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Abstract — The integration of sensor nodes with public 

blockchains is possible with the help of low-power communication 

networks that use Bluetooth Low Energy and LoRa. However, 

power-consuming Wi-Fi is still the main means of communication 

for the existing sensor nodes, especially in urban environments. 

Typically high power consumption, private key disclosure, and 

high transaction fees are the issues that prevent battery-powered 

sensor nodes from being integrated with a public blockchain. 

Therefore, this paper proposes a data protection protocol that is 

able to secure the data integrity of the stored sensor data, help to 

reduce transaction fees, and prolong battery life for IoT devices 

that are used with public blockchain networks. A proof of concept 

is presented using an ESP32S2 device to evaluate and verify the 

performance of the proposed data storage protocol. A smart 

contract is designed and analyzed using a formal smart contract 

analysis tool. A decentralized web application is designed to 

display and verify the sensor data extracted from the public 

blockchain. The power consumption, memory usage, and security 

of the proposed solution are evaluated. The evaluation results 

show that data integrity can be achieved even for low-power sensor 

nodes that connect to public blockchains via Wi-Fi network. 

 
Index Terms—Blockchain, Data Integrity, IoT 

I. INTRODUCTION 

ata associated with decentralized applications can be 

stored in several ways - either on the blockchain itself, a 

method which is called on-chain storage, or using external 

databases, making this an off-chain solution. Since on-chain 

storage becomes expensive for large amounts of data, off-chain 

solutions such as CouchDB, StateDB, etc., can be used to store 

vast amounts of sensitive data in a cost-efficient manner. 

However, raw data stored using off-chain storage is susceptible 

to modification or deletion by attackers. Hence, on-chain 

storage becomes essential for certain IoT applications, such as 

Structural Health Monitoring (SHM) [1, 2], where an 

immutable record and transparent public access is required. IoT 
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applications like this store only small amounts of data collected 

by sensor nodes, e.g., temperature, humidity, preload, etc., in 

which case on-chain storage becomes a viable solution 

compared to the off-chain one. Depending on the application, 

this sensory data can then be utilized for various smart city 

services. In case of SHM, for example, citizens in close 

proximity to a certain structure can be notified of a developed 

fault to stay away. This would be made possible by smart city 

services reading the on-chain data continuously stored by 

sensor nodes monitoring the abovementioned structures.  

Using on-chain storage is not without challenges. High 

power consumption, vulnerability to security attacks, and high 

transaction fees are among the typical issues associated. Most 

small IoT devices are battery-powered; therefore, using Wi-Fi 

to connect to a blockchain is a power-hungry approach. 

However, Wi-Fi is the dominant wireless protocol, especially 

in a smart city environment [3], even though power-efficient 

communication protocols such as Bluetooth Low Energy (BLE) 

or Long-Range (LoRa) are available for IoT applications. 

Existing IoT devices typically support older IEEE 

802.11b/g/n/ac standards, although a few devices support the 

newer power-saving IEEE 802.11ax (Wi-Fi 6) standard, e.g., 

ESP32-C6 [4]. Therefore, there is a need to address the power 

consumption issue found among the low-end IoT devices that 

use older Wi-Fi protocols and not the newer Wi-Fi 6 or other 

aforementioned communication protocols. In addition, IoT 

devices placed in remote areas are susceptible to security 

attacks where the stored sensory data and the program executed 

by the IoT device can be modified if the device is accessed 

locally. Thus, sensor data is usually sent to a local server, cloud 

server, or blockchain directly for storage instead of being 

retained on the IoT device itself.  

