
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gopt20

Optimization
A Journal of Mathematical Programming and Operations Research

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/gopt20

Convexificators for nonconvex multiobjective
optimization problems with uncertain data: robust
optimality and duality

J. W. Chen, R. Yang, E. Köbis & X. Ou

To cite this article: J. W. Chen, R. Yang, E. Köbis & X. Ou (14 Dec 2023): Convexificators for
nonconvex multiobjective optimization problems with uncertain data: robust optimality and
duality, Optimization, DOI: 10.1080/02331934.2023.2293061

To link to this article:  https://doi.org/10.1080/02331934.2023.2293061

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 14 Dec 2023.

Submit your article to this journal 

Article views: 565

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gopt20
https://www.tandfonline.com/journals/gopt20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331934.2023.2293061
https://doi.org/10.1080/02331934.2023.2293061
https://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/02331934.2023.2293061?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/02331934.2023.2293061?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2023.2293061&domain=pdf&date_stamp=14 Dec 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2023.2293061&domain=pdf&date_stamp=14 Dec 2023


OPTIMIZATION
https://doi.org/10.1080/02331934.2023.2293061

Convexificators for nonconvex multiobjective
optimization problems with uncertain data: robust
optimality and duality

J. W. Chena, R. Yanga, E. Köbisb and X. Oua,c

aSchool of Mathematics and Statistics, Southwest University, Chongqing, People’s Republic of China;
bDepartment of Mathematical Sciences, Norwegian University of Science and Technology (NTNU),
Norway; cCollege of Management, Chongqing College of Humanities, Science & Technology,
Chongqing, People’s Republic of China

ABSTRACT
In this paper, we investigate robust optimality conditions and
duality for a class of nonconvex multiobjective optimization
problems with uncertain data in the worst case by the upper
semi-regular convexificator. The Fermat principle for a locally
Lipschitz function is presented in terms of the upper semi-
regular convexificator. We establish robust necessary optimal-
ity conditions of the Fritz-John type and KKT type for the
uncertain nonconvex multiobjective optimization problems.
In addition, robust sufficient optimality conditions as well as
saddle point conditions are derived under the generalized
∂̂∗-pseudoquasiconvexity and generalized convexity, respec-
tively. The robust duality relations between the original prob-
lem and its mixed robust dual problem are obtained under a
generalized pseudoconvexity assumption.
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1. Introduction

It is well-known that multiobjective optimization problems, which arise from
economics, optimal control, machine learning, engineering and game theory,
are very important models in operations research; see [1–4]. In multiobjective
optimization, one assumes that there are multiple conflicting objectives that
have to be solved simultaneously. Generally, there does not exist a point opti-
mizing all objective functions simultaneously, and one has to find a whole set
of points for which no objective can be optimized without worsening another
objective. However, such a set can be difficult to find. Therefore, tailored to
the different applications and needs, various optimality notions, such as Pareto
efficient solution, weak efficient solution and proper efficient solution, were intro-
duced formultiobjective optimization. Theory and applications ofmultiobjective
optimization have made a great development in the past 20 years in terms
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of optimality conditions, duality, penalization, robustness, stability, constraint
qualifications, numerical algorithms and applications in machine learning, engi-
neering and economy; see, e.g. [5–9] and the references therein. However, the
most achievements on multiobjective optimization problems were established
under the condition of a lack of uncertainty. In fact, uncertainty is everywhere,
for example because of prediction errors, measurement errors and the lack of
complete information. Inmost real world applications, the coefficient parameters
in optimization problems are not known exactly, and solutions to optimization
problems can exhibit remarkable sensitivity to perturbations in the parameters of
the problem. Therefore, it is necessary to investigate multiobjective optimization
problems under uncertainty.

Two well-known mathematical methods for dealing with uncertain problems
are stochastic and robust optimization. A key assumption in stochastic optimiza-
tion is that the decision maker has complete information on the distribution of
the uncertainty through empirical data. However, in some circumstances, this
might turn out to be difficult if not impossible when a strategic decision has to be
made well in advance of the realization of the uncertainty. In particular, robust
optimization is a very useful tool to study uncertain problems when the probabil-
ity distribution of the uncertainty is unknown. For this, robust optimization was
applied to study uncertain multiobjective optimization problems, in which the
uncertain parameters are described by some deterministic set, under the assump-
tion that finding a solution is feasible for any possible uncertain cases, so that
in the worst case, feasibility can still be maintained. Robust optimization has
been growing rapidly over the past two decades, see [10–17] and the references
therein. Kuroiwa and Lee [18] extended the robust counterpart of single objective
uncertain optimization to uncertainmultiobjective optimization, and established
necessary optimality conditions for robust weakly efficient solutions and properly
efficient solutions of the uncertain multiobjective optimization. Ide and Köbis
[19] introduced various concepts of efficiency for uncertain multiobjective opti-
mization problems based on set order relations, analysed the resulting concepts
of efficiency and presented numerical results on the occurrence of the various
concepts. Goberna et al. [20] gave numerically tractable optimality conditions
for minmax robust weakly efficient solutions and highly robust weakly efficient
solutions of multiobjective linear programming problems with data uncertainty
in both the objective function and the constraints, and derived a formula for
the radius of robust feasibility guaranteeing constraint feasibility for all possi-
ble scenarios within a specified uncertainty set under affine data parametrization
and the lower bounds for the radius of highly robust efficiency guaranteeing
the existence of highly robust weakly efficient solutions under affine and rank-1
objective data uncertainty. Klamroth et al. [21] studied uncertain optimization
problems with infinite scenario sets, and presented a unified characterization
of different concepts of robust optimization and stochastic programming by
the existing methods arising from vector optimization in general spaces, set
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optimization as well as scalarization techniques. Bokrantz and Fredriksson [22]
obtained necessary and sufficient conditions for robust efficiency to multiob-
jective optimization problems that depend on uncertain parameters by using
a scalarization method. Chuong [23] considered necessary/sufficient optimality
conditions for robust (weakly) Pareto solutions of a robust nonsmooth multiob-
jective optimization problem in terms of multipliers and limiting subdifferentials
of the related functions, and explored weak/strong duality relations between the
primal one and its dual robust problem under the (strictly) generalized convexity
assumptions. Optimality conditions and duality theorems of a robust nonsmooth
multiobjective optimization were established in [24]. By using the well-known
ε-constraint scalarization method and image space analysis, Chen et al. [25]
obtained sufficient and necessary optimality conditions of the robust efficient
solutions for convexmultiobjective optimization problemswith data uncertainty.
Sun et al. [9] investigated robust optimality necessary and sufficient condi-
tions of a class of uncertain multiobjective fractional semi-infinite optimization
problems via robust optimization and scalarization methods, and obtained rela-
tionships of amixed-type dual problem and a corresponding robust optimization
problem. It is worth pointing out that robust sufficient optimality conditions
and robust duality for uncertain multiobjective optimization problems were
established under various generalized convexity notions in the sense of subd-
ifferentials such as Clarke subdifferential, limiting subdifferential and so on; see
e.g. [26].

