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Abstract
Methods to estimate polygenic scores (PGS) from genome-wide association studies are increasingly 
utilized. However, independent method evaluation is lacking, and method comparisons are often 
limited. Here, we evaluate polygenic scores derived using seven methods in five biobank studies 
(totaling about 1.2 million participants) across 16 diseases and quantitative traits, building on a 
reference-standardized framework. We conducted meta-analyses to quantify the effects of method 
choice, hyperparameter tuning, method ensembling and target biobank on PGS performance. We 
found that no single method consistently outperformed all others. PGS effect sizes were more variable
between biobanks than between methods within biobanks when methods were well-tuned. Differences
between methods were largest for the two investigated autoimmune diseases, seropositive rheumatoid 
arthritis and type 1 diabetes. For most methods, cross-validation was more reliable for tuning 
hyperparameters than automatic tuning (without the use of target data). For a given target phenotype, 
elastic net models combining PGS across methods (ensemble PGS) tuned in the UK Biobank 
provided consistent, high, and cross-biobank transferable performance, increasing PGS effect sizes (β-
coefficients) by a median of 5.0% relative to LDpred2 and MegaPRS (the two best performing single 
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methods when tuned with cross-validation). Our interactively browsable online-results 
(https://methodscomparison.intervenegeneticscores.org/) and open-source workflow prspipe 
(https://github.com/intervene-EU-H2020/prspipe) provide a rich resource and reference for the 
analysis of polygenic scoring methods across biobanks.

Introduction
Polygenic scores (PGS), also referred to as polygenic risk scores (PRS), have become a major

application of genome-wide association studies (GWAS). PGS are constructed by scoring 

individuals based on their genotype, adding up effects of many genetic variants genome-

wide. They can improve existing disease risk models that rely on family history and 

established biomarkers1–4, and individuals in the upper tail of the PGS distribution have an 

elevated disease risk similar to that caused by rare damaging monogenic mutations for some 

diseases5. PGS have received attention in areas ranging from disease prevention to clinical 

trials, owing to their wide applicability to personalized medicine6–9.

Various methods to derive PGS weights from GWAS summary statistics (effect sizes and 

their correlation structure) have been developed. These methods are of particular interest as 

they do not rely on access to individual-level data, which is typically restricted. Furthermore, 

the largest GWAS are meta-analyses, for which direct access to all individual-level source 

data is not feasible.

The construction of a PGS from summary statistics can be divided into two main stages: A 

public stage, that relies only on publicly available data and tools, and a private stage that 

requires access to individual-level target data, i.e., genotypes and phenotypes. The public 

stage uses variant correlation (linkage disequilibrium; LD) from reference panels that are 

matched in ancestry to the GWAS sample to adjust the marginal effect size estimates of 

genetic variants and derive the per-variant PGS weights. These adjustments include 

frequentist shrinkage10, Bayesian approaches11–15, or other strategies like thresholding, which 

depend on one or more hyperparameters (e.g., p-value thresholds, heritability estimates, or 

shrinkage parameters).

Many methods allow automatically setting suitable parameters without the use of phenotype 

data (we refer to this generally as automatic tuning). Alternatively, target data can be used to 

empirically determine hyperparameters based on, for example, cross-validation (CV). The 

adjusted variant effect sizes (PGS weights) are used in the private stage to score individuals 

based on their genotypes using a linear additive model, i.e., to calculate their PGS.

PGS method authors usually claim superior performance to other methods. However, 

comparisons are often limited to a small number of methods, traits, or target datasets. 

Furthermore, the input summary statistics used in those comparisons may not reflect the 
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properties of (messy) real-world data, especially those from meta-analyses. In practice, other 

factors also affect performance, e.g., ease of use and documentation. Few studies have 

compared a large number of PGS methods16–18 . Yet, evaluation either only covered few traits 

in specialized cohorts17 or was largely limited to within-biobank comparisons16,18.

The INTERVENE consortium19 seeks to develop risk scoring methods that integrate PGS 

with other health-related information. For this reason, we compared summary-statistics-based

PGS methods. Building on an updated version of the GenoPred suite originally introduced by

Pain et al. that implements different PGS methods in a reference standardized framework16, 

we developed prspipe, a snakemake20 workflow that runs seven polygenic scoring methods. A

full evaluation including hyperparameter tuning with cross-validation was performed in the 

UK Biobank25 (UKBB) and replicated in FinnGen21, Estonian Biobank22 (EBB), the 

Trøndelag Health Study23 (HUNT) and Genes & Health24 (GNH). In total, we meta-analyzed 

performances for ten harmonized binary disease traits and six quantitative traits in two 

replicated ancestry groups European (EUR) and South Asian (SAS). Replication in multiple 

biobanks allowed us to estimate how much PGS effect sizes vary within biobanks (between 

methods) and how this compares to the variation between biobanks.

We publish our workflow, summary data, and PGS weights, allowing others to replicate 

analyses e.g., for methods comparisons or developing new polygenic scores from summary 

statistics. The results of this analysis are made available in a browsable online resource at 

https://methodscomparison.intervenegeneticscores.org/.

Methods
Participating Studies
Data from five biobanks were considered: The UK Biobank25, FinnGen21, Estonian Biobank22,

Trøndelag Health Study (HUNT)23 and Genes & Health24. All biobanks independently 

performed genotyping, imputation, and variant quality control (Supplemental Methods).

GWAS summary statistics selection and processing
We selected summary statistics from the GWAS catalog for eight binary traits and for five 

continuous traits. Table 1 shows GWAS catalog study identifiers and traits. Where available, 

we directly used the pre-harmonized summary statistics provided by the GWAS catalog. For 

GWAS catalog studies GCST9001344526 type 1 diabetes (T1D), GCST00897227 (urate), 

GCST00795428 glycated haemoglobin (HbA1c) and GCST00477329 type 2 diabetes (T2D) we

used the MungeSumstats R package30 (version 1.0.1) to retrieve missing fields (e.g., variant 

positions). GWAS variants were matched to the HapMap3-1KG variants based on positions 
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and allele codes and renamed accordingly. Other quality control steps are flipping of variants 

to match the HapMap3-1KG reference, variant frequency filtering (>1%), removal of variants

with invalid p-values (>1 or <0), ambiguous variants, variants with missing data, duplicate 

variants, or variants with sample size more than three standard deviations away from the 

median per-variant sample size (if available), as previously described16.

We selected GWAS studies with predominantly European ancestry discovery samples, 

because the evaluated biobanks primarily contain individuals of European ancestry. Because 

we use subsets of the UKBB for evaluation and tuning, we selected for studies with large 

sample sizes that preferably did not include the UKBB in the discovery sample. Yet, the 

selected summary statistics for Alzheimer’s disease (AD) and height came from GWAS 

which included the UKBB-EUR sample. Therefore, we did not use the UKBB-EUR sample 

for tuning or evaluation in these phenotypes.