Storing one data packet on the blockchain constitutes one 

transaction, and transactions are not free. Different blockchains 

have different pricing for this, e.g., at the time of writing, the 

average Ethereum transaction cost is 4 USD [5]; however, it 

fluctuates greatly depending on the network usage. Transaction 

fees should be reduced once the upgrade to Ethereum 2.0 is 

finalized. However, this is not scheduled for several years from 

now. Therefore, a second layer scaling solution, e.g., Polygon 

blockchain [6], where the transaction fee is 0.00004 USD can 

be used instead. Although the cost is lower, IoT applications 

normally use a large number of connected devices, and these 

devices typically send data frequently. Hence, a large number 

of transactions is going to be made, which can result in high 

running costs. Therefore, to solve the issues this paper aims to 

provide cost-efficient and secure data protection for public 
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blockchain-enabled low-power IoT applications in urban 

environments where Wi-Fi connections dominate. In order to 

support low-power IoT devices, the sensor data will be stored 

on the IoT device itself for a certain period of time and then will 

be grouped into a single transaction to reduce power 

consumption and lower transaction fees. In addition, a 

lightweight data protection protocol is designed to guarantee 

the integrity of sensor data while it is stored on the IoT device 

itself. 

The main contributions of this paper are as follows: 

• A new lightweight protocol is proposed using chain 

hashing for data integrity protection. 

• A proof of concept is presented based on the ESP32S2 low-

power, single-core Wi-Fi System-on-Chip from Espressif 

to verify the performance of the proposed protocol. 

• A smart contract is designed to send a batch of data in a 

single transaction to save transaction costs and reduce 

power consumption. 

• A decentralized web application is developed to display 

and verify the IoT sensor node data. 

• Power consumption savings are achieved using an 

intermittent Wi-Fi connection that prolongs battery life.  

• An emergency real-time monitoring mechanism is used to 

write the stored data to the blockchain once an anomaly is 

detected.  

II. RELATED WORK 

Internet of Things (IoT) devices have been widely integrated 

with various blockchain applications. However, most of those 

devices were not used as blockchain nodes due to low power 

and low computational capabilities. Instead, powerful IoT 

devices, such as proxy servers [7], computers [8-10], and 

gateways [1, 11, 12] were used as blockchain nodes to make 

transactions using received data from resource-limited IoT 

devices. In order to use low-power devices as blockchain nodes, 

customized lightweight consensus algorithms are needed to add 

transactions to the blockchain [13, 14]. These consensus 

algorithms include customized Practical Byzantine Fault 

Tolerance, Proof of Authentication, etc. It is possible for low-

end IoT devices to directly transact on the Ethereum blockchain 

via Infura without the need of deploying a full node [15]. 

However, high power budget is required to send transactions 

via Wi-Fi or cellular networks, which is an obstacle preventing 

the integration of resource-constrained IoT devices with the 

Ethereum blockchain network.  

Several solutions exist that enable the integration of low-cost 

IoT devices with blockchain networks, such as Nodle and 

Helium. Nodle is a decentralized wireless network that is built 

on top of the Polkadot blockchain, and it utilizes BLE to 

establish a connection between IoT devices and smartphones 

[16]. The Rendez-Vous Protocol is used to secure the 

communication network between two endpoints. In addition, a 

security stack is provided to enable IoT devices to send signed 

and encrypted data anonymously [17]. However, the Nodle 

network is only suitable for those who do not require real-time 

monitoring. Data collected by a sensor device will only be sent 

to smartphones when they are in close proximity. In addition, 

the Nodle network relies highly on the number of smartphones 

on the network. The owners of smartphones are incentivized 

with Nodle Cash rewards whenever their phones transmit a 

packet to the network, therefore attracting more users to expand 

the network [16]. However, this incentive might not be enough 

as at this point in time as the monetary value of 1 Nodl stands 

at 0.006 USD. At the time of writing this paper, there were 

approximately 4,600,000 active nodes on the network, which is 

around 0.065% of the total mobile devices used around the 

world [18]. 

