
Computers & Security 128 (2023) 103121

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Insecurity Refactoring: Automated Injection of Vulnerabilities in

Source Code

Felix Schuckert a , b , ∗, Basel Katt a , Hanno Langweg

a , b

a NTNU, Norwegian University of Science and Technology, Faculty of Information Technology and Electrical Engineering, Department of Information Security

and Communication Technology, Gjøvik Norway
b HTWG Konstanz University of Applied Sciences, Department of Computer Science, Konstanz Germany

a r t i c l e i n f o

Article history:

Received 30 April 2021

Revised 21 December 2022

Accepted 24 January 2023

Available online 27 January 2023

Keywords:

Web security

Static code analysis

Refactoring

Vulnerability Pattern

PHP

SQLi

XSS

a b s t r a c t

Insecurity Refactoring is a change to the internal structure of software to inject a vulnerability without

changing the observable behavior in a normal use case scenario. An implementation of Insecurity Refac-

toring is formally explained to inject vulnerabilities in source code projects by using static code analysis.

It creates learning examples with source code patterns from known vulnerabilities.

Insecurity Refactoring is achieved by creating an Adversary Controlled Input Dataflow tree based on a

Code Property Graph. The tree is used to find possible injection paths. Transformation of the possible

injection paths allows to inject vulnerabilities. Insertion of data flow patterns introduces different code

patterns from related Common Vulnerabilities and Exposures (CVE) reports. The approach is evaluated on

307 open source projects. Additionally, insecurity-refactored projects are deployed in virtual machines to

be used as learning examples. Different static code analysis tools, dynamic tools and manual inspections

are used with modified projects to confirm the presence of vulnerabilities.

The results show that in 8.1% of the open source projects it is possible to inject vulnerabilities. Differ-

ent inspected code patterns from CVE reports can be inserted using corresponding data flow patterns.

Furthermore the results reveal that the injected vulnerabilities are useful for a small sample size of at-

tendees (n = 16). Insecurity Refactoring is useful to automatically generate learning examples to improve

software security training. It uses real projects as base whereas the injected vulnerabilities stem from

real CVE reports. This makes the injected vulnerabilities unique and realistic.

© 2023 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

y

t

T

r

d

o

t

a

t

s

p

i

i

d

g

F

e

f

m

a

T

a

h

0

. Introduction

Automating the injection of vulnerabilities into a codebase can

ield valuable knowledge for two cases: How easy is it for an at-

acker to quickly add vulnerabilities in a short period of time?

his is a scenario that could be observed in attacks on PHP Git

epositories where a backdoor was inserted PHP repository - back-

oor commit (2021) . A second case is training of software devel-

pers for inspections by the help of complex code samples. Often-

imes, training samples containing vulnerabilities are manually cre-

ted Du (2011) . This requires a significant effort and usually leads

o small applications built around few vulnerabilities. Software in-

pections in the field, however, deals with large and complex ap-
∗ Corresponding author.

E-mail address: felix.schuckert@htwg-konstanz.de (F. Schuckert) .

e

s

T

a

ttps://doi.org/10.1016/j.cose.2023.103121

167-4048/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article u
lications where vulnerabilities are not easy to spot. Using exist-

ng applications with known vulnerabilities is insufficient for train-

ng situations, because learners are able to find the vulnerabilities

ocumented in publicly available databases. Hence, automatically

enerated vulnerabilities have been proposed, e.g., by Stivalet and

ong (2016) and Boland and Black (2012) . Those automatically gen-

rated samples are artificial and can be used to benchmark tools

or static code analysis.

Our approach is to automatically create learning examples by

odifying existing large projects. To achieve that, we use vulner-

bility patterns to inject vulnerabilities into open source projects.

he use of existing projects ensures that the context of a vulner-

bility is as real as possible. We created source code patterns by

xamining vulnerabilities and corresponding fixes in source code

panning a period of multiple years Schuckert et al. (2017, 2019) .

he source code originated from real applications for which vulner-

bilities had been reported with an assigned CVE-ID (CVE: Com-
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2023.103121
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103121&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:felix.schuckert@htwg-konstanz.de
https://doi.org/10.1016/j.cose.2023.103121
http://creativecommons.org/licenses/by/4.0/

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

m

f

s

b

t

o

s

p

k

s

b

r

G

p

s

p

S

P

i

G

w

g

p

2

q

t

m

s

r

p

O

r

f

p

n

t

p

A

t

p

s

N

m

t

l

T

K

L

P

c

c

c

s

t

i

Y

s

G

t

e

A

u

p

t

P

a

p

c

v

a

t

s

a

K

w

m

n

f

t

v

w

e

a

p

b

s

T

e

a

t

p

(

i

s

m

c

A

r

a

2

Y

a

D

e

(

d

P

S

(

G

on Vulnerabilities and Exposures). Our contribution answers the

ollowing questions:

• Are static code analysis and refactoring valid approaches to in-

ject vulnerabilities in existing projects?

• How can source code patterns from recent vulnerabilities be

represented within the injected vulnerabilities?

• Are the insecurity refactored applications useful for teaching

software security?

Insecurity Refactoring is a change to the internal structure of

oftware to inject a vulnerability without changing the observable

ehavior in a normal use case scenario. We proposed a technique

o conduct insecurity refactoring using static code analysis meth-

ds. An Adversary Controlled Input Dataflow (ACID) tree is con-

tructed to find possible injection paths. These possible injection

aths are then transformed into vulnerabilities using patterns from

nown vulnerabilities. The implementation is evaluated on open

ource projects to find possible injection paths and inject vulnera-

ilities.

Section 2 provides an overview of work related to Insecu-

ity Refactoring and describes the definition of the Code Property

raph. Section 3 defines and formulates the methods and concepts

roposed in our methodology. Section 4 formulates the tree con-

truction mechanism that is used for the Insecurity Refactoring

rocess. The definitions of Insecurity Refactoring are described in

ection 5 . Section 6 describes the source code pattern language

L/V and how vulnerabilities are injected. Followed by Section 7 ,

n which the approach is evaluated on open source projects from

itHub. In this context the usefulness of the methodology in soft-

are security training is evaluated by an experiment involved two

roups with different skill levels. The final Section 8 points out

roblems and concerns of Insecurity Refactoring.

. Background

Thomas et al. (2009) developed a tool that replaces database

ueries with prepared statements to remove potential SQL Injec-

ion vulnerabilities. They present a prepared statement replace-

ent algorithm (PSR-Algorithm) that separates the SQL query

tring from any input strings. They evaluated their tool on IT secu-

ity training projects like WebGoat and 94% of their refactored pre-

ared statements prevented SQL Injection attacks. Maruyama and

mori (2011) present a security-aware refactoring tool. Normal

efactoring approaches can create unintended security issues. The

ocus relies on accessibility of class variables. Refactoring ap-

roaches can change the accessibility without changing the exter-

al behavior that might result in a security issue. Their tool ac-

ually checks for such security issues and provides refactoring ap-

roaches that do not create such issues.

Dolan-Gavitt et al. (2016) created a tool named Large-scale

utomated Vulnerability Addition (LAVA) that uses dynamic

aint analysis to find locations to inject vulnerabilities in C/C++

rojects. The dynamic approach makes the data flow analy-

is easier. The injected vulnerabilities themselves are artificial.

evertheless, injecting vulnerabilities in real projects provides a

ore realistic scenario than manually creating a small project

hat contains a vulnerability. Also a LAVA-M data set was re-

eased that contains many injected vulnerabilities in C-projects.

hat data set is commonly used to evaluate modern fuzzers

lees et al. (2018) Rawat et al. (2017) .

Pewny and Holz (2016) developed the EvilCoder tool similar to

AVA that injects bugs in C-projects. Similar to this work, the Code

roperty Graph is used to find potential injection locations. The fo-

us relies on memory critical functions and corresponding security

hecks. These security checks are replaced by insufficient checks to

reate vulnerabilities. An evaluation on four open source projects
2
hows the potential to conduct injections at many different loca-

ions. However, they cannot ensure that an injected vulnerability

s exploitable.

Our approach uses the Code Property Graph defined by

amaguchi et al. (2014) . The Code Property Graph combines an Ab-

tract Syntax Tree, Control Flow Graph and Program Dependence

raph into a single graph. They use the graph to find vulnerabili-

ies in C/C++ projects. Backes et al. (2017) extended the Code Prop-

rty Graph to support PHP. We use this PHP graph to create the

dversary Controlled Input Dataflow tree. Alhuzali et al. (2018) also

sed the Code Property Graph to find vulnerabilities in PHP

rojects. They added support to automatically create exploits for

he discovered vulnerabilities. The results show that the Code

roperty Graph is very useful to discover vulnerabilities in C/C++

nd PHP.

The usage of insecurity refactoring to create learning exam-

le seems promising. Schreuders et al. (2017) developed the Se-

urity Scenario Generator (SecGen) that allows to create multiple

irtual machines containing different vulnerabilities. The vulner-

bilities are defined by modules. Based on the module descrip-

ion, vulnerabilities can be nested and hints can be placed. A

urvey that has been used to evaluate the usage of such gener-

ted virtual machines is helpful as learning examples. Yamin and

att (2022a) Yamin and Katt (2022b) developed a similar frame-

ork to automatically create full cyber security ranges that setup

ultiple virtual machines. The focus relies on creating a large

umber of virtual machines and the cyber security ranges are used

or different scenarios like attacker/defence CTF events. Based on

he scenario different vulnerabilities are injected to the machines

ia ssh. For example, injected vulnerabilities can be weak pass-

ords, misconfigurations, components with known vulnerabilities,

tc. Chapman et al. (2014) designed the PicoCTF tool and hosted

 capture the flag (CTF) event where approximately 2,0 0 0 teams

articipated. The approach was game based. The tasks can either

e viewed in computer game style including a story or in a clas-

ical text view. A survey has been used to evaluate the approach.

he results show that the approach is useful and many other CTF

vents have used the PicoCTF tool. Burket et al. (2015) explain the

utomatic problem generation (APG) for PicoCTF. The APG allows

o generate CTF tasks that differ for each attending team. A tem-

lated autogen problem uses a fixed template and multiple inputs

e.g. flag) to generate the CTF task. This allows to detect key shar-

ng between teams but does not prevent sharing the method to

olve the task between teams. In contrast, challenges that are auto-

atically generated without a fixed template have problems with

onsistent difficulties, bug prevention, scalability and deployment.

nother PicoCTF event has been held using a templated autogen to

eveal that key-sharing actually exists and can be detected by the

pproach.

.1. Code Property Graph

This section explains the definitions introduced by

amaguchi et al. (2014) of the Code Property Graph (CPG)

nd traversal functions.

efinition 1. A Code Property Graph G = (V, E, λ, μ) is a directed,

dge-labeled and attributed multigraph. V is the set of nodes, E ⊆
V × V) is the set of directed edges. The labels of these edges are

efined by λ : E → � where alphabet � represents all edge names.

roperties for edges and nodes are assigned by μ : (V ∪ E) × K →

. K is a set of property keys and S is the set of property values.

The Code Property Graph is based on the Abstract Syntax Tree

AST). The Abstract Syntax Tree is defined as follows:

 A = (V A , E A , λA , μA) (1)

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

T

w

s

t

v

G

T

F

p

t

λ

u

p

G

T

T

F

t

s

fi

a

D

t

C

O

O

I

I

w

n

O

i

F

M

T

S

T

B

s

M

T

t

T

S

a

s

S

3

w

p

t

Y

d

e

(

d

r

a

i

t

d

fi

c

fi

i

s

t

c

a

o

i

p

t

t

3

a

a

t

s

i

e

m

z

d

i

v

s

fl

r

i

o

i

r

r

d

c

p

t

D

T

i

t

V

n

he Abstract Syntax Tree has one kind of edge labels (parent_of),

hich is defined in the set λA . The set μA contains property as-

ignments for every node of the Abstract Syntax Tree. For example,

he name of a variable is stored as a property and the value is the

ariable name.

