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Abstract—Convolutional neural networks (CNNs) have demon-
strated encouraging results in image classification tasks. However,
the prohibitive computational cost of CNNs hinders the deploy-
ment of CNNs onto resource-constrained embedded devices. To
address this issue, we propose EdgeCompress, a comprehensive
compression framework to reduce the computational overhead
of CNNs. In EdgeCompress, we first introduce dynamic image
cropping, where we design a lightweight foreground predictor to
accurately crop the most informative foreground object of input
images for inference, which avoids redundant computation on
background regions. Subsequently, we present compound shrink-
ing to collaboratively compress the three dimensions (depth,
width, and resolution) of CNNs according to their contribution
to accuracy and model computation. Dynamic image cropping
and compound shrinking together constitute a multi-dimensional
CNN compression framework, which is able to comprehensively
reduce the computational redundancy in both input images and
neural network architectures, thereby improving the inference
efficiency of CNNs. Further, we present a dynamic inference
framework to efficiently process input images with different
recognition difficulties, where we cascade multiple models with
different complexities from our compression framework and
dynamically adopt different models for different input images,
which further compresses the computational redundancy and
improves the inference efficiency of CNNs, facilitating the deploy-
ment of advanced CNNs onto embedded hardware. Experiments
on ImageNet-1K demonstrate that EdgeCompress reduces the
computation of ResNet-50 by 48.8% while improving the top-
1 accuracy by 0.8%. Meanwhile, we improve the accuracy by
4.1% with similar computation compared to HRank. the state-
of-the-art compression framework. The source code and models
are available at https://github.com/ntuliuteam/edge-compress

Index Terms—Embedded systems, neural network compres-
sion, hardware/software co-design, dynamic neural network

I. INTRODUCTION

Convolutional neural networks (CNNs) have gained popu-
larity in image classification tasks [1]. Benefiting from the
advances in high-quality datasets [1], [2] and network ar-
chitecture designs [3], [4], the accuracy of modern CNNs
has been constantly improved. Nevertheless, such accuracy
improvement comes at higher computational overhead [3]–[5].
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Fig. 1. The predictions from ResNet-50. For easy samples, the network can
still generate correct predictions at a smaller resolution (e.g., 112 × 112
for ImageNet-1K). For hard samples, simply resizing images to a smaller
resolution can lead to misclassification, while using dynamic cropping can
correctly classify hard samples at a smaller resolution.

Recently, to mitigate data transmission latency and respond
to the growing concern about data privacy, a new paradigm
named EdgeAI has emerged, which deploys CNNs onto em-
bedded devices near users to process data locally instead of
uploading data to the cloud [6], [7]. However, embedded
devices are usually resource-constrained and in turns are
unable to accommodate resource-hungry CNNs. To facilitate
the deployment of advanced CNNs onto resource-constrained
embedded devices, efforts have been made to compress the
computational overhead of CNNs.

The computation of a CNN, i.e., the Multiply-Accumulate
Operations (MACs), mainly results from two aspects: 1) high-
resolution input images and 2) gigantic network architectures.
To reduce the computational redundancy in input images (i.e.,
spatial redundancy), many works propose to reduce the reso-
lution (i.e., the height or width of input images) for inference
[8]–[10]. However, as shown in the motivational example in
Fig. 1, this coarse spatial redundancy reduction approach is
only effective for images with clear foreground. For images
in which the foreground only occupies a small portion of
the whole image, directly shrinking the whole image will
lose important features of the foreground, leading to a wrong
prediction. This observation triggers our first motivation:

Motivation 1: Can we reduce the inference resolution
of input images without sacrificing accuracy?
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On the other hand, network pruning [11]–[16] is also
proposed to compress the depth (i.e., the number of layers)
and width (i.e., the number of channels in each layer) of
the network architecture. Specifically, to optimize the effi-
ciency of CNNs, width pruning [11], [12], [14], [16] devotes
to removing less sensitive channels in each layer to yield
‘thinner’ networks, while depth pruning [15] conducts pruning
at a coarser granularity (i.e., layer), which directly removes
unimportant layers to construct ‘shallower’ networks. How-
ever, the above techniques only reduce the redundancy in a
single dimension of CNNs while ignoring the redundancy in
the other dimensions. Such single-dimensional compression
approaches can only achieve a very limited compression rate.
This phenomenon brings us to the second motivation:

Motivation 2: Can we combine the compression of
all three dimensions of CNNs to achieve a higher
compression rate while maintaining high accuracy?

In addition, given a resource budget, existing approaches
usually yield a fixed compressed neural network and reso-
lution for all images. However, as discussed in [10], [17],
different images are of distinct recognition difficulties, using
a static model and resolution to process all images can lead
to inefficient utilization of computation, achieving only sub-
optimal efficiency and accuracy. Practically, for images with
simple features, a small CNN model is adequate to generate
correct results. For complex images, a larger model with higher
capability should be used to extract high-level features for a
correct prediction. This inspires our last motivation:

Motivation 3: Can we dynamically adjust the model
and resolution for different images during inference to
further optimize inference efficiency and accuracy?

To address the above questions for more efficient image
classification with CNNs, we, in this paper, propose a novel
inference framework, EdgeCompress, to comprehensively re-
duce the inference overhead of CNNs, thereby optimizing
the classification efficiency of CNNs and facilitating the de-
ployment of advanced CNNs onto edge devices. In Edge-
Compress, we first propose a two-stage multi-dimensional
model compression framework to coordinately compress all
three dimensions of CNNs. In the first stage, we introduce a
novel dynamic image cropping (DIC) strategy to accurately
remove the spatial redundancy in input images, in which
we design a lightweight foreground predictor to efficiently
localize the most discriminative foreground of input images,
then only the detected foreground will be preserved for clas-
sification and the redundant background will be discarded.
As shown in Figure 1, through the dynamic image cropping
strategy, we are capable of generating fine-cropped images
with less spatial redundancy, thereby achieving satisfactory
classification accuracy even at a smaller resolution. In the
second stage, we present a compound shrinking (CS) strategy
to jointly compress the three dimensions of CNNs, thereby
further reducing the redundancy in input images and net-

work architectures. We first quantify the impact of shrink-
ing different dimensions on model complexity and accuracy,
according to which we automatically calculate a shrinking
coefficient for each dimension to coordinate the shrinking
of different dimensions to achieve a higher compression rate
while still maintaining the accuracy. By the means of the
two-stage multi-dimensional compression framework, given a
computation budget, we are able to comprehensively reduce
redundant computation to meet the budget without sacrificing
accuracy obviously. Based on the compression framework,
we further propose a novel dynamic inference framework to
adaptively process different input images with different models
and resolutions at runtime. First, we utilize the compound
shrinking strategy to compress the give baseline network and
generate multiple sub-networks with diverse model sizes and
accuracy, which are then cascaded in ascending order of the
model size and then each input image will be processed
by those models sequentially. At the end of the inference
of each model, we propose a novel metric to evaluate the
confidence of the prediction result. Once a confident prediction
is obtained, the dynamic inference will be terminated without
executing subsequent models. In practice, most input images
can be confidently recognized by early models with small
computational overhead, while large models will be activated
only for a few hard samples. Consequently, compared to
static inference with a single model, the overall computational
complexity of our dynamic inference is reduced significantly
without compromising accuracy. Our main contributions are
summarized as follows:

1) We propose dynamic image cropping to reduce the
spatial redundancy in images, where we design a
lightweight detector to efficiently localize the foreground
area of an image and conduct instance-aware dynamic
cropping. Those finely cropped images can be correctly
recognized even at a smaller resolution, which greatly
reduces the computational cost of CNNs.

2) We also propose compound shrinking to jointly com-
press the three dimensions of a CNN. We first quantify
the impact of each dimension on accuracy and model
complexity, and then generate the optimal joint com-
pression strategy accordingly. By this means, we greatly
reduce the redundancy in both input images and network
architectures for a higher compression rate.

