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Abstract. Autonomy at sea relies on algorithms (often local) to make
the decisions. One approach to create these algorithms are through the
use of artificial intelligence. Numerous black-box machine learning-based
algorithms are proposed for autonomous surface vessels (ASV) to make
decisions like changing the speed or changing the route in order to reach
the operational goal in an optimal way with respect to cost (fuel, time
etc.) and safety (avoid collisions or dangerous situations). Hence, the
algorithms must take into account many constraints and are influenced
by several varying factors such as other vessels, weather etc. The ob-
jective of this paper is to propose a model that provides the reason
behind the ASV’s decision when it is on a predefined path and change
speed or route. Fuzzy logic used to record the expert knowledge based
on COLREGs to steer vessel and take the decision during the collision
course. Data has been captured based on expert knowledge and used to
train an explainable model. The explainable model predicts the reason
behind the decision. The focus of the paper is on local explainability
instead on global decisions. The structured abstracts of the paper is: (1)
Background: Several AI-enabled algorithms has been proposed for im-
plementing autonomy to avoid the collision. These black-box techniques
provide good predictions at the same time, they fail to explain the rea-
son behind the decision, which make the model less trustworthy; (2)
Methods: Expert knowledge (COLREGs) has been captured using fuzzy
rules, and applied when ASV progresses, decision has been recorded. (3)
Results: The explainable model provides the reason behind the action
taken by the collision avoidance system; (4) Conclusion: A model has
been proposed that explains the collision avoidance system to make it
transparent and trustworthy.

Keywords: autonomous surface vessels; explainable artificial intelligence;
collision risk; fuzzy logic; ANFIS; COLREGs

1 Introduction

Predictions state that fully autonomous surface vehicles will be available in 2025
[1]. In the meantime, the ”EMSA annual overview of yearly causalities and inci-
dents 2021” shows that there were 2837 occurrences, 46 very serious, 38 deaths,
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675 injuries, 3049 ships involved and 9 ships lost [2]. Out of which 53% were due
to human action and 35% causalities were due to system or equipment failure.
From these facts it could be argued that may be automatic systems could reduce
errors from human (in-)actions. Likewise it could be argued that equipment must
be made more robust since the two causes, humans and equipment are the main
causes for the accidents. Artificial intelligence may be useful in reducing acci-
dents from both of these causes. However, care should be taken in order to not
introduce new systems that produce more accidents due to unreliable algorithms,
increased system complexity etc.. This make researchers think that intelligent
system must be explained and verified before they are deployed. The above men-
tioned statistics was from a period when world trade was heavily influenced by
the COVID-19 pandemic, resulting in less traffic at sea. The situation was ac-
tually more serious in previous years [2]. ”International Maritime Organization”
(IMO) proposed 41 ”International Regulations for Preventing Collisions at Sea”
(COLREGs) in 1972. These traffic rules at sea includes qualitative measures for
safe maneuvers and currently applicable for all type of vessels but the time when
rules were written, ASV was just science-fiction [3].

The Norwegian Forum for Autonomous Ships (NFAS) defined the autonomous
vessels, their context, and functions. They are classified as underwater or sur-
face based on operational area, remote control or autonomous based on control
mode, vessels and ship based on height and different autonomy levels based on
degree of human involvement [4]. A ferry operates in a limited area and vessel
operates in more diverse environment [5] .

