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Abstract

The computation of stable homotopy groups of topological spaces, spheres
in particular, has been and continues to be one of the driving forces of
algebraic topology. Two tools used for this are Toda brackets[19] and
Adams spectral sequences[1].

As demonstrated by Miller[11] the Adams spectral sequence can be
constructed in any triangulated category T equipped with projective and
injective classes. Christensen and Frankland[6] prove that the differential
dr in an Adams spectral sequence can be expressed as an (r+1)-fold Toda
bracket.

In this thesis we aim to compile and present some of these results with
additional details. The thesis has four parts. In the first part we discuss
the construction and properties of projective and injective classes. We
then move on to Toda brackets, before returning to the projective and
injective classes and Adams spectral sequences with respect to them. In
the last part, all the preceding parts come together, and we show how
Toda brackets and the general Adams spectral sequences relate.
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Chapter 1

Introduction

Stable homotopy groups and in general stable classes of maps between
topological spaces have been in the center of attention for many algebraic
topologists for decades. This thesis is devoted to a relation between two of
the most renowned methods of computations, namely the Adams spectral
sequence and Toda brackets.

Letting H be mod p singular cohomology and A the mod p Steenrod
algebra, we can apply the Hurewicz homomorphism to stable classes of
maps between spaces X and Y :

[X , Y ] −→ Hom(H∗(Y ), H∗(X )).

This yields a spectral sequence which abuts to [X , Y ]/non-p torsion, and
has

Es,t
2 = Exts,t

A (H
∗(Y ), H∗(X )),

known now as the classical Adams spectral sequence, cf.[1]. Since then,
it has been altered and appeared in many variations, for instance for a
general cohomology theory E, instead of singular cohomology.

In his PhD thesis, Miller generalized the Adams spectral sequence
even further. Injective and projective classes are central here. A projective
class is a pair (P,E), where the first is a collection of objects, the second
a collection of morphisms, that model objects that “look projective” from
the viewpoint of the morphisms in E . Using these, he constructed what
is known as Adams resolutions of an object in a general triangulated cat-
egory T . Under the functors T (−,−) they become exact couples, through

1



which we obtain the spectral sequence. This is known as an Adams spec-
tral sequence.

Toda brackets, defined by Toda as “stable secondary composition,”
were first used to calculate stable homotopy groups of spheres, by ex-
ploiting the triangulated structure of the homotopy category of topolo-
gical spaces. As with Adams spectral sequence, this has found its gener-
alization. For a diagram

X0
f1−→ X1

f2−→ X2
f3−→ X3

in a triangulated category T the Toda bracket 〈 f3, f2, f1〉 is a subset of
T (ΣX0, X3). It is computed by comparing the sequence to one of the
cofiber sequences of f1, f2 or f3, and including all maps that make the
comparison possible. Although there are three different ways of doing
this comparison, they coincide, which we will prove in Chapter 3. Toda
brackets have been generalized further as well, to n-fold Toda brackets,
which are applied to sequences of length n instead of length 3.

The aim of this thesis is to show the following theorem, first shown
by Christensen and Frankland [6], which we do in Theorem 5.2.2. It is
stated slightly differently here, for simplicity.

Theorem. Consider the Adams spectral sequence with respect to a projective
class associated to T (X , Y ). Let [x] be a cycle in Es,t

1 , and let d2[x] denote
the set of all representatives of d2([x]). Then

d2[x] = 〈x , d1,Σ−1d1〉αf c
for a fixed α.

The superscript means that a morphism in the construction of the
Toda bracket is fixed.

Christensen and Frankland also showed that this result can be gen-
eralized to the higher differentials and the higher Toda brackets, with
an n-fold Toda bracket representing the n− 1 differential in the spectral
sequence.

The thesis has four chapters, excluding this one, the first three of
which explore the different components necessary to state and prove
Theorem 5.2.2. We start in Chapter 2 by defining projective and injective
classes, and look at how they show up in practice. We also recall some ter-
minology necessary for discussing convergence of the spectral sequences.
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In Chapter 3 we look at Toda brackets in a general triangulated category
and compute some examples. Then we move on to the general Adams
spectral sequences in Chapter 4. We also look at how our definition will
be related to the classical Adams spectral sequence, and discuss some
aspects of convergence.

Finally, in Chapter 5 we are all set to prove our main result.
This thesis does not relate to the UN sustainable development goals.

1.1 Preliminaries

We will construct the Adams spectral sequence in a general triangulated
category. In particular, we will apply the construction and results to the
stable homotopy category, denoted throughout this thesis by SHC. Our
main reference will be [2], especially chapters 1, 2 and 5.

The stable homotopy category is defined as the homotopy category
of a stable model category [2, Chapter 3.2] of spectra. There are many
different such model categories, each of which have both advantages and
disadvantages. A spectrum is defined differently in each of them. How-
ever, by Schwede’s rigidity theorem [15] all the different stable model
categories of spectra that model SHC are Quillen equivalent [2, Defini-
tion A.4.7].

Theorem 1.1.1 (Schwede). Let C be a stable model category. If the homo-
topy category of C and the homotopy category of spectra are equivalent as
triangulated categories, then there exists a Quillen equivalence between C
and the model category of spectra.

Essentially, SHC captures all the homotopy structure of spectra. There-
fore, when we say spectra, we will mean an object in SHC, and leave the
model structures be.

To simplify things even further, we will mostly consider the compact
objects in SHC. An object X in a triangulated category T is compact if the
functor T (A,−)∗ commutes with arbitrary coproducts. By [2, Theorem
5.6.13] the compact objects in SHC are exactly the objects that are iso-
morphic (in SHC) to a CW-spectrum with finitely many stable cells, which
are known as finite CW-spectra. Furthermore, by [14, Chapter 2.7] the
full subcategory of compact objects in SHC is equivalent to the Spanier–
Whitehead category SW [9, Chapter 1.2]. The objects in SW are denoted
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by (X , n), where X is a finite CW-complex, and n ∈ Z. Hence, for a finite
CW-spectrum in SHC we will often be thinking about it as a finite CW-
complex.

We recall some notation and definitions on spectra. Classes of maps
between two spectra X and Y are denoted by [X , Y ]. Every spectrum
E defines a cohomology theory (dually a homology theory) through the
graded groups [−, E]−∗. An Eilenberg–Mac Lane spectrum HG, where
G is a group, is a spectrum which has all zero homotopy groups ex-
cept for π0(HG) = G. Levelwise it consists of the spaces Eilenberg–
Mac Lane spaces K(G, n). The Eilenberg–Mac Lane spectra are also the
spectra which represent singular cohomology with G coefficients.

Let S denote the sphere spectrum, and let Sn denote the nth suspen-
sion of S. The homotopy groups of a spectrum X is a homology theory
through [Sn, X ]∼= πn(X ).

A spectrum X is connective if it only has finitely many non-zero neg-
ative homotopy groups. It is of finite type if H∗(X ) is finitely generated
in all degrees.
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Chapter 2

Projective and injective
classes

Projective and injective modules are well known from abstract algebra.
In homological algebra projective and injective modules and resolutions
are the foundation of many constructions. In this chapter we will provide
a more general description of a projective (injective) object, and will
define what is called projective (injective) classes. These definitions will
yield objects that “look projective” from the viewpoint of certain specified
morphisms. The projective class is an important construction for the gen-
eral Adams spectral sequence, which we will define in Chapter 4.

We first define a projective class in a category with weak kernels, and
then we look at how this definition can be altered when the category is
triangulated. In the end we dualize and define an injective class. All the
definitions and results are due to [5].

In this chapter we will be assuming that all categories are pointed. A
category is pointed if it has a zero object, that is, an object that is both
initial and terminal. Note that all triangulated categories are pointed.
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2.1 Projective classes in a category with weak ker-
nels

Let T be a category. A weak kernel for morphism f : X −→ Y in T is
another morphism W −→ X such that the sequence

T (V, W ) −→ T (V, X ) −→ T (V, Y )

is an exact sequence of pointed sets for all objects V ∈ T . Recall that a
set is pointed if it has a basepoint, and that functions between pointed
sets preserve the basepoint.

In other words, a morphsim V −→ X is zero if and only if it factors
through W . The object W behaves like a kernel for f , but it is not neces-
sarily unique, hence the name “weak kernel.”

Definition 2.1.1. Let P be a collection of objects in T . A morphism X −→
Y such that T (P, X ) −→ T (P, Y ) is surjective for all P ∈ P is called P-epic.
The collection of all such morphisms is called P-epi.

Let E be a collection of morphisms in T . An object P such that
T (P, X ) −→ T (P, Y ) is surjective for all morphisms X −→ Y in E is called
E-projective. The collection of all such objects is called E-proj.

There is also a notion of P-monic morphism, which induce injective
functions under T (P,−) for all P in P.

Using these two definitons we define a projective class in the context
of category with weak kernels.

Definition 2.1.2. Let (P,E) be a pair in a category T with weak kernels,
where P is a collection of objects and E is a collection of morphisms. If
the pair satisfies P-epi= E and E-proj= P, and if for each X ∈ T we have
some morphism P −→ X in E with P ∈ P, we say that it is a projective
class.

Projective classes mimic the behavior of projective modules. The P-
projective objects and theP-epic morphisms determine each other through
the following lifting property

P

X Y.
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The double-tipped arrow indicates that the morphism is P-epic.

Example 2.1.3. Let R be a ring. By the diagram above, we see that the
projective R-modules along with surjective R-module homomorphisms
are a projective class in Mod R.

2.2 Projective classes in a triangulated category

In the following, T is always assumed to be a triangulated category. The
distinguished triangles induce exact sequences under T (V,−) for all V ∈
T . Since every morphism X −→ Y lies in a distinguished triangle W −→
X −→ Y −→ ΣW , we have that

T (V, W ) −→ T (V, X ) −→ T (V, Y ) −→ T (V,ΣW )

is an exact sequence of abelian groups for all V . So, in a triangulated
category every morphism both has a weak kernel and is a weak kernel.

In fact, we could make the following definition and proposition in a
category where we assume all morphisms are weak kernels, in addition
to having weak kernels. However, as we will be working mostly with
triangulated categories and SHC, we are really only interested in the
projective classes in the context of a triangulated category.