Convexity and its generalization play an important role in establishing opti-
mality conditions and duality theorems for optimization problems. In 1994, the
notion of convexificator was introduced by Demyanov [27] as a generalization
of the notion of upper convex and lower concave approximations. Demyanov
regarded a convexificator as a convex and compact set. Thereafter, Jeyakumar
and Luc [28] suggested that one may use a closed and nonconvex set instead
of a convex and compact one to define a convexificator. Various properties
of convexificators and some chain rules were presented as well as a notion of
∂-pseudoconvex function, and some optimality conditions for vector minimiza-
tion problems were obtained in terms of convexificators in [29, 30]. Necessary
optimality conditions of locally Lipschitz continuous optimization problemwere
derived under certain constraint qualification and the upper and lower con-
vexificator in [31]. Further, necessary and sufficient optimality conditions for
nonsmooth semi-infinite multiobjective programming problems were also pre-
sented by using convexificators in [32]. The sufficient optimality conditions of
interval-valued programming problem and the dual relations between the orig-
inal problem and its Mond-Weir type dual model and Wolfe type dual model
were also established by means of convexificators in [33]. Convexificators were
also applied to study optimality conditions and duality of nonsmooth mini-
max programming problem and bilevel multiobjective optimization problem;
see e.g. [34–36]. And yet, to the best of our knowledge, there are no papers that
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concentrate on uncertain nonconcex multiobjective optimization problems by using
an upper semi-regular convexificator.

Motivated and inspired by the above works, this paper aims to investigate a
class of nonconvex multiobjective optimization problems with uncertain data
(UNMOP) by using an upper semi-regular convexificator. The Fermat’s lemma
for a locally Lipschitz function is obtained in terms of the upper semi-regular
convexificator. The robust optimality necessary conditions of the Fritz-John type
and KKT type for (UNMOP) are established under certain assumptions. We also
obtain the robust optimality sufficient condition including saddle point type suffi-
cient conditions. Further, we introduce amixed robust dual model of (UNMOP),
and explore the robust duality relations between (UNMOP) and themixed robust
dual problem.

This paper is organized as follows. We recall some basic notions and well-
known results in Section 2. Optimality conditions for robust weakly efficient
solution of (UNMOP) are discussed under suitable conditions in Section 3. In
Section 4, a mixed robust dual model of (UNMOP) is presented, and the robust
weak/strong/converse robust dual results between the mixed robust dual model
and (UNMOP) are derived. Finally, we give some conclusions.

The highlights of this paper are listed as follows:

• The Fermat’s lemma for a locally Lipschitz function is derived in terms of the
upper semi-regular convexificator.

• We firstly give the robust optimality necessary conditions or sufficient condi-
tions for (UNMOP) in terms of the upper semi-regular convexificator.

• We present the robust duality results between (UNMOP) and its mixed robust
dual problem such as robust strong duality and robust converse duality.

2. Preliminaries

LetRm+ andR
m++ be respectively the nonnegative orthant and the positive orthant

of m-dimensional Euclidean space R
m with the inner product 〈·, ·〉 and norm

‖ · ‖, and let f : R
n → R

m be a vector-valued function. Set inf ∅ := +∞ and
sup ∅ := −∞. For a subset A of R

m, the convex hull, closed hull, and interior
of A are denoted by coA, clA and intA, respectively.

The nonconvex multiobjective optimization problem with uncertain data is
given as follows:

(UNMOP) min f (x)

s.t. gj(x,wj) ≤ 0, j = 1, 2, . . . , l,

where x ∈ R
n is the decision variable, wj ∈ �j are uncertain parameters, �j

are nonempty compact convex subsets of R
nj , j ∈ J := {1, 2, . . . , l}, the objec-

tive function f (x) := (f1(x), . . . , fm(x))�, fi : R
n → R, i ∈ I := {1, 2, . . . ,m} are
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locally Lipschitz continuous, and gj : R
n × �j → R, j ∈ J are real-valued func-

tions.
For the sake of brevity, set g(x,w) := (g1(x,w1), . . . , gl(x,wl))

�, where w :=
(w1, . . . ,wl)

� ∈ � := ∏
j∈J �j. We adopt the classical robust optimization

approach to deal with (UNMOP) in the worst-case. The robust multiobjective
optimization model associated with (UNMOP) is defined in the following:

(RMP) min f (x)

s.t. gj(x,wj) ≤ 0, ∀ wj ∈ �j, j ∈ J.

The feasible set of (RMP) is denoted by

C := {x ∈ R
n : gj(x,wj) ≤ 0, ∀ wj ∈ �j, j ∈ J}.

For the sake of brevity, we set Gj(x) := maxwj∈�j gj(x,wj) and

�j(x) :=
{
wj ∈ �j : Gj(x) = gj(x,wj)

}
,

for j ∈ J. For each j ∈ J, the function Gj : R
n → R and the set-valued function

�j : R
n ⇒ �j are called marginal function and active set, respectively. It is easy

to see that

C = {x ∈ R
n : Gj(x) ≤ 0, ∀ j ∈ J}.

We next recall some basic notions and well-known results.

Definition 2.1: x̄ ∈ C is called a robust weakly efficient solution of problem
(UNMOP) if,

f (x) − f (x̄) /∈ −R
m
++, ∀ x ∈ C.

Definition 2.2: Let h : R
n → R be a real-valued function. The upperDini direc-

tional derivative and lower Dini directional derivative of h at x ∈ R
n in the

direction v ∈ R
n are respectively defined by

h+
d (x, v) = lim sup

t↓0
h(x + tv) − h(x)

t
,

and

h−
d (x, v) = lim inf

t↓0
h(x + tv) − h(x)

t
.

For a real-valued function, the upper Dini directional derivative and lower
Dini directional derivative may be finite as well as infinite. It is well-known that
if h : R

n → R is a locally Lipschitz function, then the upper Dini directional
derivative and lower Dini directional derivative of h at x ∈ R

n in the direction
v ∈ R

n are finite and locally Lipschitz in the direction v.
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Definition 2.3 ([28]): A real-valued function h : R
n → R admits:

(i) an upper convexificator ∂∗h(x) at x ∈ R
n if ∂∗h(x) ⊂ R

n is a closed set and

h−
d (x, v) ≤ sup

x∗∈∂∗h(x)
〈x∗, v〉, ∀ v ∈ R

n.