Helium is another blockchain aimed at IoT and connected 

devices. Similar to Nodle, the Helium blockchain relies on 

Helium Hotspots. There is a number of manufacturers that 

produce these hotspots and currently, a large number of 

additional ones are joining. Helium calls its communication 

protocol LongFi; however, the underlying technology is 

nevertheless LoRaWAN. In order to encourage the use and 

distribution of Helium Hotspots, a cryptocurrency called HNT 

is rewarded to the owners of Helium Hotspots [19]. Hotspot 

owners get rewards for providing coverage for the Helium 

network by participating in the Proof of Coverage consensus 

algorithm and by transferring data received from the connected 

sensor nodes. Helium hotspots devices cost in the range of 

USD250-700 [20], which is quite expensive, as the device 

mainly acts as a packet forwarder with almost zero 

configuration possible from the user side which typically can 

be found in commercial LoRaWAN gateways. Currently, 

Helium Hotspot devices mainly concentrate in United States, 

Europe, and East China [21]. This means other parts of the 

world will not have proper Helium network coverage to 

communicate with IoT devices yet and this is mainly due to the 

regulatory approvals. Since Helium hotspots are new, and 

network is incredibly immature, manufacturers need to go 

through a lengthy process of getting their devices certified to 

comply with local radio laws for the hotspots to be safely used 

in the respective country. However, the demand to join the 

Helium network is incredibly high, therefore the adoption will 

grow faster than The Things Network, or any alternative 

LoRaWAN network.  

The aforementioned shows that there is a degree of research 

done and that some solutions that integrate IoT devices with 

public blockchains do exist. In addition, there are several 

research works that guarantee sensor data integrity when used 

with cloud storage [22-26] or local storage [14]. However, at 

this time of writing, no research has focused on data protection 

for low-power IoT devices used in public blockchain networks. 

Thus, this paper fills the research gap. 

III. DATA PROTECTION PROTOCOL 

The following section describes the proposed protocol. The 

purpose of the node is to collect sensory data. This data, together 

with other data (sensor ID, startTime, deltaTime, and hash value) 

is stored in the Real Time Clock (RTC) memory. Since the sensor 

data that is stored in the RTC memory is not encrypted, there is 

a possibility that attackers can manipulate it. Therefore, a 

protocol is designed based on chain hashing to ensure data 

integrity for the RTC memory. This chain hashing increases the 

complexity by using different sensor data for each session, a 

secret key, and a previous hash value as its input data. The 
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proposed protocol consists of two phases, namely data storage 

and verification. Initially, a 256-bit secret key and an initial hash 

value are generated and are stored in the sensor node using the 

methods described in section IV.A. The same secret key and 

initial hash value will also be stored at a more powerful machine 

for data validation purposes, hereafter referred to as a Validation 

Machine (VM).  

A. Data Storage and Data Verification Phases 

The data storage phase of the proposed protocol is designed, as 

shown in Figure 1. The sequence is further described below: 

1. An IoT node wakes up from a deep sleep mode, collects 

the data (i.e., temperature and humidity), and stores it in 

the RTC memory, together with its sensor ID, startTime, 

and deltaTime.  

2. The IoT node hashes the concatenated stored data, secret 

key, and the initial hash string value to generate a 256-bit 

hash value using the SHA256 hash function. 

3. The IoT node goes back to deep sleep mode.  

4. The IoT node switches to an ON mode from a deep sleep 

mode for the next data collection session to sense data and 

add the data to RTC memory. The IoT node then hashes 

the stored data with the secret key, and the previous session 

generated hash value to obtain a new hash value. 

5. Steps 3-4 then repeat a further 14 times, upon which at the 

end of the 16th session, each of the temperature, humidity, 

and deltaTime arrays contain 256 bits of data.  

6. The IoT node then calls the setInput function from the 

smart contract to generate a signed transaction. The 

setInput function stores data obtained from the 16 sessions 

(256-bit each), including startTime, sensor ID, 

temperature, humidity, deltaTime, as well as the last hash 

value on the blockchain as input data.  

7. The IoT node connects to Wi-Fi and broadcasts the signed 

transaction to the Ethereum public blockchain. 

8. After sending the transaction, the IoT node is set to deep 

sleep mode.  