The Control Flow Graph is defined as follows:

 C = (V C , E C , λC , ∅) (2)

he nodes V C ⊆ V A are statements of the programming language.

or example, an assignment is a statement. Edges E C represent the

ossible control flow from a statement to another statement. For

he edges, only one kind of label (flows_to) exists that is defined in

C . No properties are stored for the Control Flow Graph.

The Program Dependence Graph defines where variables are

sed and resolves function calls. The definition for the Program De-

endence Graph is as follows:

 P = (V P , E P , λP , μP) (3)

he nodes V P ⊆ V A are the same nodes as of the Abstract Syntax

ree. Edges E P either represent function calls or variable usage.

unction calls have the edge label calls . The variable usages have

he label reaches that point from the variable definitions to the

tatements where the variables are used. These edge labels are de-

ned in λP . For the reaches edges the property μP defines the vari-

ble name of the variable definition.

efinition 2. A traversal is defined as a function τ : P (V) → P (V)

hat maps a set of nodes to another set of nodes according to a

ode Property Graph G , where P (V) is the power set of V .

The following function definition allows to iterate over an edge:

UT l (X) =

⋃

v ∈ X
{ u : (v , u) ∈ E ∧ λ((v , u)) = l} (4)

UT k,s
l

(X) =

⋃

v ∈ X
{ u : (v , u) ∈ E ∧ λ((v , u)) = l

∧ μ((v , u) , k) = s } (5)

N l (X) =

⋃

u ∈ X
{ v : (v , u) ∈ E ∧ λ((v , u)) = l} (6)

N

k,s
l

(X) =

⋃

u ∈ X
{ v : (v , u) ∈ E ∧ λ((v , u)) = l

∧ μ((v , u) , k) = s } (7)

here X ⊆ V is a set of nodes. OUT and IN return all reachable

odes with the label l and property with key k and value s . The

UT function follows the direction of the edge and the IN function

s a backward iteration of the edge.

We use following functions:

 ilter p (X) = { v ∈ X : p(v) } (8)

atch p (X) = F ilter p ◦ T Nodes (X) (9)

 ype s (X) = T ypeNode ◦ F ilter p s ◦ T Nodes (10)

t mt (X) = Statement(X) (11)

he F ilter function returns all nodes of the set X that match the

oolean predicate p(v) . T Nodes is defined as a reusable traver-

al from the root of the Abstract Syntax Tree to all nodes. The

atch p uses the T Nodes function to traverse all Abstract Syntax

ree nodes and only returns the nodes that match the filter func-

ion. The T ype s function iterates the children of the Abstract Syntax

ree starting from node x ∈ X searching for nodes of the type s . The

tatement(X) functions iterates the parents nodes until it reaches

 statement node. This is important to get the statement where a

pecific node x ∈ X is used. We use the short name St mt instead of
tatement . s

3
. Methodology

The goal of Insecurity Refactoring is to inject vulnerabilities

ith different source code patterns into existing projects. This ap-

roach is based on static code analysis concepts. Figure 1 shows

he process to inject vulnerabilities. The Code Property Graph

amaguchi et al. (2014) is used as an initial analysis model. Rules

efined in the next section are applied to traverse the Code Prop-

rty Graph to create the Adversary Controlled Input Dataflow

ACID) tree. The ACID tree is a tree representation of a backward

ata flow analysis. In the tree, a path from a leaf to the root rep-

esents data flow from a source to a sink. It is used as another

nalysis model to find Possible Injection Paths (PIP) or vulnerabil-

ties. A vulnerability is basically a path (leaf to root) in the tree

hat does not contain any sanitization functions. In contrast, a PIP

oes contain a sanitization function. A PIP can be transformed to

t a vulnerability definition. For example, a sanitization method

an be refactored into an insufficient sanitization method. To de-

ne insufficient sanitization methods, the context of the input data

s analyzed using the context rules. The modifications are based on

ource code patterns. These patterns are defined in the PL/V pat-

ern language that is described in Section 6.1 . Additional source

ode patterns can be injected by using the data flow patterns to

dd some diversification. The ACID tree uses a tree structure based

n nodes from the Abstract Syntax Tree. The Abstract Syntax Tree

s an abstract representation of the source code. Refactoring is ap-

lied to the Abstract Syntax Tree to create a modified Abstract Syn-

ax Tree. In the last step, the modified Abstract Syntax Tree is used

o generate the insecurity-refactored source code.

.1. Adversary Controlled Input Dataflow Tree

The first step for Insecurity Refactoring is to find PIPs. A PIP is

 set of source code statements that can be refactored to inject

 vulnerability. This approach focuses on vulnerabilities that have

ainted data controlled by an adversary flowing from a source to a

ink. Examples of vulnerabilities for this type are Cross Site Script-

ng (CWE-79), SQL Injection (CWE-89), Buffer Overflow (CWE-119),

tc. Our approach uses a modified backward taint analysis. A nor-

al taint analysis stops and removes any data that reaches saniti-

ation methods. The modified taint analysis does not remove such

ata, instead it further tracks the data. This allows, in the refactor-

ng step, to remove or modify the sanitization method to inject a

ulnerability.

Data flow analysis can either be done forward (from source to

ink) or backward (from sink to source). We use a backward data

ow analysis using a Code Property Graph and follow specified

ules to create an Adversary Controlled Input Dataflow tree. The

dea is to use a backward data flow analysis following each path

f data that flows into the initial sink. These paths are represented

n a tree, where the root is the sink of a vulnerability. Each leaf

epresents data that can reach the sink. Accordingly, a leaf rep-

esents a source. An advantage of creating a tree using backward

ata flow analysis is that the ACID tree allows analyzing all data

oncatenations that reach a sink. Every leaf represents possible in-

ut to reach the sink, but it doesn’t necessarily mean that all of

he leaves are concatenations.

efinition 3. An Adversary Controlled Input Dataflow (ACID) tree

 AC = (V AC , E AC , λAC , μAC) (12)

s an ordered, rooted, directed, edge-labeled and attributed out-

ree Deo (1974) . The nodes of the tree are defined in the set

 AC ⊆ V A . Accordingly, the tree is based on Abstract Syntax Tree

odes and each node can be used to access the corresponding ab-

tract syntax sub tree G from the Code Property Graph. The di-
A

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

Fig. 1. Overview of the Insecurity Refactoring process by using an ACID tree.

r

b

e

t

S

t

i

w

r

I

f

L

I

n

d

C

I

c

f

P

d

u

t

S

B

A

t

f

p

t

f

e

t

b

c

t

t

r

a

b

d

r

3

c

u

b

i

p

4

G

s

t

s

ected edges are defined as the set E AC ⊆ (V AC × V AC) . The edge la-

el function λAC : E → �AC uses the alphabet �AC to represent all

dge names. The properties for the nodes are defined by the func-

ion μAC : V AC × K AC → S AC . The set K AC defines the keys and the set

 AC defines the values. All attributes from the initial Abstract Syn-

ax Tree nodes are found in the ACID tree nodes. Because the tree

s ordered, similar to the Code Property Graph, we add an attribute

ith the key childN that stores the child position as a value.

The root node of an ACID tree is defined by:

oot AC = root(V AC , E AC) (13)

= u ∈ V AC : � (•, u) ∈ E AC

t returns the node, to which there are no directed edges pointing.

Additionally, to get all leaf nodes of an ACID tree, we define the

ollowing function:

 AC = L (V AC , E AC) (14)

= { v ∈ V AC : � (v , •) ∈ E AC }
t returns all nodes that do not have an edge pointing to other

odes.

The children of a node v can be retrieved with the following

efinition:

(v) = { u : (v , u) ∈ E AC } (15)

t returns a completely ordered set. The order is defined by the

hildren positions in the tree.

Also, the parent of a node u can be retrieved with the following

unction:

p(u) = v ∈ V AC where (v , u) ∈ E AC (16)

The function

 ath (l) = 〈 l〉 � P ath (p(l)) (17)

efines a sequence of nodes starting from the leaf node l going

pwards until reaching the root node root AC of the ACID tree.

The siblings of a node can be retrieved with the following func-

ions:

ib(v) = { u : p(v) = p(u) | u � = v } (18)
t

4
e f (v) = { u : p(v) = p(u) | μ(u, childN) < μ(v , childN) } (19)

f t(v) = { u : p(v) = p(u) | μ(u, childN) > μ(v , childN) } (20)

This allows to get all siblings (Sib), the siblings before (Be f), or

he siblings after (A f t) a node v .
The edge labels are used to specify the data type that flows

rom one node to another. The data types are defined in the al-

habet �AC = { Str ing, Numer ic, Ar ray, Unknown } . The properties for

he nodes are defined in τ . We use the properties to define the dif-

erent splits in the ACID tree. A split in the ACID tree means that

ither data from all sub trees will reach the sink, or only one sub

ree at a time can reach the sink. The link property defines the link

etween children. The values are from the alphabet τ = {∧ , �} . Ex-

luding is defined by the symbol �. It means that either one of

he sub trees will reach the sink. A concatenation is defined by

he symbol ∧ . It indicates that a concatenation of the children will

each the sink. We use the cap symbol, since every child has to

dd its input to the concatenation. For excluding , we assume that

oth paths are reachable in certain instances. Control statements

ecide which sub trees will reach the sink, i.e., they check code

eachability.

.2. Code example

Figure 2 shows a code example that is used to describe the pro-

ess of Insecurity Refactoring. On line 7, the getParam() function is

sed to request the page number from the user. The page num-

er is checked for being numeric (line 14) and sanitized using the

ntval (line 15) function. Hence, no Cross Site Scripting attacks are

ossible.

. ACID Tree Construction

The ACID tree is constructed by traversing the Code Property

raph. An ACID tree is created for each potential sink. The traver-

al requires a stack stack call that is used to correctly resolve func-

ion calls. The stack stack call stores the function calls that are re-

olved by the traversal. The traversal is based on different node

ypes. The main traversal in the Code Property Graph is over the

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

Fig. 2. Code example shows proper sanitization (line 14 and 15) to prevent Cross

Site Scripting.

V

l

G

V

V

w

w

a

V

i

V

c

s

V

V

V

V

V

a

v

Fig. 3. Rules example of Backtrace () using the program dependence graph.

c

i

a

F

i

s

e

t

P

P

a

t

C

T

r

P

B

B

I

w

t

t

a

f

t

i

p

d

t

A

A

T

c

e

s

i

a

fi

z

n

C

C

 P nodes from the program dependence graph. We define the fol-

owing node categories that are used by the Abstract Syntax Tree

 A and the program dependence graph G P :

 assign = { v ∈ V P | v ∈ V A (21)

| μA ((v , u) , type) = assignment}
 param

= { v ∈ V P | v ∈ V A (22)

| μA ((v , u) , type) = parameter}
Edges (E P) point from a variable definition to statements (V P)

here the defined variable is used. Because the traversal is back-

ards, the definitions are traversed. A definition can either be

n assignment (v ∈ V assign) or it can be a function parameter (v ∈
 param

).

For the Control Flow Graph, the following node categories are

mportant:

 f unction = { v ∈ V C | v ∈ V A (23)

| μA ((v , u) , type) = f unction }
The traversal also traverses concatenations, variables, function

alls and coding constructs. We define the following sets to repre-

ent these node categories:

 exp = { v ∈ V A that represent all expression } (24)

 v ar = { v ∈ V expr | μA (v , type) = v ariable } (25)

 con = { v ∈ V expr | μA (v , type) = concatenation } (26)

 call = { v ∈ V expr | μA (v , type) = cal l } (27)

 code = { v ∈ V expr | v is a coding construct } (28)

The set V exp contains all expressions. An expression always has

 return value. The traversal distinguishes expressions between

ariables V v ar , concatenations V con , function calls V and coding
call

5
onstructs V code . For simplicity, all different concatenations that ex-

st are unified by having the type concatenation . Coding constructs

re different constructs that depend on the programming language.

or example, in our implementation, the array attribute access is

ncluded. In the Abstract Syntax Tree, it is represented by a dimen-

ion node. The traversal is based on the different categories. For

ach powerset P of a category, the corresponding function is used

o traverse the Code Property Graph. The following function

 os : V A → N (29)

 os (v) = p ∈ N | μ(v , childnum) = p

llows getting a position of parameter. The position n can be used

o get an expression of a function call with the following function:

al l Exp(V, n) = OUT childnum,n
parent _ of

(V) (30)

hese functions are used in the ACID tree construction to correctly

esolve function calls.

