

(e-mail: mingtze.ong@digipen.edu)

S. Y. Chua is with University of Southampton, University Road,

Southampton SO17 1BJ, United Kingdom (email: syc2e18@soton.ac.uk).

applications like this store only small amounts of data collected

by sensor nodes, e.g., temperature, humidity, preload, etc., in

which case on-chain storage becomes a viable solution

compared to the off-chain one. Depending on the application,

this sensory data can then be utilized for various smart city

services. In case of SHM, for example, citizens in close

proximity to a certain structure can be notified of a developed

fault to stay away. This would be made possible by smart city

services reading the on-chain data continuously stored by

sensor nodes monitoring the abovementioned structures.

Using on-chain storage is not without challenges. High

power consumption, vulnerability to security attacks, and high

transaction fees are among the typical issues associated. Most

small IoT devices are battery-powered; therefore, using Wi-Fi

to connect to a blockchain is a power-hungry approach.

However, Wi-Fi is the dominant wireless protocol, especially

in a smart city environment [3], even though power-efficient

communication protocols such as Bluetooth Low Energy (BLE)

or Long-Range (LoRa) are available for IoT applications.

Existing IoT devices typically support older IEEE

802.11b/g/n/ac standards, although a few devices support the

newer power-saving IEEE 802.11ax (Wi-Fi 6) standard, e.g.,

ESP32-C6 [4]. Therefore, there is a need to address the power

consumption issue found among the low-end IoT devices that

use older Wi-Fi protocols and not the newer Wi-Fi 6 or other

aforementioned communication protocols. In addition, IoT

devices placed in remote areas are susceptible to security

attacks where the stored sensory data and the program executed

by the IoT device can be modified if the device is accessed

locally. Thus, sensor data is usually sent to a local server, cloud

server, or blockchain directly for storage instead of being

retained on the IoT device itself.

Storing one data packet on the blockchain constitutes one

transaction, and transactions are not free. Different blockchains

have different pricing for this, e.g., at the time of writing, the

average Ethereum transaction cost is 4 USD [5]; however, it

fluctuates greatly depending on the network usage. Transaction

fees should be reduced once the upgrade to Ethereum 2.0 is

finalized. However, this is not scheduled for several years from

now. Therefore, a second layer scaling solution, e.g., Polygon

blockchain [6], where the transaction fee is 0.00004 USD can

be used instead. Although the cost is lower, IoT applications

normally use a large number of connected devices, and these

devices typically send data frequently. Hence, a large number

of transactions is going to be made, which can result in high

running costs. Therefore, to solve the issues this paper aims to

provide cost-efficient and secure data protection for public

Public Blockchain-based Data Integrity

Verification for Low-power IoT Devices

Jing Huey Khor, Michail Sidorov, Ming Tze Ong, Shen Yik Chua

D

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3259975

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on March 22,2023 at 14:39:18 UTC from IEEE Xplore. Restrictions apply.

mailto:mingtze.ong@digipen.edu
mailto:syc2e18@soton.ac.uk

IoT-23032-2022.R2 2

blockchain-enabled low-power IoT applications in urban

environments where Wi-Fi connections dominate. In order to

support low-power IoT devices, the sensor data will be stored

on the IoT device itself for a certain period of time and then will

be grouped into a single transaction to reduce power

consumption and lower transaction fees. In addition, a

lightweight data protection protocol is designed to guarantee

the integrity of sensor data while it is stored on the IoT device

itself.

The main contributions of this paper are as follows:

• A new lightweight protocol is proposed using chain

hashing for data integrity protection.

• A proof of concept is presented based on the ESP32S2 low-

power, single-core Wi-Fi System-on-Chip from Espressif

to verify the performance of the proposed protocol.

• A smart contract is designed to send a batch of data in a

single transaction to save transaction costs and reduce

power consumption.

• A decentralized web application is developed to display

and verify the IoT sensor node data.

• Power consumption savings are achieved using an

intermittent Wi-Fi connection that prolongs battery life.

• An emergency real-time monitoring mechanism is used to

write the stored data to the blockchain once an anomaly is

detected.

II. RELATED WORK

Internet of Things (IoT) devices have been widely integrated

with various blockchain applications. However, most of those

devices were not used as blockchain nodes due to low power

and low computational capabilities. Instead, powerful IoT

devices, such as proxy servers [7], computers [8-10], and

gateways [1, 11, 12] were used as blockchain nodes to make

transactions using received data from resource-limited IoT

devices. In order to use low-power devices as blockchain nodes,

customized lightweight consensus algorithms are needed to add

transactions to the blockchain [13, 14]. These consensus

algorithms include customized Practical Byzantine Fault

Tolerance, Proof of Authentication, etc. It is possible for low-

end IoT devices to directly transact on the Ethereum blockchain

via Infura without the need of deploying a full node [15].

However, high power budget is required to send transactions

via Wi-Fi or cellular networks, which is an obstacle preventing

the integration of resource-constrained IoT devices with the

Ethereum blockchain network.

Several solutions exist that enable the integration of low-cost

IoT devices with blockchain networks, such as Nodle and

Helium. Nodle is a decentralized wireless network that is built

on top of the Polkadot blockchain, and it utilizes BLE to

establish a connection between IoT devices and smartphones

[16]. The Rendez-Vous Protocol is used to secure the

communication network between two endpoints. In addition, a

security stack is provided to enable IoT devices to send signed

and encrypted data anonymously [17]. However, the Nodle

network is only suitable for those who do not require real-time

monitoring. Data collected by a sensor device will only be sent

to smartphones when they are in close proximity. In addition,

the Nodle network relies highly on the number of smartphones

on the network. The owners of smartphones are incentivized

with Nodle Cash rewards whenever their phones transmit a

packet to the network, therefore attracting more users to expand

the network [16]. However, this incentive might not be enough

as at this point in time as the monetary value of 1 Nodl stands

at 0.006 USD. At the time of writing this paper, there were

approximately 4,600,000 active nodes on the network, which is

around 0.065% of the total mobile devices used around the

world [18].