Definition 2.2.1. Let P be any collection of objects in T . A morphism
X −→ Y such that T (P, X ) −→ T (P, Y ) is zero for all objects P ∈ P is
called P-null, and the collection of all such morphisms is called P-nulls.

Let N be a collection of morphisms in T . An object P such that the
induced morphism T (P, X ) −→ T (P, Y ) is zero for all X −→ Y in N is
called N -projective. The collection of all such objects is called N -proj.

The following proposition tells us that in a triangulated category we
can choose whether we determine a projective class through its P-epic
morphisms or its P-null morphisms.

Proposition 2.2.2 ([5, Proposition 2.6]). Let P be a collection of objects,
and N a collection of morphisms in T , such that P-nulls = N and N -proj
= P. In addition, assume that for each X ∈ T there is a morphism P −→ X
with P ∈ P, that is a weak kernel of a morphism in N . Then (P,P-epi) is
a projective class. Furthermore, every projective class is of this form for a
unique pair (P,N ) as above.
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Proof. Let (P,N ) be a pair as above. Let X
f−→ Y

g−→ Z be a diagram
that is exact under T (V,−). Then especially for P ∈ P we have the exact
sequence

T (P, X ) T (P, Y ) T (P, Z).
f∗ g∗

Here we have that f∗ is surjective if and only if g∗ is zero. So f is P-epic
if and only if g is P-null.

Now, assume that X −→ Y is a P-epic morphism. Since every morph-
ism is a weak kernel, there is a morphism Y −→ Z such that X −→ Y −→
Z is exact under T (V,−) for all V ∈ T . Then the morphism Y −→ Z is
P-null.

Conversely, if Y −→ Z is P-null, we can use the fact that every morph-
ism has a weak kernel to obtain a morphism X −→ Y such that X −→
Y −→ Z is exact under T (V,−). Then the morphism X −→ Y is neces-
sarily P-epic. From this we see that P-epi and P-nulls determine each
other.

That every X has a P −→ X that is a weak kernel of a morphism
in N means that there is a morphism X −→ Y such that T (V, P) −→
T (V, X ) −→ T (V, Y ) is exact and T (P ′, X ) −→ T (P ′, Y ) is zero for all
P ′ ∈ P. Hence, this condition is equivalent to demanding that for each X
there is a P −→ X that is P-epic, in a category where every morphism is
a weak kernel.

We conclude that every pair (P,N ) as described in the proposition
corresponds bijectively to a pair (P,E) as in Definition 2.1.2.

Remark 2.2.3. In [5] a projective class is actually defined simply in a
pointed category, using sequences that are exact under T (P,−). Then it
is shown that we can rephrase this definition whenever the category has
more structure (e.g. it has weak kernels, or is triangulated). However, we
are really only interested in the more structured categories, so we have
taken Definition 2.1.2 as our definition of a projective class, even though
it reads as Proposition 2.4 in [5].

As we already have mentioned, we will be working mostly with trian-
gulated categories. However, both of the descriptions we have provided
for a projective class can be useful. In later chapters we will use whichever
of the two that is most fitting.
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In the setting of a triangulated category, we can rephrase the defini-
tion even more.

Lemma 2.2.4. In Proposition 2.2.2 we can replace the condition

“every X has a P −→ X with P ∈ P that is a weak kernel of a morphism in
N ”

with

“every X lies in a distinguished triangle P −→ X −→ Y −→ ΣP where
P ∈ P and X −→ Y is in N .”

Proof. The direction (⇐) is straightforward: If we have a distinguished
triangle as described, then T (V, P) −→ T (V, X ) −→ T (V, Y ) is exact for
all V ∈ T . So by definition P −→ X is the weak kernel of a morphism in
N .
(⇒): Assume that P −→ X is the weak kernel of a morphism in N ,

say X −→ Y ′. This means, as we have seen, that T (P ′, P) −→ T (P ′, X ) is
an epimorphism for all P ′ ∈ P.

Let X −→ Y be a cofiber of P −→ X , such that P −→ X −→ Y is a
distinguished triangle. Then T (P ′, P) −→ T (P ′, X ) −→ T (P ′, Y ) is exact
for all P ′ ∈ P, which means that T (P ′, X ) −→ T (P ′, Y ) is zero for all
P ′ ∈ P.

Example 2.2.5. A simple example of a projective class is P = {0}, which
makes N contain all morphisms in T : For all X −→ Y the induced morph-
ism T (0, X ) −→ T (0, Y ) is zero, and if P is an object such that T (P, X ) −→
T (P, Y ) is zero for all morphisms X −→ Y , then P is necessarily the zero
object. Finally, we know that the triangle X −→ X −→ 0 −→ ΣX is dis-
tinguished for all X , which shows that (P,N ) is a projective class.

2.3 The ghost projective class

An interesting question is what a projective class looks like outside of
module categories. Our focus in this thesis will be on the stable homotopy
category, and one example of a projective class here is the projective class
generated by the sphere spectrum, known as ghost projective class. It is
called “ghost” because the null-maps will be the nullhomotopic maps.

9



We need to show that this actually is a projective class. We begin by
discussing generated projective classes.

Lemma 2.3.1. The objects in a projective class are closed under retracts
and coproducts.

Proof. Let (P,N ) be a projective class and N the P-null morphisms. We
first show that it is closed under coproducts. Let P1 and P2 be two objects
in P. Their coproduct P1 t P2 is in P if T (P1 t P2, X ) −→ T (P1 t P2, Y ) is
zero for all morphisms X −→ Y in N . We have T (P1tP2, Z)∼= T (P1, Z)×
T (P2, Z) for all Z ∈ T , so the following diagram commutes for all morph-
isms X −→ Y

T (P1, X )× T (P2, X ) T (P1, Y )× T (P2, Y )

T (P1 t P2, X ) T (P1 t P2, Y )

∼= ∼=

and so P1 t P2 is in P if and only if P1 and P2 are in P.
Next we show that it is closed under retracts. Let r : P −→ P ′ be a

retract, P ∈ P, with i : P ′ ,→ P the section. Let f : X −→ Y be in N . We
then get the following diagram of induced morphisms

T (P ′, X ) T (P, X ) T (P ′, X )

T (P ′, Y ) T (P, Y ) T (P ′, Y ).

r∗ i∗

f∗
r∗ i∗

f∗0

Since ri = id, we get that i∗r∗ f∗ = f∗ = 0, so P ′ is in P.

Next, we show that for some collection of objects, closure under re-
tracts and coproducts actually produces a projective class.

Proposition 2.3.2. Let S be a set of objects in T , and let PS be the set
of retracts of coproducts of objects in S. Then (PS ,S-epi) is the smallest
projective class that contains S.

Proof. If (PS ,S-epi) is a projective class, it is necessarily also the smallest
projective class containing S, since all projective classes are closed under
coproducts and retracts.

To show that the pair is projective, we need to show that

10



1) PS -epi = S-epi.
2) (S-epi)-proj = PS .
3) For each X there is a morphism P −→ X that is S-epic, where P ∈

PS .

Starting with 1), we have that since S ⊆ PS , every morphism
f : X −→ Y in PS -epi induces a surjective morphism T (S, X ) −→ T (S, Y )
for all S ∈ S, so PS -epi ⊆ S-epi. To see the opposite inclusion, let
f : X −→ Y be S-epic. Let P be in PS , with r : ti Si −→ P a retract
where tiSi is a coproduct of objects in S. Let i be the inclusion of P into
the coproduct. We want to show that T (P, X ) −→ T (P, Y ) is surjective.
Let W = tiSi . Since ri = IdP the following diagram commutes

T (P, X ) T (P, Y )

T (W, X ) T (W, Y )

T (P, X ) T (P, Y ).

f∗

r∗

i∗
f∗

r∗

i∗

f∗

Let y ∈ T (P, Y ). Since W is (S-epi)-projective, there is an x ′ : W −→ X
such that f x ′ = y r as illustrated in the diagram below.

W P Y

X

r y

x ′ f
x

i

Let x := x ′i. This satisfies f x = f x ′i = y ri = y . Since P was arbitrary
in PS we can conclude that f is PS -epic.

Moving on to 2), we can see that the inclusion PS ⊆ (S-epi)-proj
follows from Lemma 2.3.1: Since the objects that look projective from
the point of view of S-epis must be closed under retracts and coproducts,
it must contain all retracts of coproducts of objects in S, which is PS .

To show the opposite inclusion, let X be (S-epi)-projective, that is it
looks projective from S-epic morphisms. Let

W =
⊔
A∈S

⊔
f ∈T (A,X )

A
r−→ X ,

11



that is, the coproduct over all morphisms from objects in S. We claim that
this is a retraction. To see this we need to find a section. Since r is S-epic,
the induced morphism

T (X , W ) T (X , X )
r∗

is surjective. Hence, there is an i : X −→W such that ri = IdX , making X
a retract of a coproduct in S.

Finally, we see that the construction above may be applied to any
object of T , which proves 3).

Thus, taking any collection of objects in T , we can use it to make a
projective class. Often we want the projective class to be stable, which
means that it is closed under suspension. For a set S let S ′ = {ΣnS : S ∈
S, n ∈ Z}. Then the smallest stable projective class containing S is PS′ ,
i.e., the smallest projective class containing S ′.

Recall also that in a triangulated category we can describe a project-
ive class equivalently with its null-morphisms. In the stable homotopy
category, we could look at the stable projective class generated by the
sphere spectrum. Then the null-morphisms in this projective class are
necessarily all maps X −→ Y such that T (S i , X ) −→ T (S i , Y ) are zero for
all i, i.e., the maps that induce zero maps of homotopy groups. This leads
us to the following definition.

Definition 2.3.3. Consider the stable projective class in the stable homo-
topy category generated by S0. This is the projective class that contains
retracts of wedges of spheres of all dimensions, and whose null-maps
are the nullhomotopic maps. This projective class is known as the ghost
projective class.

Throughout this thesis, we will denote the objects in the ghost pro-
jective class by S.

2.4 Injective classes

We can take everything we have done so far in this chapter, and dual-
ize it. This gives the definition of what we call an injective class. The
definitions are provided briefly, and then we state the dual results.
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Definition 2.4.1. Let I be a collection of objects and M be a collection
of morphisms in a pointed category T with weak kernels. We say that a
morphism X −→ Y is I-monic if it induces an injective morphism under
T (−, I) for all objects I ∈ I. An object I such that T (−, I) induces injective
morphisms on all morphisms in M is called M-injective.

