Computers & Security 128 (2023) 103121

Contents lists available at ScienceDirect = §°s"353$§;5

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Insecurity Refactoring: Automated Injection of Vulnerabilities in n

Source Code

Check for
updates

Felix Schuckert®"* Basel Katt?, Hanno Langweg®"

ANTNU, Norwegian University of Science and Technology, Faculty of Information Technology and Electrical Engineering, Department of Information Security

and Communication Technology, Gjevik Norway

Y HTWG Konstanz University of Applied Sciences, Department of Computer Science, Konstanz Germany

ARTICLE INFO

Article history:

Received 30 April 2021

Revised 21 December 2022
Accepted 24 January 2023
Available online 27 January 2023

Keywords:

Web security

Static code analysis
Refactoring
Vulnerability Pattern
PHP

SQLi

XSS

ABSTRACT

Insecurity Refactoring is a change to the internal structure of software to inject a vulnerability without
changing the observable behavior in a normal use case scenario. An implementation of Insecurity Refac-
toring is formally explained to inject vulnerabilities in source code projects by using static code analysis.
It creates learning examples with source code patterns from known vulnerabilities.

Insecurity Refactoring is achieved by creating an Adversary Controlled Input Dataflow tree based on a
Code Property Graph. The tree is used to find possible injection paths. Transformation of the possible
injection paths allows to inject vulnerabilities. Insertion of data flow patterns introduces different code
patterns from related Common Vulnerabilities and Exposures (CVE) reports. The approach is evaluated on
307 open source projects. Additionally, insecurity-refactored projects are deployed in virtual machines to
be used as learning examples. Different static code analysis tools, dynamic tools and manual inspections
are used with modified projects to confirm the presence of vulnerabilities.

The results show that in 8.1% of the open source projects it is possible to inject vulnerabilities. Differ-
ent inspected code patterns from CVE reports can be inserted using corresponding data flow patterns.
Furthermore the results reveal that the injected vulnerabilities are useful for a small sample size of at-
tendees (n=16). Insecurity Refactoring is useful to automatically generate learning examples to improve
software security training. It uses real projects as base whereas the injected vulnerabilities stem from
real CVE reports. This makes the injected vulnerabilities unique and realistic.

© 2023 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

plications where vulnerabilities are not easy to spot. Using exist-
ing applications with known vulnerabilities is insufficient for train-

Automating the injection of vulnerabilities into a codebase can
yield valuable knowledge for two cases: How easy is it for an at-
tacker to quickly add vulnerabilities in a short period of time?
This is a scenario that could be observed in attacks on PHP Git
repositories where a backdoor was inserted PHP repository - back-
door commit (2021). A second case is training of software devel-
opers for inspections by the help of complex code samples. Often-
times, training samples containing vulnerabilities are manually cre-
ated Du (2011). This requires a significant effort and usually leads
to small applications built around few vulnerabilities. Software in-
spections in the field, however, deals with large and complex ap-

* Corresponding author.
E-mail address: felix.schuckert@htwg-konstanz.de (F. Schuckert).

https://doi.org/10.1016/j.cose.2023.103121

ing situations, because learners are able to find the vulnerabilities
documented in publicly available databases. Hence, automatically
generated vulnerabilities have been proposed, e.g., by Stivalet and
Fong (2016) and Boland and Black (2012). Those automatically gen-
erated samples are artificial and can be used to benchmark tools
for static code analysis.

Our approach is to automatically create learning examples by
modifying existing large projects. To achieve that, we use vulner-
ability patterns to inject vulnerabilities into open source projects.
The use of existing projects ensures that the context of a vulner-
ability is as real as possible. We created source code patterns by
examining vulnerabilities and corresponding fixes in source code
spanning a period of multiple years Schuckert et al. (2017, 2019).
The source code originated from real applications for which vulner-
abilities had been reported with an assigned CVE-ID (CVE: Com-

0167-4048/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2023.103121
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103121&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:felix.schuckert@htwg-konstanz.de
https://doi.org/10.1016/j.cose.2023.103121
http://creativecommons.org/licenses/by/4.0/

E Schuckert, B. Katt and H. Langweg

mon Vulnerabilities and Exposures). Our contribution answers the
following questions:

« Are static code analysis and refactoring valid approaches to in-
ject vulnerabilities in existing projects?

« How can source code patterns from recent vulnerabilities be
represented within the injected vulnerabilities?

« Are the insecurity refactored applications useful for teaching
software security?

Insecurity Refactoring is a change to the internal structure of
software to inject a vulnerability without changing the observable
behavior in a normal use case scenario. We proposed a technique
to conduct insecurity refactoring using static code analysis meth-
ods. An Adversary Controlled Input Dataflow (ACID) tree is con-
structed to find possible injection paths. These possible injection
paths are then transformed into vulnerabilities using patterns from
known vulnerabilities. The implementation is evaluated on open
source projects to find possible injection paths and inject vulnera-
bilities.

Section 2 provides an overview of work related to Insecu-
rity Refactoring and describes the definition of the Code Property
Graph. Section 3 defines and formulates the methods and concepts
proposed in our methodology. Section 4 formulates the tree con-
struction mechanism that is used for the Insecurity Refactoring
process. The definitions of Insecurity Refactoring are described in
Section 5. Section 6 describes the source code pattern language
PL/V and how vulnerabilities are injected. Followed by Section 7,
in which the approach is evaluated on open source projects from
GitHub. In this context the usefulness of the methodology in soft-
ware security training is evaluated by an experiment involved two
groups with different skill levels. The final Section 8 points out
problems and concerns of Insecurity Refactoring.

2. Background

Thomas et al. (2009) developed a tool that replaces database
queries with prepared statements to remove potential SQL Injec-
tion vulnerabilities. They present a prepared statement replace-
ment algorithm (PSR-Algorithm) that separates the SQL query
string from any input strings. They evaluated their tool on IT secu-
rity training projects like WebGoat and 94% of their refactored pre-
pared statements prevented SQL Injection attacks. Maruyama and
Omori (2011) present a security-aware refactoring tool. Normal
refactoring approaches can create unintended security issues. The
focus relies on accessibility of class variables. Refactoring ap-
proaches can change the accessibility without changing the exter-
nal behavior that might result in a security issue. Their tool ac-
tually checks for such security issues and provides refactoring ap-
proaches that do not create such issues.

Dolan-Gavitt et al. (2016) created a tool named Large-scale
Automated Vulnerability Addition (LAVA) that uses dynamic
taint analysis to find locations to inject vulnerabilities in C/C++
projects. The dynamic approach makes the data flow analy-
sis easier. The injected vulnerabilities themselves are artificial.
Nevertheless, injecting vulnerabilities in real projects provides a
more realistic scenario than manually creating a small project
that contains a vulnerability. Also a LAVA-M data set was re-
leased that contains many injected vulnerabilities in C-projects.
That data set is commonly used to evaluate modern fuzzers
Klees et al. (2018) Rawat et al. (2017).

Pewny and Holz (2016) developed the EvilCoder tool similar to
LAVA that injects bugs in C-projects. Similar to this work, the Code
Property Graph is used to find potential injection locations. The fo-
cus relies on memory critical functions and corresponding security
checks. These security checks are replaced by insufficient checks to
create vulnerabilities. An evaluation on four open source projects

Computers & Security 128 (2023) 103121

shows the potential to conduct injections at many different loca-
tions. However, they cannot ensure that an injected vulnerability
is exploitable.

Our approach uses the Code Property Graph defined by
Yamaguchi et al. (2014). The Code Property Graph combines an Ab-
stract Syntax Tree, Control Flow Graph and Program Dependence
Graph into a single graph. They use the graph to find vulnerabili-
ties in C/C++ projects. Backes et al. (2017) extended the Code Prop-
erty Graph to support PHP. We use this PHP graph to create the
Adversary Controlled Input Dataflow tree. Alhuzali et al. (2018) also
used the Code Property Graph to find vulnerabilities in PHP
projects. They added support to automatically create exploits for
the discovered vulnerabilities. The results show that the Code
Property Graph is very useful to discover vulnerabilities in C/C++
and PHP.

The usage of insecurity refactoring to create learning exam-
ple seems promising. Schreuders et al. (2017) developed the Se-
curity Scenario Generator (SecGen) that allows to create multiple
virtual machines containing different vulnerabilities. The vulner-
abilities are defined by modules. Based on the module descrip-
tion, vulnerabilities can be nested and hints can be placed. A
survey that has been used to evaluate the usage of such gener-
ated virtual machines is helpful as learning examples. Yamin and
Katt (2022a) Yamin and Katt (2022b) developed a similar frame-
work to automatically create full cyber security ranges that setup
multiple virtual machines. The focus relies on creating a large
number of virtual machines and the cyber security ranges are used
for different scenarios like attacker/defence CTF events. Based on
the scenario different vulnerabilities are injected to the machines
via ssh. For example, injected vulnerabilities can be weak pass-
words, misconfigurations, components with known vulnerabilities,
etc. Chapman et al. (2014) designed the PicoCTF tool and hosted
a capture the flag (CTF) event where approximately 2,000 teams
participated. The approach was game based. The tasks can either
be viewed in computer game style including a story or in a clas-
sical text view. A survey has been used to evaluate the approach.
The results show that the approach is useful and many other CTF
events have used the PicoCTF tool. Burket et al. (2015) explain the
automatic problem generation (APG) for PicoCTF. The APG allows
to generate CTF tasks that differ for each attending team. A tem-
plated autogen problem uses a fixed template and multiple inputs
(e.g. flag) to generate the CTF task. This allows to detect key shar-
ing between teams but does not prevent sharing the method to
solve the task between teams. In contrast, challenges that are auto-
matically generated without a fixed template have problems with
consistent difficulties, bug prevention, scalability and deployment.
Another PicoCTF event has been held using a templated autogen to
reveal that key-sharing actually exists and can be detected by the
approach.

2.1. Code Property Graph

This section explains the definitions introduced by
Yamaguchi et al. (2014) of the Code Property Graph (CPG)
and traversal functions.

Definition 1. A Code Property Graph G = (V,E, A,) is a directed,
edge-labeled and attributed multigraph. V is the set of nodes, E C
(V x V) is the set of directed edges. The labels of these edges are
defined by A : E — X where alphabet ¥ represents all edge names.
Properties for edges and nodes are assigned by @ : (VUE) x K —
S. K is a set of property keys and S is the set of property values.

The Code Property Graph is based on the Abstract Syntax Tree
(AST). The Abstract Syntax Tree is defined as follows:

Ga = (Va. Ep, Aa. j1a) (1)

E Schuckert, B. Katt and H. Langweg

The Abstract Syntax Tree has one kind of edge labels (parent_of),
which is defined in the set A4. The set u, contains property as-
signments for every node of the Abstract Syntax Tree. For example,
the name of a variable is stored as a property and the value is the
variable name.

The Control Flow Graph is defined as follows:

Ge = (Ve, Ec, Ac, @) (2)

The nodes V- €V, are statements of the programming language.
For example, an assignment is a statement. Edges E- represent the
possible control flow from a statement to another statement. For
the edges, only one kind of label (flows_to) exists that is defined in
Ac. No properties are stored for the Control Flow Graph.

The Program Dependence Graph defines where variables are
used and resolves function calls. The definition for the Program De-
pendence Graph is as follows:

Gp = (Vp, Ep, Ap, 4p) (3)

The nodes Vp €V, are the same nodes as of the Abstract Syntax
Tree. Edges Ep either represent function calls or variable usage.
Function calls have the edge label calls. The variable usages have
the label reaches that point from the variable definitions to the
statements where the variables are used. These edge labels are de-
fined in Ap. For the reaches edges the property up defines the vari-
able name of the variable definition.