The following function defines backward traversal for the Code

roperty Graph:

acktrace : P (V v ar) → P (V assign ∪ V param

) (31)

acktrace (V) =

⋃

v ∈ V
{ IN

v ariable, v
reaches

(St mt ({ v })) }

t uses the variable as input and returns the corresponding nodes

here the variables are defined. It uses the St mt function to get

he statement where the variable v is used. The statement is used

o get possible definitions of the variable v . The results can be

ssignments or parameters. Figure 3 shows how the Backtrace ()

unction is used from the variable $out .

In the ACID tree, these statements are added as children and

he � defines that the children are mutually excluding. Accord-

ngly, only one of the sub trees can reach the sink. For the variable,

ossible definitions are on line 19 and line 16.

Based on the resulting statement type, the graph is traversed

ifferently. If the statement is an assignment (V assign), the following

raversal rules apply to resolve assignments :

ss ign : P (V assign) → P (V exp) (32)

ss ign (V) = OUT childnum, 1
parent _ of

(V)

he Abstract Syntax Tree G A is an ordered tree and the attribute

hildnum is used to define the order. The child number one is the

xpression that will be assigned. Because the ACID tree is con-

tructed by a backward data flow analysis, the defined variable

s added to the ACID tree first, then the assignment statement is

dded that is followed by the expression from Assign () . The de-

ned variable is given by the OUT function using the child number

ero.

Figure 4 shows how the rules are applied to line 15.

Variable $out is added first, it is followed by the assignment

ode (v ∈ V assign) which is followed by the expression.

The following rules apply to resolve concatenations :

oncat : P (V con) → P (V exp) (33)

oncat(V) = OUT parent _ of (V)

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

Fig. 4. Rules example of an assignment.

Fig. 5. Rules example of a concatenation.

Fig. 6. Rules example of a function call.

T

C

o

n

e

i

a

c

d

P

w

c

C

C

T

p

y

(

m

C

f

s

s

Fig. 7. Rules example of reaching a parameter with an empty call stack.

I

r

f

t

m

q

r

C

C

t

s

c

s

t

T

e

o

v

P

P

i

e

f

c

e

c

F

F

f

t

t

t

e

t

f

P

r

he function Concat allows to get the concatenated elements.

oncatenations in the Abstract Syntax Tree use the children as

perands. Accordingly, these are the elements that are concate-

ated and are provided by the OUT function.

Figure 5 shows how the Concat function is applied to the top

xpression that is assigned to the variable $ out .

The dot symbol is the standard method for string concatenation

n PHP. A concatenation means that all inputs reach the sink in

 concatenated form. Accordingly, the ∧ symbol is added to the

oncatenation.

A function call has to be resolved to see if the function passes

ata from the input (parameter) to the output (return). The Code

roperty Graph already resolves function calls in G C by the edges

ith the label calls . The following rules apply to resolve function

alls :

al l Return : P (V call) → P (V exp) (34)

al l Return (V) =

⋃

v ∈ V
{ T ype return (OUT cal l s ({ v })) }

↪→ Side-effect: add call to stack stack call

he OUT cal l s returns the function definitions found in the control

roperty graph. Because the traversal is a backward data flow anal-

sis, further analysis has to continue on the output of the function

return statements). The T ype return function finds all return state-

ents inside a function definition. A combination of both functions

al l and T ype return is used in Cal l Return to resolve function calls

or the ACID tree. The resolving function call is put on the stack

tack call to correctly resolve parameter expressions.

Figure 6 shows how the Cal l Return function is applied to the

ource code example.
6
The function call getParam is passed to the Cal l Return function.

t uses the edges E C from the Control Flow Graph to find the cor-

esponding function definition of the call on line 2. The T ype return

unction is used to find all possible return statements (line 3) of

he function definition. If more than one return statement is found,

ultiple returns are added as mutually excluding (�).

For each of these coding constructs, different approaches are re-

uired to correctly continue the traversal. The following definitions

esolve coding constructs :

ode : P (V code) → P (V exp) (35)

ode (V) = ⋃

v ∈ V

⋃

p∈ P code

{ AST Node in (p, v) , if Match p (v) }

Because different code constructs require different approaches

o get the correct input, we use the PL/V pattern language de-

cribed in Section 6.1 . The set P code contains all implemented code

onstruct patterns. The Match function is used to check if the Ab-

tract Syntax Tree node v equals the pattern p. The AST Node func-

ion returns the corresponding input nodes of the Abstract Syntax

ree.

As previously stated, the Backtrace function also returns param-

ters. Depending on whether a function call is currently resolved

r not (stack call = ∅), the backward data flow analysis has to tra-

erse differently and is defined as follows:

 aram : P (V param

) → P (V exp) (36)

 aram (V) =

⋃

v ∈ V

{
F indCal l s ({ v }) , if stack call = ∅

BackT oCal l (P os (v)) , otherwise

It is a simple function that decides if the F indCal l s or BackT oCal l

s used to traverse parameters V param

. If the stack stack call is not

mpty, the function BackT oCall : N → V exp jumps back to the initial

unction call found on top of the stack stack call . The traversal is

ontinued from the corresponding expression based on the param-

ter position.

If stack call is empty, the following rules are applied to find all

alls :

 indCal l s : P (V param

) → P (V exp) (37)

 indCal l s (V) =

⋃

v ∈ V
{ Cal l Exp(IN cal l s ({ v }) , P os (v)) }

The F indCal l s function returns all function calls of the function

rom the parameter. It uses the function Pos (p) to return the posi-

ion of the parameter in the function definition. The CallExp func-

ion is required to continue the backward data flow analysis from

he correct parameter of the function calls.

Figure 7 shows how a parameter is resolved when the stack is

mpty.

The sample.php is from the code example and one call of func-

ion page is found in the news.php file on line 173. Additional

unction calls are added as mutually excluding (�) children. The

aramExp function uses the parameter position to get back the cor-

ect expression of the function call. In the example, the parameter

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

Fig. 8. Rules example of finding condition checks.

i

f

a

t

g

t

a

e

T

t

(

v

t

r

f

P

P

p

4

v

f

d

s

f

P

a

C

w

t

v

m

i

a

t

a

p

t

b

m

b

i

1

a

A

4

(

t

t

b

a

d

d

t

w

4

s

e

r

g

y

s

n

t

I

v

t

b

t

i

5

s

e

F

r

r

a

m

o

r

i

v

5

M

v

f

s

t

i

c

t

s

b

s in the second position. Accordingly, the second expression in the

unction call is returned that is the string literal ”news”. Because

 literal is not found in any of the categories except of V exp , the

raversal stops here.

Some function calls can be resolved by the control property

raph. Other functions that pass data from a parameter to the re-

urn value are not resolved by the control property graph. For ex-

mple, the intval function will not be resolved by the control prop-

rty graph. To solve that problem, we define the pair V pass = (F , δ) .

he set F contains all functions that return data from parame-

ers. The mapping from input to output is defined by the set δ ⊆
F × N 0) . The output of a passthrough function is always the return

alue. Inputs are parameters that are referenced by the parame-

er position by a natural number N 0 . If the CallReturn is unable to

esolve the call, the following function will resolve passthrough

unctions:

 assthrough : P (V call) → P (V exp) (38)

 assthrough (V) =

⋃

v ∈ V
{ Cal l Exp({ v } , n) | (v , n) ∈ δ}

The function returns the corresponding expression based on the

arameter position n .

.1. Control functions

If we look into the code sample in Figure 2 , the security rele-

ant function is_numeric will not be traversed. This is a sanitization

unction call that changes the control flow without changing any

ata in the data flow. Accordingly, another step is required to find

ecurity relevant function calls that change the control flow. Such

unctions can occur in the traversal of the Backtrace : P (V v ar) →
 (V assign ∪ V param

) function. For each result, the following functions

llow to find control statements

trl(v ar de f , v ar use) = (39) ⋃

pat h ∈ Pat hs (v ar de f , v ar use)

{ ⋃

v ∈ path

{ F ilter i f ({ v }) ◦ Match v ar de f
({ v }) }}

here the function Paths returns all possible paths in the Con-

rol Flow Graph G C from variable definition v de f to variable usage

 use . The F ilter i f (c) filters only statements that are actually if state-

ents. Additionally, the Match v ar use (c) checks if the initial variable

s used inside the if statement. Overall, the Ctrl function returns

ll if statements where the variable v ar de f is used. In the ACID

ree, the control functions are added in between the variable us-

ge and variable definition. The if statements themselves are also

arsed to correctly handle all conditions that are used. A union in

he if statement is a mutually excluding split (�) in the ACID tree

ecause only one of the conditions has to be true. For a comple-

ent, both conditions are added in serial to the ACID tree because

oth of the conditions have to be true. Figure 8 shows how the

s_numeric is found by the condition check.
7
The Backtrace function returns from the variable $ page on line

5 the assignment on line 7. The is_numeric uses the variable $ page

nd is found in an if statement. Accordingly, it will be added to the

CID tree.

.2. Data flow type

The construction of the ACID tree requires labeling the edges

 λAC) corresponding to the flowing data type. The flowing data

ype can only be determined by a forward analysis. Accordingly,

he labels are set after the initial ACID tree is constructed. The la-

els are defined by iterating the nodes of the paths (Path (l)) from

ll leaves of the ACID tree. If a node defines a data type change, the

ata type changes. For example, the intval() function changes the

ata type to numeric . In contrast, a string concatenation changes

he data type to string. All nodes that do not change a data type

ill preserve the previous data type.

.3. ACID tree example

Figure 9 shows the full ACID tree for the initial code example

hown in Figure 2 . All leaves are data that can reach the sink. For

ach node the corresponding line number is added. An edge label

epresents the data type that flows between the nodes. A simple

uide to read an ACID tree is to choose a leaf and go upwards until

ou reach the root. If you reach a concatenation, the symbol ∧ is

hown. It means that the data from the other sub trees of that ∧
ode are also included by a concatenation to the sink. In contrast,

he � means that only either one of the sub trees reaches the sink.

n that case, the other sub trees can be ignored.

In the example, either the ”Unknown page” string or the _GET

ariable are concatenated (∧) with the $ name parameter and the

wo string values will reach the echo function. The parameter can

e different based on what function call is used. In the example,

he parameter has the string value ”news”. The condition functions

sNumeric and intval prevent any Cross Site Scripting attacks.

. Insecurity Refactoring

Refactoring is defined as a change made to the internal

tructure of software to make it easier to understand and less

xpensive to modify without changing its observable behavior

owler (1999) Mens and Tourwé (2004) Opdyke (1992) . Insecurity

efactoring uses a similar approach and we define it as: Insecurity

efactoring is a change to the internal structure of software to inject

 vulnerability without changing the observable behavior in a nor-

al use case scenario. If the injected vulnerability is exploited, the

bservable behavior will change. Accordingly, insecurity refactoring

equires to maintain the normal use of the program. The follow-

ng rules define insecurity refactoring by transforming a PIP into a

ulnerability.

.1. Vulnerability Description

Vulnerabilities can be described in different ways. For example,

artin et al. (2005) used the Program Query Language to describe

ulnerabilities. Our focus is on vulnerabilities that rely on data flow

rom a source to a sink. We define a vulnerability based on three

ets V src , V dst , and V san . The sources V src are patterns for retrieval of

ainted data. In the code example the $_ GET global array in line 3

s included in the source pattern set (V src) because it provides user-

ontrolled data. The echo function in line 22 is a sink contained in

he sinks set V dst .