An injective class is then a pair (I,M) such that the I-monic morph-
isms are exactly M, the M-injective objects are exactly I, and for all
objects X there is a morphism X −→ I in M with I ∈ I.

The I-injective objects and I-monic morphisms determine each other
through the extension property

I

X Y.

The tailed arrow indicates that the morphism is I-monic.
The objects in injective classes are closed under products and retracts.

If the category T is triangulated we can describe an injective class with
the I-null morphisms instead of the I-monic morphisms. Furthermore, in
a triangulated category, the condition “every object X admits an I-monic
morphism into an injective object” can be replaced with “every object
X lies in a distinguished triangle I −→ W −→ X −→ ΣI with I ∈ I,
W −→ X an I-null morphism.” We don’t prove these properties, as the
proofs are dual to those for projective classes.

Similarly to the projective case, the smallest injective class generated
by a set S is the set of retracts of products of objects in S. If we are in a
triangulated category, and want the injective class to be stable, then we
include all suspensions as well.

The following is a common (and important) example of an injective
class in the stable homotopy category, generated by the mod n Eilenberg–
Mac Lane spectrum.

Example 2.4.2. Let p be a prime. Denote the Eilenberg–Mac Lane spec-
trum of mod p coefficients by HFp. Then the set

�∏
i Σ

ni HFp : ni ∈ Z
	

along with maps that induce zero on mod p singular cohomology is an
injective class.

Actually, any spectrum E generates a stable injective class in the stable
homotopy category, where the null maps induce zero on E-cohomology.
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It is the injective class generated by HFp which will eventually lead to
the classical Adams spectral sequence.

2.5 Some properties of projective classes

We will need the following terminology when discussing convergence of
the Adams spectral sequence. The definitions and results are collected
from [5].

Definition 2.5.1. Let (P,N ) be a projective class. We say that it gener-
ates if for all X 6= 0 there is a P ∈ P such that T (P, X ) 6= 0. Equivalently,
N has no non-zero identity morphisms.

Lemma 2.5.2. An equivalent description of a projective class that generates
is that a morphism X −→ Y is an isomorphism if and only if T (P, X ) −→
T (P, Y ) is an isomorphsim for all P ∈ P.

Proof. Functors preserve isomorphisms, so the direction (⇒) is clear.
Conversely, if the projective class generates, then there is at least one
P such that T (P, X ) 6= 0. If f∗ : T (P, X ) −→ T (P, Y ) is an isomorphism,
it has an inverse, and by Yoneda lemma this inverse corresponds to a
morphism g : Y −→ X that must necessarily also be an inverse for f .

Example 2.5.3. We see that the ghost projective class generates: A spec-
trum X such that [S i , X ] = 0 for all i is contractible.

For a projective class (P,N ), let Nn be the collection of n-fold com-
positions of morphisms in N . This becomes a decreasing filtration of N .
We can also make an increasing filtration of P. Let P1 = P, and let Pn+1
be the projective class generated by elements Y that lie in a cofiber se-
quence X −→ Y −→ P, where X ∈ Pn and P ∈ P. Let P0 denote the
zero-objects of T , and let N0 denote all morphisms in T .

Theorem 2.5.4 ([5, Theorem 3.5]). The pair (Pn,Nn) is a projective class
for all n≥ 0.

This follows from a more general idea that certain sets of morphisms
are ideals in a triangulated category. More specifically, the null morph-
isms in a projective class behaves somewhat like an ideal (in the algeb-
raic sense) in relation to other collections of null morphisms in other

14



projective classes, and there are several operations that can be done on
these “ideals.” The theorem is proven using these operations. For more
about ideals in triangulated categories, and a proof of the theorem, see
[5, Chapter 3].

Definition 2.5.5. An object X has length n with respect to the projective
class (P,N ) if it is in Pn, but not in Pn−1.

Example 2.5.6. All finite CW-spectra have finite length. Indeed, if X is a
CW-spectrum with structure X0 ⊆ X1 ⊆ · · · ⊆ Xn = X , then each X i lies in
a cofiber sequence ∨S i −→ X i−1 −→ X i . Since X0 is a finite set of points,
X0 ∈ P0, so inductively each X i ∈ Pi , and X has length at most n.

The last thing we need is a generalization of a projective resolution.

Definition 2.5.7. Let X be in T , and let

X ←− P0←− P1←− · · · ←− Pi ←− · · ·
be a diagram where each Pi ∈ P. Then it is a P-projective resolution of
X if for all P ∈ P the following is an exact sequence:

0 T (P, X ) T (P, P0) T (P, P1) · · · .
As before, these definitions can be dualized to an injective class.

Example 2.5.8. Going back to the injective class in Example 2.4.2 we
can ask whether this class generates, the way ghost projective class does.
The claim is that it does not. Consider the Poincaré homology sphere
SP [18, Example 1.4.4], which has homology groups of a 3-sphere, but a
non-trivial fundamental group. Let S′P be SP , but with one point removed.
Then the reduced homology of S′P is zero in all degrees, but it is still not
contractible. Hence, this is a space which becomes zero under [−, I] for
all I injectives in this class, but that is not zero itself.
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Chapter 3

Toda brackets

Toda brackets were originally defined by Toda in [19]. There it was defined
for maps between spheres of different dimensions, and used to compute
stable homotopy groups of spheres. Later, the defition has been general-
ized and expanded, and we present here a general definition for morph-
isms in a triangulated (not necessarily topological) category. The defini-
tions and propositions in this chapter are due to [6].

We fix a triangulated category T .

3.1 Three coinciding definitions

Given a diagram

X0
f1−→ X1

f2−→ X2
f3−→ X3

in T one might ask “how far” the triangle is from being distinguished. One
way of finding an answer to that question is by comparing it to triangles
already known to be distinguished. Given the three maps in the triangle,
there are three distinguished triangles that it is natural to compare it to,
namely the three different cofiber sequences associated to each map. This
is what gives us three different definitions of the Toda bracket.

Definition 3.1.1. Let X0
f1−→ X1

f2−→ X2
f3−→ X3 be a diagram in T . Then we

can define the following three subsets of T (ΣX0, X3) :

• The iterated cofiber Toda bracket is the set 〈 f3, f2, f1〉cc of all maps
ψ such that the following diagram with distinguished top row com-
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mutes

X0 X1 C f1 ΣX0

X0 X1 X2 X3.

f1

f1 f2

φ

f3

ψ

(3.1)

• The fiber-cofiber Toda bracket is the set 〈 f3, f2, f1〉 f c of all maps
β ◦Σα such that the following diagram with distinguished middle
row commutes

X0 X1

Σ−1C f2 X1 X2 C f2

X2 X3.

f1

α

f2

β

f3

(3.2)

• The iterated fiber Toda bracket is the set 〈 f3, f2, f1〉 f f of all maps
Σδ such that the following diagram with distinguished bottom row
commutes

X0 X1 X2 X3

Σ−1X3 Σ−1C f3 X2 X3.

f1

δ γ

f3

f2 f3

(3.3)

Note that the Toda brackets depend on the triangulation of T . For in-
stance, the Toda bracket of a distinguished triangle contains the identity:
If X −→ Y −→ Z −→ ΣX is distinguished, then (3.1) can be completed
with

X Y C f ΣX

X Y Z ΣX

φ IdΣX
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where φ is an isomorphism.

Proposition 3.1.2. The three definitions of a Toda bracket coincide.

Proof. We will only show that 〈 f3, f2, f1〉cc = 〈 f3, f2, f1〉 f c , since the proof
that 〈 f3, f2, f1〉 f f = 〈 f3, f2, f1〉 f c is dual.
〈 f3, f2, f1〉 fc ⊆ 〈 f3, f2, f1〉cc: Let βΣα ∈ 〈 f3, f2, f1〉 f c . Then they ap-

pear in the following commutative diagram of distinguished triangles

X0 X1 C f1 ΣX0

Σ−1C f2 X1 X2 C f2

X2 X3.

α φ Σα

β

f1

f2

f3

Here the map φ exists by the morphism axiom, (TR3), as the rows are
distinguished triangles. So we have maps φ and ψ = βΣα that make
(3.1) commute. This proves the inclusion of βΣα in 〈 f3, f2, f1〉cc .〈 f3, f2, f1〉cc ⊆ 〈 f3, f2, f1〉 fc: Letψ ∈ 〈 f3, f2, f1〉cc and letφ be the map
making (3.1) commute. We need to find β and αwith βΣα=ψ such that
(3.2) commutes.

Let ι1 be the map X1 −→ C f1 . We can compare the cofibers ofφ, ι1 and
f2 = φι1 with the octahedron axiom, (TR4), for triangulated categories:

X1 C f1 ΣX0 ΣX1

X1 X2 C f2 ΣX1

C f1 X2 Cφ ΣC f1 .

Σ2X0

ι1 q1 −Σ f1

f2

φ

ι2 q2

ι1

φ ι q

Σα

ξ Σι1

η

(3.4)

The vertical row is a distinguished triangle, so the sequence

T (C f2 , X3)
Σα∗−−→ T (ΣX0, X3)

(−Σ−1η)∗−−−−−→ T (Σ−1Cφ , X3)
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is exact. By rotating the bottom row in (3.4) to the right we get the fol-
lowing commutative diagram

Σ−1Cφ Σ−1Cφ

C f1 ΣX0

X2 X3

−Σ−1q

φ

f3

−Σ−1η

ψ

ι1

where the left column is part of a distinguished triangle. Hence

(−Σ−1η)∗(ψ) = f3φ(−Σ−1q) = 0,

so by exactness there is a β : C f2 −→ X3 such that βΣα=ψ.
This β might not satisfy β i2 = f3, which is required by the fiber-

cofiber definition. We will correct it to a new map which does. Since
( f3 − βι2)φ = 0, there is a factorization of the error through the cofiber
ofφ, in other words, we have a map θ : Cφ −→ X3 such that f3−βι2 = θι.
Let β ′ := β + θξ, and note that β ′ι2 = f3. Furthermore, β ′Σα = ψ =
βΣα, since θξΣα= 0.

We have found the desired factorization of ψ. This concludes the
proof.

From now on we denote the Toda bracket simply by 〈 f3, f2, f1〉.

