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ABSTRACT

We study the influence from a series of factors on the quality
of the registration of VNIR and SWIR hyperspectral images.
We specifically consider the registration of VNIR and SWIR
images of different spatial resolutions acquired in controlled
laboratory conditions on different historical artefacts. This
registration problem is defined by a large scaling difference
and small translation and rotation. We compare four methods
and demonstrate that the largest effects on the quality metrics
are due to the image contents and to the deployment of spe-
cific ranges of spectral bands. In particular, we demonstrate
that using bands of similar nominal wavelengths gives signif-
icant advantage. While those bands have typically low values
of Signal-to-Noise ratio and are frequently discarded, for this
application, they can be treated as a valuable asset.

Index Terms— Hyperspectral imaging, Registration,
VNIR-SWIR, Cultural Heritage

1. INTRODUCTION

In the field of Cultural Heritage, imaging spectroscopy is en-
countering a growing trend in popularity which makes the
technique more accessible to many facilities and laboratories
around the world. As a non-invasive, non-destructive tech-
nique, it represents a reliable tool for documentation, moni-
toring, and analysis of historical artefacts [1]. Another trend
that this field of research is experiencing is the deployment of
spectral data in different modalities and ranges of the electro-
magnetic spectrum. However, such modalities are usually
analyzed and processed independently, with conclusions and
findings that are eventually inferred by combining the indi-
vidual results.

Image registration is a preliminary step that allows the
combined analysis of separate datasets that refer to the same
scene. Data alignment is a compulsory requirement for pixel-
based analysis such as pigment mapping [2, 3] and spectral
unmixing [4] or further fusion processing like pansharpen-
ing and hypersharpening [5, 6]. Therefore, registered images
should be as close as possible to sub-pixel precision, in order
to provide accurate inferences regarding the material prop-
erties. The literature in remote sensing offers a plethora of
articles that address the problem of hyperspectral images reg-

istration, also in the case of different hyperspectral imaging
modalities.

Image registration techniques can be broadly divided into
two families: feature-based and intensity-based approaches
[7]. Feature-based methods require the detection of control
points in both fixed (or reference) and moving images; which
at a later stage are matched according to the similarity of their
constructed feature vectors. Examples of this family are the
SIFT [8] and SURF [9]. Intensity-based methods rely on the
optimization of a cost function that reflects the final quality of
alignment between fixed and moving images. This family is
often adopted to solve multimodal registration problems max-
imizing metrics such as correlation and Mutual Information
(MI). Normally, both approaches are performed on a prede-
fined fixed-moving image pair. However, in the case of hy-
perspectral imaging in two different modalities, these roles
are not defined, i.e., the decision of which spectral set is the
reference depends on the application. In addition, both fixed
and moving datasets are represented by a series of images,
which means that the spectral information can be exploited
to build richer feature vectors, as proposed in several regis-
tration attempts [10, 11, 12]. The abundance of images can
also be considered an asset in generating the most suitable im-
age pair that leads the registration, in the same fashion of the
band selection and band synthesis approaches adopted in hy-
persharpening [6]. In the field of Cultural Heritage imaging,
multimodal registration represents a crucial task, since his-
torical artefacts are often studied in cross-disciplinary frame-
works that require the capturing of images carrying different
information (topography maps, XRF, imaging spectroscopy,
FTIR, etc.). A popular approach was proposed in [13], where
the maximum of the modulus of the wavelet transform is de-
ployed to identify control points and then the local maximum
of normalized cross correlation between phase images helps
in identifying potential matched pairs between fixed and mov-
ing images. The method, referred here as to MWTPXC (Max
Wavelet Transform Phase Cross-Correlation), was developed
mainly for applications on historical paintings.

In this article we tackle the specific problem of registering
spectral data with two hyperspectral imagers working in com-
plementary ranges of the electromagnetic spectrum: Visible-
Near-Infrared (VNIR) and Shortwave-Infrared (SWIR) by
evaluating the influence of selected factors on the quality of



the final aligned result. The capturing of hyperspectral data
for historical artefacts usually takes place in laboratory or in-
situ, with the latter being more challenging as several aspects
- such as the illumination - cannot be controlled as well as in
laboratory conditions. In this work, we adapt and compare
several registration methods to the case of VNIR-SWIR im-
ages. We perform an experiment on images of objects that
mock-up cultural heritage artefacts (paintings, textiles, draw-
ings), which images were acquired in controlled laboratory
conditions. We show that the methods benefiting from prior
scaling and overlapping bands perform the best.