Reference genotype harmonization
We constructed our own definition of the HapMap3-variants31 to avoid favoring one of the 

definitions used by the PGS methods. We retrieved HapMap3 variant rsIDs, and downloaded 

genotypes for the 1000 Genomes reference from 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20140708_previous_phase3/

v5_vcfs/ (v5). We retrieved updated rsIDs for all 1000 Genomes variants using the 

Bioconductor SNPlocs.Hsapiens.dbSNP144.GRCh37 R-package32 (the latest version for the 

GRCh37 genome-build at the time) based on GRCh37 variant positions and allele codes, and 

intersected them with the HapMap3 variants based on rsIDs. We then mapped these variants 

from GRCh37 to GRCh38 using liftOver33 and retrieved rsIDs in that genome build too, 

based on location and allele codes, using the SNPlocs.Hsapiens.dbSNP151.GRCh38 R-

package32 (the latest version for the GRCh38 genome-build at the time). We retained variants 

with an allele frequency of at least 1% in any of the 1000 Genomes superpopulations. These 

variants (HapMap3-1KG, N = 1,330,821) form the basis for subsequent analyses.

The list of variants including GRCh37 (hg19) and GRCh38 (hg38) coordinates, rsIDs, and 

allele frequencies in the 1000 Genomes superpopulations is available on 

https://github.com/intervene-EU-H2020/prspipe/blob/main/resources/1kg/

1KGPhase3_hm3_hg19_hg38_mapping_cached.tsv.gz. Scripts to reproduce these steps are 

available as part of the prspipe workflow 

(https://github.com/intervene-EU-H2020/prspipe/blob/main/workflow/rules/

1kg_hm3_processing.smk  )  .The filtered and intersected 1000 Genomes genotypes are 
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provided as a separate resource. Variants are further filtered when constructing polygenic 

scores, as described below. 

Target genotype harmonization
Target genotype data were intersected with the HapMap3-1KG variants based on positions 

and allele codes, renamed, and converted to PLINK1 format. The harmonized data served as 

input to all subsequent analyses involving target genetic data, i.e., ancestry reference 

matching and polygenic scoring. Target harmonization is part of the prspipe workflow and 

corresponding steps are defined in 

https://github.com/intervene-EU-H2020/prspipe/blob/main/workflow/rules/

genotype_harmonization.smk.

Binary disease phenotype harmonization
We used expert curated ICD-code based definitions21,34 developed at FinnGen to define 

binary disease traits (referred to as endpoints). Individuals were counted as cases for a 

specific endpoint if they matched ICD-9- or ICD-10-code-based inclusion/exclusion criteria 

(13). The remaining (non-matching) individuals for that endpoint were counted as controls. 

All data used to define binary disease endpoints were registry based. breast cancer was only 

evaluated when the reported sex was female, and prostate cancer only when the reported sex 

was male.

For the UKBB, we considered both main (data-fields 41202 and 41203) and secondary (data-

fields 41204 and 41205) ICD-9 and ICD-10 diagnosis codes derived from hospital inpatient 

admissions. 

Continuous trait definitions
For the UKBB, we used the following data-fields to define continuous traits: 50 for height, 

21001 for body mass index (BMI), 30700 for creatinine, 30750 for HbA1c and 30880 for 

urate.

For GNH, we considered all instances where a continuous trait was measured per individual 

through their primary and secondary health records. We removed outliers based on a 6SD 

deviation per trait and calculated the mean value per trait per individual to use in the analysis.

For HUNT, the latest value was chosen when continuous traits were measured at more than 

one baseline enrollment or sub-study screening over three recruitment waves since 1984. 

Standard quality assessment measures were taken across variables and are described at the 

HUNT Databank (https://hunt-db.medisin.ntnu.no/hunt-db/variablelist). BMI was defined by 

height and weight measured at screening. High-density lipoprotein (HDL) and creatinine 
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were measured from serum in non-fasting individuals. HbA1C was measured in mmol/mol 

according to The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) 

standard.

For Estonian Biobank, the earliest value available were chosen for BMI and height, as some 

individuals are repeatedly measured. Height values larger than 260cm or smaller than 100cm 

were omitted. Similarly, BMI values less than 10kg/m² or larger than 200 kg/m² were 

discarded. Metabolic profiles for HDL and creatinine were obtained with NMR for a random 

subset of Estonian biobank (n=10681).

For each biobank in which creatinine measurements were available, we calculated the 

estimated glomerular filtration rate (eGFR) based according to the diet in renal disease study 

equation35, as follows:

eGFR=α×Scr
−1.154×age−0.203×σ

Where α is 30849 if creatinine was measured in μmol/l, or 175 if measured in mg/dl, Scr is the

serum creatinine measurement and σ is 0.742 if the reported sex is female, or 1 if sex is male.

We did not include the multiplier for “ethnicity” as we only perform comparisons within 

ancestry-matched populations. During evaluation, all continuous traits are standardized to 

mean 0 and unit standard deviation. 

Polygenic score weight derivation
We derived polygenic scoring weights with pT+clump, lassosum, PRScs, SBayesR (robust 

parameterization), LDpred2 and DBSLMM using the settings described previously16. For 

MegaPRS, we used the author-recommended BLD-LDAK heritability model and specified 

“--model mega” to fit many different scores with different tools (lasso, bolt, ridge, bayesr) 

and included the HLA region, as recommended. Software versions and sources for each tool 

are listed in 14.

Besides letting methods determine suitable hyperparameters based on the summary statistics 

alone (automatic tuning), we generated scores over grids of hyperparameters for target-data-

based tuning with 10-fold cross-validation (see below).

We used European ancestry LD reference panels for all analyses, as the selected GWAS were

performed in majority European ancestry samples. In contrast to Pain et al., we use PGS 

method author-provided LD-references for DBSLMM, lassosum, LDpred2, SBayesR and 

PRScs. DBSLMM and lassosum LD-references are based on the 1000 Genomes data. For 

LDpred2, SBayesR, and PRScs they are based on UKBB data. We use the 1000 Genomes 

EUR-subset to calculate LD when running pT+clump and MegaPRS. Scripts to download 

6

160

165

170

175

180

185

190



PGS method software and data are part of the prspipe workflow. The workflow uses 

GenoPred scripts to generate PLINK2-compatible scoring files. 

Ancestry matching and genetic outlier removal
Rather than directly inferring genetic ancestry, we score individuals according to their 

similarity with groups defined in the 1000 Genomes reference36. We use GenoPred 

Ancestry_identifier.R to project target genetic data into the 1000 Genomes genetic principal 

component space, and match individuals to one of the five 1000 Genomes superpopulations 

(AFR, AMR, EAS, EUR, SAS). Both the target and 1000 Genomes genotype data are filtered

to variants available in both samples (subset of HapMap3-1KG) with allele frequencies above

5%, missingness below 2%, and variants that do not violate Hardy Weinberg equilibrium (p <

1e-6). Regions of long LD are excluded37 and variants are LD-pruned based on the 1000 

Genomes reference (using PLINK “--indep-pairwise 1000 5 0.2”). Genetic PCs are derived in

the 1000 Genomes based on the filtered variants, and an elastic net classifier is fit with 5-fold 

cross validation to place individuals into one of the five groups based on 100 PCs. Target 

genotype data are projected into the same PC space using PLINK, and the classifier is used to

predict the most matching superpopulation for all individuals.

Additionally, we used GenoPred Population_outlier.R to remove extreme outliers within the 

assigned ancestry-matched groups in the target data based on the first eight genetic principal 

components constructed within those groups. We used the same variant filters described 

above (except that LD-pruning was now performed within the target data), calculate genetic 

PCs within the assigned groups, and define up to ten centroids in the PC space using R 

NbClust38 (distance = ‘euclidian’, method = ‘kmeans’). For each centroid, the Euclidian 

distance of individuals to the center is calculated and those with distances that are larger than 

the 75th percentile + 30 IQR are removed (i.e., extreme outliers). The UKBB was the only 

biobank that had more than one ancestry group well-represented. Our analyses focus on the 

replicated groups EUR (UKBB, EBB, HUNT, FinnGen) and SAS (UKBB, GNH).

