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Abstract

Context: The correct prediction of long-lived bugs could help main-
tenance teams to build their plan and to fix more bugs that
often adversely affect software quality and disturb the user experi-
ence across versions in Free/Libre Open-Source Software (FLOSS).
Machine Learning and Text Mining methods have been applied to solve
many real-world prediction problems, including bug report handling.
Objective: Our research aims to compare the accuracy of
ML classifiers on long-lived bug prediction in FLOSS using
BERT- or TF-IDF-based feature extraction. Besides that,
we aim to investigate BERT variants on the same task.
Method: We collected bug reports from six popular FLOSS
and used the Machine Learning classifiers to predict long-lived
bugs. Furthermore, we compare different feature extractors, based
on BERT and TF-IDF methods, in long-lived bug prediction.
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Results: We found that long-lived bug prediction using
BERT-based feature extraction systematically outperformed the
TF-IDF. The SVM and Random Forest outperformed other
classifiers in almost all datasets using BERT. Furthermore,
smaller BERT architectures show themselves as competitive.
Conclusion: Our results demonstrated a promis-
ing avenue to predict long-lived bugs based on BERT
contextual embedding features and fine-tuning procedures.

Keywords: Software maintenance, Bug Tracking System, Long-lived Bugs,
Machine learning, Text mining, Natural Language Processing, BERT

1 Introduction

Today’s software maintenance activities in FLOSS and Closed Source Soft-
ware (CSS) rely mainly on information extracted from bug reports opened in
Bug Tracking Systems (BTS). This kind of system plays a key role as a com-
munication and collaboration tool in both environments. However, with many
users and developers with different expertise spread out worldwide, FLOSS
increased the requirement of using a BTS in the maintenance pipeline.

Users and developers often interact with the maintenance team filling out a
brief description, a long description, and a provisional severity level associated
with a bug in a bug report form provided by a BTS. Next, a maintenance team
member reviews the bug report and either approves or rejects it. If a team
member approves the bug report, he or she provides further information, such
as indicating its priority and assigning a person in charge of fixing it. Due to
the high number of bug reports in medium- and large-size FLOSS projects,
the manual handling of bug reports may be entirely subjective, tiresome, and
error-prone [1–3]. Therefore, a wrong decision within the bug report lifecycle
may strongly affect the planning of maintenance activities.

Allocating resources to fix bugs is another critical activity to plan software
maintenance [4]. Estimating the “bug fix time” is essential for many stakehold-
ers [5, 6]. For software managers, it is one of the main factors that help them
to perform such allocation more effectively [7–9]. Large projects with tight
schedules and limited resources may be unable to close known bugs before
the release. There are many bugs that can be reported over a long period of
time [10, 11]. Software managers must decide which bugs to fix in the current
release and which to defer to the next version. This could accumulate many
unfixed defects [11]. When faced with a lot of bug reports, timely identifica-
tion of bugs with long fixing time may help managers allocate resources more
effectively [8, 12].

Estimating or predicting long-lived bugs are not only critical for software
managers, but also they are essential for the quality assurance team. Software
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bugs with long fixing times can adversely affect the software quality [12]. Struc-
tural problems could emerge in complex software systems if bugs are not fixed
quickly [13]. End-users may be disturbed for a long time, even when there are
only a small number of bugs [14]. Users may switch software to favor the com-
petition [15]. In short, the proper classification of long-lived bugs may increase
customer satisfaction.

In the literature, despite its importance, it seems there is not a com-
mon understanding about what is a long-lived bug [14, 16–18]. While some
authors [14, 16, 19, 20] consider absolute values as thresholds (based on the
release cycle), others [5, 7–9, 11, 21] consider threshold values based on the sta-
tistical distribution of bug-fixing times for each FLOSS project. These different
visions may suggest that the definition of the long-live threshold is related to
particular characteristics of each project (e.g., the size of the team). Despite
this fact, we adopted a conservative one-year threshold that covers at least one
cycle of most projects [14, 16, 17]. Hence, we can safely classify a bug as long-
lived if it survived for more than one year (threshold value). Second, such a
threshold (one year) enables us to compare the population of long-lived bugs
independently and uniformly considering different projects.

Machine Learning (ML) and Text Mining (TM) techniques have solved
many real-world prediction problems, including those related to automating
bug report handling, such as bug severity prediction [14, 18, 22–25]. Advances
in Natural Language Processing (NLP) have shifted the research focus from
traditional to deep-learning-based techniques. Bidirectional Encoder Repre-
sentations from Transformers (BERT), a deep neural learning network for
NLP, have recently surpassed classical text mining approaches in various text
classification tasks [26–28]. There are two approaches to adapting BERT for
particular tasks: feature extraction and fine-tuning. The first method freezes
model weights, and the pre-trained representations are used in a downstream
model like standard feature-based approaches. In the second method, in turn,
the pre-trained model can be unfrozen and fine-tuned on a new task [29].

There are broad research efforts toward the use of BERT and the effect of
its contextual embedding in Software Engineering tasks [30–40]. Even so, to
the best of our knowledge, few studies applied it in long-lived bug prediction
task [41]. Ardimento et al. [41], for instance, yielded relevant results in their
experiment using fine-tuning in this prediction task. However, they carried out
their investigation on only one dataset extracted from LiveCode BTS with a
relatively small number of bug reports.