3) We further introduce a dynamic inference framework to
efficiently process input images with different recogni-
tion difficulties. We cascade multiple models from our
compression framework and adaptively utilize different
models and resolutions for different images. In this way,
we effectively adjust the computational cost for different
input images, reducing the overall computational cost
without compromising the final accuracy.

4) We seamlessly integrate the dynamic image cropping,
compound shrinking, and dynamic inference into a deep
compression framework (i.e., EdgeCompress) for effi-
cient deep learning inference, which can optimally adapt
the model cost to meet different resource constraints of
embedded hardware while maximizing model accuracy.
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Fig. 2. The overview of the proposed EdgeCompress framework, which mainly consists of four components: bounding box generation (BBG), dynamic image
cropping (DIC), compound shrinking (CS), and dynamic inference (DI).

Extensive experiments demonstrate the advantages of the
proposed EdgeCompress over other SOTA model compression
approaches. Specifically, EdgeCompress reduces the MACs
of ResNet-50 by 48.8% while improving the top-1 accuracy
by 0.8% on ImageNet-1K. Moreover, compared to the SOTA
compression framework, HRank [11], EdgeCompress also
achieves 4.1% higher accuracy with similar model MACs.

II. RELATED WORK

EdgeCompress makes innovative contributions mainly in
three areas: 1) object localization, 2) CNN compression, and
3) dynamic neural networks. Therefore, we discuss the related
works in this section.
Object localization: Object localization algorithms focus on
efficiently detecting the location of foreground objects in an
image, which can be mainly divided into supervised object
localization (SOL) and weakly supervised object localization
(WSOL). SOL [18]–[21] achieves promising accuracy with
the help of well annotated datasets like COCO [2] and
Pascal VOC [22]. However, the difficulties in building larger
detection datasets hinder the further development of SOL.
WSOL [23]–[27] can coarsely localize objects of interest with
only image-level labels, which makes WSOL applicable to
more large-scale datasets without position annotations, such
as ImageNet-1K (also known as ImageNet or ILSVRC-2012)
[1]. Specifically, CAM [25] and Grad-CAM [26] utilize a well-
trained CNN to quantify the importance of each pixel of an
image and determine the position of the most contributing part
accordingly, i.e., the foreground. Further, ACoL [27] presents
a novel CNN with two branches to adversarially learn the
full region of objects, improving the localization accuracy.
However, the huge computational cost and latency make both
the SOL (e.g., SSD) and WSOL inapplicable in our context,
i.e., resource-constrained embedded hardware.
CNN compression: Computational redundancy widely exists
in CNNs [28]. To achieve a better trade-off between model
accuracy and execution efficiency, effort have been made to
reduce the redundancy from different dimensions of CNNs.
Specifically, depth pruning [15], [29] devotes to compressing
layer-level redundancy, which removes the entire layer with
low sensitivity. Channel pruning [8], [11], [13], [14], [16]
conducts pruning at a finer granularity, which builds compact
CNNs by removing unimportant channels from each layer,
which reduces the computation and memory footprint of

CNNs. Among channel pruning approaches, MobileNetV2
[8] and Slimmable networks [13] remove channels from all
layers uniformly, while Taylor pruning [14], HRank [11],
and DECORE [16] evaluate the global importance of each
channel and then prune channels in a layer-wise manner. Both
depth pruning and channel pruning focus on compressing the
network architecture, while resolution pruning [8]–[10], [17]
optimizes the spatial redundancy in input images by shrinking
images to smaller resolutions or selectively cropping images
for inference. MNasNet [9] reduces the spatial redundancy
by utilizing a fixed small resolution for all images during
inference. Instead, DR-ResNet [10] introduces a dynamic
resolution strategy to dynamically assign different resolutions
to different images according to their recognition complexity.
Moreover, GFNet [17] introduces a Glance-and-Focus infer-
ence strategy, which utilizes both the shrunk version and small
local patches of an image for inference to accelerate CNNs
while preserving high accuracy. However, all above methods
only consider reducing the redundancy in a single dimension
and thus only achieve a limited compression rate. In contrast,
jointly compressing all dimensions promises a better trade-off
between the compression rate and accuracy.

Dynamic neural networks: To efficiently process input
images corresponding to diverse classification difficulties and
reduce the computational redundancy, dynamic inference ap-
proaches are proposed to adaptively utilize different models or
different parts of a model for different images. Early-exit net-
works [30]–[32] insert multiple intermediate classifiers inside
the network and allow easy samples to exit at shallow layers
without executing deeper layers. Different from Early-exit
networks that execute layers densely, Layer-skipping networks
[33]–[35] selectively skip less important intermediate layers
to avoid redundant computation and optimize the execution
efficiency. Channel-skipping networks [36]–[39] consider re-
ducing redundant computation in the width dimension, which
introduce channel gates to control the execution of each
channel and different channels will be selectively activated
for different samples. More recently, instead of dynamically
changing the network architecture at runtime, resolution-level
dynamic inference approaches [38], [40] are proposed to
dynamically adjust the resolution of input images during
inference. Specifically, easy samples are allowed to inference
at a small resolution, which greatly optimizes the inference
cost. In spite of the efficiency improvement achieved by above
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Fig. 3. By applying different salience threshold t, we can obtain different
cropped images. The larger the threshold value, the more radical the cropping.

methods, they only focus on adjusting a single dimension at
runtime, which can only achieve sub-optimal efficiency and
accuracy. Instead, our dynamic inference framework utilizes
the models generated from our multi-dimensional compression
framework, which enables multi-dimensional dynamic infer-
ence and thus achieves higher accuracy and efficiency.

III. THE PROPOSED EDGECOMPRESS FRAMEWORK

In this section, we first outline the design of EdgeCompress
and then describe each component in detail.

As demonstrated in Fig. 2, before inference, we first utilize
Grad-CAM to generate the salience map of all training images
in the classification dataset D, and then we generate a bound-
ing box for each image according to the salience map and
form a pseudo bounding box label set B. Thereafter, we exploit
the image-box pairs {Di, Bi} to train a lightweight predictor.
Meanwhile, we use compound shrinking to jointly compress
the three dimensions of a CNN and generate multiple CNNs
with different computational complexities, which are then
cascaded for dynamic inference. In inference, the input image
will be first fed into the trained predictor to efficiently localize
the foreground object. Thereafter, the foreground object will
be cropped and sequentially sent to the CNN models generated
by compound shrinking for dynamic inference. Once a con-
fident prediction is obtained, the inference will be terminated
immediately without executing subsequent models.

A. Bounding Box Generation
As aforementioned, dynamically cropping the foreground

for inference is promising in reducing computation and im-
proving classification accuracy. However, for classification
datasets like ImageNet-1K, there is no out-of-the-box position
annotation for the foreground object. Moreover, the position of
the foreground object varies in different images, which makes
it difficult to efficiently localize the foreground object.

To address this limitation, we first use Grad-CAM [26] to
automatically generate the position annotations. Specifically,
let the class label of the given image be c. We first perform
forward inference with a well-trained CNN (e.g. ResNet-
50) to obtain the prediction score pc for class c, and then
conduct backpropagation to compute the gradient of the score
pc with respect to each activation of the last convolutional
layer. Thereafter, the gradients are aggregated within each
channel via global average pooling. The obtained scalar for
each channel can be seen as the weight of the channel, which
can be calculated as follows:

ac
k =

pooling︷ ︸︸ ︷
1

Z

∑
i

∑
j

gradients︷︸︸︷
∂pc

Ak
ij

(1)

TABLE I
THE IMPACT OF USING DIFFERENT SALIENCE THRESHOLDS ON

PREDICTION ACCURACY. THE MODEL IS TRAINED AND EVALUATED ON
IMAGENET-1K. t = 0 MEANS USING THE ORIGINAL IMAGES WITHOUT

GRAD-CAM CROPPING.