The ACID tree is based on a backward data flow analysis with a

ink and an amount of inputs (sources). The inputs are represented

y the leaves of the ACID tree.

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

Fig. 9. ACID tree of the code example from Figure 2 .

D

c

l

t

i

t

d

S

w

S

f

r

f

S

p

t

D

i

r

l

�

r

f

i

f

d

f

v

s

5

c

s

t

a

a

v

t

D

p

f

r

l

∃
∨

efinition 4. A data flow path df p l
AC

= (T AC , l) is defined as a pair

ontaining the ACID tree and a chosen leaf.

The data flow path represents data that flows from the chosen

eaf l into the sink r AC .

The sanitization functions are defined by the set V san . Sanitiza-

ion functions from V san depend on the context and the vulnerabil-

ty type. The following function Su f f allows to check if a sanitiza-

ion function v san is sufficient with respect to the data flow path

f p l
AC

:

u f f (v san , df p l AC) = (40) {

T rue, ∃ c : ((v san , root AC) , c) ∈ S

and c ∈ Context(df p l
AC

)
F alse, otherwise

here

 ⊆((V san × V dst) × C ctx)

The set C ctx contains all possible context types. The set S defines

or each sanitization function v san and sink v dst what context c is

equired. The function C ont ext() returns a set of all active contexts

or the data flow path. The details of the function are described in

ection 6.2 . It returns all contexts that are found in the data flow

ath df p l
AC

. Accordingly, the function Su f f () checks if the sanitiza-

ion function is sufficient based on the vulnerability type.

efinition 5. The set V uln AC contains vulnerabilities. A vulnerabil-

ty v uln l
AC

is a data flow path df p l
AC

with the following properties:

oot AC ∈ V dst (41)

 ∈ V src (42)

 v ∈ P ath (l) : v ∈ V san ∧ Su f f (v , df p l AC) (43)
8
A vulnerability exists if tainted data from a leaf l (source)

eaches the root root AC (sink) without passing any sanitization

unction from set V san . For each vulnerability type, the source, san-

tization functions and sinks are defined. The different sanitization

unctions defined in V san are sufficient to prevent a vulnerability

epending on the vulnerability type. For example, a sanitization

unction to prevent SQL Injection is usually not sufficient to pre-

ent XSS attacks. The code example is not vulnerable because two

ufficient sanitization methods for XSS are used.

.2. Possible Injection Path

A possible injection path (PIP) is a data flow path in the source

ode that can be transformed into a vulnerability. The sets of

ources and sinks are extended by additional sources and sinks

hat are usually secure to use. We define the set of PIP sources

s P src ⊇ V src and the set of PIP sinks as P dst ⊇ V dst . As an example,

 secure source would be a function that only returns an integer

alue from the user. A secure sink could, e.g., be a bind query func-

ion from a parameterized SQL query.

efinition 6. The set P ip AC contains possible injection paths. A

ossible injection path pip l
AC

is a data flow path df p l
AC

with the

ollowing properties:

oot AC ∈ P dst (44)

 ∈ P src (45)

 v ∈ P ath (l) : v ∈ V san ∧ Su f f (v , df p l AC) (46)

 l / ∈ V src ∨ root AC / ∈ V dst (47)

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

e

n

i

(

q

n

r

v

v

s

i

r

5

i

T

T

T

F

m

V

p

t

T

e

n

C

C

w

C

a

e

b

F

t

m

l

R

w

(

t

f

D

d

t

T

w

T

T

T

b

t

i

p

t

s

i

s

6

t

a

6

i

i

c

l

m

T

u

m

s

i

c

s

g

The PIP definition is similar to a vulnerability definition. A PIP

xists if data from a leaf node l ∈ P src (source) reaches the root

ode root AC ∈ P dst (sink). At least one sanitization function (p ∈ V san)

n the path (Path (l)) has to be found or at least one secure source

 l / ∈ V src) or secure sink (root AC / ∈ V dst) has to be found. These re-

uirements ensure that a PIP is not already a vulnerability. The

odes of the path from l to root AC are contained in Path (l) and

epresent the data flow. That path will be used to transform the

ulnerability with different source code patterns.

The code example is by definition a PIP. The path from _ GET

ariable leaf l ∈ P src reaches the root node that represents the

ink echo (root AC ∈ P dst). As requirements, the sanitization functions

ntv al() and isNumeric() are found. The next section explains the

equired code changes to perform insecurity refactoring.

.3. Injecting a vulnerability

The transformation of a PIP into a vulnerability uses the follow-

ng transformation sets:

 src ⊆ (P src × V src) (48)

 dst ⊆(P dst × V dst) (49)

 san ⊆(V san × V san) (50)

or the source transformation set T src , secure source functions

p src ∈ P src are mapped to insecure functions v src ∈ V src . In the same

anner, secure sinks p dst ∈ P dst are mapped to insecure sinks v src ∈

 src . The sanitization functions are mapped to each other and de-

ending on the Su f f function that can be used to make the sani-

ization functions insufficient resulting in vulnerabilities. The sets

 src , T dst and T san only map functions that can be replaced with

ach other without breaking the insecurity refactoring definition.

The possible injection path pip l
AC

can be transformed into a vul-

erability v uln l
AC

, if the following condition check holds:

heck : pip l AC → Boolean (51)

heck (pip l AC) =

∧

v ∈ Path (l)

⎧ ⎪ ⎨

⎪ ⎩

Ch src (v) , if v = l
Ch dst (v) , if v = root AC

Ch san (v) , if v ∈ V san

T rue, otherwise

here

Ch src (l) = l ∈ V src ∨ ∃ (l , l ′) ∈ T src

Ch dst (r) = r ∈ V dst ∨ ∃ (r, r ′) ∈ T dst

h san (v) = ¬ Su f f (v , pip l AC)

∨ ∃ (v , v ′) ∈ T san ∧ ¬ Su f f (v ′ , pip l AC)

The PIP condition check checks that for all (
∧

) nodes if it is

 sufficient sanitization, secure sink or secure source that there

xists an insecure representation. That ensures that the PIP can

e transformed into a vulnerability. If this condition check returns

alse for a PIP pip l
AC

, it means that additional transformations in

he transformations set are required to inject a vulnerability.

The transformation of a PIP into a vulnerability requires to

odify the ACID tree. The replacement function is defined as fol-

ows:

eplace v
′

v (T AC) = T ′ AC (52)

= (V

′
AC , E

′
AC , λ

′
AC , μ

′
AC)

here

V

′
AC = V AC \ { v } ∪ { v ′ }

E ′ AC = E AC \ { (v , u) } ∪ { (v ′ , u) }
\ { (w, v) } ∪ { (w, v ′) }
9
(v , u) ∈ E AC

w, v) ∈ E AC

The Replace function replaces a node v in an ACID tree T AC with

he node v ′ . It requires to connect the old edges that point to and

rom v to the replaced node v ′ .

efinition 7. A possible injection path pip l
AC

that passes the con-

ition check can be transformed into a vulnerability v uln l
AC

with

he following function:

 f : P ip AC → V uln AC (53)

T f (pip l AC) = (G

′
AC , l

′)
l ′ = T f src (l)

G

′
AC = (Replace T f src (l)

l
◦ Replace

T f dst (root AC)
root AC

�

v ∈ Path (l)

Replace T f san (v)
v)(G AC)

here

 f dst (r) =

{
r, if r ∈ V dst

r ′ : (r, r ′) ∈ T dst , otherwise

 f src (l) =

{
l, if l ∈ V src

l ′ : (l, l ′) ∈ T src , otherwise

 f san (v) = {

v , if v / ∈ V san

v , if ¬ Su f f (v , pip l
AC

)

v ′ : (v , v ′) ∈ T san ∧ ¬ Su f f (v ′ , pip l
AC

) , otherwise

The ring operator (◦) represent that all those functions have to

e processed to transform a PIP into a vulnerability. In words, the

ransformation is done by replacing a secure sink (l / ∈ V dst) by an

nsecure sink (l ∈ V dst). In the same manner, a secure source is re-

laced by an insecure source. Additionally, all the sanitization func-

ions in the path from source to sink have to be replaced by in-

ufficient sanitization methods. In the code example, the functions

sNumeric and intv al (∈ V san) have to be replaced by insufficient

anitization methods (/ ∈ V san).

. Implementation

This section describes the implemented PL/V pattern language

hat is used to detect and inject source code patterns to transform

 PIP into a vulnerability.

.1. The PL/V pattern language

Source code patterns are described in the PL/V language. PL/V

s a context-free language that can be described in BNF as shown

n Figure 10 .

A Pattern consists of multiple code lines. If it is only a single

ode line, it can be an expression or a statement. Multiple code

ines represent a statement list in which each line must be a state-

ent. A code line has an identifier id and a parameter list P rmList .

he identifier represents a language pattern. Language patterns are

sed to decouple the source code patterns from specific program-

ing languages. For example, the pattern < = > (% in, % out) repre-

ents an assignment. It uses the symbol = as an identifier. Accord-

ngly, a language pattern exists for the id = . The language patterns

ontain the information on how the Abstract Syntax Tree repre-

entation of a specific language pattern looks like. This allows to

enerate the Abstract Syntax Tree of the language patterns.

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

Fig. 10. BNF of PL/V language.

a

c

A

c

v

a

t

t

t

(

l

n

v

a

a

o

u

i

a

I

t

<

T

a

s

s

a

r

a

i

i

f

M

T

t

n

t

e

c

F

t

p

s

f

s

A

t

n

6

c

A

i

o

C

b

d

a

C

I

v

fi

U

U

t

d

c

p

e

a

u

D

i

c

n

n

The parameter list can contain other patterns, literals, variables

nd any nodes. The variables input (% in) and output (% out) are spe-

ial case variables that can be used to chain source code patterns.

dditionally, this allows to get input or output nodes of source

ode patterns by using the AST Node x function.

In the example, the input is the expression that represents the

alue of the assignment. The output is the variable that will be

ssigned to.

Source code patterns can contain < any > parameters with op-

ional (”? ”) and multiple suffixes. An ”any” parameter means that

he parameter can be anything. The optional suffix (”? ”) specifies

hat the parameter does not have to exist. The ”multiple” suffix

”...”) specifies that any number of parameters can occur, but at

east one parameter has to exist. A combination means that any

umber of parameters can occur including none. Literals are fixed

alues that are used in the corresponding pattern.

All patterns must contain a input % in and output % out vari-

ble except of a source and sink pattern. A pattern representing

 source has only the fixed output variable. In contrast, a pattern

f a sink only has the fixed input variable. Other variables can be

sed inside the pattern. For example, if a pattern requires access-

ng a specific key of an array, the key can be set as a variable % v ar

nd be used in further patterns.

The following example stems from our patterns

nsecurity Refactoring (2022) . It defines the sanitization pat-

ern representing htmlspecialchars :

 call > (htmlspecialchars, % in, < any > ())

he pattern uses the call language pattern. The call pattern requires

 literal (htmlspecialchars) to define the function name in the Ab-

tract Syntax Tree. The % in defines the input parameter. The html-

pecialchars function has an optional parameter that is represented

s < any > . The output is the return value of the function.

For ACID tree construction, different source code patterns are

equired. For example, concatenations and the coding constructs

re represented in the PL/V language. To find source code patterns

t is required to have an equal check for each pattern. The follow-

ng function allows to check if a part of the Abstract Syntax Tree

rom the Code Property Graph matches the pattern:

atch p (v) = (54) ⎧ ⎨

⎩

F alse, if ¬ T ype p (v)
T rue, if p = ∅ ∧

p i , v i ∈ C pat (p, v)
Match p i (v i) , otherwise

The T ype p (v) function checks if the type of the Abstract Syntax

ree node v equals the type of pattern node p. The C pat (p, v) func-

ion returns pairs of the children from the AST node v and pattern

ode p. Match p (v) checks recursively if the pattern node type is
10
he same as the node type from the Abstract Syntax Tree. Param-

ter v represents the root node of the Abstract Syntax Tree that is

hecked and p is the root node of the pattern Abstract Syntax Tree.

or simplicity, the any nodes are not specified in the Match p func-

ion. It simply checks based on the suffixes if the corresponding

arameters exist or not.