The COLREGs rules must be adhered to while developing the path planning
and collision avoidance intelligent systems for ASVs. ASVs are currently pri-
marily deployed for use in military operations, maritime surveillance missions,
and marine environmental monitoring applications [6]. Norway already started
utilizing ASVs for the movement of goods and people [7, 8]. Still ASVs are facing
challenges related to safety in navigation and reliability issues which need to be
addressed before implementation of the intelligent collision avoidance system [1].
For example when some obstacle can not be detected by AIS, differentiate be-
tween buoy and kayak [31] etc. the algorithm may fail in performing appropriate
action. Machine learning (ML) has shown impressive success in the real world
in many different application areas. A number of research projects have been
carried out in order to reduce collision caused by human error, one of which
is risk analysis in collision scenario. There are also several fuzzy based colli-
sion risk assessment systems proposed by researchers who considered Time to
Closest Point of Approach (TCPA) and Distance to Closest Point of Approach
(DCPA) as risk indicators. Effective explainable AI (XAI) should provide ac-
curate explanations, handle uncertainty, and learn from experience. This paper
studies a hybrid learning technique that blends fuzzy logic’s capacity to explain
uncertainty with ability of artificial neural networks to learn. The outputs of
decision-making model used as inputs for a neural network which provides rea-
soning behind decision. The suggested model describes fuzzy-based system for
collision avoidance.
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2 Literature Review

Several models has been proposed for collision avoidance in different research
articles. Most of autonomous navigation decision support systems are categorise
as 1. Mathematical models and computations 2. Soft computing and 3. Hybrid
navigation systems [9].

Vagale et al. reviewed in their paper [1] the state of the research in the
field of path planning and collision avoidance of ASVs with emphasis on the
importance of autonomy and safety. Safety can be validated by humans if a ma-
chine learning-based collision avoidance system capable of explaining the reason
behind the decision. The authors also reviewed 45 path planning and collision
avoidance algorithms [10] for autonomous surface vehicles using these criteria:
compliance with COLREGs, environmental disturbances, planning type, obsta-
cle type, environment type, type of action to avoid collision, testing, traffic cat-
egory, predictability of environment, planning time, control horizon, number of
obstacles, vessel kinematics, type of vessel, safe zone. The authors also mentioned
TCPA and DCPA as collision risk assessment (CRA) criteria and discussed the
interpretation of the algorithm as limitation of several algorithms. Further they
proposed an approach [11] for the use of maritime navigation training simula-
tors to understand the algorithms. In addition the authors suggested that there
are benefits from broadcasting the reasoning behind the action taken by an au-
tonomous vessel to other seafarers.

Ohn and Namgung extended type-1 fuzzy inference system [12] for near col-
lision into a fuzzy inference system based on interval type-2 fuzzy logic. They
considered TCPA and DCPA for calculation of collision risk indicator (CRI)
which helps navigator to make decision well in advance.

Perera et al. divided the collision region into low risk, medium risk and high
risk with respect to orientation of own vessel and target vessel to assess the
collision risk in their work [13]. They considered a case when target vessel which
is also ”Give way” vessel do not take any action to avoid collision so ”Stand on”
vessel need to take action. Decisions in said critical conditions are formulated
using fuzzy logic because, COLREGs do not suggest action in this case.

Yancai and Park proposed extra vulnerability factors [14] for collision risk
solving system such as wind, tidal, accident prone area, traffic congestion, opera-
tor fatigue, fishing boats operating area apart from TCPA and DCPA especially
for non-SOLAS ships such as coastal operating ships and fishing vessels. Fuzzy
system was used to implement the system.

Ahn et al. applied fuzzy inference system, neural network and multilayered
perceptron (MLP) to collision avoidance system[15]. The neuro-fuzzy system
was found more realistic and diverse parameters considered to train the neural
network.

Brandsæter and Glad used data-driven trained model to demonstrate [16]
how training data affect the decision of machine learning model. Shapley values
explain the feature importance in a decision.
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Namgung defined the actions [17] for collision avoidance based on CRI lev-
els.To take action ship domain overlapping, DCPA, TCPA and CRI considered.
Author also proposed fuzzy inference rule based on ANFIS learning.

Fıskın et al. studied 180 research articles [18] in which techniques, models
and methods for ship collision avoidance path planning problem were proposed.
Fuzzy logic is the most frequently solution method for the pertaining area.

Several fuzzy rule based collision risk model proposed for autonomous vehi-
cles and this work is extension of the previous research in the sense that it explain
the prediction of the model. This research suggests utilizing fuzzy logic to avoid
collisions before explaining decisions. Using a similar method, ASV scenario and
decision simulations are executed.