Model #Params (M) #MACs (B) t Top-1 Acc. (%)

ResNet-50 25.6 4.1

0.00 (Baseline) 76.02
0.25 76.45
0.50 76.88
0.75 76.32

where ack is the weight of channel k for class c, and Ak
ij is a

single activation indexed by i and j in the 2-D feature map of
channel k. With the weights of all channels determined, the
salience map for class c can be obtained by computing the
weighted sum of all feature maps over the channel dimension,
which is formulated as:

Lc
Grad CAM = ReLU

(∑
k

ac
kA

k

)
︸ ︷︷ ︸

linear combination

(2)

where Ak is the 2-D feature map of channel k, and ReLU is
used to eliminate the impact of negative activations. Finally,
the obtained salience map is upsampled to the same size as
the input image via bi-linear interpolation algorithm.

With the salience map generated, we then introduce a simple
yet effective strategy to determine the bounding box of the
foreground object. Initially, we set the box as the boundary of
the image. Subsequently, we shrink the four sides of the box
simultaneously, and once a side reaches our preset salience
threshold t, the side is frozen. The bounding box is determined
after all sides are frozen. Note that it is crucial for the final
result to appropriately select the value of t. As demonstrated in
Fig. 3, a too small threshold will result in residual background
redundancy, while a too large threshold will lose some impor-
tant features. Therefore, we conduct empirical experiments to
determine the optimal threshold value. As shown in Table I, we
achieve the highest accuracy when the threshold t is set to 0.5.
Therefore, we set t = 0.5 in our experiments. Note that more
fine-grained searching for t may further improve the accuracy,
but it also increases the search cost. Finally, the generated box
annotations are saved in the form of [Xmin, Ymin, Xmax,
Ymax], which denotes the boundary of the foreground in the
image.

B. Dynamic Image Cropping

Fig. 4 shows that we are capable of accurately localizing
the foreground of images with Grad-CAM. However, Grad-
CAM cannot be directly applied to edge applications because
of the time-consuming backpropagation process. Moreover,
Grad-CAM requires the class label as weak supervision, which
is unavailable for validation images. To address these issues,
we design a foreground predictor to efficiently localize the
foreground of input images.

1) Predictor Architecture: Existing detection models, such
as Faster R-CNN [20], are mainly proposed for object detec-
tion tasks (e.g., MS COCO [2]), which usually contain a large
number of parameters and computation to accurately localize
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Fig. 4. The bounding boxes generated with the salience threshold t = 0.5,
which accurately localize the key object in each image.

and identify the multiple objects in each input image. However,
we focus on classification tasks, where each input image
contains only one object and thus the localization difficulty
is much lower than in detection tasks. Moreover, to achieve
dynamic cropping, we only need to output the position of the
foreground without predicting its label. Consequently, existing
detection models become redundant and inefficient in our
context. To this end, we design a novel lightweight foreground
predictor to efficiently localize the unique foreground object
of each input image. The details of the proposed foreground
predictor is summarized in Table II, which consists of several
residual bottleneck blocks [41] and a fully connected layer.
A residual bottleneck contains two convolutional layers with
1×1 kernels and one convolutional layer with 3×3 kernels in
the middle. The computational cost mainly results from the
3×3 convolutional layer. Therefore, to reduce the cost and
accelerate the predictor, we only stack two residual bottleneck
blocks in each stage and each block is only equipped with
a small number of channels. Consequently, the proposed
predictor only contains 0.27M parameters and 0.09B MACs,
which is negligible compared to popular object detectors (e.g.,
Faster R-CNN with 134.7M (499×) parameters and 15.1B
(167.8×) MACs [42]).

2) Training of Foreground Predictor: We train the predictor
in a supervised manner. First, we generate a bounding box
label set B for all training images as described in Subsection
III-A, then the labels are utilized to train the predictor. We use
the mean square error (MSE) as the loss function. Let Pi =
[Xp

min, Y p
min, Xp

max, Y p
max] be the output of the predictor,

and Gi = [Xg
min, Y g

min, Xg
max, Y g

max] be the generated box
label, the loss function can be formulated as:

Lbox = MSELoss(Pi, Gi)

=
1

4
((Xg

min −Xp
min)

2 + (Y g
min − Y p

min)
2

+ (Xg
max −Xp

max)
2 + (Y g

max − Y p
max)

2)

(3)

To balance the training overhead and prediction accuracy,
we train the predictor with Adam [43] optimizer for 40 epochs.
The initial learning rate is set to 1e-3, and the learning rate
is scheduled using exponential decay [44]. The training of
the box predictor is decoupled with backbone networks. Once
the predictor is trained, it can be directly applied to different
classification backbones without any training overhead. Dur-
ing inference, the trained predictor will quickly localize the
foreground object of the input image and generate a finely

TABLE II
THE ARCHITECTURE OF THE PROPOSED BOX PREDICTOR. #C DENOTES

THE NUMBER OF CHANNELS AND #L DENOTES THE NUMBER OF LAYERS.

Stage Block Resolution #C #L

1 Conv 3×3 224 × 224 16 1
2 Residual Bottleneck 112 × 112 16 2
3 Residual Bottleneck 56 × 56 32 2
4 Residual Bottleneck 28 × 28 32 2
5 Residual Bottleneck 14 × 14 64 2
6 Pooling & Linear 7 × 7 4 1

#Params: 0.27M
#MACs: 0.09B

cropped image, which significantly reduces the redundancy in
the input image.

C. Compound Shrinking

The proposed DIC significantly reduces the redundancy in
images, improving the computational efficiency. We observe
that redundancy also exists in network architectures (e.g.,
redundant parameters), and only removing the redundancy in
images loses the opportunity to further compress the model
for embedded hardware. Besides, [3] demonstrates that jointly
adjusting different dimensions promises higher accuracy. To
this end, we propose a compound shrinking (CS) strategy to
jointly compress the three dimensions (depth, width, resolu-
tion) of CNNs to further reduce the redundancy in images as
well as networks while maintaining the accuracy.

Intuitively, shrinking different dimensions has different im-
pacts on accuracy and model overhead. The core of our
compound shrinking strategy is to calculate a shrinking coeffi-
cient for each dimension according to their trade-off between
accuracy and model overhead. A larger coefficient denotes
more radical shrinking. More specifically, the dimension with
a steep accuracy drop during shrinking will be assigned a small
shrinking coefficient to prevent severe accuracy degradation.
To calculate the shrinking coefficients, we first quantify the
trade-off of each dimension between accuracy and model
overhead. Here we use MACs as the metric to measure the
cost of models, because all three dimensions are related to the
MACs of a model while only the depth and width can affect
the model parameters. Given a MACs budget M, we first
obtain the accuracy drops resulting from separately shrinking
different dimensions, which can be represented as:

∆As(M) = A0 −As(M) (4)

where s ∈ {d,w, r} represents the shrunk dimension, As(M)
denotes the accuracy of the shrunk model, and A0 is the ac-
curacy of the original model. To comply with the rule that the
steeper the drop in accuracy, the smaller the coefficient of the
corresponding dimension, we design the following equation to
determine the shrinking coefficient for each dimension:

Cs(M) =
3
√

∆Ad(M) ·∆Aw(M) ·∆Ar(M)

∆As(M)
(5)

where Cs(M) denotes the shrinking coefficient of the dimen-
sion s (s ∈ {d,w, r}). Through Equation 4 and Equation 5,
we are able to efficiently calculate the coefficients once we
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Fig. 5. The actual accuracy (blue dotted line) and the estimated accuracy
(yellow line) over MACs by separately shrinking the three dimensions. The
low root mean square error (RMSE) indicates that the accuracy estimator can
well fit the sampled data.

obtain the accuracy degradation of the three dimensions in the
given MACs regime.