(ii) a lower convexificator ∂∗h(x) at x ∈ R
n if ∂∗h(x) ⊂ R

n is a closed set and

h+
d (x, v) ≥ inf

x∗∈∂∗h(x)
〈x∗, v〉, ∀ v ∈ R

n.

(iii) a convexificator ∂h(x) at x ∈ R
n if it is both upper and lower convexificator

of h at x.

Definition 2.4 ([28]): A real-valued function h : R
n → R admits:

(i) an upper semi-regular convexificator ∂̂∗h(x) at x ∈ R
n if ∂̂∗h(x) ⊂ R

n is a
closed set and

h+
d (x, v) ≤ sup

x∗∈∂̂∗h(x)
〈x∗, v〉, ∀ v ∈ R

n. (1)

The set ∂̂∗h(x) is said to be an upper regular convexificator of h at x ∈ R
n

if (1) holds with equality.
(ii) a lower semi-regular convexificator ∂̂∗h(x) at x ∈ R

n if ∂̂∗h(x) ⊂ R
n is a

closed set and

h−
d (x, v) ≥ inf

x∗∈∂̂∗h(x)
〈x∗, v〉, ∀ v ∈ R

n. (2)

The set ∂̂∗h(x) is said to be a lower regular convexificator of h at x ∈ R
n

if (2) holds with equality.
(iii) a regular convexificator ∂̂h(x) at x ∈ R

n if it is both upper regular convexi-
ficator and lower regular convexificator of h at x.

Remark 2.1: (i) It is easy to check that h+
d (x, ·) is the support function of the

upper regular convexificator ∂̂∗h(x) and the regular convexificator ∂̂h(x);
−h−

d (x, ·) is the support function of−∂̂∗h(x). So, h−
d (x, ·) is not the support

function of the lower regular convexificator ∂̂∗h(x).
(ii) According to h−

d (x, v) ≤ h+
d (x, v), an upper (lower) semi-regular convexifi-

cator is also an upper (lower) convexificator. If h : R
n → R has a directional

derivative at x in each direction v, then h−
d (x, v) = h+

d (x, v). The converse
is still true; see [29].

(iii) An upper (lower) regular convexificator is a convexificator of h at x. More-
over, a regular convexificator is also a convexificator of h at x. The converse
is not true; see [28].
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(iv) If h : R
n → R is a locally Lipschitz function, then the Clarke subdiffer-

ential [37], the Michel-Penot subdifferential [38], the Ioffe-Morduchovich
subdifferential [39] and the Treiman subdifferential [40] are convexifica-
tors of h at each x ∈ R

n. Moreover, if h is regular in the Clarke sense,
then the Clarke subdifferential is an upper regular convexificator and the
Michel-Penot subdifferential is an upper semi-regular convexificator; see
[28].

The following results give the properties of the regular convexificator and the
upper (lower) semi-regular convexificator.

Lemma 2.5: (i) If ∂̂h(x) is a regular convexificator of h at x, then for any α ∈
R,α∂̂h(x) is a regular convexificator of αh at x.

(ii) If ∂̂∗h(x) is an upper semi-regular convexificator of h at x, then for any α >

0,α∂̂∗h(x) is an upper semi-regular convexificator of αh at x, and for any
α < 0,α∂̂∗h(x) is a lower convexificator of αh at x.

(iii) If ∂̂∗h(x) is a lower semi-regular convexificator of h at x, then for any α >

0,α∂̂∗h(x) is a lower semi-regular convexificator of αh at x, and for any α <

0,α∂̂∗h(x) is an upper convexificator of αh at x.

Proof: It directly follows from Definitions 2.2 and 2.4. �

Theorem 2.6: Let hi : R
n → R be a locally Lipschitz function that admits an

upper semi-regular convexificator ∂̂∗hi(x0) at x0 ∈ R
n for all i ∈ I. Then h(x) :=

max{h1(x), . . . , hm(x)} admits an upper semi-regular convexificator which is con-
vex and is given as

∂̂∗h(x0) := co
{
∪i∈I(x0)∂̂

∗hi(x0)
}
,

where I(x0) := {i ∈ I : hi(x0) = h(x0)} and I := {1, 2, . . . ,m}.

Proof: From the definitions of h and I(x0), we deduce that I(x0) �= ∅, and that
h(x0) = hi(x0) for i ∈ I(x0) and h(x0) > hj(x0) for j ∈ I \ I(x0). Then

hi(x0) − hj(x0) = h(x0) − hj(x0) > 0, ∀ i ∈ I(x0), j ∈ I \ I(x0).

Since hi : R
n → R are locally Lipschitz functions for all i ∈ I, for any v ∈ R

n,
there exists a sufficiently small t̄ > 0 such that

hi(x0 + tv) > hj(x0 + tv), ∀ i ∈ I(x0), j ∈ I \ I(x0), ∀ t ∈ (0, t̄),
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Then, we have

h+
d (x0, v) = lim sup

t↘0

h(x0 + tv) − h(x0)
t

= lim sup
t↘0

max {h1(x0 + tv), . . . , hm(x0 + tv)} − h(x0)
t

= lim sup
t↘0

max {h1(x0 + tv) − h(x0), . . . , hm(x0 + tv) − h(x0)}
t

= lim sup
t↘0

max {hi(x0 + tv) − hi(x0) : i ∈ I(x0)}
t

= max
i∈I(x0)

lim sup
t↘0

hi(x0 + tv) − hi(x0)
t

≤ max
i∈I(x0)

sup
x∗∈∂̂∗hi(x0)

〈x∗, v〉

≤ sup
z∗∈co

{
∪i∈I(x0)∂̂

∗hi(x0)
}〈z∗, v〉,

where the fifth equality holds because hi, i ∈ I are locally Lipschitz functions.
Moreover, one has

h+
d (x0, v) ≤ sup

z∗∈co
{
∪i∈I(x0)∂̂

∗hi(x0)
}〈z∗, v〉.

It therefore yields that

∂̂∗h(x0) = co
{
∪i∈I(x0)∂̂

∗hi(x0)
}

is convex and an upper semi-regular convexificator of h at x0. �

We next present a Fermat principle in terms of the upper semi-regular con-
vexificatior.

Lemma 2.7: Let h : R
n → R be a locally Lipschitz function that admits an upper

semi-regular convexificatior ∂̂∗h(x) at x. If h attains its minimum at x, then 0 ∈
∂̂∗h(x).

Proof: Let h attain its minimum at x. Then, we have

h(x + tv) − h(x) ≥ 0, ∀ t ∈ R, v ∈ R
n.