The different variable nodes (% in, % out, % v ar) are used to repre-

ent important nodes. They are defined in the PL/V language. The

ollowing function allows to get the corresponding node in the Ab-

tract Syntax Tree G A based on the variable node x :

ST Node x (p, v) = (55) {

v , if p = x ⋃

p i , v i ∈ C pat (p, v)
AST Node x (p i , v i) , otherwise

It is a recursive function that searches for the same position in

he Abstract Syntax Tree of the Code Property Graph starting from

ode v as in the sub tree of the pattern starting from node p.

.2. Context analysis

The ACID tree is an analysis model that is used to evaluate the

ontext. For each data flow path df p l
AC

the context can be specified.

 context c can be identified by what is concatenated before the

nput (pre) and what is concatenated after the input (post). Instead

f formalizing the context check, we define for each context (c ∈

) the function IsContext c (pre, post) . The inputs pre and post are

oth string values. The function returns a boolean value and uses

ifferent checks to specify if the context c exists for the inputs.

We define the following function to get a set of all contexts for

 data flow path df p l
AC

:

o ntext(df p l AC) = (56)

{ c ∈ C ctx and IsContext c (U p pre (l) , U p post (l)) }
t uses the recursive functions U p pre (l) and U p post to get the string

alues that the input is concatenated with. These functions are de-

ned as follows:

p pre (v) =

{ ⋃

c∈ Be f (v)
Down (p(c)) , if p(v) = ∧

U p pre (p(c)) , otherwise
(57)

p post (v) =

{ ⋃

c∈ A f t(v)
Down (p(c)) , if p(v) = ∧

U p post (p(c)) , otherwise
(58)

U p is a recursive function that iterates from the leaf upwards

o the root node. If the parent of node v is a concatenation (∧),

ata will be concatenated to the input data. Accordingly, that con-

atenated data is the context of the input data. Based on pre or

post context, the corresponding siblings before or after of the in-

ut nodes are analyzed using the Down function. In the initial code

xample, on line 15 there is a concatenation of the variable $ name

nd the variable $ page . The variable $ page is the input from the

ser and the variable $ name is the context that is concatenated.

The function

own (v) =

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

String(v) if T ype string (v) ⋃

c∈ C(v)
Down (c) , if v = ∧

Down (F irst(v)) , if v = �

Down (C(v)) , otherwise

(59)

s a recursive function that iterates the tree downwards. If a

oncatenation is found, the recursive function of the children

odes will be united. A problem may occur if an excluding

ode � is reached. In the example on line 6, the children from

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

P

t

t

c

a

t

d

t

t

t

t

a

S

b

s

a

c

6

i

S

c

d

d

s

e

c

s

p

l

m

(

D

a

T

T

fi

t

r

t

c

i

f

t

d

t

q

m

o

v

s

f

c

e

i

a

t

t

Fig. 11. Function call by string described in the PL/V language.

6

(

e

m

a

s

r

r

s

r

t

a

t

%

i

t

g

S

i

i

O

h

i

i

i

L

s

u

f

i

p

A

a

a

T

w

p

fi

t

t

r

i

b

t

i

v

p

7

p

s

arameter($ name) are excluding. The downwards recursive func-

ion has to decide which mutually excluding child will be used for

he context analysis. Different approaches can be used. Either one

hild is selected and used for the context analysis or all children

re checked to see if they result in a similar context. We decided

o use the context of the first child. It is a simple heuristic un-

er the assumption that the context will not differ from other sub

rees. Even if the context is different based on the different sub

rees, at least one sub tree has the analyzed context. Accordingly,

he approach can only ensure the chosen case will be exploitable.

The context analysis of the ACID tree sample in Figure 9 shows

hat the user-provided data is concatenated with the String news

nd < a href = ’ www.url.com/ as pre context. The post context is the

tring ’ > link < /a > . Accordingly, the output on the web page will

e:

< a href = ’ www.url.com/news [input]’ > link < /a > .

In the code example, there is a potential Cross Site Scripting

ink. Accordingly the Cross Site Scripting relevant context checks

re required. In the example, the context check for HTML attribute

ontext and inside apostrophes context will return true.

.3. Insert data flow pattern

A main goal of insecurity refactoring is to create learn-

ng examples. Previous research Schuckert et al. (2017)

chuckert et al. (2018) showed that many interesting source

ode patterns are data flow source code patterns. The path Path (l)

efines the nodes from a source to a sink. It also represents the

ata flow of the PIP. Depending on what kind of learning example

hould be created, different data flow patterns are interesting. For

xample, some data flow patterns are difficult to detect by static

ode analysis tools Schuckert et al. (2019) . If the learning examples

hould be more focused on Capture the flag (CTF) events, data flow

atterns can be added that, for example, teach specific techniques

ike dynamic function calls. Also data flow patterns can be used to

ake the vulnerability difficult to detect by dynamic analysis tools

e.g. fuzzers).

efinition 8. The transformation of data flow patterns is defined

s a tuple:

 df = (D, M, μR) (60)

he set D defines all data flow patterns. The set M ⊆ (D × D) de-

nes the patterns that can be replaced with other data flow pat-

erns. The function μR : D → R defines what requirements r ∈ R are

equired for the inserted data flow pattern d ∈ D . The set R con-

ains all requirements. A requirement r ∈ R is a combination of a

ontext c ∈ C ctx and a boolean that defines if the context must ex-

st or must not exist. If all requirements for a data flow pattern are

ulfilled, the data flow pattern can be injected without breaking

he insecurity refactoring definition.

Usually the patterns that used to be replace with interesting

ata flow patterns are simple like an assignment. Interesting pat-

erns represent different difficulties of the vulnerabilities. The re-

uirements r ∈ R have to be fulfilled to transform the source code

aintaining the insecurity refactoring requirements. For example,

ne data flow pattern will redirect to the main page if the tainted

ariable is not an integer. The pattern does not contain an exit

tatement and the source code later on is still executed (Pattern

ound in CVE-2013-3524). This pattern requires that the initial PIP

ontains a restriction to integer only variables. The requirement

nsures that the program will still run as normal as long as only

nteger values are inserted. But it will change its external behavior

s soon as attackers insert unintended values like a string. The pat-

erns are searched in the path Path (l) using the Match p (n) func-

ion.
11
.4. Source code modification example

All the code modifications are based on the transformation sets

 T src , T dst , T san and T df). Each element of the sets can define differ-

nt variables that are required to perform a code modification. The

odifications are done on the Abstract Syntax Tree (G A). The vari-

bles of the PL/V language represent sub trees of G A . Figure 12 a

hows the code example and Figure 12 b shows the insecurity-

efactored source code. Applying the rules to inject a vulnerability

equires to replace the intv al function and is _ numeric with an in-

ufficient sanitization pattern p ∈ T san . The source and sink do not

equire any modifications. As described previously, data flow pat-

erns allow to introduce different source code patterns. In the ex-

mple, the assignment (< = > (% out, % in)) pattern on line 7 is used

o introduce a data flow pattern. For that assignment the output

 out is the AST sub tree that represents the variable page . For the

nput % in the correspding AST sub tree represents the expression

hat is assigned to the variable. In that case, it is the function call

etParam . Figure 11 shows the inserted data flow pattern.

This pattern is difficult for static code analysis tools

chuckert et al. (2019) . The insecurity-refactored source of the PIP

s shown in figure. On line 14, the sanitization function is _ numeric

s replaced by the insufficient sanitization function is _ string.

n line 15, the sanitization function intv al is replaced by the

tml special chars sanitization function. The sanitization function is

nsufficient for the inside apostrophes context. It would require an

nside quotes context to be sufficient. A potential Cross Site Script-

ng attack could inject a onclick parameter with Javascript payload.

ines 7 to 12 show the source code pattern that is difficult for

tatic code analysis tools. It represents a dynamic function call

sing a string value.

All the modifications to inject a vulnerability are done by modi-

ying the Abstract Syntax Tree. The next step is to revert the mod-

fied Abstract Syntax Tree back into actual source code. A simple

rogram was written that generates PHP source code based on the

bstract Syntax Tree. An Abstract Syntax Tree uses some kind of

bstraction to unify functions with the same functionality. For ex-

mple, < ? = and echo are both represented by an echo function call.

he current approach checks the Abstract Syntax Tree to determine

hat lines of code are modified. Only the modified lines are re-

laced by the generated PHP source code and other lines of the

les are maintained. This diminishes the chance that an abstrac-

ion breaks the source code.

The injection of vulnerabilities is semi-automated. For each PIP,

he tool shows the critical sanitization functions that have to be

eplaced. The tool provides a list of sanitization functions that are

nsufficient for the corresponding context. In addition, patterns can

e selected to be injected. After selecting the injected patterns,

he tool checks if all sanitization functions will be replaced with

nsufficient sanitization functions. If all of them are selected, the

ulnerability will be injected. For a fully automated approach, the

atterns could be selected randomly.

. Evaluation

The evaluation explores whether the Insecurity Refactoring ap-

roach is applicable to real projects. Additionally, it is important to

ee if the insecurity-refactored projects break the Insecurity Refac-

https://www.url.com/
https://www.url.com/news

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

Fig. 12. Insecurity refactoring using a data flow pattern that is difficult for static code analysis tools (function call by string).

Table 1

Possible injection path data set.

Type Sources (P src) Sanitization (V san) Passthrough (V pass) Sinks (P dst)

All 9 98 164 •
XSS • • • 9

SQLi • • • 77

Eval • • • 1

Unserialize • • • 1

t

b

e

7

p

i

o

s

r

m

t

o

s

e

f

O

f

e

t

p

c

s

f

t

Table 2

Possible injection paths found in 25 open source projects out of 307

scanned projects.

PIP True Positive (Vuln) False Positive (Vuln)

XSS 221 16 57

SQLi 98 37 10

Eval 1 0 1

Unserialize 3 2 0

323 55 68

C

t

t

f

s

v

m

t

(

b

p

o

v

b

t

v

a

oring definitions. The main condition is that the projects can still

e executed for normal use. Also the usage as learning example is

valuated.

.1. Open source projects

We developed a tool to perform insecurity refactoring on PHP

rojects Insecurity Refactoring (2022) . First of all, we want to see

f insecurity refactoring can be used to inject vulnerabilities in

pen source projects. This requires to define the set of sources,

inks, etc. Table 1 shows how many entries are in each set. We

etrieved the sets by reviewing the PHP documentation PHP Docu-

entation (2021) . Each sanitization function from V san that passes

hrough data is also found in the passthrough data set (V pass). The

ther passthrough functions are mainly functions to manipulate

tring values. The SQLi sinks contain different functions because

ach database has different PHP drivers. We added all functions

rom SQL database drivers we found in the PHP documentation.

nly 9 sources are in our data set that are mainly functionality

rom PHP like the global array _GET. Eval and unserialize are differ-

nt vulnerability types. Each of them is represented as a sink for

heir category.