Definition 2. A traversal is defined as a function 7 : P(V) — P(V)
that maps a set of nodes to another set of nodes according to a
Code Property Graph G, where P(V) is the power set of V.

The following function definition allows to iterate over an edge:

OUT,(X) = | J{u: (v.u) e EAX((v.u)) =1} (4)
OUT**(X) fb{u cwou) eEAM(nu) =1
- A (v u), k) = s} (5)
INX) = J{v: w.u) e EAr((v,u)) =1} (6)
INFS (X) :ueb{u c(wu) e EAM(v,u) =1
- A (v, u), k) =s} (7)

where X CV is a set of nodes. OUT and IN return all reachable
nodes with the label | and property with key k and value s. The
OUT function follows the direction of the edge and the IN function
is a backward iteration of the edge.

We use following functions:

Filter,(X) = {v e X : p(v)} (8)
Match,(X) = Filter, o TNodes(X) (9)
Types(X) = TypeNode o Filterp, o TNodes (10)
Stmt(X) = Statement (X) (11)

The Filter function returns all nodes of the set X that match the
Boolean predicate p(v). TNodes is defined as a reusable traver-
sal from the root of the Abstract Syntax Tree to all nodes. The
Matchy, uses the TNodes function to traverse all Abstract Syntax
Tree nodes and only returns the nodes that match the filter func-
tion. The Types function iterates the children of the Abstract Syntax
Tree starting from node x € X searching for nodes of the type s. The
Statement (X) functions iterates the parents nodes until it reaches
a statement node. This is important to get the statement where a
specific node x € X is used. We use the short name Stmt instead of
Statement.

Computers & Security 128 (2023) 103121
3. Methodology

The goal of Insecurity Refactoring is to inject vulnerabilities
with different source code patterns into existing projects. This ap-
proach is based on static code analysis concepts. Figure 1 shows
the process to inject vulnerabilities. The Code Property Graph
Yamaguchi et al. (2014) is used as an initial analysis model. Rules
defined in the next section are applied to traverse the Code Prop-
erty Graph to create the Adversary Controlled Input Dataflow
(ACID) tree. The ACID tree is a tree representation of a backward
data flow analysis. In the tree, a path from a leaf to the root rep-
resents data flow from a source to a sink. It is used as another
analysis model to find Possible Injection Paths (PIP) or vulnerabil-
ities. A vulnerability is basically a path (leaf to root) in the tree
that does not contain any sanitization functions. In contrast, a PIP
does contain a sanitization function. A PIP can be transformed to
fit a vulnerability definition. For example, a sanitization method
can be refactored into an insufficient sanitization method. To de-
fine insufficient sanitization methods, the context of the input data
is analyzed using the context rules. The modifications are based on
source code patterns. These patterns are defined in the PL/V pat-
tern language that is described in Section 6.1. Additional source
code patterns can be injected by using the data flow patterns to
add some diversification. The ACID tree uses a tree structure based
on nodes from the Abstract Syntax Tree. The Abstract Syntax Tree
is an abstract representation of the source code. Refactoring is ap-
plied to the Abstract Syntax Tree to create a modified Abstract Syn-
tax Tree. In the last step, the modified Abstract Syntax Tree is used
to generate the insecurity-refactored source code.

3.1. Adversary Controlled Input Dataflow Tree

The first step for Insecurity Refactoring is to find PIPs. A PIP is
a set of source code statements that can be refactored to inject
a vulnerability. This approach focuses on vulnerabilities that have
tainted data controlled by an adversary flowing from a source to a
sink. Examples of vulnerabilities for this type are Cross Site Script-
ing (CWE-79), SQL Injection (CWE-89), Buffer Overflow (CWE-119),
etc. Our approach uses a modified backward taint analysis. A nor-
mal taint analysis stops and removes any data that reaches saniti-
zation methods. The modified taint analysis does not remove such
data, instead it further tracks the data. This allows, in the refactor-
ing step, to remove or modify the sanitization method to inject a
vulnerability.

Data flow analysis can either be done forward (from source to
sink) or backward (from sink to source). We use a backward data
flow analysis using a Code Property Graph and follow specified
rules to create an Adversary Controlled Input Dataflow tree. The
idea is to use a backward data flow analysis following each path
of data that flows into the initial sink. These paths are represented
in a tree, where the root is the sink of a vulnerability. Each leaf
represents data that can reach the sink. Accordingly, a leaf rep-
resents a source. An advantage of creating a tree using backward
data flow analysis is that the ACID tree allows analyzing all data
concatenations that reach a sink. Every leaf represents possible in-
put to reach the sink, but it doesn’t necessarily mean that all of
the leaves are concatenations.

Definition 3. An Adversary Controlled Input Dataflow (ACID) tree
Tac = (Vac, Eac, Aac, tac) (12)

is an ordered, rooted, directed, edge-labeled and attributed out-
tree Deo (1974). The nodes of the tree are defined in the set
Vac € Vy. Accordingly, the tree is based on Abstract Syntax Tree
nodes and each node can be used to access the corresponding ab-
stract syntax sub tree G, from the Code Property Graph. The di-

E Schuckert, B. Katt and H. Langweg

ACID
Rules

Source Code I M Traversal enerate
¥/ ACID Tree

Y

Y

PIP
Def.
[c]

found

A
» > nject Vulnerablllty modify y,| ’
ACID Tree (PIP) Mod AST (Vuln)

PIP ‘? Vuln‘

Search
Possible Injection Paths

Data flow patlems

Computers & Security 128 (2023) 103121

Vuln
Def.

Search
Vulnerabilities

Context
Rules
d

)\ generate |

\I\QAST (Vuin)/

found_w| \ryinerability &

ln ect modrlx>(

Source Code* I
(vulnerable)

Pattern »| Pattern*

Fig. 1. Overview of the Insecurity Refactoring process by using an ACID tree.

rected edges are defined as the set Exc € (Vi x Vac). The edge la-
bel function Ay : E — X4 uses the alphabet X4 to represent all
edge names. The properties for the nodes are defined by the func-
tion wac : Vac x Kac — Sac. The set Ky defines the keys and the set
Sac defines the values. All attributes from the initial Abstract Syn-
tax Tree nodes are found in the ACID tree nodes. Because the tree
is ordered, similar to the Code Property Graph, we add an attribute
with the key childN that stores the child position as a value.

The root node of an ACID tree is defined by:

T'OOtAC = root (VA(_‘, EA(_‘) (13)
=ueVy: iﬂ(o,u) € Exc
It returns the node, to which there are no directed edges pointing.
Additionally, to get all leaf nodes of an ACID tree, we define the
following function:
Lac = L(Vac, Eac) (14)
={veVac: B, e) € Exc}
It returns all nodes that do not have an edge pointing to other
nodes.
The children of a node v can be retrieved with the following
definition:
Cw) ={u: (v,u) € Eg} (15)

It returns a completely ordered set. The order is defined by the
children positions in the tree.

Also, the parent of a node u can be retrieved with the following
function:

p(u) =v e Vyc where (v,u) € Eqc (16)
The function
Path(l) = (1)~ Path(p(l)) (17)

defines a sequence of nodes starting from the leaf node [going
upwards until reaching the root node roots- of the ACID tree.

The siblings of a node can be retrieved with the following func-
tions:

Sib(v) = {u: p(v) = p(u)|u # v} (18)

Bef(v) = {u: p() =

Aft() = {u: p(v) = p(u)|u(u, childN) > (v, childN)} (20)

This allows to get all siblings (Sib), the siblings before (Bef), or
the siblings after (Aft) a node v.

The edge labels are used to specify the data type that flows
from one node to another. The data types are defined in the al-
phabet X, = {String, Numeric, Array, Unknown}. The properties for
the nodes are defined in t. We use the properties to define the dif-
ferent splits in the ACID tree. A split in the ACID tree means that
either data from all sub trees will reach the sink, or only one sub
tree at a time can reach the sink. The link property defines the link
between children. The values are from the alphabet t = {A, ®}. Ex-
cluding is defined by the symbol &. It means that either one of
the sub trees will reach the sink. A concatenation is defined by
the symbol A. It indicates that a concatenation of the children will
reach the sink. We use the cap symbol, since every child has to
add its input to the concatenation. For excluding, we assume that
both paths are reachable in certain instances. Control statements
decide which sub trees will reach the sink, i.e., they check code
reachability.

p(u)|m(u, childN) < u(v, childN)} (19)

3.2. Code example

Figure 2 shows a code example that is used to describe the pro-
cess of Insecurity Refactoring. On line 7, the getParam() function is
used to request the page number from the user. The page num-
ber is checked for being numeric (line 14) and sanitized using the
intval (line 15) function. Hence, no Cross Site Scripting attacks are
possible.

4. ACID Tree Construction

The ACID tree is constructed by traversing the Code Property
Graph. An ACID tree is created for each potential sink. The traver-
sal requires a stack stack.y; that is used to correctly resolve func-
tion calls. The stack stack.,; stores the function calls that are re-
solved by the traversal. The traversal is based on different node
types. The main traversal in the Code Property Graph is over the

E Schuckert, B. Katt and H. Langweg

<?php
function getParam($param)q{
return $_GET [$param];

}

function page($debug, $name){
$page=getParam(’page’) ;

if (is_numeric($page)){
$out = $name . intval($page);
$out = "<a href=’www.url.com/" . $out .
"> link ";
}
else {
$out = "Unknown page";

}

echo $out;

}

>

Fig. 2. Code example shows proper sanitization (line 14 and 15) to prevent Cross
Site Scripting.

Vp nodes from the program dependence graph. We define the fol-
lowing node categories that are used by the Abstract Syntax Tree
G4 and the program dependence graph Gp:

Vassig'n = {1) eVp |U eVy (21)
[ea((v, u), type) = assignment}

Viparam = {V € Vplv € V4 (22)
|pa((v, u), type) = parameter}

Edges (Ep) point from a variable definition to statements (Vp)
where the defined variable is used. Because the traversal is back-
wards, the definitions are traversed. A definition can either be
an assignment (v € Vyg4,) OF it can be a function parameter (v e
Vparam)-

For the Control Flow Graph, the following node categories are
important:

Vfunction = {1) eV |U eVy (23)
|a((v, u), type) = function}

The traversal also traverses concatenations, variables, function
calls and coding constructs. We define the following sets to repre-
sent these node categories:

Vexp = {v € V4 that represent all expression} (24)
Viar = {V € Vexpr|ta (v, type) = variable} (25)
Veon = {V € Vexpr|pa (v, type) = concatenation} (26)
Veait = {v € Vexpr| 1ta (v, type) = call} (27)
Veode = {V € Vexpr|V is a coding construct} (28)

The set Vexp contains all expressions. An expression always has
a return value. The traversal distinguishes expressions between
variables Vyqr, concatenations Vo, function calls V,,; and coding

Computers & Security 128 (2023) 103121

142 1.)
15! $out = $name . Inval($page);
16 $out = " link ";

17:} 22:Variable($out) [link : &)

18: else -

T T Backtrace(— Backtrace()
o } [19:Statement | [16:Statement |
22: echo $out; — Vaassign — Vassign

Variable -) [@]4

(a) Source code.

(b) ACID tree.

Fig. 3. Rules example of Backtrace() using the program dependence graph.

constructs V4. For simplicity, all different concatenations that ex-
ist are unified by having the type concatenation. Coding constructs
are different constructs that depend on the programming language.
For example, in our implementation, the array attribute access is
included. In the Abstract Syntax Tree, it is represented by a dimen-
sion node. The traversal is based on the different categories. For
each powerset P of a category, the corresponding function is used
to traverse the Code Property Graph. The following function

Pos : V4 — N (29)
Pos(v) = p € N|u (v, childnum) = p

allows getting a position of parameter. The position n can be used
to get an expression of a function call with the following function:

CallExp(V, n) = OUTChildnum.n 17y (30)

parent_of

These functions are used in the ACID tree construction to correctly
resolve function calls.