In this paper, we perform a comparative study related to the use of
BERT-based feature extractors and a fine-tuning approach for long-lived bug
prediction. Furthermore, we compare their accuracy with the traditional TF-
IDF on six popular FLOSS projects. In this context, we evaluate the long-lived
prediction accuracy of five well-known machine learning classifiers when using
BERT and TF-IDF as feature extractors or BERT fine-tuning.

This specific goal leads to the definition of the following Research Ques-
tions (RQs) addressed in our study:
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1. How accurate are ML classifiers when they use BERT as a feature
extractor in predicting long-lived bugs?

2. What is the comparative accuracy of ML classifiers when predicting long-
lived bugs using BERT-based feature extraction or TF-IDF-based feature
extraction?

3. Are smaller BERT variants with fine-tuning better than the approach
that employs BERT as a feature extraction method for long-lived bug
prediction?

The contributions of this paper can be summarized as follows:

• Evaluation of tradition ML classifiers accuracy when they used features
extracted with BERT for long-lived bug prediction;

• A quantitative accuracy comparison between BERT and TF-IDF for
extracting features on the long-lived prediction task;

• Evaluation of the BERT fine-tuning and smaller BERT variants impact
on accuracy in the long-lived prediction task.

We organized the paper as follows. Section 2 provides background concepts
related to bug-tracking systems, text mining, and machine-learning techniques.
Section 3 presents related work. Section 4 describes the methodology used.
Section 5 reports our results. Section 6 describes the significance of our findings
and how they can be interpreted. Section 7 describes the main threats to the
validity of our research. Finally, Section 8 states our conclusions and highlights
possible future research associated with our findings.

2 Background Concepts

We provide in this section a set of fundamental concepts related to the
main contributions of the paper.

2.1 Bug Tracking Systems & Bug Report

Bug Tracking System (BTS) [1] is a system that allows users to open bug
reports and track associated information. A bug report may refer to change
requests, bug fixes, or technical support that could occur during the life cycle
of any given software. It is usually a form that a user should fill out to com-
municate a bug. This information is required to reproduce, diagnose, and fix
a bug. Figure 1 illustrates a bug report from the WineHQ project contain-
ing data that describe bug 4123. If we observe the Status, Reported, and
Modified fields in this bug report, we can note that this bug still exists as of
January 2023 even though been reported on 2005-12-21.

After the user has reported a bug, the development team is responsible for
its assessment, which consists of its approval or rejection. In case of approval,
the team may provide complementary information, for example, assigning a
person responsible for the request or defining the severity level for the bug.
A bug report initially is said to be Unconfirmed. The development team can
change this status to Resolved, if a bug is not confirmed, or to New. The
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Fig. 1: A bug report example from WineHQ (https://bugs.winehq.org/show
bug.cgi?id=4123), as of June 2022.

bug report state is changed to Assigned when someone is in charge of fixing
the bug. Therefore, in the standard flow, the bug report status is assigned to
Resolved (bug fixed), then Verified (bug checked), and finally Closed. During
the bug report lifecycle, there may be other state transitions. The states for
a bug report can vary from project to project, as projects can add or remove
states to match their process. All changes that are registered in a bug report
are often stored in a repository, keeping valuable historical information about
a particular software. [42]

2.2 Machine Learning

Machine Learning (ML) is a field of study of Artificial Intelligence (AI).
It gives computers the ability to learn and improve from data without being
explicitly programmed [43, 44]. There are many types of ML algorithms:
supervised, unsupervised, semi-supervised, and reinforcement learning. The
long-lived bug prediction is considered a supervised learning task. A super-
vised algorithm builds a model based on historical training data features. It
then uses the built model to predict the output or class label for a new sample.

2.2.1 Classifiers

An ML algorithm works over a dataset, which contains many samples xi,
where i = 1, 2, . . . , n. Each instance is composed of {xi1, xi2, ..., xid} input
attributes or independent variables, where d = 1, 2, . . . ,m, and one output

https://bugs.winehq.org/show_bug.cgi?id=4123)
https://bugs.winehq.org/show_bug.cgi?id=4123)
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attribute or dependent variable, xi(m+1). Input attributes are often called fea-
tures, and output attributes are target labels in Machine Learning. Many ML
algorithms can be used in more than one learning task. However, this paper
regards the selected algorithms only in the classification scenario. A brief
description of each classifier used in our experiments is presented below [45]:

• k-Nearest Neighbors (KNN) classifies a new sample based on the geo-
metric distance to the k-nearest labeled neighbors. The KNN commonly
quantifies the proximity among neighbors using the Euclidean distance.
Each instance in a dataset represents a point in an n-dimensional space
in order to calculate this distance.

• Näıve Bayes (NB) decides to which class an instance belongs based
on the Bayesian theorem of conditional probability. The probabilities of
an instance belonging to each of the Ck classes given the instance x is
P (Ck|x). Näıve Bayes classifiers assume that, given the class variable,
the value of a particular feature is independent of the value of any other
feature.

• Neural Network (NN) is a classifier that is inspired by the structure
and functional aspects of biological neural networks [46]. It is structured
as a network of units called neurons, with weighted, directed connections.
Neural network models have been demonstrated to be capable of achieving
remarkable performance in document classification [47].