A crawler tool was written that crawls GitHub Github (2022) for

rojects that contain PHP source code. The corresponding source

ode is then checked for PIPs. Table 2 shows the results. 307 open

ource projects were scanned. In 25 of these projects PIPs were

ound. Accordingly, the tool could inject vulnerabilities in 8.1% of

he projects. It also shows that most of the PIPs are related to
12
ross Site Scripting. Not many projects contained PIPs related to

extiteval or textitunserialize. We also found several vulnerabili-

ies. Those reports were reviewed: 55 true vulnerabilities and 68

alse positive reports. Most of the vulnerabilities were found in in-

tallation and testing files or were deliberate vulnerabilities. Three

ulnerabilities were potentially dangerous vulnerabilities in com-

only used projects. These vulnerabilities were reported by us

o developers and they confirmed and patched the vulnerabilities

CVE-2020-27163, CVE-2021-3318, CVE-2021-26716). The vulnera-

ility reports also included 68 false positive reports. In these cases

re-conditions prevent an exploitation. These pre-conditions were

utside the ACID tree and could not be detected. The false positive

ulnerability reports show that not all sanitization approaches can

e detected. Nevertheless, PIPs that are used for insecurity refac-

oring have to contain a detected sanitization function to inject a

ulnerability. This decreases the possibility that an injected vulner-

bility is not exploitable. One problem for Cross Site Scripting ex-

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

Fig. 13. Pre-Survey CTF event to check the skill level. (n = 11)

i

A

fi

n

c

A

b

i

s

A

P

7

p

o

i

u

w

I

r

c

b

t

e

b

t

a

t

w

a

7

A

l

s

c

d

s

c

t

c

p

w

b

l

Fig. 14. Pre-Survey student exercise event to check the skill level. (n = 24)

T

p

f

v

u

a

t

b

a

p

i

t

f

b

S

a

b

f

a

c

d

a

a

e

q

a

n

S

t

g

t

v

p

i

e

c

t

a

b

r

7

g

s

p

k

p

c

sts if the Content-Type is set to a secure type (e.g. plain/text). The

CID tree does not contain the Content-Type . If a PIP is found in a

le that sets a secure Content-Type , the injected vulnerability will

ot be exploitable. If no sanitization function is found, but a spe-

ial sanitization function exists, it will not be selected as as PIP.

ccordingly, those false positive reports do not impact the possi-

ility for insecurity refactoring.

The results demonstrate that the concept of insecurity refactor-

ng works on open source projects. By increasing the data set of

ources and sinks, the chances of finding PIPs can be increased.

dding support for object-oriented data flows to the initial Code

roperty Graph will increase the findings.

.2. Learning examples

Initial evaluation shows that PIPs are found in open source

rojects. The next step is to see if the refactoring itself works with-

ut breaking the functionality of the projects. Additionally, it is

mportant to check if the injected vulnerabilities can actually be

sed to teach software security. For the evaluation, two exercises

ere arranged for two different groups. The exercises are projects

nsecurity Refactoring code samples (2022) that were insecurity-

efactored to contain different vulnerabilities. The groups and the

orresponding exercises are described in the following sections.

Surveys were used for evaluation of the experiment. At the

eginning, a pre-survey was provided to get information about

he skill level of attendees. The exercise itself was a bit differ-

nt for each group. Both used insecurity-refactored projects. For

oth groups the insecurity-refactored projects were hosted in vir-

ual machines. This allowed to check if the insecurity refactoring

ctually maintained the external behavior of the programs. After

he experiment, a post-survey was provided to see if the exercises

ere perceived as difficult or realistic and if attendees experienced

 skill increase.

.2.1. Experienced group

The first group was a mix of people with different backgrounds.

ll of them were training for an upcoming cyber security chal-

enge. Figure 13 shows the skill level in different categories. The

kill level in programming is overall very high. Also the web se-

urity skills are towards medium high rating. The experience with

ifferent hacking tools is seen as medium and the experience with

tatic code analysis is low. This group has already experience with

apture the flag events from attending other training events. Fur-

her, the group is described as the experienced group (”Exp.”).

Based on the experience of the group, the idea for this exer-

ise was to provide the attendees with the insecurity-refactored

rojects in virtual machines like in a CTF event. The attendees

ere supposed to use their own strategies for detecting vulnera-

ilities. Attendees had access to the virtual machines that also al-

owed them to access the source code of the projects.
13
Table 3 shows an overview of the insecurity-refactored projects.

he following four projects were used for insecurity refactoring:

hpBB, EmonCMS, phpRedisAdmin and Adminer . Overall we injected

our SQL Injection vulnerabilities and three Cross Site Scripting

ulnerabilities spread over the four projects. The phpBB project

ses self defined functions for getting user data. We have added

 project specific pattern that represents that functions. Without

hat pattern the Insecurity Refactoring tool would not be possi-

le to detect PIPs in phpBB. Accordingly, the phpBB did not add

ny PIPs to the initial evaluation based on scanning open source

rojects. The project specific pattern can be found on GitHub but

s disabled at default. Data flow patterns were added, of which

hree are difficult for static code analysis tools and two difficult

or dynamic testing tools. One pattern also used the function call

y string pattern described earlier. One vulnerability was a plain

QL Injection without any sanitization methods and two vulner-

bilities used an insufficient sanitization method for the vulnera-

ility or context. The goal was to create vulnerabilities with dif-

erent difficulty levels. Additional difficulties can be achieved by

dding data flow patterns. Table 3 shows these patterns and the

orresponding difficulties for different approaches are listed. The

ifficulties vary for the different approaches to discover a vulner-

bility. Static code analysis tools (sca), dynamic testing tools (dyn)

nd manual inspections (man) have different difficulty levels. For

xample, a dynamic tool has problems to detect backdoors that re-

uire specific inputs to bypass sanitization. In contrast, static code

nalysis tools usually have more problems detecting different dy-

amic programming approaches or specific source code patterns

chuckert et al. (2019) Schuckert et al. (2020) .

Attendees were grouped into four teams who worked together

o find the vulnerabilities deployed in the virtual machines. The

roups had to provide a report to score points. The report had

o contain how the students discovered the vulnerability, how the

ulnerability can be exploited and how the vulnerability can be

atched. Having a report about discovery, exploitation and patch-

ng allowed us to analyze how the teams solved the tasks. The

vent ran for 24 hours. In the first hours, the groups had to dis-

over the vulnerabilities without any further help. After the ini-

ial 10 hours, hints about the vulnerabilities were released. For ex-

mple, ”Some users reported that changing the style of phpBB is

uggy.” In this case the injected vulnerability used the style pa-

ameter in user.php for a SQL Injection vulnerability.

.2.2. Beginners group

A second evaluation as a learning example was done with a

roup of students. The students were relatively new to software

ecurity. Figure 14 shows their initial skill levels. It shows that the

rogramming skills are higher than the web security skills. This

ind of skill level was expected because the students study com-

uter science and the exercise was done for a software security

lass. The group will be described as beginners group (”Beg.”).

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

Table 3

Insecurity-refactored projects for the experienced group (Exp.).

Project Type Input parameter DF Pattern Insuff. San. special G1 G2 G3 G4

phpBB SQLi user.php (style) hint � � � �

phpBB SQLi memberlist.php (g) redirect [man.]

phpBB SQLi posting.php (t) backdoor int cast [dyn.]

emonCMS XSS compare.php (feedA) Class storage [sca] htmlspecialchars � � �

emonCMS SQLi admin_controller.php (perPage) htmlspecialchars �

phpRedisAdmin XSS view.php (page) backdoor expl/imp. [dyn/sca] .git dir � �

Adminer XSS table.inc.php (table) function call by string [sca]

Table 4

Insecurity-refactored projects for the beginner group (”Beg.”).

Project Type Input parameter DF Pattern Insuff. San. special

phpBB SQLi user.php (style) Parameter list

phpBB SQLi memberlist.php (g) backdoor int cast [dyn.] Parameter list

phpBB SQLi posting.php (p) redirect [man.] Parameter list

emonCMS XSS compare.php (feedA) Deactivated default san. [sca] Parameter list

emonCMS SQLi admin_controller.php (perPage) function call by string [sca] Parameter list

emonCMS XSS dailyhistogram.php (kwhd) comparing different types [man] Parameter list

c

b

w

t

a

p

m

t

o

r

p

a

t

t

s

a

r

g

a

s

r

c

F

e

b

w

7

t

t

p

p

a

G

t

p

g

s

g

T

h

o

Fig. 15. Survey results on the difficulty of tasks. (Discovery, Exploitation and Patch-

ing) (n = 16)

I

2

h

fi

g

n

a

d

d

e

t

w

w

a

g

m

T

t

t

r

i

t

s

F

s

Because the group was not experienced with using any static

ode analysis or dynamic testing tools, the exercise itself had to

e different. Table 4 shows the insecurity-refactored projects that

ere used in this exercise. Only phpBB and EmonCMS were used

o injected different vulnerabilities. This time four SQL Injection

nd two Cross Site Scripting vulnerabilities were injected in the

rojects. All of them contained different data flow patterns to again

ake it difficult for static code analysis tools or dynamic testing

ools. Except for the very simple SQLi vulnerability in phpBB, no

ther vulnerabilities are the same as in the data set for the expe-

ienced group. Some inputs are the same, but different data flow

atterns make them different from each other.

Because the students were not familiar with using static code

nalysis and dynamic tools, they got tutorials on how to use such

ools. Also the students were provided with a static code analysis

ool and a dynamic tool that they could use. For the exercise, the

tudents had to scan the provided source code with the static code

nalysis tool. As the next step, they had to scan the insecurity-

efactored projects with the provided dynamic tool. The students

ot the insecurity-refactored projects deployed in virtual machines

nd they separately got the corresponding source code. As the last

tep the students were provided with a list of the vulnerable pa-

ameters. This allowed them to check the tools’ results and they

ould manually inspect the remaining undetected vulnerabilities.

or each of the steps, the students had to report if it is possible to

xploit the discovered vulnerabilities. No patching of the vulnera-

ilities was required. The time frame for this experiment was four

eeks.

.2.3. Results

First of all, the insecurity-refactored projects with different pat-

erns were deployed in virtual machines. No strange behavior of

he projects was reported. Accordingly, the insecurity-refactored

rojects performed normally as long as no vulnerability was ex-

loited. One problem in the experienced group was revealed that

t some point attendees found out that the latest version on

itHub had been used as the base for insecurity refactoring. Then

hey started to use the diff command on the insecurity-refactored

rojects to find further vulnerabilities. Table 3 shows for each

roup (G1-G4) what vulnerabilities have been reported. Three of

even vulnerabilities were not reported at all. A problem in the be-

inner group was that it was forced to do the exercise from home.

herefore, they could not be guided well to use the given tools and

ad to rely on the provided tutorials. This was a hurdle that many

f the beginners could not overcome and not all of them finished.
14
t was not mandatory to finish the exercise and only 7 of the initial

4 attendees actually finished the exercise.

In the post-survey, attendees were asked how difficult the tasks

ad been for them. Figure 15 shows the results combining the dif-

culty of discovery, exploitation and patching. For the beginners

roup the question about patching did not exist because they did

ot patch the vulnerabilities in their exercise. Overall, the results

re towards medium difficulty with being a bit more towards the

ifficult side. For an exercise, the medium difficulty is optimal. It

oes not overwhelm learners and is not too easy to solve. Experi-

nced attendees point out that they were a bit overwhelmed by

he large projects. Additionally, they pointed out that the tasks

ere not isolated like in other CTF events. No such complaints

ere voiced in the beginners group, probably because they got

 list of vulnerable parameters. The patching by the experienced

roup was described as more on the easy side. The reason is that

ost teams used the master version on GitHub as a patch solution.

hat is a correct solution, but does not require any skills to patch

he vulnerability.

Figure 16 shows the results of the questions on how real the

asks were considering bug bounty or code inspections tasks in

eal life. The results of both groups are shown in the diagram. It

ndicates that the exercise was close to a real life example. Only

wo attendees answered that closeness to reality was low.

Attendees were asked how they think their software security

kills improved by that event. The results are shown in Figure 17 .

irst of all, two members of the experienced group did not see any

kill increase by the event. The other 14 attendees answered that

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

Table 5

Comparing methods of LAVA, EvilCoder and Insecurity Refactoring.