Helium is another blockchain aimed at IoT and connected

devices. Similar to Nodle, the Helium blockchain relies on

Helium Hotspots. There is a number of manufacturers that

produce these hotspots and currently, a large number of

additional ones are joining. Helium calls its communication

protocol LongFi; however, the underlying technology is

nevertheless LoRaWAN. In order to encourage the use and

distribution of Helium Hotspots, a cryptocurrency called HNT

is rewarded to the owners of Helium Hotspots [19]. Hotspot

owners get rewards for providing coverage for the Helium

network by participating in the Proof of Coverage consensus

algorithm and by transferring data received from the connected

sensor nodes. Helium hotspots devices cost in the range of

USD250-700 [20], which is quite expensive, as the device

mainly acts as a packet forwarder with almost zero

configuration possible from the user side which typically can

be found in commercial LoRaWAN gateways. Currently,

Helium Hotspot devices mainly concentrate in United States,

Europe, and East China [21]. This means other parts of the

world will not have proper Helium network coverage to

communicate with IoT devices yet and this is mainly due to the

regulatory approvals. Since Helium hotspots are new, and

network is incredibly immature, manufacturers need to go

through a lengthy process of getting their devices certified to

comply with local radio laws for the hotspots to be safely used

in the respective country. However, the demand to join the

Helium network is incredibly high, therefore the adoption will

grow faster than The Things Network, or any alternative

LoRaWAN network.

The aforementioned shows that there is a degree of research

done and that some solutions that integrate IoT devices with

public blockchains do exist. In addition, there are several

research works that guarantee sensor data integrity when used

with cloud storage [22-26] or local storage [14]. However, at

this time of writing, no research has focused on data protection

for low-power IoT devices used in public blockchain networks.

Thus, this paper fills the research gap.

III. DATA PROTECTION PROTOCOL

The following section describes the proposed protocol. The

purpose of the node is to collect sensory data. This data, together

with other data (sensor ID, startTime, deltaTime, and hash value)

is stored in the Real Time Clock (RTC) memory. Since the sensor

data that is stored in the RTC memory is not encrypted, there is

a possibility that attackers can manipulate it. Therefore, a

protocol is designed based on chain hashing to ensure data

integrity for the RTC memory. This chain hashing increases the

complexity by using different sensor data for each session, a

secret key, and a previous hash value as its input data. The

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3259975

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on March 22,2023 at 14:39:18 UTC from IEEE Xplore. Restrictions apply.

IoT-23032-2022.R2 3

proposed protocol consists of two phases, namely data storage

and verification. Initially, a 256-bit secret key and an initial hash

value are generated and are stored in the sensor node using the

methods described in section IV.A. The same secret key and

initial hash value will also be stored at a more powerful machine

for data validation purposes, hereafter referred to as a Validation

Machine (VM).

A. Data Storage and Data Verification Phases

The data storage phase of the proposed protocol is designed, as

shown in Figure 1. The sequence is further described below:

1. An IoT node wakes up from a deep sleep mode, collects

the data (i.e., temperature and humidity), and stores it in

the RTC memory, together with its sensor ID, startTime,

and deltaTime.

2. The IoT node hashes the concatenated stored data, secret

key, and the initial hash string value to generate a 256-bit

hash value using the SHA256 hash function.

3. The IoT node goes back to deep sleep mode.

4. The IoT node switches to an ON mode from a deep sleep

mode for the next data collection session to sense data and

add the data to RTC memory. The IoT node then hashes

the stored data with the secret key, and the previous session

generated hash value to obtain a new hash value.

5. Steps 3-4 then repeat a further 14 times, upon which at the

end of the 16th session, each of the temperature, humidity,

and deltaTime arrays contain 256 bits of data.

6. The IoT node then calls the setInput function from the

smart contract to generate a signed transaction. The

setInput function stores data obtained from the 16 sessions

(256-bit each), including startTime, sensor ID,

temperature, humidity, deltaTime, as well as the last hash

value on the blockchain as input data.

7. The IoT node connects to Wi-Fi and broadcasts the signed

transaction to the Ethereum public blockchain.

8. After sending the transaction, the IoT node is set to deep

sleep mode.

During the data verification phase, a decentralized web

application is used to verify the validity of the collected data as

described in section IV. This application uses the data from

transactions to generate a sequence of hash values. Data

integrity and authentication scheme, which is described in the

next section, only requires comparing the last hash value of the

hash sequence with the one stored on the blockchain. If they are

the same, the web application reflects PASS in the Verification

column to show that the data is original and has not been

modified. Otherwise, a FAIL will be shown in the web

application to indicate the data has been modified.

B. Data Integrity and Authentication Scheme

As mentioned in section III.A, at the end of every 16th

session, the IoT node sends data that it has collected in a single

transaction to the blockchain. Since existing resource-

constrained IoT nodes by themselves are not secure, a data

integrity scheme for a VM to determine if the data that the IoT

node has included in transactions to the blockchain is valid and

authentic, needs to be designed and implemented. A very

simple, efficient, and reliable data authentication scheme using

the secure cryptographic hash function SHA256 combined with

chain hashing is used. Every IoT node has a secret key which

the VM knows. As data is being collected at every ith session, 1

≤ i ≤ 16, the IoT node calculates, based on collected data

described in section IV.A, the chained hash sequence:
ℎ𝑆𝐻𝐴256,𝑖(𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒𝑖|𝑑𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒𝑖|𝑆𝑒𝑛𝑠𝑜𝑟𝐼𝐷𝑖|𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖|𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑖

