
Energy-Efficient Computation Offloading Strategy with Task Priority in
Cloud Assisted Multi-access Edge Computing

Zhenli Hea,c, Yanan Xub, Di Liud,∗, Wei Zhoua,c, Keqin Lie

aEngineering Research Center of Cyberspace, Yunnan University, Kunming 650500, China
bCollege of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China.

cSchool of Software, Yunnan University, Kunming 650500, China
d Department of Computer Science, Norwegian University of Science and Technology, Trondheim 7491, Norway

e Department of Computer Science, State University of New York at New Paltz, New York 12561, USA

Abstract

Multi-access edge computing (MEC) provides cloud-like services at the edge of the radio access network close to mobile devices
(MDs). This infrastructure can provide low-latency services to MDs and significantly reduce the pressure on the backbone network.
However, the computing resources configured on an edge server (ES) are limited compared to a cloud data center (DC). It is difficult
for ESs to satisfy the demands of MDs anytime and anywhere. Thus, a new paradigm that combines DC with ESs has been proposed
to provide better capability and flexibility, namely, cloud-assisted MEC (CA-MEC). In CA-MEC, MDs can offload tasks to ESs
and the DC, which means more elasticity and more complicated offloading decisions. This paper studies MDs’ energy-efficient
computation offloading strategy in CA-MEC, which considers two different priority tasks. First, we establish mathematical models
to characterize the CA-MEC environment. Second, we mathematically analyze the MD’s average task response time and average
power consumption. Third, we propose efficient numerical algorithms to obtain a computation offloading strategy to optimize the
energy efficiency of the target MD. Finally, we demonstrate several numerical examples and construct a comparative experiment to
show the effectiveness of our algorithms.

Keywords: Computation offloading, Energy efficiency, Multi-access edge computing, Queueing model, Task priority

1. Introduction

1.1. Motivation

With the growing demand for portable services, some appli-
cations (e.g., computation-intensive and power-hungry applica-
tions) are expected to be executed on mobile devices (MDs,
e.g., smartphones, wearable devices), such as deep learning
applications and self-driving technology [1]. Although MDs
are becoming more powerful and intelligent, their computing
power, storage space, and battery life are still limited compared
to desktop computers. Executing applications with complex re-
quirements on MDs will result in poor performance or short
operation time. In order to give mobile users a complete expe-
rience, offloading computation-intensive workloads from MDs
to cloud data centers (DCs) is a standard solution [2]. How-
ever, with the exponential growth of mobile communications,
the massive mobile traffic has brought enormous pressure to
the backbone network where the DCs are located. The result-
ing high latency can significantly degrade the user experience
and may even cause serious problems in safety-critical applica-
tions [3, 4].

∗Corresponding author.
Email addresses: hezl@ynu.edu.cn (Zhenli He), bfg_xyn@163.com

(Yanan Xu), di.liu@ntnu.no (Di Liu), zwei@ynu.edu.cn (Wei Zhou),
lik@newpaltz.edu (Keqin Li)

On that account, multi-access edge computing (MEC) is
proposed as an emerging computing paradigm. By flexibly de-
ploying edge servers (ESs) at the network edge, MEC can pro-
vide computing, storage, and software services for MDs nearby,
significantly reducing the pressure on the backbone network
and providing an unparalleled experience [5, 6]. However, com-
pared to a DC, the computing resources configured on an ES are
minimal due to the space constraints of deployment. It is diffi-
cult for ESs to completely satisfy the demands of MDs anytime
and anywhere. To overcome this, some scholars have proposed
to introduce cloud to assist ESs, namely cloud assisted MEC
(CA-MEC), which achieves a good trade-off between rich re-
source (DC) and high response (ESs) [7, 8].

In CA-MEC, MDs can offload tasks to either ESs or the
DC based on system utilization, task characteristics, etc. Due
to the different hardware configurations of the ESs in the com-
puting environment and the high transmission delay of the DC,
computation tasks with different average response time (ART)
requirements may need to be offloaded to different computing
nodes. Excellent offloading decisions can better meet user de-
mands, improve resource utilization, and reduce MDs’ average
power consumption (APC).

Although many scholars have realized the importance of
this issue and conducted much research, these existing works
rarely consider an important factor that different types of tasks
may have different priorities. Regarding MDs, some computa-

Preprint submitted to Future Generation Computer Systems June 10, 2023



tion tasks, such as lane changing for autonomous driving, may
be extremely urgent and must be performed by themselves [9].
In contrast, other tasks may be inherently suitable for remote
execution, such as driving trajectory recording. Similarly, in
terms of ESs, some computation tasks may be urgent and need
to be preferentially performed by ESs, such as service initial-
ization applications. It is important to note that high-priority
urgent tasks cannot be merely regarded as an inescapable back-
ground load, excluding their portion of resource demands. Due
to the interleaving of task execution, the presence of high-priority
tasks inevitably interferes with the execution of other tasks. For
example, in a self-driving car, a sudden appearance of a pedes-
trian may trigger and execute an emergency braking task, dis-
rupting the execution order of other tasks. As a result, high-
priority tasks not only consume resources, but also disrupt the
execution order of common tasks, and hence, their impact on
the execution of common tasks must be carefully considered.

In conclusion, computation tasks on computing nodes can-
not always be deemed to be performed in the first-in-first-out
(FIFO) fashion when considering computation offloading deci-
sions. It is crucial to consider the issue of prioritization among
tasks. Ignoring task priorities may culminate in low-priority
tasks obstructing the immediate execution of high-priority tasks
or in low-priority tasks experiencing timeouts owing to interfer-
ence from high-priority tasks. Such consequences can substan-
tially affect safety-critical or time-sensitive workloads.

1.2. Our Contributions

In this paper, we investigate energy-efficient computation
offloading strategy with task priority in CA-MEC. Specifically,
we consider how to make strategic offloading decisions for a
target MD in a CA-MEC environment where both MDs and ESs
have two different task priorities. The main optimization objec-
tive is to minimize the average power consumption (APC) of the
target MD on the premise that the average response time (ART)
meets a predetermined standard. To summarize, the main con-
tributions of this paper are as follows:

• We consider a CA-MEC environment consisting of mul-
tiple MDs, multiple ESs, and a single DC. We regard the
target MD as an M/G/1 non-preemptive priority queue-
ing model, each ES as an M/G/m non-preemptive prior-
ity queueing model, and the DC as an M/G/∞ queueing
model. Then, we establish mathematical models to char-
acterize the considered CA-MEC environment.

• We perform a rigorous mathematical derivation of APC
and ART for the target MD and then formulate the energy-
efficient computation offloading decision problem as a
multivariable optimization problem.

• We develop a series of efficient algorithms based on the
Karush-Kuhn-Tucker (KKT) conditions [10] to obtain the
optimal offloading decision of the target MD in a CA-
MEC environment, such that the MD can minimize its
APC under a preset ART constraint.

• We also demonstrate three numerical examples and con-
struct a comparative experiment, including a greedy-based
method, particle swarm optimization (PSO) [11], and deep
deterministic policy gradient (DDPG) [12] algorithms, to
illustrate the effectiveness of our proposed methods and
algorithms.

Note that the problem definition for optimizing offloading
decisions is based on mathematical models, where the accu-
racy of our solution depends only on the precision of parame-
ters from the real world. The proposed method (i.e., a series
of numerical algorithms) essentially solves a non-linear system
of equations constructed based on Lagrangian functions. These
calculations are computationally less expensive and should be
performed accordingly when the offloading environment changes.

This work can provide important insights into the energy-
efficient offloading optimization considering application urgency
in the CA-MEC environment. We would like to mention that
our study can be extended to multi-priority situations. The re-
mainder of the paper is organized as follows. In Section 2,
we review existing research. In Section 3, we present system
models. In Section 4, we formulate our optimization prob-
lem. In Section 5, we propose algorithms to solve the optimiza-
tion problem and then conduct numerical examples to illustrate
the effectiveness of our methods. In Section 6, we construct
a comparative experiment to illustrate further our proposed al-
gorithms’ effectiveness and the optimality of our solutions. In
Section 7, we summarize the work and offer future research
direction. We also provide appendices that illustrate the math-
ematical notations used in this paper, the explicit process of
computation offloading in CA-MEC, the detailed derivation of
the formulas used in this paper, and the proofs of the theorems
presented in this paper.

2. Related Work

In this section, we review existing research relevant to our
study. However, we cannot enumerate all the work related to
computation offloading in MEC, and interested readers are re-
ferred to [1, 3, 13] for more comprehensive reviews. We divide
the existing related research into three main categories accord-
ing to different research scenarios.

Single ES scenario. There is a single ES for offloading.
Yun et al. [14] investigated the joint optimization of compu-
tation offloading and resource allocation in an MEC environ-
ment using deep reinforcement learning (DRL) and queueing
theory. Their approach aimed to reduce the energy consump-
tion of target MDs and enhance system utility. The authors in-
troduced a theoretical innovation by segregating service queues
according to task types and service rates. In [15], Li established
a non-cooperative game framework for MEC, aiming at deter-
mining the optimal action profile for each participant based on
the Nash equilibrium. This approach minimized each partici-
pant’s payment function. Yang et al. [16] explored the trade-off
between task completion time and MD’s energy consumption in
an MEC environment. In this paper, the authors modeled the of-
floading decision and resource allocation problem as an execu-

2



tion cost minimization problem, where the execution cost is the
weighted sum of the task completion time and the energy con-
sumption of the MD. Then they solved the problem based on a
multi-task learning method. Fang et al. [17] studied offloading
optimization in a multi-user MEC environment. The authors
proposed an algorithm based on bisection search to determine
the optimal offloading decision that minimized task completion
time while satisfying energy consumption and offloading power
constraints. In [18], the authors considered partial and com-
plete offloading strategies with the objective of minimizing the
energy-time weighted product. In [19], the authors modeled
the energy-efficient offloading optimization problem as a stable
control problem while taking into account the execution dead-
lines of tasks based on perturbed Lyapunov optimization and
designed an online delay-aware offloading algorithm to solve
the proposed problem.

Multiple ESs scenario. There are multiple ESs for offload-
ing. In [20], Li studied offloading strategy optimisation in a
single-user MEC environment and proposed various numerical
algorithms to determine the optimal offloading strategy. This
approach enabled the target MD to balance application perfor-
mance and power consumption. In [21], Zarandi et al. explored
the joint optimization of computation offloading and communi-
cation resource allocation in a sliced MEC network. They em-
ployed fractional programming and the Augmented Lagrangian
method to address this problem. Guo et al. [22] investigated the
trade-off between delay and energy consumption in a dynamic
single-user MEC scenario. The authors applied Lyapunov op-
timization to convert the optimization problem of minimizing
execution delay subject to energy consumption constraint into
transmit power allocation and ES selection. Wang et al. [23]
studied computation offloading in a wireless-powered multi-
user MEC scenario, focusing on minimizing the average task
completion delay with energy consumption constraints. They
approached this problem through the application of DRL. In
[24], Wang et al. addressed the joint optimization of offload-
ing decision and power-resource allocation in an MEC environ-
ment. Their goal was to maximize load benefit, defined as min-
imizing response time and energy consumption. In [25], Jiang
et al. employed a multi-agent and distributed DRL approach to
jointly solve offloading decision-making and resource alloca-
tion challenges, aiming to minimize the weighted sum of delay
and energy consumption.

CA-MEC scenario. The above studies have not considered
the collaboration of cloud data centers. The CA-MEC environ-
ment is more complex than the previously investigated comput-
ing contexts. Li et al. [26] designed a two-stage multilateral
negotiation scheme to improve the expected utility (EU) of the
three parties that include end users’ EU (related to energy con-
sumption, task completion time, and default), the ES’s EU (re-
lated to service revenue and default penalty), and the DC’s EU
(related to service revenue and default penalty). Nan et al. [27]
researched energy-efficient online decision-making in a green
energy-based cloud-of-things system, comprising fog and cloud
tiers. The fog server and data center (DC) were modeled as two
M/M/1 queueing systems, with the transmission process rep-
resented as an M/M/1 queue. The authors proposed an online

algorithm based on Lyapunov optimization to minimize mone-
tary costs of energy consumption while meeting time require-
ments. You et al. [28] investigated computation offloading
and resource configuration in a multi-user and multi-cloudlet
CA-MEC environment, aiming to reduce the overall comput-
ing overhead and improve the efficiency of resource utilization
based on game theory. In [29], Yadav et al. studied delay and
energy optimization in a vehicular fog computing environment,
which included multiple vehicular nodes, cloudlet nodes, and
a DC. The authors proposed a dynamic computation offloading
and resource allocation scheme to minimize the total weighted
sum of service latency and energy consumption. Sun et al.
[30] studied computation offloading strategy in CA-MEC under
limited edge computing resources. They solved the offloading
optimization problem using reinforcement learning and imple-
mented resource prediction with gated recurrent units. Peng
et al. [8] investigated multi-objective computation offloading
optimization, considering latency and energy consumption in
a CA-MEC environment with multiple MDs, ESs, and DCs.
Ma et al. [31] researched the joint optimization problem of
computing resource allocation and cloud tenancy strategy in
CA-MEC. The authors modeled the ES and the DC as M/M/1
queueing systems and designed algorithms to obtain optimal
resource provisioning and cloud tenancy strategy to minimize
the system cost under system delay constraints. In [32], Yadav
et al. researched computation offloading optimization based on
reinforcement learning to balance energy consumption and pro-
cessing latency. The CA-MEC environment consisted of three
layers: a sensor layer with multiple sensor nodes, an edge layer
with multiple ESs, and a cloud layer with a DC. However, Refs.
[8, 28, 29, 32] do not consider queuing delay when analyzing
the ART of MDs, and none of the above studies consider task
priority or application urgency setting.