During the data verification phase, a decentralized web 

application is used to verify the validity of the collected data as 

described in section IV. This application uses the data from 

transactions to generate a sequence of hash values. Data 

integrity and authentication scheme, which is described in the 

next section, only requires comparing the last hash value of the 

hash sequence with the one stored on the blockchain. If they are 

the same, the web application reflects PASS in the Verification 

column to show that the data is original and has not been 

modified. Otherwise, a FAIL will be shown in the web 

application to indicate the data has been modified. 

B. Data Integrity and Authentication Scheme 

As mentioned in section III.A, at the end of every 16th 

session, the IoT node sends data that it has collected in a single 

transaction to the blockchain. Since existing resource-

constrained IoT nodes by themselves are not secure, a data 

integrity scheme for a VM to determine if the data that the IoT 

node has included in transactions to the blockchain is valid and 

authentic, needs to be designed and implemented. A very 

simple, efficient, and reliable data authentication scheme using 

the secure cryptographic hash function SHA256 combined with 

chain hashing is used. Every IoT node has a secret key which 

the VM knows. As data is being collected at every ith session, 1 

≤ i ≤ 16, the IoT node calculates, based on collected data 

described in section IV.A, the chained hash sequence: 
ℎ𝑆𝐻𝐴256,𝑖(𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒𝑖|𝑑𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒𝑖|𝑆𝑒𝑛𝑠𝑜𝑟𝐼𝐷𝑖|𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖|𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑖 

|ℎ𝑆𝐻𝐴256,𝑖−1|𝑘𝑒𝑦) , where ℎ𝑆𝐻𝐴256,0  = 000…0 and | denotes 

concatenation. The only hash value that the IoT node writes to 

the blockchain at the end of the transaction period (i.e. the 16th 

session) is ℎ𝑆𝐻𝐴256,16 . To detect if an adversary has maliciously 

altered any data that the IoT node writes to the blockchain, the 

VM itself calculates its own sequence of hash values : 
𝑉𝑀𝑆𝐻𝐴256,𝑖(𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒𝑖|𝑑𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒𝑖|𝑆𝑒𝑛𝑠𝑜𝑟𝐼𝐷𝑖|𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖 

|𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑖|𝑉𝑀𝑆𝐻𝐴256,𝑖−1|𝑘𝑒𝑦), 1 ≤ i ≤ 16, where 𝑉𝑀𝑆𝐻𝐴256,0, = 000…0 

with 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒𝑖 , 𝑑𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒𝑖 , 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖  𝑎𝑛𝑑 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑖   here 

being data values read from the blockchain. If 𝑉𝑀𝑆𝐻𝐴256,16 and 
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Fig. 1. Data Storage Phase 
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ℎ𝑆𝐻𝐴256,16 match, the VM declares the data on the blockchain to 

be authentic via the decentralized web application mentioned in 

section IV.B.  

IV. PROOF OF CONCEPT  

A. Data Collection and Storage 

A system configuration shown in Table I is used to verify the 

validity of the proposed scheme. According to [27], IoT devices 

can be categorized into 4 categories based on their processing 

capability and power consumption. A Lenovo T14s laptop 

which belongs to Class IV is used to simulate a powerful 

machine used for verification of transaction data on the 

Ethereum public blockchain. For the proof of concept, the 

Ethereum Goerli testnet is used instead of the Ethereum 

mainnet to transact without the use of real Ether. While other 

Ethereum testnets are available such as Kovan, Rinkeby, or 

Ropsten, these testnets are currently being deprecated, i.e. they 

will not receive any new network updates in the future and 

support for them is scheduled to end. Hence, they are not 

recommended for new smart contract deployment. A remote 

node, called Infura, is used to access the Goerli testnet through 

Application Programming Interface (API) for convenience. 

This approach eliminates the need of deploying a full Ethereum 

node on-site. The low-power sensor node was developed using 

the ESP32S2 module [28], which belongs to Class II of IoT 

devices. IoT sensor nodes are typically battery-powered and 

sometimes used for monitoring in places where easy access is 

not available. While a USB-powered ESP32-S2-WROVER 

version of the board was used for prototyping purposes, 

attaching a battery or using a similar battery-powered board, 

e.g., ESP32-S2-WROVER-DevKit-Lipo [29] is an easy 

transition. The primary application of the designed sensor node 

was to monitor the temperature and humidity in a building. 