|ℎ𝑆𝐻𝐴256,𝑖−1|𝑘𝑒𝑦) , where ℎ𝑆𝐻𝐴256,0 = 000…0 and | denotes

concatenation. The only hash value that the IoT node writes to

the blockchain at the end of the transaction period (i.e. the 16th

session) is ℎ𝑆𝐻𝐴256,16 . To detect if an adversary has maliciously

altered any data that the IoT node writes to the blockchain, the

VM itself calculates its own sequence of hash values :
𝑉𝑀𝑆𝐻𝐴256,𝑖(𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒𝑖|𝑑𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒𝑖|𝑆𝑒𝑛𝑠𝑜𝑟𝐼𝐷𝑖|𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖

|𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑖|𝑉𝑀𝑆𝐻𝐴256,𝑖−1|𝑘𝑒𝑦), 1 ≤ i ≤ 16, where 𝑉𝑀𝑆𝐻𝐴256,0, = 000…0

with 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒𝑖 , 𝑑𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒𝑖 , 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖 𝑎𝑛𝑑 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑖 here

being data values read from the blockchain. If 𝑉𝑀𝑆𝐻𝐴256,16 and

Public Blockchain Network (Goerli Testnet)

ESP32S2 module

Signed transaction

Session: 1

RTC Memory

Start Time: 1598551228

Sensor ID: 0037

Temperature: 08f9

Stress: 0f39

Delta Time: 0000

Final Hash Value: d5d ..596

Flash Memory

Secret Key: e0c ..0a4

Initial Hash Value: 000 ...000

Session: 2

RTC Memory

Start Time: 1598551228

Sensor ID: 00370037

Temperature: 08f90ce9

Stress: 0f391c31

Delta Time: 0000003d

Initial Hash Value: d5d ...596

Final Hash Value: f43 ..a7f

Flash Memory

Secret Key: e0c ..0a4

Session: 16

RTC Memory

Start Time: 1598551228

Sensor ID: 00370037 .0037

Temperature: 08f90ce9..0eb5

Stress: 0f391c31 .1f03

Delta Time: 0000003d .003d

Initial Hash Value: e56 ...6c7

Final Hash Value: 52d ..75d

Flash Memory

Secret Key: e0c ..0a4

Smart

contract

(Solidity)
 setInput

function

 Validation Machine (VM)

Validate data

integrity

Decentralized Web

Application

Fig. 1. Data Storage Phase

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3259975

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on March 22,2023 at 14:39:18 UTC from IEEE Xplore. Restrictions apply.

IoT-23032-2022.R2 4

ℎ𝑆𝐻𝐴256,16 match, the VM declares the data on the blockchain to

be authentic via the decentralized web application mentioned in

section IV.B.

IV. PROOF OF CONCEPT

A. Data Collection and Storage

A system configuration shown in Table I is used to verify the

validity of the proposed scheme. According to [27], IoT devices

can be categorized into 4 categories based on their processing

capability and power consumption. A Lenovo T14s laptop

which belongs to Class IV is used to simulate a powerful

machine used for verification of transaction data on the

Ethereum public blockchain. For the proof of concept, the

Ethereum Goerli testnet is used instead of the Ethereum

mainnet to transact without the use of real Ether. While other

Ethereum testnets are available such as Kovan, Rinkeby, or

Ropsten, these testnets are currently being deprecated, i.e. they

will not receive any new network updates in the future and

support for them is scheduled to end. Hence, they are not

recommended for new smart contract deployment. A remote

node, called Infura, is used to access the Goerli testnet through

Application Programming Interface (API) for convenience.

This approach eliminates the need of deploying a full Ethereum

node on-site. The low-power sensor node was developed using

the ESP32S2 module [28], which belongs to Class II of IoT

devices. IoT sensor nodes are typically battery-powered and

sometimes used for monitoring in places where easy access is

not available. While a USB-powered ESP32-S2-WROVER

version of the board was used for prototyping purposes,

attaching a battery or using a similar battery-powered board,

e.g., ESP32-S2-WROVER-DevKit-Lipo [29] is an easy

transition. The primary application of the designed sensor node

was to monitor the temperature and humidity in a building.

Since this paper focuses on data storage protection for IoT

devices, a built-in temperature sensor inside the ESP32S2 was

used for simplicity. An SMTHS08A humidity sensor was used

as an external sensor and was connected to the EPS32S2 input

port. To provide real-time data monitoring, the ESP32S2

system synchronizes its clock with the internet time, as shown

in [30]. Each sensor data is stored in a uint16_t array in the RTC

memory, transformed into a 4-letter hexadecimal string, as

shown in Figure 2.

B. Decentralized Web Application

A smart contract named Iot.sol, was designed using Solidity to

store the data on the blockchain. This smart contract has one

Table I: System configuration

Description Powerful Machine Low-power IoT device

IoT Device Class IV II

Name Lenovo T14s ESP32-S2 SoC

Operating System Windows NA

Processing unit type

AMD Ryzen™ 5 Pro

4650U 64-bit CPU,

clock speed up to 4

GHz

Xtensa® low power

single-core 32-bit LX7

MCU, clock speed up to

240 MHz

RAM (KB) 16,000,000 320

ROM (KB) NA 128

NVRAM (GB) 475 -

Fig. 2. Sensor data stored in the RTC memory

function, named setInput(). This function is used to set data as

input in a transaction. This smart contract was compiled on a

powerful machine and deployed to the blockchain. In addition,

a web application was designed using HTML to interact with

the smart contract via web3j to display the data, as shown in

Figure 3. Figure 4 shows the setInput() function in the Iot.sol

smart contract. There are 3 sensor related parameters passed to

the smart contracts setInput() function, namely sensor ID,

temperature, and humidity. As each sensor data is stored in a

uint16_t array, the maximum value of each data is capped to

216. However, any data type in a smart contract will take up at

least 256-bits in a transaction. Thus, each transaction can store

data from 16 data collection sessions. The data is linked

together as a c style character string (cstring), representing a

uint256 hexadecimal string. Data for each session can then be

passed to the 256-bit parameter of setInput() function. A

character string instead of an array is used as input to the smart

contract method because the resultant hexadecimal string is

much longer. Each element in the array will occupy 64

characters and cause the input data to become unnecessarily

long [31].