Polygenic scoring
We performed polygenic scoring for scores derived by single methods with PLINK2 using 

GenoPred Scaled_polygenic_scorer_plink2.R. Polygenic scoring is part of the prspipe 

workflow. For the evaluation of the ensemble PGS, we performed scoring with PLINK2. In 

both cases, missing genotypes are imputed using the 1000 Genomes matched superpopulation

allele frequencies as previously described16.
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Hyperparameter tuning and ensemble PGS
For the methods that generate scores over a range of hyperparameters (pT+clump, lassosum, 

PRScs, LDpred2) we used 10-fold cross validation to select the score with the largest 

correlation with the trait, as described previously16. Where available, we included scores 

produced by methods’ automatic settings in the selection process. We perform cross-

validation using 80% of the UKBB EUR data and retain 20% for evaluation (we used 

different subsamples for each trait in order to perform stratified sampling).

For pT+clump, we define the score given by the p-value threshold of 1e-8 as the 

automatically tuned score. SBayesR and DBSLMM only use automatic settings, i.e., they 

produce just a single set of weights and are not tuned with CV.

To fit the ensemble PGS, we include all scores from all methods across hyperparameters, and

use 10-fold CV to determine suitable shrinkage parameters for an elastic net model 

combining the different scores with the caret R-package39 (which relies on glmnet40). For 

tuning of the ensemble PGS, we used non-nested scores for pT+clump, i.e., scores with 

disjoint variant sets corresponding to 10 p-value bins. These steps were performed with 

GenoPred Model_builder_V2.R and are part of the prspipe workflow.

To score other biobanks with the UKBB ensemble PGS, we generated PLINK2-compatible 

scoring files by multiplying the PGS weights of every variant with their corresponding 

weights in the ensemble PGS model and adding them (yielding a single weight for each 

variant). 

Performance evaluation within biobanks
All PGS were standardized to mean zero and unit standard deviation within biobanks and 

ancestries for performance evaluation. We calculated the following metrics for binary disease

traits: β coefficients, i.e., the change in log-odds ratios per PGS standard deviation, the 

change in odds ratio per PGS standard deviation (OR = exp(β)), fraction of variance 

explained on the observed scale (r2
obs) and the area under the receiver operating characteristic 

curve (AUROC). The variance explained on the liability scale (r2
liab) was calculated from 

r2
obs

41 using the median prevalence within ancestries as the population prevalence estimate (1).

We retrieved DeLong 95% confidence intervals42 for the AUROC using the ci.auc-function in

the pROC R-package. Confidence intervals for r2
obs were derived from 1000 bootstrap 

samples of robs
 (the Pearson correlation on the observed scale) for binary traits.

For continuous traits, we calculated β coefficients, i.e., the change in standard deviations of 

the trait per standard deviation of the PGS and the fraction of variance explained (r2
obs).
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When comparing two effect sizes of scores βa,i and βb,i within biobank “i”, we use the two-

sided z-test and adjust for the correlation between scores, with test statistic:

z=
βa ,i−βb , i
σ

,where

σ=√σa , i2 +σb , i
2 −2 ρ(a , b),i σ a ,i σb , i

With σa,i and σb,i denoting the standard deviations of βa,i and βb,i, respectively and ρ(a,b),i 

denoting the correlation between scores “a” and “b” measured in biobank “i”.

Data Exclusions before meta-analyses
None of the scores evaluated in GNH-SAS for T1D reached nominal significance (p < 0.05, 

two-sided z-test) for association with the endpoint (1), and all effect sizes were close to zero. 

We removed these data from further analysis. We found strongly reduced effect sizes of 

scores for HbA1c in GNH-SAS compared to the UKBB-SAS (2, 1) and decided not to 

include these data for meta-analyses (it was unclear if reduced performance was due to a 

phenotyping issue). We found low effect sizes compared to other biobanks for T1D in HUNT

(1), determined it was likely due to a phenotyping issue, and excluded those data from meta-

analyses. 

Meta-analysis for methods comparisons
All Meta-analyses were performed in R (version 4.1.1) with the metafor package (rma.mv 

function, version 3.8-1), using the V-argument to account for the dependence of effect-sizes 

within biobanks (see below), and models were fit with REML.

We meta-analyzed the β coefficients of scores across biobanks within ancestries and traits 

using meta-analytic mixed effects models. The observed β coefficients are modelled as 

follows:

βs , b=α w s+ζ b+ϵ s , b

Where βs,b is the observed coefficient for PGS “s” in biobank “b” for a specific trait. βs,b is 

modelled as a combination of fixed effects (moderators) with realizations ws and parameters 

α (bold characters indicate vectors) and two error terms: the sampling error ϵb,s and a biobank-

specific random intercept ζb (shared by all observed coefficients in that biobank). τ2
biobank = 

var(ζ) is the random effect, where var(ζ) denotes the variance of the biobank-specific random 

intercepts ζ.

For every trait, we meta-analyzed up to 13 PGS in the same model. PGS-choice is modelled 

with the fixed effects, i.e., ws only contains a single non-zero entry of 1 indicating which PGS
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“s” produced βs,b. With this parameterization, parameters in α directly correspond to the meta-

analyzed effect sizes for the different PGS after inverse variance weighting, and the formula 

above can equivalently be written as:

βs , b=βs∗¿+ζ b+ϵ s ,b¿

Where βs* is the average effect size for score “s” across all biobanks “*”. To test whether two 

meta-analyzed effect sizes are significantly different, we compare parameters αa and αb with 

H0: αa-αb= 0 using the z-test. We also report results for the t-test (produced by the anova 

function applied to metafor rma.mv objects) in 5-6.

We retrieved 95% likelihood-based confidence intervals for τ2
biobank using the confint function 

(all values are reported in 4). We further report meta-analyzed AUROC, r2
obs, and r2

liab values 

produced by weighting studies by their effective sample size43 in 5-6.

Method ranking
To rank methods across traits, we considered just the traits for which CV-tuning and 

ensemble PGS were available (i.e., all except height and AD), and ranked scores based on 

their meta-analyzed effect sizes βs* (see definition above). To avoid counting scores produced

by the same summary statistics twice for eGFR/CKD and urate/gout (e.g., for the ranks 

shown in Figure 3A), we applied the following rule: If the continuous phenotype was 

available in the same number of biobanks as its binary counterpart, we used the continuous 

phenotype (higher power), otherwise we used the binary phenotype (larger target diversity). 

This led to consideration of eGFR for SAS, CKD in EUR, urate for SAS, and gout in EUR. 

We applied the same reasoning when calculating mean and median values of method 

performances across all traits.