To position our study and emphasize its distinct character-
istics, we analyze the key differences between our research and
existing studies that have considered computation offloading in
CA-MEC.

• First, we take into account the priority of computation
tasks. The MD and ESs will perform their dedicated tasks
before addressing generic tasks. Therefore, we adopt
the non-preemptive priority queueing discipline (NPQD),
described in detail below: 1) Tasks with the same pri-
ority are queued according to the FIFO discipline; how-
ever, dedicated tasks are always scheduled before generic
tasks (see Fig. 1a). 2) Generic tasks will only be exe-
cuted when no dedicated tasks are pending (see Fig. 1b).
3) The execution of a computation task is uninterrupt-
ible, meaning that the task being executed cannot be in-
terrupted, even if it is a generic task (see Fig. 1c).

• Second, we consider the impact of dedicated tasks on
the waiting delay of generic tasks when they disrupt the
execution order of generic tasks, performing a rigorous
mathematical derivation.

• Third, we employ M/G/1 non-preemptive priority queue-
ing model, M/G/m non-preemptive priority queueing model,

3



and M/G/∞ queueing model to characterize the target
MD, each ES, and the DC, respectively. These models al-
low task-related parameters (e.g., execution requirements
and input data sizes) to follow arbitrary probability dis-
tributions, thus providing better applicability.

Queue

A dedicated task

A generic task

A dedicated task in service

A generic task in service

Queue

Newly arrived tasks join the queue

4 3 0124 3 012

3 2 016457 3 2 016457

Newly arrived tasks

567

Queue

Newly arrived tasks join the queue

4 3 012

3 2 016457

Newly arrived tasks

567

(a)

Queue

Dedicated task in service is complete

7 5 2347 5 234

5 4 6237 5 4 6237

(b)

Queue

Newly arrived tasks join the queue

57 57

7 5897 589

Newly arrived tasks

89

(c)

Fig. 1: Non-preemptive priority queueing discipline

3. Preliminaries

This section provides the necessary preliminaries, includ-
ing assumptions, notations, and models used in this paper. (Ap-
pendix A lists definitions of the mathematical notations used in
this paper.)

3.1. The CA-MEC environment

First, we introduce the CA-MEC environment considered
in this paper.

Assume that there are m ESs with limited computation re-
sources (denoted as ES1, ES2, . . . , ESm) and a DC with infinite
computation resources in the CA-MEC environment to provide
computation offloading services for MDs (see Fig. 2). We con-
sider the offloading decision from the perspective of one of the
MDs, that is, the target MD needs to offload some computation-
intensive tasks to some ESs and/or the DC to minimize its APC
on the premise that the ART of offloadable tasks does not ex-
ceed the maximum latency requirement, thereby efficiently pro-
longing its own battery life. Specifically, the target MD estab-
lishes wireless connectivity with the ESs, and the information

BS

···

0


0


,11 ex
 +

1


···

2
 2 ,2ex

 +
,m ex m

 +
m
 c


1 20 m c

     + + + + +=

Fig. 2: A CA-MEC environment with an MD, multiple muti-server ESs, and a
DC

exchange between the MD and the ESs is managed by a central
node/controller (e.g., a gateway) [33].

Regarding the computation offloading process in the CA-
MEC environment, the calculation of the offloading scheme and
the collection of global information are not performed by the
MD but are assumed to be executed by the central node. For
clarity of presentation, the specific process is provided in Ap-
pendix B.

In terms of types of tasks, we consider two categories of
computational tasks, each characterized by a different priority.
For simplicity, high priority tasks are referred to as dedicated
tasks, while lower priority tasks are referred to as generic tasks.
The definitions of these two types of tasks vary between differ-
ent computing nodes and can be summarized as follows.

• There are both dedicated tasks and generic tasks on the
target MD. Dedicated tasks (i.e., non-offloadable tasks)
on the MD refer to the urgent tasks that cannot be of-
floaded and must be performed by the MD, while other
tasks on the MD are regarded as the generic tasks (i.e.,
offloadable tasks) that can be offloaded to ESs/DC. The
dedicated tasks are given higher priority than the generic
tasks.

• There are both dedicated tasks and generic tasks on each
ES. The dedicated tasks on each ES refer to the critical
tasks that are implemented on the ES and must be per-
formed by the ES, while the generic tasks on the ES refer
to the computational tasks that are offloaded from MDs
to the ES. Similarly, the dedicated tasks are given higher
priority than the generic tasks and are always scheduled
before the generic tasks.

• The DC is considered to have only generic tasks which
are offloaded from MDs. Although the service provision
of the DC may also require the support of some criti-
cal tasks, the DC theoretically has infinite computing re-
sources, such that the offloaded tasks will not interfere
with these critical tasks.

3.2. The MD Model
In this section, we use an M/G/1 non-preemptive priority

queueing model [34] to characterize the target MD.
A brief explanation of the above notation is given here.

The specialized notation employed to define the queueing sys-
tems under consideration (i.e., M/G/1 and M/G/m) is known as
Kendall notation [34]. This notation allows a queueing system
to be described in the form A/B/m/X/n/Z: A and B symbolize
the distributions of inter-arrival time and service time, respec-
tively; m and n represent the number of servers and customers
(infinite by default), respectively; X denotes the queue capac-
ity (infinite by default); and Z signifies the queuing discipline
for the system (FIFO by default). For instance, in the case of
an M/G/1 system, task inter-arrival times follow a negative ex-
ponential distribution, while service times exhibit an arbitrary
distribution, and there is a single server providing services with
no constraint on queue length. Interested readers are referred to
[34] for more about queueing theory.

4



Assume that the dedicated and generic tasks generated by
the MD conform to a Poisson stream with arrival rate λ =
λ̇0 + λ̈ (measured by the number of tasks arriving per second),
in which λ̇0 denotes the arrival rate of dedicated tasks (i.e.,
non-offloadable tasks with a higher priority that can only be
performed locally in the MD) and λ̈ denotes the arrival rate of
generic tasks (i.e., offloadable tasks that can be performed lo-
cally in the MD or remotely in ESs/DC).

A Poisson stream is known to be divisive, which means that
it can be split into several sub-streams, while several Poisson
streams can also be merged to form a single Poisson stream.
Thus, the arrival rate λ̈ can be split into m + 2 sub-streams, that
is, λ̈ = λ̈0 + λ̈1 + λ̈2 + · · ·+ λ̈m + λ̈c, where λ̈0 denotes the arrival
rate of the sub-stream of generic tasks performed locally in the
MD, λ̈i denotes the arrival rate of the ith sub-stream of generic
tasks offloaded from the MD to ESi and performed remotely in
ESi, and λ̈c denotes the arrival rate of the sub-stream of generic
tasks offloaded from the MD to the DC and performed remotely
in the DC. Then, λ = λ̇0 + λ̈ = λ̇0 + λ̈0 +

∑m
i=1 λ̈i + λ̈c. We can

use vector λ =(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) to represent a computation
offloading strategy of the MD.

The MD maintains a queue for pending tasks and adopts
NPQD, that is, dedicated tasks pending for execution have higher
priority and are always scheduled before generic tasks, and generic
tasks will only be executed when no dedicated tasks are pend-
ing. Moreover, all tasks are executed non-preemptively, i.e., a
task cannot be preempted by any other task if it starts its execu-
tion.

Let s0 denote the execution speed of the MD (measured
by billion instructions per second, BIPS). The execution re-
quirements (measured by billion instructions, BI) of dedicated
tasks generated on the MD are independent and identically dis-
tributed (i.i.d.) random variables (r.v.s) ṙ0 with the mean ṙ0 and
second moment ṙ2

0. The execution requirements of generic tasks
generated on the MD are i.i.d. r.v.s r̈0. Its mean and second mo-
ment are r̈0 and r̈2

0, respectively. The input data sizes (measured
by units of million bits, Mb) involved in generic tasks are also
i.i.d. r.v.s d̈0 with the mean d̈0 and second moment d̈2

0 . Note that
all the execution requirements and input data sizes can follow
arbitrary probability distributions and can be obtained by graph
analysis methods [35, 36].

3.3. The ES Model

In this section, we use an M/G/m non-preemptive priority
queueing system [34] to characterize each ES in CA-MEC.

Assume that the dedicated tasks that are already on ESi con-
form to a Poisson stream with arrival rate λ̇i. Since these m ESs
not only provide computation offloading service for the target
MD but also for other MDs in the CA-MEC environment, we
assume that ESi also receives a Poisson stream of generic tasks
from other MDs with arrival rate λ̈ex,i, which is already there,
and has nothing to do with the target MD. Therefore, the total
arrival rate of mixed computation tasks executed by ESi can be
calculated as λi = λ̇i + λ̈ex,i + λ̈i, for all 1 ≤ i ≤ m.

Similarly, each ES maintains a queue for pending tasks and
adopts NPQD, i.e., dedicated tasks have higher priority and are

always scheduled before generic tasks, and all tasks are non-
preemptive.

Let mi denote the server size of ESi (i.e., ESi has mi identi-
cal servers). The execution speed (measured by units of BIPS)
of ESi is si. In the wireless transfer channel between the MD
and ESi, the wireless data transmission rate is ci (measured by
million bits per second, Mbps). The execution requirements of
dedicated tasks preloaded on ESi are i.i.d. r.v.s ṙi. Its mean
and second moment are ṙi and ṙ2

i , respectively. The execution
requirements of generic tasks offloaded from other MDs to ESi

are i.i.d. r.v.s r̈i. Its mean and second moment are r̈i and r̈2
i , re-

spectively. Note that all the execution requirements can follow
arbitrary probability distributions.

3.4. The Data Center Model
With a flexible design, the cloud data center theoretically

has infinite computation resources. Referring to some current
research work, the DC is typically regarded as a queuing system
with infinite computation resources, such as [37–39].

We model the DC as an M/G/∞ queueing system with in-
finite computation resources. Therefore, there is no queueing
latency for the computation tasks offloaded to the DC, that is,
the computation tasks offloaded to the DC will be executed im-
mediately.

Let sc denote the execution speed (measured by BIPS) of
the DC. As discussed in Section 3.2, the DC processes a sub-
stream of generic tasks that are offloaded from the MD. When
the MD offloads computation tasks to the DC, it first offloads
these tasks to a selected mobile base station (BS), and then the
BS forwards the tasks to the DC via Metropolitan Area Net-
work (MAN). Therefore, there are two transmission stages to
offload computation tasks from the MD to the DC. Let cb de-
note the average wireless data transmission rate (measured by
Mbps) between the MD and the BS, and cWAN denote the aver-
age wired data transmission rate (measured by Mbps) between
the BS and the DC.

3.5. Power Consumption Models
In this section, we establish mathematical models to ana-

lyze the power consumption of the MD in the CA-MEC envi-
ronment.

3.5.1. Power Consumption for Computation
Generally, the processor is the main power-consuming com-

ponent of an MD, which is typically represented as Pd,0 = ξ0sα0
0

[40–43], where s0 denotes processor execution speed, ξ0 and α0
are two technology-dependent constants [44–46].

Therefore, the MD’s APC (measured by Watts) for compu-
tation can be calculated by

Pcomp = ρ0ξ0sα0
0 + P∗0,

where ρ0 is the utilization of the MD (i.e., the average percent-
age of time that the MD’s processor is busy) that will be derived
in Section 4, and P∗0 denotes the base power of the processor,
including base power, leakage power, and short-circuits power
dissipation [47].

5



3.5.2. Power Consumption for Communication
The communication between the MD and the ESs/DC also

consumes power. We establish the communication power con-
sumption model as follows.

Based on Shannon’s theorem [48], the data transmission
rate ci for transmitting generic tasks from the MD to ESi can
be calculated by

ci = Bilog2

(
1 +

qiPt,i

BiNi

)
,

where Bi denotes the communication channel bandwidth be-
tween the MD and ESi, qi represents the channel gain between
the MD and ESi, Pt,i denotes the transmission power of the MD
to offload tasks to ESi, and Ni denotes the noise power spectrum
density, for all 1 ≤ i ≤ m. Then, we can rewrite the equation to
obtain Pt,i as

Pt,i =
BiNi(2ci/Bi − 1)

qi
.