There are two time-related parameters passed into the set

input() function, namely startTime and deltaTime. The

startTime is stored as Unix timestamp format (time_t), which is

32-bit. However, it will be padded with 224-bit zeros when

being passed to the parameter of the smart contract. In contrast,

the deltaTime is stored as a uint16_t. The startTime is a

reference time where the ESP32S2 starts logging data for these

16 sessions, whereas the deltaTime is the interval between two

session reading times. Every time sensor data is read, the

difference between previous and current data in seconds is

stored in the deltaTime array. The exact time corresponding to

the current sensor ID is calculated by adding the startTime with

the sum of deltaTime from the first reading to the current

reading, as shown in Table II. By having these two time-related

parameters, the data from 16 sessions can be grouped in a

transaction with the minimum parameters used for the

setInput() function. The last parameter of the smart contract is

to store the last session of the hash value on the blockchain for

data verification purposes. The details of this hash value can be

found in section III.B. Table III shows the data size for each

parameter for one session and the 16th session. The data in the

16th session are the arguments that will be passed on to the

setInput() function.

The average transaction fee to store data on a blockchain

Fig. 4. A snippet of Iot.sol smart contract

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3259975

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on March 22,2023 at 14:39:18 UTC from IEEE Xplore. Restrictions apply.

IoT-23032-2022.R2 5

Fig 3. Decentralized web application excerpt

Table II: Sensor startTime and deltaTime values in a hexadecimal format

Description Value

Start Time 0x6142a6c6

0x0000000b000a Delta Time

Reading 1st 2nd 3rd

Delta Time 0x0000 0x000b 0x000a

Total Delta 0x0000 0x000b 0x0015

Sensor Time 0x6142a6c6 0x6142a6d1 0x6142a6db

Table III: Simulation Parameters

Description

Data

Type

(ESP32)

Data Type

Conversion

for

smart

contract

Data

Type

(smart

contract)

Data

size for

1

session

(bit)

Data

size for

the 16th

session

(bit)

startTime time_t char[64] Uint 256 256

deltaTime uint16_t char* Uint 16 256

Sensor ID uint16_t char* Uint 16 256

Temperature uint16_t char* Uint 16 256

Humidity uint16_t char* Uint 16 256

Data Hash char[64] char* Uint 256 256

collected during a single session is about 0.000163 ETH, while

the transaction fee to store data from 16 sessions in a transaction

is about 0.0019 ETH (approximately 0.000119 ETH per

session). The details of the transaction can be found on the

Goerli testnet [32]. Once this smart contract is deployed on the

Ethereum mainnet, the transaction fee can be reduced due to

integration with the Polygon Layer 2 blockchain. Since the 16

session data set is grouped into a single transaction, the

transaction fee for a single data set costs 0.0000025 USD using

Polygon.

In order to verify a transaction, the Recursive Length Prefix

(RLP) encoded transaction needs to be hashed using

Keccak256, which is a SHA3 hash function. The hashed string

is then signed with the senders private key using Elliptic Curve

Digital Signature Algorithm (ECDSA) with the secp256k1

curve. ECDSA signature has two 32 bytes integers, named r and

s. Ethereum uses an additional one-bit v variable as a recovery

identifier. The ECDSA function in [33] is lightweight and is

meant for embedded applications. However, some

modifications are needed because the ECDSA function lacks v

parameter and has logic errors. In addition, the ECDSA in [33]

produces a different signature each time due to a random k value

used. This random k value is claimed to be able to prevent

private key disclosure. However, Ethereum uses a deterministic

signature based on the RFC 6979 standard, which generates a

secure k value from the private key and the hashed string.

Therefore, a modification was made in the

uECC_sign_with_k() function, where the randomization of k

was removed and replaced with a securely calculated k value.

Infura API provides an instant access over HTTPS to the

Ethereum network. The ESP-TLS is used together with mbed

TLS in the backend in the https_post_func() function to create

a secure communication between ESP32S2 and Infura full

nodes [34]. The SendSignedTransaction() method is called

from Web3 class in [35] to transmit the transaction to the

Ethereum network. This function wraps the input data into

JSON-RPC format using generateJson() function. The exec()

function takes in the JSON-RPC data and makes a HTTP POST

request to Infura. After the transaction is broadcasted, the JSON

response from Infura is then parsed before returning the

transaction hash to the caller function.

C. Emergency Real-time Monitoring for Anomaly Detection

Any abnormality in the monitored building will result in

sensor reading deviation from normality, and ESP32S2 should

immediately broadcast this event. The ESP32S2 device was

programmed to receive an interrupt from sensors if the sensed

value exceeded a certain threshold. In order to do so, an external

wake-up (EXT1) was added to wake ESP32S2 up from the deep

sleep mode and service this event. Once the ESP32S2 is awake,

it signs and sends all of the stored data. After the data is

transmitted, the data collection process restarts.

V. SECURITY PROTECTION USING ESP32S2

A. Flash Encryption

As IoT devices are normally placed in a remote environment,

they are susceptible to a variety of security attacks, including

key disclosure attacks. Thus, sensitive data such as program

code, Ethereum account’s private key, and Wi-Fi configuration

should be encrypted. The ESP32S2 devices feature a Flash

Encryption, where the flash content can be encrypted using

AES256-XTS cryptographic algorithm with a key tweaking

method based on the flash offset [36]. The Flash Encryption key

can be obtained from eFuse, and the access is only possible

using a hardware approach. There are two Flash Encryption

modes available – Development and Release modes. This

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3259975

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on March 22,2023 at 14:39:18 UTC from IEEE Xplore. Restrictions apply.