However, the training cost of the compressed models to
calculate the accuracy drop is still non-negligible. To mitigate
the training overhead, we propose a dimension-wise accuracy
estimator to quickly estimate the accuracy of the compressed
models and calculate the accuracy degradation resulting from
shrinking different dimensions in the given MACs regime.
First, we sample a couple of models with different MACs by
separately shrinking the three dimensions. As demonstrated in
Fig. 5, the accuracy distribution of the three dimensions along
MACs can be well fitted by a quadratic polynomial. Therefore,
we design a simple yet effective polynomial estimator to
predict the accuracy with respect to the target MACs M. The
estimator is formulated as follows:

As(M) = as(M−M0)
2 + bs(M−M0) +A0 (6)

where M0 is the MACs of the original model. as and bs are
the hyperparameters to fit for dimension s (s ∈ {d,w, r}).
Subsequently, we train the dimension-wise estimator using
least square regression with the aforementioned sampled data.
Fig. 5 shows that the proposed estimator can well fit existing
data. Due to the simple and intuitive design of the estimator,
we only need to sample and train very few models to train the
estimator, and this cost is a one-time cost. With the accuracy
estimator established, we are able to quickly estimate the accu-
racy drop and then calculate the optimal shrinking coefficients
for the three dimensions under any given resource constraint.
According to the coefficients, we will jointly compress the
three dimensions of the baseline network and generate a
compact model with optimized efficiency. As the compressed
model can be viewed as a subset of the baseline network, we
call the compressed model a sub-network.

D. Dynamic Inference

Through dynamic image cropping and compound shrink-
ing, we can optimally compress a CNN model to different
complexities to satisfy various resource constraints in edge
environments. Given an embedded device, an intuitive de-
ployment strategy is to select a single model that best fits
the hardware capabilities (e.g., memory capacity, computing
power) to balance the trade-off between accuracy and ex-
ecution efficiency. However, as different images correspond
to distinct recognition difficulties [10], [40], using a single
model for all images may over-process simple images and
waste resources, while for complex images, the model may
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Fig. 6. The proposed dynamic inference framework, which utilizes multiple
sub-networks to achieve instance-aware inference. These sub-networks are
obtained by compressing the baseline network using compound shrinking.

TABLE III
THE SPECIFICATIONS OF THE SUB-NETWORKS GENERATED BY THE

COMPOUND SHRINKING STRATEGY. THE BASELINE NETWORK IS
RESNET-50. THE ACCURACY IS MEASURED ON IMAGENET-1K AND THE

LATENCY IS MEASURED ON JETSON NANO.

Sub-network Id #Params (M) #MACs (B) Latency (ms) Top1 Acc. (%)

1 11.65 1.21 27.15 73.86
2 11.79 1.30 28.05 74.21
3 13.53 1.84 41.62 75.56
4 15.40 2.40 49.41 76.32
5 20.30 3.22 56.01 76.81
6 25.90 4.20 57.09 77.20

under-process them and generate wrong predictions, leading
to a sub-optimal trade-off between accuracy and efficiency.

To address this problem, we propose a dynamic infer-
ence strategy to further optimize the run-time efficiency of
CNNs on embedded devices without sacrificing accuracy.
As demonstrated in Fig. 6, we first apply different MACs
constraints to the compound shrinking strategy to generate
multiple sub-networks with different accuracy and overhead.
The specifications of all sub-networks are summarized in
TABLE III. Thereafter, we deploy the generated sub-networks
onto the target hardware before inference and dynamically
activate different sub-networks at runtime for better accuracy
and efficiency. For easy samples with a distinct foreground,
maybe only the smallest sub-network will be activated to effi-
ciently generate the correct prediction, while for hard samples
with which small models are unable to produce a confident
prediction, larger sub-networks will be gradually activated
until a confident prediction is obtained. By doing so, we can
avoid unnecessary computation and resource consumption for
simple images, improving inference efficiency.

1) Termination Condition: Modern large-scale datasets for
image classification usually contain millions of images. For
example, ImageNet-1K has about 1.3 million images. It is
non-trivial to determine when to terminate the inference for
each image. Current dynamic inference approaches, such as
multi-scale inference [31] and early-exit networks [45], [46],
exploit the highest prediction probability among all classes as
the prediction confidence to control the termination of dynamic
inference. Given a CNN N and an image x, the prediction
confidence of existing methods can be represented as:

IN =max (Softmax(N (x)))

=max

(
ezi∑K
j=1 e

zj

)
for i = 1, 2, . . . ,K

(7)

where zi denotes the i-th logit (i.e., the i-th output of the fully
connected layer) of N , which is transformed into the predic-
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Fig. 7. The distributions of negative results and positive results along different
confidence metrics. Wp denotes the Wasserstein distance between negative
results and positive results. The larger the value of Wp, the more distinct
the two distributions, such that our dynamic inference framework can more
accurately determine whether the sample is correctly classified.

TABLE IV
COMPARISON OF DIFFERENT CONFIDENCE METRICS IN TERMS OF THE

TRADE-OFF BETWEEN MODEL COMPLEXITY AND ACCURACY. THE
ACCURACY IS MEASURED ON IMAGENET-1K.

Architecture Metric #MACs (B) Top-1 Acc. (%)

ResNet-50

Highest probability 2.07 76.44
Probability difference 2.07 76.68

Highest probability 2.39 76.91
Probability difference 2.33 77.07

tion probability for the i-th class with the Softmax function.
With Equation 7, the prediction confidence can be efficiently
calculated using the output of the network. Generally, if a
high prediction confidence score is obtained from the current
model, then the image is considered correctly classified and
the inference will be terminated immediately.

In this paper, we rethink the efficacy of the confidence met-
ric. First, we randomly sample 100 negative prediction results
and 100 positive prediction results from a well-trained model.
Subsequently, we summarize the distribution of the sampled
data along the highest prediction probability in Fig. 7 and
exploit Wasserstein distance to quantify the similarity between
the distributions of positive samples and negative samples. The
smaller the Wasserstein distance between two distributions, the
more similar the two distributions are. As shown in the upper
figure of Fig. 7, the negative samples and positive samples
are distributed close along the highest probability with a
small Wasserstein distance, which reveals that this confidence
metric fails to effectively separate the positive predictions and
negative predictions of a model, degrading the efficacy of
dynamic inference. To address the issue, we introduce a novel
metric, the probability difference, to control the termination
of dynamic inference. The probability difference is defined as
the difference between the highest prediction probability and
the second highest probability, which is formulated as:

DN = IN − I′
N (8)

where I ′
N represents the second highest prediction probability.

Equation 8 reveals that, unlike existing confidence metric

which only focuses on the highest prediction probability,
the proposed confidence metric considers both the highest
prediction itself and its advantages over other competitors.
The distributions of the negative samples and positive samples
along the probability difference are demonstrated in the lower
figure of Fig. 7, where we observe that the two distributions
are more distinct and the Wasserstein distance between them
is much larger compared to existing confidence metric (i.e.,
the highest probability), which indicates that the proposed
confidence metric is able to estimate the correctness of a
prediction more accurately, enabling effective control over
the dynamic inference. After evaluating the confidence of a
prediction with the proposed metric, we will compare the
evaluation result with a preset threshold value D0. If the
evaluation result is larger than the preset threshold value,
the prediction is considered confident and the inference will
be terminated. Otherwise, the image will be sent to a larger
model for more accurate prediction. By changing the threshold
value D0, we are able to flexibly adjust the trade-off of the
dynamic inference between inference overhead and accuracy.
Specifically, a higher threshold value will force more images to
flow to large models, and thus the accuracy will be improved at
the cost of higher inference costs. On the contrary, reducing
the threshold value will allow more images to exit at small
models, thereby saving the inference overhead. To validate
the proposed confidence metric, we perform experiments on
ImageNet-1K and present the results in TABLE IV, where
we observe that the proposed metric remarkably improves
accuracy without sacrificing the computational cost.