The average communication time for the MD to offload one
generic task to ESi is d̈0/ci, thus the average communication
energy consumption of the MD in this process can be expressed
as Pt,i(d̈0/ci). We know that there are λ̈i generic tasks offloaded
from the MD to ESi per second. Hence, we can get the average
communication energy consumption between the MD and ESi

per second, i.e., the APC of the MD (measured by Watts) for
communication with ESi as

Pcomm,i =
λ̈id̈0

ci
Pt,i =

λ̈id̈0

ci
·

BiNi(2ci/Bi − 1)
qi

,

Similarly, the APC of the MD for communication with the
DC (relaying through a selected BS) is

Pcomm,c =
λ̈cd̈0

cb
Pt,b =

λ̈cd̈0

cb
·

BbNb(2cb/Bb − 1)
qb

.

Based on the above discussion, we can obtain the APC of
the MD for both computation and communication as

P = Pcomp +

m∑
i=1

Pcomm,i + Pcomm,c

= ρ0ξ0sα0
0 + P∗0 +

m∑
i=1

λ̈id̈0

ci
·

BiNi(2ci/Bi − 1)
qi

+
λ̈cd̈0

cb
·

BbNb(2cb/Bb − 1)
qb

.

(1)

4. Problem Definition

Before defining our optimization problem, we first derive
the primary performance metric of the target MD, i.e., the ART
of generic tasks generated on the MD. These generic tasks can
be executed locally on the MD and offloaded to ESs or the DC
for remote performance. Therefore, we need to analyze the
ART of offloadable tasks on each computing node.

First, we derive the ART of generic tasks performed locally
in the MD, which is denoted as T̈0. Based on the MD model we
established in Section 3.2, we know that the processing latency
of dedicated tasks performed locally in the MD is i.i.d. r.v.s
ẋ0 = ṙ0/s0. Its mean and second moment are ẋ0 = ṙ0/s0 and
ẋ2

0 = ṙ2
0/s

2
0, respectively. We also know that the processing

latency of generic tasks performed locally in the MD is i.i.d.
r.v.s ẍ0 = r̈0/s0. Its mean and second moment are ẍ0 = r̈0/s0

and ẍ2
0 = r̈2

0/s
2
0, respectively. For the MD, it needs to execute

two types of computation tasks, i.e., the dedicated tasks with
arrival rate λ̇0 and the generic tasks with arrival rate λ̈0. Thus,
the processing latency of mixed computation tasks performed
locally in the MD is i.i.d. r.v.s with mean

x0 =
λ̇0

λ0
ẋ0 +

λ̈0

λ0
ẍ0 =

λ̇0

λ0

ṙ0

s0
+
λ̈0

λ0

r̈0

s0
,

and second moment

x2
0 =
λ̇0

λ0
ẋ2

0 +
λ̈0

λ0
ẍ2

0 =
λ̇0

λ0

ṙ2
0

s2
0

+
λ̈0

λ0

r̈2
0

s2
0

,

where λ0 = λ̇0 + λ̈0 denotes the total arrival rate of mixed com-
putation tasks on the MD, and λ̇0/λ0 and λ̈0/λ0 are the percent-
ages of dedicated tasks and generic tasks on the MD, respec-
tively. Based on queueing theory, the server utilization of the
MD can be calculated by ρ0 = λ0x0 = (λ̇0ṙ0 + λ̈0r̈0)/s0, and
ρ0 < 1. The average queueing latency of generic tasks per-
formed locally in the MD is ([34, p.702])

ẅ0 =
λ0x2

0

2(1 − λ̇0 ẋ0)(1 − ρ0)
=

λ̇0ṙ2
0 + λ̈0r̈2

0

2(s0 − λ̇0ṙ0)(s0 − λ̇0ṙ0 − λ̈0r̈0)
.

Then, we can calculate T̈0 by

T̈0 = ẍ0 + ẅ0 =
r̈0

s0
+

λ̇0ṙ2
0 + λ̈0r̈2

0

2(s0 − λ̇0ṙ0)(s0 − λ̇0ṙ0 − λ̈0r̈0)
. (2)

Second, we derive the ART of generic tasks offloaded from
the MD to ESi, which is denoted as T̈i, for all 1 ≤ i ≤ m. Based
on the ES model we established in Section 3.3, we know that
the processing latency of dedicated tasks preloaded on ESi is
i.i.d. r.v.s ẋi = ṙi/si. Its mean and second moment are ẋi = ṙi/si

and ẋ2
i = ṙ2

i /s
2
i , respectively. We also know that the generic

tasks on ESi are composed of two parts, including the generic
tasks that have been offloaded to ESi from other MDs (i.e., the
communication latency does not need to be considered) and the
generic tasks that will be offloaded from the target MD to ESi

(i.e., the communication latency needs to be considered). The
processing latency of generic tasks that are already there in ESi

is i.i.d. r.v.s. Its mean and second moment are r̈i/si and r̈2
i /s

2
i ,

respectively. The processing latency of generic tasks offloaded
from the target MD to ESi is also i.i.d. r.v.s. Its mean and sec-
ond moment are r̈0/si + d̈0/ci and r̈2

0/s
2
i + 2r̈0d̈0/(sici) + d̈2

0/c
2
i ,

respectively (notice that d̈0/ci is the average communication la-
tency). For ESi, it needs to execute two types of computation

6



tasks, i.e., the generic tasks with arrival rate λ̈i + λ̈ex,i and the
dedicated tasks with arrival rate λ̇i. Thus, the processing la-
tency of generic tasks performed remotely in ESi is i.i.d. r.v.s
with mean

ẍi =
λ̈i

λ̈i + λ̈ex,i

 r̈0

si
+

d̈0

ci

 + λ̈ex,i

λ̈i + λ̈ex,i
·

r̈i

si
,

and second moment

ẍ2
i =

λ̈i

λ̈i + λ̈ex,i

 r̈2
0

s2
i

+ 2
r̈0d̈0

sici
+

d̈2
0

c2
i

 + λ̈ex,i

λ̈i + λ̈ex,i
·

r̈2
i

s2
i

.

The processing latency of mixed computation tasks performed
in ESi is i.i.d. r.v.s with mean

xi =
λ̇i

λi
ẋi +
λ̈i + λ̈ex,i

λi
ẍi =

λ̇iṙi

λisi
+
λ̈i

λi

 r̈0

si
+

d̈0

ci

 + λ̈ex,ir̈i

λisi
,

and second moment

x2
i =
λ̇i

λi
ẋ2

i +
λ̈i + λ̈ex,i

λi
ẍ2

i =
λ̇i

λi

ṙ2
i

si
2 +
λ̈i

λi

 r̈2
0

si
2 +

d̈2
0

ci
2 + 2

r̈0d̈0

sici


+
λ̈ex,i

λi

r̈2
i

si
2 ,

and the variance σ2
i = x2

i − xi
2, and the coefficient of variation

CVi =
σi

xi
=

√√
x2

i

xi
2 − 1,

where λi = λ̇i + λ̈ex,i + λ̈i denotes the total arrival rate of mixed
computation tasks on ESi, λ̇i/λi and (λ̈i + λ̈ex,i)/λi are actually
the percentages of dedicated tasks and generic tasks on ESi,
respectively. Based on queuing theory, the server utilization of
ESi can be calculated by

ρi =
λixi

mi
=
λ̇iṙi + λ̈ex,ir̈i

simi
+
λ̈i

mi

 r̈0

si
+

d̈0

ci

 ,
or

ρi =ρ̇i + ρ̈i =
λ̇iṙi

simi
+
λ̈i

mi

 r̈0

si
+

d̈0

ci

 + λ̈ex,ir̈i

simi
,

where ρ̇i = λ̇i ẋi/mi denotes the server utilization of dedicated
tasks of ESi, and ρ̈i = (λ̈i+ λ̈ex,i)ẍi/mi denotes the server utiliza-
tion of generic tasks of ESi. We also have ρi < 1. According to
the accurate approximation of the average queueing latency in
an M/G/m non-preemptive priority queueing system from [49],
we can calculate the average queueing latency of generic tasks
processed on ESi as ẅi = W̊i/(1 − ρ̇i), where W̊i represents the
average queueing latency for non-priority (FIFO) case [50], that
is,

W̊i =
xi · pi,mi (1 +CV2

i )
2mi(1 − ρi)

,

where
pi,mi = pi,0 ·

(miρi)mi

mi!(1 − ρi)
,

and

pi,0 =

mi−1∑
k=0

(miρi)k

k!
+

(miρi)mi

mi!(1 − ρi)


−1

.

After simple algebraic operations, we have

ẅi =
xi · pi,mi (1 +CV2

i )
2mi(1 − ρ̇i)(1 − ρi)

.

Then, we can calculate T̈i by

T̈i =
r̈0

si
+

d̈0

ci
+ ẅi =

r̈0

si
+

d̈0

ci
+

xi · pi,mi (1 +CV2
i )

2mi(1 − ρ̇i)(1 − ρi)
.

Third, we derive the ART of generic tasks offloaded from
the MD to the DC, which is denoted as T̈c. Based on the DC
model we established in Section 3.4, we can calculate T̈c by

T̈c = ẍc =
r̈0

sc
+

d̈0

cb
+

d̈0

cWAN
+ tprop, (3)

where d̈0/cb denotes the average communication latency from
the MD to the BS, d̈0/cWAN denotes the average communication
latency from the BS to the DC, and tprop denotes the propaga-
tion latency from the BS to the DC (since the DC is located at
the hub of the backbone network, i.e., geographically far away
from MDs).

According to the above discussion, the ART of generic tasks
that are generated on the MD can be calculated by

T̈ =
λ̈0

λ̈
T̈0 +

m∑
i=1

λ̈i

λ̈
T̈i +

λ̈c

λ̈
T̈c. (4)

Now we can formally define the optimization problem to be
solved in this paper. Recall that our main objective is to obtain
the optimal computation offloading decision in the CA-MEC
environment for the target MD, such that the MD’s APC is min-
imized and the performance of the MD meets a preset standard,
thereby improving energy efficiency and prolonging the battery
life of the MD. This problem is a multi-variable optimization
problem and is formulated as follows.

Given an MD with parameters λ̇0, λ̈, s0, ṙ0, ṙ2
0, r̈0, r̈2

0, d̈0, d̈2
0 ,

ξ0, α0, P∗0, and m ESs with parameters λ̇i, λ̈ex,i, mi, si, ṙi, ṙ2
i , r̈i,

r̈2
i , ci, qi, Bi, Ni, for all 1 ≤ i ≤ m, and a DC with parameters sc,

cb, qb, Bb, Nb, cWAN, tprop, and performance constraint T̃g, find
a computation offloading strategy λ = (λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c),
such that P is minimized, namely,

min P = Pcomp +

m∑
i=1

Pcomm,i + Pcomm,c, (5)

subject to the following constraints

λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m + λ̈c = λ̈, (6)

7



T̈ ≤ T̃g, (7)

ρ0 < 1, (8)

ρi < 1, for all 1 ≤ i ≤ m. (9)

It should be noted that if λ̈0 = 0, it means that the MD
will not execute generic tasks locally. Similarly, λ̈i = 0 means
that generic tasks will not be offloaded to ESi for remote per-
formance, and λ̈c = 0 means that generic tasks will not be of-
floaded to the DC.

5. Our Solutions

In this section, we analyze the multi-variable optimization
problem defined above and design an approach to solve it based
on KKT optimality conditions.

5.1. Analysis

First, we define the two constraints Eqs. (6) and (7) as func-
tions H(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) and G(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c), re-
spectively, where

H(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) = λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m + λ̈c − λ̈,
(10)

and

G(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) =

λ̈0T̈0 +

m∑
i=1

λ̈iT̈i + λ̈cT̈c

 − λ̈T̃g.

(11)
Second, we construct a Lagrange function as

L =P(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) + βG(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c)
+ γH(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c),

(12)

where β and γ are two Lagrange multipliers. Now, we have
m + 2 nonlinear equations

∂L
∂λ̈0
=
∂P
∂λ̈0
+ β
∂G
∂λ̈0
+ γ = 0,

∂L
∂λ̈i
=
∂P
∂λ̈i
+ β
∂G
∂λ̈i
+ γ = 0, 1 ≤ i ≤ m,

∂L
∂λ̈c
=
∂P
∂λ̈c
+ β
∂G
∂λ̈c
+ γ = 0,

that is, 

∂P
∂λ̈0
+ β

T̈0 + λ̈0
∂T̈0

∂λ̈0

 + γ = 0,

∂P
∂λ̈i
+ β

T̈i + λ̈i
∂T̈i

∂λ̈i

 + γ = 0, 1 ≤ i ≤ m,

γ = −
∂P
∂λ̈c
− βT̈c.