3 Explainable Artificial Intelligence

Explainable AI is a set of tools and methods to understand AI and ML models,
their predictions and decisions to make them trustworthy and helps to find a
space for improvement, optimize and fine tune before deployment.

As shown in figure 1 [19] there are variety of explainable methods that focus
on model design, internal representation, decision made by model etc.

Fig. 1. An overview of explainable artificial intelligence .

Simple models are self explanatory by design and first category belongs to this
group. Lot of problems can be better solved by models which are more complex
and not interpretable by design such as computer vision and natural language
processing. Model agnostic XAI methods works on all models. Examples are
Shapley additive explanation, which gives additive information how each feature
push the prediction. Next category is model specific method, in which gradient
saliency method related to neural network. Another group explain based upon
dataset. Adversarial attack the model fails or other examples are there when
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data make a model fail. Few model looks into model’s internals such as activation
probes used in NLP, and how neuron detect edges, textures, patterns etc [19].

Explainability can be useful for collision avoidance situation in an ASVs.
When an ASV is on its perception-action mapping as shown in figure 2, ex-
plainability ensure the action taken by ASV is safe as it is avoiding collision,

Fig. 2. A graphical illustration of an ASV on its perception-action mapping that is

safe, explainable, and regulatory compliant during overtaking situation.

according to regulations as it is following COLREGs and explaining the reason
behind the decision taken by ASV.

4 Materials and Methods

4.1 Fuzzy Inference System

Experts rely on experience and expertise. It expresses knowledge via vague, im-
precise, non-numerical terminology. Lotfi Zadeh proposed fuzzy logic or fuzzy
set theory [20] in 1965 to describe expert knowledge. A fuzzy set assigns a mem-
bership degree, [0,1], to universe elements. Fuzzy logic grades propositions. The
standard set of truth-values (degrees) is [0,1], where 0 means ”completely false,”
1 means ”entirely truthful,” and the other values relate to partial truth, or in-
termediate degrees of truth. Fuzzy logic converts human-stated heuristic control
rules into an automatic strategy. A fuzzy subset of discourse U is characterized
by a membership function µ : U → (0, 1)) that assigns each element u of U a
number µ(u) in the interval (0, 1) representing u’s membership in A. The fuzzy
set A of universe X = x1, x2, x3, ...xn is denoted by a function [21]:

µA (x) : X → [0, 1] (1)

Where
µA (x) = 1 if x fully belongs to A;
µA (x) = 0 if x does not belongs to A;
µA (x) = greater than 0 and less than 1 if x partly belongs to A.
By using theory of fuzzy sets, fuzzy inference systems (FIS) has been defined.

In this paper Mamdani and Sugeno FISs has been used.
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4.1.1 Mamdani Fuzzy Inference System Mamdani FIS [21] process con-
sist of four steps: 1. Fuzzification of input 2. Rule evaluation 3. Aggregation and
4. Defuzzfication.In this paper Mamdani FIS has been used to record the expert
knowledge which has been used to drive the ferry and record the decisions in the
form of outputs of the FIS (Course deviation and speed change).

4.1.2 Sugeno Fuzzy Inference System A mathematical model to build a
fuzzy inference system was proposed by Sugeno in 1985 [22].This model uses
function of input variable to map with output.The Sugeno method is computa-
tionally efficient and integrates well with optimization and adaptive techniques,
making it particularly useful in dynamic nonlinear systems. As a result, the sys-
tem is an excellent choice for developing a hybrid system that can both explain
autonomous decisions and learn from them.