The following function defines backward traversal for the Code
Property Graph:

Backtrace : P(Vyar) — P (Vassign U Vparam) (31)
Backtrace(V) = _J{IN!@rieblev (Seme ({v}))}
vevV

It uses the variable as input and returns the corresponding nodes
where the variables are defined. It uses the Stmt function to get
the statement where the variable v is used. The statement is used
to get possible definitions of the variable v. The results can be
assignments or parameters. Figure 3 shows how the Backtrace()
function is used from the variable $out.

In the ACID tree, these statements are added as children and
the @ defines that the children are mutually excluding. Accord-
ingly, only one of the sub trees can reach the sink. For the variable,
possible definitions are on line 19 and line 16.

Based on the resulting statement type, the graph is traversed
differently. If the statement is an assignment (Vygsign), the following
traversal rules apply to resolve assignments:

Assign : P(Vassign) — P(Vexp) (32)
Assign(V) = OUT ot ()

The Abstract Syntax Tree G, is an ordered tree and the attribute
childnum is used to define the order. The child number one is the
expression that will be assigned. Because the ACID tree is con-
structed by a backward data flow analysis, the defined variable
is added to the ACID tree first, then the assignment statement is
added that is followed by the expression from Assign(). The de-
fined variable is given by the OUT function using the child number
zero.

Figure 4 shows how the rules are applied to line 15.

Variable $out is added first, it is followed by the assignment
node (v € Vyg5ign) Which is followed by the expression.

The following rules apply to resolve concatenations:

Concat : P(Veon) — P(Vexp) (33)
Concat (V) = OUTpgrent_of (V)

E Schuckert, B. Katt and H. Langweg

15:Variable($out)

— Varassign()

5 Statement i — Expassign()

l 15:Concatenation ($name . intval($page)) ‘

15:$out = $name . intval$page);

— Veon
Variable : Assignment : Expression

(a) Source code. (b) ACID tree.

Fig. 4. Rules example of an assignment.

15: Concatenation [link : A |

— CurL(:tM

15: Variable (fﬁmuuu)‘

- Expression

< Concat()

15: Call (intval($page)) \

15: $out = $name . intval($page);

= Viar = Veau
Expression : Concat. [A] : Expression

(a) Source code. (b) ACID tree.

Fig. 5. Rules example of a concatenation.
07: Call (getParam)

= OUTeaus()
‘ 02: Function Definition [link : ¢)] ‘

02: function getParam($param){
03: return $_GET[$param];

= Typereturn()

06 function page($debug, $name){
07: $page = getParam('page’);

= Typereturn()

03: Dimension ($_GET[$param]) ‘

Call -~ OUT_, () —~ FUncDefinition —
Type..,,., [®] 4 Expression(s)

= Vinise

(b) ACID tree.

(a) Source code.

Fig. 6. Rules example of a function call.

The function Concat allows to get the concatenated elements.
Concatenations in the Abstract Syntax Tree use the children as
operands. Accordingly, these are the elements that are concate-
nated and are provided by the OUT function.

Figure 5 shows how the Concat function is applied to the top
expression that is assigned to the variable $out.

The dot symbol is the standard method for string concatenation
in PHP. A concatenation means that all inputs reach the sink in
a concatenated form. Accordingly, the A symbol is added to the
concatenation.

A function call has to be resolved to see if the function passes
data from the input (parameter) to the output (return). The Code
Property Graph already resolves function calls in G¢ by the edges
with the label calls. The following rules apply to resolve function
calls:

CallReturn : P(Vygy) — P(Vexp) (34)
CallReturn (V) = U {Typereturn (OUTculls ({U})) }
veV

< Side-effect: add call to stack stack

The OUT,ys returns the function definitions found in the control
property graph. Because the traversal is a backward data flow anal-
ysis, further analysis has to continue on the output of the function
(return statements). The Typereryrn function finds all return state-
ments inside a function definition. A combination of both functions
Call and Typereturn is used in CallReturn to resolve function calls
for the ACID tree. The resolving function call is put on the stack
stack.q; to correctly resolve parameter expressions.

Figure 6 shows how the CallReturn function is applied to the
source code example.

Computers & Security 128 (2023) 103121

/I news.php
173: page(false, "news");

lG:Parameter(ﬂiname) (link : &) ‘

- an[l(?zzllV < FindCalls()

[173: Call (page(Sdebug, "news")) | [Can ()]
— ParamEzp()

// sample.php
06: function page($debug, $name){

173: String ("news”)

— Literal € Vo,

(b) ACID tree.

Parameter - IN_, O[®] 4 Call§ -
CallExp() - Expression

(a) Source code.

Fig. 7. Rules example of reaching a parameter with an empty call stack.

The function call getParam is passed to the CallReturn function.
It uses the edges E- from the Control Flow Graph to find the cor-
responding function definition of the call on line 2. The Typereturn
function is used to find all possible return statements (line 3) of
the function definition. If more than one return statement is found,
multiple returns are added as mutually excluding ().

For each of these coding constructs, different approaches are re-
quired to correctly continue the traversal. The following definitions
resolve coding constructs:

Code : P(Veoge) = P(Vexp) (35)
Code(V) =

U U {ASTNode;, (p. v), if Match,(v)}

veV pePyge

Because different code constructs require different approaches
to get the correct input, we use the PL/V pattern language de-
scribed in Section 6.1. The set P4, contains all implemented code
construct patterns. The Match function is used to check if the Ab-
stract Syntax Tree node v equals the pattern p. The ASTNode func-
tion returns the corresponding input nodes of the Abstract Syntax
Tree.

As previously stated, the Backtrace function also returns param-
eters. Depending on whether a function call is currently resolved
or not (stack.y; = @), the backward data flow analysis has to tra-
verse differently and is defined as follows:

Param : P(Vparam) — P (Vexp) (36)

{FindCalls({v}), if stack. = @

Param(V) = {J BackToCall(Pos(v)), otherwise

veV

It is a simple function that decides if the FindCalls or BackToCall
is used to traverse parameters Vpgrgm. If the stack stack.q; is not
empty, the function BackToCall : N — Vexp jumps back to the initial
function call found on top of the stack stack.y. The traversal is
continued from the corresponding expression based on the param-
eter position.

If stack.y; is empty, the following rules are applied to find all
calls:

FindCalls : P(Vyaram) — P(Vexp) (37)
FindCalls(V) = (_{CallExp(INeaus({v}). Pos (1))}
veV

The FindCalls function returns all function calls of the function
from the parameter. It uses the function Pos(p) to return the posi-
tion of the parameter in the function definition. The CallExp func-
tion is required to continue the backward data flow analysis from
the correct parameter of the function calls.

Figure 7 shows how a parameter is resolved when the stack is
empty.

The sample.php is from the code example and one call of func-
tion page is found in the news.php file on line 173. Additional
function calls are added as mutually excluding (&) children. The
ParamExp function uses the parameter position to get back the cor-
rect expression of the function call. In the example, the parameter

E Schuckert, B. Katt and H. Langweg

V,
’_ c2 -

07: $page = getParam('page’);

15:Variable($page)

— Ctrl(07 : $page, 14 : $page)
14:Condition(isNumeric)
— Ctrl(07 : $page, 14 : $page)
07:Variable($page)

14: if(is_numeric($page)){
15; $out = $name . intval($page);
|

e

-

V,

c1

Ctrl(V,,,M) — Conditions [@]

= Voar

(a) Source code. (b) ACID tree.

Fig. 8. Rules example of finding condition checks.

is in the second position. Accordingly, the second expression in the
function call is returned that is the string literal "news”. Because
a literal is not found in any of the categories except of Vexp, the
traversal stops here.

Some function calls can be resolved by the control property
graph. Other functions that pass data from a parameter to the re-
turn value are not resolved by the control property graph. For ex-
ample, the intval function will not be resolved by the control prop-
erty graph. To solve that problem, we define the pair Vpqss = (F, 6).
The set F contains all functions that return data from parame-
ters. The mapping from input to output is defined by the set § €
(F x Np). The output of a passthrough function is always the return
value. Inputs are parameters that are referenced by the parame-
ter position by a natural number Ny. If the CallReturn is unable to
resolve the call, the following function will resolve passthrough
functions:

Passthrough : P(Vg) — P(Vexp) (38)
Passthrough(V) = U{CallExp({v}, n)|(v,n) € §}
veV

The function returns the corresponding expression based on the
parameter position n.

4.1. Control functions

If we look into the code sample in Figure 2, the security rele-
vant function is_numeric will not be traversed. This is a sanitization
function call that changes the control flow without changing any
data in the data flow. Accordingly, another step is required to find
security relevant function calls that change the control flow. Such
functions can occur in the traversal of the Backtrace : P(Vyqr) —
P (Vgssign U Vparam) function. For each result, the following functions
allow to find control statements

Ctrl(vargey, Varyse) = (39)

Uty

pathePaths(varges,varyse) vepath

{Filterif({v}) o MatChvarde, {vhH})

where the function Paths returns all possible paths in the Con-
trol Flow Graph G¢ from variable definition vy to variable usage
Vyse. The Filter;;(c) filters only statements that are actually if state-
ments. Additionally, the Matchyqr,, (c) checks if the initial variable
is used inside the if statement. Overall, the Ctrl function returns
all if statements where the variable varg,, is used. In the ACID
tree, the control functions are added in between the variable us-
age and variable definition. The if statements themselves are also
parsed to correctly handle all conditions that are used. A union in
the if statement is a mutually excluding split () in the ACID tree
because only one of the conditions has to be true. For a comple-
ment, both conditions are added in serial to the ACID tree because
both of the conditions have to be true. Figure 8 shows how the
is_numeric is found by the condition check.

Computers & Security 128 (2023) 103121

The Backtrace function returns from the variable $page on line
15 the assignment on line 7. The is_numeric uses the variable $page
and is found in an if statement. Accordingly, it will be added to the
ACID tree.

4.2. Data flow type

The construction of the ACID tree requires labeling the edges
(Aac) corresponding to the flowing data type. The flowing data
type can only be determined by a forward analysis. Accordingly,
the labels are set after the initial ACID tree is constructed. The la-
bels are defined by iterating the nodes of the paths (Path(l)) from
all leaves of the ACID tree. If a node defines a data type change, the
data type changes. For example, the intval() function changes the
data type to numeric. In contrast, a string concatenation changes
the data type to string. All nodes that do not change a data type
will preserve the previous data type.

4.3. ACID tree example

Figure 9 shows the full ACID tree for the initial code example
shown in Figure 2. All leaves are data that can reach the sink. For
each node the corresponding line number is added. An edge label
represents the data type that flows between the nodes. A simple
guide to read an ACID tree is to choose a leaf and go upwards until
you reach the root. If you reach a concatenation, the symbol A is
shown. It means that the data from the other sub trees of that A
node are also included by a concatenation to the sink. In contrast,
the ® means that only either one of the sub trees reaches the sink.
In that case, the other sub trees can be ignored.

In the example, either the "Unknown page” string or the _GET
variable are concatenated (A) with the $name parameter and the
two string values will reach the echo function. The parameter can
be different based on what function call is used. In the example,
the parameter has the string value "news”. The condition functions
isNumeric and intval prevent any Cross Site Scripting attacks.