OPTIMIZATION 9

So, one has h−
d (x, v) ≥ 0 and

sup
x∗∈∂̂∗h(x)

〈x∗, v〉 ≥ h+
d (x, v) ≥ h−

d (x, v) ≥ 0, ∀ v ∈ R
n,

i.e.

sup
x∗∈∂̂∗h(x)

〈x∗, v〉 ≥ 0, ∀ v ∈ R
n,

which implies that 0 ∈ ∂̂∗h(x). �

We next introduce some generalized convex functions by the upper semi-
regular convexificatiors.

Definition 2.8: A function h : R
n → R is said to be ∂̂∗-pseudoconvex at x∗ ∈

R
n if for any x ∈ R

n,

h(x) < h(x∗) ⇒ 〈ξ , x − x∗〉 < 0, ∀ ξ ∈ ∂̂∗h(x∗),

or equivalently,

〈ξ , x − x∗〉 ≥ 0 ⇒ h(x) ≥ h(x∗), ∀ ξ ∈ ∂̂∗h(x∗).

Definition 2.9: (f , g) is said to be generalized ∂̂∗-pseudoquasiconvex at x̄ ∈ R
n

if for any x ∈ R
n, ξi ∈ ∂̂∗fi(x̄), i ∈ I, and ζj ∈ ∂̂∗

x̄ gj(x̄, w̄j), w̄j ∈ �j(x̄), j ∈ J, there
exists d ∈ R

n such that

fi(x) < fi(x̄) ⇒ 〈ξi, d〉 < 0, ∀ i ∈ I,

gj(x, w̄j) ≤ gj(x̄, w̄j) ⇒ 〈ζj, d〉 ≤ 0, ∀ w̄j ∈ �j(x̄), j ∈ J,

where ∂̂∗
x̄ gj(x̄, w̄j) is the upper semi-regular convexificatior of gj(·, w̄j) at x̄.

Remark 2.2: If the upper semi-regular convexificator is replaced by the Clarke
subdifferential in Definition 2.9, then the generalized ∂̂∗-pseudoquasiconvexity
is reduced to the usual generalized ∂̂∗-pseudoquasiconvexity, i.e. (f , g) is said to
be generalized pseudoquasiconvex at x̄ ∈ R

n if for any x ∈ R
n, ξi ∈ ∂fi(x̄), i ∈ I,

and ζj ∈ ∂x̄gj(x̄, w̄j), w̄j ∈ �j(x̄), j ∈ J, there exists d ∈ R
n such that

fi(x) < fi(x̄) ⇒ 〈ξi, d〉 < 0, ∀ i ∈ I,

gj(x, w̄j) ≤ gj(x̄, w̄j) ⇒ 〈ζj, d〉 ≤ 0, ∀ w̄j ∈ �j(x̄), j ∈ J,

where ∂fi(x̄) and ∂x̄gj(x̄, w̄j) are respectively the Clarke subdifferentials of fi and
gj(·, w̄j) at x̄ for i ∈ I, j ∈ J.
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3. Robust optimality conditions

In this section, we study the necessary and sufficient conditions of robust weakly
efficient solution of (UNMOP) in terms of upper semi-regular convexificators
without boundedness.

We first present the Fritz-John type robust optimality necessary conditions of
(UNMOP) under some mild conditions.

Theorem 3.1: Let x̄ ∈ C and let fi, i ∈ I, gj(·,wj), j ∈ J be locally Lipschitz con-
tinuous and admit respectively upper semi-regular convexificators ∂̂∗fi(x̄) and
∂̂∗
x̄ gj(x̄,wj) for all wj ∈ �j, i ∈ I, j ∈ J. If x̄ ∈ C is a robust weakly efficient solution
of (UNMOP), then there exist τ̄ := (τ̄1, . . . , τ̄m) ∈ R

m+, λ̄ := (λ̄1, . . . , λ̄l) ∈ R
l+

with ‖(τ̄ , λ̄)‖1 = 1 and ¯̄wj ∈ �j(x̄) such that

0 ∈
∑
i∈I

τ̄i∂̂
∗fi(x̄) +

∑
j∈J

λ̄j∂̂
∗
x̄ gj(x̄, ¯̄wj), (3)

λ̄jgj(x̄, ¯̄wj) = 0, j ∈ J. (4)

Proof: Let x̄ be a robust weakly efficient solution of (UNMOP). Then x̄ is a
weakly efficient solution of the following problem:

min f (x)

s.t. Gj(x) ≤ 0, j = 1, 2, . . . , l.

Besides, one has

f (x) − f (x̄) /∈ −R
m
++, ∀ x ∈ C.

We now define a function ϕ(x) := maxi∈I,j∈J{fi(x) − fi(x̄),Gj(x)}. Then

ϕ(x) ≥ 0 = ϕ(x̄), ∀ x ∈ C,

i.e. x̄ is a minimizer for ϕ. It therefore follows from Lemma 2.7 that 0 ∈ ∂̂∗ϕ(x̄).
In turn, we conclude from Theorem 2.6 that

∂̂∗ϕ(x̄) = co
{
∪i∈I ∂̂∗fi(x̄) ∪

{
∪j∈Ĵ ∂̂

∗Gj(x̄)
}}

,

where Ĵ = {j ∈ J : Gj(x̄) = 0}. It yields that there exist τ̄ = (τ̄1, τ̄2, . . . , τ̄m)� ∈
R
m+ and λ̄ = (λ̄1, λ̄2, . . . , λ̄l)� ∈ R

l+ with ‖(τ̄ , λ̄)‖1 = ∑
i∈I τ̄i +

∑
j∈J λ̄j = 1

such that

0 ∈
∑
i∈I

τ̄i∂̂
∗fi(x̄) +

∑
j∈J

λ̄j∂̂
∗Gj(x̄), (5)

and λ̄j = 0 for j �∈ Ĵ.
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Let us prove that

∂̂∗Gj(x̄) =
{
∂̂∗
x̄ gj(x̄, w̄j) : w̄j ∈ �j(x̄)

}
=

⋃
w̄j∈�j(x̄)

∂̂∗
x̄ gj(x̄, w̄j). (6)

By the definition of ∂̂∗Gj(x̄), we have

lim sup
t↘0

Gj(x̄ + tv) − Gj(x̄)
t

= lim sup
t↘0

supwj∈�j
gj(x̄ + tv,wj) − supwj∈�j

gj(x̄,wj)

t

≤ sup
u∗∈∂̂∗Gj(x̄)

〈u∗, v〉, ∀ v ∈ R
n. (7)

For w̄j ∈ �j(x̄), we obtain

sup
wj∈�j

gj(x̄ + tv,wj) ≥ gj(x̄ + tv, w̄j), sup
wj∈�j

gj(x̄,wj) = gj(x̄, w̄j),

and so,

lim sup
t↘0

gj(x̄ + tv, w̄j) − gj(x̄, w̄j)

t

≤ lim sup
t↘0

supwj∈�j
gj(x̄ + tv,wj) − supwj∈�j

gj(x̄,wj)

t

≤ sup
u∗∈∂̂∗Gj(x̄)

〈u∗, v〉. (8)

According to the definition of upper semi-regular convexificator, (6) is implied
by (7) and (8). Moreover, (5) and (6) yield that there exists ¯̄wj ∈ �j(x̄) such that

0 ∈
∑
i∈I

τ̄i∂̂
∗fi(x̄) +

∑
j∈J

λ̄j∂̂
∗
x̄ gj(x̄, ¯̄wj).