Method LAVA EvilCoder Insecurity Refactoring

Language C/C + C/C + PHP

Detection DUA (dynamic) Code Property Graph 1. backward 2. forward (CFG) ACID Tree Context of input

Injection Use DUA in sink Invalidate security mechanisms or use security anti patterns 1. Ins. sanitization function 2. Add data flow pattern

Realismn Synthetic Artificial Patterns stem from CVEs

Fig. 16. Post-survey results about how similar the exercise is to real penetration

testing/bug bounty scenarios. (n = 16)

Fig. 17. Post-survey results if attendees experienced a skill increase from the exer-

cise. (n = 16)

t

e

7

n

n

R

7

U

c

n

t

b

t

r

q

s

b

v

i

i

t

t

v

t

fi

C

f

(

w

c

r

b

s

i

p

F

t

p

a

c

t

c

T

p

i

a

A

G

g

f

t

a

s

t

t

t

P

A

t

a

i

t

d

t

7

A

b

N

p

T

hey experienced a skill increase in software security skills by the

vent.

.3. Comparative analysis

Previous approaches have used similar procedures to inject vul-

erabilities. Table 5 shows an overview of methods to inject vul-

erabilities from both LAVA and EvilCoder as well as Insecurity

efactoring.

.3.1. Functional comparison

LAVA uses a dynamic taint analysis to detect DUAs (Dead,

ncomplicated and Available Data). In words, a DUA is a user-

ontrolled input that does not change any control flows and is

ot concatenated with other variables. Then they search for at-

ack points (ATP) which are near DUAs. An ATP is a sink that can

e transformed to create a vulnerability. The vulnerability injec-

ion transforms the ATP by adding a conditional usage of the cor-

esponding DUA.

Compared to our course of action, the dynamic approach re-

uires a running setup of the program. First of all, that makes the

canning effort more difficult. Nevertheless, the detection should

e more precise. Additionally, the authors state that the injected

ulnerabilities are synthetic, therefore only exploitable if specific

nputs are provided. The condition allows the program to run as
15
ntended as long as the specific input is not provided. Therefore,

hey state that it makes the vulnerabilities more realistic. Never-

heless, the injected vulnerability patterns do not stem from real

ulnerabilities.

The EvilCoder approach uses a Code Property Graph. The de-

ection of potential injection locations is done in two steps. In the

rst step, for all potential sinks a backwards taint analysis on the

ode Property Graph is started to find sources. In the second step,

or each potential path from a sink to a source, a forward analysis

source to sink) on the Control Flow Graph is started. In the for-

ard analysis, it is searched for security checks that influence the

ontrol flow based on data from the tainted variable. These secu-

ity checks are transformed to inject the vulnerability. It can either

e injected by invalidating the security checks or by the use of a

ecurity anti-pattern. A security check is invalidated by transform-

ng the conditions to always being true or false. A security anti-

attern transforms the sink to use patterns that are always critical.

or example, a printf (“% s ”, buf) is replaced by printf(buf) .
Compared to our approach, the injected vulnerabilities are ar-

ificial. The approach does not ensure the normal behavior of the

rogram afterwards. The injected vulnerability might be triggered

ll the time. Their approach uses a concept to remove security

hecks. Many C/C++ vulnerabilities are related to memory bugs

hat make length checks critical. Our approach can replace security

hecks and functions that transform data (e.g. htmlspecialchars()).

he approach to add anti-patterns is similar to our approach of re-

lacing secure sinks with insecure sinks.

Overall, our approach is focused towards PHP and correspond-

ng typical vulnerabilities. As PHP is typically used in web-based

pplications, the vulnerabilities heavily depend on the context. The

CID tree is another analysis model on top of the Code Property

raph that allows to analyze the context of given user input. This

ives us the opportunity to be more specific whether a sanitization

unction is sufficient or not. The other approaches do not consider

he context. LAVA tries to minimize that problem by using vari-

bles that are not concatenated with other variables. EvilCoder in-

tead invalidates the whole security check independent of the con-

ext. In contrast, our approach is precise, which has the disadvan-

age of not finding as many potential injection paths. But it main-

ains the normal usage of the program. Our approach provides a

L/V pattern language that allows to describe the critical patterns.

dditionally, our patterns stem from existing CVEs to maintain pat-

erns of realistic vulnerabilities. By definition all injected vulner-

bilities are artificial, including our approach. Insecurity Refactor-

ng injects patterns that stem from CVE reports in existing projects

o keep the vulnerabilities as realistic as possible. In addition, the

ata flow patterns can be used to introduce difficulties based on

he pattern.

.3.2. Experimental comparison

The EvilCoder approach to find PIPs is similar to our approach.

n experiment with the same programs as input is not possible

ecause EvilCoder uses C and our approach uses PHP as input.

evertheless, we compare their results from scanning open source

rojects to our results from scanning open source projects in detail.

able 6 shows the results that EvilCoder got on four open source

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

Table 6

Comparing results of EvilCoder and Insecurity Refactoring.

EvilCoder

libpng vsftpd wget busybox

Lines of code 40,004 20,046 137,234 265,887

Sources 9 3 21 152

Sinks 98 13 453 573

Unique Source-Sink 158 22 22 30

Source-Sink paths 22,516 786 1,882 2,905

Insecurity Refactoring

Adminer EmonCMS phpBB phpRedisAdmin

Lines of code 27,606 26,383 289,800 2,022

Sources 752 138 552 (223) 210

Sinks 1,386 3,417 3,795 (3,795) 478

Unique Source-Sink 39 13 188 (0) 25

Source-Sink paths (PIPs) 65 14 292 (0) 30

p

T

t

t

i

fi

s

s

t

t

o

s

p

a

s

t

g

p

i

p

t

C

t

A

u

E

p

a

p

c

s

v

P

e

f

i

o

d

t

d

m

s

b

r

t

8

i

n

t

t

i

m

r

u

t

G

t

s

A

c

o

t

s

i

w

d

b

r

o

s

r

h

o

l

e

t

T

r

t

t

a

i

I

h

fi

N

t

rojects and that we achieved for the same number of projects.

he results include a special pattern for the custom phpBB func-

ion to retrieve user data. Without that pattern, Insecurity Refac-

oring cannot find a PIP. The results without the pattern are shown

n brackets. First of all, the results show that Insecurity Refactoring

nds a lot more sources and sinks compared to EvilCoder. A rea-

on for that is that PHP web vulnerabilities have a different kind of

inks and sources. For example, for XSS every function that prints

ext on a web page will be a possible sink. This includes functions

hat just print static text. A unique source-sink stands for at least

ne data flow path between a specific source and sink. The In-

ecurity Refactoring flags an ACID tree that contains at least one

ath from source to sink as a PIP. It does not count each leave

s an additional PIP. In contrast, source-sink paths count all pos-

ible paths that are found between sources and sinks. First of all,

he results show that EvilCoder finds more unique source-sinks per

iven sources and sinks compared to Insecurity Refactoring. Com-

ared to the lines of code, the unique source-sink pairs found are

n a similar range. For the source-sink paths, EvilCoder finds more

aths. The different code base and vulnerabilities might explain

hat. Nevertheless, an implementation difference here is that Evil-

oder tracks each control flow path that can be taken. The ACID

ree combines such control flow paths. Another path (split in the

CID tree) would only be created when an if statement contains a

nion that then will be represented as an excluding (�) split.

As a next step, the vulnerability injection can be evaluated.

vilCoder ships only two kinds of instrumentation on the GitHub

roject. They state that it can be extended to create more vari-

tions. Here is a gap between their approach and ours. Our ap-

roach evaluates if a sanitization function is sufficient for a given

ontext. EvilCoder only provides the possibility to replace an if

tatement with an instrumentation. Our approach allows more

ariations for a given PIP (source-sink). For example, for a given

IP it is allowed to replace a source with 5 other sources, 10 differ-

nt data flow patterns can be inserted, and 9 different sanitization

unctions would be insufficient. This allows to inject a vulnerability

n 5 ∗ 10 ∗ 9 = 450 different permutations. This is an advantage of

ur approach over the EvilCoder approach. Small patterns can be

efined and those patterns can be combined to inject vulnerabili-

ies.

Nevertheless, the comparison between two tools that work with

ifferent vulnerabilities and on source code in different program-

ing languages cannot be compared empirically. Our experiment

hows that EvilCoder provides more possibilities to inject vulnera-

ilities that use different data flow paths. In contrast, the Insecu-

ity Refactoring approach allows to inject many different permuta-

ions of a vulnerability.
16
. Discussion

Insecurity refactoring is a novel method that injects vulnerabil-

ties in projects based on source code patterns gathered from vul-

erabilities in CVE reports. It shows that PIPs can be found and

ransformed into vulnerabilities. Also some patterns can be added

hat make detection by static code analysis tools difficult. One eth-

cal question is if developing and publishing such a tool might be

ore harmful than useful. The main idea is to actually use insecu-

ity refactoring to create learning examples. The tool could also be

sed maliciously to inject vulnerabilities in projects that are ac-

ually deployed in productive systems. For example, a malicious

it software could use insecurity refactoring to inject vulnerabili-

ies before it pushes code changes to the Git server. Such an attack

cenario requires that the Git server does not review pull requests.

nother scenario might be that the Git client that pulls the source

ode is malicious. The client could perform insecurity refactoring

n each pull request. This is a possible attack scenario but requires

o add the malicious Git client on the server in the first place. We

ee such attack scenarios as more artificial than actually relevant

n practice.

As learning examples, a defined difficulty of the vulnerabilities

ould be beneficial. Our evaluation shows that most of the atten-

ees reported skill increase attending an event that used vulnera-

ilities generated by insecurity refactoring. Some form of difficulty

ating for the different patterns would be useful. For now we can

nly predict the difficulty based on how large the initial project

ource code is and whether we added some special patterns. The

esults of the evaluation show that some attendees would like to

ave hints as to where vulnerabilities are. Accordingly, the scenario

f the exercise itself is also important. Insecurity refactoring al-

ows to inject vulnerabilities in real projects to get vulnerability

xamples as real as possible. Nevertheless, the exercises in which

he insecurity-refactored projects are used may be very different.

he results show in two different scenarios that the insecurity-

efactored projects can be used as learning examples.

The difficulty varies based on what kind of learning example

he insecurity-refactored source code is used for. If it is used to

each the use of static code analysis tools, a vulnerability without

 special difficult static code analysis pattern is not difficult. But

t might be difficult if the vulnerability has to be found manually.

n the end, the difficulty of the insecurity-refactored vulnerabilities

eavily depends on the task.

Our evaluation on open source projects showed a problem in

nding control functions using the Ctrl function. This is a classical

P-hard problem because all possible paths from one statement

o another statement have to be created and each of these paths

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

h

M

N

c

l

s

c

s

s

r

n

f

p

S

(

t

T

i

a

m

t

t

t

v

l

i

i

A

a

o

c

u

9

t

a

m

h

A

w

i

o

T

c

t

i

d

n

o

w

l

g

o

P

u

c

a

p

e

a

u

D

c

i

C

v

c

L

D

R

A

B

B

B

C

D

D

D

F

G

I

I

K

M

M

M

O

P

P
P

R

S

S

S

as to be checked if it contains any sanitization check methods.

ost of the time, possible paths are short and the query runs fast.

evertheless, some projects contain so many possible paths (high

omplexity) that the query run time increases to an inconveniently

ong period (> 2 minutes) on modern hardware. As a solution we

canned in two steps. The first step ignores any control function

hecks. If the first step finds a PIP or vulnerability, a second analy-

is is done using the control function checks.

Another problem is that the control property graph does not

upport object-oriented data flow. Method calls from objects are

esolved correctly, but data that is stored in object variables is

ot tracked. This decreases the chance to find PIPs. Especially

or SQLi, many database drivers are stored in objects (db wrap-

er) or the queries are constructed using data-represented objects

chuckert et al. (2017) .