5. Insecurity Refactoring

Refactoring is defined as a change made to the internal
structure of software to make it easier to understand and less
expensive to modify without changing its observable behavior
Fowler (1999) Mens and Tourwé (2004) Opdyke (1992). Insecurity
refactoring uses a similar approach and we define it as: Insecurity
refactoring is a change to the internal structure of software to inject
a vulnerability without changing the observable behavior in a nor-
mal use case scenario. If the injected vulnerability is exploited, the
observable behavior will change. Accordingly, insecurity refactoring
requires to maintain the normal use of the program. The follow-
ing rules define insecurity refactoring by transforming a PIP into a
vulnerability.

5.1. Vulnerability Description

Vulnerabilities can be described in different ways. For example,
Martin et al. (2005) used the Program Query Language to describe
vulnerabilities. Our focus is on vulnerabilities that rely on data flow
from a source to a sink. We define a vulnerability based on three
sets Vsre, Vg, and Vign. The sources Vg are patterns for retrieval of
tainted data. In the code example the $_ GET global array in line 3
is included in the source pattern set (Vi) because it provides user-
controlled data. The echo function in line 22 is a sink contained in
the sinks set V.

The ACID tree is based on a backward data flow analysis with a
sink and an amount of inputs (sources). The inputs are represented
by the leaves of the ACID tree.

E Schuckert, B. Katt and H. Langweg

22: Variable(Sout) [link : &

String

19: Variable(Sout)|

String

19: Assign

String

19: String(" Unknown page”)

String

Computers & Security 128 (2023) 103121

" 116: Variable(Sout)
String

16: Assign

String

16: Concatenation [link : A |

/ AR e String
String T
16: String(" link "
String
15: Variable(Sout)
String . S Numeric
T T
15: Variable(name) 15: Call intval()
\qu'i Numeric
‘0(, Parameter($name) (link 7\ ‘1, Variable($page)
Numeric
String
‘I 3: Call (page()‘ ‘mn\ ‘n, Variable($page)
String String
173: String("news”) m
String
07: Call (param)
String
String
03: Dimension

Array(String)
03: Variable(_GET)

Fig. 9. ACID tree of the code example from Figure 2.

Definition 4. A data flow path dfp%c = (Tyc, 1) is defined as a pair
containing the ACID tree and a chosen leaf.

The data flow path represents data that flows from the chosen
leaf | into the sink rxc.

The sanitization functions are defined by the set Viq,. Sanitiza-
tion functions from Vsg;, depend on the context and the vulnerabil-
ity type. The following function Suf f allows to check if a sanitiza-
tion function vsg, is sufficient with respect to the data flow path

df plyc:

Suff(vsanv dfpigc) = (40)

True, 3dc: ((Vsan,T00tac),C) €S
and c e Context (df pl,-)
False, otherwise

where
S S((Vsan x Vi) x Cetx)

The set Cx contains all possible context types. The set S defines
for each sanitization function vsq, and sink v, what context c is
required. The function Context() returns a set of all active contexts
for the data flow path. The details of the function are described in
Section 6.2. It returns all contexts that are found in the data flow
path df pr‘C. Accordingly, the function Suf f() checks if the sanitiza-
tion function is sufficient based on the vulnerability type.

Definition 5. The set Vuln,c contains vulnerabilities. A vulnerabil-
ity vulni\c is a data flow path df p,lqc with the following properties:

rootac € Vg (41)
l e Vi (42)
€ Path(l) : v € Vign A Suf f(v, df plc) (43)

A vulnerability exists if tainted data from a leaf [(source)
reaches the root roots (sink) without passing any sanitization
function from set Vsgy. For each vulnerability type, the source, san-
itization functions and sinks are defined. The different sanitization
functions defined in Vi, are sufficient to prevent a vulnerability
depending on the vulnerability type. For example, a sanitization
function to prevent SQL Injection is usually not sufficient to pre-
vent XSS attacks. The code example is not vulnerable because two
sufficient sanitization methods for XSS are used.

5.2. Possible Injection Path

A possible injection path (PIP) is a data flow path in the source
code that can be transformed into a vulnerability. The sets of
sources and sinks are extended by additional sources and sinks
that are usually secure to use. We define the set of PIP sources
as Pse 2 Ve and the set of PIP sinks as Py, 2 V. As an example,
a secure source would be a function that only returns an integer
value from the user. A secure sink could, e.g., be a bind query func-
tion from a parameterized SQL query.

Definition 6. The set Pipsc contains possible injection paths. A
possible injection path pipl,. is a data flow path dfpl,. with the
following properties:

1r00tsc € Pygt (44)
I € Pye (45)
Jv € Path(l) : v € Vign A Suf f(v, df phe) (46)
VI ¢ Ve Vv 100tac & Vgt (47)

E Schuckert, B. Katt and H. Langweg

The PIP definition is similar to a vulnerability definition. A PIP
exists if data from a leaf node I € Py (source) reaches the root
node rootyc € Py (sink). At least one sanitization function (p € Vsan)
in the path (Path(l)) has to be found or at least one secure source
(I ¢ Vgre) or secure sink (rootsc ¢ Vi) has to be found. These re-
quirements ensure that a PIP is not already a vulnerability. The
nodes of the path from [to rooty are contained in Path(l) and
represent the data flow. That path will be used to transform the
vulnerability with different source code patterns.

The code example is by definition a PIP. The path from _GET
variable leaf [€ Py reaches the root node that represents the
sink echo (rootyc € Pys). As requirements, the sanitization functions
intval() and isNumeric() are found. The next section explains the
required code changes to perform insecurity refactoring.

5.3. Injecting a vulnerability

The transformation of a PIP into a vulnerability uses the follow-
ing transformation sets:

Tsre S (Psre X Vi) (48)
Tase < (Pase x Vagg) (49)
Tsan S (Vsan x Vsan) (50)

For the source transformation set Ty, Secure source functions
Psrc € Psre are mapped to insecure functions vg¢ € Vire. In the same
manner, secure sinks pgg € Py are mapped to insecure sinks Vs €
Vsre. The sanitization functions are mapped to each other and de-
pending on the Suf f function that can be used to make the sani-
tization functions insufficient resulting in vulnerabilities. The sets
Tsre, Ty and Tsgn only map functions that can be replaced with
each other without breaking the insecurity refactoring definition.
The possible injection path pip%c can be transformed into a vul-
nerability vulnl’qc, if the following condition check holds:

Check : pipl- — Boolean 1)
Chee(v), ifv=1
o Chas (V). if v = rootac
Check(piphe) = /\ Chsen(v), if v € Vin
vePath(®) | e otherwise

where

Chae() =1 € Ve v AT € T
Chaee () =1 € Vygoe v 3(r,) e Tast
Chsan (V) = =Suf f (v, piphe)
VI, V) € Toan A =Suf f(V, piphe)

The PIP condition check checks that for all (/\) nodes if it is
a sufficient sanitization, secure sink or secure source that there
exists an insecure representation. That ensures that the PIP can
be transformed into a vulnerability. If this condition check returns
False for a PIP pip’AC, it means that additional transformations in
the transformations set are required to inject a vulnerability.

The transformation of a PIP into a vulnerability requires to
modify the ACID tree. The replacement function is defined as fol-
lows:

Replace!, (Tac) = Ty (52)
= (Vac: Ejes Aacs Mac)
where

Vic = Vac \ (v} u {v'}
Ejc = Exc \ {(v.)} U{(V,)}
\{w, n}u{w,v)}

Computers & Security 128 (2023) 103121

(v, u) € Exc
(W, U) € EAC

The Replace function replaces a node v in an ACID tree Ty with
the node v/. It requires to connect the old edges that point to and
from v to the replaced node v'.

Definition 7. A possible injection path pipch that passes the con-
dition check can be transformed into a vulnerability vulnch with
the following function:

Tf . PipAC —)VUIT]AC (53)
Tf(piphe) = (G, 1)
I'=Tfie(D)
Gyc = (Replace] ™" o Replace] s ")

O Replace)” ™) (Gac)

vePath(l)
where
) ifre VdSt
Tfase(r) = {r/ (r,r) € Ty, otherwise
NI if | € Ve
Tfsre(l) = {l/ :(II) € Tye, otherwise
Tfsan (U) =
v, if v ¢ Vsan
" if ~Suf f (v, piphe)

VW) eTann —Suff(v,pipl.), otherwise

The ring operator (o) represent that all those functions have to
be processed to transform a PIP into a vulnerability. In words, the
transformation is done by replacing a secure sink (I ¢ V) by an
insecure sink (! € V4). In the same manner, a secure source is re-
placed by an insecure source. Additionally, all the sanitization func-
tions in the path from source to sink have to be replaced by in-
sufficient sanitization methods. In the code example, the functions
isNumeric and intval (e Vsan) have to be replaced by insufficient
sanitization methods (¢ Vsan).

6. Implementation

This section describes the implemented PL/V pattern language
that is used to detect and inject source code patterns to transform
a PIP into a vulnerability.

6.1. The PL/V pattern language

Source code patterns are described in the PL/V language. PL/V
is a context-free language that can be described in BNF as shown
in Figure 10.

A Pattern consists of multiple code lines. If it is only a single
code line, it can be an expression or a statement. Multiple code
lines represent a statement list in which each line must be a state-
ment. A code line has an identifier id and a parameter list PrmlList.
The identifier represents a language pattern. Language patterns are
used to decouple the source code patterns from specific program-
ming languages. For example, the pattern <=> (%in, %out) repre-
sents an assignment. It uses the symbol = as an identifier. Accord-
ingly, a language pattern exists for the id = . The language patterns
contain the information on how the Abstract Syntax Tree repre-
sentation of a specific language pattern looks like. This allows to
generate the Abstract Syntax Tree of the language patterns.

E Schuckert, B. Katt and H. Langweg

<Pattern> ::= <CodeLines>
<CodeLines> ::= <CodeLine> "\n" <CodeLines>
| <CodeLine>
<CodeLine> ::= "<" <id> ">" <PrmList> ")"
<PrmList> ::= <Param> "," <PrmList>
| <Param>
<Param> ::= <Pattern>
| "%var" | "%in" | "Y%out"
| literal
| <Any>
<Any> 1= "<any>" | "<any>..." | "<any>?"
| "<any>7..."

Fig. 10. BNF of PL/V language.

The parameter list can contain other patterns, literals, variables
and any nodes. The variables input (%in) and output (%out) are spe-
cial case variables that can be used to chain source code patterns.
Additionally, this allows to get input or output nodes of source
code patterns by using the ASTNodey function.

In the example, the input is the expression that represents the
value of the assignment. The output is the variable that will be
assigned to.

Source code patterns can contain < any > parameters with op-
tional (”?”) and multiple suffixes. An "any” parameter means that
the parameter can be anything. The optional suffix (”?”) specifies
that the parameter does not have to exist. The "multiple” suffix
("...”) specifies that any number of parameters can occur, but at
least one parameter has to exist. A combination means that any
number of parameters can occur including none. Literals are fixed
values that are used in the corresponding pattern.

All patterns must contain a input %in and output %out vari-
able except of a source and sink pattern. A pattern representing
a source has only the fixed output variable. In contrast, a pattern
of a sink only has the fixed input variable. Other variables can be
used inside the pattern. For example, if a pattern requires access-
ing a specific key of an array, the key can be set as a variable %var
and be used in further patterns.

The following example stems from our patterns
Insecurity Refactoring (2022). It defines the sanitization pat-
tern representing htmlspecialchars:

< call > (htmlspecialchars, %in, < any > ())

The pattern uses the call language pattern. The call pattern requires
a literal (htmlspecialchars) to define the function name in the Ab-
stract Syntax Tree. The %in defines the input parameter. The html-
specialchars function has an optional parameter that is represented
as < any >. The output is the return value of the function.