3.2 Some examples of Toda brackets

Example 3.2.1. We can already compute some simple brackets in a gen-

eral triangulated category T . Let X
0−→ Y

1−→ Y
0−→ Z be a diagram. The

cofiber of X
0−→ Y is Y ⊕ ΣX , and hence the map φ in (3.1) can be any

map
�
1 b

�
as seen below. So by the iterated cofiber definition of the

Toda bracket, we must have 〈0,1, 0〉= {0}.
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X Y Y ⊕ΣX ΣX

X Y Y Z0 1 0

0

 
1

0

! �
0 1

�
�
1 b

�
0

If we on the other hand consider the diagram X
0−→ Y

0−→ Z
1−→ Z

in T we get that 〈1,0,0〉 = T (ΣX , Z), by looking at the iterated cofiber
definition of the Toda bracket.

X Y Y ⊕ΣX ΣX

X Y Z Z0 0 1

0

�
0 1

�
�
0 b

�
ψ

 
1

0

!

Here φ can be any map
�
0 b

�
, and so by letting ψ = b, we can make

the above diagram commute.

Lemma 3.2.2. For any diagram X0
f1−→ X1

f2−→ X2
f3−→ X3 in T the Toda

bracket 〈 f3, f2, f1〉 is a coset of the subgroup

( f3)∗T (ΣX0, X2) + (Σ f1)
∗T (ΣX1, X3) ⊆ T (ΣX0, X3).

Proof. The iterated cofiber Toda bracket of the diagram above contains
maps ψ that make the following diagram commute

X0 X1 C f1 ΣX0

X0 X1 X2 X3.

f1

f1

ι q

f2

φ

f3

ψ

We want to show that if ψ and ψ′ are two elements in 〈 f3, f2, f1〉, along
with maps φ and φ′ that make (3.1) commute, then ψ − ψ′ = f3 g +
h(Σ f1) for some g : ΣX0 −→ X2 and some h: ΣX1 −→ X3. Since the top
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row is a distinguished triangle, we can make the following diagram of
long exact sequences:

T (ΣX1, X2) T (ΣX0, X2) T (C f1 , X2) · · ·

T (ΣX1, X3) T (ΣX0, X3) T (C f1 , X3) · · ·

· · · T (X1, X2) T (X0, X2)

· · · T (X1, X3) T (X0, X3)

(Σ f1)∗

f ∗3

q∗

f ∗3

ι∗

f ∗3

(Σ f1)∗ q∗ ι∗

ι∗ f ∗1

f ∗3 f ∗3

ι∗ f ∗1

Then
ι∗(φ) = ι∗(φ′) = f2

implying that
φ′ −φ ∈ ker(ι∗) = Im(q∗).

Therefore there is a g ∈ T (ΣX0, X2) such thatφ′ = φ+ gq, and it induces
a member of 〈 f3, f2, f1〉.

Now, suppose ψ and ψ′ are in 〈 f3, f2, f1〉. Then we have

(ψ−ψ′)q = f3(φ −φ′) = f3 gq

which implies that

ψ−ψ′ − f3 g ∈ ker q = Im(Σ f1)
∗.

So there is an h ∈ T (ΣX1, X3) such that h(Σ f1) + g f3 = ψ − ψ′. Fur-
thermore, any h ∈ T (ΣX1, X3) satisfies q∗(h(Σ f1)) = h(Σ f1)q = 0, so it
induces another element of 〈 f3, f2, f1〉.
Remark 3.2.3. The subgroup in Lemma 3.2.2 is called the indetermin-
acy of the Toda bracket 〈 f3, f2, f1〉. If it is zero we say that the bracket
has no indeterminacy.
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Example 3.2.4. Several relations of Toda brackets are known for spectra.
The most famous, perhaps, is that for a map x : Sn −→ S with 2x = 0
we have xη ∈ 〈2, x , 2〉, where η is the Hopf fibration η : S3 −→ S2. As
a consequence, we have η2 = 〈2,η, 2〉, since the indeterminacy of this
Toda bracket is zero. By η2 we mean (Ση)η.

One way to prove this is by using the mod 2 Moore spectrum M . A
mod n Moore spectrum is a spectrum which has homology Z/n in degree

zero, and zero otherwise. The spectrum M is the cofiber of S 2−→ S, so

S 2−→ S incl−→ M
pinch−−−→ S1 is a distinguished triangle in the stable homotopy

category. Central to the proof is the fact that [M , M] = Z/4{IdM} (the
group Z/4, with generator IdM ), with 2 IdM = incl◦η ◦ pinch 6= 0, which
is proven in Lemma A.2.

Let x ∈ πn(S) with 2x = 0. By (TR3), we get a lifting of x as follows:

Sn Sn ΣnM Sn+1

∗ S S ∗.
x

2 incl pinch

x̄

Then by the relation 2 IdM = incl◦η ◦ pinch and the commutativity of
π∗(S) we get that ηx ∈ 〈2, x , 2〉 as the following diagram commutes

Sn Sn ΣnM Sn+1

ΣnM Sn

Sn Sn S S.

x̄

2 incl pinch

η

x

2x2

x̄

2

incl

When Toda defined what we now call Toda brackets, it was for maps
between spheres. Assume we have maps

Sk S l Sm Snf g h

where g ◦ f and h◦ g are nullhomotopic. Then we have (null)homotopies
F : CSk −→ Sm and G : CS l −→ Sn. We can construct a map ψ : Sk+1 −→
Sn, where ψ = h ◦ F

⊔
CSk G ◦ C f . This is illustrated in Figure 3.1.
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Toda defined the Toda bracket as the set of maps ψ as above. We
see that the different maps in the brackets is a consequence of different
choices of the homotopies F and G. One can actually show that this set
is a coset of h∗πl+1(Sn)+(Σ f )∗πn+1(Sk). So the two definitions coincide
for topological spaces/spectra.

Sk S l Sm Sn

F

f g h

C f

G

Figure 3.1: The Toda bracket of 〈h, g, f 〉 consists of maps from ΣSk to
Sn.

Note how we here demand that the maps in the Toda bracket pair-
wise compose to zero (which means nullhomotopic in SHC), but that
we did not demand this in Definition 3.1.1. This might seem like an in-

consistency, but the Toda bracket of X0
f1−→ X1

f2−→ X2
f3−→ X3 is empty if

either f2 ◦ f1 or f3 ◦ f2 is nonzero. Consider the latter case, and look at
the iterated cofiber definition of the Toda bracket:

X0 X1 C f1 ΣX0

X0 X1 X2 X3.

f1 i q

φ ψ

f1 f2 f3

We need the mapψ to satisfyψ◦q◦ i = f3 ◦ f2 6= 0. Since q and i are in a
distinguished triangle, they compose to zero. Therefore, noψ can satisfy
this equation, and the bracket is empty.
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3.3 Heller’s theorem and higher Toda brackets

Before moving on to the Adams spectral sequence we discuss some in-
teresting aspects of Toda brackets. We first consider a relation between
the triangulated structure of the category T and Toda brackets. Then we
take a quick look at a generalization of the Toda bracket for diagrams of
morphisms.

The first is a theorem first stated by Heller ([8, Theorem 13.2]). We
present it in the form of [6, Theorem B.1] as we find this more accessible.

Theorem 3.3.1 (Heller). Let T be a triangulated category. A triangle X
f−→

Y
g−→ Z

h−→ ΣX is distinguished if and only if the following holds

• The sequence following sequence of abelian groups is exact for all A∈
T

T (A,Σ−1Z)
(Σ−1h)∗−−−−→ T (A, X )

f∗−→ T (A, Y )
g∗−→ T (A, Z)

h∗−→ T (A,ΣX ).

• The Toda bracket 〈h, g, f 〉 contains the identity of ΣX .

That the two conditions hold for a triangulated category is straight-
forward. The converse holds because Z and the mapping cone of f are
isomorphic as a consequence of the two conditions. Another way of stat-
ing this theorem, is that the triangulated structure of a category T with
a fixed automorphism Σ is determined by the Toda brackets.

The second is the notion of n-fold Toda brackets. The construction
is rather comprehensive, so we will not be elaborating it. It was first

provided by Shipley [16]. Given a diagram X0
f1−→ X1

f2−→ X2→ · · · → Xn in
T , the n-fold Toda bracket 〈 fn, · · · , f1〉 is a subset of T (X0,ΣXn). In [6] it
is shown that the n-fold Toda bracket can be calculated inductively, and
although there are (n − 2)! ways of doing this, all the different subsets
coincide up to a sign ([6, Theorem 5.11]).
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Chapter 4

Adams spectral sequences

The Adams spectral sequence was first constructed by Adams as a tool
to compute stable homotopy groups of spheres [1], where the singular
mod p cohomology theories play an important role. Later, more general
Adams spectral sequences were presented using general cohomology the-
ories, like the Adams–Novikov spectral sequence [12]. We will provide
a general construction of an Adams spectral sequence in a triangulated
category, using the projective and injective classes of Chapter 2. They
are called Adams spectral sequences because they coincide with the clas-
sical Adams spectral sequences in SHC, for certain injective classes. The
general construction makes it very versatile, as it can be applied in any
triangulated category, not just topological ones.

In this chapter we will first review necessary prerequisites, like ex-
act couples and Adams resolutions, before we move on to the spectral
sequences. As we will be constructing the spectral sequences with pro-
jective and injective classes, there will be two different definitions.

4.1 Exact couples

Before defining the Adams spectral sequence in the context of a general
triangulated category, we recall the definition and properties of an exact
couple. The definition and results can be found in [10, Chapter 2.2].

Definition 4.1.1. Let R be a ring. An exact couple is a pair (D, E) of
R-modules, and homomorphisms i, j and k such that the triangle
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D D

E
k

i

j

is exact.

From this we can then define a differential d : E −→ E by letting
d := jk. It then follows by exactness that d2 = 0. Using the differential
we can form the derived exact couple:

• D′ := Im i = ker j
• E′ := H(E, d) = ker d

Im d• i′ := i|D′• j′(i(x)) := [ j(x)]
• k′([y]) := k(y)

which can be summarized in the following diagram

D′ D′

E′.

i′

j′k′

One can show that this is well-defined. We have the following result
about the derived couple:

Lemma 4.1.2. The derived couple of an exact couple is exact.