According to KKT conditions, we have

∂P
∂λ̈0
−
∂P
∂λ̈c
+ β

T̈0 + λ̈0
∂T̈0

∂λ̈0
− T̈c

 = 0, (13)

∂P
∂λ̈i
−
∂P
∂λ̈c
+ β

T̈i + λ̈i
∂T̈i

∂λ̈i
− T̈c

 = 0, 1 ≤ i ≤ m, (14)

βG(λ̈0, λ̈1, . . . , λ̈m, λ̈c) = 0, (15)
β ≥ 0, (16)
G(λ̈0, λ̈1, . . . , λ̈m, λ̈c) ≤ 0, (17)
λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m + λ̈c = λ̈. (18)

By observing Eqs. (15) ∼ (17), the following relationship be-
tween β and G(λ̈0, λ̈1, . . . , λ̈m, λ̈c) can be obtained: β = 0,G(λ̈0, λ̈1, . . . , λ̈m, λ̈c) < 0,

β > 0,G(λ̈0, λ̈1, . . . , λ̈m, λ̈c) = 0.
(19)

However, if β = 0, Eqs. (13) and (14) can be rewritten as
∂P
∂λ̈0
−
∂P
∂λ̈c
= 0,

∂P
∂λ̈i
−
∂P
∂λ̈c
= 0, 1 ≤ i ≤ m,

which means that the equations directly become constants and
cannot be solved. Therefore, the value of β should be larger
than 0 and G(λ̈0, λ̈1, . . . , λ̈m, λ̈c) should be equal to 0, i.e., β > 0
and T̈ = T̃g. Then, Eqs. (13) ∼ (18) can be rewritten as

∂P
∂λ̈0
−
∂P
∂λ̈c
+ β

T̈0 + λ̈0
∂T̈0

∂λ̈0
− T̈c

 = 0, (20)

∂P
∂λ̈i
−
∂P
∂λ̈c
+ β

T̈i + λ̈i
∂T̈i

∂λ̈i
− T̈c

 = 0, 1 ≤ i ≤ m, (21)

β > 0, (22)
G(λ̈0, λ̈1, . . . , λ̈m, λ̈c) = 0, (23)
λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m + λ̈c = λ̈. (24)

For the sake of simplicity, let L0(β, λ̈0) represent Eq. (20)
and Li(β, λ̈i) represent Eq. (21), i.e.,

L0(β, λ̈0) =
∂P
∂λ̈0
−
∂P
∂λ̈c
+ β

T̈0 + λ̈0
∂T̈0

∂λ̈0
− T̈c


= ξ0r̈0sα0−1

0 −
d̈0

cb
·

BbNb(2cb/Bb − 1)
qb

+ β

(
r̈0

s0
−

r̈0

sc

+
(s0 − λ̇0ṙ0)(λ̇0ṙ2

0 + 2λ̈0r̈2
0) − λ̈2

0r̈0r̈2
0

2(s0 − λ̇0ṙ0)(s0 − λ̇0ṙ0 − λ̈0r̈0)
2

−
d̈0

cb
−

d̈0

cWAN
− tprop

)
= 0,

(25)

8



and

Li(β, λ̈i) =
∂P
∂λ̈i
−
∂P
∂λ̈c
+ β

T̈i + λ̈i
∂T̈i

∂λ̈i
− T̈c


= d̈0

(BiNi(2ci/Bi − 1)
ciqi

−
BbNb(2cb/Bb − 1)

cbqb

)
+ β

(
r̈0

( 1
si
−

1
sc

)
+ d̈0

( 1
ci
−

1
cb
−

1
cWAN

)
+

1
2mi(1 − ρ̇i)(1 − ρi)

(
∂CV2

i

∂λ̈i
· λ̈ixi · pi,mi

+ (1 +CV2
i )

(
xi · pi,mi

(
1 +
∂ρi

∂λ̈i
·
λ̈i

(1 − ρi)

)
+
∂xi

∂λ̈i
· λ̈i pi,mi +

∂pi,mi

∂λ̈i
· λ̈ixi

))
− tprop

)
= 0,

(26)

for all 1 ≤ i ≤ m. (For clarity of presentation, we provide the
detailed derivation process of Eqs. (25) and (26) in Appendix
C.)

5.2. Algorithms

It is challenging to directly solve these sophisticated nonlin-
ear equations since there is no closed-form solution. Therefore,
we design a series of algorithms to find numerical solutions.

A Motivational Example. This example helps to under-
stand our algorithms. We consider a CA-MEC environment
with m = 3 ESs. The example parameters are given as fol-
lows: λ̇0 = 1.0, λ̈ = 7.0, ṙ0 = 0.4, ṙ2

0 = 0.3, r̈0 = 0.9,

r̈2
0 = 0.7, d̈0 = 1.2, d̈2

0 = 1.65, s0 = 1.2, ξ0 = 1.5, α0 = 3.0,
P∗0 = 2.0, λ̇i = 2.95 + 0.05(i − 1), λ̈ex,i = 4.45 + 0.05(i − 1),

ṙi = 0.75 + 0.05(i − 1), ṙ2
i = 1.1ṙi

2
, r̈i = 0.95 + 0.05(i − 1),

r̈2
i = 1.35r̈i

2
, mi = 4, si = 2.5 + 0.1(i − 1), ci = 9.5 + 0.5(i − 1),

Bi = 2.9 + 0.1(i − 1), Ni = −174 − 0.1(i − 1), for all 1 ≤ i ≤ m,
cb = 10.0, Bb = 2.6, Nb = −174.0, sc = 3.0, cWAN = 60.0,
and tprop = 0.5. In this paper, each channel gain (including
q1, q2, . . . , qm, and qb) is assumed to be uniformly distributed in
[-50, -30] dBm.

Theorem 1. For a given β, L0(β, λ̈0) has the following optimal
solution:

λ̈0 =
(
−b +

√
b2 − 4ac

)/
2a, (27)

where

a = 2r̈0
2

(y1 + βy2)
(
s0 − λ̇0ṙ0

)
− βr̈0r̈2

0,

b =
(
s0 − λ̇0ṙ0

) (
2βr̈2

0 − 4r̈0 (y1 + βy2)
(
s0 − λ̇0ṙ0

))
,

c =
(
s0 − λ̇0ṙ0

) (
βλ̇0ṙ2

0 + 2 (y1 + βy2)
(
s0 − λ̇0ṙ0

)2
)
,

y1 = ξ0r̈0s0
α0−1 −

d̈0

cb
·

BbNb

(
2cb/Bb − 1

)
qb

,

y2 = r̈0

(
1
s0
−

1
sc

)
−

d̈0

cb
−

d̈0

cWAN
− tprop.

Thus, if β is fixed, we can calculate λ̈0 based on Eq. (27). (The
proof of the above theorem is postponed to Appendix D.)

We also find that if the value of β is given, Li(β, λ̈i) (i.e., Eq.
(26)) could be regarded as an increasing function of λ̈i. Fig.
3 shows several examples of Li(β, λ̈i). Similarly, we propose
an algorithm, shown in Algorithm 1, to search λ̈i such that the
value of Li(β, λ̈i) is close to 0, for all 1 ≤ i ≤ m. Since ρi < 1,
we can obtain the search interval of λ̈i as [0, λ̈∗i ) (lines 1−2),
where

λ̈∗i =
mi − (λ̇iṙi + λ̈ex,ir̈i)/si

r̈0/si + d̈0/ci

.

For a given β, we can obtain λ̈i through Algorithm 1, such that
Li(β, λ̈i) = 0.

2.5 2.6 2.7 2.8
̈λi

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

L i
(β
,
̈ λ i)

1e7 β=50000.0
s1=2.5,̈ ̇λ1=2.95,̈ ̈λex, 1=4.45
s2=2.6,̈ ̇λ2=̇.0,̈ ̈λex, 2=4.5
ṡ=2.7,̈ ̇λ̇=̇.05,̈ ̈λex, ̇=4.55

2.60 2.65 2.70 2.75 2.80 2.85
̈λi

0

100000

200000

̇00000

400000

500000

L i
(β
,
̈ λ i)

β=500.0
s1=2.5,̈ ̇λ1=2.95,̈ ̈λex, 1=4.45
s2=2.6,̈ ̇λ2=̇.0,̈ ̈λex, 2=4.5
ṡ=2.7,̈ ̇λ̇=̇.05,̈ ̈λex, ̇=4.55

Fig. 3: Several examples of Li(β, λ̈i).

Algorithm 1 Search λ̈i

Require: r̈0, r̈2
0, d̈0, d̈2

0 , ṙi, ṙ2
i , r̈i, r̈2

i , λ̇i, λ̈ex,i, si, ci, mi, Bi, qi,
Ni, sc, cb, Bb, qb, Nb, cWAN, tprop, and β.

Ensure: λ̈i.
1: lb← 0; ub← λ̈∗i ;
2: while ub − lb > ϵ do
3: λ̈i ← (lb + ub)/2;
4: Calculate Li(β, λ̈i) by using Eq. (26);
5: if Li(β, λ̈i) > 0 then
6: ub← λ̈i;
7: else
8: lb← λ̈i;
9: end if

10: end while
11: λ̈i ← (lb + ub)/2;
12: return λ̈i.

Through the above discussion, if the value of β is given, we
can obtain the values of λ̈0, λ̈1, λ̈2, . . . , λ̈m through Eq. (27) and
Algorithm 1. Now, we can calculate the value of λ̈c according
to Eq. (24), shown in Algorithm 2. However, in some cases, for
a given β, we may be unable to find λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c that
make Eq. (24) hold. For example, if there are fewer generic
tasks on the MD and ESs have a light workload, or when it
is more costly for the MD to offload tasks to the DC, the MD
tends to perform tasks locally or offload tasks to ESs, which
may result in (λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m) > λ̈. We judge these
situations in Algorithm 2. First, we calculate λ̈0 (line 1) and
there is an iteration to obtain λ̈i, for all 1 ≤ i ≤ m (lines 2−4).

9



Algorithm 2 Obtain λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c

Require: ṙ0, ṙ2
0, r̈0, r̈2

0, d̈0, d̈2
0 , λ̇0, λ̈, s0, P∗0, ξ0, α0, sc, cb, Bb,

qb, Nb, cWAN, tprop, and ṙi, ṙ2
i , r̈i, r̈2

i , λ̇i, λ̈ex,i, si, ci, mi, Bi,
qi, Ni, for all 1 ≤ i ≤ m.

Ensure: λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c.
1: Calculate λ̈0 by using Eq. (27);
2: for i← 1 to m do
3: Call Algorithm 1 to obtain λ̈i;
4: end for
5: if (λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m) > λ̈ then
6: //The value of β is inappropriate;
7: λ̈c ← −1;
8: else
9: λ̈c ← λ̈ − (λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m);

10: end if
11: return λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c.

0 5 10 15 20 25 30
β

4

5

6

7

8

9

̈ λ 0
,m
̈β
)

̈λ=7.0

Fig. 4: Changing trend of λ̈0,m (β) with β.

Second, we judge whether Eq. (24) holds (lines 5−10). If that
condition is met, we calculate λ̈c according to Eq. (24) (lines
8−10); otherwise, we set λ̈c = −1 to help adjust the value of β
(lines 5−7).

Since the value of β determines the values of λ̈0, λ̈c, and λ̈i,
for all 1 ≤ i ≤ m, the value of β indirectly determines the value
of T̈ . Therefore, finding the value of β is the key to finding the
optimal computation offloading strategy. Let λ̈0,m (β) = λ̈0+λ̈1+

λ̈2 + · · · + λ̈m be the total arrival rate of generic tasks processed
in the MD and ESs. And we have λ̈0,m (β) ≤ λ̈ according to Eq.
(24). One important observation is that, in some cases, if the
value of β is relatively small, then we get λ̈0,m (β) > λ̈. In Fig.
4, we show the changing trend of λ̈0,m (β) with β. It is clear that
if the value of β is too small (e.g., close to 0), Eq. (24) may no
longer hold, which means β should not only be larger than 0 but
also have a guaranteed lower bound.

According to our further observation, we find that the ART
of generic tasks (i.e., T̈ ) could be viewed as a decreasing func-
tion of β, and the change trend of T̈ with β is shown in Fig.
5a. We also find that the APC of the MD (i.e., P) will increase
with the increase of β, as shown in Fig. 5b. Based on the above
observations, we propose an algorithm to search appropriate β
in certain search interval to meet the performance constraint
T̈ ≤ T̃g, as shown in Algorithm 3. As for the initial search in-
terval of β, the lower bound can be set to a very small value

2 4 6 8 10 12 14 16
β

0.9

1.0

1.1

1.2

1.3

1.4

T̈

̇λ0=1.1̈s0=1.2̈ ̇λ1=2.9̇̈ ̈λeẍ 1=4.4̇̈
̇λ2=3.0̈ ̈λeẍ 2=4.̇̈ ̇λ3=3.0̇̈ ̈λeẍ 3=4.̇̇
̇λ0=1.2̈s0=1.4̈ ̇λ1=3.0̇̈ ̈λeẍ 1=4.40̈
̇λ2=3.20̈ ̈λeẍ 2=4.40̈ ̇λ3=3.3̇̈ ̈λeẍ 3=4.40
̇λ0=2.0̈s0=1.4̈ ̇λ1=3.0̈ ̈λeẍ 1=4.3̇̈
̇λ2=3.1̈ ̈λeẍ 2=4.30̈ ̇λ3=3.20̈ ̈λeẍ 3=4.2̇

(a) The changing trend of T̈ with β.