2) Prediction Accumulation: During dynamic inference,
hard samples may flow through multiple models. Some ap-
proaches directly adopt the output of the last model as the final
result [30], which wastes the information from the previously
executed models and consequently losses the opportunity to
further improve accuracy. Instead, some other methods pro-
pose to utilize the information of previous models by merging
the feature maps from previous models into the current model
for higher accuracy [40]. However, the fusion of feature
maps of different models introduces additional computational
overhead, reducing the efficiency of dynamic inference.

To address the above concerns, we propose prediction accu-
mulation to effectively utilize the information from different
models for higher accuracy. Different from the fusion of
feature maps [40] which requires a large amount of additional
computation, we efficiently integrate the information from dif-
ferent models without compromising the computational over-
head by accumulating the output of the last fully connected
layer in each model (i.e., the logits), which is formulated as:

Z ′
i = αZi + Z ′

i−1 (9)

where Zi denotes the logits of the current model, and Z ′
i

represents the accumulated logits of the current model, which
will be used to calculate the prediction of the current model.
Z ′

i−1 is the accumulated logits of the previous model and α is
a hyperparameter to control the contribution of the prediction
of the current model (i.e., Zi). The value of α can affect
the final accuracy of dynamic inference obviously. To identify
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Fig. 8. The impact of the value of α on the final accuracy of dynamic
inference. We observe the highest accuracy at α = 1.60, and thus we fix
α = 1.60 for subsequent experiments. The target dataset is ImageNet-1K.

TABLE V
THE IMPACT OF OUR PREDICTION ACCUMULATION STRATEGY ON MODEL
COMPUTATION, INFERENCE LATENCY, AND ACCURACY. THE INFERENCE

LATENCY IS MEASURED ON JETSON XAVIER, AND THE ACCURACY IS
MEASURED ON THE IMAGENET-1K DATASET.

Architecture Accumulation #MACs (B) Latency (ms) Top-1 Acc. (%)

ResNet-50

% 2.07 7.84 76.68
! 2.07 7.91 76.83

% 2.33 8.63 77.07
! 2.33 8.60 77.35

the optimal value of α, we sample multiple values of α and
summarize the relationship between accuracy and α in Fig.
8, where we observe the highest accuracy when α = 1.60.
Therefore, we fix α = 1.60 in our experiments.

The logits of a model can directly determine the prediction
results, and thus accumulating logits can effectively utilize
the information from multiple models for higher accuracy.
The overhead of accumulating logits is determined by the
number of logits in each model and the number of models
to accumulate. Specifically, the computational cost of logits
accumulation can be calculated as follows:

Qacc = nl · (nm − 1) (10)

where nl is the number of logits and nm is the number of
models. For example, for two models with 1,000 logits, the
computational cost of logits accumulation will be 1, 000×(2−
1) = 1, 000 FLOPs, which can be neglected compared to the
inference overhead of CNN backbones (e.g., ResNet-50 with
4.1 Billion FLOPs). As shown in the experimental results in
TABLE V, the accumulation strategy improves the accuracy
remarkably while not increasing the computational cost and
inference latency of our framework.

3) Dynamic Inference Algorithm: We demonstrate our dy-
namic inference algorithm in detail in Algorithm 1. Given
a series of CNN models ordered from low to high com-
putational complexity and an input image, we initiate the
dynamic inference with the smallest model and gradually
activate models with higher computational complexity. For
each model, we first perform inference with the model to
obtain its prediction logits, then, we accumulate the logits of
this model with all previously executed models as Equation 9.
Subsequently, the proposed termination metric of the current

Algorithm 1: Dynamic Inference Algorithm
Data: CNN models {N1, N2, ..., Nn}, input image x, termination

threshold D0

Result: Prediction result o
i← 0;
while i < n do
Zi ← Ni(x) // Inference with the current model
if i = 0 then
Z′

i ← Zi

else
Z′

i ← AccumulateLogits(Zi, Z′
i−1) // See Eq. 9

end
// Calculate the termination metric, see Eq. 8
DNi

← CalculateMetric(Ni, Z′
i)

if DNi
> D0 then

Break // Terminate dynamic inference
end
i← i+ 1 // Activate the next model

end
o← Softmax(Z′

i) // Calculate the final result

model is calculated using the accumulated logits according to
Equation 8, which is then compared with the preset threshold
D0. If the calculated metric is larger than the threshold, the
predicted result is considered confident and dynamic inference
will be terminated immediately. Otherwise, a larger model will
be activated for inference. In practice, we observe that, for
most images, dynamic inference is able to produce a confident
prediction and be terminated at the smallest model. In this
case, the overall latency of dynamic inference is equal to
the inference latency of the smallest model. Consequently, we
avoid using large models for most images, saving computation
and reducing latency significantly compared to static inference.
The results are presented in the Experimental Results section.

IV. EXPERIMENTAL RESULTS

In this section, we perform extensive experiments on dif-
ferent benchmarks to validate the efficacy of EdgeCompress
and demonstrate its advantages over existing SOTA approaches
in terms of accuracy, computational complexity (i.e., MACs),
and run-time efficiency. Further, we conduct ablation study to
show the contribution of each component in our framework.

TABLE VI
HARDWARE SPECIFICATIONS OF THREE PLATFORMS. THE COLUMN

“#CORES” DENOTES THE NUMBER OF CUDA CORES AND CPU CORES
FOR GPU PLATFORMS (I.E., AGX XAVIER AND JETSON NANO) AND THE

CPU PLATFORM (I7-9750H), RESPECTIVELY.

Device Power Memory #Cores Core Freq. Performance

AGX Xavier 15 W 32 GB 512 900 MHz 11.0 TOPS

Jetson Nano 5 W 4 GB 128 992 MHz 0.5 TOPS

i7-9750H 45 W 16 GB 6 2600 MHz 0.4 TOPS

A. Hardware Devices

To validate the run-time efficiency of EdgeCompress, in-
cluding inference latency and throughput, we select two rep-
resentative embedded GPU platforms, NVIDIA AGX Xavier
and Jeton Nano, and Intel i7-9750H@2.6GHz CPU to deploy
different methods and compare their performance. The speci-
fications of selected devices are shown in TABLE VI.
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Fig. 9. The real performance of ResNet-50 compressed by different methods
on three distinct hardware devices. Accuracy is measured on ImageNet-100.

B. Datasets

We validate the proposed EdgeCompress on four represen-
tative datasets: 1) CIFAR-10, 2) CIFAR-100, 3) ImageNet-
100, and 4) ImageNet-1K [1]. ImageNet-1K (also known as
ImageNet or ILSVRC-2012) is one of the most popular large-
scale datasets for image classification, which includes 1,000
classes. ImageNet-100 is a subset of ImageNet-1K, which
consists of 100 classes randomly selected from ImageNet-
1K. The details of ImageNet-100 can be found in the code
repository. All images are preprocessed following a simple
configuration as [4].

C. Networks

We apply our EdgeCompress framework to three widely
utilized CNN backbones, VGG16 BN [47], ResNet-50 [41],
and RegNet-X [4]. For each model, we employ EdgeCompress
to remove the spatial redundancy in input images and the
architecture redundancy in networks, thereby reducing the
computational cost and improving the inference efficiency. As
a comparison, we also report the results of other methods.

D. Optimization Settings

All models in our experiments are trained using SGD
optimizer with a momentum of 0.9. We first train models for
100 epochs without using dynamic image cropping, where the
first 5 epochs are for warmup. For experiments on ImageNet-
100 and ImageNet-1K, the learning rate is set to 2.0, which
will be decayed by exponential learning rate policy with a
decay factor of 0.02. The training batch size is set to 1024.
Subsequently, the proposed dynamic image cropping is utilized
to fine-tune the pretrained models for 20 epochs. The learning
rate for fine-tuning is 5e-4. In addition, we also use label
smoothing with the smoothing factor ϵ = 0.1 [48] to prevent
overfitting. For experiments on CIFAR-10 and CIFAR-100, the
initial learning rate is 0.1 and the training batch size is 128.