2. IMAGING SET-UP AND PROBLEM
DESCRIPTION

The capturing set-up is illustrated in Fig.1 and it shows the
two HySpex hyperspectral imagers manufactured by NEO
(Norsk Elektro Optikk) - VNIR1800 and SWIR384 - in the
pushbroom configuration. In this system, the translational
stage shifts the scene across the fields of view of the cameras
which synchronously acquire the full spectrum of a single
spatial line per time of exposure. The VNIR camera deploys
186 spectral bands in the range 400-1000 nm, with 1800
pixels on the acquisition line. On the other hand, the SWIR
camera has 288 bands in the range 950-2500 nm, with only
384 pixels on the acquisition line. Thus, a scaling spatial
resolution ratio of approximately 4.6 exists between the two
datasets, while the difference in field of view for the two
imagers - 17° for VNIR and 16° for SWIR - introduces shifts
in the registration problem. The illumination geometry is
designed in a way that the irradiance impinging the target is
not harmful and does not exceed the light dosage limits for
historical artefacts [14]. The relative angles between camera,
target, and lights are the same for both VNIR and SWIR sub-
setups in order to avoid significant differences in intensity
due to the Bidirectional Reflectance Distribution Function
(BRDF) of the object surface. The deployed halogen lights
emit continuously in the range 400-2500 nm, but although
they are of the same model, the reading of illuminance on the
target in lux does not match. For this reason, working with
spectral reflectance factors instead of radiance data will facil-
itate the registration, especially for feature-based methods.

The registration of VNIR and SWIR spectral data can be
regarded as a mild multimodal registration problem, with the
multimodality that arises from the fact that the information
acquired comes from different regions of the electromagnetic
spectrum. However, the two imagers capture the same type of
information (spectral reflectance), and the multimodality be-
comes less accentuated if we consider that there exists a nar-
row interval (950-1000 nm) in which the two datasets share
overlapping nominal wavelengths. At a closer inspection of
the data in the narrow shared region it is possible to observe
that the spectral values do not concatenate accurately. This
is due to a series of factors such as the decrease in signal-to-
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Fig. 1. Schematic representation of the dual camera imaging
set-up.

noise ratio (SNR) at the extremities of the two spectral ranges
[15] (as illustrated in Fig.2), the change in bandwidth between
the two sensors (CMOS and MCT), and the differences in
BRDF that exist at the pixel level, due to spurious differences
in angles between target, camera, and illumination.
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Fig. 2. Signal-to-Noise Ratio of the two hyperspectral im-
agers as a function of wavelength. The curves are obtained
capturing a standardized uniform 99% reflective Spectralon
tile and applying the ratio between the mean and standard de-
viation for each spectral band.

Since the spectral sets are internally co-registered, it is
assumed that is necessary to learn only one homography be-
tween a fixed-moving image pair that can then be applied to
the rest of the moving bands.

3. MATERIAL AND METHODS

In this section we describe the selected factors that potentially
affect the results of the registration performances. In order to
evaluate the quality of registration, five metrics are selected.
Three of them are commonly used to evaluate image similar-
ity: normalized Mutual Information (nMI) [16], Peak Signal
to Noise Ratio (PSNR), and Relative Dimensionless Global
Error (ERGAS) [17]. Two quality metrics are adapted to
suit the evaluation of VNIR-SWIR alignment: the Structural



Similarity Index Measure (SSIM) [18] is modified to account
only for its contrast and structure components and renamed
truncated-SSIM (tSSIM):

tSSIM(X,Y ) =
2σXσY + c

σ2
X + σ2

Y + c
· σXY + c/2

σXσY + c/2
(1)

In which X and Y are the examined images, σ2 the vari-
ance of the image, σXY the covariance, and c = 0.03L2 (with
L being the dynamic range of the images). In order to com-
pare pixel distances across images with significantly different
spatial resolution, the commonly used pixel displacement is
modified to account for the real-world dimension of a pixel,
in a measure here called Ground Sampling Distance Error
(GSDE):

GSDE(X,Y ) = ∆p(X,Y ) · g(X) [µm] (2)

In which ∆p is the classic pixel displacement computed with
the euclidean distance between two matched points in images
X and Y, and g is the ground sampling distance of the fixed
image X (g is approximately 50 µm for VNIR and 200 µm
for SWIR, computed from a 30 cm distance between camera
and target).

The selected factors are of three types: registration meth-
ods, image contents, and related to decisions. The selected
registration methods include feature-based methods like SIFT
[8] and spatio-spectral SIFT [12] (SS SIFT), and a combina-
tion of feature and area based methods such as SIFT followed
by maximization of nMI (SIFT OPT) and MWTPXC [13].
The image contents, which mock-up historical artefacts and
are illustrated in Fig.3, are a drawing on paper (D), a flat paint-
ing (FP), a painting with textural reliefs (RP), and a piece of
textile (T). The factors related to decisions regard: selection
of reference image (VNIR band or SWIR band), considered
spectral range (full or overlap), modality of fixed and moving
images generation (band selection or band synthesis), scaling
(a priori or instrinsic in the homography matrix), and type of
homography (affine or projective).

In this study we perform the image registration task cov-
ering all the combinations of the reported factors. In total,
352 tasks are performed. Some of the factors do not apply
to all the methods, such as SS SIFT that does not require the
generation of a single band and operates only on same spec-
tral ranges. Similarly, MWTPXC requires the two images to
be always scaled to the same size a priori.

When the overlap range is considered, only the last 13
bands of VNIR and first 8 bands of SWIR constitute the avail-
able spectral sets. For the generation of single fixed and mov-
ing image pairs from the spectral sets it was decided to choose
the approaches of band selection and band synthesis. Band
selection picks the two most correlated spectral bands be-
tween VNIR and SWIR sets, while band synthesis generates
the bands using the first component of Principal Component
Analysis (PCA) performed on the images.