Since this paper focuses on data storage protection for IoT 

devices, a built-in temperature sensor inside the ESP32S2 was 

used for simplicity. An SMTHS08A humidity sensor was used 

as an external sensor and was connected to the EPS32S2 input 

port. To provide real-time data monitoring, the ESP32S2 

system synchronizes its clock with the internet time, as shown 

in [30]. Each sensor data is stored in a uint16_t array in the RTC 

memory, transformed into a 4-letter hexadecimal string, as 

shown in Figure 2. 

B. Decentralized Web Application 

A smart contract named Iot.sol, was designed using Solidity to 

store the data on the blockchain. This smart contract has one 

Table I: System configuration  

Description Powerful Machine Low-power IoT device 

IoT Device Class IV II 

Name Lenovo T14s ESP32-S2 SoC 

Operating System Windows NA 

Processing unit type 

AMD Ryzen™ 5 Pro 

4650U 64-bit CPU, 

clock speed up to 4 

GHz 

Xtensa® low power 

single-core 32-bit LX7 

MCU, clock speed up to 

240 MHz 

RAM (KB) 16,000,000 320 

ROM (KB) NA 128 

NVRAM (GB) 475 - 

Fig. 2. Sensor data stored in the RTC memory 

 

function, named setInput(). This function is used to set data as 

input in a transaction. This smart contract was compiled on a 

powerful machine and deployed to the blockchain. In addition, 

a web application was designed using HTML to interact with 

the smart contract via web3j to display the data, as shown in 

Figure 3. Figure 4 shows the setInput() function in the Iot.sol 

smart contract. There are 3 sensor related parameters passed to 

the smart contracts setInput() function, namely sensor ID, 

temperature, and humidity. As each sensor data is stored in a 

uint16_t array, the maximum value of each data is capped to 

216. However, any data type in a smart contract will take up at 

least 256-bits in a transaction. Thus, each transaction can store 

data from 16 data collection sessions. The data is linked 

together as a c style character string (cstring), representing a 

uint256 hexadecimal string. Data for each session can then be 

passed to the 256-bit parameter of setInput() function. A 

character string instead of an array is used as input to the smart 

contract method because the resultant hexadecimal string is 

much longer. Each element in the array will occupy 64 

characters and cause the input data to become unnecessarily 

long [31]. 

There are two time-related parameters passed into the set 

input() function, namely startTime and deltaTime. The 

startTime is stored as Unix timestamp format (time_t), which is 

32-bit. However, it will be padded with 224-bit zeros when 

being passed to the parameter of the smart contract. In contrast, 

the deltaTime is stored as a uint16_t. The startTime is a 

reference time where the ESP32S2 starts logging data for these 

16 sessions, whereas the deltaTime is the interval between two 

session reading times. Every time sensor data is read, the 

difference between previous and current data in seconds is 

stored in the deltaTime array. The exact time corresponding to 

the current sensor ID is calculated by adding the startTime with 

the sum of deltaTime from the first reading to the current 

reading, as shown in Table II. By having these two time-related 

parameters, the data from 16 sessions can be grouped in a 

transaction with the minimum parameters used for the 

setInput() function. The last parameter of the smart contract is 

to store the last session of the hash value on the blockchain for 

data verification purposes. The details of this hash value can be 

found in section III.B. Table III shows the data size for each 

parameter for one session and the 16th session. The data in the 

16th session are the arguments that will be passed on to the 

setInput() function. 