For ACID tree construction, different source code patterns are
required. For example, concatenations and the coding constructs
are represented in the PL/V language. To find source code patterns
it is required to have an equal check for each pattern. The follow-
ing function allows to check if a part of the Abstract Syntax Tree
from the Code Property Graph matches the pattern:

Match,(v) = (54)
False, if =Typep(v)
True, ifp=9
A Matchp, (v;), otherwise

Pi.Vi€Cpat (P, V)

The Typep(v) function checks if the type of the Abstract Syntax
Tree node v equals the type of pattern node p. The Cpq (p, v) func-
tion returns pairs of the children from the AST node v and pattern
node p. Matchp(v) checks recursively if the pattern node type is

10

Computers & Security 128 (2023) 103121

the same as the node type from the Abstract Syntax Tree. Param-
eter v represents the root node of the Abstract Syntax Tree that is
checked and p is the root node of the pattern Abstract Syntax Tree.
For simplicity, the any nodes are not specified in the Match, func-
tion. It simply checks based on the suffixes if the corresponding
parameters exist or not.

The different variable nodes (%in, %out, %var) are used to repre-
sent important nodes. They are defined in the PL/V language. The
following function allows to get the corresponding node in the Ab-
stract Syntax Tree G4 based on the variable node x:

ASTNodex(p, V) =

v,

(55)

ifp=x
otherwise

U

Di.Vi€Cpat (p.V)

ASTNode,(p;, v;),

It is a recursive function that searches for the same position in
the Abstract Syntax Tree of the Code Property Graph starting from
node v as in the sub tree of the pattern starting from node p.

6.2. Context analysis

The ACID tree is an analysis model that is used to evaluate the
context. For each data flow path df p,’qc the context can be specified.
A context ¢ can be identified by what is concatenated before the
input (pre) and what is concatenated after the input (post). Instead
of formalizing the context check, we define for each context (c €
C) the function IsContext.(pre, post). The inputs pre and post are
both string values. The function returns a boolean value and uses
different checks to specify if the context c exists for the inputs.

We define the following function to get a set of all contexts for
a data flow path dfpl, :

Context (df phe) = (56)

{c € Cx and IsContext:(Uppre(1), Uppost (1))}
It uses the recursive functions Uppre(I) and Uppes to get the string

values that the input is concatenated with. These functions are de-
fined as follows:

U Down(p(c)). if p(v) =~
Uppre(V) = { ceBefw) (57)
UDppre (p(c)), otherwise
U Down(p(c)), if p(v)=~n
Uppost (V) = { ceAftw) (58)
UPpost (p(0)). otherwise

Up is a recursive function that iterates from the leaf upwards
to the root node. If the parent of node v is a concatenation (A),
data will be concatenated to the input data. Accordingly, that con-
catenated data is the context of the input data. Based on pre or
post context, the corresponding siblings before or after of the in-
put nodes are analyzed using the Down function. In the initial code
example, on line 15 there is a concatenation of the variable $name
and the variable $page. The variable $page is the input from the
user and the variable $name is the context that is concatenated.

The function

Strmg(v) if Typestring(v)
U Down(c), ifv=Ana
Down(v) = { ceCw) (59)
Down(First(v)), ifv=e
Down(C(v)), otherwise

is a recursive function that iterates the tree downwards. If a
concatenation is found, the recursive function of the children
nodes will be united. A problem may occur if an excluding
node & is reached. In the example on line 6, the children from

E Schuckert, B. Katt and H. Langweg

Parameter($name) are excluding. The downwards recursive func-
tion has to decide which mutually excluding child will be used for
the context analysis. Different approaches can be used. Either one
child is selected and used for the context analysis or all children
are checked to see if they result in a similar context. We decided
to use the context of the first child. It is a simple heuristic un-
der the assumption that the context will not differ from other sub
trees. Even if the context is different based on the different sub
trees, at least one sub tree has the analyzed context. Accordingly,
the approach can only ensure the chosen case will be exploitable.

The context analysis of the ACID tree sample in Figure 9 shows
that the user-provided data is concatenated with the String news
and <a href="'www.url.com/ as pre context. The post context is the
String ’ >link . Accordingly, the output on the web page will
be:

link .

In the code example, there is a potential Cross Site Scripting
sink. Accordingly the Cross Site Scripting relevant context checks
are required. In the example, the context check for HTML attribute
context and inside apostrophes context will return true.

6.3. Insert data flow pattern

A main goal of insecurity refactoring is to create learn-
ing examples. Previous research Schuckert et al. (2017)
Schuckert et al. (2018) showed that many interesting source
code patterns are data flow source code patterns. The path Path(l)
defines the nodes from a source to a sink. It also represents the
data flow of the PIP. Depending on what kind of learning example
should be created, different data flow patterns are interesting. For
example, some data flow patterns are difficult to detect by static
code analysis tools Schuckert et al. (2019). If the learning examples
should be more focused on Capture the flag (CTF) events, data flow
patterns can be added that, for example, teach specific techniques
like dynamic function calls. Also data flow patterns can be used to
make the vulnerability difficult to detect by dynamic analysis tools
(e.g. fuzzers).

Definition 8. The transformation of data flow patterns is defined
as a tuple:

Ty = (D, M, jug) (60)

The set D defines all data flow patterns. The set M € (D x D) de-
fines the patterns that can be replaced with other data flow pat-
terns. The function ug : D — R defines what requirements r € R are
required for the inserted data flow pattern d € D. The set R con-
tains all requirements. A requirement r € R is a combination of a
context ¢ € Cx and a boolean that defines if the context must ex-
ist or must not exist. If all requirements for a data flow pattern are
fulfilled, the data flow pattern can be injected without breaking
the insecurity refactoring definition.

Usually the patterns that used to be replace with interesting
data flow patterns are simple like an assignment. Interesting pat-
terns represent different difficulties of the vulnerabilities. The re-
quirements r € R have to be fulfilled to transform the source code
maintaining the insecurity refactoring requirements. For example,
one data flow pattern will redirect to the main page if the tainted
variable is not an integer. The pattern does not contain an exit
statement and the source code later on is still executed (Pattern
found in CVE-2013-3524). This pattern requires that the initial PIP
contains a restriction to integer only variables. The requirement
ensures that the program will still run as normal as long as only
integer values are inserted. But it will change its external behavior
as soon as attackers insert unintended values like a string. The pat-
terns are searched in the path Path(l) using the Matchp(n) func-
tion.

1

Computers & Security 128 (2023) 103121

<def_func>(sanitize, <param_list_1>(<$>(a)),
<stmtlist>(<return>(<$>(a))))

<=>(<$>(func), <s>(sanitize))

<=>(%out, <call_v>(func, %in))

Fig. 11. Function call by string described in the PL/V language.

6.4. Source code modification example

All the code modifications are based on the transformation sets
(Tsre, Tyses Tsan and Typ). Each element of the sets can define differ-
ent variables that are required to perform a code modification. The
modifications are done on the Abstract Syntax Tree (G,). The vari-
ables of the PL/V language represent sub trees of Gu. Figure 12a
shows the code example and Figure 12b shows the insecurity-
refactored source code. Applying the rules to inject a vulnerability
requires to replace the intval function and is_numeric with an in-
sufficient sanitization pattern p € Ty,. The source and sink do not
require any modifications. As described previously, data flow pat-
terns allow to introduce different source code patterns. In the ex-
ample, the assignment (<=> (%out, %in)) pattern on line 7 is used
to introduce a data flow pattern. For that assignment the output
%out is the AST sub tree that represents the variable page. For the
input %in the correspding AST sub tree represents the expression
that is assigned to the variable. In that case, it is the function call
getParam. Figure 11 shows the inserted data flow pattern.

This pattern is difficult for static code analysis tools
Schuckert et al. (2019). The insecurity-refactored source of the PIP
is shown in figure. On line 14, the sanitization function is_numeric
is replaced by the insufficient sanitization function is_string.
On line 15, the sanitization function intval is replaced by the
htmlspecialchars sanitization function. The sanitization function is
insufficient for the inside apostrophes context. It would require an
inside quotes context to be sufficient. A potential Cross Site Script-
ing attack could inject a onclick parameter with Javascript payload.
Lines 7 to 12 show the source code pattern that is difficult for
static code analysis tools. It represents a dynamic function call
using a string value.

All the modifications to inject a vulnerability are done by modi-
fying the Abstract Syntax Tree. The next step is to revert the mod-
ified Abstract Syntax Tree back into actual source code. A simple
program was written that generates PHP source code based on the
Abstract Syntax Tree. An Abstract Syntax Tree uses some kind of
abstraction to unify functions with the same functionality. For ex-
ample, <?= and echo are both represented by an echo function call.
The current approach checks the Abstract Syntax Tree to determine
what lines of code are modified. Only the modified lines are re-
placed by the generated PHP source code and other lines of the
files are maintained. This diminishes the chance that an abstrac-
tion breaks the source code.

The injection of vulnerabilities is semi-automated. For each PIP,
the tool shows the critical sanitization functions that have to be
replaced. The tool provides a list of sanitization functions that are
insufficient for the corresponding context. In addition, patterns can
be selected to be injected. After selecting the injected patterns,
the tool checks if all sanitization functions will be replaced with
insufficient sanitization functions. If all of them are selected, the
vulnerability will be injected. For a fully automated approach, the
patterns could be selected randomly.

7. Evaluation
The evaluation explores whether the Insecurity Refactoring ap-

proach is applicable to real projects. Additionally, it is important to
see if the insecurity-refactored projects break the Insecurity Refac-

https://www.url.com/
https://www.url.com/news

E Schuckert, B. Katt and H. Langweg

Computers & Security 128 (2023) 103121

<7php

function getParam($param){
return $_GET[$param];

}

function page($debug, $name){
$page=getParam(’page’) ;

if (is_numeric($page)){
$out = $name . intval($page);
$out = "<a href=’www.url.com/"

$out . "’> link ";

}

else {
$out =

}

"Unknown page";

echo $out;

<?php
function getParam($param){
return $_GET[$param];

}

function page($debug, $name){

function sanitize($a)

{
return $a;
}
$func = "sanitize";
$page = $func(getParam("page"));

if (is_string($page)){

$out = ($name . htmlspecialchars($page));
$out = "
link ";

¥

else {
$out = "Unknown page";

}

echo $out;

(a) The original code example.

(b) Insecurity-refactored code example.

Fig. 12. Insecurity refactoring using a data flow pattern that is difficult for static code analysis tools (function call by string).

Table 1

Possible injection path data set.
Type Sources (Pyc) Sanitization (Vo) Passthrough (Vpass) — Sinks (Pyg)
All 9 98 164 .
XSS . . . 9
SQLi . . . 77
Eval . . . 1
Unserialize e . . 1

toring definitions. The main condition is that the projects can still Table 2

be executed for normal use. Also the usage as learning example is
evaluated.

7.1. Open source projects

We developed a tool to perform insecurity refactoring on PHP
projects Insecurity Refactoring (2022). First of all, we want to see
if insecurity refactoring can be used to inject vulnerabilities in
open source projects. This requires to define the set of sources,
sinks, etc. Table 1 shows how many entries are in each set. We
retrieved the sets by reviewing the PHP documentation PHP Docu-
mentation (2021). Each sanitization function from Vsg, that passes
through data is also found in the passthrough data set (Vjqss). The
other passthrough functions are mainly functions to manipulate
string values. The SQLi sinks contain different functions because
each database has different PHP drivers. We added all functions
from SQL database drivers we found in the PHP documentation.
Only 9 sources are in our data set that are mainly functionality
from PHP like the global array _GET. Eval and unserialize are differ-
ent vulnerability types. Each of them is represented as a sink for
their category.

A crawler tool was written that crawls GitHub Github (2022) for
projects that contain PHP source code. The corresponding source
code is then checked for PIPs. Table 2 shows the results. 307 open
source projects were scanned. In 25 of these projects PIPs were
found. Accordingly, the tool could inject vulnerabilities in 8.1% of
the projects. It also shows that most of the PIPs are related to

12

Possible injection paths found in 25 open source projects out of 307
scanned projects.