3-level meta-analytic random effects models
For the 3-level meta-analysis, the observed effect-sizes are modelled as follows:

βb ,m=μβ+ζ (2)b ,m+ζ (3 )b+ϵ b ,m

Where βb,m is the observed β-coefficient for method “m” in biobank “b”, μβ is the mean of the 

distribution of true effect sizes across biobanks and methods, ζ(2)b,m is the within-biobank 

random intercept due to the choice of method (level 2) and ζ(3)b is the random intercept due to 

target biobank (level 3, shared by all observations in biobank). The estimated parameter 

τ2
biobank = τ2

(3) = var(ζ(3)) quantifies the heterogeneity of effect sizes due to target biobank, and 

τ2
method = τ2

(2) = var(ζ(2)) quantifies the heterogeneity of effect sizes due to choice of method 

within biobank44. In contrast to the model introduced in the previous section, method effects 

are considered nested within biobanks (independent between biobanks).
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All models were fit using restricted maximum-likelihood with the metafor package in R 

(rma.mv function), using the V-argument to account for the dependence of effect-sizes 

measured within the same biobanks (see below). We retrieved 95% likelihood-based 

confidence intervals for τ2
biobank and τ2

method using the confint function. To calculate I2
biobank = 

I2
(3) and I2

method = I2
(2), we used the implementation provided in dmetar44 

(var.comp/mlm.variance.distribution function, 

https://github.com/MathiasHarrer/dmetar/blob/master/R/mlm.variance.distribution.R, commit

21bde652cbae5677b56b0ff848eb96c9bea877d8) based on the three-level extension of the I2 

metric45. I2
biobank captures the fraction of the overall variance in effect sizes (including 

sampling error) attributable to biobank (level 3) and I2
method captures the fraction of the overall

variance in effect sizes attributable to methods within biobank (level 2).

Accounting for dependent effect sizes in meta-analytic models
Within each biobank, ancestry, and trait, we calculated pairwise correlations between 

polygenic scores based on up to 50,000 randomly sampled individuals. We use the resulting 

score-score correlation matrix Rb (where “b” indicates the biobank) to estimate Vb, the 

variance-covariance matrix capturing the dependency of errors of effect size estimates for 

biobank “b”:

V b=SbRbSb

Where Sb is a diagonal matrix containing the standard errors of the estimated effect sizes 

corresponding to the rows/columns of Rb. The effect sizes measured in different biobanks are 

considered independent, therefore, the full matrix V supplied to the rma.mv function is a 

block diagonal matrix containing all Vb for the different biobanks b from 1 to n on the 

diagonal:

V=
V 1 0 0
0 ⋱ 0
0 0 V n

Where 0 denotes a matrix of zeros with the same shape the different Vb.

Calculating PGS variance in the HLA-region
For the phenotypes T1D and rheumatoid arthritis (RA), we scored individuals in the 1000 

Genomes EUR subset using either all PGS variants, or only variants contained in the HLA 

region (defined as the interval 28,000,000-34,000,000 on chromosome 6). The fraction of 

variance was then computed by dividing the variance of HLA-only PGS by that of the full 

PGS.
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Results
Prspipe workflow and experimental setup
We created a snakemake workflow prspipe to run different polygenic risk scoring methods 

based on GWAS summary statistics. Prspipe makes it possible to automate the within-

biobank analyses from Pain et. al.16 based on the GenoPred suite of scripts 

(https://github.com/intervene-EU-H2020/GenoPred). Notable differences include an updated 

set of methods (p-value thresholding and clumping (pT+clump), lassosum10, PRScs11, 

LDpred213, DBSLMM14, SBayesR12 (robust parameterization) and MegaPRS15), the use of 

LD reference panels provided by the methods’ authors, and software managed partially with 

containers. We used prspipe to derive PGS weights using both methods’ automatic settings 

(auto), and grids of hyperparameters (MegaPRS, LDpred2, PRScs, lassosum, and 

pT+clump)16. For the baseline method pT+clump, we considered the score with the most 

stringent p-value threshold (p < 1e-8, i.e., keeping only highly significant variants) as the 

automatically tuned score. 

The workflow defines steps to set up PGS methods, download and process summary statistics

from the NHGRI-EBI GWAS Catalog46, run PGS methods (i.e., the derivation of PGS 

weights), target genotype harmonization, ancestry matching based on the 1000 Genomes 

superpopulations36, and target polygenic scoring with PLINK247. As PGS performance 

depends on the genetic similarity of the target and GWAS samples48, performance evaluation 

is stratified according to the matched superpopulation. Using CV, elastic net models 

combining scores from different methods are fit (ensemble PGS), and the best single PGS 

weights are selected for each method (hyperparameter tuning)16.

We applied this workflow to 14 sets of summary statistics from the GWAS Catalog to derive 

PGS and predict six continuous traits and 10 binary disease traits derived from harmonized 

ICD-code-based definitions21 (Methods, Table 1). Our main analyses focus on the two 

replicated ancestry-reference-matched superpopulations: EUR and SAS. The number of cases

used for performance evaluation across biobanks ranged from 5,384 (T1D) to 81,487 (type 2 

diabetes; T2D) for EUR, and 60 (RA, available in GNH only) to 8,696 (T2D) for SAS 

ancestry matched target data. The total sample size for performance evaluation for continuous

traits ranged from 85,973 (urate, available in UKBB only) to 524,056 (height) for EUR target

data, and 13,572 (urate) to 43,197 (height) for SAS target data (Table 2).
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Using 80% of the UKBB EUR target data (training set), we selected the best performing 

weights for each method and fit ensemble PGS (full workflow). PGS weights were shared 

with other biobanks, in which we still performed target data harmonization, ancestry 

matching, and polygenic scoring steps needed for performance evaluation (Figure 1). 

Browsable results, meta-analysis and ranking
As outlined in Figure 2 for T2D, we calculated PGS effect sizes (Figure 2A) for continuous 

and binary traits across all target biobanks and ancestries (Table S1-3, Figures S1-5) and 

performed mixed model meta-analyses within ancestry groups to determine the best 

performing PGS (the one with the largest effect size) for each trait across biobanks (Figure 

2B-C, 4-6). Additionally to scores produced by single methods, we evaluated the UKBB-

tuned ensemble PGS in other biobanks after projecting them back to the variant-level 

(Methods). For each trait, we meta-analyzed β-coefficients (i.e., the change in the trait per 

PGS standard deviation, on the log-odds scale for binary traits, in standard deviations for 

continuous traits) of up to 13 PGS corresponding to different tuning types (auto or CV) for 

seven methods and the UKBB-EUR-tuned ensemble PGS (6).

Other than the ensemble PGS, we found that CV-tuned PGS from LDpred2 and MegaPRS 

ranked highly across traits (Figure 3A-B). The median relative increase in PGS effect size 

over CV-tuned pT+clump was 29.2% for CV-tuned LDpred2 (mean 30.9%±10.3sd, N=12, 

EUR) and 29.9% for CV-tuned MegaPRS (mean 31.2%±12.6 sd, N=12, EUR), showing 

overall comparable performance (the median relative difference between the two was 0.1% in

favor of MegaPRS). 

Scores produced by automatic tuning appeared overall less reliable, especially for LDpred2 

(see Discussion) and SBayesR (as previously described16). Although automatic tuning 

typically outperformed the baseline method pT+clump (even when the latter was tuned with 

CV), we observed seemingly non-systematic cases of reduced relative performance (e.g., 

SBayesR for urate/gout, DBSLMM for Alzheimer’s disease, or LDpred2 for HbA1c or RA) 

(11). MegaPRS was the best automatically tuned method (median 23.3% relative increase 

over CV-tuned pT+clump, mean 27.4%±15.9 sd, EUR), yet PGS effect sizes were 

comparatively low for some continuous traits (e.g., BMI, HDL, or height, 11).