The average transaction fee to store data on a blockchain 

 

 
Fig. 4. A snippet of Iot.sol smart contract 
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Fig 3. Decentralized web application excerpt

Table II: Sensor startTime and deltaTime values in a hexadecimal format 

Description Value 

Start Time  0x6142a6c6 

0x0000000b000a Delta Time 

Reading 1st 2nd 3rd 

Delta Time 0x0000 0x000b 0x000a 

Total Delta  0x0000 0x000b 0x0015 

Sensor Time  0x6142a6c6 0x6142a6d1 0x6142a6db 

 

Table III: Simulation Parameters 

Description 

Data 

Type  

(ESP32) 

Data Type  

Conversion 

for 

smart 

contract 

Data 

Type 

(smart 

contract) 

Data 

size for 

1 

session 

(bit) 

Data 

size for 

the 16th  

session 

(bit) 

startTime  time_t char[64] Uint 256 256 

deltaTime uint16_t char* Uint 16 256 

Sensor ID uint16_t char* Uint 16 256 

Temperature  uint16_t char* Uint 16 256 

Humidity uint16_t char* Uint 16 256 

Data Hash char[64] char* Uint 256 256 

 

collected during a single session is about 0.000163 ETH, while 

the transaction fee to store data from 16 sessions in a transaction 

is about 0.0019 ETH (approximately 0.000119 ETH per 

session). The details of the transaction can be found on the 

Goerli testnet [32]. Once this smart contract is deployed on the 

Ethereum mainnet, the transaction fee can be reduced due to 

integration with the Polygon Layer 2 blockchain. Since the 16 

session data set is grouped into a single transaction, the 

transaction fee for a single data set costs 0.0000025 USD using 

Polygon.  

In order to verify a transaction, the Recursive Length Prefix 

(RLP) encoded transaction needs to be hashed using 

Keccak256, which is a SHA3 hash function. The hashed string 

is then signed with the senders private key using Elliptic Curve 

Digital Signature Algorithm (ECDSA) with the secp256k1 

curve. ECDSA signature has two 32 bytes integers, named r and 

s. Ethereum uses an additional one-bit v variable as a recovery 

identifier. The ECDSA function in [33] is lightweight and is 

meant for embedded applications. However, some 

modifications are needed because the ECDSA function lacks v 

parameter and has logic errors. In addition, the ECDSA in [33] 

produces a different signature each time due to a random k value 

used. This random k value is claimed to be able to prevent 

private key disclosure. However, Ethereum uses a deterministic 

signature based on the RFC 6979 standard, which generates a 

secure k value from the private key and the hashed string. 

Therefore, a modification was made in the 

uECC_sign_with_k() function, where the randomization of k 

was removed and replaced with a securely calculated k value. 

Infura API provides an instant access over HTTPS to the 

Ethereum network. The ESP-TLS is used together with mbed 

TLS in the backend in the https_post_func() function to create 

a secure communication between ESP32S2 and Infura full 

nodes [34]. The SendSignedTransaction() method is called 

from Web3 class in [35] to transmit the transaction to the 

Ethereum network. This function wraps the input data into 

JSON-RPC format using generateJson() function. The exec() 

function takes in the JSON-RPC data and makes a HTTP POST 

request to Infura. After the transaction is broadcasted, the JSON 

response from Infura is then parsed before returning the 

transaction hash to the caller function. 

C. Emergency Real-time Monitoring for Anomaly Detection 

Any abnormality in the monitored building will result in 

sensor reading deviation from normality, and ESP32S2 should 

immediately broadcast this event. The ESP32S2 device was 

programmed to receive an interrupt from sensors if the sensed 

value exceeded a certain threshold. In order to do so, an external 

wake-up (EXT1) was added to wake ESP32S2 up from the deep 

sleep mode and service this event. Once the ESP32S2 is awake, 

it signs and sends all of the stored data. After the data is 

transmitted, the data collection process restarts. 