E. Evaluation Methodology

In this paper, we propose three novel approaches to com-
prehensively reduce the computational cost of CNNs. Thanks
to the flexible design of these approaches, they can be used

TABLE VII
RESULTS OF RESNET-50 ON IMAGENET-100. RCC-BASELINE

REPRESENTS THE BASELINE RESNET-50 MODEL, WHERE WE CROP AND
RESIZE ALL IMAGES TO THE SIZE 224×224 WITH RCC.

Method #Params (M) #MACs (B) ↓ MACs (%) Top1 Acc. (%)

RCC-Baseline 23.7 4.1 0.0 81.6
EC-DIC 24.0 4.2 -2.4 82.5
EC-Static 17.3 3.0 26.8 82.7
EC-Dynamic 13.6 2.0 51.2 83.5

RCC 23.7 3.0 26.8 80.1
EC-DIC 24.0 2.6 36.6 80.8
EC-Static 14.5 2.4 41.5 81.5
EC-Dynamic 11.8 1.7 58.5 82.8

RCC 23.7 1.1 73.2 76.9
EC-DIC 24.0 1.2 70.7 77.9
EC-Static 7.8 1.0 75.6 79.3
EC-Dynamic 8.9 1.2 70.7 80.2

separately or coupled for a higher compression ratio. To
better demonstrate the flexibility and efficacy of our design,
we evaluate different combinations of the three approaches.
Specifically, EC-DIC represents that only the dynamic image
cropping component is exploited, while EC-Static denotes
both the dynamic image cropping and compound shrinking
are adopted. Finally, EC-Dynamic denotes the completed
framework that contains all three components, which further
integrates the dynamic inference approach based on EC-Static.

F. Results on ImageNet-100

We conduct experiments on ImageNet-100 with ResNet-50
and RegNet-X, where we use different methods mentioned in
Subsection IV-E to compress models to different complexities.
As a comparison, we use the most popular image cropping
method, ResizedCenterCrop (RCC) to crop and resize images
to different sizes. Finally, all models are deployed to selected
hardware to evaluate their latency and throughput.

1) ResNet-50: As shown in TABLE VII, all of our ap-
proaches outperform the competitor (i.e., RCC) in terms of
the model complexity, on-device execution efficiency, and
accuracy. Specifically, compared to the baseline ResNet-50
(RCC-Baseline), EC-DIC improves the accuracy by 0.9%
with a negligible increase in model parameters (1.2%) and
MACs (2.4%), while EC-Static further pushes up the accuracy
improvement to 1.1% with a parameter reduction of 27.0% and
a MACs reduction of 26.8%. Finally, EC-Dynamic achieves
the best performance, which compresses the MACs by 51.2%
while still improving the accuracy by 1.9% compared to RCC-
Baseline. In the low complexity regime, EC-Dynamic achieves
3.3% higher accuracy than RCC with only 37.6% model
parameters (8.9M v.s. 23.7M) and similar MACs. Meanwhile,
Fig. 9 indicates that all of our methods outperform RCC by
a large margin across a wide spectrum of inference latency
and throughput on different resource-constrained embedded
devices. Particularly, EC-Dynamic achieves 83.5% top-1 ac-
curacy with a latency of 7.8 ms on Xavier, which is 1.9%
higher in accuracy and 27.7% lower in latency compared to
RCC (81.6% top1 accuracy, 10.8 ms). At the same time, the
throughput of EC-Dynamic on Xavier is 128.4 imgs/sec, which
is 38.5% higher than RCC (92.7 imgs/sec). On Nano and Intel
i7-9750H CPU, EC-Dynamic also improves the throughput
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Fig. 10. The real performance of RegNet-X compressed by different methods
on three distinct hardware devices. Accuracy is measured on ImageNet-100.

TABLE VIII
RESULTS OF REGNET-X ON IMAGENET-100. RCC-BASELINE

REPRESENTS THE BASELINE REGNET-X MODEL WITH ALL INPUT IMAGES
CROPPED AND RESIZED TO 224×224 WITH RCC.

Method #Params (M) #MACs (B) ↓ MACs (%) Top1 Acc. (%)

RCC-Baseline 8.4 1.6 0.0 84.8
EC-DIC 8.7 1.3 18.8 85.0
EC-Static 6.3 1.3 18.8 86.1
EC-Dynamic 4.4 0.8 50.0 86.2

RCC 8.4 0.7 56.3 82.3
EC-DIC 8.7 0.8 50.0 83.8
EC-Static 3.6 0.6 62.5 84.0
EC-Dynamic 3.3 0.6 62.5 85.1

RCC 8.4 0.4 75.0 80.0
EC-DIC 8.7 0.5 68.8 81.4
EC-Static 2.5 0.4 75.0 82.8
EC-Dynamic 2.8 0.5 68.8 83.7

by 33.0% and 46.2%, and reduces the latency by 24.7% and
33.1%, respectively.

2) RegNet-X: The experimental results of RegNet-X are
summarized in TABLE VIII and Fig. 10, where we also ob-
serve a significant improvement of our method. EC-Dynamic
outperforms the baseline RegNet-X (RCC-Baseline) with an
improvement of 1.4% in accuracy and a reduction of 50.0%
in MACs. Meanwhile, EC-Dynamic reduces the model param-
eters by 47.6% (4.4M v.s. 8.4M). In the low MACs regime,
EC-Dynamic observes a remarkable 3.7% improvement in
accuracy with only 33.3% parameters (2.8M v.s. 8.4M) com-
pared to RCC. As for the real performance on hardware, EC-
Dynamic obtains an accuracy of 86.2% with 5.5 ms latency on
Xavier, which is 1.4% higher in accuracy and 21.4% lower in
latency than RCC (84.8% top-1 accuracy, 7.0 ms). Similarly,
the latency reductions of EC-Dynamic on Nano and Intel CPU
are 22.0% and 24.0%, respectively. Besides, EC-Static also
observes a 29.0% throughput improvement (35.6 imgs/sec v.s.
27.6 imgs/sec) on Nano and a 31.7% throughput improvement
(19.1 imgs/sec v.s. 14.5 imgs/sec) on CPU compared to RCC.

G. Results on ImageNet-1K

In this subsection, we evaluate our approach on ImageNet-
1K, and compare the evaluation results with many SOTA
CNN compression frameworks. To enable a comprehensive
comparison with more SOTA frameworks, we employ ResNet-
50 as the baseline network. In addition, we also compare our
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Fig. 11. Comparison of our EdgeCompress with other state-of-the-art model
compression methods. The baseline model is ResNet-50 and the dataset is
ImageNet-1K.

compressed models with many popular backbone architectures
in different computation regimes.

1) Comparison with SOTA Compression Methods: Starting
with the baseline ResNet-50 model, we implement differ-
ent model shrinking methods, including resolution shrinking
(RCC), width shrinking (WidthShrink) [8], [49], depth shrink-
ing (DepthShrink) [41], EC-DIC, EC-Static, and EC-Dynamic
to compress the three dimensions of the model to different
MACs regimes and compare their performance. In addition,
we also report the performance of multiple SOTA model
compression techniques from the related papers, including
DR-ResNet50 [10], SSS-ResNet50 [50], Versatile [51], PFP-
A [52], C-SGD70 [53], GAL-1 [54], HRank [11], AutoPruner
[55], and RANet [40]. The comparison results are summarized
in Fig. 11, which shows that our method achieves the highest
accuracy across a wide range of MACs. Particularly, com-
pared to the baseline ResNet-50, our EC-Static achieves 1.2%
accuracy improvement (76.0% to 77.2%) with a negligible
increase in MACs (4.1B to 4.2B). Moreover, EC-Dynamic
further improves the accuracy to 77.6% with only 2.6B MACs,
which is 1.6% higher in accuracy and 36.6% lower in MACs
compared to the baseline ResNet-50. As we continue to reduce
the MACs budget, EC-Dynamic reduces the MACs by 48.8%
(4.1B to 2.1B) while still achieving 0.8% higher accuracy
(76.0% to 76.8%). In the lowest MACs regime, EC-Dynamic
and EC-Static achieve similar trade-offs between model MACs
and accuracy, both of which remarkably improve the accuracy
by 4.2% (70.0% to 74.2%) compared to RCC with similar
MACs. In comparison with other SOTA compression methods,
our method also achieves the best trade-off between MACs
and accuracy. For example, EC-Dynamic achieves 5.3% higher
accuracy (75.2% v.s. 69.9%) than GAL-1 [54] with less MACs
(1.5B v.s. 1.6B).