• Random Forest (RF) relies on two core principles: (i) the creation of
hundreds of decision trees and their combination into a single model; and
(ii) the final decision based on the majority of the considered trees [48].

• Support Vector Machine (SVM) is a classifier in which each feature
vector of each instance is a point in an n-dimensional space. In this space,
SVM learns an optimal way to separate the training instances according
to their class labels. The output of this classifier is a hyperplane, which
maximizes the separation among feature vectors of different classes. Given
a new instance, SVM assigns a label based on which subspace its feature
vector belongs to [49].

A common criterion to assess the prediction performance of classifiers relies
on the use of the Balanced Accuracy [45, 50, 51]. The Balanced Accuracy is
calculated as:

BalancedAccuracy =
TP

TP+FN + TN
FP+TN

2
, (1)

where:
• True Positive (TP): number of instances that were correctly predicted
by the classifier as positive.

• True Negative (TN): number of instances that were correctly predicted
by the classifier as negative.

• False Positive (FP): number of instances that were incorrectly pre-
dicted by the classifier as positive.

• False Negative (FN): number of instances that were incorrectly
predicted by the classifier as negative.
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2.2.2 Hyperparameter Tuning

Adjusting the hyperparameters is critical in Machine Learning. The goal
is to identify parameter values that lead to optimal model accuracy. Each
classifier has its set of hyperparameters, and these values can significantly
impact the classifier performance [52].

Hyperparameter tuning is an iterative activity that occurs during the train-
ing phase of an ML model-building process. In typical protocols, researchers
often employ three standard procedures [53]: (i) following default values spec-
ified in software packages, (ii) manual configuration based on the literature,
experience, or trial-and-error procedures, or (iii) configuring them for opti-
mal predictive performance by using tuning approaches (e.g., grid search or
random search). After adjusting the hyperparameters for a selected classifier,
researchers should train the model again until the predicting model achieves
satisfactory prediction accuracy. When this goal is reached, the predictive
modeling process can be considered complete.

2.3 Text Mining

Common ML classifiers cannot directly process unstructured text (e.g., bug
reports’ summary and description attributes). Therefore, unstructured text
documents are often encoded into more suitable representations in a prepro-
cessing task. Next, the converted content is represented by feature vectors
(points of an n-dimensional space). Text mining is the process of transforming
unstructured text to fit into the Machine Learning pipeline [54]. It is composed
of three primary activities [55]:

• Tokenization is the action of parsing a character stream into a sequence
of tokens by splitting the stream at delimiters. A token is a block of text or
a string of characters (without delimiters such as spaces and punctuation),
a useful portion of the unstructured data.

• Stop word removal eliminates commonly used words that do not pro-
vide relevant information to a particular context, including prepositions,
conjunctions, articles, verbs, nouns, pronouns, adverbs, and adjectives.

• Stemming is the process of reducing or normalizing inflected (or some-
times derived) words into their word stem or base form (e.g., “working”
and “worked” into “work”).

Two of the most traditional ways of representing a document rely on the
use of a bag of words (unigrams) or a bag of bigrams (when two terms appear
consecutively, one after the other) [54]. In this approach, all terms represent
features, and thus the dimension of the feature space is equal to the number
of different terms in all documents (in our context, bug reports).

Methods for assigning weights to features may vary. Two common
approaches are Term Frequency (TF) and Term Frequency-Inverse Document
Frequency (TF-IDF). The former method considers the number of times in
which the term appears in each document. The latter method is a more
complex weighting scheme that considers the frequency of the term in each
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[SEP]
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[SEP]
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Fig. 2: BERTBASE input representation. Since the BERTBASE has 768 hidden
units, each token size representation will be 768 positions. Figure adapted from
Ravichandiran et al. [59].

document and in the whole collection. The importance of a term in the TF-
IDF scheme is proportional to its frequency in a document and inversely
proportional to its frequency in the collection [56].

2.4 Bidirectional Encoder Representations from
Transformers (BERT)

Bidirectional Encoder Representations from Transformers (BERT) [26] is
a deep learning language model which has been successfully utilized in many
NLP tasks, such as question answering and text classification [26, 57, 58].
Unlike other context-free models, which ignore the context and always give
the same static embedding for the word, BERT is an embedding model that
can “understand” the context and then generate the dynamic embedding for
the word on a given context [59].

BERT considers a sentence as any sequence of tokens, and its input can
be a single sentence or a pair of sentences. The token embeddings are gener-
ated from a vocabulary built over Word Piece embeddings with 30,000 tokens.
Figure 2 shows an example of token embeddings for the sentence “The bug
occurs when updating the pretraining mode version”[59]. As the Word Piece
tokenizer did not recognize the “pretraining” word, it will be split into sub-
words (e.g., “pre”, “##train”, and “##ing”) until the tokenizer finds the
subword or until it reaches individual characters, which is handled as the
Out-of-Vocabulary (OOV) word.

BERT adds the [CLS] token at the beginning of the first sentence and is
used for classification tasks. This token holds the aggregate representation of
the input sentence. The [SEP] token indicates the end of each sentence [59].
Figure 3 shows the embedding generation process executed by the Word Piece
tokenizer. First, the tokenizer converts input sentences into tokens before
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Fig. 3: Input representation in BERT, adapted from Devlin et al. [26]. Input
tokens are represented in red color. Token embeddings are represented in yellow
color. Segment embeddings are represented in green color. Position embeddings
are represented in gray color.

figuring out token embeddings. Thereafter, these tokens feed segment and
position embedding computations. Lastly, the tokenizer integrates all embed-
dings and inputs the results into BERT. Figure 3 illustrates three kinds of
embeddings [26].