IoT-23032-2022.R2

6

project uses the Development mode, where the encrypted flash

can be re-flashed through UART. However, Release mode is

recommended for real applications as it provides a higher

security protection by preventing physical readout of encrypted

flash content, i.e., modification through UART by burning the

eFuse of EFUSE_DIS_DOWNLOAD_MANUAL

_ENCRYPT. The Release mode can prevent changes made to

disable Flash Encryption using the EFUSE_SPI

_BOOT_CRYPT_CNT eFuse. In the Release mode, the

firmware can only be updated through Over The Air (OTA)

scheme.

B. Secure Boot

By enabling Secure Boot, the ESP32S2 will only run a

program signed with a secured key. The key can be generated

locally using "espsecure.py generate_signing_key" provided by

the ESP tool or generated with external software like openssl.

The secure key is generated randomly based on the entropy of

the system. Therefore, the more random the key generating

system, the better the key security. After Secure Boot is

enabled, the contents of the flash cannot be changed by

unauthorized sources as they cannot sign the binary file and

force upload the binary code. The level of Secure Boot security

depends on how the key is generated and the key storage

security level. Thus, the signing key is stored in a flash and is

encrypted using the Flash Encryption.

VI. PERFORMANCE EVALUATION

A. Smart Contract Analysis

The security of the Iot.sol smart contract was analyzed using

Mythx, which is a Software-As-A-Platform that analyzes smart

contracts using a static analyzer, a symbolic analyzer, and a

greybox fuzzer in parallel. A total of 900 seconds were taken to

perform a standard scan mode, and there were no vulnerabilities

found in the designed smart contract, as shown in Figure 5. This

smart contract was checked against the 36 Smart Contract

Weakness Classification (SWC) registry. These SWC registries

are classified based on a list of known smart contract

vulnerabilities found in the Common Weakness Enumeration

(CWE) database. The details of the type of vulnerabilities

covered by the Mythx can be found in [37].

B. Security Analysis of Ethereum Blockchain Network

Security attacks on the Ethereum blockchain can be

categorized into network attacks and consensus attacks.

Network attacks relate to any attacks on peer-to-peer nodes in

the network using a gossip protocol and include Sybil attacks,

Eclipse attacks, Distributed Denial of Service (DDoS), and

Routing attacks. In contrast, consensus attacks relate to any

attacks on the validation process of a block, and include double-

spend attacks (i.e., Finney attacks, race attacks, selfish mining),

majority attacks (i.e. 51% attacks), timejacking attacks, and

quantum attacks. The analysis of these attacks on Ethereum

blockchain has been well covered in [27] and it was proven that

Ethereum is a secure blockchain.

C. Security Analysis of the Proposed Scheme

Chain hashing has been used to detect malicious data

modifications as shown in [38]. However, there is no research

Fig 5. Mythx analysis result

on the implementation of chain hashing for data integrity

protection of low-power IoT devices. Therefore, in this work, a

new lightweight protocol that uses chain hashing for detecting

any malicious data modifications during any communication

session suitable for implementation with low-power IoT

devices is introduced. Chain hashing uses cryptographic

primitives for which 2nd preimage collision attacks and length

extension attacks may be attempted. However, with the use of

SHA256 protecting the secret key, 2nd preimage collision

attacks are not feasible for at least the next ten years. It is

estimated that SHA256 hash function has a 2nd preimage

resistance strength between 201 to 256 bits [39, 40]. Thus, the

proposed protocol allows for low-power IoT devices to be

resistant to online and offline 2nd preimage collision attacks and

guarantees safety from secret key discovery.

In general, adversaries might attempt to perform length

extension attacks on strings that have been encrypted with a

SHA256 algorithm, to alter data written to the blockchain and

falsely make the VM to authenticate this data by providing a

“valid hash”. Such attacks require data to be padded. Our

proposed protocol, however, completely negates this since it is

able to prevent length extension attacks by the integration of a

smart contract, where it requires reading data of fixed lengths,

as shown in section IV. This prevents adversaries from

attempting to pad any data string with malicious data.

D. Power Consumption

The battery lifespan in [1] is benchmarked, where a lifespan

of at least 5 years is targeted for this project. A Lithium Polymer

Battery, with a nominal capacity of 1600 mAh was selected in

this case (i.e., LP385085, LP385385, LP387062, etc) [41]. The

current consumption of this device during Wi-Fi Transmit (TX)

mode is higher compared to ON and Sleep modes. Deep sleep

was implemented where RTC timer is the only peripheral

running in the background to save the current consumption.

This device wakes up regularly to read and store the data offline

before going back to deep sleep, as described in Figure 6.

Since the power consumption of ESP32S2 is high when it

connects to the Wi-Fi, the ESP32S2 will only connect to Wi-Fi

during initialization and before sending a transaction. To further

reduce the power consumption, the ESP32 will need only be

connected to Wi-Fi to send a signed transaction once data has

been collected 16 times. Furthermore, the boot log and ROM

log are disabled to reduce startup time every time the device

wakes up from the deep sleep mode. ROM log needs to be

disabled by burning eFuse UART_PRINT_CONTROL to 1 and

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3259975

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on March 22,2023 at 14:39:18 UTC from IEEE Xplore. Restrictions apply.

IoT-23032-2022.R2

7

pulling GPIO 46 high. The aforementioned power optimization

is able to prolong the battery lifespan from 2.9 to 5.2 years.

Table IV shows how the proposed solution outperforms the

other related solutions in terms of security protection, data

integrity verification, power consumption, and transaction fees.

Fig 6. Current consumption of different operating modes

A computation cost and security feature comparison is not

included in this table as there are no data integrity schemes

implemented in the other referenced works.