Fig. 3. Image contents in sRGB and IR (band-averaging).
From left to right: Drawing on paper (D), Flat painting (FP),
Painting with textural reliefs (RP), Textile (T).

4. RESULTS

The single-image quality metrics are computed after register-
ing a pair of test bands that are located in the overlap range
of the two spectral imagers, while ERGAS is computed on
the spectral datasets of the overlapping range, up-sampling
the SWIR data with linear interpolation to match the nominal
wavelengths of VNIR.

Since the highlighted potential factors are several, a Prin-
cipal Component Analysis was performed to inspect possi-
ble correlations and interactions. Fig.4 reports the loadings
plot of the evaluated conditions along the two first compo-
nents, which roughly explain 30% of the total variance. It is
worth to point out that this percentage is typically a low value.
However, by inspecting the next components (not shown) we
can corroborate similar conclusions. The performance met-
ric scores are highly correlated, taking into account that ER-
GAS and GSDE good performance exhibit a low score and
that nMI, tSSIM and PSNR good performance exhibit a high
score.

From this plot it appears that the most influencing factors
are the selected methods, two of the image contents (D and
RP), and factors like scaling, selected wavelength range, and
band generation. The positions of the loadings with respect to
the metrics suggest that points that lie close to the metric clus-
ter (tSSIM, nMI, PSNR) positively influences the results, and
conversely what lies further away provides a negative contri-
bution. We also conclude that for further examination (and
for simplicity) it is possible to refer to a single quality metric.

To evaluate the influence of the registration methods and
image contents Fig.5 reports the statistics related to normal-
ized Mutual Information in the registration tasks. SIFT OPT
and MWTPXC come out as the best performing approaches,
while SIFT and SS SIFT probably suffer from the intensity
differences that exist between the images. Amongst the im-
age contents, it is clear how the presence of textural reliefs
and specularities negatively affects the results, as in the case
of RP. Quite surprisingly, the textile image T did not pose a
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Fig. 4. Loadings of first 2 components of PCA. Only the
names of the most influential variables reported for clarity.

big challenge, as consistently good results were achieved.
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Fig. 5. Statistics of nMI for groups of registration runs di-
vided into methods (left) and image contents (right).

To better appreciate the influence of the selected factors
on the registration performances it is possible to examine the
image contents individually. We quantified a factor influence
by regressing a linear model that relates the conditions of ob-
servation with the normalized Mutual Information of the reg-
istered images. By using this analytical technique and ap-
propriately normalizing the data, the sign of the regression
coefficients will provide information regarding the nature of
the influence: either positive or negative. By consequence,
the absolute value of the coefficients will give indications on
the degree of influence. A visualization of this analysis is
provided in Fig.6 in which it is possible to observe that the

exploitation of the overlapping range (950-1000 nm) brings
a positive contribution to nMI. Other factors of positive con-
tribution are the selection of the SWIR image as reference,
and the prior scaling (a negative contribution from learning
the scale intrinsically is highlighted). This analysis does not
solve the question on whether it is suggested to proceed with
band selection or band synthesis. Running the same analysis
excluding the observations where SS SIFT is deployed (i.e.,
when band generation is not a factor) it would appear that
band selection works better for the image contents of D, FP
and T, while band synthesis is preferred for RP.
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Fig. 6. Linear model coefficients to describe the factors influ-
ence on nMI. Light-gray triangles pointing to the right denote
a positive influence on the registration result. Conversely,
darker triangles pointing to the left highlight negative effects.

To highlight the positive effects of considering only the
overlapping range of spectral bands, Table 1 reports the val-
ues of the quality metrics of full range against overlap for two
image contents - FP and D - when applying SIFT OPT, us-
ing SWIR as reference, with band synthesis generation, prior
scaling, and affine transformation.

Image nMI tSSIM ERGAS GSDE (µm)

Ideal 2 1 0 0

D
Start 1.13 0.70 1.97 380
Full λ 1.19 0.85 1.66 150
Ov λ 1.29 0.98 1.30 29.1

FP
Start 1.13 0.45 4.51 822
Full λ 1.11 0.45 4.75 996
Ov λ 1.31 0.92 4.58 55.0

Table 1. Registration of some of the quality metrics compar-
ing cases of Full spectral range against Overlap.



5. CONCLUSION

Obtaining sub-pixel precision when registering hyperspectral
images coming from different modalities enables the further
processing and accurate study of historical artefacts. Know-
ing which factors improve or degrade the performances of
alignment is crucial to obtain the best possible results. With
the aid of multivariate techniques we highlighted that in the
case of VNIR-SWIR image registration a prior scaling, the
deployment of SWIR as reference, and the usage of the bands
shared by both imagers contribute positively in achieving
good results. In particular, we advise against discarding spec-
tral bands in the overlapping wavelength range that upon a
first inspection have a lower signal-to-noise ratio, since they
can actually be used as a valuable asset.
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