For a proof, see [10, Proposition 2.7].
We can iterate this process and obtain the nth derived couple (En, Dn),

and we can define the nth differential as dn := jnkn. We say that (En, dn)
is the spectral sequence associated to the exact couple (E, D).

We include the following example to show how exact couples can
appear, inspired by [7, Chapter 5.1]

Example 4.1.3. Let π: X −→ B be a Serre fibration of CW-complexes,
with B path-connected. Let Bp be the p-skeleton of B. Then we have a
filtration of X via Xp := π−1(Bp). Since (Bp, Bp−1) is p-connected, (X , Xp)
is p-connected. In particular, the inclusion Xp ,→ X induces an isomorph-
ism Hn(Xp) −→ Hn(X ) if n < p. For the pair (Xp, Xp−1) we have a long
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exact sequence in homology

· · · → Hn(Xp−1)
i−→ Hn(Xp)

j−→ Hn(Xp, Xp−1)
k−→ Hn−1(Xp−1)→ · · ·

and since Hn(Xp, Xp−1) = 0 whenever n < p, we can let n = p + q, and
summarize the homologies of the filtration of X with the following exact
couple:

⊕
p,q

Hp+q(Xp)
⊕
p,q

Hp+q(Xp).

⊕
p,q

Hp+q(Xp, Xp−1)

i

k j

This exact couple yields a spectral sequence by the construction above.
One can show that this is the Serre spectral sequence associated to the
fibration p, with

E2
p,q = Hp(B, Hq(F)),

where F is the fiber of the fibration.

4.2 Adams resolutions

In this section we fix a triangulated category T , whose suspension functor
is an adjoint equivalence of T .

Definition 4.2.1. Let X ∈ T . An Adams resolution of X with respect to
a projective class (P,N ) is a diagram of the form

X = X0 X1 X2 · · ·

P0 P1

i0 i1

p0 p1δ0
◦

δ1
◦

where each Ps ∈ P, each is ∈ N and the triangle Ps
ps−→ Xs

is−→ Xs+1
δs−→

ΣPs is distinguished. The circles indicates that the morphisms are degree-
shifting.
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Remark 4.2.2. Recalling the equivalent definitions of a projective class
in Chapter 2, we see that all the morphisms ps in the resolution are P-
epic, and all the morphisms δs are P-monic, since all morphisms is are
P-null. If we assume that T has enough P-projectives, that is every
object X admits a P-epic morphism from a projective into X , then by the
properties of a projective class there is an Adams resolution for all objects
X ∈ T .

Example 4.2.3. Recall that the ghost projective class S in Definition 2.3.3
is a projective class in SHC. We find an Adams resolution for the sphere
spectrum.

Recall the inductive CW-structure of the sphere: We can build Sn+1

by gluing together two cones of Sn with the pushout

Sn ∨ Sn Sn

CSn ∨ CSn Sn+1

pn

in

where pn is the identity when restricted to each sphere. This means that
Sn+1 is the cofiber of pn, so the triangle

Sn ∨ Sn pn−→ Sn in−→ Sn+1 δn−→ Sn+1 ∨ Sn+1

in SHC is distinguished. The map δn is the pinch map. Using this we can
make the following resolution of S (which implicitly is also a resolution
for Sn).

S S1 S2 · · ·

S∨ S S1 ∨ S1
p0

i0

δ0
◦ p1

i1

δ1
◦

Since all inclusions Sn ,→ Sn+1 are nullhomotopic, this is an Adams res-
olution with respect to S.

In the above example, we could swap the sphere spectrum with any
CW-spectrum on which the inclusion of the n-skeleton into the (n+ 1)-
skeleton is nullhomotopic.
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Definition 4.2.4. Let Y be an object in T . An Adams resolution of Y
with respect to the injective class (I,N ) is a diagram of the form

Y = Y0 Y1 Y2 · · ·

I0 I1

p0

i0

p1

i1

δ0 δ1

where each Is is in I, each morphism is is in N , and all triangles Ys+1
is−→

Ys
ps−→ Is

δs−→ ΣYs+1 are distinguished.

Remark 4.2.5. From the way injective classes are constructed, we see
that all the morphisms ps in the Adams resolution are I-monic and all
the morphisms δs are I-epic, since all morphisms is are I-null. If the
category T has enough I-injectives (dual to enough P-projectives), then
every object admits an Adams resolution.

4.3 A general Adams spectral sequence

We obtain two dual constructions of an Adams spectral sequence. One
with respect to a projective class, and one with respect to an injective
class.

4.3.1 Adams spectral sequence with respect to a projective
class

In this subsection we consider a projective class (P,N ). Let X be an object
in T with a projective Adams resolution as in Definition 4.2.1, and let Y
be another object in T . Then we obtain an unraveled exact couple by
applying T (−, Y ) to the resolution:

· · · T (Xs, Y ) T (Xs+1, Y ) · · ·

T (Ps, Y )
(ps)∗

(is)∗

(δs)∗
◦
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which can be summarized in the following exact couple of bigraded
groups

⊕
s,k

T (ΣkXs, Y )
⊕
s,k

T (ΣkXs, Y )

⊕
s,k

T (ΣkPs, Y ).
⊕s(ps)∗

⊕s(is)∗

⊕s(δs)∗

We usually let t = k + s, and i = ⊕s(is)∗, p = ⊕s(ps)∗ and δ = ⊕s(δs)∗ to
simplify the notation. We are left with the following exact couple

T (Xs,Σ
s−t Y ) T (Xs,Σ

s−t Y )

T (Ps,Σ
s−t Y ).

i

p δ
(4.1)

To this exact couple there is an associated spectral sequence, which is the
Adams spectral sequence with respect to the projective class P.

We have used the identification T (Σt−sZ , Y ) ∼= T (Z ,Σs−t Y ), and so
we can write Es,t

1 = T (Σt−sPs, Y ) ∼= T (Ps,Σ
s−t Y ). We see that for these

spectral sequences, Es,t
r = 0 for all s < 0 by construction.

We can describe the E2-page with Ext groups.

Lemma 4.3.1. For an Adams spectral sequence with respect to a projective
class we have Es,t

2 = Exts,t
P (X , Y ).

Remark 4.3.2. We define

Exts,t
P (X , Y ) := Exts

P(X ,Σ−t Y ) = H−s(T (PX• ,Σ−t Y )),

where PX• is a P-projective resolution of X .

Proof. Given the projective Adams resolution of X , we can make a P-
projective resolution of X :

0 X P0 Σ−1P1 Σ−2P2 · · · .p0 Σ−1δ0Σ
−1p1 Σ−2δ1Σ

−2p2
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Applying T (−,Σ−t Y ) to this resolution gives us the following sequence

0→ T (X ,Σ−t Y )
p∗0−→ T (P0,Σ−t Y )

Σ−1(p1δ0)∗−−−−−−→ T (Σ−1P1,Σ−t Y )→ · · ·
and we find that

Exts,t
P (X , Y ) = H−s(T (PX• ,Σ−t Y ))

=
ker(Σ−s−1δsΣ

−s−1ps+1)∗
Im(Σ−sδs−1Σ−sps)∗

=
ker(d1 : Es,t

1 −→ Es+1,t
1 )

Im(d1 : Es−1,t
1 −→ Es,t

1 )

= Es,t
2 .

Example 4.3.3. We now return to the ghost projective class and consider
the projective resolution of the sphere spectrum in Example 4.2.3. Here
the maps ps : Sn ∨ Sn −→ Sn are two copies of the identity, while the
maps δs : Sn −→ Sn ∨ Sn are pinch maps. Then the composition δs ◦ ps+1
becomes the identity. This means that ker(δsps+1)∗ = {0} for all s. By
Lemma 4.3.1 we get that Es,t

2 = Exts,t
S (S, Y ) = {0} for all s and t for this

resolution of the sphere spectrum, no matter what the object Y is.

4.3.2 Adams spectral sequence with respect to an injective
class

Let X and Y be objects in our triangulated category T . Let Y have an
Adams resolution with respect to an injective class (I,N ) as in Defini-
tion 4.2.4. We can apply T (X ,−) to the resolution, and get the unraveled
exact couple

· · · T (X , Ys) T (X , Ys+1) · · ·

T (X , Is)
(ps)∗

(is)∗

(δs)∗
◦
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which can be summarized in the following exact couple of bigraded
groups

⊕
s,k

T (ΣkX , Ys+1)
⊕
s,k

T (ΣkX , Ys)

⊕
s,k

T (ΣkX , Is).

⊕s(is)∗

⊕s(δs)∗ ⊕s(ps)∗

The Adams spectral sequence with respect to the injective class (I,N ) is
the spectral sequence associated to this exact couple. As with the project-
ive case, we usually let t = k+ s and define i = ⊕s(is)∗, p = ⊕s(ps)∗,δ =⊕s(δs)∗ to obtain the notation

⊕
s,t

T (Σt−sX , Ys+1)
⊕
s,t

T (Σt−sX , Ys)

⊕
s,t

T (Σt−sX , Is).

i

δ p

This spectral sequence has Es,t
1 = T (Σt−sX , Ys). We see that for these

spectral sequences, Es,t
r = 0 for all s < 0.

The Ext groups play an important role in the injective Adams spectral
sequence as well.

Lemma 4.3.4. The E2 term of the spectral sequence is given by Es,t
2 =

Exts,t
I (X , Y ).

Remark 4.3.5. We define

Exts,t
I (X , Y ) := Exts

I(Σ
t X , Y ) = H−s(T (Σt X , IY• )),

where IY• is an I-injective resolution of Y .
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Proof. We can construct the following I-injective resolution of Y from its
Adams resolution with respect to I

0 −→ Y
p0−→ I0

Σp1δ0−−−→ ΣI1
Σ2p2Σδ1−−−−−→ Σ2 I2 −→ · · ·

to which we can apply T (Σt X ,−)
0 −→ T (Σt X , Y )

(p0)∗−−→ T (Σt X , I0)
(Σp1δ0)∗−−−−−→ T (Σt X ,ΣI1) −→ · · ·

and obtain that

Exts,t
I (X , Y ) = H−s(T (Σt X , IY• )) =

ker(Σs+1ps+1Σ
sδs)∗

Im(ΣspsΣs−1δs−1)∗
.

This is precisely Es,t
2 = H(Es,t

1 , d1) since d1 = pδ.