Table IV: Performance comparison to existing solution

Description
Proposed

Solution

Nodle

[18]

Helium

[21]
Okada [15]

Communication Wi-Fi BLE LoRaWAN Wi-Fi

Blockchain
Ethereum

+ Polygon
Polkadot Helium Ethereum

Security

protection
Yes Yes Yes No

Data integrity

verification
Yes No No No

Real-time

anomaly

monitoring

Yes No No Yes

Transaction fee

for one set of

data (USD)

0.0000025 Undefined
0.00001 for

24 bytes
~ 4.81

Network

coverage
High Low Low High

Current

consumption
Low Low Low High

VII. CONCLUSION

This paper presented a blockchain-based data verification

scheme for low-power IoT devices. A prototype sensor node

based on an ESP32S2 device was implemented, and a firmware

was written to send the stored data as transactions to the

Ethereum blockchain. A smart contract was designed to set a

batch of data as an input in a transaction. The smart contract

was analyzed using Mythx security tool and was proven to be

free from vulnerabilities. A decentralized web application was

designed to display the extracted data from the blockchain.

Power consumption was minimized by enabling intermittent

Wi-Fi connections. The private key, secure key, and the

executable program are protected using security features

provided by the ESP32S2. The integrity of the stored sensor

data in the RTC memory is guaranteed using the proposed data

storage protocol and can be verified using the decentralized web

application. An emergency system that allows for real-time

monitoring was designed that sends all stored data to the

blockchain once anomalous sensor values are detected,

allowing for a near real-time response by the applications

reading the blockchain data. This paper proves that data

integrity can be achieved for low-power IoT devices that utilize

Wi-Fi connections and shows that they are suitable for

integration with public blockchains. The proposed data storage

protection solution can be applied to any IoT devices that

support hash function, flash encryption, and secure boot

features. Future research will include developing a new key

update system for better security protection.

ACKNOWLEDGEMENT

We would like to thank Professor Beomsoo Kim of the Barun

ICT Research Centre at Yonsei University, Seoul, South Korea

for hosting Jing Huey Khor during her research visit, and

Professor Jingyue Li from Norwegian University of Science

and Technology for hosting Michail Sidorov during his ERCIM

tenure.

REFERENCES

[1] M. Sidorov, J. H. Khor, P. V. Nhut, Y. Matsumoto, and R. Ohmura, "A

Public Blockchain-Enabled Wireless LoRa Sensor Node for Easy

Continuous Unattended Health Monitoring of Bolted Joints:

Implementation and Evaluation," IEEE Sensors Journal, vol. 20, no. 21,

pp. 13057-13065, 2020, doi: 10.1109/JSEN.2020.3001870.

[2] G. Gürsoy, C. M. Brannon, and M. Gerstein, "Using Ethereum

Blockchain to Store and Query Pharmacogenomics Data via Smart

Contracts," BMC Medical Genomics, vol. 13, no. 1, p. 74, 2020, doi:

10.1186/s12920-020-00732-x.

[3] "Analyst: WiFi Dominates In-home Net Connectivity " Advanced-

television. https://advanced-television.com/2019/08/08/analyst-wifi-

dominates-in-home-net-connectivity/ (accessed 19 July, 2021).

[4] D. Zomaya. "When to Use 802.11a,b,g,b,nc: WiFi Standards."

CBTNuggets. https://www.cbtnuggets.com/blog/technology/network

ing/when-to-use-802-11-a-b-g-b-nc-wifi-standards (accessed 10 March,

2022).

[5] TheBlock. "On-chain Metrics Ethereum." The Block Crypto. https://

www.theblockcrypto.com/data/on-chain-metrics/ethereum (accessed 6

July, 2021).

[6] GraphLinq. "Polygon (Matic) Announces Their Offical Parnership With

GraphLinq Protocol." GlobeNewsWire. https://www.globenews

wire.com/news-release/2021/04/09/2207604/0/en/Polygon-Matic-

Announces-Their-Official-Partnership-With-GraphLinq-Protocol.html

(accessed 6 July 2021).

[7] K. O. B. O. Agyekum, Q. Xia, E. B. Sifah, C. N. A. Cobblah, H. Xia,

and J. Gao, "A Proxy Re-Encryption Approach to Secure Data Sharing

in the Internet of Things Based on Blockchain," IEEE Systems Journal,

pp. 1-12, 2021, doi: 10.1109/JSYST.2021.3076759.

[8] W. Ren, Y. Sun, H. Luo, and M. Guizani, "SILedger: A Blockchain and

ABE-based Access Control for Applications in SDN-IoT Networks,"

IEEE Transactions on Network and Service Management, pp. 4406-

4419, 2021, doi: 10.1109/TNSM.2021.3093002.

[9] T. Nivan. "Arduino on Algorand Blockchain." Algorand. https://deve

loper.algorand.org/solutions/arduino-algorand-blockchain/ (accessed 20

July, 2021).

[10] M. Sidorov, M. T. Ong, R. V. Sridharan, J. Nakamura, R. Ohmura, and

J. H. Khor, "Ultralightweight Mutual Authentication RFID Protocol for

Blockchain Enabled Supply Chains," IEEE Access, vol. 7, pp. 7273-

7285, 2019, doi: 10.1109/ACCESS.2018.2890389.

[11] K. R. Özyılmaz and A. Yurdakul, "Work-in-progress: Integrating Low-

Power IoT Devices to A Blockchain-based Infrastructure," in

International Conference on Embedded Software, Seoul, South Korea,

15-20 October 2017, pp. 1-2, doi: 10.1145/3125503.3125628.