4.2 ANFIS : Adaptive-Network-Based Fuzzy Inference System

ANFIS is a hybrid inference system to map input with output based on input-
output data pairs and human knowledge having learning capability [23]. ANFIS
is normally represented by a six-layer feedforward neural network as shown in
figure 3 [24]. Layer 1 (Input layer) neurons simply pass external crisp inputs

Fig. 3. Structure of Adaptive-Network-Based Fuzzy Inference System .

to layer 2. Layer 2 (Fuzzification layer) uses membership functions in order to
obtain fuzzy clusters from input values xi and linguistic labels (fuzzy-set) Ai and
Bi. Layer 3 (Rule layer) generate the firing strength wi by using membership
values computed in fuzzification layer. Layer 4 (Normalization layer) calculates
the normalized firing strength wi as ratio of the firing strength of the ith rule
to the total of all firing strengths. Layer 5 (defuzzification layer) calculates the
weighted consequent value of a given rule. Layer 6 (Summation layer) sum the
output obtained from defuzzification to get the actual output.

4.3 Methodology

The overall steps followed for the simulation of proposed model are as mentioned
in table 1.
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Table 1. Steps for ASV decision explanation model

Data Generation and Explanation Paradigm

1
Define collision avoidance FIS (CA FIS): Define and integrate fuzzy sets, membership functions and rules for
inputs (TCPA and DCPA) and outputs (Speed change and route change).

2
Simulation setup: Define path and collision scenario for ASVs. (For this paper 2 ASVs and overtaking scenario
has bee discussed).

3 Situational awareness: Calculate DCPA and TCPA.

4
Activate FIS: Take decision to avoid collision when distance to CPA fall below a threshold to generate training
data for explainable model.

5
Train and tune the explainable model: A sugeno type reverse FIS has been trained and tuned to explain the decis-
ions of CA FIS.

6 Test the model: Repeat steps 2-4 to generate the test data and test the model.

Fig. 4. Proposed Model.
Fuzzy based decision model as shown in figure 4 has been used to make the

decisions about course deviation and speed change.The decisions of the model
are explained using a reverse Sugeno FIS.

Fig. 5. Data Generation Model.

The proposed explanation approach has two major steps: (1) ASV makes
decisions based on expert knowledge. (2) An Explainable model answer ”Why a
decision was taken?”
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Two input parameters and two decisions are selected for decision making
model as shown in figure 4. The inputs are:

1. Distance to Closest Point of Approach (DCPA): When the present heading
angle and speed are maintained, the closest point specifies the position where
the own ship and the target ship will be nearest. [25]. If target vessel is
approaching from starboard or stern side the CPA is positive while negative
CPA means from port or bow side [26].

Fig. 6. Position of CPA for different course of approach.

The distance between the own ship and the target ship at CPA is DCPA
[27]. DCPA has been calucalted as follows [28]:

DCPA = RT sin(φR − αT − π) (2)

where
RT =

√
(xT − xO)2 + (yT − yO)2 (3)

and xO, xT ,yO and yT are coordinates of own ship and target ship.φR and
αT are heading of relative speed and true bearing of other ship.

2. Time to Closest Point of Approach (TCPA): The time it takes for a ship to
reach CPA from its current position is called time to CPA (TCPA) [27].For
simulation purpose TCPA has been calculated as below [28]:

TCPA = RT cos(φR − αT − π)/υR (4)

where υR is relative speed.
In simulation, FIS has been activated when distance between own ship and
target ship reach upon a threshold value which is named as action point in
[3, 29, 30].

and decisions are:

1. Course-Deviation: COLREG rule 8 states that:
”Any change in course and/or speed to avoid a collision must be big enough
to be seen by another vessel either visually or with radar. Small changes
should be avoided. [3].”
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Based on interpretation of the rule the course alternation should be notice-
able. In the decision model 3 fuzzy sets are defined to justify the rule.

2. Speed-Reduction: When course deviation is not sufficient to avoid colli-
sion,vessel must decrease its speed. This is in case when there is no enough
sea-room or need more time to analyze the situation. 3 fuzzy sets are defined
for speed reduction.