• Token embedding: the word embedding represented by a vector of
numbers.

• Segment embedding: the fixed embedding that defines if a token
belongs to the first or the second sentence if this second sentence was
inputted.

• Position embedding: the position embedding for each token in a sen-
tence. If there are two sentences, the position in the second sentence
continues from the last position of the first sentence plus one.

The BERT model is pre-trained from two approaches: masked language
modeling and next-sentence prediction. In the first approach, 15% of the word
piece input tokens are randomly masked, and the network is trained to predict
masked words. The model then reads the sentence in both directions to predict
the masked words. In the second approach, BERT receives two sentences as
input and has to predict whether the second one is the subsequent sentence to
the first one.

2.4.1 BERT Variants

BERT has many variant models. Their proposal often aimed to make the
original formulation more efficient or be more adapted to several contexts.
Table 1 shows the descriptions of variants used in our research.

3 Related Work

Giger et al. [21] conducted experiments on bug reports from six FLOSS
projects hosted by Eclipse, Mozilla, and Gnome, and proposed a classifier
based on a decision tree classifier to classify bugs into “fast” or “slow.” Fur-
thermore, they empirically demonstrated that the addition of post-submission
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Table 1: BERT variants. (L) the number of layers, (H) the number of hidden
units, (A) the number of self-attention operations, and (P) millions of param-
eters.

Model Description L H A P

ALBERTBASE [60] A “lite” version of BERT with greatly
reduced number of parameters.

12 768 12 12

BERTL2H128A2 [61] A smaller BERT model is intended for envi-
ronments with restricted computational
resources.

2 128 2 0.5

BERTL4H256A4 [61] A smaller BERT model is intended for envi-
ronments with restricted computational
resources.

4 256 4 4

BERTL4H512A8 [61] A smaller BERT model is intended for envi-
ronments with restricted computational
resources.

4 512 8 16

BERTL8H512A8 [61] A smaller BERT model is intended for envi-
ronments with restricted computational
resources.

8 512 8 32

BERTBASE[26] A smaller BERT model is intended for envi-
ronments with restricted computational
resources.

12 768 12 105

DISTILBERT[62] A small, fast, cheap, and light Transformer
model trained by distilling BERT base
cased model.

6 768 12 55

ELECTRASMALL[63] ELECTRA is a BERT-like model that is
pre-trained as a discriminator in a set-up
resembling a generative adversarial network
(GAN)

4 512 8 24

ELECTRABASE[63] ELECTRA is a BERT-like model that is
pre-trained as a discriminator in a set-up
resembling a generative adversarial network
(GAN)

12 768 12 105

bug report data of up to one month in the feature vector might improve the
model performance.

Lamkanfi et al. [64] observed that a fraction of the conspicuous fix-times
bug reports is often fixed within a few minutes in Eclipse and Mozilla. The
authors proposed to filter out these conspicuous bug reports when using data
mining techniques to predict the fixing times of reported bugs.

Zhang et al. [4] performed an empirical study on bug fixing times in
three projects of CA Technologies company. They proposed a model based
on a Markov chain to predict the number of bugs that could be fixed in
the future. Furthermore, they employed a Monte Carlo simulation to predict
the total fixing time for a given number of bugs. Moreover, they classified
bugs as “fast” and “slow” regarding different threshold times. Akbarinasaji et
al. [12] replicated the study performed by Zhang et al. [4]. Rather than a CSS
project, Akbarinasaji et al. [12] investigated an open-source software project
and confirmed the results achieved by Zhang et al. [4].

Saha et al. [14] extracted the bug repositories from seven well-known
FLOSS projects and analyzed long-lived bugs from five different perspectives:
proportion, severity, assignment, reasons, and the nature of fixes. Although
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less frequent than short-lived bugs, they showed a fair number of long-lived
bugs in FLOSS projects, and more than 90% of them negatively affected user
experience. The reasons for these long-lived bugs are many, including, for
example, longer assignment time and the lack of understanding of their priority.
However, many bugs resulted in long-lived bugs without a specific reason.

Rocha et al. [25] characterized the workflow followed by Mozilla Firefox
developers when resolving bugs. They proposed the concept of bug flow graphs
(BFG) to help understand the workflow. They concluded that (a) when a bug
is not formally assigned to a developer, it takes ten more days to be resolved;
(b) approximately 94% of duplicate bugs are resolved within two days or less
after they appear in the tracking system; (c) incomplete bugs, which are never
assigned to developers, usually take 70 days to be closed; (d) more skilled
developers resolve bugs faster in comparison to less skilled ones; (e) for less
skilled developers, assigning a person responsible for the bug usually takes
more time in comparison to the time taken to fix the bug.

Habayeb et al. [65] proposed a novel approach using Hidden Markov models
and temporal sequences to predict when a bug report will be closed. The
approach is empirically demonstrated using eight years of bug reports collected
from the Firefox project. The results indicate around 10% higher accuracy
than the frequency-based classification approaches.