2 4 6 8 10 12 14 16
β

85.0

87.5

90.0

92.5

95.0

97.5

100.0

102.5

P

̇λ0=1.1̇s0=1.2̇ ̇λ1=2.95̇ ̈λeẋ 1=4.45̇
̇λ2=̈.0̇ ̈λeẋ 2=4.5̇ ̇λ̈=̈.05̇ ̈λeẋ ̈=4.55
̇λ0=1.2̇s0=1.4̇ ̇λ1=̈.05̇ ̈λeẋ 1=4.4̇
̇λ2=̈.20̇ ̈λeẋ 2=4.4̇ ̇λ̈=̈.̈5̇ ̈λeẋ ̈=4.40
̇λ0=2.0̇s0=1.4̇ ̇λ1=̈.0̇ ̈λeẋ 1=4.̈5̇
̇λ2=̈.1̇ ̈λeẋ 2=4.̈0̇ ̇λ̈=̈.20̇ ̈λeẋ ̈=4.25

(b) The changing trend of P with β.

Fig. 5: The changing trends of T̈ and P with β.

(e.g., lb = 10−6), and the upper bound can be set to a very large
value (e.g., ub = 107) (lines 1−2). Then, we can obtain the
value of β that makes T̈ ≤ T̃g hold (lines 3−17). For a certain β,
if λ̈c = −1 (calculated by Algorithm 2), it means that the current
value of β is small, and we should change the search interval to
the right half to continue to search (lines 6−9) according to the
previous analysis.

Algorithm 4 describes the steps that get the final offloading
decision.

5.3. Time Complexity Analysis
In this section, we analyze the time complexity of the four

algorithms we proposed, as shown below.

1. The time complexity of obtaining λ̈i (Algorithm 1). In
Algorithm 1, the initial lower bound and upper bound of
λ̈i are set to lb = 0 and ub = λ̈∗i , for all 1 ≤ i ≤ m.
There is one While loop and the number of iterations of
the While loop is log((ub − lb)/ϵ). Therefore, the time
complexity of Algorithm 1 is O(log( ub−lb

ϵ
)).

2. The time complexity of obtaining λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c

(Algorithm 2). Algorithm 2 contains one For loop and
the number of iterations of the For loop is m. And due to
the calling of Algorithm 1 in the For loop, Algorithm 1
will be executed m times. Therefore, the time complexity
of Algorithm 2 is O(m log( ub−lb

ϵ
)).

3. The time complexity of searching β (Algorithm 3). In
Algorithm 3, the initial lower bound and upper bound of
β are set to lb = 10−6 and ub = 106. There is one While
loop in Algorithm 3 and the number of iterations of the
While loop is log((ub − lb)/ϵ). And due to the calling of
Algorithm 2 in the While loop, Algorithm 1 will be exe-
cuted log((ub − lb)/ϵ) times. Thus, the time complexity
of Algorithm 3 is O(m(log( ub−lb

ϵ
))2).

10



Algorithm 3 Search β

Require: ṙ0, ṙ2
0, r̈0, r̈2

0, d̈0, d̈2
0 , λ̇0, λ̈, s0, P∗0, ξ0, α0, T̃g, cb, Bb,

qb, Nb, sc, cWAN, tprop, and ṙi, ṙ2
i , r̈i, r̈2

i , λ̇i, λ̈ex,i, si, ci, mi,
Bi, qi, Ni, for all 1 ≤ i ≤ m.

Ensure: β.
1: lb← a small value;
2: ub← a large value;
3: while ub − lb > ϵ do
4: β← (lb + ub)/2;
5: Call Algorithm 2 to obtain λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c;
6: if λ̈c == −1 then
7: lb← β;
8: continue;
9: end if

10: Calculate T̈ by using Eq. (4);
11: if T̈ < T̃g then
12: ub← β;
13: else
14: lb← β;
15: end if
16: end while
17: β← (lb + ub)/2;
18: return β.

Algorithm 4 Minimize APC

Require: ṙ0, ṙ2
0, r̈0, r̈2

0, d̈0, d̈2
0 , λ̇0, λ̈, s0, P∗0, ξ0, α0, T̃g, cb, Bb,

qb, Nb, sc, cWAN, tprop, and ṙi, ṙ2
i , r̈i, r̈2

i , λ̇i, λ̈ex,i, si, ci, mi,Bi,
qi, Ni, for all 1 ≤ i ≤ m.

Ensure: (λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) and P.
1: Call Algorithm 3 to obtain β;
2: Call Algorithm 2 to obtain λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c;
3: Calculate P by using Eq. (1);
4: return (λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) and P.

4. The time complexity of minimizing the MD’s APC (Al-
gorithm 4). Due to the calling of Algorithms 2 and 3, the
time complexity of Algorithm 4 is O(m(log( ub−lb

ϵ
))2).

Note that the execution time of the proposed algorithm and
the accuracy of the results are related to the setting of the preset
accuracy parameter ϵ and Lagrange multiplier β. In this paper,
we set ϵ = 10−11 and the upper bound of β as 10−6. Each bi-
section search in our algorithms terminates when the difference
between the upper and lower bounds of the search domain is
less than ϵ, which implies that the smaller ϵ is, the more ac-
curate the search results will be, but the longer the search time
might be. As for the initial search domain of Lagrange multi-
plier β, the initial lower bound of β can be set to a small value
but not equal to 0 because β is required to be greater than 0, and
the initial upper bound of β is commonly assumed to be a very
large value [20].

5.4. Numerical Examples

In this section, we provide three numerical examples to il-
lustrate the effectiveness of the proposed methods. Note that
the experimental parameter settings in these examples are only
for illustrative purposes, and we perform these examples by im-
plementing the proposed algorithms with Python on a computer
with intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz 2.40GHz,
and 128 GB RAM.

For each numerical example, there is an MD, m = 3 ESs, a
BS, and a DC. Besides, several environment-related parameter
settings are the same for these examples, that is, λ̇0 = 1.0, ξ0 =
1.5, and α0 = 3.0 for the MD, Bi = 2.9 + 0.1(i − 1), and Ni =

−174−0.1(i−1) for ESs, where 1 ≤ i ≤ m, and Nb = −174.0 for
the BS. Note that the experimental parameter settings in these
examples are only for illustrative purposes.

Example 1. The MD is given by λ̈ = 12.0, ṙ0 = 0.5, ṙ2
0 =

0.8, r̈0 = 0.3, r̈2
0 = 0.7, d̈0 = 1.8, d̈2

0 = 3.0, s0 = 2.2, and P∗0 =
2.0. There is a BS with cb = 8.0, Bb = 2.6, qb = −48.700109,
and a DC with sc = 3.2, cWAN = 140.0, and tprop = 0.5. There
are m = 3 ESs, where ESi is given by ṙi = 0.75 + 0.05(i − 1),
ṙ2

i = 1.1ṙi
2
, r̈i = 0.95 + 0.05(i − 1), and r̈2

i = 1.35r̈i
2
, where 1 ≤

i ≤ m. For each ES, Table 1 shows ṙi (execution requirements
of dedicated tasks), r̈i(execution requirements of generic tasks),
mi (server size), si (execution speed), ci (data transmission rate),
and qi (channel gain), for all 1 ≤ i ≤ m. Table 1 also presents
other experimental data: λ̈∗i (the upper bound of generic tasks

accepted by each node), d̈0/ci (the average communication time
to offload one generic task to ESi), and Pt,i(d̈0/ci) (the average
energy consumption of the MD to offload one generic task to
ESi).

The performance constraint is T̃g = 0.80. From Table 1, we
get the optimal offloading decision λ = (λ̈0, λ̈1, λ̈2, λ̈3, λ̈4, λ̈c),
ρi (the server utilization of the MD and ESs), T̈i (the ART of
generic tasks on each node), Pcomm,i (the APC of the MD for
communication with ESs and the DC), as well as other out-
puts of our algorithms, including β (Lagrange multiplier), Pcomp

(MD’s APC for computation), P (MD’s APC for both compu-
tation and communication), and T̈ (the ART of generic tasks
from the MD).

Example 2. The MD is given by λ̈ = 25.0, ṙ0 = 0.4, ṙ2
0 =

0.64, r̈0 = 0.5, r̈2
0 = 0.71, d̈0 = 2.0, d̈2

0 = 5.691, s0 = 2.3,
and P∗0 = 1.5. There is a BS with cb = 9.5, Bb = 2.7, qb =

−33.593768, and a DC with sc = 3.0, cWAN = 115.0, and tprop =

0.45. There are m = 3 ESs, where ESi is given by ṙi = 0.75 +
0.05(i−1), ṙ2

i = 1.1ṙi
2
, r̈i = 0.95+0.05(i−1), r̈2

i = 1.3r̈i
2
, where

Table 2 shows mi, si, ci, and qi for each ES, for all 1 ≤ i ≤ m.
We set the performance constraint as T̃g = 0.80. Similarly,

in Table 2, we present the optimal offloading strategy of the MD
λ = (λ̈0, λ̈1, λ̈2, λ̈3, λ̈c) and other outputs of our algorithms.

Example 3. In this example, the parameter settings are the
same as in Example 2, except that we set the performance con-
straint as T̃g = 1.0. Again, Table 3 shows the optimal offloading
strategy of the MD λ = (λ̈0, λ̈1, λ̈2, λ̈3, λ̈c) and other outputs of
our algorithms.

11



Table 1: Experimental Results of Example 1.

i 0 1 2 3 c(DC)

ṙi 0.500000 0.750000 0.800000 0.850000 -
r̈i 0.300000 0.950000 1.000000 1.050000 -
λ̇i 1.000000 3.150000 3.200000 3.250000 -
λ̈ex,i - 3.950000 4.000000 4.050000 -
λ̈∗i 5.665666 1.902954 1.765531 1.609465 (∞)
mi - 3 3 3 -
si 2.200000 2.600000 2.700000 2.800000 3.200000
ci - 8.000000 8.500000 9.000000 -
qi - -38.336495 -44.188590 -33.563147 -
d̈0/ci - 0.225000 0.211764 0.200000 -
Pt,i(d̈0/ci) - 17.080640 15.336448 20.855342 -

λ̈i 1.736180 0.250665 0.190639 0.000000 9.822513
ρi 0.464024 0.812415 0.830394 0.835119 -
T̈i 0.639052 0.707236 0.759218 0.772803 0.831607
Pcomm,i - 9.464766 4.281533 0.000000 152.707904

β = 40.190286, Pcomp = 9.411401, P = 169.324573, T̈ = 0.800000

Table 2: Experimental Results of Example 2.

i 0 1 2 3 c(DC)

ṙi 0.400000 0.750000 0.800000 0.850000 -
r̈i 0.500000 0.950000 1.000000 1.050000 -
λ̇i 1.000000 3.350000 3.400000 3.450000 -
λ̈ex,i - 4.150000 4.200000 4.250000 -
λ̈∗i 3.799000 1.538655 4.036735 6.750357 (∞)
si 2.300000 2.700000 2.800000 2.900000 3.000000
mi - 3 4 5 -
ci - 9.500000 10.000000 10.500000 -
qi - -48.446658 -39.863527 -31.350468 -
d̈0/ci - 0.210526 0.200000 0.190476 -
Pt,i(d̈0/ci) - 19.045683 23.791944 31.045080 -

λ̈i 2.297890 0.643247 2.356808 3.767892 15.934161
ρi 0.673454 0.881760 0.840912 0.783466 -
T̈i 1.013290 1.066177 0.693223 0.502725 0.844584
Pcomm,i - 12.251086 56.073051 116.974513 490.700050

β = 13.702376, Pcomp = 13.790881, P = 689.789583, T̈ = 0.800000

Table 3: Experimental Results of Example 3.

i 0 1 2 3 c(DC)

λ̈i 3.012191 1.040053 3.022679 3.572331 14.352743
ρi 0.828737 0.934100 0.903932 0.769272 -
T̈i 2.073743 1.774520 1.007665 0.487060 0.8445842
Pcomm,i - 19.808520 71.915427 110.903332 441.999547

β = 2.749974, Pcomp = 16.624869, P = 661.251698, T̈ = 1.000000

From the experimental results in Examples 1 ∼ 3, we obtain
the following observations:

• In Table 1, the MD does not offload generic tasks to ES3,
since the communication cost with ES3 is more than that
of communication with ES1 and ES2, and ES1 and ES2
can already meet its computing offloading requirements.
These means that the MD prefers to offload tasks to the

ESs with higher benefits.

• In Table 2, the generic tasks offloaded from the MD to
ES1, ES2, and ES3 are quite different, although their work-
loads are not heavy. This is because the MD prefers to
select the ESs with better computation capacity and re-
sources to offload computation tasks.