4.4 The classical Adams spectral sequence

In this section we focus on the classical Adams spectral sequence, and
how it can be obtained from our general Adams spectral sequence. The
approach is inspired by [13, Chapter 11.3]. For X and Y two connect-
ive spectra (where X is often the sphere spectrum), the classical Adams
spectral sequence is the spectral sequence with

Es,t
2 = Exts,t

A (H
∗(Y ), H∗(X )) =⇒ [Σt−sX , Yp].

Here H is the mod p Eilenberg–Mac Lane spectrum, A the mod p
Steenrod algebra, and [X , Yp] = [X , Y ]/non − p torsion. The groups
Exts,t

A (H
∗(Y ), H∗(X )) are defined as Exts

A(H
∗(Y ), H∗(Σt X )).

We saw in Section 2.4 that an example of an injective class in the
stable homotopy category is the smallest injective class generated by mod
p Eilenberg–Mac Lane spectra, along with maps that induce zero on mod
p cohomology. Denote this injective class by H, and the mod p Eilenberg–
Mac Lane spectrum by H.

In this section we want to show that this injective class leads to the
classical Adams spectral sequence. The claim is that the two spectral se-
quences have the same E2-page. Recall Lemma 4.3.4 where we saw that
the E2-page of a spectral sequence with respect to an injective class is
Exts,t

I (X , Y ).
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We need some technical results before we can prove our claim. First,
we show that we can make an injective Adams resolution of Y with re-
spect to H using only wedge sums of Eilenberg–Mac Lane spectra, i.e.,
there are no retracts involved in the Adams resolution.

Lemma 4.4.1. Let Y be a connective spectrum of finite type. Then there
exists an injective Adams resolution of Y with respect to H

· · · YS Ys+1 · · ·

Ks

ps

is

δs
◦

where each Ks is a wedge sum of suspensions of Eilenberg–Mac Lane spectra,
and each Ys is a connective spectrum of finite type.

Proof. We prove this inductively. Assume we have our wanted resolution
up until Ys. Then, let Ks = H ∧ Ys, and let ps = η∧ 1: S0 ∧ Ys −→ H ∧ Ys,
where η : S0 −→ H is the unit map. From the Künneth formula we have
that

H∗(H ∧ Ys)∼= H∗(H)⊗Fp
H∗(Ys)∼= A⊗Fp

H∗(Ys).

Hence an element 1 ⊗ y ∈ A ⊗Fp
H∗(Ys), is in correspondence with a

map in [H ∧ Ys, H]−∗. Let {yi : i ∈ I} be the set of generators of H∗(Ys).
Summing over them we get a wedge sum

∨
I H along with projection

maps πi : ∨I H −→ H. Then for all i and j we have the diagram

H ∧ Ys

H
∨

I H H

1⊗yi ψ
1⊗y j

πi π j

and so the map ψ exists by the universal property of the product. Fur-
thermore, this map is an isomorphism of homotopy groups [13, Lemma
11.1.4], so by Whitehead’s theorem Ks = H ∧ Ys

∼= ∨I H.
The map ps is η ∧ 1, which means it induces the Steenrod action

A⊗F2
H∗(Ys)

(η∧1)∗−−−−→ H∗(Ys), which is surjective. Letting Ys+1 be the fiber
of ps, we can expand the Adams resolution with the cofiber sequence

Ys+1
is−→ Ys

ps−→ Ks
δs−→ ΣYs+1, (4.2)
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in which is is H-null, since ps is H-epi. To complete the proof we need
to see that Ys+1 is connective and of finite type. Consider the long exact
sequence in homotopy of (4.2):

· · · −→ πn+1(Ks) −→ πn(Ys+1) −→ πn(Ys) −→ πn(Ks) −→ · · · .
Since both Ys and Ks are connective, there is an N such that πn(Ks) =
πn(Ys) = 0 for all n≤ N . So Ys+1 is connective.

To see that it is of finite type, we can look at the long exact sequence
in homology:

· · · −→ H∗(Ys+1)
(is)∗−−→ H∗(Ys)

(ps)∗−−→ H∗(Ks)
(δs)∗−−→ H∗(ΣYs+1) −→ · · · .

Since both Ys and Ks are of finite type, H∗(Ys) and H∗(Ks) are finitely gen-
erated. We can split the long exact sequence into short exact sequences

0 −→ coker(ps−1)∗ −→ H∗(Ys+1) −→ Im(is)∗ −→ 0

in which coker(ps−1)∗ and Im(is)∗ are finitely generated, so H∗(Ys+1) is
finitely generated.

Continuing this construction inductively, we obtain the Adams resol-
ution of Y that we wanted.

The next step is to see that this Adams resolution leads to an A-
projective resolution with free A-modules.

Lemma 4.4.2. For a connective spectrum Y of finite type, there is a pro-
jective resolution of H∗(Y ) with only free A modules.

Proof. From the Adams resolution in Lemma 4.4.1, we have maps

Σs−1Ks−1
(Σs ps)◦(Σs−1δs−1)−−−−−−−−−−→ ΣsKs.

Let Ps = H∗(ΣsKs), fs = (Σs−1δs−1)∗ ◦ (Σsps)∗ and f0 = p∗0.
In the long exact sequence in cohomology of

Ys+1
is−→ Ys

ps−→ Ks
δs−→ ΣYs+1

we have that the map (Σs is)∗ is zero, so the sequence splits into a short
exact sequence
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0 −→ H∗(Σs+1Ys+1)
(Σsδs)∗−−−−→ H∗(ΣsKs)

(Σs ps)∗−−−−→ H∗(ΣsYs) −→ 0.

Varying s we get different short exact sequences which we can splice to-
gether using the maps fs as follows

· · · H∗(ΣsKs) H∗(Σs−1Ks−1) · · ·

H∗(ΣsYs)

fs

(Σs ps)∗ (Σs−1δs−1)∗

and get the following projective resolution of H∗(Y )

· · · −→ Ps
fs−→ Ps−1 −→ · · · −→ P0

f0−→ H∗(Y ) −→ 0

where each Ps is a free A-module by construction.

Finally we need the following result about the Hurewicz homomorph-
ism.

Lemma 4.4.3. The Hurewicz homomorphism

d : [Y, X ] −→ HomA(H
∗(X ), H∗(Y ))

given by d( f ) = f ∗ is an isomorphism if X is a wedge sum of suspensions
of Eilenberg–Mac Lane spectra.

Proof. It is sufficient to assume that X = ΣnH, because of distribution
over the wedge sum. Then we have that

[Y,ΣnH]∼= [Σ−nY, H]∼= HomA(H
∗(H), H∗(Σ−nY ))

∼= HomA(H
∗(ΣnH), H∗(Y ))

The second isomorphism follows from the general fact that for a ring R
and an R-module M , HomR(R, M)∼= M .

Proposition 4.4.4. The Adams spectral sequence with respect to the inject-
ive class H is the classical Adams spectral sequence.
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Proof. We know from Lemma 4.3.4 that the E2-page of the injective
Adams spectral sequence is Es,t

2 = Exts,t
H (X , Y ) = H−s([Σt X , IY• ]). For the

resolution in Lemma 4.4.1, we are looking for the (−s)th cohomology of
the sequence

· · · −→ [Σt X ,Σs−1Ks]
(Σs psΣ

s−1δs−1)∗−−−−−−−−−→ [Σt X ,ΣsKs] −→ · · · .
Let Homt

A(H
∗(Y ), H∗(Z)) := HomA(H∗(Y ), H∗(Σt Z)). Under the iso-

morphism in Lemma 4.4.3 the above sequence becomes

· · · → Homt
A(H

∗(ΣsKs), H∗(X ))
f ∗s−→ Homt

A(H
∗(Σs−1Ks−1), H∗(X ))→ · · · .

Using Lemma 4.4.2 we see that the (−s)th cohomology of this becomes
exactly Exts,t

A (H
∗(Y ), H∗(X )).

4.5 Convergence

In the following section we will be using Cartan–Eilenberg terms of con-
vergence and strongly convergent spectral sequences [4].

Definition 4.5.1. Let As be a sequence of graded abelian groups, and let

is be morphisms · · · −→ As+1 is−→ As is−1−−→ As−1 −→ · · · .
The limit is A∞ = lim← As. It comes with morphisms εs : A∞ −→ As

such that is ◦ εs+1 = εs.
The colimit is A−∞ = lim→ As. It comes with maps ηs : As −→ A−∞

such that ηs ◦ is = ηs+1.
The derived limit is RA∞ = Rlim← As, the first derived functor of lims.

Let ΠsA
s be the product formed degree-wise, and let i : ΠsA

s −→ ΠsA
s

be the morphism Πis. The derived limit is constructed explicitly through
the exact sequence

0 −→ A∞ −→ ΠsA
s 1−i−−→ ΠsA

s −→ RA∞ −→ 0. (4.3)

For this and more about the construction of the derived limit, see [17,
Section 15.86].
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Definition 4.5.2. Let the following be an unraveled exact couple of bi-
graded groups

· · · As+1 As As−1 · · · .

Es Es−1

is is−1

js js−1ks ks−1

(4.4)

The spectral sequence associated to this exact couple is conditionally
convergent and converges to the colimit A−∞ if A∞ = 0 and RA∞ = 0.
The spectral sequence is conditionally convergent and converges to the
limit A∞ if A−∞ = 0.

Theorem 4.5.3. Suppose the spectral sequence associated to (4.4) is a half-
plane spectral sequence with respect to s, that is, Es = 0 for all s < 0. If it
is conditionally convergent and collapses (En = E∞ for some n) then it is
strongly convergent.

The theorem and its proof can be found in [3, Theorem 7.1].
We now go back to a triangulated category T and some stable pro-

jective class P. All results in the rest of this section are due to [5, Chapter
4].

Proposition 4.5.4. Let X have an Adams resolution as in Definition 4.2.1
with respect to P. Assume furthermore that the category T has all small
coproducts. The spectral sequence derived from T (X , Y ) is conditionally con-
vergent for all X and Y if the projective class generates.

Proof. Assume that the projective class generates. Consider the exact
couple in (4.1). The exact sequence (4.3) for this couple becomes

0→ lim← T (Xs, Y )∗→ ΠT (Xs, Y )∗
∂−→ ΠT (Xs, Y )∗→ Rlim← T (Xs, Y )∗→ 0.