Ardimento et al. [41] proposed a method based on BERTBASE to pre-
dict bug-fixing time. Their approach combined description and comments
attributes of a bug report to provide for the BERTBASE neural network.
They evaluated their proposed model on Live Codee, a large-scale open-source
project, and they claimed that their proposed approach has an effective abil-
ity to predict a bug in “slow” or “fast.” They used the median to label each
bug report in the training dataset in “slow” and “fast.”

Sepahvand et al. [9] proposed an approach based on Long Short-TermMem-
ory (LSTM) to classify a bug in short fixing time or long fixing time. The
class of each bug report was determined by applying a threshold. Short-fixing
time class is assigned for bugs with a fixing time lesser than the threshold,
and a long-fixing time class is for others. The threshold was the median of
all bug-fixing time extracted from Mozilla from 2008 to 2014). The results
indicate that the proposed method had better performance than the hidden
Markov-based [65] model in the same task.

In our previous work [24], we investigated the population of long-lived bugs
in six popular FLOSS. Also, we confirmed a significant percentage of long-
lived bugs in these projects; we characterized them using many bug report
attributes, which confirmed some differences between short- and long-lived
bugs. Furthermore, we compared the accuracy of five well-known ML classi-
fiers and traditional text mining techniques in long-lived bug prediction. Our
experiments used unstructured text attributes and demonstrated that it is
possible to predict long-lived bugs with good accuracy using basic methods.

There are broad research efforts toward the use of BERT and the effect
of its contextual embedding in Software Engineering tasks: identifying correct
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patches [30], searching and documenting code [31], representing data flow [32],
summarizing code[34], predicting defects [35], detecting and repairing bug [36],
extracting software requirements [37], traceability of software artifacts [38],
and localizing bugs [40].

The studies above present relevant results for researchers in this area.
However, we can observe shortcomings in some works that investigated “long-
lived prediction” itself. First, studies often used a few ML classifiers: Decision
Tree [21], Markov Chain [4], LSTM [9], and BERT [41]. Different from them, in
this paper, we perform a more comprehensive investigation including different
feature extractors and classifiers. We compare the accuracy of five well-known
ML classifiers’ long-lived bug prediction using BERT and TF-IDF as feature
extractors. Also, we detail and discuss cases of success associated with the best
predictors.

Furthermore, another limitation of those studies refers to the fact that they
considered few FLOSS projects. In this paper, we consider six popular FLOSS
projects (Eclipse, Freedesktop, Gnome, GCC, Mozilla, and WineHQ) in our
evaluation protocol.

4 Methodology

Figure 4 presents the methodology used in our experiments to address the
proposed research questions. The methodology follows the traditional machine
learning pipeline that comprises four main steps: data collecting, feature
engineering, model training, and model testing.

Bug Reports
Datasets 

Data Collecting and Preprocessing

No-alphabetical
charcters and  stop

word removing 

Label bug reports

Prepared datasets

Training set

75
% short-lived

long-lived

Testing set 

25
%short-lived

long-lived

Dataset splitting

Training  
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Testing  
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Select bug reports  
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Feature extraction

Feature extractors 

BERT TF-IDF

Feature vectors 
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Training 
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Testing 
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Testing 
dataset

Training 
dataset 

Model Training

Hyper-parameters

Training  
metrics

Train and tune the
model

Perform statistical  
test

Tuned 
model

Statistical Test  
Table

Model Testing

Test model

Testing  
metrics

Fig. 4: The four steps of the experiment methodology are based on a typical
machine learning pipeline: data collecting and preprocessing, feature extrac-
tion, model training, and model testing.
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It is worth noticing that we used only BERTBASE for feature extraction
among existing BERT models. For simplicity, for the rest of this document,
we will use just BERT to stand for the BERTBASE model.

4.1 Data Collecting

First, we downloaded bug reports from Bugzilla repositories of six FLOSS
projects which are fairly used in research papers [1, 2, 24, 64, 66, 67]: Eclipse,
Freedesktop, GCC, Gnome, Mozilla, and WineHQ. Then, we extracted, inves-
tigated, and interpreted their data structure and labeled each bug report as
short-lived or long-lived. Lastly, we stored them in one file per project in a
CSV format. These datasets are publicly available at https://data.mendeley.
com/datasets/v446tfssgj/2 (as of June 2022), and Table 2 shows additional
information about them.

Table 2: FLOSS projects used in our research.

Project URL (As of June 2022)
Number of Bug Reports

Total Training set Testing set

Eclipse https://www.eclipse.org 9540 7155 2385
Freedesktop https://www.freedesktop.org 7626 5719 1907
GCC https://gcc.gnu.org/ 9961 7470 2491
Gnome https://www.gnome.org 7755 5816 1939
Mozilla https://www.mozilla.org 9776 7332 2444
WineHQ https://www.winehq.org 6058 4543 1515

4.2 Data preprocessing

Raw data collected from FLOSS’ Bugzilla BTS were not suitable for train-
ing and testing steps in ML pipeline [68]. The recommended approach to
convert the raw data to an appropriate format is to run procedures to extract,
organize, and structure relevant features to address the proposed research ques-
tions. To accomplish this, we wrote specific codes to perform the following
data preprocessing tasks:

• Selection of bug reports with a Closed or solved status and a Fixed reso-
lution status. The development team effectively fixed this bug report. It
can no longer have altered its resolution date.