• In Table 3, the MD processes generic tasks locally and
offloads generic tasks to ESs as much as possible to save
energy consumption when the performance constraint T̃g

is up to 1.0 second (by comparison, in Table 2, the MD
tends to offload more tasks to the DC to save time). This
is because the MD prefers to execute tasks locally or of-
fload tasks to ESs rather than taking more power to of-
fload tasks to the DC, when performance requirements
are not high, which can save its energy consumption.

6. Performance Comparison

In this section, we construct a comparative experiment to
further illustrate the effectiveness of our proposed algorithms
and the optimality of our solutions. Specifically, we compare
our solution with a greedy-based offloading method, PSO, and
DDPG algorithms.

Lowest-weighted-sum-first (LWSF). Here, the target MD will
preferentially offload tasks to nodes with the lower weighted
sum of latency and power consumption, i.e., g = wp · P + (1 −

wp) · T̈ , where wp is the weighting factor and is set to wp = 0.4.
In terms of minimizing power consumption under performance
constraints, setting too large a value for wp may lead to unsat-
isfied performance constraints.

Particle swarm optimization. PSO is a heuristic algorithm
that solves optimization problems by searching for candidate
solutions iteratively. In this comparison, we consider a swarm
with N = 20 particles moving in an n + 2 dimensional search
space, which is determined by the action bounds of λ̈0, . . . , λ̈n, λ̈c.
Here, the number of iterations is set to k = 50, the inertia weight
is set to ω = 0.7, the cognitive coefficient is set to cp = 2.0, and
the social coefficient is set to cg = 2.0.

Deep deterministic policy gradient. DDPG is a classical
DRL algorithm for learning deterministic policies from contin-
uous action spaces [51]. In this comparison, we set the discount
factor as γ = 0.3, the soft-update coefficient as τ = 0.005, the
learning rate of the actor network as 0.00005, the learning rate
of the critic network as 0.0005, the number of training episodes
as 5000, and the sizes of the replay buffer and batch as 105 and
64, respectively.

For simplicity, we use the parameter settings of Example 2
in Section 5.4 and present the corresponding experimental re-
sults in Table 4, where Table 4a shows the MD’s offloading
decisions and server utilization of computing nodes under four
different methods (i.e., our solution, LWSF, PSO, and DDPG),
and Table 4b shows the ART of the MD’s offloadable tasks
and the MD’s APC under different methods. From Table 4b,
only LWSF cannot meet the constraint. More specifically, the

12



Table 4: Experimental Results of Performance Comparison.

(a) Offloading Decisions

i Our Solution LWSF PSO DDPG

λ̈i ρi λ̈i ρi λ̈i ρi λ̈i ρi

0 2.297890 0.673454 2.175882 0.646930 2.389889 0.693454 0.000561 0.174035
1 0.643247 0.881760 0.846267 0.908539 0.129127 0.813946 0.366864 0.845304
2 2.356808 0.840912 2.315726 0.837024 2.440887 0.848869 0.699830 0.684091
3 3.767892 0.783466 3.911974 0.793923 3.969749 0.798116 3.712331 0.779433

c(DC) 15.93416 - 15.750147 - 16.070345 - 20.220411 -

(b) Results of ART and APC

Our Solution LWSF PSO DDPG

T̈ 0.800000 0.801420 0.799865 0.782766
P 689.789583 691.001050 693.974957 766.260539

offloading strategy under LWSF not only violates the perfor-
mance constraint but also incurs high power consumption. In
addition, although PSO, DDPG, and our solution can be ef-
fectively implemented, our solution can make a more energy-
efficient offloading decision.

Given the above, the experimental results in Tables 1∼4 re-
veal that our algorithms are effective and can obtain the optimal
offloading decision of the target MD in various situations.

7. Conclusions and Future Work

In this paper, we have discussed the importance of task pri-
oritization. We have reviewed the existing related research and
highlighted the focus of our research. We have designed an
energy-efficient computation offloading strategy with different
task priorities in a CA-MEC environment. Based on KKT con-
ditions, we have developed a series of effective algorithms to
obtain the optimal offloading decision for the target MD, such
that the MD can prolong its own battery life without degrad-
ing the service quality. Several numerical examples and the
comparative experiment have been provided to demonstrate the
effectiveness of our methods. Our work can provide a refer-
ence for energy-efficient computing offloading strategies in CA-
MEC that consider multiple task priorities. Furthermore, the
optimization algorithms implemented in our work can serve as
benchmarks for other approaches, such as machine learning, for
comparative analysis.

However, there are still some issues and improvements to be
addressed in our future work. In this paper, we do not consider
the possible competition among the offloading tasks of MDs
nor the situation in that the computation resources of DC may
also be limited. Considering more sophisticated models and
scenarios would be exciting and challenging.

8. Acknowledgements

The authors would like to express their gratitude to the anony-
mous reviewers for their constructive comments on improving

this manuscript. This work was supported in part by the Ap-
plied Basic Research Foundation of Yunnan Province under
Grant Nos. 202301AT070194, 202201AT070156, and 20210-
1AT070182, in part by the National Natural Science Foundation
of China under Grant Nos. 62172151 and 62162067, in part by
the Major Science and Technology Projects in Yunnan Province
under Grant Nos. 202202AD080002 and 202202AE09002105.

Appendix A. Mathematical Notations

The mathematical notations used in this paper are summa-
rized in Table A.1, where the symbols are listed in the order
introduced in the paper.

Appendix B. Computation Offloading Process

In the CA-MEC offloading scenario considered in this work,
we assume a central node/controller (e.g., a gateway) is respon-
sible for managing information exchange among MDs and ESs
[33]. This includes solving the optimization problem of offload-
ing strategy based on requirements and the current environment
using the proposed algorithms. Specifically, the calculation of
the offloading scheme and the collection of global information
are not performed by the MD but are executed by the central
node. The process unfolds as follows:

• First, all MDs and ESs communicate their task charac-
teristics and computational resource information to the
central node.

• Second, the central node solves the energy-efficient of-
floading optimization problem using the proposed algo-
rithms.

• Third, the central node informs the target MD of the of-
floading decision.

13



Table A.1: Mathematical notations in this paper.

Symbol Definition

m the number of edge servers (ESs)
ESi the ith ES, for all 1 ≤ i ≤ m
λ̇0, λ̈ the arrival rate (measured by tasks/second) of dedicated and generic tasks generated on the MD, λ = λ̇0 + λ̈
λ̈0 the arrival rate of generic tasks performed locally in the MD
λ̈i, λ̈c the arrival rate of generic tasks offloaded from the MD to ESi and the DC
s0 the execution speed (measured by BIPS) of the MD
ṙ0 the execution requirements (measured by BI) of dedicated tasks generated on the MD
ṙ0, ṙ2

0 the mean and second moment of ṙ0
r̈0 the execution requirements of generic tasks generated on the MD
r̈0, r̈2

0 the mean and second moment of r̈0

d̈0 the sizes of computation input data involved in generic tasks (measured by Mb)
d̈0, d̈2

0 the mean and second moment of d̈0
λ̇i, λ̈ex,i the arrival rate of dedicated tasks and generic tasks that are already on ESi, λi = λ̇i + λ̈ex,i + λ̈i

mi, si the server size and execution speed of ESi

ci the wireless data transmission rate (measured by Mbps) between the MD and ESi

ṙi the execution requirements of dedicated tasks preloaded on ESi

ṙi, ṙ2
i the mean and second moment of ṙi

r̈i the execution requirements of generic tasks offloaded from other MDs to ESi

r̈i, r̈2
i mean and second moment of r̈i

sc the execution speed of the DC
cb the average wireless data transmission rate between the MD and the BS
cWAN the average wired data transmission rate between the BS and the DC
ξ0, α0, P∗0 parameters to calculate computation power consumption of the MD
ρ0 the utilization of the MD
Pcomp the average power consumption (APC, measured by Watts) of the MD for computation
qi, Bi, Pt,i,Ni parameters to calculate the APC of the MD for communication with ESi

Pcomm,i the APC of the MD for communication with ESi

qb, Bb, Pt,b,Nb parameters to calculate the APC of the MD for communication with the DC
Pcomm,c the APC of the MD for communication with the DC
P the APC of the MD
T̈0 the average response time (ART, measured by seconds) of generic tasks performed locally in the MD
T̈i the ART of generic tasks offloaded from the MD to ESi

ρi the server utilization of ESi

T̈c the ART of generic tasks offloaded from the MD to the DC
T̈ the ART of generic tasks that are generated on the MD
T̃g performance constraint
β, γ, ϵ two Lagrange multipliers and a preset accuracy parameter

14



• Fourth, depending on the decision, the target MD offloads
a certain percentage of tasks to ESs or the DC.

The target MD’s role is to triage the Poisson task stream
based on the offload decision provided by the central node and
then offload tasks to the appropriate compute nodes. No addi-
tional computational processes are involved, making this oper-
ation efficient and fast.

Additionally, it is crucial to clarify that our approach and al-
gorithms are based on the distribution of task arrival times. We
assume that the computational demand remains constant within
specific time intervals, implying that the distribution of arriving
tasks is fixed during such periods. An offloading decision is not
required for every individual task arrival; instead, it is computed
when significant environmental changes occur.

It should be noted that the problem defined in this paper
is based on queueing models and parameters involving the of-
floading environment, and the proposed method (i.e., a series
of numerical algorithms) essentially solves a non-linear system
of equations constructed based on Lagrangian functions. These
calculations are computationally less expensive and should be
performed accordingly when the offloading environment changes.
Moreover, the proposed solution relies on mathematical mod-
els, with the accuracy of our solution depending only on the
precision of real-world parameters.

Appendix C. Detailed Derivation Process

In this appendix, we describe the detailed derivation process
of Eqs. (25) and (26) in Section 5.1.

First, according to Eq. (25), we have

L0(β, λ̈0) =
∂P
∂λ̈0
−
∂P
∂λ̈c
+ β

T̈0 + λ̈0
∂T̈0

∂λ̈0
− T̈c

 = 0.

Since
∂P
∂λ̈0
= ξ0r̈0s0

α0−1,

∂P
∂λ̈c
=

d̈0

cb
·

BbNb(2cb/Bb − 1)
qb

,

and
∂T̈0

∂λ̈0
=

r̈2
0

2(s0 − λ̇0ṙ0)(s0 − λ̇0ṙ0 − λ̈0r̈0)

+
r̈0(λ̇0ṙ2

0 + λ̈0r̈2
0)

2(s0 − λ̇0ṙ0)(s0 − λ̇0ṙ0 − λ̈0r̈0)
2

=
r̈2

0 s0 + λ̇0ṙ2
0 r̈0 − λ̇0ṙ0r̈2

0

2(s0 − λ̇0ṙ0)(s0 − λ̇0ṙ0 − λ̈0r̈0)
2 ,

then we have

L0(β, λ̈0) = ξ0r̈0s0
α0−1 −

d̈0

cb
·

BbNb(2cb/Bb − 1)
qb

+ β

(
r̈0

s0

+
λ̇0ṙ2

0 + λ̈0r̈2
0

2(s0 − λ̇0ṙ0)(s0 − λ̇0ṙ0 − λ̈0r̈0)
+ λ̈0

×

(
r̈2

0 s0 + λ̇0ṙ2
0 r̈0 − λ̇0ṙ0r̈2

0

2(s0 − λ̇0ṙ0)(s0 − λ̇0ṙ0 − λ̈0r̈0)
2

)

−

(
r̈0

sc
+

d̈0

cb
+

d̈0

cWAN
+ tprop

))
= ξ0r̈0s0

α0−1 −
d̈0

cb
·

BbNb(2cb/Bb − 1)
qb

+ β

(
r̈0

s0

+
λ̇0ṙ2

0 s0 + 2λ̈0r̈2
0 s0 − λ̇

2
0ṙ0ṙ2

0 − λ̈
2
0r̈0r̈2

0 − 2λ̇0λ̈0ṙ0r̈2
0

2(s0 − λ̇0ṙ0)(s0 − λ̇0ṙ0 − λ̈0r̈0)
2

−
r̈0

sc
−

d̈0

cb
−

d̈0

cWAN
− tprop

)
= ξ0r̈0s0

α0−1 −
d̈0

cb
·

BbNb(2cb/Bb − 1)
qb

+ β
(
r̈0

( 1
s0
−

1
sc

)
+
λ̇0ṙ2

0 s0 + 2λ̈0r̈2
0 s0 − λ̇

2
0ṙ0ṙ2

0 − λ̈
2
0r̈0r̈2

0 − 2λ̇0λ̈0ṙ0r̈2
0

2(s0 − λ̇0ṙ0)(s0 − λ̇0ṙ0 − λ̈0r̈0)
2

−
d̈0

cb
−

d̈0

cWAN
− tprop

)
= ξ0r̈0s0

α0−1 −
d̈0

cb
·

BbNb(2cb/Bb − 1)
qb

+ β
(
r̈0

( 1
s0
−

1
sc

)
+

(s0 − λ̇0ṙ0)(λ̇0ṙ2
0 + 2λ̈0r̈2

0) − λ̈2
0r̈0r̈2

0

2(s0 − λ̇0ṙ0)(s0 − λ̇0ṙ0 − λ̈0r̈0)
2

−
d̈0

cb
−

d̈0

cWAN
− tprop

)
= 0.