V. SECURITY PROTECTION USING ESP32S2 

A. Flash Encryption 

As IoT devices are normally placed in a remote environment, 

they are susceptible to a variety of security attacks, including 

key disclosure attacks. Thus, sensitive data such as program 

code, Ethereum account’s private key, and Wi-Fi configuration 

should be encrypted. The ESP32S2 devices feature a Flash 

Encryption, where the flash content can be encrypted using 

AES256-XTS cryptographic algorithm with a key tweaking 

method based on the flash offset [36]. The Flash Encryption key 

can be obtained from eFuse, and the access is only possible 

using a hardware approach. There are two Flash Encryption 

modes available – Development and Release modes. This 
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project uses the Development mode, where the encrypted flash 

can be re-flashed through UART. However, Release mode is 

recommended for real applications as it provides a higher 

security protection by preventing physical readout of encrypted 

flash content, i.e., modification through UART by burning the 

eFuse of EFUSE_DIS_DOWNLOAD_MANUAL 

_ENCRYPT. The Release mode can prevent changes made to 

disable Flash Encryption using the EFUSE_SPI 

_BOOT_CRYPT_CNT eFuse. In the Release mode, the 

firmware can only be updated through Over The Air (OTA) 

scheme. 

B. Secure Boot 

By enabling Secure Boot, the ESP32S2 will only run a 

program signed with a secured key. The key can be generated 

locally using "espsecure.py generate_signing_key" provided by 

the ESP tool or generated with external software like openssl. 

The secure key is generated randomly based on the entropy of 

the system. Therefore, the more random the key generating 

system, the better the key security. After Secure Boot is 

enabled, the contents of the flash cannot be changed by 

unauthorized sources as they cannot sign the binary file and 

force upload the binary code. The level of Secure Boot security 

depends on how the key is generated and the key storage 

security level. Thus, the signing key is stored in a flash and is 

encrypted using the Flash Encryption.  

VI. PERFORMANCE EVALUATION 

A. Smart Contract Analysis 

The security of the Iot.sol smart contract was analyzed using 

Mythx, which is a Software-As-A-Platform that analyzes smart 

contracts using a static analyzer, a symbolic analyzer, and a 

greybox fuzzer in parallel. A total of 900 seconds were taken to 

perform a standard scan mode, and there were no vulnerabilities 

found in the designed smart contract, as shown in Figure 5. This 

smart contract was checked against the 36 Smart Contract 

Weakness Classification (SWC) registry. These SWC registries 

are classified based on a list of known smart contract 

vulnerabilities found in the Common Weakness Enumeration 

(CWE) database. The details of the type of vulnerabilities 

covered by the Mythx can be found in [37]. 

B. Security Analysis of Ethereum Blockchain Network  

Security attacks on the Ethereum blockchain can be 

categorized into network attacks and consensus attacks. 

Network attacks relate to any attacks on peer-to-peer nodes in 

the network using a gossip protocol and include Sybil attacks, 

Eclipse attacks, Distributed Denial of Service (DDoS), and 

Routing attacks. In contrast, consensus attacks relate to any 

attacks on the validation process of a block, and include double-

spend attacks (i.e., Finney attacks, race attacks, selfish mining), 

majority attacks (i.e. 51% attacks), timejacking attacks, and 

quantum attacks. The analysis of these attacks on Ethereum 

blockchain has been well covered in [27] and it was proven that 

Ethereum is a secure blockchain.  

C. Security Analysis of the Proposed Scheme 

Chain hashing has been used to detect malicious data 

modifications as shown in [38]. However, there is no research 

 
Fig 5. Mythx analysis result 

 

on the implementation of chain hashing for data integrity 

protection of low-power IoT devices. Therefore, in this work, a 

new lightweight protocol that uses chain hashing for detecting 

any malicious data modifications during any communication 

session suitable for implementation with low-power IoT 

devices is introduced. Chain hashing uses cryptographic 

primitives for which 2nd preimage collision attacks and length 

extension attacks may be attempted. However, with the use of 

SHA256 protecting the secret key, 2nd preimage collision 

attacks are not feasible for at least the next ten years. It is 

estimated that SHA256 hash function has a 2nd preimage 

resistance strength between 201 to 256 bits [39, 40]. Thus, the 

proposed protocol allows for low-power IoT devices to be 

resistant to online and offline 2nd preimage collision attacks and 

guarantees safety from secret key discovery. 