• Choosing of relevant attributes: bug id, opened date, description, resolu-
tion date;

• Computation of the bug fix time in days (the resolution date minus the
open date). We considered the resolution date as the ground truth.

• Labeling each bug report in ‘short’ or ‘long-lived’ based on its bug fix
time. We labeled bugs with bug fix time less or equal to its median as
‘short-lived’; otherwise, as ‘long-lived’ [24].

Mendeley Data
Mendeley Data
https://www.eclipse.org
https://www.freedesktop.org
https://gcc.gnu.org/
https://www.gnome.org
https://www.mozilla.org
https://www.winehq.org
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• Cleaning bug report description text to remove out non-alphabetical
characters and English stop words.

Finally, we split each dataset into training (75% of bug reports total) and
testing (25% of bug reports total) sets.There is no fixed rule for selecting the
size of the training set or testing set. A good rule of thumb is 75–80% for
training sets. Higher proportions are a good idea if the number of repetitions
in cross-validation is large [51]. A 75/25 split was used to compare the results
of BERT-based methods with those described in [18].

4.3 Feature Extraction

After the data preprocessing step, we used two distinct strategies to extract
features from bug report descriptions for comparing them in long-lived predic-
tion task, as shown in (Figure 4): BERT or TF-IDF. Although BERT allows
512 tokens per input sentence [26], for saving memory resources and faster
training of the pre-training model, we selected the 128 first tokens of the bug
report description [28, 41]. Then, we generated an embedding feature vector
with 768 positions from the aggregate representation of the input sentence
denoted by [CLS] token of BERT. In turn, we used the 128 words with the
highest score in TF-IDF from the bug report description. In this way, TF-IDF
generated a feature vector of inverse-frequency words with 128 positions.

4.4 Model Training

To train our models for the long-lived bugs predicting task, we selected the
five well-known ML classifiers described in Section 2. They were implemented
them using Scikit-learn1 – a Python Machine Learning Library to build the
predictive models, including a grid search procedure to select the best hyper-
parameters for each classifier in training among the hyperparameters indicated
in Table 3.

The scripts, using the before-mentioned library, evaluated each model using
the Balanced Accuracy metric and reported the resulting values. To select the
best model for each ML classifier, we trained and tested each model using the
Repeated 10× 5 Fold Cross-Validation technique [69],2 as shown in Figure 5.

Table 3 presents the hyperparameters for each ML classifier used in our
study.

Finally, we performed the Wilcoxon signed-rank statistical test [70] (with a
significance level of 95%) to evaluate the statistical significance among the ML
classifier accuracies based on values reported in the Repeated Cross-Validation
procedure (Figure 6). We ran these steps either for BERT or TF-IDF feature
vectors independently.

1https://scikit-learn.org/stable/ (As of June 2022).
2Repeated Cross-Validation n×k: divides a dataset into k folds in n iterations. In each iteration,

it saves a different fold for testing and uses all the others for training [51].

https://scikit-learn.org/stable/
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Table 3: Description of the hyperparameters for each ML classifier investi-
gated.

ML Classifier Hyper-parameters

KNN k: Number of neighbors
Näıve Bayes var smoothing: Portion of the largest variance of all fea-

tures that is added to variances for calculation stability.
Neural Network size: Hidden units

activation: Activation function for the hidden layer.
solver: The solver for weight optimization.
alpha: L2 penalty (regularization term) parameter.

Random Forest max features: The number of features to consider when
looking for the best split.
n estimators: The number of trees in the forest.

SVM C: Regularization cost parameter
gamma: Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’.
kernel: Specifies the kernel type to be used in the algo-
rithm.

4.5 Model Testing

In the testing phase, each of the best long-lived prediction models was
validated with 25% of each bug report testing dataset to measure its balanced
accuracy in an unknown dataset. Furthermore, we ran this step for either
BERT or TF-IDF feature vectors, separately.

5 Results

This section reports our experiments’ results and is organized according to
the raised research questions (Section 1).

5.1 RQ1.How accurate are ML classifiers when they use
BERT as a feature extractor in predicting long-lived
bugs?

Table 4 shows the long-lived bug prediction performance of ML classifiers
for the six projects. In this experiment, we considered the features extracted
from the bug report’s description using BERT. In the figure, we can observe
that SVM was the best in three datasets: 59.5% in Freedesktop, 56.8% in
GCC, and 61.5% in Mozilla. Also, we can see that SVM was slightly worse
than Random Forest (RF) in Eclipse (57.4% versus 57.6%) and Gnome (56.4%
versus 56.6%), and k-NN (57.3% versus 57.9%) in WineHQ.

Table 5 shows a pairwise comparison of the statistical significance for
each ML classifier’s balanced accuracy pair yielded during the Repeated
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Fig. 5: The procedure of repeated cross-validation. The purple folder partition
is the test partition, and the others are the training partitions. The procedure
involves repeating the cross-validation procedure multiple times and reporting
the mean result for each hyperparameter combination across all folds. The best
hyperparameter for the final model is determined by the mean standard error
from each training iteration. This paper assumes that k = 5 and n = 10.

Repeated K-Fold  
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Statistical Significance Test

ML Algorithms &
Hyperparameters
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ML Algorithms &
Hyperparameters
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ML Algorithms &
Hyperparameters
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Fig. 6: The statistical test schema is based on metrics from repeated k-fold
cross-validation of the best model yielded. For each ML algorithm pair, the
test is conducted to determine if there is a statistical difference between them.
Finally, the best of all models is chosen.