Second, according to Eq. (26), we have

Li(β, λ̈i) =
∂P
∂λ̈i
−
∂P
∂λ̈c
+ β

(
T̈i + λ̈i

∂T̈i

∂λ̈i
− T̈c

)
= 0,

for all 1 ≤ i ≤ m. It is clear that

∂P
∂λ̈i
=

d̈0

ci
·

BiNi(2ci/Bi − 1)
qi

,

and

∂T̈i

∂λ̈i
=

1
2mi(1 − ρ̇i)(1 − ρi)

(
∂CV2

i

∂λ̈i
· xi · pi,mi

+
∂xi

∂λ̈i
· pi,mi (1 +CV2

i ) +
∂pi,mi

∂λ̈i
· xi(1 +CV2

i )

+
∂ρi

∂λ̈i
·

xi · pi,mi (1 +CV2
i )

(1 − ρi)

)
=

1
2mi(1 − ρ̇i)(1 − ρi)

(
∂CV2

i

∂λ̈i
· xi · pi,mi

+ (1 +CV2
i )

(
∂xi

∂λ̈i
· pi,mi +

∂pi,mi

∂λ̈i
· xi

+
∂ρi

∂λ̈i
·

xi · pi,mi

(1 − ρi)

))
,

15



where

∂CV2
i

∂λ̈i
=
∂x2

i

∂λ̈i
·

1

xi
2 −
∂xi

∂λ̈i
·

2x2
i

xi
3 ,

∂xi

∂λ̈i
= −

λ̇i

λ2
i

·
ṙi

si
+
λ̇i + λ̈ex,i

λi
2

 r̈0

si
+

d̈0

ci

 − λ̈ex,i

λ2
i

·
r̈i

si

=
1
λ2

i

(λ̇i + λ̈ex,i)

 r̈0

si
+

d̈0

ci

 − λ̇iṙi + λ̈ex,ir̈i

si

 ,
∂x2

i

∂λ̈i
= −

λ̇i

λ2
i

·
ṙ2

i

si
2 −
λ̈ex,i

λ2
i

·
r̈2

i

si
2 +
λ̇i + λ̈ex,i

λi
2

 r̈2
0

si
2 +

d̈2
0

ci
2 + 2

r̈0d̈0

sici


=

1
λ2

i

(
(λ̇i + λ̈ex,i)

 r̈2
0

si
2 +

d̈2
0

ci
2 + 2

r̈0d̈0

sici

 − λ̇iṙ2
i + λ̈ex,ir̈2

i

si
2

)
,

∂pi,mi

∂λ̈i
=
∂ρi

∂λ̈i
·

mi
mi

mi!
· pi,0 ·

miρi
mi−1(1 − ρi) + ρi

mi

(1 − ρi)2

+
∂pi,0

∂ρi
·
∂ρi

∂λ̈i
·

mi
mi

mi!
·
ρi

mi

1 − ρi

=
∂ρi

∂λ̈i
·

mi
mi

mi!
· pi,0 ·

miρi
mi−1 − miρi

mi + ρi
mi

(1 − ρi)2

+
∂pi,0

∂ρi
·
∂ρi

∂λ̈i
·

mi
mi

mi!
·
ρi

mi

1 − ρi

=
∂ρi

∂λ̈i
·

mi
mi

mi!
· pi,0 ·

ρi
mi−1(mi − (mi − 1)ρi)

(1 − ρi)2

+
∂pi,0

∂ρi
·
∂ρi

∂λ̈i
·

mi
mi

mi!
·
ρi

mi

1 − ρi

=
∂ρi

∂λ̈i
·

mi
mi

mi!
·
ρi

mi−1

1 − ρi

(
pi,0 ·

mi − (mi − 1)ρi

1 − ρi

+
∂pi,0

∂ρi
· ρi

)
,

∂pi,0

∂ρi
= − p2

i,0

(mi−1∑
k=1

mk
i ρi

k−1

(k − 1)!
+

mi
mi

mi!
·

miρi
mi−1(1 − ρi) + ρi

mi

(1 − ρi)2

)

= − p2
i,0

(mi−1∑
k=1

mk
i ρi

k−1

(k − 1)!
+

mi
mi

mi!
·

miρi
mi−1 − miρi

mi + ρi
mi

(1 − ρi)2

)

= − p2
i,0

(mi−1∑
k=1

mk
i ρi

k−1

(k − 1)!
+

mi
mi

mi!
·
ρi

mi−1(mi − (mi − 1)ρi)
(1 − ρi)2

)
,

and
∂ρi

∂λ̈i
=

1
mi

 r̈0

si
+

d̈0

ci

 .
Then, we have

Li(β, λ̈i) =
d̈0

ci
·

BiNi(2ci/Bi − 1)
qi

−
d̈0

cb
·

BbNb(2cb/Bb − 1)
qb

+ β

(
r̈0

si
+

d̈0

ci
+

xi · pi,mi (1 +CVi
2)

2mi(1 − ρ̇i)(1 − ρi)

+
λ̈i

2mi(1 − ρ̇i)(1 − ρi)

(∂CV2
i

∂λ̈i
· xi · pi,mi

+ (1 +CV2
i )

(
∂xi

∂λ̈i
· pi,mi +

∂pi,mi

∂λ̈i
· xi

+
∂ρi

∂λ̈i
·

xi · pi,mi

(1 − ρi)

))
−

( r̈0

sc
+

d̈0

cb

+
d̈0

cWAN
+ tprop

))
= d̈0

(BiNi(2ci/Bi − 1)
ciqi

−
BbNb(2cb/Bb − 1)

cbqb

)
+ β

(
r̈0

( 1
si
−

1
sc

)
+ d̈0

( 1
ci
−

1
cb
−

1
cWAN

)
+

1
2mi(1 − ρ̇i)(1 − ρi)

(
xi · pi,mi (1 +CV2

i )

+
∂CV2

i

∂λ̈i
· λ̈ixi · pi,mi + λ̈i(1 +CV2

i )
(
∂xi

∂λ̈i

× pi,mi +
∂pi,mi

∂λ̈i
· xi +

∂ρi

∂λ̈i
·

xi · pi,mi

(1 − ρi)

))
− tprop

)
= d̈0

(BiNi(2ci/Bi − 1)
ciqi

−
BbNb(2cb/Bb − 1)

cbqb

)
+ β

(
r̈0

( 1
si
−

1
sc

)
+ d̈0

( 1
ci
−

1
cb
−

1
cWAN

)
+

1
2mi(1 − ρ̇i)(1 − ρi)

(
xi · pi,mi (1 +CV2

i )

+
∂CV2

i

∂λ̈i
· λ̈ixi · pi,mi + (1 +CV2

i )
(
∂xi

∂λ̈i

× λ̈i pi,mi +
∂pi,mi

∂λ̈i
· λ̈ixi +

∂ρi

∂λ̈i
·
λ̈ixi · pi,mi

(1 − ρi)

))
− tprop

)
= d̈0

(BiNi(2ci/Bi − 1)
ciqi

−
BbNb(2cb/Bb − 1)

cbqb

)
+ β

(
r̈0

( 1
si
−

1
sc

)
+ d̈0

( 1
ci
−

1
cb
−

1
cWAN

)
+

1
2mi(1 − ρ̇i)(1 − ρi)

(
∂CV2

i

∂λ̈i
· λ̈ixi · pi,mi

+ (1 +CV2
i )

(
xi · pi,mi +

∂xi

∂λ̈i
· λ̈i pi,mi

∂pi,mi

∂λ̈i
· λ̈ixi +

∂ρi

∂λ̈i
·
λ̈ixi · pi,mi

(1 − ρi)

))
− tprop

)
= d̈0

(BiNi(2ci/Bi − 1)
ciqi

−
BbNb(2cb/Bb − 1)

cbqb

)
+ β

(
r̈0

( 1
si
−

1
sc

)
+ d̈0

( 1
ci
−

1
cb
−

1
cWAN

)
+

1
2mi(1 − ρ̇i)(1 − ρi)

16



×

(
∂CV2

i

∂λ̈i
· λ̈ixi · pi,mi + (1 +CV2

i )

×

(
xi · pi,mi

(
1 +
∂ρi

∂λ̈i
·
λ̈i

(1 − ρi)

)
+
∂xi

∂λ̈i
· λ̈i

× pi,mi +
∂pi,mi

∂λ̈i
· λ̈ixi

))
− tprop

)
= 0.

This completes the derivation.

Appendix D. Proof of The Theorem

In this appendix, we prove Theorem 1 (the optimal solution
of L0(β, λ̈0)) in Section 5.2.

Proof of Theorem 1. Based on Eq. (25), we can get

L0(β, λ̈0) = y1 + βy2

+ β
λ̇0ṙ2

0 s0 + 2λ̈0r̈2
0 s0 − λ̇

2
0ṙ0ṙ2

0 − λ̈
2
0r̈0r̈2

0 − 2λ̇0λ̈0ṙ0r̈2
0

2
(
s0 − λ̇0ṙ0

) (
s0 − λ̇0ṙ0 − λ̈0r̈0

)2

= 0,

where 
y1 = ξ0r̈0s0

α0−1 −
d̈0

cb
·

BbNb

(
2cb/Bb − 1

)
qb

,

y2 = r̈0

(
1
s0
−

1
sc

)
−

d̈0

cb
−

d̈0

cWAN
− tprop.

Then, we have

0 = 2 (y1 + βy2)
(
s0 − λ̇0ṙ0

) (
s0 − λ̇0ṙ0 − λ̈0r̈0

)2

+ β
(
λ̇0ṙ2

0 s0 + 2λ̈0r̈2
0 s0 − λ̇

2
0ṙ0ṙ2

0 − λ̈
2
0r̈0r̈2

0 − 2λ̇0λ̈0ṙ0r̈2
0

)
= 2 (y1 + βy2)

(
s0 − λ̇0ṙ0

)3
− 4r̈0 (y1 + βy2)

(
s0 − λ̇0ṙ0

)2
λ̈0

+ 2r̈0
2

(y1 + βy2)
(
s0 − λ̇0ṙ0

)
λ̈2

0 + β
(
λ̇0ṙ2

0 s0 − λ̇
2
0ṙ0ṙ2

0

)
+ β

(
2r̈2

0 s0 − 2λ̇0ṙ0r̈2
0

)
λ̈0 − βr̈0r̈2

0λ̈
2
0

= 2r̈0
2

(y1 + βy2)
(
s0 − λ̇0ṙ0

)
λ̈2

0 − βr̈0r̈2
0λ̈

2
0 + βλ̈0

×

(
2r̈2

0 s0 − 2λ̇0ṙ0r̈2
0

)
− 4r̈0 (y1 + βy2)

(
s0 − λ̇0ṙ0

)2
λ̈0

+ β
(
λ̇0ṙ2

0 s0 − λ̇
2
0ṙ0ṙ2

0

)
+ 2 (y1 + βy2)

(
s0 − λ̇0ṙ0

)3

=

(
2r̈0

2
(y1 + βy2)

(
s0 − λ̇0ṙ0

)
− βr̈0r̈2

0

)
λ̈2

0

+
(
s0 − λ̇0ṙ0

) (
2βr̈2

0 − 4r̈0 (y1 + βy2)
(
s0 − λ̇0ṙ0

))
λ̈0

+
(
s0 − λ̇0ṙ0

)
×

(
βλ̇0ṙ2

0 + 2 (y1 + βy2)
(
s0 − λ̇0ṙ0

)2
)

= 0.

Then, we have
aλ̈2

0 + bλ̈0 + c = 0, (D.1)

where
a = 2r̈0

2
(y1 + βy2)

(
s0 − λ̇0ṙ0

)
− βr̈0r̈2

0,

b =
(
s0 − λ̇0ṙ0

) (
2βr̈2

0 − 4r̈0 (y1 + βy2)
(
s0 − λ̇0ṙ0

))
,

c =
(
s0 − λ̇0ṙ0

) (
βλ̇0ṙ2

0 + 2 (y1 + βy2)
(
s0 − λ̇0ṙ0

)2
)
.

Solving Eq. (D.1), we can obtain

λ̈0 =
(
−b +

√
b2 − 4ac

)/
2a. (D.2)

This completes the proof.

References

[1] L. Lin, X. Liao, H. Jin, P. Li, Computation offloading toward edge
computing, Proceedings of the IEEE 107 (8) (2019) 1584–1607.
doi:10.1109/JPROC.2019.2922285.

[2] P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture and
computation offloading, IEEE Communications Surveys Tutorials 19 (3)
(2017) 1628–1656. doi:10.1109/COMST.2017.2682318.