PIP True Positive (Vuln) False Positive (Vuln)
XSS 221 16 57
SQLi 98 37 10
Eval 1 0 1
Unserialize 3 2 0
323 55 68

Cross Site Scripting. Not many projects contained PIPs related to
textiteval or textitunserialize. We also found several vulnerabili-
ties. Those reports were reviewed: 55 true vulnerabilities and 68
false positive reports. Most of the vulnerabilities were found in in-
stallation and testing files or were deliberate vulnerabilities. Three
vulnerabilities were potentially dangerous vulnerabilities in com-
monly used projects. These vulnerabilities were reported by us
to developers and they confirmed and patched the vulnerabilities
(CVE-2020-27163, CVE-2021-3318, CVE-2021-26716). The vulnera-
bility reports also included 68 false positive reports. In these cases
pre-conditions prevent an exploitation. These pre-conditions were
outside the ACID tree and could not be detected. The false positive
vulnerability reports show that not all sanitization approaches can
be detected. Nevertheless, PIPs that are used for insecurity refac-
toring have to contain a detected sanitization function to inject a
vulnerability. This decreases the possibility that an injected vulner-
ability is not exploitable. One problem for Cross Site Scripting ex-

E Schuckert, B. Katt and H. Langweg

4

3

2

1

. 1]
Low

High

W Programming skills
= Web security skills

Experience with static code
analysis tools

m Experience with hacking tools
(nmap, metasploit,...)

Very low Medium Very high

Fig. 13. Pre-Survey CTF event to check the skill level. (n=11)

ists if the Content-Type is set to a secure type (e.g. plain/text). The
ACID tree does not contain the Content-Type. If a PIP is found in a
file that sets a secure Content-Type, the injected vulnerability will
not be exploitable. If no sanitization function is found, but a spe-
cial sanitization function exists, it will not be selected as as PIP.
Accordingly, those false positive reports do not impact the possi-
bility for insecurity refactoring.

The results demonstrate that the concept of insecurity refactor-
ing works on open source projects. By increasing the data set of
sources and sinks, the chances of finding PIPs can be increased.
Adding support for object-oriented data flows to the initial Code
Property Graph will increase the findings.

7.2. Learning examples

Initial evaluation shows that PIPs are found in open source
projects. The next step is to see if the refactoring itself works with-
out breaking the functionality of the projects. Additionally, it is
important to check if the injected vulnerabilities can actually be
used to teach software security. For the evaluation, two exercises
were arranged for two different groups. The exercises are projects
Insecurity Refactoring code samples (2022) that were insecurity-
refactored to contain different vulnerabilities. The groups and the
corresponding exercises are described in the following sections.

Surveys were used for evaluation of the experiment. At the
beginning, a pre-survey was provided to get information about
the skill level of attendees. The exercise itself was a bit differ-
ent for each group. Both used insecurity-refactored projects. For
both groups the insecurity-refactored projects were hosted in vir-
tual machines. This allowed to check if the insecurity refactoring
actually maintained the external behavior of the programs. After
the experiment, a post-survey was provided to see if the exercises
were perceived as difficult or realistic and if attendees experienced
a skill increase.

7.2.1. Experienced group

The first group was a mix of people with different backgrounds.
All of them were training for an upcoming cyber security chal-
lenge. Figure 13 shows the skill level in different categories. The
skill level in programming is overall very high. Also the web se-
curity skills are towards medium high rating. The experience with
different hacking tools is seen as medium and the experience with
static code analysis is low. This group has already experience with
capture the flag events from attending other training events. Fur-
ther, the group is described as the experienced group ("Exp.”).

Based on the experience of the group, the idea for this exer-
cise was to provide the attendees with the insecurity-refactored
projects in virtual machines like in a CTF event. The attendees
were supposed to use their own strategies for detecting vulnera-
bilities. Attendees had access to the virtual machines that also al-
lowed them to access the source code of the projects.

13

Computers & Security 128 (2023) 103121

25

151‘].1 |

Very low Low Medium

® Programming skills
m Web security skills

Experience with static code
analysis tools

m Experience with hacking tools
(nmap, metasploit,...)

High Very high

Fig. 14. Pre-Survey student exercise event to check the skill level. (n=24)

Table 3 shows an overview of the insecurity-refactored projects.
The following four projects were used for insecurity refactoring:
phpBB, EmonCMS, phpRedisAdmin and Adminer. Overall we injected
four SQL Injection vulnerabilities and three Cross Site Scripting
vulnerabilities spread over the four projects. The phpBB project
uses self defined functions for getting user data. We have added
a project specific pattern that represents that functions. Without
that pattern the Insecurity Refactoring tool would not be possi-
ble to detect PIPs in phpBB. Accordingly, the phpBB did not add
any PIPs to the initial evaluation based on scanning open source
projects. The project specific pattern can be found on GitHub but
is disabled at default. Data flow patterns were added, of which
three are difficult for static code analysis tools and two difficult
for dynamic testing tools. One pattern also used the function call
by string pattern described earlier. One vulnerability was a plain
SQL Injection without any sanitization methods and two vulner-
abilities used an insufficient sanitization method for the vulnera-
bility or context. The goal was to create vulnerabilities with dif-
ferent difficulty levels. Additional difficulties can be achieved by
adding data flow patterns. Table 3 shows these patterns and the
corresponding difficulties for different approaches are listed. The
difficulties vary for the different approaches to discover a vulner-
ability. Static code analysis tools (sca), dynamic testing tools (dyn)
and manual inspections (man) have different difficulty levels. For
example, a dynamic tool has problems to detect backdoors that re-
quire specific inputs to bypass sanitization. In contrast, static code
analysis tools usually have more problems detecting different dy-
namic programming approaches or specific source code patterns
Schuckert et al. (2019) Schuckert et al. (2020).

Attendees were grouped into four teams who worked together
to find the vulnerabilities deployed in the virtual machines. The
groups had to provide a report to score points. The report had
to contain how the students discovered the vulnerability, how the
vulnerability can be exploited and how the vulnerability can be
patched. Having a report about discovery, exploitation and patch-
ing allowed us to analyze how the teams solved the tasks. The
event ran for 24 hours. In the first hours, the groups had to dis-
cover the vulnerabilities without any further help. After the ini-
tial 10 hours, hints about the vulnerabilities were released. For ex-
ample, "Some users reported that changing the style of phpBB is
buggy.” In this case the injected vulnerability used the style pa-
rameter in user.php for a SQL Injection vulnerability.

7.2.2. Beginners group

A second evaluation as a learning example was done with a
group of students. The students were relatively new to software
security. Figure 14 shows their initial skill levels. It shows that the
programming skills are higher than the web security skills. This
kind of skill level was expected because the students study com-
puter science and the exercise was done for a software security
class. The group will be described as beginners group ("Beg.”).

E Schuckert, B. Katt and H. Langweg

Computers & Security 128 (2023) 103121

Table 3
Insecurity-refactored projects for the experienced group (Exp.).
Project Type Input parameter DF Pattern Insuff. San. special G1 G2 G3 G4
phpBB SQLi user.php (style) hint v v v v
phpBB SQLi memberlist.php (g) redirect [man.]
phpBB SQLi posting.php (t) backdoor int cast [dyn.]
emonCMS XSS compare.php (feedA) Class storage [sca] htmlspecialchars v v v
emonCMS SQLi admin_controller.php (perPage) htmlspecialchars v
phpRedisAdmin XSS view.php (page) backdoor expl/imp. [dyn/sca] .git dir v v
Adminer XSS table.inc.php (table) function call by string [sca]
Table 4
Insecurity-refactored projects for the beginner group ("Beg.”).
Project Type Input parameter DF Pattern Insuff. San. special
phpBB SQLi user.php (style) Parameter list
phpBB SQLi memberlist.php (g) backdoor int cast [dyn.] Parameter list
phpBB SQLi posting.php (p) redirect [man.] Parameter list
emonCMS XSS compare.php (feedA) Deactivated default san. [sca] Parameter list
emonCMS SQLi admin_controller.php (perPage) function call by string [sca] Parameter list
emonCMS XSS dailyhistogram.php (kwhd) comparing different types [man] Parameter list

Because the group was not experienced with using any static
code analysis or dynamic testing tools, the exercise itself had to
be different. Table 4 shows the insecurity-refactored projects that
were used in this exercise. Only phpBB and EmonCMS were used
to injected different vulnerabilities. This time four SQL Injection
and two Cross Site Scripting vulnerabilities were injected in the
projects. All of them contained different data flow patterns to again
make it difficult for static code analysis tools or dynamic testing
tools. Except for the very simple SQLi vulnerability in phpBB, no
other vulnerabilities are the same as in the data set for the expe-
rienced group. Some inputs are the same, but different data flow
patterns make them different from each other.

Because the students were not familiar with using static code
analysis and dynamic tools, they got tutorials on how to use such
tools. Also the students were provided with a static code analysis
tool and a dynamic tool that they could use. For the exercise, the
students had to scan the provided source code with the static code
analysis tool. As the next step, they had to scan the insecurity-
refactored projects with the provided dynamic tool. The students
got the insecurity-refactored projects deployed in virtual machines
and they separately got the corresponding source code. As the last
step the students were provided with a list of the vulnerable pa-
rameters. This allowed them to check the tools’ results and they
could manually inspect the remaining undetected vulnerabilities.
For each of the steps, the students had to report if it is possible to
exploit the discovered vulnerabilities. No patching of the vulnera-
bilities was required. The time frame for this experiment was four
weeks.

7.2.3. Results

First of all, the insecurity-refactored projects with different pat-
terns were deployed in virtual machines. No strange behavior of
the projects was reported. Accordingly, the insecurity-refactored
projects performed normally as long as no vulnerability was ex-
ploited. One problem in the experienced group was revealed that
at some point attendees found out that the latest version on
GitHub had been used as the base for insecurity refactoring. Then
they started to use the diff command on the insecurity-refactored
projects to find further vulnerabilities. Table 3 shows for each
group (G1-G4) what vulnerabilities have been reported. Three of
seven vulnerabilities were not reported at all. A problem in the be-
ginner group was that it was forced to do the exercise from home.
Therefore, they could not be guided well to use the given tools and
had to rely on the provided tutorials. This was a hurdle that many
of the beginners could not overcome and not all of them finished.

14

25

20

15 W Exploitation (‘Beg.”)

m Discovery (‘Beg.”)
Patching (“Exp”)

m Exploitation (‘Exp.”)

W Discovery (‘Exp.")

10

| |
o [[
Very easy Easy Medium Difficult ~ Very difficult

Fig. 15. Survey results on the difficulty of tasks. (Discovery, Exploitation and Patch-
ing) (n=16)

It was not mandatory to finish the exercise and only 7 of the initial
24 attendees actually finished the exercise.

In the post-survey, attendees were asked how difficult the tasks
had been for them. Figure 15 shows the results combining the dif-
ficulty of discovery, exploitation and patching. For the beginners
group the question about patching did not exist because they did
not patch the vulnerabilities in their exercise. Overall, the results
are towards medium difficulty with being a bit more towards the
difficult side. For an exercise, the medium difficulty is optimal. It
does not overwhelm learners and is not too easy to solve. Experi-
enced attendees point out that they were a bit overwhelmed by
the large projects. Additionally, they pointed out that the tasks
were not isolated like in other CTF events. No such complaints
were voiced in the beginners group, probably because they got
a list of vulnerable parameters. The patching by the experienced
group was described as more on the easy side. The reason is that
most teams used the master version on GitHub as a patch solution.
That is a correct solution, but does not require any skills to patch
the vulnerability.