2) Comparison with Popular Backbones: In this experi-
ment, we compare our results on ResNet-50 with other models
from the ResNet family, such as ResNet-101 and ResNet-
34, etc. In addition, we also conduct extensive comparisons
with other popular backbones like DenseNets [56] and the
Inception family [48], [57]. As demonstrated in TABLE IX,
in the highest MACs regime, EC-Dynamic uses 67.1% less
MACs (2.6B v.s. 7.9B) to achieve 0.5% higher accuracy
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TABLE IX
COMPARISON WITH OTHER POPULAR BACKBONE NETWORKS.

Model #Params (M) #MACs (B) ↓ MACs (%) Top1 Acc. (%)

ResNet-50 [41] 25.6 4.1 0.0 76.0

ResNet-101 [41] 44.6 7.9 -92.7 77.4
DenseNet-161 [56] 28.7 7.9 -92.7 77.1
InceptionV3 [48] 27.2 5.8 -41.5 77.3
EC-DIC 25.9 4.2 -2.4 77.2
EC-Dynamic 20.4 2.6 36.6 77.6

ResNet34 [41] 21.8 3.7 9.8 73.3
DenseNet-169 [56] 14.2 3.4 17.1 75.6
EC-DIC 25.9 3.1 24.4 76.3
EC-Static 15.4 2.4 41.5 76.3
EC-Dynamic 17.1 2.1 48.8 76.8

ResNet-18 [41] 11.7 1.8 56.1 69.8
DenseNet-121 [56] 8.0 2.9 29.3 74.6
BN-Inception [57] 11.2 2.1 48.8 73.5
EC-DIC 25.9 1.9 53.7 74.9
EC-Static 13.5 1.8 56.1 75.6
EC-Dynamic 15.1 1.8 56.1 75.9

TABLE X
COMPARISON WITH OTHER DYNAMIC INFERENCE FRAMEWORKS. {D, W,

R} DENOTE THE DIMENSIONS INVOLVED FOR DYNAMIC INFERENCE.

Method d w r #MACs (B) Top-1 Acc. (%)

ResNet-50 [41] 4.1 76.0

SkipNet [34] ! 3.6 76.2
ConvNet-AIG [35] ! 3.1 76.2
Channel Selection [39] ! 2.5 76.2
DR-ResNet [10] ! 3.2 77.0
EC-Dynamic (ours) ! ! ! 2.6 77.6

RANet [40] ! ! 2.0 75.2
ConvNet-AIG [35] ! 2.6 75.3
DR-ResNet [10] ! 2.3 75.3
MSDNet [31] ! 2.1 75.7
Channel Selection [39] ! 2.3 76.1
EC-Dynamic (ours) ! ! ! 2.1 76.8

than DenseNet-161, while in the lowest MACs regime, EC-
Dynamic also obtains the highest top-1 accuracy (75.9%),
which is 6.1% and 2.4% higher than ResNet-18 (69.8%) and
BN-Inception (73.5%), respectively. The comparison results
with other backbones reveal that our method can achieve
promising results without redesigning the network architec-
ture, which avoids the extremely time-consuming exploration
of the architecture design space.

3) Comparison with SOTA Dynamic Inference Frameworks:
We can observe from the above experiments that our compres-
sion framework with dynamic inference (i.e., EC-Dynamic)
surpasses the one without dynamic inference (i.e., EC-Static)
in model efficiency and accuracy. To further validate the
advantages of our dynamic inference framework, we compare
it with multiple SOTA dynamic inference frameworks. The
comparison results are shown in TABLE X, from which we
observe that our EC-Dynamic framework achieves significant
improvements on accuracy without sacrificing model complex-
ity compared to other approaches. It is worth noting that the
most of existing dynamic inference approaches only adjust a
single dimension during inference, while our approach enables
the joint adaptation of the three dimensions based on our
multi-dimensional compression framework, achieving higher
accuracy and efficiency. This also reveals that all components
of our framework can be seamlessly coupled for a better result.

TABLE XI
STATIC INFERENCE V.S. DYNAMIC INFERENCE IN TERMS OF RUNTIME

LATENCY AND ACCURACY. THE LATENCY IS REPRESENTED BY THE
AVERAGE INFERENCE LATENCY OF ALL IMAGES.

Method Threshold Xavier (ms) Nano (ms) CPU (ms) Top1 (%)

EC-Static N.A. 8.3 41.6 81.8 75.6
EC-Dynamic 0.1 7.0 34.0 74.8 75.9

EC-Static N.A. 9.4 49.4 96.9 76.3
EC-Dynamic 0.2 7.9 38.2 84.9 76.8

EC-Static N.A. 10.8 56.0 117.6 76.8
EC-Dynamic 0.3 8.6 41.6 93.0 77.4

EC-Static N.A. 11.8 57.1 134.5 77.2
EC-Dynamic 0.4 9.5 44.7 100.4 77.6

4) On-Device Efficiency of Dynamic Inference: In this
experiment, we demonstrate the running efficiency of our
approach on various edge devices and analyze how the preset
threshold affects the on-device latency and accuracy. As shown
in TABLE XI, we first apply a small threshold (i.e., 0.1)
to our dynamic algorithm, which achieves higher accuracy
and lower latency than static inference. As we increase the
threshold, there are more images whose prediction confidence
is smaller than the threshold, and thus more images are sent
to the larger model for further inference. Consequently, both
the classification accuracy and average inference latency of
processing one image increase.

H. Results on CIFAR-10 and CIFAR-100

To better demonstrate the efficacy of our approach on small-
scale datasets, we conduct extensive experiments on both
CIFAR-10 and CIFAR-100 datasets. The experimental results
are shown in TABLE XII, which indicate that our approach
has significant advantages over other existing methods on both
datasets. For instance, our approach observes 2.09% higher
top-1 accuracy with 41.13% less computation on CIFAR-10.

TABLE XII
THE EXPERIMENTAL RESULTS ON CIFAR-10 AND CIFAR-100. THE

BASELINE NETWORK IS VGG-16 WITH BATCH NORMALIZATION LAYERS.
CR IN THE TABLE DENOTES THE COMPRESSION RATIO.

Dataset Method #MACs (M) MACs CR (%) Top1 Acc. (%)

CIFAR-10

VGG16 BN [47] 313.74 0.00 93.96

GAL-0.1 [54] 171.89 45.21 90.73
Hrank [11] 108.61 65.38 92.34
EdgeCompress (ours) 101.18 67.75 92.82

SSS [50] 183.13 41.63 93.02
Zhao et al [58] 190.00 39.44 93.18
Hrank [11] 145.61 53.59 93.43
EdgeCompress (ours) 120.55 61.58 93.64

CIFAR-100
SSS [50] 223.13 28.89 71.08
Zhao et al [58] 256.00 18.42 73.33
EdgeCompress (ours) 206.34 34.24 73.35

I. Robustness Analysis

To evaluate the robustness of the proposed framework, we
perform experiments in two long-tail settings: 1) exponential
and 2) step, and compare the results with the normal setting.
The experiments are conducted on CIFAR-10 with an unbal-
ancing factor of 0.5. The experimental results are shown in
TABLE XIII, where the minor accuracy degradation in long-
tail settings validates the robustness of our framework.
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TABLE XIII
RESULTS IN DIFFERENT LONG-TAIL SETTINGS, WHERE ”NORMAL”
DENOTES THE RESULTS IN THE NORMAL SETTING. THE NETWORK

UTILIZED IS VGG16 BN AND THE DATASET IS CIFAR-10.