[12] L. D. C. Silva, M. Samaniego, and R. Deters, "IoT and Blockchain for

Smart Locks," in 10th Annual Information Technology, Electronics and

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3259975

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on March 22,2023 at 14:39:18 UTC from IEEE Xplore. Restrictions apply.

https://advanced-television.com/2019/08/08/analyst-wifi-dominates-in-home-net-connectivity/
https://advanced-television.com/2019/08/08/analyst-wifi-dominates-in-home-net-connectivity/
https://www.cbtnuggets.com/blog/technology/networking/when-to-use-802-11-a-b-g-b-nc-wifi-standards
https://www.cbtnuggets.com/blog/technology/networking/when-to-use-802-11-a-b-g-b-nc-wifi-standards
https://www.theblockcrypto.com/data/on-chain-metrics/ethereum
https://www.theblockcrypto.com/data/on-chain-metrics/ethereum
https://www.globenewswire.com/news-release/2021/04/09/2207604/0/en/Polygon-Matic-Announces-Their-Official-Partnership-With-GraphLinq-Protocol.html
https://www.globenewswire.com/news-release/2021/04/09/2207604/0/en/Polygon-Matic-Announces-Their-Official-Partnership-With-GraphLinq-Protocol.html
https://www.globenewswire.com/news-release/2021/04/09/2207604/0/en/Polygon-Matic-Announces-Their-Official-Partnership-With-GraphLinq-Protocol.html
https://developer.algorand.org/solutions/arduino-algorand-blockchain/
https://developer.algorand.org/solutions/arduino-algorand-blockchain/

IoT-23032-2022.R2

8

Mobile Communication Conference, Vancouver, Canada, 17-19 October

2019, pp. 262-269, doi: 10.1109/IEMCON.2019.8936140.

[13] K. Zhidanov et al., "Blockchain Technology for Smartphones and

Constrained IoT Devices: A Future Perspective and Implementation," in

IEEE 21st Conference on Business Informatics, Moscow, Russia, 15-17

July 2019, pp. 20-27, doi: 10.1109/CBI.2019.10092.

[14] L. Hang and D.-H. Kim, "Design and Implementation of an Integrated

IoT Blockchain Platform for Sensing Data Integrity," Sensors, vol. 19,

no. 10, p. 2228, 2019, doi: 10.3390/s19102228.

[15] T. Okada. "Handle Smart Contract on Ethereum with Arduino or

ESP32." Medium. https://medium.com/@takahirookada/handle-smart-

contract-on-ethereum-with-arduino-or-esp32-1bb5cbaddbf4 (accessed

20 July, 2021).

[16] F. Lardinois. "Nodle Crowdsources IoT Connectivity." TechCrunch.

https://techcrunch.com/2019/12/11/nodle-crowdsources-iot-

connectivity/ (accessed 19 July, 2021).

[17] P. Lucsok. "IoT on Substrate: Nodle.io." Parity. https://www.parity.

io/blog/iot-on-substrate-nodle-io/ (accessed 22 July, 2021).

[18] "Connecting & Securing The Next Trillion Things." Nodle. https://

nodle.io/ (accessed 22 July, 2021).

[19] P. Pachal. "IoT Startup Helium Floats New Hardware Device for Mining

Its HNT Crypto Tokens." CoinDesk. https://www

.coindesk.com/helium-iot-hnt-cryptocurrency-miner (accessed 19 July,

2021).

[20] J. Constine. "Helium Launches $51M-funded 'LongFi' IoT Alternative

to Cellular." TechCrunch. https://techcrunch.com/2019/06/12/helium-

network/ (accessed 19 July, 2021).

[21] "Helium Explorer." Helium. https://explorer.helium.com/ (accessed 22

July, 2021).

[22] F. Rezaeibagha, Y. Mu, K. Huang, L. Zhang, and X. Huang, "Secure and

Privacy-Preserved Data Collection for IoT Wireless Sensors," IEEE

Internet of Things Journal, pp. 17669-17677, 2021, doi: 10.1109

/JIOT.2021.3082150.

[23] Y. Lin, J. Li, S. Kimura, Y. Yang, Y. Ji, and Y. Cao, "Consortium

Blockchain based Public Integrity Verification in Cloud Storage for

IoT," IEEE Internet of Things Journal, pp. 3978-3987, 2021, doi:

10.1109/JIOT.2021.3102236.

[24] H. Wang and J. Zhang, "Blockchain Based Data Integrity Verification

for Large-Scale IoT Data," IEEE Access, vol. 7, pp. 164996-165006,

2019, doi: 10.1109/ACCESS.2019.2952635.

[25] P. Wei, D. Wang, Y. Zhao, S. K. S. Tyagi, and N. Kumar, "Blockchain

Data-based Cloud Data Integrity Protection Mechanism," Future

Generation Computer Systems, vol. 102, pp. 902-911, 2020, doi:

10.1016/j.future.2019.09.028.

[26] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu, "Blockchain Based Data

Integrity Service Framework for IoT Data," in IEEE International

Conference on Web Services, Honolulu, USA, 25-30 June 2017, pp. 468-

475, doi: 10.1109/ICWS.2017.54.

[27] J. H. Khor, M. Sidorov, and P. Y. Woon, "Public Blockchains for

Resource-constrained IoT Devices -A State of the Art Survey," IEEE

Internet of Things Journal, pp. 11960-11982, 2021, doi:

10.1109/JIOT.2021.3069120.

[28] ESP32-S2-WROVER/ESP32-S2-WROVER-I Datasheet, Espressif,

2020. [Online]. Available: https://www.espressif.com/sites/default/files/

documentation/esp32-s2-wrover_esp32-s2-wrover-i_datasheet_en.pdf

[29] J.-L. Aufranc. "ESP32-S2 Board Targets Battery-powered Applications

With 30uA Deep Sleep Power Consumption." CNX-Software.

https://www.cnx-software.com/2020/10/28/esp32-s2-board-targets-

battery-powered-applications-with-30ua-deep-sleep-power-

consumption/ (accessed 20 July, 2021).

[30] "Example: Using LwIP SNTP Module and Time Functions." Github.

https://github.com/espressif/esp-idf/tree/master/examples/pro

tocols/sntp (accessed 25 August, 2020).

[31] "Contract ABI Specification." Solidity. https://docs.soliditylang.

org/en/v0.5.3/abi-spec.html (accessed 27 August, 2020).

[32] "Goerli Testnet Network." https://goerli.etherscan.io/address/0x622497

19D71616a12Bc0E4742994542dc385D429 (accessed 20 July 2021).

[33] K. MacKay. "Micro-ECC." Github. https://github.com/kmackay/micro-

ecc (accessed 8 July, 2021).