Due to λ̄j = 0 for j �∈ Ĵ, one has

λ̄jGj(x̄) = λ̄j sup
wj∈�j

gj(x̄,wj) = λ̄jgj(x̄, w̄j) = 0, w̄j ∈ �j(x̄), j ∈ J,

and so, λ̄jgj(x̄, ¯̄wj) = 0. Therefore the statements (3) and (4) are true. �

Remark 3.1: The difference between Theorem 3.1 and the corresponding results
of [33, 34] is that Theorem 3.1 is established by upper semi-regular convexificator
instead of the convexificator. It is noted that an upper semi-regular convexifi-
cator may be weaker than a convexificator. It is also true that λ̄jgj(x̄, w̄j) = 0,
w̄j ∈ �j(x̄), j ∈ J in Theorem 3.1.
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In order to get the KKT type robust optimality necessary conditions of
(UNMOP), we introduce the Slater-type weak constraint qualification inspired
by Mangasarian [41].

Definition 3.2: The Slater-type weak constraint qualification is satisfied at x̄ ∈ C
if, for each w̄j ∈ �j(x̄), j ∈ J, gj(·, w̄j) is ∂̂∗-pseudoconvex at x̄, and there exist
an x0 ∈ R

n and a j0 ∈ J such that gj0(x0, w̄j0) < 0 whenever gj0(x̄, w̄j0) = 0, w̄j0 ∈
�j0(x̄).

Remark 3.2: If the functions gj, j ∈ J are differentiable at x̄ and uncertainty-free,
then gj, j ∈ J admit upper regular convexificators at x̄ and so, the Slater-type weak
constraint qualification in Definition 3.2 reduces to the Slater weak constraint
qualification given by Mangasarian [41].

We now present the KKT type robust necessary optimality conditions of
(UNMOP).

Theorem 3.3: Assume that the conditions of Theorem 3.1 hold and the Slater-type
weak constraint qualification is satisfied at x̄. If x̄ ∈ C is a robust weakly effi-
cient solution of (UNMOP), then there exist τ̄ := (τ̄1, . . . , τ̄m) ∈ R

m+ \ {0}, λ̄ :=
(λ̄1, . . . , λ̄l) ∈ R

l+ with ‖(τ̄ , λ̄)‖1 = 1 and ¯̄wj ∈ �j(x̄) such that (3) and (4) hold.

Proof: It follows from Theorem 3.1 that there exist τ̄ := (τ̄1, . . . , τ̄m) ∈ R
m+ and

λ̄ := (λ̄1, . . . , λ̄l) ∈ R
l+ with ‖(τ̄ , λ̄)‖1 = 1 such that (3) and (4) hold. Suppose

to the contrary that τ̄ = 0. Then λ̄ ∈ R
l+ \ {0} and so, (3) implies that there exist

ζj ∈ ∂̂∗
x̄ gj(x̄, ¯̄wj), j ∈ J such that

∑
j∈J λ̄jζj = 0. Since the Slater-type weak con-

straint qualification is satisfied at x̄, then j ∈ J, gj(·, ¯̄wj) is ∂̂∗-pseudoconvex at x̄,
and there exist an x0 ∈ R

n and a j0 ∈ J such that

gj0(x0, ¯̄wj0) < 0 = gj0(x̄, ¯̄wj0).

By the ∂̂∗-pseudoconvexity of gj(·, ¯̄wj), ¯̄wj ∈ �(x̄), j ∈ J, we obtain
〈
ζj0 , x0 − x̄

〉
< 0, ∀ ζj0 ∈ ∂̂∗

x̄ gj0(x̄, ¯̄wj0).

Clearly, if j �= j0, j ∈ J, gj(x̄, ¯̄wj) < 0, then (4) yields λ̄j = 0. Therefore, we have〈∑
j∈J

λ̄jζj, x0 − x̄

〉
=

〈∑
j∈J\J̄

λ̄jζj, x0 − x̄

〉
< 0,

∀ ζj ∈ ∂̂∗
x̄ gj(x̄, ¯̄wj), w̄j ∈ �j(x̄), j ∈ J,

where J̄ := {j ∈ J : λ̄j = 0}, which contradicts the fact that
∑

j∈J λ̄jζj = 0. Con-
sequently, we get τ̄ �= 0. �
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Wenext give robust optimality sufficient conditions for robust weakly efficient
solutions of (UNMOP) under the ∂̂∗-pseudoquasiconvexity.

Theorem 3.4: Let (x̄, ¯̄w, τ̄ , λ̄) satisfy (3) and (4) with x̄ ∈ C, ¯̄w = ( ¯̄w1, . . . , ¯̄wl),
¯̄wj ∈ �j(x̄), j ∈ J, λ̄ ∈ R

l+, τ̄ ∈ R
m+ \ {0} and ‖(τ̄ , λ̄)‖1 = 1. Assume that (f , λ̄�g)

is generalized ∂̂∗-pseudoquasiconvex at x̄ ∈ C. Then x̄ is a robust weakly efficient
solution of (UNMOP).

Proof: Suppose that x̄ is not a robust weakly efficient solution of (UNMOP).
Then there exists a feasible point x̃ ∈ C such that

f (x̃) − f (x̄) ∈ −R
m
++.

From the feasibility of x̃ and λ̄j ≥ 0, we have λ̄jgj(x̃, ¯̄wj) ≤ 0, j ∈ J. It follows
from (4) that

λ̄jgj(x̃, ¯̄wj) ≤ λ̄jgj(x̄, ¯̄wj) = 0, j ∈ J,

and so,

λ̄�g(x̃, ¯̄w) ≤ λ̄�g(x̄, ¯̄w) = 0.

Using the ∂̂∗-pseudoquasiconvexity of (f , λ̄�g), we obtain

〈ξi, x̃ − x̄〉 < 0, ∀ ξi ∈ ∂̂∗fi(x̄), i ∈ I,

and

〈ζ̃j, x̃ − x̄〉 ≤ 0, ∀ ζ̃j ∈ ∂̂∗
x̄ (λ̄jgj)(x̄, ¯̄wj), j ∈ J. (9)

Since τ̄ ∈ R
m+ \ {0}, one has〈∑

i∈I
τ̄iξi, x̃ − x̄

〉
< 0, ∀ ξi ∈ ∂̂∗fi(x̄), i ∈ I. (10)

From Lemma 2.5, the inequality (9) yields

〈λ̄jζj, x̃ − x̄〉 ≤ 0, ∀ ζj ∈ ∂̂∗
x̄ gj(x̄, ¯̄wj), j ∈ J.