Here the map ∂ is induced by 1−ts is : ts Xs −→ tsXs. By construction

each map is induces zero maps T (P, Xs)
(is)∗−−→ T (P, Xs+1) for all P ∈ P, so

(1−ts is)∗ : T (P,tXs) −→ T (P,tXs) is the identity for all P. This means
that the map ∂ is an isomorphism by Lemma 2.5.2. Thus

lim← T (Xs, Y )∗ = 0= Rlim← T (Xs, Y )∗.
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Remark 4.5.5. One can show that the converse also holds, that if the
projective class does not generate, then the spectral sequence is not con-
ditionally convergent.

Proposition 4.5.6. Let X be an object with length n. Then the spectral
sequence derived from T (X , Y ) collapses at En+1 with En+1 = E∞.

Proof. Let X be in Pn, with an Adams resolution as in Definition 4.2.1.
Since each Xs+1 is a cofiber of the previous Xs, we see inductively that
each Xs is also in Pn. This means that all n-fold composites is+n · · · is are
zero. This again means that the differential dr is zero for all r > n. Hence
the spectral sequence collapses at En+1.

Proposition 4.5.7. If the projective class generates, and X is an object with
finite length, then the spectral sequence derived from T (X , Y ) is strongly
convergent.

Proof. The Adams resolutions are defined only for s ≥ 0, so by definition
the Adams spectral sequences we can form with respect to a projective
class satisfy Es = 0 for s < 0. Then by Proposition 4.5.6 and Propos-
ition 4.5.4 along with Theorem 4.5.3 the spectral sequence is strongly
convergent.

Example 4.5.8. We have already seen that the ghost projective class gen-
erates. We have also seen that all finite CW-spectra have finite length.
Hence for all finite CW-spectra X the spectral sequence derived from
T (X , Y ) with respect to the ghost projective class is strongly convergent.

Remark 4.5.9. All of the results above hold, dually, for an injective class.

Example 4.5.10. As we saw in Example 2.5.8, the injective class of
Eilenberg–Mac Lane spectra does not generate. Hence we can not ex-
pect Adams spectral sequences with respect to this injective class to be
strongly convergent in general.
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Chapter 5

The differential

When working with spectral sequences, the difficult part is often to com-
pute the differentials. New and more efficient ways of computations are
sought after. In this chapter we present results about how the second dif-
ferential in a general Adams spectral sequence can be found using Toda
brackets.

5.1 The differential d1

Consider an Adams resolution with respect to a projective class, as in
Definition 4.2.1. This leads to a spectral sequence in which ds,t

1 is a map
T (Ps,Σ

s−t Y ) −→ T (Σ−1Ps+1,Σs−t Y ). Then by the Yoneda lemma this is
in one-to-one correspondence with a map Σ−1Ps+1 −→ Ps. By definition
ds,t

1 = (Σ
−1δsΣ

−1ps+1)∗, and so we see that the differential corresponds
to the map Σ−1δsΣ

−1ps+1 : Σ−1Ps+1 −→ Ps. We will therefore use the
notation d1 for both of these maps.

The following proposition is found as a dual version in [6, Proposition
2.17].

Proposition 5.1.1. Let θ : P −→ R be a map between projectives. The map
θ appears as d1 in some Adams resolution if and only if it admits a factor-
ization into a P-epic followed by a P-monic.

Proof. That a differential d1 in any Adams spectral sequence has such a
factorization holds by construction. To see that the condition is sufficient,
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suppose we have such a factorization

P Q R
p δ

of θ . Then we can extend the factorization with the cofibers of p and δ
and obtain the following diagram

Cδ Q Cp

R P
δ p

which we again can extend to the right to make an Adams resolution of
Cδ, with d1 = δp.

5.2 The differential d2

We now move on to the differential d2. We will prove dual results to [6,
Proposition 4.1], which applies to Adams spectral sequences with respect
to an injective class.

Consider an Adams spectral sequence with respect to a projective
class P, and recall the notation in (4.1). Let [x] be a class in Es,t

2 , rep-
resented by a morphism x ∈ T (Ps,Σ

s−t Y ). We want to describe the dif-
ferential d2 when applied to [x]. Let d2[x] denote the set of all repres-
entatives of d2([x]). Note that d2([x]) ∈ Es+2,t+1

2 , so d2[x] ⊆ Es+2,t+1
1 =

T (Σ−1Ps+2,Σs−t Y ).
We display x along with the projective resolution of X , and a repres-

entative d2(x) for d2([x])

Xs Xs+1 Xs+2 Xs+3

Ps Ps+1 Ps+2

Σs−t Y.

is is+1 is+2

ps δs
◦ ps+1 δs+1

◦ ps+2 δs+2
◦

x

x̃

d2(x)

Recall that when defining the second differential of a spectral sequence
associated to an exact couple, we started by defining two new morphisms:
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p′ by [i(y)] 7→ [p(y)] and δ′ by [e] 7→ [δ(e)]. Then for our class [x],
d2([x]) = p′δ′([x]) = p′[(xΣ−1δs)]. The map x is a cycle, i.e., it satisfies
xΣ−1δsΣ

−1ps+1 = 0, so we can choose a lift x̃ : Σ−1Xs+2 −→ Σs−t Y of
xΣ−1δs to the cofiber of Σ−1ps+1. This follows by the exactness of

T (Xs+2,Σs−t Y )
i∗s+1−−→ T (Xs+1,Σs−t Y )

p∗s+1−−→ T (Ps+1,Σs−t Y ).

This means precisely that d2([x]) is given by the class [ x̃Σ−1ps+2], since
i( x̃) = (Σ−1is)∗( x̃) = xΣ−1δs, i.e., p′[(xΣ−1δs)] = [p( x̃)] = [ x̃Σ−1ps+2].

Proposition 5.2.1. Let d2[x] ⊆ Es+2,t+1
1 be the subset of all representatives

of d2([x]) ∈ Es+2,t+1
2 . Then we have

d2[x] = 〈xΣ−1δs,Σ
−1ps+1,Σ−1d1〉.

Proof. Since t plays no role in the statement we can assume, without loss
of generality, that t = s.

We have seen that an element of d2[x] is found by choosing a lift x̃ ,
such that it makes the following diagram commute

Σ−2Ps+2 Σ−2Ps+1

Σ−2Xs+2 Σ−1Ps+1 Σ−1Xs+1 Σ−1Xs+1

Σ−1Xs+1 Y.

Σ−1d1

Σ−2ps+2

Σ−2δs+1

Σ−1ps+1 Σ−1 is+1

xΣ−1δs

x̃

The morphism Σ−2ps+2 plays no role here in finding the different maps
in the Toda bracket, as it is unique in the factorization

Σ−2Ps+2 Σ−1Ps+1

Σ−2Xs+2.

Σ−1d1

Σ−2ps+2 Σ−2δs+2

This is because the morphism δs+1 is P-monic and Ps+2 is pro-
jective, which means that (Σ−2δs+2)∗ : T (Σ−2Ps+2,Σ−2Xs+2) −→
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T (Σ−2P+2,Σ−1Ps+1) is injective. Thus, varying over all the possible lifts
x̃ , we get that

d2[x] = 〈xΣ−1δs,Σ
−1ps+1,Σ−1d1〉.

Theorem 5.2.2. As sets we have d2[x] = 〈x , d1,Σ−1d1〉 f c , where the
morphism Σα in (3.2) is fixed as the composition α = α̃Σ−2ps+2, and α̃
is obtained from the octahedron axiom, applied to the composition

d1 = Σ
−1δsΣ

−1ps+1.

Proof. The morphism α̃ is obtained through the diagram below

Σ−1Xs Σ−1Xs

Σ−1Ps+1 Σ−1Xs+1 Σ−1Xs+2 Ps+1

Σ−1Ps+1 Ps Cd1
Ps+1

Σ−1Xs+1 Ps Xs Xs+1.

Σ−1 is+1 Σ−1δs+1Σ−1ps+1

Σ−1δs

d1

Σ−1ps+1

Σ−1δs

Σ−1 is

i

Σα̃

β̃

ps

q

ps+1

is

On the other hand, the morphisms in the bracket where α is fixed consists
of βΣα as in the diagram below

Σ−2Ps+2 Σ−1Ps+1

Σ−1Cd1
Σ−1Ps+1 Ps Cd1

Ps Y.

Σ−1q d1 i

β

x

α

Σ−1d1

(5.1)

Denote this restricted bracket by 〈x , d1,Σ−1d1〉αf c .
We show first that 〈x , d1,Σ−1d1〉αf c ⊆ d2[x]. Let βΣα = βΣα̃Σ−1ps+1

be in the restricted bracket. Then βΣα̃ is a valid choice for the lift of x̃
since

βΣα̃Σ−1is+1 = β iΣ−1δs = xΣ−1δs,
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so βΣα ∈ d2[x].
Now we show that d2[x] ⊆ 〈x , d1,Σ−1d1〉αf c . Let x̃Σ−1ps+1 be in

d2[x]. We want to show that x̃ factors as

Σ−1Ps+1
Σα̃−→ Cd1

β−→ Y

for some β such that

x̃Σ−1ps+2 = βΣα̃Σ
−1ps+2 = βΣα.

By construction the morphism Σ−1is+1Σ
−1is : Σ−1Xs −→ Σ−1Xs+2 is a

fiber of Σα̃. Furthermore x̃Σ−1is+1Σ
−1is = xΣ−1δsΣ

−1is = 0. This means
that x̃ ∈ Im(Σα)∗, by the exactness of the sequence

T (Cd1
, Y )

(Σα)∗−−−→ T (Σ−1Xs+1, Y )
(Σ−1 is+1Σ

−1 is)∗−−−−−−−−−→ T (Σ−1Xs, Y ).

This means that there is a β : Cd1
−→ Y such that βΣα = x̃ . However,

this map β might not satisfy β i = x in (5.1), but we correct it so that it
does.

The two morphisms coincide under precomposition withΣ−1δs, since

xΣ−1δs = x̃Σ−1is+1 = βΣαΣ
−1is+1 = β iΣ−1δs.

The morphism ps is a cofiber ofΣ−1δs, so x−β i = θ ps for some morphism
θ : Xs −→ Y . Then we let the correction be

β ′ = β + θβ̃ .