Long-tail settings #Params (M) #MACs (M) Top1 Acc. (%)

VGG16 BN [47] 14.98 313.74 93.96

Normal 5.39 101.18 92.82
Exponential 5.92 112.12 91.69
Step 5.79 109.33 91.86

Normal 6.59 126.14 93.54
Exponential 6.90 132.54 92.42
Step 6.71 128.53 92.43

TABLE XIV
COMPARISON WITH DIFFERENT FOREGROUND PREDICTORS IN TERMS OF

THE CLASSIFICATION ACCURACY AND MODEL EFFICIENCY.

Model #Params (M) #MACs (B) Latency (ms) Top1 Acc. (%)

ResNet-18 [41] 11.23 1.81 3.01 75.59
ResNet-34 [41] 21.33 3.66 5.19 75.50
RegNet-X 800MF [4] 6.65 0.80 4.50 75.50
RegNet-X 1.6GF [4] 8.37 1.60 7.26 75.61
EfficientNet-B0 [3] 4.13 0.38 4.31 75.57
EfficientNet-B1 [3] 6.64 0.57 6.21 75.62
Ours 0.27 0.09 1.04 75.57

J. Analytical Experiments

In this subsection, we show the impact of some important
hyperparameters on the final performance of our framework.

1) The Architecture of The Foreground Predictor: The
design of the foreground predictor can significantly affect the
efficiency and accuracy of our framework. To validate the pro-
posed lightweight foreground predictor, we conduct compari-
son experiments by integrating different advanced CNN into
our framework as the foreground predictor. The experimental
results are summarized in TABLE XIV, where we observe that
our design achieves the best trade-off between accuracy and
efficiency. Even though some modern architectures can achieve
slightly higher accuracy, they result in magnitudes higher
model complexity and latency. For instance, EfficientNet-B1
only achieves a mere 0.05% accuracy improvement with 24.6×
parameters and 6.3× MACs compared to our predictor, which
significantly reduces the efficiency of the whole framework.

2) The Number of Models: The number of models cascaded
for dynamic inference is also crucial to the final performance
of our framework. We perform comprehensive experiments to
identify the optimal number of models from the perspective
of accuracy, computational complexity, and actual inference
latency. The experimental results in Fig. 12 uncover an in-
teresting insight that using too many models can worsen the
trade-off between model efficiency and accuracy. Specifically,
we observe that using two models for dynamic inference
achieves the optimal trade-off between model efficiency and
accuracy among all configurations. Meanwhile, the two-model
configuration avoids loading too many models onto the device,
optimizing the memory occupation of dynamic inference.

K. Ablation Study

Our framework contains three novel components: 1) Dy-
namic Image Cropping (DIC), 2) Compound Shrinking (CS),
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Fig. 12. The impact of the number of models used for dynamic inference on
the computational complexity and on-device latency. The latency is quantified
as the average latency of all images on AGX Xavier.

0: tench 7: cock 15: robin 18: magpie 100: black swan 345: ox 442: bell cot 178: Weimaraner 325: sulphur butterfly 400: academic gown

551: face powder 642: marimba 280: grey fox

499: cleaver 572: goblet 600: hook

810: space bar

699: panpipe

897: washer

722: ping-pong ball

927: trifle

788: shoe shop

999: toilet paper

814: speedboat

723: pinwheel

888: viaduct

379: howler

950: orange

448: birdhouse

977: sandbar

0: tench 7: cock 15: robin 18: magpie 100: black swan 345: ox

442: bell cot 178: Weimaraner 325: sulphur butterfly 400: academic gown

551: face powder 642: marimba 280: grey fox 810: space bar 897: washer 927: trifle

999: toilet paper 723: pinwheel 379: howler 448: birdhouse

Fig. 13. Visualization of the predicted bounding boxes (red) and the ground
truth bounding boxes generated from Grad-CAM (green). Our predictor
achieves a high localization accuracy of 62.1% mAP on ImageNet-1K
validation set. The images above are randomly selected from ImageNet-1K.

and 3) Dynamic Inference (DI). To validate the efficacy and
efficiency of each component separately, we conduct ablation
experiments on the ImageNet-1K dataset. The experimental
results are shown in TABLE XV, where we observe that our
DIC framework (i.e., EC-DIC) outperforms the ResizedCen-
terCrop strategy by a remarkable 1.5% accuracy improvement.
Afterwards, we gradually integrate the CS module and DI
strategy with DIC to build EC-Static and EC-Dynamic. The
experimental results demonstrate that both EC-Static and EC-
Dynamic further improve the accuracy, and the complete
framework EC-Dynamic achieves the best accuracy. Thanks
to the novel design of our framework, a significant improve-
ment on accuracy is achieved at a slightly higher latency
cost, optimizing the trade-off between accuracy and execution
efficiency. The ablation experiments reveal that all DIC, CS,
and DI components contribute to the final performance.

L. Visualization

1) Foreground Prediction: We visualize the bounding boxes
generated from both Grad-CAM and our predictor in Fig. 13.
We can see that the foreground of most images only occupies
part of the whole images, thus performing inference on the
whole image is unnecessary and inefficient, which coincides
with our motivation. Moreover, Fig. 13 validates that, even
though the lightweight foreground predictor only has very
limited computation and parameters, it can still accurately
and efficiently localize the main object. Due to the design of
the efficient foreground predictor, we can remove the spatial
redundancy in images, accelerating CNNs on edge devices.

2) Easy Samples & Hard Samples: We visualize some easy
samples and hard samples from ImageNet to more intuitively
demonstrate the difference between them. The visualization
results in 14 indicate that the most of easy images have a
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Fig. 14. Visualization of some hard samples and easy samples. Hard samples
are considered as the images that cannot be confidently classified by the
first model, and easy samples refer to those images that can be confidently
classified by the first model. All images are from ImageNet-1K.

TABLE XV
RESULTS OF ABLATION EXPERIMENTS. THE BASELINE NETWORK IS

RESNET-50 AND THE TARGET DATASET IS IMAGENET-1K.

Method #MACs (B) Latency (ms) Top1 Acc. (%)

ResNet-50 4.1 10.6 76.0

ResizedCenterCrop (RCC) 1.8 6.3 73.4
EC-DIC (DIC only) 1.9 7.3 74.9
EC-Static (DIC + CS) 1.8 8.3 75.6
EC-Dynamic (DIC + CS + DI) 1.8 7.0 75.9

simple and clear foreground, and thus they can be correctly
recognized by a small model. For hard samples, the images
are more confusing because of their unintuitive foreground,
and larger models are needed to mine high-level semantics in
images for the correct prediction. Through the proposed dy-
namic inference framework, images with different difficulties
can be processed by the appropriate model, achieving higher
run-time efficiency and accuracy.

V. CONCLUSION

In this paper, we propose EdgeCompress, a comprehensive
CNN compression framework to reduce the computational
redundancy in both input images and network architectures,
facilitating the deployment of advanced CNNs onto embedded
devices. In EdgeCompress, we first introduce dynamic image
cropping, which effectively and efficiently removes the redun-
dancy in input images. Subsequently, we present compound
shrinking to collaboratively compress the three dimensions
of CNNs, reducing the computational redundancy in both
input images and network architectures. Finally, we design a
dynamic inference strategy, which adaptively execute different
models for different input images, further improving the infer-
ence efficiency of CNNs. Extensive experiments validate the
advantages of EdgeCompress over existing SOTA approaches.
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