[34] "ESP-TLS." Espressif. https://docs.espressif.com/projects/esp-idf/en/l

atest/esp32/api-reference/protocols/esp_tls.html (accessed 25 August,

2020).

[35] Kopanitsa. "Web3-Arduino." Github. https://github.com/kopanitsa

/web3-arduino (accessed 24 August, 2020).

[36] "Flash Encryption." Espressif. https://docs.espressif.com/projects/esp-

idf/en/latest/esp32s2/security/flash-encryption.html (accessed 24

August, 2020).

[37] "Mythx - Smart Contract Security Service for Ethereum." Consensys.

https://mythx.io/ (accessed 31 May, 2021).

[38] "FIPS 180-4 Secure Hash Standard (SHS)," National Institute of

Standards and Technology, 2015. [Online]. Available: https://

nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

[39] Q. H. Dang, "Recommendation for Applications Using Approved Hash

Algorithms," National Institute of Standards and Technology, 2012.

[Online]. Available: https://tsapps.nist.gov/publication/get_pdf.cfm?

pub_id=911479

[40] B. Preneel, "Second Preimage Resistance," in Encyclopedia of

Cryptography and Security, H. C. A. van Tilborg and S. Jajodia Eds.

Boston, MA: Springer US, 2011, pp. 1093-1093.

[41] "Lithium Polymer Battery 1500mAh 1800mAh 2000mAh." LiPol

Battery. https://www.lipolbattery.com/lithium%20polymer%20battery

.html (accessed 4 August, 2021).

JING HUEY KHOR is an Assistant Professor at the

University of Southampton Malaysia. She joined the

university as a lecturer in 2014. She received her B.Eng

degree in Electrical Engineering (Electronic) with First

Class Honours from Universiti Malaysia Pahang in

2009. She then received her Ph.D degree at Universiti

Sains Malaysia in 2013. She was a visiting researcher

at Yonsei University under the International Scholar

Exchange Fellowship (ISEF) Program of the Chey

Institute for Advanced Studies in 2021. She has been

actively designing privacy preserving protocols for

communication between IoT devices and blockchain, new consensus

algorithms, and decentralized application for IoT purposes. She has served as a

technical committee member for several international conferences, and as a

reviewer for IEEE and Elsevier journals.

MICHAIL SIDOROV is an ERCIM Postdoc at the

Norwegian University of Science and Technology

(NTNU), Norway working in the field of IoT. He has

received his B.Sc degree in Informatics from Coventry

University, UK in 2009, B.Sc Degree in Informatics

Engineering from Klaipeda University, Lithuania in

2010, a joined M.Sc degree in Embedded Computing

Systems (EMECS) from NTNU and University of

Southampton (UoS), UK in 2013, and Ph.D in

Computer Science and Engineering from Toyohashi

University of Technology (TUT), Japan in 2020. He

was a Teaching Fellow and Laboratory Officer for the period of 2013 – 2017 at

the University of Southampton Malaysia, and worked as a Researcher after

obtaining his PhD in TUT. His current research interests include blockchain

integration with IoT.

MING TZE ONG is a Mathematics Lecturer in the

Computer Science department at DigiPen--The One

Academy. He received a B.Sc in Math and Computing

from the National University of Singapore (NUS) and

a M.Sc in Numerical Analysis from the University of

Manchester. His interests mainly include High

Performance Computing.

SHEN YIK CHUA is currently pursuing his MSc

degree in Electrical and Electronic Engineering with

the University of Southampton. His current interests

include energy harvesting, blockchain technology in

IoT, robotics, and automation.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3259975

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on March 22,2023 at 14:39:18 UTC from IEEE Xplore. Restrictions apply.

https://medium.com/@takahirookada/handle-smart-contract-on-ethereum-with-arduino-or-esp32-1bb5cbaddbf4
https://medium.com/@takahirookada/handle-smart-contract-on-ethereum-with-arduino-or-esp32-1bb5cbaddbf4
https://techcrunch.com/2019/12/11/nodle-crowdsources-iot-connectivity/
https://techcrunch.com/2019/12/11/nodle-crowdsources-iot-connectivity/
https://www.parity.io/blog/iot-on-substrate-nodle-io/
https://www.parity.io/blog/iot-on-substrate-nodle-io/
https://nodle.io/
https://nodle.io/
https://www.coindesk.com/helium-iot-hnt-cryptocurrency-miner
https://www.coindesk.com/helium-iot-hnt-cryptocurrency-miner
https://techcrunch.com/2019/06/12/helium-network/
https://techcrunch.com/2019/06/12/helium-network/
https://explorer.helium.com/
https://www.cnx-software.com/2020/10/28/esp32-s2-board-targets-battery-powered-applications-with-30ua-deep-sleep-power-consumption/
https://www.cnx-software.com/2020/10/28/esp32-s2-board-targets-battery-powered-applications-with-30ua-deep-sleep-power-consumption/
https://www.cnx-software.com/2020/10/28/esp32-s2-board-targets-battery-powered-applications-with-30ua-deep-sleep-power-consumption/
https://github.com/espressif/esp-idf/tree/master/examples/protocols/sntp
https://github.com/espressif/esp-idf/tree/master/examples/protocols/sntp
https://docs.soliditylang.org/en/v0.5.3/abi-spec.html
https://docs.soliditylang.org/en/v0.5.3/abi-spec.html
https://goerli.etherscan.io/address/0x62249719D71616a12Bc0E4742994542dc385D429
https://goerli.etherscan.io/address/0x62249719D71616a12Bc0E4742994542dc385D429
https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html
https://github.com/kopanitsa/web3-arduino
https://github.com/kopanitsa/web3-arduino
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/security/flash-encryption.html
https://mythx.io/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=911479
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=911479
https://www.lipolbattery.com/lithium%20polymer%20battery.html
https://www.lipolbattery.com/lithium%20polymer%20battery.html