Cross-Validation process in the training step, as mentioned in the Method-
ology section. We can observe that the SVM classifier (highlighted in blue)
outperformed the others with statistical significance in many cases.
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Table 4: The performance for all classifiers over all datasets based on the
balanced accuracy metric. The underlined results refer to the best classifier
when using the BERT- or the TF-IDF-based feature extraction for each dataset
in the testing step.

BERT TD-IDF

KNN NB NN RF SVM KNN NB NN RF SVM

Eclipse 0.555 0.563 0.533 0.576 0.574 0.504 0.505 0.505 0.508 0.525
Freedesktop 0.549 0.569 0.531 0.563 0.595 0.497 0.497 0.497 0.504 0.510
GCC 0.542 0.535 0.554 0.557 0.568 0.497 0.517 0.497 0.514 0.502
Gnome 0.554 0.566 0.528 0.566 0.564 0.520 0.556 0.537 0.555 0.540
Mozilla 0.595 0.580 0.570 0.606 0.615 0.500 0.519 0.521 0.513 0.515
WineHQ 0.579 0.550 0.535 0.562 0.573 0.505 0.536 0.515 0.541 0.527

Table 5: The Wilcoxon Signed-Rank statistical significance for predicting
long-lived bugs. Assuming a significance level α = 0.05, each cell shows the
results of one classifier paired with the other. The ‘−’ indicates there is no
statistical difference between the pairs of classifiers (p > α). The direction of
arrows Left (‘←’) and up (‘↑’) indicates the most accurate classifier in terms
of balance accuracy, when (p ≤ α).

KNN NB NN RF SVM KNN NB NN RF SVM

E
cl
ip
se

KNN − ↑ ← ↑ ↑

F
re
ed

es
k
to
p − ↑ ← ↑ ↑

NB ← − ← − − ← − ← ↑ ↑
NN ↑ ↑ − ↑ ↑ ↑ ↑ − ↑ ↑
RF ← − ← − − ← ← ← − ↑

SVM ← − ← − − ← ← ← ← −

G
cc

KNN − − − ↑ ↑

G
n
o
m
e

− − ← ↑ ↑
NB − − − ↑ ↑ − − ← ↑ ↑
NN − − − ↑ ↑ ↑ ↑ − ↑ ↑
RF ← ← ← − ↑ ← ← ← − −

SVM ← ← ← ← − ← ← ← − −

M
o
zi
ll
a

KNN − − ← ↑ ↑

W
in
eH

Q

− ↑ − ↑ ↑
NB − − ← ↑ ↑ ← − ← ↑ ↑
NN ↑ ↑ − ↑ ↑ − ↑ − ↑ ↑
RF ← ← ← − ↑ ← ← ← − ↑

SVM ← ← ← ← − ← ← ← ← −

5.2 RQ2.What is the comparative accuracy of ML
classifiers when predicting long-lived bugs using
BERT-based feature extraction or TF-IDF-based
feature extraction?

Table 4 also shows a comparison between the classifiers’ accuracy perfor-
mance when the long-lived bug prediction relies on features extracted from
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the bug report’s description using BERT or TF-IDF. We can observe that
the long-lived bug prediction’s general performance using BERT-based feature
extraction was systematically better than TF-IDF in all datasets. The most
remarkable difference (9.4%) between classifiers’ performance occurred in the
Mozilla dataset when SVM with BERT reached 61.5% and Neural Network,
52.1%. Only in Gnome, the Neural Network with TF-IDF was slightly better
than this classifier with BERT.

Figure 7 summarizes the accuracy performance difference between ML clas-
sifiers using feature extraction based on BERT and TF-IDF for all project
datasets. The highest difference in favor of BERT was observed for Mozilla
and the lowest, for Gnome.

knn

nb

nn

rf

svm

0%
2%

4%
6%

8%
10%

eclipse
freedesktop
gcc
gnome
mozilla
winehq

Fig. 7: The chart shows the percentage of improved performance obtained by
the studied ML algorithms by using BERT as a feature extractor over the TF-
IDF alternative. A vertex indicates the percentage of balanced accuracy gains
of the best BERT model over the best TD-IDF model in each dataset.

5.3 RQ3: Are smaller BERT variants with fine-tuning
better than the approach that employs BERT as a
feature extraction method for long-lived bug
prediction?

Figure 8 compares the balanced accuracy performance of the BERT vari-
ant’s on the long-lived prediction task. We can note that the long-lived
bug prediction’s general performance using BERT variants in fine-tuning
mode was systematically better than TF-IDF. The best performance by
dataset was yielded by BERTL2H128A2 in Eclipse (56.8%), ELECTRABASE

in Freedesktop (57.6%), BERTL2H128A2 in GCC (57.0%), DISTILBERT in
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Gnome (57.1%), BERTL4H256A4 in Mozilla (59.8%), and BERTL4H512A8

in WineHQ (59.8%). BERT variants had a performance worse than TF-
IDF in four datasets: ALBERTBASE in Eclipse (51.6%) and GCC (50.0%),
BERTBASE in Gnome (54.9%), and BERTL8H512A8 in WineHQ (53.7%). Fur-
thermore, the BERT variants with fine-tuning overcame the BERTBASE as
feature extractor in 3 of 6 datasets: BERTL2H128A2 in GCC (+0.7%), DIS-
TILBERT in GNOME (+0.5%), and BERTL4H512A8 in WineHQ (+3.2%).
Finally, we can observe that smaller BERT variants overcame the larger BERT
variants in 5 of 6 datasets.