4.3.1 Problem formulation and define linguistic variable The first step
is to specify the problem and create a Mamdani model. The problem statement
is to avoid the collision by considering the closest point of approach, action point,
relative bearing, speed of own vessel. The outputs are route change and speed
change. Followings are the linguistic variables:

1. Input 1 (DCPA): Very Close, Close, Far and Very far;

2. Input 2 (TCPA): Very less, Less, Long and Very Long;

3. Output 1 (Route Change): Short, Middle and Large

4. Output 2 (Speed Change): Small, Medium and Full

The overall structure of the Mamdani FIS is shown in right most part of
figure 5.

4.3.2 Identify fuzzy sets Fuzzy set is a combination of (U,m) where U is a
set and m is membership function. Triangular function have 3 parameters [a,b,c]
where a represent left vertex, b represents center and c is right vertex. Trape-
zoidal shape have four parameters [d,e,f,g] and each represent a vertex respec-
tively. Gaussian combination membership function (gauss2mf) computes fuzzy
membership values using a combination of two Gaussian membership functions.

Figure 7 shows the fuzzy sets and membership functions for input and output
variables.

Fig. 7. Inputs: (a) DCPA (b) TCPA Outputs:(c) Speed change (d) Course change

membership functions.
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4.3.3 Build fuzzy rules Four membership functions in input 1 and input 2
each, give total 16 fuzzy rules. All membership functions for inputs and outputs
are shown in table 2.

Table 2. Fuzzy Rules

Input Output

IF
DCPA

AND
TCPA

THEN
Course Deviation Speed Change

Very close
Close
Far

Very far

Very less Time
Less time
Long time

Very long time

Short
Middle
Large

Small
Medium
Full

4.3.4 Combine Fuzzy inference and build expert system Fuzzy infer-
ence combines fuzzy rules with fuzzy operator ”AND” to include fuzzy sets,
fuzzy rules, and membership functions. ”AND” returns the minimum of the
two membership functions. For example rule firing strength will be µAction =
min [µspeedchange, µcoursechange] = min [0.6, 0.5] = 0.4 if speed change is medium
and course change is short with strength of 0.6 and 0.4 respectively.

4.3.5 Analyse and fine tune The input-output relationship can be exam-
ined from the system’s surface view, as shown in figure 8.

Fig. 8. Surface views of tuned systems (a) Reduce Velocity (b) Path Change.

In order to simulate ASV collision scenario, utilizing the rules obtained from
this Mamdani FIS, a MATLAB program was written.
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4.4 ASV scenario

A simulation environment for overtaking collisions as shown in figure 2 has been
developed to assess the accuracy and robustness of the proposed model’s ex-
planation. In a circumstance of overtaking, two ASVs navigate using x and y
coordinates. Under some conditions, the ASV would be required to alter its speed
or course.

5 Rule base explanation by ANFIS

Sugeno FIS generates a single-output. Figure 9 shows the structure of ANFIS
model with 9 rules.

Fig. 9. ANFIS model structure.

6 Development tools and performance criteria

The suggested architecture requires a development tool. Fuzzy Logic Toolbox
(FLT) [33] was developed using MathWorks’ MATLAB. This graphical applica-
tion creates and evaluates fuzzy systems. FIS, rule, membership function, fuzzy
inference, and output surface editors are included. The FIS editor shows infor-
mation about FIS. The membership function editor displays and edits input
and output variable membership functions. The user can automatically generate
rule statements by clicking and selecting one item in each input variable box,
one item in each output box, and one connection item in the rule editor. The
rule viewer shows the entire fuzzy inference process. Use the ANFIS editor GUI
menu bar to load a FIS training initiation, save the trained FIS, and open a
Sugeno system to analyze the model [34].

The root mean square error (RMSE) has been used to test the performance
criterion [35]:

RMSE =

√√√√ 1

N

N∑
i=1

(Actuali − Predictedi)2 (5)
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Accuracy is another performance metric. For accuracy, an RMSE threshold
value and simple percentage calculation are used [35]:

AccuracyPercentage =
Threshold − RMSE

Threshold
× 100% (6)

7 Results and discussion

The results in this section are shown by comparing the RMSE values of the ac-
tual and predicted values from ANFIS models developed for explaination of the
collision avoidance. Data has been split for training and testing. The findings
suggest that ANFIS can be utilized in a variety of settings to help autonomous
systems evolve useful explanation features. The subclustering parameters used
to generate a Sugeno model are modified in the findings. The models’ perfor-
mance is then evaluated to see how much the RMSE changes as the subclustering
parameters change. The ANFIS model has the restriction for single output. So
we have generated two separate XAI models for DCPA and TCPA as shown in
figure 10. In both cases only the portion of data considered for training and test-
ing when fuzzy based CAS activated in simulation. The data has been divided
for training and testing.