[3] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J. Hwang,
Z. Ding, A survey of multi-access edge computing in 5g and beyond:
Fundamentals, technology integration, and state-of-the-art, IEEE Access
8 (2020) 116974–117017. doi:10.1109/ACCESS.2020.3001277.

[4] W. Shi, G. Pallis, Z. Xu, Edge computing [scanning the is-
sue], Proceedings of the IEEE 107 (8) (2019) 1474–1481.
doi:10.1109/JPROC.2019.2928287.

[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, V. Young, Mobile edge com-
puting—a key technology towards 5g, ETSI white paper 11 (11) (2015)
1–16.

[6] S. Wang, J. Xu, N. Zhang, Y. Liu, A survey on service migra-
tion in mobile edge computing, IEEE Access 6 (2018) 23511–23528.
doi:10.1109/ACCESS.2018.2828102.

[7] M. Huang, W. Liu, T. Wang, A. Liu, S. Zhang, A cloud-
mec collaborative task offloading scheme with service orchestra-
tion, IEEE Internet of Things Journal 7 (7) (2020) 5792–5805.
doi:10.1109/JIOT.2019.2952767.

[8] G. Peng, H. Wu, H. Wu, K. Wolter, Constrained multiobjective opti-
mization for iot-enabled computation offloading in collaborative edge and
cloud computing, IEEE Internet of Things Journal 8 (17) (2021) 13723–
13736. doi:10.1109/JIOT.2021.3067732.

[9] I. Sorkhoh, C. Assi, D. Ebrahimi, S. Sharafeddine, Optimizing in-
formation freshness for mec-enabled cooperative autonomous driving,
IEEE Transactions on Intelligent Transportation Systems (2021) 1–
14doi:10.1109/TITS.2021.3119961.

[10] S. Boyd, S. P. Boyd, L. Vandenberghe, Convex optimization, Cambridge
university press, 2004.

[11] F. Marini, B. Walczak, Particle swarm optimization (pso). a tutorial,
Chemometrics and Intelligent Laboratory Systems 149 (2015) 153–165.
doi:https://doi.org/10.1016/j.chemolab.2015.08.020.
URL https://www.sciencedirect.com/science/article/pii/

S0169743915002117

[12] S. Gu, T. Lillicrap, I. Sutskever, S. Levine, Continuous deep q-learning
with model-based acceleration, in: M. F. Balcan, K. Q. Weinberger (Eds.),
Proceedings of The 33rd International Conference on Machine Learning,
Vol. 48 of Proceedings of Machine Learning Research, PMLR, New York,
New York, USA, 2016, pp. 2829–2838.
URL https://proceedings.mlr.press/v48/gu16.html

[13] Q. Luo, S. Hu, C. Li, G. Li, W. Shi, Resource scheduling in edge com-
puting: A survey, IEEE Communications Surveys Tutorials 23 (4) (2021)
2131–2165. doi:10.1109/COMST.2021.3106401.

[14] J. Yun, Y. Goh, W. Yoo, J.-M. Chung, 5g multi-rat urllc and embb
dynamic task offloading with mec resource allocation using distributed
deep reinforcement learning, IEEE Internet of Things Journal (2022) 1–
1doi:10.1109/JIOT.2022.3177425.

17



[15] K. Li, How to stabilize a competitive mobile edge computing environ-
ment: A game theoretic approach, IEEE Access 7 (2019) 69960–69985.
doi:10.1109/ACCESS.2019.2919106.

[16] B. Yang, X. Cao, J. Bassey, X. Li, L. Qian, Computation offload-
ing in multi-access edge computing: A multi-task learning approach,
IEEE Transactions on Mobile Computing 20 (9) (2021) 2745–2762.
doi:10.1109/TMC.2020.2990630.

[17] F. Fang, Y. Xu, Z. Ding, C. Shen, M. Peng, G. K. Karagiannidis,
Optimal resource allocation for delay minimization in noma-mec net-
works, IEEE Transactions on Communications 68 (12) (2020) 7867–
7881. doi:10.1109/TCOMM.2020.3020068.

[18] H. Wu, K. Wolter, Stochastic analysis of delayed mobile offloading in
heterogeneous networks, IEEE Transactions on Mobile Computing 17 (2)
(2018) 461–474. doi:10.1109/TMC.2017.2711014.

[19] H. Wu, J. Chen, T. N. Nguyen, H. Tang, Lyapunov-guided
delay-aware energy efficient offloading in iiot-mec systems, IEEE
Transactions on Industrial Informatics 19 (2) (2023) 2117–2128.
doi:10.1109/TII.2022.3206787.

[20] K. Li, Computation offloading strategy optimization with multiple hetero-
geneous servers in mobile edge computing, IEEE Transactions on Sus-
tainable Computing (2019) 1–1doi:10.1109/TSUSC.2019.2904680.

[21] S. Zarandi, H. Tabassum, Delay minimization in sliced multi-cell mo-
bile edge computing (mec) systems, IEEE Communications Letters 25 (6)
(2021) 1964–1968. doi:10.1109/LCOMM.2021.3051558.

[22] K. Guo, R. Gao, W. Xia, T. Q. S. Quek, Online learning based compu-
tation offloading in mec systems with communication and computation
dynamics, IEEE Transactions on Communications 69 (2) (2021) 1147–
1162. doi:10.1109/TCOMM.2020.3038875.

[23] X. Wang, Z. Ning, L. Guo, S. Guo, X. Gao, G. Wang, Online learning for
distributed computation offloading in wireless powered mobile edge com-
puting networks, IEEE Transactions on Parallel and Distributed Systems
33 (8) (2022) 1841–1855. doi:10.1109/TPDS.2021.3129618.

[24] P. Wang, K. Li, B. Xiao, K. Li, Multiobjective optimization for joint
task offloading, power assignment, and resource allocation in mobile edge
computing, IEEE Internet of Things Journal 9 (14) (2022) 11737–11748.
doi:10.1109/JIOT.2021.3132080.

[25] F. Jiang, L. Dong, K. Wang, K. Yang, C. Pan, Distributed resource
scheduling for large-scale mec systems: A multiagent ensemble deep re-
inforcement learning with imitation acceleration, IEEE Internet of Things
Journal 9 (9) (2022) 6597–6610. doi:10.1109/JIOT.2021.3113872.

[26] M. Liwang, X. Wang, Overbooking-empowered computing
resource provisioning in cloud-aided mobile edge networks,
IEEE/ACM Transactions on Networking 30 (5) (2022) 2289–2303.
doi:10.1109/TNET.2022.3167396.

[27] Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, Y. Dou,
A. Y. Zomaya, Adaptive energy-aware computation offloading for
cloud of things systems, IEEE Access 5 (2017) 23947–23957.
doi:10.1109/ACCESS.2017.2766165.

[28] F. You, W. Ni, J. Li, A. Jamalipour, New three-tier game-theoretic
approach for computation offloading in multi-access edge computing,
IEEE Transactions on Vehicular Technology 71 (9) (2022) 9817–9829.
doi:10.1109/TVT.2022.3176302.

[29] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, S. Yu, Energy-latency
tradeoff for dynamic computation offloading in vehicular fog comput-
ing, IEEE Transactions on Vehicular Technology 69 (12) (2020) 14198–
14211. doi:10.1109/TVT.2020.3040596.

[30] Z. Sun, H. Yang, C. Li, Q. Yao, D. Wang, J. Zhang, A. V. Vasilakos,
Cloud-edge collaboration in industrial internet of things: A joint offload-
ing scheme based on resource prediction, IEEE Internet of Things Journal
9 (18) (2022) 17014–17025. doi:10.1109/JIOT.2021.3137861.

[31] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, X. Shen, Cost-efficient re-
source provisioning for dynamic requests in cloud assisted mobile edge
computing, IEEE Transactions on Cloud Computing 9 (3) (2021) 968–
980. doi:10.1109/TCC.2019.2903240.

[32] R. Yadav, W. Zhang, I. A. Elgendy, G. Dong, M. Shafiq, A. A. Laghari,
S. Prakash, Smart healthcare: Rl-based task offloading scheme for edge-
enable sensor networks, IEEE Sensors Journal 21 (22) (2021) 24910–
24918. doi:10.1109/JSEN.2021.3096245.

[33] C. Kai, H. Zhou, Y. Yi, W. Huang, Collaborative cloud-edge-end task
offloading in mobile-edge computing networks with limited communi-
cation capability, IEEE Transactions on Cognitive Communications and

Networking 7 (2) (2021) 624–634. doi:10.1109/TCCN.2020.3018159.
[34] A. O. Allen, Probability, statistics, and queueing theory, Gulf Professional

Publishing, 1990.
[35] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,

R. Chandra, P. Bahl, Maui: Making smartphones last longer with
code offload, in: Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, ACM, 2010, pp. 49–62.
doi:10.1145/1814433.1814441.

[36] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, A. Chan, A framework for
partitioning and execution of data stream applications in mobile cloud
computing, SIGMETRICS Perform. Eval. Rev. 40 (4) (2013) 23–32.
doi:10.1145/2479942.2479946.

[37] L. Liu, Z. Chang, X. Guo, S. Mao, T. Ristaniemi, Multiobjective opti-
mization for computation offloading in fog computing, IEEE Internet of
Things Journal 5 (1) (2018) 283–294. doi:10.1109/JIOT.2017.2780236.

[38] S. S., R. U. V., Clustered queuing model for task scheduling in cloud
environment, in: E. B. Rajsingh, J. Veerasamy, A. H. Alavi, J. D. Peter
(Eds.), Advances in Big Data and Cloud Computing, Springer Singapore,
Singapore, 2018, pp. 135–145. doi:10.1007/978-981-10-7200-0 12.

[39] B. Chitsaz, A. Khonsari, General spin-up time distribution for energy-
aware iaas cloud service models, Cluster Computing 23 (2) (2020) 1293–
1301. doi:10.1007/s10586-019-02993-3.

[40] B. Zhai, D. Blaauw, D. Sylvester, K. Flautner, Theoretical and prac-
tical limits of dynamic voltage scaling, in: Proceedings of the 41st
Annual Design Automation Conference, DAC ’04, Association for
Computing Machinery, New York, NY, USA, 2004, pp. 868–873.
doi:10.1145/996566.996798.
URL https://doi.org/10.1145/996566.996798

[41] C. Jin, X. Bai, C. Yang, W. Mao, X. Xu, A review of power consumption
models of servers in data centers, applied energy 265 (2020) 114806.

[42] Q. Zeng, Y. Du, K. Huang, K. K. Leung, Energy-efficient resource man-
agement for federated edge learning with cpu-gpu heterogeneous com-
puting, IEEE Transactions on Wireless Communications 20 (12) (2021)
7947–7962. doi:10.1109/TWC.2021.3088910.

[43] J. Huang, R. Li, Y. Wei, J. An, W. Chang, Bi-directional timing-
power optimisation on heterogeneous multi-core architectures, IEEE
Transactions on Sustainable Computing 6 (4) (2021) 572–585.
doi:10.1109/TSUSC.2020.3014912.

[44] T. Zhang, W. Chen, Computation offloading in heterogeneous mo-
bile edge computing with energy harvesting, IEEE Transactions
on Green Communications and Networking 5 (1) (2021) 552–565.
doi:10.1109/TGCN.2021.3050414.

[45] K. Li, Heuristic computation offloading algorithms for mobile users in
fog computing, ACM Trans. Embed. Comput. Syst. 20 (2) (jan 2021).
doi:10.1145/3426852.
URL https://doi.org/10.1145/3426852

[46] Z. He, K. Li, K. Li, Cost-efficient server configuration and placement for
mobile edge computing, IEEE Transactions on Parallel and Distributed
Systems 33 (9) (2022) 2198–2212. doi:10.1109/TPDS.2021.3135955.

[47] W. Lin, F. Shi, W. Wu, K. Li, G. Wu, A.-A. Mohammed, A taxonomy
and survey of power models and power modeling for cloud servers, ACM
Comput. Surv. 53 (5) (sep 2020). doi:10.1145/3406208.
URL https://doi.org/10.1145/3406208

[48] C. E. Shannon, A mathematical theory of communication, The Bell
System Technical Journal 27 (3) (1948) 379–423. doi:10.1002/j.1538-
7305.1948.tb01338.x.

[49] T. Williams, Special products and uncertainty in production/inventory
systems, European Journal of Operational Research 15 (1) (1984) 46–
54. doi:https://doi.org/10.1016/0377-2217(84)90047-X.
URL https://www.sciencedirect.com/science/article/pii/

037722178490047X

[50] P. Hokstad, Approximations for the m/g/m queue, Operations Research
26 (3) (1978) 510–523.

[51] H. Ke, J. Wang, L. Deng, Y. Ge, H. Wang, Deep reinforcement learning-
based adaptive computation offloading for mec in heterogeneous vehicu-
lar networks, IEEE Transactions on Vehicular Technology 69 (7) (2020)
7916–7929. doi:10.1109/TVT.2020.2993849.

18