6 Discussions

This section discusses the significance of our findings and it is divided by
research question, as the Results section.

6.1 RQ1.How accurate are ML classifiers when it uses
BERT as features extractor in predicting long-lived
bugs?

The results from our experiment to answer the first proposed research ques-
tion indicate that BERT-based feature extraction leads to a good performance
in the long-lived bug prediction problem. Most of the experimental predicting
models outperformed reasonably the random prediction, which is 50% of the
probability of predicting a long-lived bug (Figure ??). The SVM and Random
Forest models seem to have drawn a more precise decision boundary based on
BERT contextual sentence embedding in the testing phase. Thus, they could
separate short-lived bugs from long-lived bugs more accurately than other clas-
sifiers. Furthermore, using a pre-trained network minimized the side effects of
dataset size in the prediction performance. Our datasets are relatively small
and of different sizes. Even so, the best performance score in each dataset was
similar. This performance accuracy can be considered very good for an initial
experiment where we used the basic BERT architecture and fed the feature
extractor with only 128 headed tokens from only one bug report attribute.

6.2 RQ2.What is the comparative accuracy of ML
classifiers when predicting long-lived bugs using
BERT-based feature extraction or TF-IDF-based
feature extraction?

Our results demonstrated that BERT-based feature extraction is better
than TF-IDF-based for long-live bug prediction tasks in investigated FLOSS
projects. The first extraction method was systematically better than the second
in most datasets for most ML classifiers. It seems that contextual embedding
and dense representation may have a superior generalization capability that
can capture similarities among bugs of the same class (short- or long-live bug).
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(a) Eclipse (b) Freedesktop

(c) Gcc (d) Gnome

(e) Mozilla (f) WineHQ

Fig. 8: The balanced accuracy performance for classifiers based on BERT
variants to all datasets. The red line indicates the best ML algorithm in per-
formance using TD-IDF as feature extraction, and the blue line indicates the
best ML algorithm in performance using BERTBASE .

These results confirm the strength of the contextual embedding and denser
feature vector over the traditional bag-of-word strategy [27].
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6.3 RQ3.Are smaller BERT variants with fine-tuning
better than feature extraction method for long-lived
bug prediction?

Finally, our results have shown that BERT variants with smaller architec-
tures (BERTL2H128A2, BERTL4H512A8, BERTL8H512A8, and DISTILBERT)
had a performance in most cases superior to BERT variants with larger archi-
tectures (BERTBERT , ALBERTBERT , and ELECTRABERT ). These results
may be explained by reduced overfitting in smaller than larger deep neural
networks. Furthermore, both feature-extraction and fine-tuning BERT-based
classifiers in most cases overcame classifiers-based on TF-IDF features, which
confirms the strength of the contextual embedding and denser feature vector
over the traditional bag-of-word strategy [27].

7 Threats to Validity

The main threats to the validity of this study are summarized below:
• We have assumed that bug fix times extracted from repositories are cor-
rect. However, the actual time efforts spent by developers involved in
bug-fixing are not publicly available.

• We have considered six repositories, which lead to a collection composed
of more than 50,000 bug reports. Although they are not representative
of the population of all open-source and commercial projects, the char-
acteristics presented by them are similar to those shown in other studied
repositories [14, 21, 64].

• Another limitation is the lack of investigation regarding the impact of
different quantities and truncation methods over description bug report
attributes.

8 Conclusions

Our paper investigated the impact of BERT-based feature extraction on
the accuracy of ML classifiers in contrast with TF-IDF in long-lived predic-
tion tasks. We used six well-known ML classifiers: KNN, Näive Bayes, Neural
Network, Random Forest, and SVM. The datasets used in our experiments
were built from bug reports extracted from six popular datasets: Eclipse,
Freedesktop, Gnome, Gcc, Mozilla, and WineHQ.

The results indicated that the accuracy of ML classifiers using BERT-
based feature extraction, considering only the description attribute, was very
promising. The SVM and Random Forest outperform others in almost all
datasets (RQ1). In comparison, the performance of ML classifiers when they
used feature extraction based on BERT was systematically better than fea-
ture extraction based on TF-IDF. The highest accuracy difference occurred in
Mozilla and the lowest in the Gnome project (RQ2).
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Finally, findings related to RQ3 showed that fine-tuning on smaller BERT
architectures may be a computationally cheaper choice to predict long-lived
bug reports than larger architecture.

A possible venue for future research is to investigate other quantities and
truncating methods (head-only, tail-only, head+tail) for extracting words from
the description attribute. Another research direction is to investigate an end-
to-end deep learning neural network predictor by performing the combination
of fine-tuning on the BERT pre-trained model and bug report structured fields.
Finally, we think that using a Graph Neural Network (GNN) [71–73] might
improve the results for long-live bug prediction problems. The GNN can be
used to encode relationships of bug reports and the temporal evolution of those
relationships and of the reports themselves.
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