This satisfies β ′i = β i + θβ̃ i = β i + θ ps = β i + (x − β i) = x . And since
β̃Σα̃ = 0 it also satisfies β ′Σα̃ = (β + θβ̃)Σα̃ = βΣα̃ = x̃ . So we have
found our desired factorization of x̃ .

If we want to use the Toda bracket as a tool for computing differen-
tials in an Adams spectral sequence, a natural question to ask is when
does a Toda bracket arise as the set d2[x] for some Adams resolution.
Inspired by Proposition 5.2.1, we have the following proposition.

Proposition 5.2.3. Let 〈 f3, f2, f1〉 be a Toda bracket. Assume f1 and f2
are maps from projective objects. Assume also that f1 factors through a
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projective as a P-epic followed by a P-monic, f2 is P-epic and f3 factors as
a P-epic followed by some map. This is illustrated in the following diagram:

X0 X1 X2 X3

W1 P

f1 f2 f3

δ2δ1 x

Then there is an Adams resolution such that d2[x] in the induced spectral
sequence equals 〈 f3, f2, f1〉 as sets. The converse also holds.

Proof. We complete the triangles in the natural way to make an Adams
resolution:

W2 X2 W1 W0

P X1 X0

X3

δ2 δ1

x

f2 p1

From here we can extend the Adams resolution in both directions, un-
der the assumption that there are enough projectives. That d2[x] =〈 f3, f3, f1〉 holds by the assumptions along with Proposition 5.2.1.

The converse holds by construction.

Example 5.2.4. The Toda bracket 〈2,η, 2〉 from Example 3.2.4 does not
appear as d2[x] in any Adams spectral sequence with respect to the ghost
projective class S. Assume that 2 admits a factorization into a S-epic
followed by a S-monic:

S p−→ X
δ−→ S.

Recall that the mod 2 Moore spectrum M is the cofiber of the map S 2−→ S.
The octahedron axiom applied to the factorization yields the following
diagram
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S X Cp S1

S S M S1

X S Cδ ΣX

p i

δ

q

α

2

p

i′ q′

β

δ p′

with distinguished rows. Looking at the long exact sequences in homo-
topy of the two top rows

πn(X ) πn(Cp) πn−1(S) πn−1(X )

πn(S) πn(M) πn−1(S) πn−1(S)

0

δ∗

q∗

α∗

p∗

δ∗
i′∗ q′∗ 2

we see that q∗ is injective, so

πn(Cp)∼= Im q∗ = ker p∗ = ker(δp)∗ = ker(2) = 2πn−1(S).

Furthermore, the map q∗ : πn(Cp) −→ πn−1(S) corresponds to the in-
clusion 2πn−1(S) −→ πn−1(S). Similarly, πn(Cδ) ∼= πn(S)/2, and the
map p′∗ : π(S) −→ πn(Cδ) corresponds to the quotient map πn(S) −→
πn(S)/2.

The long exact sequence in homotopy of the Moore cofiber sequence
can be split into short exact sequences

0 −→ πn(S)/2
i′∗−→ πn(M)

q′∗−→ 2πn−1(S) −→ 0.

The map α∗ satisfies q′∗α∗ = q∗, which becomes the identity when con-
sidered as a map onto the subgroup 2πn−1(S) ⊆ πn−1(S). Therefore the
short exact sequences split for all n, contradicting the fact that π2(M) =
Z/4. This means there can be no such factorization of 2.

Recall the n-fold Toda brackets introduced in Chapter 3. We can use
the higher Toda brackets to compute higher differentials, as shown in [6].
In the following theorem we use the notation obtained in Section 4.3.2.
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Theorem 5.2.5. In an Adams spectral sequence with respect to an injective
class, we have that

dr[x] = 〈Σr−1d1, · · · ,Σ2d1,Σd1,Σps+1,δs x〉
where dr[x] denotes the subset of Es+r,t+r−1

1 with all representatives of
dr([x]).

For a proof see [6, Chapter 6].
Proposition 5.2.1, Theorem 5.2.2 and Theorem 5.2.5 look very

powerful at first sight, and it is an unexpected connection between two
seemingly unrelated topics. However, as illustrated by Example 5.2.4,
we can not expect all the known Toda brackets to immediately provide
new and exciting spectral sequences. The requirements to the Adams
resolutions are rather strict, often not resulting in particularly favorable
situations for computing differentials with the Toda brackets. Addition-
ally, computing a Toda bracket can be quite complex, as shown by Ex-
ample 3.2.4, which raises questions about the efficiency of this method
compared to existing methods for computing differentials.
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Appendix A

Some computations of the
Moore spectrum

The following lemmas are a necessary part of computing the Toda bracket
〈2,η, 2〉. The results and proofs are from [2, Chapter 4.6].

Let S be the sphere spectrum. Recall that the mod 2 Moore spectrum

M is the cofiber of S 2−→ S, such that the triangle

S 2−→ S incl−→ M
pinch−−−→ S1 (A.1)

is distinguished.

Lemma A.1. M ∧M � ΣM ∨M.

Proof. To prove this we show that although H∗(M ∧M ;Z/2) ∼= H∗(M ∨
ΣM ;Z/2) asZ/2-modules, we have H∗(M∧M ;Z/2)� H∗(M∨ΣM ;Z/2)
as A-modules, where A denotes the mod 2 Steenrod algebra.

The long exact sequence of cohomology associated to (A.1) is

· · · H i(S) H i(M) H i(S) H i+1(S) · · ·
so we have

H̃ i(M) =

¨
Z/2 i = 0, 1

0 otherwise
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Let x i denote the generator of H̃ i(M). To determine the A-module struc-
ture of H̃∗(M) we need only check what happens to Sq1(x0), as all other
degrees are trivial.

By the Steenrod axioms we have that Sq1 is the Bockstein homo-
morphism associated to the short exact sequence of coefficients

0 Z/2 Z/4 Z/2 0.i p

We can apply the cohomology of M to this, and obtain the long exact
sequence

· · · H̃0(M ;Z/4) H̃0(M ;Z/2) H̃1(M ;Z/2) H̃1(M ;Z/4) · · · .p∗ β i∗

(A.2)
Using the Universal Coefficient Theorem we obtain that H̃0(M ;Z/4) =
HomZ(Z/2,Z/4) ∼= Z/2 and H̃1(M ;Z/4) = Ext1

Z(Z,Z/4) = 0, so (A.2)
simplifies as

· · · Z/2 Z/2 Z/2 0.
p∗ β i∗

We saw before that H̃0(M ;Z/4) = HomZ(Z/2,Z/4), from which we de-
duce that the map i is actually the generator of H̃0(M ;Z/4). Thus, p∗ = 0,
since p ◦ i = 0, and we get that Sq1 = β : H̃0(M ;Z/2) −→ H̃1(M ;Z/2) is
an isomorphism. So Sq1(x0) = x1.

Knowing the cohomology of M we move on to M ∧M and M ∨ΣM .
We see that H̃∗(M ∨ΣM ;Z/2) is generated by elements x0, x1, y1 and y2
in degrees 0,1, 1 and 2 respectively. Furthermore, we have Sq1(x0) = x1
and Sq1(y1) = y2. The Steenrod action is trivial in all other cases.

For M ∧M we have the Künneth formula:

H̃∗(M ∧M ;Z/2)∼= H̃∗(M ;Z/2)⊗ H̃∗(M ;Z/2).

This is then generated by {x0 ⊗ x0, x0 ⊗ x1, x1 ⊗ x0, x1 ⊗ x1}. So as Z/2-
modules, H̃∗(M ∨ΣM ;Z/2) and H̃∗(M ∧ M ;Z/2) are isomorphic. They
are however, not isomorphic as A-modules. The Cartan formula tells us
the following:

• Sq1(x0 ⊗ x0) = x0 ⊗ x1 + x1 ⊗ x0• Sq1(x0 ⊗ x1) = x1 ⊗ x1• Sq2(x0 ⊗ x0) = x1 ⊗ x1
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As Sq2 is trivial on H̃∗(M ∨ΣM ;Z/2), we can conclude that M ∨ΣM �
M ∧M .

Lemma A.2. For the mod 2 Moore spectrum M we have [M , M] =
Z/4{IdM}, in which 2 IdM = incl◦η ◦ pinch 6= 0.

Proof. For this proof we use the long exact Puppe sequence repeatedly.
From (A.1) we get the following sequence of homotopy groups

· · · πi(S) πi(S) πi(M) πi−1(S) πi−1(S) · · ·2∗ incl∗ pinch∗ 2∗ incl∗

which we can split into two short exact sequences at π1(M) and π0(M).
Since coker(2∗) = πi(S)/2 and Im(pinch∗) = ker(2∗) we get the short
exact sequences

0 π0(S)/2 π0(M) 2π−1(S) 0

0 π1(S)/2 π1(M) 2π0(S) 0

incl∗ pinch∗

incl∗ pinch∗

where we have let 2πi(S) := {x ∈ πi(S) : 2x = 0}. Since π−1(S) =
2π0(S) = 0, and π0(S) = Z{Id}, π1(S) = Z/2{η}, we get that

π0(M) = Z/2{incl},
π1(M) = Z/2{incl◦η}.

Next, we can apply [−, M] to (A.1) to obtain the following long exact
sequence

· · · [S1, M] [S1, M] [M , M] [S, M] [S, M] · · ·2∗ pinch∗ incl∗ 2∗

which we again can split into a short exact sequence

0 π1(M)/2 [M , M] 2π0(M) 0
pinch∗ incl∗

to obtain two possibilities for [M , M]. Either [M , M] = Z/2{IdM} ⊕
Z/2{incl◦η} or [M , M] = Z/4{IdM}, as these are the only groups that fit
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into the sequence. The generators follow from the generators of π0(M)
and π1(M). Note also that 2π0(M) = π0(M) = Z/2.

If [M , M] = Z/2⊕ Z/2, then we necessarily have 2 IdM = 0. In this
case, we could apply M ∧− to (A.1), to obtain the triangle

0 M M M ∧M ΣM 0
2 IdM

which splits if 2 IdM = 0. So if [M , M] = Z/2 ⊕ Z/2, then M ∧ M ∼=
ΣM ∨M , contradicting Lemma A.1. Consequently, [M , M] = Z/4{IdM},
with 2 IdM = incl◦η ◦ pinch.
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