Moreover, we get〈∑
j∈J

λ̄jζj, x̃ − x̄

〉
≤ 0, ∀ ζj ∈ ∂̂∗

x̄ gj(x̄, ¯̄wj), j ∈ J. (11)

Summing up the inequalities (10) and (11), we have〈∑
i∈I

τ̄ ξi +
∑
j∈J

λ̄jζj, x̃ − x̄

〉
< 0,

for all ξi ∈ ∂̂∗fi(x̄), i ∈ I and ζj ∈ ∂̂∗
x̄ gj(x̄, ¯̄wj), j ∈ J, which contradicts (3). �
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The following example shows that the generalized ∂̂∗-pseudoquasiconvexity
condition in Theorem 3.4 is indispensable.

Example 3.5: Let � := [−1, 0], f (x) := (x1 + x32, x
3
1 + x2) and g(x,w) :=

w(x21 + x22) for x ∈ R
2 and w ∈ �. After calculation, we have C = R

2. Let x̄ :=
(0, 0) ∈ R

2. Then

∂̂∗f1(x̄) = [−1, 1] × [−1, 1], ∂̂∗f2(x̄) = [−1, 1] × [−1, 1],

and ¯̄w ∈ �(x̄) = [−1, 0], ∂̂∗
x̄ g(x̄, ¯̄w) = [−1, 1] × [−1, 1]. Set τ̄1 = τ̄2 := 1

4 and
η̄ := 1

2 . It is easy to verify that 0 ∈ τ̄1∂̂
∗f1(x̄) + τ̄2∂̂

∗f2(x̄) + η̄∂̂∗
x̄ g(x̄, ¯̄w), and

η̄g(x̄, w̄) = 0. However, for x̃ := (−1,−1) ∈ C = R
2, one has

f (x̃) − f (x̄) = (−2,−2)� − (0, 0)� = (−2,−2)� ∈ −R
2
++.

This implies that x̄ is not a robust weakly efficient solution of (UNMOP). Actu-
ally, the generalized ∂̂∗-pseudoquasiconvexity condition of Theorem 3.4 is not
satisfied at x̄ ∈ C. For any x ∈ −R

2++, fi(x) < fi(x̄) for i = 1, 2. However, there
exists ξ = (0, 0)� ∈ ∂̂∗f1(x̄) = ∂̂∗f2(x̄) such that 〈ξ , d〉 = 0 for all d ∈ R

2.

In the end of this section, we give saddle point type sufficient conditions for
robust weak efficient solution of (UNMOP). For τ ∈ R

m+ \ {0}, we define the
function Lτ : R

n × R
l+ × � → R as follows

Lτ (x, λ,w) := τ�f (x) + λ�g(x,w) =
∑
i∈I

τifi(x) +
∑
j∈J

λjgj(x,wj),

for all (x, λ,w) ∈ R
n × R

l+ × �.

Definition 3.6: (x̄, λ̄, w̄) ∈ R
n × R

l+ × � is a saddle point of (UNMOP) with
respect to τ̄ ∈ R

n+ \ {0} if it holds that

Lτ̄ (x̄, λ,w) ≤ Lτ̄ (x̄, λ̄, w̄) ≤ Lτ̄ (x, λ̄, w̄), ∀ (x, λ,w) ∈ R
n × R

l
+ × �.

Theorem 3.7: Let (x̄, τ̄ , λ̄, ¯̄w) ∈ C × R
m+ \ {0} × R

l+ × � satisfy (3) and (4). If∑
i∈I τ̄ifi(·) + ∑

j∈J λ̄jgj(·, ¯̄wj) is ∂̂∗-pseudoconvex at x̄, then (x̄, λ̄, ¯̄w) is a saddle
point of (UNMOP) with respect to τ̄ .
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Proof: Suppose that (x̄, λ̄, ¯̄w) is not a saddle point of (UNMOP)with respect to τ̄ .
Then there exists (x̂, λ̂, ŵ) ∈ R

n × R
l+ × � such that

Lτ̄ (x̂, λ̄, ¯̄w) < Lτ̄ (x̄, λ̄, ¯̄w), (12)

or,

Lτ̄ (x̄, λ̂, ŵ) > Lτ̄ (x̄, λ̄, ¯̄w). (13)

If (12) holds, then

∑
i∈I

τ̄ifi(x̂) +
∑
j∈J

λ̄jgj(x̂, ¯̄wj) <
∑
i∈I

τ̄ifi(x̄) +
∑
j∈J

λ̄jgj(x̄, ¯̄wj).

By the ∂̂∗-pseudoconvexity of
∑

i∈I τ̄ifi(·) + ∑
j∈J λ̄jgj(·, ¯̄wj) at x̄, we get

〈∑
i∈I

τ̄iξi +
∑
j∈J

λ̄jζj, x̂ − x̄

〉
< 0, (14)

for all ξi ∈ ∂̂∗fi(x̄), i ∈ I and ζj ∈ ∂̂∗
x̄ gj(x̄, ¯̄wj), j ∈ J. Since (x̄, τ̄ , λ̄, ¯̄w) ∈ C × R

m+ \
{0} × R

l+ × � satisfy (3) and (4), one has

0 ∈
∑
i∈I

τ̄i∂̂
∗fi(x̄) +

∑
j∈J

λ̄j∂̂
∗
x̄ gj(x̄, ¯̄wj),

and λ̄jgj(x̄, ¯̄wj) = 0, j ∈ J. Then there exist ζj ∈ ∂̂∗
x̄ gj(x̄, ¯̄wj), j ∈ J and ξi ∈

∂̂∗fi(x̄), i ∈ I such that
∑

i∈I τ̄iξi +
∑

j∈J λ̄jζj = 0, which contradicts with (14).
If (13) holds, then

∑
j∈J

λ̂jgj(x̄, ŵj) >
∑
j∈J

λ̄jgj(x̄, ¯̄wj). (15)

Since x̄ ∈ C, gj(x̄, ŵj) ≤ 0 and λj ≥ 0, j ∈ J, we have
∑

j∈J λjgj(x̄, ŵj) ≤ 0. This
together with (15) yields that

∑
j∈J λ̄jgj(x̄, ¯̄wj) < 0, which contradicts the fact that∑

j∈J λ̄jgj(x̄, ¯̄wj) = 0. So, (x̄, λ̄, ¯̄w) is a saddle point of (UNMOP) with respect to
τ̄ . �

Theorem 3.8: If (x̄, λ̄, w̄) ∈ R
n × R

l+ × � is a saddle point of (UNMOP) with
respect to τ̄ ∈ R

m+ \ {0}, then x̄ is a robust weakly efficient solution of (UNMOP).
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Proof: Assume that (x̄, λ̄, w̄) ∈ R
n × R

l+ × � is a saddle point of (UNMOP)
with respect to τ̄ . Then we have

Lτ̄ (x̄, λ,w) ≤ Lτ̄ (x̄, λ̄, w̄) ≤ Lτ̄ (x, λ̄, w̄), ∀ (x, λ,w) ∈ R
n × R

l
+ × �.