Effect size differences between the top PGS by single methods were mostly not significant 

(7, FWER <= 0.05, two-sided z-test). We also provide these data on the level of individual 

biobanks (9-10), revealing that the best single method for a given trait was not necessarily 

consistent between biobanks.
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UKBB-tuned ensemble PGS outperforms other methods 
The ensemble PGS ranked favorably for all traits in EUR- and SAS-matched target data 

(Figure 3A-B) except for T1D in EUR (driven by lower performance in FinnGen) and stroke 

in SAS (the trait with the overall lowest performance). For EUR target data, effect sizes were 

significantly greater than those of all other PGS for 6/9 binary and 5/5 continuous traits 

(FWER <= 0.05, two-sided z-test) and the largest overall in 13/14 traits for which we fit 

ensemble PGS. These results stood out compared to those for single methods, which did not 

produce a consistent best method and for which differences were mostly not significant.

Compared to the best single methods, the median relative increase in effect size was 3.7% 

over CV-tuned LDpred2 and 4.5% over CV-tuned MegaPRS for binary disease traits (N=9). 

Median relative increases for continuous traits were larger (5.2% and 7.9%, respectively, 

N=5). When measured in terms of variance explained, relative differences were larger. We 

observed median relative increases of 7.4% and 9% for binary traits (liability scale) and 

10.7% and 16.1% for continuous traits, respectively (8, 7). Similar trends were observed for 

SAS target data, with the ensemble PGS having the largest effect size in 12/13 traits, albeit its

effect size was only significantly larger than all others for continuous traits urate, eGFR and 

HDL (FWER<=0.05, two-sided z-test). We report relative effect sizes of all methods relative 

to the ensemble PGS in Table 3.

CV-tuning increases PGS robustness
Hyperparameter tuning with cross-validation using the UKBB EUR data was often beneficial 

and rarely harmful when evaluated on EUR target data (Figure 3C). CV-hyperparameter 

tuning strongly increased effect sizes in a subset of traits for specific methods, rather than 

providing large benefits across traits (12-13). pT+clump benefited most from CV-tuning 

when evaluated on EUR target data, i.e., selecting p-value thresholds larger than the baseline 

1e-8 was always beneficial (median 12.8% increase in effect size), followed by lassosum 

(median 6.2% increase) and LDpred2 (median 4.1% increase). MegaPRS and PRScs 

benefited the least (median 1.2% and 0.2% increase, respectively). For SAS target data, the 

median benefits were smaller, except for PRScs (8) and overall less consistent (Figure 3C). 

Mean increases were larger for all methods except for PRScs in EUR target data, often 

dominated by few instances in which automatic tuning had comparatively low performance.

The performance increases seen by CV-tuning were by and large significant when evaluated 

in EUR target data (Figure 3C, FWER <= 0.05, two-sided z-test), except for PRScs which 

only saw an improvement for two phenotypes. Significant negative effects of CV-tuning for 
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EUR data were only observed for  RA (PRScs and MegaPRS, driven by FinnGen) and CKD 

(PRScs, 12). For SAS target data, we observed fewer significant differences, and PRScs was 

the only method for which we observed a significant reduction in effect size (BMI, 13). A 

more detailed description of these comparisons is provided in the Supplemental Results.

Tuned PGS performance varies more between biobanks than between 
methods within biobanks
We estimated PGS effect size heterogeneity between biobanks and how it compares to the 

heterogeneity between methods within biobanks using 3-level meta-analytic random effects 

models in EUR target data (Methods, Figure 4). These nested models have two random effect

parameters: τ2
biobank and τ2

method. τ2
biobank captures effect-size heterogeneity due to differences 

between biobanks, and τ2
method captures heterogeneity due to differences between methods 

within biobanks (we report their square roots τbiobank and τmethod, as they are on the same scale 

as the PGS effect sizes). Additionally, we estimated I2
biobank and I2

method, which quantify the 

overall fraction of variance (between 0 and 1) in effect sizes attributable to biobank or choice 

of method within biobank, respectively.

We focused on scores selected via cross-validation in the UKBB-EUR sample (if available) 

and excluded scores from SBayesR that performed poorly in the UKBB-EUR 80% training 

data (RA, T1D, BMI, urate/gout). We did not consider the ensemble PGS or baseline method 

pT+clump, meaning that up to 6 scores were considered per trait. This setting was chosen to 

mimic the case in which multiple validated PGS from standard methods are available.

We found significant heterogeneity of PGS effect sizes in all 13 traits replicated in at least 

two biobanks (FWER<=0.05, Cochran's 𝑄-test, accounting for 13 tests). The target biobank 

had a larger influence on the PGS effect size than the choice of method within biobank across

all traits (i.e., τmethod < τbiobank, Figure 4, Table 4). When adjusting for covariates, sex, age and 

genetic PCs 1-10 this effect was slightly reduced, but τmethod < τbiobank remained true for the 

majority of traits (10 out of 13; with T1D, Stroke and T2D having τmethod > τbiobank) 

(Supplemental Results, Table S16). However, likelihood-based 95% confidence intervals for 

τbiobank were large and sometimes included the estimate for τmethod (RA, stroke, T2D) and 0 

(T1D, breast cancer). The variation in PGS effect sizes could to a large degree be explained 

by heterogeneity between biobanks (average I2
biobank = 82.9% ±14.3 sd, N = 13) and, to a lesser

degree by heterogeneity between methods (average I2
method = 11.97% ±12.4 sd, N=13).

Effect sizes for inflammatory bowel disease and RA varied most between biobanks (τbiobank), 

also when adjusting for the average effect size (τbiobank/μβ). Effect sizes for BMI varied the 
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least between biobanks, both absolutely (τbiobank) and relative to the average effect size 

(τbiobank/μβ). For binary traits, effect sizes for breast cancer varied the least across biobanks, 

both absolutely and relative to the average effect size.

Across traits, τmethod was correlated with the average effect size (Pearson correlation 0.54, p = 

0.0558, t-statistic = 2.1377, 11 degrees of freedom), especially when removing T1D and RA 

(Pearson correlation 0.85, p = 0.00094, t-statistic = 4.83, 9 degrees of freedom), i.e., we 

found a linear relationship between the differences between methods and overall effect size, 

especially in the set of non-autoimmune traits. 

τbiobank was less correlated with the meta-analyzed average effect size (Pearson correlation 

0.367, p = 0.219, t-statistic = 1.30, 11 degrees of freedom), i.e., large PGS effect sizes 

weren’t necessarily associated with higher variability between biobanks.

For SAS ancestry target data, we did not find significant heterogeneity of PGS effect sizes in 

CKD, stroke, prostate cancer, or breast cancer (FWER<=0.05, Cochran's 𝑄-test, accounting 

for 11 tests) and τbiobank could never reliably be estimated (14). Likelihood-based 95% 

confidence intervals for τbiobank included 0 for 9/11 replicated traits (all but T2D and eGFR).

High variability between PGS methods for autoimmune diseases
Effect sizes were most variable between methods for autoimmune diseases T1D and RA 

(τmethod) (15), even when accounting for the average effect size in those traits (τmethod/μβ), or 

relative to the total variation of effect sizes (I2
method). The scores for T1D and RA also had the 

largest fraction of PGS variance originating in the HLA region (mean 0.7 ± 0.12 sd and 0.54 

± 0.21 sd, respectively) (16). For T1D, the method with the largest effect size appeared to be 

biobank-specific, with FinnGen favoring PRScs, while the UKBB and EBB had significantly 

larger effect sizes for LDpred2 and MegaPRS (forest plots for all 3-level meta-analytic 

models are available in the Supplemental Data). In contrast, effect sizes for BMI and HDL 

varied the least between methods.