The evaluation shows positive results for a small survey size

 n = 9 + 7 = 16). The results of the evaluation as a code inspec-

ion task shows that the small test group had skill improvements.

he small survey size cannot be used to statistically proof that the

nsecurity refactored projects are always beneficial as learning ex-

mples. At least for that small test group it showed skill improve-

ents. Future work should use larger test groups (n > 100) to sta-

istically verify the initial results of the small sample size. However,

he usefulness of software security exercises not only depends on

he vulnerability itself. The results show that insecurity-refactored

ulnerabilities are usable for software security exercises. One prob-

em of such exercises is the time it takes to create vulnerabilities

n a real scenario. The results show that insecurity refactoring can

nject vulnerabilities with different patterns into existing projects.

ccordingly, the scenario where vulnerabilities appear is as real

s possible. Overall, the concept of insecurity refactoring works

n open source projects without violating the definition of inse-

urity refactoring (not changing the external behavior in normal

sage).

. Conclusion

Our approach for insecurity refactoring shows that vulnerabili-

ies can be injected into open source projects by using static code

nalysis approaches. The ACID tree is introduced as an analysis

odel for finding PIPs and vulnerabilities. Finding locations of PIPs

as the same limitations as finding vulnerabilities in the first place.

 precise approach was used to mitigate any false positive results

here injected vulnerabilities would have a high chance of not be-

ng exploitable. A false positive PIP might break the normal use

f the project, hence breaking the insecurity refactoring definition.

he PIP can be simple. The injected vulnerability can be made diffi-

ult by adding data flow patterns. These patterns can be so difficult

hat the ACID tree approach cannot detect them anymore. Accord-

ngly, the injection of vulnerabilities can be a lot easier than the

etection of the injected vulnerabilities. If any useful attack sce-

arios of insecurity refactoring are found, the automated detection

f these vulnerabilities will be more difficult.

The focus of insecurity refactoring is to inject vulnerabilities

ith different source code patterns. The PL/V pattern language al-

ows to define the source code patterns in an independent lan-

uage. To extend the tool to support other programming languages

nly the language patterns have to be rewritten and the Code

roperty Graph has to be created for that language. A first eval-

ation shows on a small sample size that insecurity refactoring

an be used to teach software security skills. Compared to other

pproaches our focus relies on to create vulnerabilities realistic as

ossible. The approach shows that the concept works with differ-

nt source code patterns. The different patterns also allow to cre-

te many permutations of vulnerabilities. This enables repeatedly

sing insecurity refactoring to teach software security skills.
17
eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Felix Schuckert: Conceptualization, Methodology, Software, In-

estigation, Writing – original draft, Visualization. Basel Katt: Con-

eptualization, Writing – review & editing, Supervision. Hanno

angweg: Conceptualization, Writing – review & editing.

ata availability

The data is available on GitHub.

eferences

lhuzali, A., Gjomemo, R., Eshete, B., Venkatakrishnan, V.N., 2018. NAVEX: Precise

and scalable exploit generation for dynamic web applications. Proceedings of
the 27th USENIX Security Symposium 377–392 .

ackes, M., Rieck, K., Skoruppa, M., Stock, B., Yamaguchi, F., 2017. Efficient and

Flexible Discovery of PHP Application Vulnerabilities. Proceedings - 2nd IEEE
European Symposium on Security and Privacy, EuroS and P 2017 334–349.

doi: 10.1109/EuroSP.2017.14 .
oland, T., Black, P.E., 2012. Juliet 1.1 C/C++ and Java Test Suite. Computer 45 (10),

88–90. doi: 10.1109/MC.2012.345 .
urket, J., Chapman, P., Becker, T., Ganas, C., Brumley, D., 2015. Automatic prob-

lem generation for Capture − the − F lag competitions. 2015 USENIX Summit on
Gaming, Games, and Gamification in Security Education (3GSE 15) .

hapman, P., Burket, J., Brumley, D., 2014. { PicoCTF } : A { Game-Based } computer se-

curity competition for high school students. 2014 USENIX Summit on Gaming,
Games, and Gamification in Security Education (3GSE 14) .

eo, N., 1974. Graph Theory with Applications to Engineering and Computer Science
(Prentice Hall Series in Automatic Computation). Prentice-Hall, Inc., USA .

olan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mambretti, A., Robertson, W., Ul-
rich, F., Whelan, R., 2016. LAVA: Large-Scale Automated Vulnerability Addition.

Proceedings - 2016 IEEE Symposium on Security and Privacy, SP 2016 110–121.

doi: 10.1109/SP.2016.15 .
u, W., 2011. SEED: Hands-on lab exercises for computer security education. IEEE

Security and Privacy 9 (5), 70–73. doi: 10.1109/MSP.2011.139 .
owler, M., 1999. Refactoring: Improving the design of existing code. Addison-Wes-

ley Professional .
ithub, 2022. https://github.com/ .

nsecurity Refactoring, 2022. https://github.com/fschuckert/insecurity-refactoring .

nsecurity Refactoring code samples, 2022. https://github.com/fschuckert/insec _
samples .

lees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M., 2018. Evaluating fuzz testing. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-

nications Security. Association for Computing Machinery, New York, NY, USA,
pp. 2123–2138. doi: 10.1145/3243734.3243804 .

artin, M., Livshits, B., Lam, M.S., 2005. Finding application errors and security

flaws using PQL: a Program Query Language. ACM SIGPLAN Notices 40 (10), 365.
doi: 10.1145/1094811.1094840 .

aruyama, K., Omori, T., 2011. A Security-Aware Refactoring Tool for Java Programs.
Proceedings - International Conference on Software Engineering 22–28. doi: 10.

1145/1984732.1984737 .
ens, T., Tourwé, T., 2004. A survey of software refactoring. IEEE Transactions on

software engineering 30 (2), 126–139. doi: 10.1109/tse.2004.1265817 .

pdyke, W.F., 1992. Refactoring object-oriented frameworks. University of Illinois at
Urbana-Champaign .

ewny, J., Holz, T., 2016. Evilcoder: Automated bug injection. In: Proceedings of the
32nd Annual Conference on Computer Security Applications, pp. 214–225 .

HP Documentation, 2021. https://www.php.net/manual/ .
HP repository - backdoor commit, 2021. https://github.com/php/php-src/commit/

c730aa26bd52829a4 9f2ad284b181b7e82a6 8d7d .

awat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H., 2017. Vuzzer:
Application-aware evolutionary fuzzing. In: NDSS, Vol. 17, pp. 1–14. doi: 10.

14722/ndss.2017.23404 .
chreuders, Z.C., Shaw, T., Shan-A-Khuda, M., Ravichandran, G., Keighley, J., Or-

dean, M., 2017. Security scenario generator (SecGen): A framework for generat-
ing randomly vulnerable rich-scenario VMs for learning computer security and

hosting CTF events. 2017 USENIX Workshop on Advances in Security Education
(ASE 17). USENIX Association, Vancouver, BC .

chuckert, F., Hildner, M., Katt, B., Langweg, H., 2018. Source Code Patterns of

Buffer Overflow Vulnerabilities in Firefox. Proceedings of Sicherheit 2018 107–
118. doi: 10.18420/sicherheit2018 _ 08 .

chuckert, F., Katt, B., Langweg, H., 2017. Source Code Patterns of SQL Injection
Vulnerabilities. International Conference on Availability, Reliability and Security

doi: 10.1145/3098954.3103173 .

http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0001
https://doi.org/10.1109/EuroSP.2017.14
https://doi.org/10.1109/MC.2012.345
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0004
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0005
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0006
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/MSP.2011.139
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0009
https://github.com/
https://github.com/fschuckert/insecurity-refactoring
https://github.com/fschuckert/insec_samples
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/1094811.1094840
https://doi.org/10.1145/1984732.1984737
https://doi.org/10.1109/tse.2004.1265817
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0014
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0015
https://www.php.net/manual/
https://github.com/php/php-src/commit/c730aa26bd52829a49f2ad284b181b7e82a68d7d
https://doi.org/10.14722/ndss.2017.23404
http://refhub.elsevier.com/S0167-4048(23)00031-7/sbref0017
https://doi.org/10.18420/sicherheit2018_08
https://doi.org/10.1145/3098954.3103173

F. Schuckert, B. Katt and H. Langweg Computers & Security 128 (2023) 103121

S

S

S

T

Y

Y

Y

F

T
H

m
i

t

c

chuckert, F., Katt, B., Langweg, H., 2019. Difficult XSS code patterns for static
code analysis tools. In: Computer Security - ESORICS 2019 International Work-

shops, IOSec, MSTEC, and FINSEC, Luxembourg City, Luxembourg, Septem-
ber 26-27, 2019, Revised Selected Papers. Springer, pp. 123–139. doi: 10.1007/

978- 3- 030- 42051- 2 _ 9 .
chuckert, F., Katt, B., Langweg, H., 2020. Difficult SQLi Code Patterns for Static Code

Analysis Tools. Norsk IKT-konferanse for forskning og utdanning – NISK Norsk
informasjonssikkerhetskonferanse 2020 (3) . https://ojs.bibsys.no/index.php/NIK/

article/view/892

tivalet, B., Fong, E., 2016. Large Scale Generation of Complex and Faulty PHP Test
Cases. Proceedings - 2016 IEEE International Conference on Software Testing,

Verification and Validation, ICST 2016 409–415. doi: 10.1109/ICST.2016.43 .
homas, S., Williams, L., Xie, T., 2009. On automated prepared statement generation

to remove SQL injection vulnerabilities. Information and Software Technology
51 (3), 589–598. doi: 10.1016/j.infsof.20 08.08.0 02 .

amaguchi, F., Golde, N., Arp, D., Rieck, K., 2014. Modeling and discovering vulner-

abilities with code property graphs. Proceedings - IEEE Symposium on Security
and Privacy 590–604. doi: 10.1109/SP.2014.44 .
18
amin, M.M., Katt, B., 2022. Modeling and executing cyber security exercise sce-
narios in cyber ranges. Computers and Security 116, 102635. doi: 10.1016/j.cose.

2022.102635 .
amin, M.M., Katt, B., 2022. Use of cyber attack and defense agents in cyber

ranges: A case study. Computers & Security 122, 102892. doi: 10.1016/j.cose.
2022.102892 .

elix Schuckert is a PhD candidate at the Norwegian University of Science and

echnology in cooperation with the University of Applied Sciences in Constance.
e received the bachelor’s degree in software engineering and a master’s degree in

odeling and software software engineering at the University of Applied Science
n Constance. His current topic is about opportunities of Insecurity Refactoring for

raining and software development. He is interested in static code analysis, web se-

urity, software development and source code patterns of vulnerabilities.

https://doi.org/10.1007/978-3-030-42051-2_9
https://ojs.bibsys.no/index.php/NIK/article/view/892
https://doi.org/10.1109/ICST.2016.43
https://doi.org/10.1016/j.infsof.2008.08.002
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1016/j.cose.2022.102635
https://doi.org/10.1016/j.cose.2022.102892

	Insecurity Refactoring: Automated Injection of Vulnerabilities in Source Code
	1 Introduction
	2 Background
	2.1 Code Property Graph

	3 Methodology
	3.1 Adversary Controlled Input Dataflow Tree
	3.2 Code example

	4 ACID Tree Construction
	4.1 Control functions
	4.2 Data flow type
	4.3 ACID tree example

	5 Insecurity Refactoring
	5.1 Vulnerability Description
	5.2 Possible Injection Path
	5.3 Injecting a vulnerability

	6 Implementation
	6.1 The PL/V pattern language
	6.2 Context analysis
	6.3 Insert data flow pattern
	6.4 Source code modification example

	7 Evaluation
	7.1 Open source projects
	7.2 Learning examples
	7.2.1 Experienced group
	7.2.2 Beginners group
	7.2.3 Results

	7.3 Comparative analysis
	7.3.1 Functional comparison
	7.3.2 Experimental comparison

	8 Discussion
	9 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