Note that ∑
i∈I

τ̄ifi(x̄) +
∑
j∈J

λjgj(x̄,wj) = Lτ̄ (x̄, λ,w)

≤ Lτ̄ (x̄, λ̄, w̄)

=
∑
i∈I

τ̄ifi(x̄) +
∑
j∈J

λ̄jgj(x̄, w̄j).

So, we have ∑
j∈J

λjgj(x̄,wj) ≤
∑
j∈J

λ̄jgj(x̄, w̄j), ∀ (λ,w) ∈ R
l
+ × �. (16)

Taking λj := 0 and λj := 2λ̄j, j ∈ J in (16), we obtain∑
j∈J

λ̄jgj(x̄, w̄j) = 0. (17)

In turn, it follows from (16) that∑
j∈J

λjgj(x̄,wj) ≤ 0, ∀ λj ∈ R+, wj ∈ �j, j ∈ J, (18)

and so, gj(x̄,wj) ≤ 0 for all wj ∈ �j and j ∈ J. Consequently, one has x̄ ∈ C.
Suppose that x̄ is not a robust weakly efficient solution of (UNMOP). Then

there exists x̂ ∈ C such that

f (x̂) − f (x̄) ∈ −R
m
++,

and
∑

j∈J λ̄jgj(x̂, w̄j) ≤ 0. According to τ̄ ∈ R
m+ \ {0}, we have

∑
i∈I

τ̄ifi(x̂) <
∑
i∈I

τ̄ifi(x̄), (19)

From (17) and (19), we deduce that∑
i∈I

τ̄ifi(x̂) +
∑
j∈J

λ̄jgj(x̂, w̄j) <
∑
i∈I

τ̄ifi(x̄) +
∑
j∈J

λ̄jgj(x̄, w̄j),

i.e. Lτ̄ (x̂, λ̄, w̄) < Lτ̄ (x̄, λ̄, w̄), which contradicts the fact that Lτ̄ (x̄, λ̄, w̄) ≤
Lτ̄ (x, λ̄, w̄) for all x ∈ R

n. Therefore, x̄ is a robust weakly efficient solution of
(UNMOP). �
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4. Robust duality

In this final section, we present amixed robust dualmodel (MRD) for (UNMOP),
and discuss the robust weak (strong and converse) duality properties between
(UNMOP) and (MRD). Let e := (1, 1, . . . , 1)� ∈ R

l. The problem (MRD) in
terms of upper semi-regular convexificator is formulated as follows:

(MRD) max L(y,w, τ , λ,β) := f (y) +
∑
j∈J

λjgj(y,wj)e

s.t. 0 ∈
∑
i∈I

τi∂̂
∗fi(y) +

∑
j∈J

(λj + βj)∂̂
∗
y gj(y,wj), (20)

βjgj(y,wj) ≥ 0,

wj ∈ �j(y), τ ∈ R
m
+ \ {0}, λ,β ∈ R

l
+, i ∈ I, j ∈ J. (21)

Denote by F(MRD) the feasible set of (MRD).

Remark 4.1: If λj = 0, j ∈ J, (MRD) reduces to the Mond-Weir type dual prob-
lem (MWD) as follows:

(MWD) max L(y,w, τ ,β) := f (y)

s.t. 0 ∈
∑
i∈I

τi∂̂
∗fi(y) +

∑
j∈J

βj∂̂
∗
y gj(y,wj),

βjgj(y,wj) ≥ 0,

wj ∈ �j(y), τ ∈ R
m
+ \ {0},β ∈ R

l
+, i ∈ I, j ∈ J.

If βj = 0, j ∈ J, (MRD) reduces to the Wolfe type dual problem (WD) as follows:

(WD) max L(y,w, τ , λ) := f (y) +
∑
j∈J

λjgj(y,wj)e

s.t. 0 ∈
∑
i∈I

τi∂̂
∗fi(y) +

∑
j∈J

λj∂̂
∗
y gj(y,wj),

wj ∈ �j(y), τ ∈ R
m
+ \ {0}, λ ∈ R

l
+, i ∈ I, j ∈ J.

In what follows, for u1, u2 ∈ R
m, we define the order relation as follows:

u1 ≺ u2 ⇔ u1 − u2 ∈ −R
m
++, u1 �≺ u2 ⇔ u1 − u2 /∈ −R

m
++.

Definition 4.1: (ȳ, w̄, τ̄ , λ̄, β̄) ∈ F(MRD) is said to be a weakly efficient solution of
problem (MRD) if

L(ȳ, w̄, τ̄ , λ̄, β̄) �≺ L(y,w, τ , λ,β), ∀ (y,w, τ , λ,β) ∈ F(MRD).
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We now study the robust weak, strong, converse duality results between
(MRD) and (UNMOP) under some convexity assumptions with respect to the
upper semi-regular convexificator.

Theorem 4.2 (Robust weak duality): Let x ∈ C and (y,w, τ , λ,β) ∈ F(MRD).
Assume that

∑
i∈I τifi(·) + ∑

j∈J(λj + βj)gj(·,wj) is ∂̂∗-pseudoconvex at y and
wj ∈ �j(y). Then it holds that f (x) �≺ L(y,w, τ , λ,β).

Proof: Suppose that

f (x) ≺ L(y,w, τ , λ,β), ∀ x ∈ C, ∀ (y,w, τ , λ,β) ∈ F(MRD). (22)

Due to τ ∈ R
m+ \ {0}, without loss of generality, one can set τ�e = 1. Then (22)

yields that
〈
τ , f (x) −

⎛
⎝f (y) +

∑
j∈J

λjgj(y,wj)e

⎞
⎠

〉
< 0, ∀ x ∈ C, (1)

∀ (y,w, τ , λ,β) ∈ F(MRD), (23)

and so, ∑
i∈I

τi
(
fi(x) − fi(y)

) −
∑
j∈J

λjgj(y,wj) < 0. (24)

Since (y,w, τ , λ,β) ∈ F(MRD), there exist wj ∈ �j(y), τ ∈ R
m+ \ {0}, λ,β ∈ R

l+,
ξi ∈ ∂̂∗fi(y), i ∈ I, and ζj ∈ ∂̂∗

y gj(y,wj), j ∈ J such that

0 =
∑
i∈I

τiξi +
∑
j∈J

(λj + βj)ζj, (25)

and

βjgj(y,wj) ≥ 0, j ∈ J. (26)

Taking into account that x ∈ C, λ,β ∈ R
l+, (24) and (26) yield that∑

i∈I
τifi(x) +

∑
j∈J

(λj + βj)gj(x,wj) <
∑
i∈I

τifi(y) +
∑
j∈J

(λj + βj)gj(y,wj).