Regarding SAS-matched target data, RA was only available in GNH with a limited number 

of cases (60) but displayed the highest heterogeneity of effect sizes due to method (τmethod = 

0.137, 95% CI: 0.046-0.379), consistent with the findings in EUR ancestry. T1D scores were 

not predictive in GNH (1), and not evaluated in the UKBB due to small sample size, 

therefore, we couldn’t replicate the related findings from the EUR subset. 

Discussion
With this study, we have provided a comprehensive systematic PGS method comparison, 

with over one million individuals across multiple biobanks. 
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By publishing our workflow, we aim to increase access to PGS methods and facilitate future 

research. We believe that PGS method software could be greatly improved by support for 

standard formats (e.g., those maintained by the GWAS Catalog and PGS Catalog49) alongside

software containerization (containers were supported in all the research environments that 

contributed to this study). 

Our analysis was based on a previously published framework16 which we automated, and 

expanded application and evaluation to multiple biobanks. Recent methods explicitly tailored 

for diverse target populations or source GWAS 50–52 were missing in this framework, and 

diverse ancestries were not well represented in our target data, which provides a limitation of 

this study. PGS tuning was performed in one biobank (UKBB-EUR) relying largely on 

author-provided LD reference panels. This approach more closely resembles real-world PGS 

application and allowed us to harness the full sample sizes in other biobanks/ancestries to 

maximize statistical power, and test transferability.

Importantly, we were unable to identify a single method that consistently outperformed all 

others (not counting the ensemble PGS), and the two highest performing methods (CV-tuned 

MegaPRS and LDpred2) were virtually tied. The best automatically tuned method was 

MegaPRS, albeit like other automatic methods it suffered sporadic cases of comparatively 

lower performance. Which method performs best may vary based on the specifics of the 

GWAS summary statistics, trait, and target sample. Given that the best methods performed so

similarly, other modelling choices not investigated here (such as the set of included variants 

and their availability in the target sample) may well tip the balance in favor of one or the 

other when starting from the same GWAS summary statistics. Based on our results, we 

recommend tuning with cross-validation (with sufficiently large ranges of hyperparameters) 

instead of using methods’ automatic settings, primarily to prevent cases of comparatively 

lower performance, rather than providing large improvements across traits. These findings 

are in line with previous comparisons showing moderate gains when tuning and evaluation 

are performed within biobanks16,18.

One reason for the lower performance of automatic tuning could be model misspecification, 

e.g., mismatched LD-references, or misreported fields in the input summary statistics. These 

inconsistencies may not be considered when tools are developed. The variable performance 

of LDpred2-auto stood out particularly against the high performance of CV-tuned PGS from 

same method. We note that LDpred2-auto has been updated at the time of writing including 

an optional new parameterization, which could affect its performance53. Limiting ourselves to

the implementation of methods provided by GenoPred (which implements default method 
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parameters) meant that we did not evaluate CV-tuning for DBSLMM, which has since been 

recommended by the authors (with performance gains over the default automatic version of 

about 1.13%18).

These cases highlight a challenge faced by any method comparison: The frequent emergence 

of new tools, methods and related recommendations means that comparisons risk becoming 

outdated shortly after execution. Method evaluation across multiple biobanks can hardly 

match the pace of new developments. We therefore caution against using the results of this 

study to make definitive claims about relative method performance of actively developed 

methods. A more sustainable approach to method comparisons would be decentralized, with 

researchers individually submitting performance estimates for published scores (starting from

the same summary statistics and variants) to a central repository and receiving credit by 

having such submissions be referenceable.

Using meta-analytic mixed models, we found that the performances of well-tuned PGS varied

more between biobanks than within biobanks. This trend held true for most traits even when 

including covariates age, sex and genetic PCs 1-10. This likely reflects heterogeneity in 

phenotyping (e.g., disease diagnosis practices) rather than differences in population structure 

or genotyping. Effect sizes for BMI, which presumably is consistently measured, varied the 

least between biobanks, supporting this hypothesis. Yet, we cannot exclude a genetic 

contribution to the heterogeneity between biobanks, as PGS performance has been shown to 

vary with the distance to the GWAS sample even within genetically similar groups matched 

to reference populations54. The variability between biobanks for some traits implies that 

scores need to be re-evaluated when switching between different target data even when 

comparing ancestry-matched populations.

We note that the parameters by which we quantified variability are sensitive to which 

biobanks and PGS are included. The setting we chose mimics the case in which multiple 

UKBB-EUR-validated PGS are available. The variability between methods could increase if 

poorly performing (non-validated) scores are included in the analysis. On the other hand, the 

variability between biobanks could decrease if, e.g., phenotype definitions were further 

refined.

We found particularly large differences between methods for autoimmune diseases T1D and 

RA. This could be driven by the way methods handle the HLA-region, as well as genotyping 

differences in the target biobanks. Our analyses highlight modelling of the HLA-region as an 

area in which methods could potentially be improved.
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One of the most useful insights from this study is that ensemble PGS tuned in the UKBB-

EUR sample provided consistently strong performance, albeit at the cost of higher 

computational demand during training. This shows that benefits seen within a target 

sample16,18 can be transferred to other samples without re-tuning ensemble weights. We see 

this method as complimentary to cross-trait prediction strategies (MultiPGS)55–57 that use PGS

constructed from multiple sets of GWAS summary statistics (from different traits). 

Considering the small differences in performance we observe for well-tuned scores from 

single methods, we see ensemble PGS and MultiPGS as promising avenues to further 

improve PGS performances beyond what is currently possible with single methods. Future 

research needs to assess how well EUR-trained ensemble PGS transfer to other genetic 

ancestries. It is possible that training needs to be performed in a population similar to the 

target population to ensure optimal performance and avoid exacerbating already existing 

issues with current PGS7.

In Summary, while no single method outperformed all others, method ensembles provided 

consistently strong performance (with few exceptions). PGS effect size heterogeneity 

between biobanks was larger than between methods within biobanks, likely pointing to 

challenges with phenotyping. Large heterogeneity between methods was observed for 

autoimmune diseases, indicating that special care should be taken for PGS which rely heavily

on the HLA region. Our open-source workflow, analyses framework and online results 

provide a rich ground for future method benchmarking and development.

Data and code availability
The prspipe workflow used to generate polygenic score weights, perform 
polygenic scoring and ancestry matching is available on GitHub 
(https://github.com/intervene-EU-H2020/prspipe). 
Non-sensitive experimental data exported from the biobanks are permissively licensed and 

deposited in an open data repository (https://zenodo.org/doi/10.5281/zenodo.10012995). 