Figure 16 shows the results of the questions on how real the
tasks were considering bug bounty or code inspections tasks in
real life. The results of both groups are shown in the diagram. It
indicates that the exercise was close to a real life example. Only
two attendees answered that closeness to reality was low.

Attendees were asked how they think their software security
skills improved by that event. The results are shown in Figure 17.
First of all, two members of the experienced group did not see any
skill increase by the event. The other 14 attendees answered that

E Schuckert, B. Katt and H. Langweg

Computers & Security 128 (2023) 103121

Insecurity Refactoring

PHP

ACID Tree Context of input

1. Ins. sanitization function 2. Add data flow pattern
Patterns stem from CVEs

intended as long as the specific input is not provided. Therefore,
they state that it makes the vulnerabilities more realistic. Never-
theless, the injected vulnerability patterns do not stem from real

The EvilCoder approach uses a Code Property Graph. The de-
tection of potential injection locations is done in two steps. In the
first step, for all potential sinks a backwards taint analysis on the
Code Property Graph is started to find sources. In the second step,
for each potential path from a sink to a source, a forward analysis
(source to sink) on the Control Flow Graph is started. In the for-
ward analysis, it is searched for security checks that influence the

Table 5
Comparing methods of LAVA, EvilCoder and Insecurity Refactoring.
Method LAVA EvilCoder
Language C/C+ C/C+
Detection DUA (dynamic) Code Property Graph 1. backward 2. forward (CFG)
Injection Use DUA in sink Invalidate security mechanisms or use security anti patterns
Realismn Synthetic Artificial
8
7
6 [N
vulnerabilities.
5
4 m Real scenarios (“Beg.”)
W Real scenarios (“Exp.”)
3
2
1 I L
0
None Low Medium High Very high

Fig. 16. Post-survey results about how similar the exercise is to real penetration
testing/bug bounty scenarios. (n=16)

6

5
2
1 I I I
0

No incr.

IS

w

m Skill increase (‘Beg.”)
m Skill increase (‘Exp.”)

Lowincr. Mediumincr. High incr. Very highincr.

Fig. 17. Post-survey results if attendees experienced a skill increase from the exer-
cise. (n=16)

they experienced a skill increase in software security skills by the
event.

7.3. Comparative analysis

Previous approaches have used similar procedures to inject vul-
nerabilities. Table 5 shows an overview of methods to inject vul-
nerabilities from both LAVA and EvilCoder as well as Insecurity
Refactoring.

7.3.1. Functional comparison

LAVA uses a dynamic taint analysis to detect DUAs (Dead,
Uncomplicated and Available Data). In words, a DUA is a user-
controlled input that does not change any control flows and is
not concatenated with other variables. Then they search for at-
tack points (ATP) which are near DUAs. An ATP is a sink that can
be transformed to create a vulnerability. The vulnerability injec-
tion transforms the ATP by adding a conditional usage of the cor-
responding DUA.

Compared to our course of action, the dynamic approach re-
quires a running setup of the program. First of all, that makes the
scanning effort more difficult. Nevertheless, the detection should
be more precise. Additionally, the authors state that the injected
vulnerabilities are synthetic, therefore only exploitable if specific
inputs are provided. The condition allows the program to run as

15

control flow based on data from the tainted variable. These secu-
rity checks are transformed to inject the vulnerability. It can either
be injected by invalidating the security checks or by the use of a
security anti-pattern. A security check is invalidated by transform-
ing the conditions to always being true or false. A security anti-
pattern transforms the sink to use patterns that are always critical.
For example, a printf(“%s”, buf) is replaced by printf (buf).

Compared to our approach, the injected vulnerabilities are ar-
tificial. The approach does not ensure the normal behavior of the
program afterwards. The injected vulnerability might be triggered
all the time. Their approach uses a concept to remove security
checks. Many C/C++ vulnerabilities are related to memory bugs
that make length checks critical. Our approach can replace security
checks and functions that transform data (e.g. htmispecialchars()).
The approach to add anti-patterns is similar to our approach of re-
placing secure sinks with insecure sinks.

Overall, our approach is focused towards PHP and correspond-
ing typical vulnerabilities. As PHP is typically used in web-based
applications, the vulnerabilities heavily depend on the context. The
ACID tree is another analysis model on top of the Code Property
Graph that allows to analyze the context of given user input. This
gives us the opportunity to be more specific whether a sanitization
function is sufficient or not. The other approaches do not consider
the context. LAVA tries to minimize that problem by using vari-
ables that are not concatenated with other variables. EvilCoder in-
stead invalidates the whole security check independent of the con-
text. In contrast, our approach is precise, which has the disadvan-
tage of not finding as many potential injection paths. But it main-
tains the normal usage of the program. Our approach provides a
PL/V pattern language that allows to describe the critical patterns.
Additionally, our patterns stem from existing CVEs to maintain pat-
terns of realistic vulnerabilities. By definition all injected vulner-
abilities are artificial, including our approach. Insecurity Refactor-
ing injects patterns that stem from CVE reports in existing projects
to keep the vulnerabilities as realistic as possible. In addition, the
data flow patterns can be used to introduce difficulties based on
the pattern.

7.3.2. Experimental comparison

The EvilCoder approach to find PIPs is similar to our approach.
An experiment with the same programs as input is not possible
because EvilCoder uses C and our approach uses PHP as input.
Nevertheless, we compare their results from scanning open source
projects to our results from scanning open source projects in detail.
Table 6 shows the results that EvilCoder got on four open source

E Schuckert, B. Katt and H. Langweg

Computers & Security 128 (2023) 103121

Table 6
Comparing results of EvilCoder and Insecurity Refactoring.
EvilCoder
libpng vsftpd wget busybox

Lines of code 40,004 20,046 137,234 265,887
Sources 9 3 21 152
Sinks 98 13 453 573
Unique Source-Sink 158 22 22 30
Source-Sink paths 22,516 786 1,882 2,905

Insecurity Refactoring

Adminer EmonCMS phpBB phpRedisAdmin
Lines of code 27,606 26,383 289,800 2,022
Sources 752 138 552 (223) 210
Sinks 1,386 3,417 3,795 (3,795) 478
Unique Source-Sink 39 13 188 (0) 25
Source-Sink paths (PIPs) 65 14 292 (0) 30

projects and that we achieved for the same number of projects.
The results include a special pattern for the custom phpBB func-
tion to retrieve user data. Without that pattern, Insecurity Refac-
toring cannot find a PIP. The results without the pattern are shown
in brackets. First of all, the results show that Insecurity Refactoring
finds a lot more sources and sinks compared to EvilCoder. A rea-
son for that is that PHP web vulnerabilities have a different kind of
sinks and sources. For example, for XSS every function that prints
text on a web page will be a possible sink. This includes functions
that just print static text. A unique source-sink stands for at least
one data flow path between a specific source and sink. The In-
security Refactoring flags an ACID tree that contains at least one
path from source to sink as a PIP. It does not count each leave
as an additional PIP. In contrast, source-sink paths count all pos-
sible paths that are found between sources and sinks. First of all,
the results show that EvilCoder finds more unique source-sinks per
given sources and sinks compared to Insecurity Refactoring. Com-
pared to the lines of code, the unique source-sink pairs found are
in a similar range. For the source-sink paths, EvilCoder finds more
paths. The different code base and vulnerabilities might explain
that. Nevertheless, an implementation difference here is that Evil-
Coder tracks each control flow path that can be taken. The ACID
tree combines such control flow paths. Another path (split in the
ACID tree) would only be created when an if statement contains a
union that then will be represented as an excluding (&) split.

As a next step, the vulnerability injection can be evaluated.
EvilCoder ships only two kinds of instrumentation on the GitHub
project. They state that it can be extended to create more vari-
ations. Here is a gap between their approach and ours. Our ap-
proach evaluates if a sanitization function is sufficient for a given
context. EvilCoder only provides the possibility to replace an if
statement with an instrumentation. Our approach allows more
variations for a given PIP (source-sink). For example, for a given
PIP it is allowed to replace a source with 5 other sources, 10 differ-
ent data flow patterns can be inserted, and 9 different sanitization
functions would be insufficient. This allows to inject a vulnerability
in 5% 10 %9 = 450 different permutations. This is an advantage of
our approach over the EvilCoder approach. Small patterns can be
defined and those patterns can be combined to inject vulnerabili-
ties.

Nevertheless, the comparison between two tools that work with
different vulnerabilities and on source code in different program-
ming languages cannot be compared empirically. Our experiment
shows that EvilCoder provides more possibilities to inject vulnera-
bilities that use different data flow paths. In contrast, the Insecu-
rity Refactoring approach allows to inject many different permuta-
tions of a vulnerability.

16

8. Discussion

Insecurity refactoring is a novel method that injects vulnerabil-
ities in projects based on source code patterns gathered from vul-
nerabilities in CVE reports. It shows that PIPs can be found and
transformed into vulnerabilities. Also some patterns can be added
that make detection by static code analysis tools difficult. One eth-
ical question is if developing and publishing such a tool might be
more harmful than useful. The main idea is to actually use insecu-
rity refactoring to create learning examples. The tool could also be
used maliciously to inject vulnerabilities in projects that are ac-
tually deployed in productive systems. For example, a malicious
Git software could use insecurity refactoring to inject vulnerabili-
ties before it pushes code changes to the Git server. Such an attack
scenario requires that the Git server does not review pull requests.
Another scenario might be that the Git client that pulls the source
code is malicious. The client could perform insecurity refactoring
on each pull request. This is a possible attack scenario but requires
to add the malicious Git client on the server in the first place. We
see such attack scenarios as more artificial than actually relevant
in practice.

As learning examples, a defined difficulty of the vulnerabilities
would be beneficial. Our evaluation shows that most of the atten-
dees reported skill increase attending an event that used vulnera-
bilities generated by insecurity refactoring. Some form of difficulty
rating for the different patterns would be useful. For now we can
only predict the difficulty based on how large the initial project
source code is and whether we added some special patterns. The
results of the evaluation show that some attendees would like to
have hints as to where vulnerabilities are. Accordingly, the scenario
of the exercise itself is also important. Insecurity refactoring al-
lows to inject vulnerabilities in real projects to get vulnerability
examples as real as possible. Nevertheless, the exercises in which
the insecurity-refactored projects are used may be very different.
The results show in two different scenarios that the insecurity-
refactored projects can be used as learning examples.

The difficulty varies based on what kind of learning example
the insecurity-refactored source code is used for. If it is used to
teach the use of static code analysis tools, a vulnerability without
a special difficult static code analysis pattern is not difficult. But
it might be difficult if the vulnerability has to be found manually.
In the end, the difficulty of the insecurity-refactored vulnerabilities
heavily depends on the task.

Our evaluation on open source projects showed a problem in
finding control functions using the Ctrl function. This is a classical
NP-hard problem because all possible paths from one statement
to another statement have to be created and each of these paths

E Schuckert, B. Katt and H. Langweg

has to be checked if it contains any sanitization check methods.
Most of the time, possible paths are short and the query runs fast.
Nevertheless, some projects contain so many possible paths (high
complexity) that the query run time increases to an inconveniently
long period (>2 minutes) on modern hardware. As a solution we
scanned in two steps. The first step ignores any control function
checks. If the first step finds a PIP or vulnerability, a second analy-
sis is done using the control function checks.

Another problem is that the control property graph does not
support object-oriented data flow. Method calls from objects are
resolved correctly, but data that is stored in object variables is
not tracked. This decreases the chance to find PIPs. Especially
for SQLi, many database drivers are stored in objects (db wrap-
per) or the queries are constructed using data-represented objects
Schuckert et al. (2017).