In general, adversaries might attempt to perform length 

extension attacks on strings that have been encrypted with a 

SHA256 algorithm, to alter data written to the blockchain and 

falsely make the VM to authenticate this data by providing a 

“valid hash”. Such attacks require data to be padded. Our 

proposed protocol, however, completely negates this since it is 

able to prevent length extension attacks by the integration of a 

smart contract, where it requires reading data of fixed lengths, 

as shown in section IV. This prevents adversaries from 

attempting to pad any data string with malicious data. 

D. Power Consumption 

The battery lifespan in [1] is benchmarked, where a lifespan 

of at least 5 years is targeted for this project. A Lithium Polymer 

Battery, with a nominal capacity of 1600 mAh was selected in 

this case (i.e., LP385085, LP385385, LP387062, etc) [41]. The 

current consumption of this device during Wi-Fi Transmit (TX) 

mode is higher compared to ON and Sleep modes. Deep sleep 

was implemented where RTC timer is the only peripheral 

running in the background to save the current consumption. 

This device wakes up regularly to read and store the data offline 

before going back to deep sleep, as described in Figure 6.  

Since the power consumption of ESP32S2 is high when it 

connects to the Wi-Fi, the ESP32S2 will only connect to Wi-Fi 

during initialization and before sending a transaction. To further 

reduce the power consumption, the ESP32 will need only be 

connected to Wi-Fi to send a signed transaction once data has 

been collected 16 times. Furthermore, the boot log and ROM 

log are disabled to reduce startup time every time the device 

wakes up from the deep sleep mode. ROM log needs to be 

disabled by burning eFuse UART_PRINT_CONTROL to 1 and 
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pulling GPIO 46 high. The aforementioned power optimization 

is able to prolong the battery lifespan from 2.9 to 5.2 years. 

Table IV shows how the proposed solution outperforms the 

other related solutions in terms of security protection, data 

integrity verification, power consumption, and transaction fees. 

 
Fig 6. Current consumption of different operating modes 

 

A computation cost and security feature comparison is not 

included in this table as there are no data integrity schemes 

implemented in the other referenced works. 
 

Table IV: Performance comparison to existing solution 

Description 
Proposed 

Solution 

Nodle 

[18] 

Helium 

[21] 
Okada [15] 

Communication Wi-Fi BLE LoRaWAN Wi-Fi 

Blockchain 
Ethereum 

+ Polygon 
Polkadot Helium Ethereum 

Security 

protection 
Yes Yes Yes No 

Data integrity 

verification 
Yes No No No 

Real-time 

anomaly 

monitoring 

Yes No No Yes 

Transaction fee 

for one set of 

data (USD) 

0.0000025 Undefined 
0.00001 for 

24 bytes 
~ 4.81 

Network 

coverage 
High Low Low High 

Current 

consumption  
Low Low Low High 

VII. CONCLUSION 

This paper presented a blockchain-based data verification 

scheme for low-power IoT devices. A prototype sensor node 

based on an ESP32S2 device was implemented, and a firmware 

was written to send the stored data as transactions to the 

Ethereum blockchain. A smart contract was designed to set a 

batch of data as an input in a transaction. The smart contract 

was analyzed using Mythx security tool and was proven to be 

free from vulnerabilities. A decentralized web application was 

designed to display the extracted data from the blockchain. 

Power consumption was minimized by enabling intermittent 

Wi-Fi connections. The private key, secure key, and the 

executable program are protected using security features 

provided by the ESP32S2. The integrity of the stored sensor 

data in the RTC memory is guaranteed using the proposed data 

storage protocol and can be verified using the decentralized web 

application. An emergency system that allows for real-time 

monitoring was designed that sends all stored data to the 

blockchain once anomalous sensor values are detected, 

allowing for a near real-time response by the applications 

reading the blockchain data. This paper proves that data 

integrity can be achieved for low-power IoT devices that utilize 

Wi-Fi connections and shows that they are suitable for 

integration with public blockchains. The proposed data storage 

protection solution can be applied to any IoT devices that 

support hash function, flash encryption, and secure boot 

features. Future research will include developing a new key 

update system for better security protection. 
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