Processed summary statistics are permissively licensed and hosted on GitHub and accessible 

through in an R data package (https://github.com/intervene-EU-H2020/pgsCompaR). A 

website containing an interactive results browser is permissively licensed and available on 

GitHub (https://github.com/intervene-EU-H2020/pgs-method-compare), hosted at 

https://methodscomparison.intervenegeneticscores.org/.
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Web Resources
Polygenic score weights for scores that were at least nominally significantly associated with 

the phenotype (p<0.05) in all EUR target data samples are made publicly available through 

the GWAS catalog (https://www.ebi.ac.uk/gwas/) with publication ID PGP000517. All 

evaluated scores except the one produced by LDpred2-auto for RA met this threshold. A list 

of PGS catalog score IDs is provided in 15.
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1213

study GWAS trait Ncas Ncon Nvariants target traits
GCST00583866 Stroke 67,162 454,45

0
1,121,86
7

Stroke

GCST90012877
67

AD or family history of 
AD

53,042 355,90
0

1,136,23
3

AD

GCST90013534
68

RA 22,628 288,66
4 778,275

RA

GCST00477329 T2D 26,676 132,53
2

1,071,78
6

T2D

GCST00498869 Breast cancer 76,192 63,082 1,137,48
1

Breast cancer

GCST00608570 Prostate cancer 79,148 61,106 1,139,69
3

Prostate cancer

GCST90013445
26

T1D 22,153 37,374
63,204

T1D

GCST00413171 IBD 25,042 34,915 1,103,33
3

IBD

GCST00805972 eGFR 567,460 - 1,141,65
9

CKD, eGFR

GCST90018959
73

Height 525,444 - 1,119,88
9

Height

GCST00897227 Urate levels 457,690 - 1,005,47
8

Gout, Urate

GCST00278374 BMI 236,781 - 1,039,04
2

BMI

GCST00714075 HDL 94,674 - 1,138,45
2

HDL

GCST00795428 HbA1c 88,355 - 1,009,66
4

HbA1c

Table 1: GWAS summary statistics used to derive PGS weights

Entries are ordered by the total sample size and type of trait (binary, continuous). From left to

right: GWAS catalog study identifiers (study), the respective reported GWAS traits, number 

of cases (Ncas) and controls (Ncon), the number of variants after intersection with HapMap3-

1KG and quality control (Nvariants), and the evaluated target traits. Scores constructed from 

urate and eGFR summary statistics were also evaluated for gout and CKD, respectively. The 
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GWAS for T1D considered only a small panel of variants of which 84% remained after 

intersection and QC.
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EUR
total

SAS
total

EUR
 EBB

EUR
FinnGe

n

EUR
 HUN

T

EUR
 UKBB
(test)

EUR
 UKBB
(train)

SAS
 GNH

SAS
UKBB

AD 15,940 - 555 13,823 1,562 - - - -
RA 13,060 60 2,384 9,332 1,139 205 820 60 -
Breast 
cancer

23,610 393 2,685 16,076 1,729 3,120 12,483 197 196

CKD 19,714 1,609 4,224 9,314 2,802 3,374 13,496 1,131 478
Gout 22,399 488 10,646 8,759 1,318 1,676 6,704 282 206
IBD 13,016 634 2,097 7,815 1,769 1,335 5,340 466 168
Prostate 
cancer

20,492 205 2,227 13,606 2,242 2,417 9,671 95 110

Stroke 37,920 635 4,515 26,166 5,204 2,035 8,142 424 211
T1D 5,384 443 501 4,286 396 201 804 443 -
T2D 81,487 8,696 12,344 59,345 3,861 5,937 23,748 6,630 2,06

6
BMI 346,29

0
42,24
3

189,65
1

- 66,66
3

89,976 359,913 33,14
6

9,09
7

HDL 139,24
8

37,69
3

10,642 - 49,82
4

78,782 315,135 29,62
8

8,06
5

HbA1c 120,24
2

21,69
6

- - 34,19
2

86,050 344,209 12,94
8

8,74
8

Height 524,05
6

43,19
7

190,01
3

267,34
3

66,70
0

- - 34,08
9

9,10
8

Urate 85,973 13,57
2

- - - 85,973 343,904 4,730 8,84
2

eGFR 152,79
3

38,91
6

- - 66,75
9

86,034 344,140 3,061 8,85
5

Table 2: Target sample sizes across traits.

For each trait and replicated ancestry group (EUR, SAS) the number of cases (binary disease 

traits) or sample size are shown, either combined (“total”, excluding UKBB training data) or 

separated by biobank. For the UKBB-EUR, data were split into train (80%, used to tune 

hyperparameters and ensemble PGS) and test sets (20%, used for evaluation and meta-

analyses). UKBB EUR data were excluded for Alzheimer’s disease and height due to sample 
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overlap and could therefore not be used for tuning (leaving 14 traits for a full evaluation). 

Dashes “-” indicate the phenotype was unavailable. 
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method tuni
ng

type

trait N
(EUR

)

N
(SAS

)

median
(EUR)

median
(SAS)

mean
(EUR)

sd
(EUR)

mean
(SAS)

sd
(SAS)

ldpred2 CV binary 9 8 0.965 0.963 0.943 0.045 0.972 0.127

megaprs CV binary 9 8 0.957 0.934 0.947 0.041 0.958 0.124

lassosu
m

CV binary 9 8
0.921 0.914 0.913 0.061 0.920 0.111

prscs CV binary 9 8 0.903 0.900 0.896 0.100 0.909 0.259

pt.clump CV binary 9 8 0.735 0.734 0.721 0.077 0.748 0.186

megaprs auto binary 9 8 0.948 0.950 0.933 0.050 0.964 0.104

ldpred2 auto binary 9 8 0.927 0.955 0.838 0.265 0.904 0.314

prscs auto binary 9 8 0.925 0.876 0.915 0.052 0.877 0.264

sbayesr auto binary 9 8 0.907 0.895 0.873 0.083 0.841 0.181

dbslmm auto binary 9 8 0.904 0.865 0.890 0.092 0.815 0.199

lassosu
m

auto binary 9 8
0.891 0.870 0.861 0.103 0.753 0.262

pt.clump auto binary 9 8 0.629 0.627 0.607 0.098 0.527 0.302

ldpred2 CV continuo
us

5 5
0.950 0.936 0.948 0.016 0.925 0.049

megaprs CV continuo
us

5 5
0.927 0.931 0.940 0.024 0.946 0.034

prscs CV continuo
us

5 5
0.923 0.926 0.909 0.031 0.875 0.090

lassosu
m

CV continuo
us

5 5
0.906 0.920 0.914 0.026 0.916 0.021

pt.clump CV continuo
us

5 5
0.735 0.729 0.743 0.037 0.718 0.048

prscs auto continuo
us

5 5
0.923 0.928 0.907 0.028 0.903 0.076

dbslmm auto continuo
us

5 5
0.901 0.904 0.891 0.039 0.897 0.066

sbayesr auto continuo
us

5 5
0.887 0.862 0.868 0.075 0.806 0.184

megaprs auto continuo
us

5 5
0.883 0.907 0.885 0.067 0.922 0.055

lassosu
m

auto continuo
us

5 5
0.873 0.890 0.877 0.021 0.901 0.054

ldpred2 auto continuo
us

5 5
0.851 0.778 0.823 0.121 0.781 0.114

pt.clump auto continuo
us

5 5
0.643 0.614 0.606 0.088 0.635 0.112

Table 3: PGS meta-analyzed β coefficients relative to the ensemble PGS (βs*/ βEnsPGS*)

For the 14 traits for which we tuned hyperparameters with CV, relative PGS effect sizes 

relative the ensemble PGS are shown (βs*/βEnsPGS*) stratified by PGS method, tuning type 
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(CV/auto), ancestry (EUR, SAS) and type of trait (binary/continuous). The number of traits 

(N), medians, means and standard deviations (sd) are shown. Methods are ordered by the 

median EUR relative effect size within traits and tuning types.
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trait Nbiobank Nmethod μβ ± sd τbiobank (95% CI) τmethod (95% CI) I2
biobank

(%)
I2

metho

d (%)

T1D 3 5*
0.815
±0.05 0.072 (0-0.383)