Since
∑

i∈I τifi(·) + ∑
j∈J(λj + βj)gj(·,wj) is ∂̂∗-pseudoconvex at y, we get

〈∑
i∈I

τiξi +
∑
j∈J

(λj + βj)ζj, x − y

〉
< 0, (27)

which contradicts with (25). Consequently, f (x) �≺ L(y,w, τ , λ,β). �



OPTIMIZATION 19

The following example shows that the ∂̂∗-pseudoconvexity condition in
Theorem 4.2 is indispensable.

Example 4.3: Let � := [−1, 0] and let f (x) := x3 and g(x,w) := wx2 for x ∈ R.
Obviously, C = R. Let x̄ := −1. Considering the dual problem (MRD), for any
y ∈ R and w̄ := 0 ∈ �j(y), one has

f+d (y, v) = 3vy2, g(y,w) = 0.

Taking ȳ := 0, τ̄ := 1
2 , λ̄ = β̄ := 1

4 , we have (ȳ, w̄, τ̄ , λ̄, β̄) ∈ F(MRD), ∂̂∗f (ȳ) =
[−1, 1], ∂̂∗

x̄ g(ȳ, w̄) = [−1, 1], 0 ∈ τ̄ ∂̂∗f (ȳ) + (λ̄ + β̄)∂̂∗
x̄ g(ȳ, w̄) and β̄g(ȳ, w̄) = 0.

Moreover, one has

L(ȳ, w̄, τ̄ , λ̄, β̄) := f (ȳ) +
∑
j∈J

λ̄jgj(ȳ, w̄j)e = 0 > −1 = f (x̄),

which implies that the assertion of Theorem 4.2 is not true. As a matter of fact,
the ∂̂∗-pseudoconvexity condition in Theorem 4.2 does not hold. Notice that

τ̄ f (x̄) + (λ̄ + β̄)g(x̄, w̄) = −1
2

< 0 = τ̄ f (ȳ) + (λ̄ + β̄)g(ȳ, w̄).

Taking ξ = ζ := −1, we have〈
1
2

× (−1) + (
1
4

+ 1
4
) × (−1), (−1) − 0

〉
= 1 > 0.

Theorem 4.4 (Robust strong duality): Let x̄ ∈ C be a robust weakly efficient
solution of (UNMOP). Assume that all conditions of Theorem 3.1 hold and the
Slater-type weak constraint qualification is satisfied at x̄. Then there exist w̄ ∈
�(x̄), τ̄ ∈ R

m+ \ {0}, λ̄ = 0 and β̄ ∈ R
l+ such that (x̄, w̄, τ̄ , 0, β̄) is feasible for

(MRD) and f (x̄) = L(x̄, w̄, τ̄ , 0, β̄). Moreover, if the conditions of Theorem 4.2
hold, then (x̄, w̄, τ̄ , 0, β̄) is a weakly efficient solution of (MRD).

Proof: It follows from Theorem 3.3 that there exist w̄j ∈ �j(x̄), τ̄ ∈ R
m+ \

{0}, β̄ ∈ R
l+ such that

0 ∈
∑
i∈I

τ̄i∂̂
∗fi(x̄) +

∑
j∈J

β̄j∂̂
∗
x̄ gj(x̄, w̄j), (28)

β̄jgj(x̄, w̄j) = 0, j ∈ J. (29)

So, (x̄, w̄, τ̄ , 0, β̄) is feasible for (MRD) and

f (x̄) = L(x̄, w̄, τ̄ , 0, β̄).

This together with Theorem 4.2 yields that

L(x̄, w̄, τ̄ , 0, β̄) = f (x̄) �≺ L(y,w, τ , λ,β), ∀ (y,w, τ , λ,β) ∈ F(MRD).

Thus (x̄, w̄, τ̄ , 0, β̄) is a weakly efficient solution of (MRD). �
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Theorem4.5 (Robust converse duality): Let (x̄, w̄, τ̄ , λ̄, λ̄) ∈ F(MRD) be a weakly
efficient solution of (MRD) with x̄ ∈ C. If

∑
i∈I τifi(·) + ∑

j∈J(λj + βj)gj(·,wj) is
∂̂∗-pseudoconvex at x̄, then x̄ is a robust weakly efficient solution of (UNMOP).

Proof: Since (x̄, w̄, τ̄ , λ̄, λ̄) ∈ F(MRD), one has

λ̄jgj(x̄, w̄j) ≥ 0, w̄j ∈ �j(x̄),

and so,
∑

j∈J λ̄jgj(x̄, w̄j) ≥ 0, w̄j ∈ �j(x̄). It follows from Theorem 4.2 that

f (x) �≺ L(x̄, w̄, τ̄ , λ̄, λ̄), ∀ x ∈ C. (30)

Taking x := x̄ in (30), we have

0 �≺
∑
j∈J

λ̄jgj(x̄, w̄j)e.

Recalling that e is the vector of all ones, one has∑
j∈J

λ̄jgj(x̄, w̄j) ≤ 0.

Consequently, we obtain
∑

j∈J λ̄jgj(x̄, w̄j) = 0 and f (x̄) = L(x̄, w̄, τ̄ , λ̄, λ̄). It
therefore follows from (30) that

f (x) �≺ f (x̄), ∀ x ∈ C,

i.e. f (x) − f (x̄) �∈ −R
m++ for all x ∈ C. Therefore, x̄ ∈ C is a robust weakly

efficient solution of (UNMOP). �

5. Conclusions

By using the robust approach, we studied robust optimality conditions and dual-
ity of (UNMOP). The Fritz-John type and KKT type robust optimality necessary
conditions of (UNMOP) are derived via upper semi-regular convexificators.
Robust sufficient optimality conditions including saddle point conditions are
obtained under a generalized convexity assumptions. The robust weak duality,
strong duality and converse duality between the original problem and its mixed
robust dual problem are derived under a generalized pseudoconvexity assump-
tion. For future research, it would be interesting to consider conjugate duality of
(UNMOP) via the convexificators. We are also interested in designing numeri-
cal algorithms for calculating robust solutions of (UNMOP) by a discretization
method as a future research aspect.
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