Fig. 10. Surface views of XAI Models (a) DCPA (b) TCPA.

7.1 ANFIS Model 1: DCPA as output

This model has five inputs and single output (DCPA). Each Suegeno FIS output
number specifies the DCPA value that led ASV to change course or speed at that
time, place, and heading direction. The structure of DCPA ANFIS XAI model is
shown in figure 10 (a). Actual and predicted DCPA values showing good results
as shown in figure 11.
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(a) (b)

Fig. 11. Actual vs Predicted DCPA (a) Training (b) Testing.

Mostly testing errors for DCPA XAI model are in the range of between -0.002
to 0.002 as shown in figure 12.

(a) (b)

Fig. 12. Error Histogram during testing (a) DCPA (b) TCPA.

Left side of figure 13 shows training and testing RMSE for DCPA XAI model.
If the acceptable threshold RMSE criterion for this study is 0.04, then equation
6 shows ≈ 97% accuracy.

Fig. 13. Root mean square error.
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For DCPA, an example to explain what caused the ASV to change route or
change speed is given. Figure 14 shows a rule view window for Sugeno model
that has DCPA as output.

Fig. 14. Rule Viewer of XAI for DCPA.

7.2 ANFIS Model 2: TCPA as output

As DCPA XAI model, this model also has five inputs and single output (TCPA).
Each value specifies the TCPA value responisble for change course or speed at
respective situation. The structure of TCPA ANFIS XAI model is shown in
figure 10 (b). Actual and predicted TCPA values showing good results as shown
in figure 15. Mostly testing errors for DCPA XAI model are in the range of
between -0.001 to 0.001 as shown in figure 12.

Fig. 15. Actual vs Predicted TCPA (a) Training (b) Testing.

For TCPA, an example to explain what caused the ASV to change route or
change speed is given. Figure 16 shows a rule view window for Sugeno model
that has TCPA as output. Right side of figure 13 shows training and testing
RMSE for TCPA XAI model. If the acceptable threshold RMSE criterion for
this study is 0.04, then equation 6 shows ≈ 98% accuracy.
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Fig. 16. Rule Viewer of XAI for TCPA.

8 Conclusion and future scope

The purpose of this study is to look into a method for developing an explana-
tion for ASV’s fuzzy based decisions. An overtaking collision scenario has been
considered in order to explain the decisions taken by ASVs. Then, based on
the ASV’s actions when met with a collision scenario, data has been recorded
and a clear and accurate explanation is given by a reverse explanation model.
Mamdani FIS is used to create a simulation environment that incorporates fuzzy
rules. The overtaking collision scenario is setup in MATLAB. The ASV steers
and follows the fuzzy rules during a collision scenario. During the overtaking
scenario testing RMSE was found 0.00104 and 0.00044 for DCPA and TCPA
respectively.

Explainability of autonomous system decisions is a matter of growing im-
portance these days. Autonomous vehicles are getting increasingly common in
today’s era. The job of establishing trust between humans and technology is
critical. More collision scenarios, more fuzzy rules in collision avoidance system
can be included as future study to test explanation of any fuzzy based collision
avoidance system. As a result, the method proposed in this research makes the
ASV’s decisions more transparent, intelligible, and reliable. The simulated en-
vironment can be used to generate simulated data for research purpose. It can
be tested using real time data and rule can be fine tuned to for smooth course
deviation. The model can be applied to explain the smoothness of trajectory
generated by a path planning algorithm.
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