0.069(0.046-
0.112) 48.8 45

Prostate
cancer 4 6

0.664
±0.029

0.054 (0.024-
0.167)

0.02(0.015-
0.029) 82.2 11

Breast
cancer 4 6

0.537
±0.017 0.029 (0-0.1)

0.014(0.012-
0.02) 67.1 16.5

Gout 4 5*
0.522
±0.05

0.098 (0.049-
0.294)

0.018(0.014-
0.028) 94.7 3.3

IBD 4 6
0.513

±0.089
0.177 (0.092-

0.525)
0.019(0.015-

0.028) 97.8 1.1

RA 4 5*
0.458

±0.087
0.165 (0.067-

0.522)
0.095(0.068-

0.144) 74.4 24.7

T2D 4 6
0.428

±0.017
0.031 (0.013-

0.099)
0.015(0.012-

0.02) 77.8 17.2

CKD 4 6
0.213

±0.031
0.059 (0.028-

0.18)
0.006(0.006-

0.01) 93.4 0.9

Stroke 4 6
0.133

±0.016
0.029 (0.01-

0.099) 0.01(0.01-0.016) 78.5 10.4

HDL 3 6
0.303
±0.02

0.035 (0.016-
0.148)

0.005(0.005-
0.009) 96.2 2.3

BMI 3 5*
0.282

±0.006 0.01 (0.01-0.046)
0.004(0.004-

0.004) 80.2 13.8

eGFR 2 6
0.267

±0.046
0.065 (0.025-

0.733)
0.009(0.009-

0.015) 97.9 1.8

HbA1c 2 6
0.172

±0.013
0.018 (0.011-

0.211)
0.005(0.005-

0.009) 88.3 7.5

Table 4: 3-level meta-analytical random effects model results (EUR)

Table corresponding to Figure 4. From left to right, the target trait, the number of biobanks 

with the trait (Nbiobank), the number of methods/scores considered (Nmethod), the meta-analyzed 

average PGS effect size across methods/scores and biobanks (μβ) with standard deviation 

(sd), the standard deviation of the random intercepts specific to biobanks (τbiobank) including 

95% likelihood-based confidence intervals (95% CI), the standard deviation of the random 

intercepts specific to methods within biobanks (τmethod) including 95% CI, the fraction of total 

effect size variance due to heterogeneity between biobanks (I2
biobank) in %, and the fraction of 

the total effect size variance due to heterogeneity between methods (I2
method) in %. Endpoints 

are ordered by type (binary/continuous) and μβ. SBayesR was excluded for RA, T1D, gout, 
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and BMI (*). Full results for EUR and SAS are given in 9-12
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Figure 1: prspipe workflow and application.

Prspipe is a snakemake workflow that automates within-biobank method comparisons 

introduced by Pain et al.16 The public stage uses only public data (e.g., summary statistics, 

ancestry reference, PGS software) to derive PGS weights using seven methods from GWAS 

summary statistics. The private stage requires access to target genotype and phenotype data 

and includes data harmonization, polygenic scoring, and PGS tuning using cross-validation 

(CV). We used prspipe to generate PGS weights and tune hyperparameters in the UKBB 

EUR data (full run). PGS weights were shared with other biobanks for evaluation/replication 

(skipping the public stage). Other biobanks were not used for hyperparameter tuning. 

Downstream analyses were conducted to determine PGS performance using a meta-analytical

framework (not part of the workflow), and results were published as an online resource at 

https://methodscomparison.intervenegeneticscores.org.
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Figure 2: Meta-analysis workflow for methods comparison, example: type 2 diabetes.

a) PGS effect sizes βs,b (i.e., the change in log odds-ratio per PGS standard deviation 

measured for scores “s” across biobanks “b”, see Methods) with 95% confidence intervals for

all PGS methods (x-axis) stratified by biobank, replicated ancestries (EUR, SAS) and tuning 

types (auto, CV) serve as the inputs for the meta-analysis (shown for example trait type 2 

diabetes). We evaluated scores for seven methods shown on the right, as well as the UKBB-

EUR-tuned ensemble PGS (EnsPGS). The largest effect size for each ancestry and biobank is

marked with a triangle (given by the ensemble in all cases). βs,b for all target data and traits 

are displayed in 1 and browsable online. b) PGS effect-sizes are meta-analyzed within 

ancestries across biobanks (yielding a single βs* for each score “s”). Effect-size differences 

relative to the largest meta-analyzed effect size (βtop*, given by the ensemble) and 95% 

confidence intervals are shown. All pairwise differences are available in 5-6, and browsable 

online. c) Meta-analyzed effect sizes βs* are compared, and significance testing is performed. 

Heatmaps show both the effect-size relative to the largest (βs*/ βtop*, left) as well as 

corresponding two-sided z-test significance levels at which H0: βs*-βtop*= 0 can be rejected 

(right). Significant differences at a FWER <= 0.05 are marked with an asterisk (*), 

accounting for all 351 tests performed across traits and ancestries. The score against which 

comparisons are performed with effect size βtop* is marked with a “1” and black border. 

Arrows indicate two example comparisons: against PRScs-CV (significant difference in SAS 

and EUR) and LDpred2-auto (significant only in EUR). Data for all PGS and traits are 

provided in 6
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Figure 3: Relative meta-analyzed PGS effect sizes across 14 traits

a) For the 14 traits for which we tuned hyperparameters using CV (x-axis), we show 

heatmaps of meta-analyzed β-coefficients relative to the highest within traits (βs*/βtop*, left) as 

well as significance levels for the two-sided z-test (H0: βs*- βtop*= 0, right) stratified by 

ancestry (EUR, SAS). The top score with the largest effect size for each trait (βtop*) is marked 

with a “1” and black box. Differences significant at FWER <= 0.05 are marked with asterisks

(*), accounting for all 351 pairwise tests performed across traits, replicated ancestries and 

tuning types (auto, CV) (full data for all traits and sores are displayed in 6). b) Bar plot 

counting PGS ranks across traits (1 is the highest), stratified by ancestry, method, and tuning-

type (auto, CV). Methods are ordered by the average rank-sum across tuning types (highest to

lowest). c) For each method (y-axis), dot plots showing the relative meta-analyzed effect-size

of the score derived using methods’ automatic settings against the CV-tuned scores 

(βauto*/βCV*). Colors denote sign and significance of the two-sided z-test (H0: βCV*-βauto*= 0) at 

FWER <= 0.05 after accounting for 114 tests across traits and ancestries (12-13). Methods 

are ordered by the median difference. 
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Figure 4: 3-level meta-analysis of PGS effect sizes in EUR target data

For all 13 traits replicated in at least 2 biobanks in EUR ancestry target data and CV-tuned in 

UKBB, from left to right: 1) PGS effect sizes (β-coefficients, βm,b) with 95% confidence 

intervals for three example traits within biobanks (T1D: high variability between methods, 

IBD: high variability between biobanks, T2D: intermediate to low variability between 

methods and biobanks), 2) the meta-analyzed average effect sizes across biobanks and 

methods (μβ) with bars denoting the square roots of the variance components (τ), i.e., the 

standard deviations of the random intercepts for biobanks or methods, 3) τ-values with 

likelihood-based 95% confidence intervals and 4) I2 estimates, i.e., the fraction of variance of 

effect sizes explained by heterogeneity between biobanks or methods within biobanks. τ and 

I2 are colored according to the levels of the meta-analytic 3-level random effects model 

(Methods).
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