The evaluation shows positive results for a small survey size
(n=9+7 =16). The results of the evaluation as a code inspec-
tion task shows that the small test group had skill improvements.
The small survey size cannot be used to statistically proof that the
insecurity refactored projects are always beneficial as learning ex-
amples. At least for that small test group it showed skill improve-
ments. Future work should use larger test groups (n > 100) to sta-
tistically verify the initial results of the small sample size. However,
the usefulness of software security exercises not only depends on
the vulnerability itself. The results show that insecurity-refactored
vulnerabilities are usable for software security exercises. One prob-
lem of such exercises is the time it takes to create vulnerabilities
in a real scenario. The results show that insecurity refactoring can
inject vulnerabilities with different patterns into existing projects.
Accordingly, the scenario where vulnerabilities appear is as real
as possible. Overall, the concept of insecurity refactoring works
on open source projects without violating the definition of inse-
curity refactoring (not changing the external behavior in normal
usage).

9. Conclusion

Our approach for insecurity refactoring shows that vulnerabili-
ties can be injected into open source projects by using static code
analysis approaches. The ACID tree is introduced as an analysis
model for finding PIPs and vulnerabilities. Finding locations of PIPs
has the same limitations as finding vulnerabilities in the first place.
A precise approach was used to mitigate any false positive results
where injected vulnerabilities would have a high chance of not be-
ing exploitable. A false positive PIP might break the normal use
of the project, hence breaking the insecurity refactoring definition.
The PIP can be simple. The injected vulnerability can be made diffi-
cult by adding data flow patterns. These patterns can be so difficult
that the ACID tree approach cannot detect them anymore. Accord-
ingly, the injection of vulnerabilities can be a lot easier than the
detection of the injected vulnerabilities. If any useful attack sce-
narios of insecurity refactoring are found, the automated detection
of these vulnerabilities will be more difficult.

The focus of insecurity refactoring is to inject vulnerabilities
with different source code patterns. The PL/V pattern language al-
lows to define the source code patterns in an independent lan-
guage. To extend the tool to support other programming languages
only the language patterns have to be rewritten and the Code
Property Graph has to be created for that language. A first eval-
uation shows on a small sample size that insecurity refactoring
can be used to teach software security skills. Compared to other
approaches our focus relies on to create vulnerabilities realistic as
possible. The approach shows that the concept works with differ-
ent source code patterns. The different patterns also allow to cre-
ate many permutations of vulnerabilities. This enables repeatedly
using insecurity refactoring to teach software security skills.

17

Computers & Security 128 (2023) 103121
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Felix Schuckert: Conceptualization, Methodology, Software, In-
vestigation, Writing - original draft, Visualization. Basel Katt: Con-
ceptualization, Writing - review & editing, Supervision. Hanno
Langweg: Conceptualization, Writing - review & editing.

Data availability
The data is available on GitHub.
References

Alhuzali, A., Gjomemo, R., Eshete, B., Venkatakrishnan, V.N., 2018. NAVEX: Precise
and scalable exploit generation for dynamic web applications. Proceedings of
the 27th USENIX Security Symposium 377-392.

Backes, M., Rieck, K. Skoruppa, M., Stock, B., Yamaguchi, F., 2017. Efficient and
Flexible Discovery of PHP Application Vulnerabilities. Proceedings - 2nd IEEE
European Symposium on Security and Privacy, EuroS and P 2017 334-349.
doi:10.1109/EuroSP.2017.14.

Boland, T, Black, PE., 2012. Juliet 1.1 C/C++ and Java Test Suite. Computer 45 (10),
88-90. doi:10.1109/MC.2012.345.

Burket, J., Chapman, P, Becker, T., Ganas, C., Brumley, D., 2015. Automatic prob-
lem generation for Capture — the — Flag competitions. 2015 USENIX Summit on
Gaming, Games, and Gamification in Security Education (3GSE 15).

Chapman, P, Burket, J., Brumley, D., 2014. {PicoCTF}: A {Game-Based} computer se-
curity competition for high school students. 2014 USENIX Summit on Gaming,
Games, and Gamification in Security Education (3GSE 14).

Deo, N., 1974. Graph Theory with Applications to Engineering and Computer Science
(Prentice Hall Series in Automatic Computation). Prentice-Hall, Inc., USA.

Dolan-Gavitt, B., Hulin, P, Kirda, E., Leek, T., Mambretti, A., Robertson, W., Ul-
rich, F, Whelan, R,, 2016. LAVA: Large-Scale Automated Vulnerability Addition.
Proceedings - 2016 IEEE Symposium on Security and Privacy, SP 2016 110-121.
doi:10.1109/SP.2016.15.

Du, W., 2011. SEED: Hands-on lab exercises for computer security education. IEEE
Security and Privacy 9 (5), 70-73. doi:10.1109/MSP.2011.139.

Fowler, M., 1999. Refactoring: Improving the design of existing code. Addison-Wes-
ley Professional.

Github, 2022. https://github.com/.

Insecurity Refactoring, 2022. https://github.com/fschuckert/insecurity-refactoring.

Insecurity Refactoring code samples, 2022. https://github.com/fschuckert/insec_
samples.

Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M., 2018. Evaluating fuzz testing. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security. Association for Computing Machinery, New York, NY, USA,
pp. 2123-2138. doi:10.1145/3243734.3243804.

Martin, M., Livshits, B.,, Lam, M.S., 2005. Finding application errors and security
flaws using PQL: a Program Query Language. ACM SIGPLAN Notices 40 (10), 365.
doi:10.1145/1094811.1094840.

Maruyama, K., Omori, T., 2011. A Security-Aware Refactoring Tool for Java Programs.
Proceedings - International Conference on Software Engineering 22-28. doi:10.
1145/1984732.1984737.

Mens, T.,, Tourwé, T.,, 2004. A survey of software refactoring. IEEE Transactions on
software engineering 30 (2), 126-139. doi:10.1109/tse.2004.1265817.

Opdyke, W.E,, 1992. Refactoring object-oriented frameworks. University of Illinois at
Urbana-Champaign.

Pewny, J., Holz, T., 2016. Evilcoder: Automated bug injection. In: Proceedings of the
32nd Annual Conference on Computer Security Applications, pp. 214-225.

PHP Documentation, 2021. https://www.php.net/manual/.

PHP repository - backdoor commit, 2021. https://github.com/php/php-src/commit/
€730aa26bd52829a49f2ad284b181b7e82a68d7d.

Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H. 2017. Vuzzer:
Application-aware evolutionary fuzzing. In: NDSS, Vol. 17, pp. 1-14. doi:10.
14722/ndss.2017.23404.

Schreuders, Z.C., Shaw, T.,, Shan-A-Khuda, M., Ravichandran, G., Keighley, J., Or-
dean, M., 2017. Security scenario generator (SecGen): A framework for generat-
ing randomly vulnerable rich-scenario VMs for learning computer security and
hosting CTF events. 2017 USENIX Workshop on Advances in Security Education
(ASE 17). USENIX Association, Vancouver, BC.

Schuckert, F, Hildner, M., Katt, B., Langweg, H., 2018. Source Code Patterns of
Buffer Overflow Vulnerabilities in Firefox. Proceedings of Sicherheit 2018 107-
118. doi:10.18420/sicherheit2018_08.

Schuckert, F, Katt, B, Langweg, H., 2017. Source Code Patterns of SQL Injection
Vulnerabilities. International Conference on Availability, Reliability and Security
doi:10.1145/3098954.3103173.

http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0001
https://doi.org/10.1109/EuroSP.2017.14
https://doi.org/10.1109/MC.2012.345
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0004
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0005
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0006
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/MSP.2011.139
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0009
https://github.com/
https://github.com/fschuckert/insecurity-refactoring
https://github.com/fschuckert/insec_samples
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/1094811.1094840
https://doi.org/10.1145/1984732.1984737
https://doi.org/10.1109/tse.2004.1265817
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0014
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0015
https://www.php.net/manual/
https://github.com/php/php-src/commit/c730aa26bd52829a49f2ad284b181b7e82a68d7d
https://doi.org/10.14722/ndss.2017.23404
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0017
https://doi.org/10.18420/sicherheit2018_08
https://doi.org/10.1145/3098954.3103173

E Schuckert, B. Katt and H. Langweg

Schuckert, F, Katt, B., Langweg, H., 2019. Difficult XSS code patterns for static
code analysis tools. In: Computer Security - ESORICS 2019 International Work-
shops, 10Sec, MSTEC, and FINSEC, Luxembourg City, Luxembourg, Septem-
ber 26-27, 2019, Revised Selected Papers. Springer, pp. 123-139. doi:10.1007/
978-3-030-42051-2_9.

Schuckert, F, Katt, B., Langweg, H., 2020. Difficult SQLi Code Patterns for Static Code
Analysis Tools. Norsk IKT-konferanse for forskning og utdanning - NISK Norsk
informasjonssikkerhetskonferanse 2020 (3). https://ojs.bibsys.no/index.php/NIK/
article/view/892

Stivalet, B., Fong, E., 2016. Large Scale Generation of Complex and Faulty PHP Test
Cases. Proceedings - 2016 IEEE International Conference on Software Testing,
Verification and Validation, ICST 2016 409-415. doi:10.1109/ICST.2016.43.

Thomas, S., Williams, L., Xie, T., 2009. On automated prepared statement generation
to remove SQL injection vulnerabilities. Information and Software Technology
51 (3), 589-598. doi:10.1016/j.infsof.2008.08.002.

Yamaguchi, F, Golde, N., Arp, D., Rieck, K., 2014. Modeling and discovering vulner-
abilities with code property graphs. Proceedings - IEEE Symposium on Security
and Privacy 590-604. doi:10.1109/SP.2014.44.

18

Computers & Security 128 (2023) 103121

Yamin, M.M,, Katt, B., 2022. Modeling and executing cyber security exercise sce-
narios in cyber ranges. Computers and Security 116, 102635. doi:10.1016/j.cose.
2022.102635.

Yamin, M.M., Katt, B., 2022. Use of cyber attack and defense agents in cyber
ranges: A case study. Computers & Security 122, 102892. doi:10.1016/j.cose.
2022.102892.

Felix Schuckert is a PhD candidate at the Norwegian University of Science and
Technology in cooperation with the University of Applied Sciences in Constance.
He received the bachelor’s degree in software engineering and a master’s degree in
modeling and software software engineering at the University of Applied Science
in Constance. His current topic is about opportunities of Insecurity Refactoring for
training and software development. He is interested in static code analysis, web se-
curity, software development and source code patterns of vulnerabilities.

https://doi.org/10.1007/978-3-030-42051-2_9
https://ojs.bibsys.no/index.php/NIK/article/view/892
https://doi.org/10.1109/ICST.2016.43
https://doi.org/10.1016/j.infsof.2008.08.002
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1016/j.cose.2022.102635
https://doi.org/10.1016/j.cose.2022.102892

	Insecurity Refactoring: Automated Injection of Vulnerabilities in Source Code
	1 Introduction
	2 Background
	2.1 Code Property Graph

	3 Methodology
	3.1 Adversary Controlled Input Dataflow Tree
	3.2 Code example

	4 ACID Tree Construction
	4.1 Control functions
	4.2 Data flow type
	4.3 ACID tree example

	5 Insecurity Refactoring
	5.1 Vulnerability Description
	5.2 Possible Injection Path
	5.3 Injecting a vulnerability

	6 Implementation
	6.1 The PL/V pattern language
	6.2 Context analysis
	6.3 Insert data flow pattern
	6.4 Source code modification example

	7 Evaluation
	7.1 Open source projects
	7.2 Learning examples
	7.2.1 Experienced group
	7.2.2 Beginners group
	7.2.3 Results

	7.3 Comparative analysis
	7.3.1 Functional comparison
	7.3.2 Experimental comparison

	8 Discussion
	9 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

