
Modular Design of KEM-Based
Authenticated Key Exchange?

Colin Boyd, Bor de Kock B, and Lise Millerjord

NTNU – Norwegian University of Science and Technology, Trondheim, Norway.
colin.boyd@ntnu.no, bor.dekock@ntnu.no, lise.millerjord@ntnu.no

Abstract. A key encapsulation mechanism (KEM) is a basic building
block for key exchange which must be combined with long-term keys in
order to achieve authenticated key exchange (AKE). Although several
KEM-based AKE protocols have been proposed, KEM-based modular
building blocks are not available. We provide a KEM-based authenticator
and a KEM-based protocol in the Authenticated Links model (AM), in
the terminology of Canetti and Krawczyk (2001). Using these building
blocks we achieve a set of generic AKE protocols. By instantiating these
with post quantum primitives we are able to propose several new post-
quantum secure AKE protocols.

1 Introduction

Authenticated key exchange (AKE) is a fundamental tool for establishing secure
communications. An important component in the design of AKE protocols is
Diffie–Hellman (DH) key exchange, due to its versatility and potential for pro-
viding security properties such as forward secrecy. Today many real-world AKE
protocols are based on DH implementations, typically in elliptic curve groups;
examples include TLS, IPSec, WireGuard and the generic Noise Framework.

The looming threat of quantum computers has brought about an increasingly
pressing need to find post-quantum secure replacements for DH, which itself
is well known to be broken by Shor’s quantum algorithm for finding discrete
logarithms [6]. In the absence of many promising candidates for a post-quantum
secure direct DH replacement, designs for post-quantum AKE have tended to
make use of key encapsulation mechanisms (KEM). This approach aligns well
with the research literature where many post-quantum candidate KEMs have
been proposed and also with the prominent NIST post-quantum cryptography
competition [1] which requests primitives of only two types, namely a KEM or
a digital signature. Although DH can be framed as a KEM, DH has special
properties which prevent KEMs from being used as a drop-in replacement for
DH. For example, DH has the property that two parties can generate their DH

? Boyd and Millerjord are supported by the Research Council of Norway under
Project No. 288545. Author list in alphabetical order; see https://www.ams.org/

profession/leaders/culture/CultureStatement04.pdf. A full version of this work
is available on the IACR ePrint Archive under number 2023/167.

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

2 Colin Boyd, Bor de Kock B, and Lise Millerjord

shares completely independently; this cannot be achieved in general with KEMs,
but rather one party must wait for the other party’s input.

Achieving the authenticated part of AKE has traditionally been done by ap-
plying a digital signature scheme on the messages of a key exchange protocol,
but authentication can also be achieved in different ways, which can be advanta-
geous for several reasons: for instance to achieve a speed-up or use less memory,
as other works have demonstrated [23].

Although in 2022 the NIST competition for post-quantum secure cryptog-
raphy (PQ or PQ-crypto) has led to the standardization of several signature
schemes, only one KEM was standardized along with an open call for more
schemes to be proposed [1]. To achieve authentication without depending on
this one scheme is a desirable property. One of the main motivations for our
work is to be flexible in the use of cryptographic primitives so that as the se-
curity of post-quantum KEMs or signatures becomes better understood, and as
new primitives are designed, it is easy to swap in and out different ones.

1.1 Modular design of AKE

Over the past decade, several key exchange protocols using post-quantum can-
didate KEMs have been proposed, both authenticated [12] and unauthenti-
cated [13,22,7]. Some of these protocols have been proposed based on specific
KEM constructions and the security proofs (where available) relate to specific
computational assumptions. These are essential constructions for instantiating
protocols using abstract primitives, but when using specific constructions as the
basis of security for AKE there is a loss of cryptographic agility. Our goal in this
work is to design generic AKE protocols where we can be as flexible as possible
with regard to choice of specific KEM instantiations and how they are used.

Our protocol designs are based on the modular approach of Bellare, Canetti
and Krawczyk [3,17] (hereafter referred to as BCK98) and Canetti and Krawczyk
[8] (hereafter referred to as CK01). This approach entails defining protocols
which are secure in a world which is ideally authenticated and then compiling
these protocols with authenticators to achieve protocols secure in a world where
adversaries completely control the network. A brief introduction to this modular
approach is given in Sec. 2.2.

A significant benefit of the modular approach is the ability to “mix-and-
match” different components and to use different concrete instances of the same
component within one protocol instantiation. This leads to a plethora of different
concrete protocols with varying performance characteristics.

We remark that there already exist several protocol designs which are generic
in the sense that they can use any specific (secure) instance of different cryp-
tographic primitives such as non-interactive key exchange (NIKE), signatures
and/or KEMs [14,5,19]. However, such designs do not allow generic mixing of
different generic primitives as can be done with the modular approach. For ex-
ample, the modular approach can be used to replace a digital signature authen-
tication method which a MAC-based method in the case that a pre-shared key
is available in a particular application.

Modular Design of KEM-Based Authenticated Key Exchange 3

1.2 Contributions

We regard the following as the main contributions of this paper:

1. We develop a new KEM-based authenticator and prove its security as a
valid authenticator in the CK01 definition, relying on the established CCA-
security definition for KEMs.

2. We frame the well-known method of using an ephemeral KEM as a DH
replacement as a protocol in the authenticated-links model (AM) of CK01
and prove its security in that model, relying on the established CPA-security
definition for KEMs.

3. We derive efficient and secure generic AKE protocols which can be instan-
tiated with any appropriately secure KEMs and also matched with other
primitives such as signatures. Some of these generic protocols are completely
new, allowing new instantiations of concrete protocols.

1.3 Related work

In 2017, De Saint Guilhem, Smart and Warinschi [11] presented a generic trans-
formation to convert any two-round forward-secret, but only passively secure,
key agreement protocol into a three-round authenticated key agreement proto-
col. Recognising the value of avoiding signatures for authentication in the post-
quantum setting, their transformation makes use of generic CCA-secure public
key encryption and a secure MAC. While the approach of De Saint Guilhem et
al. has clear parallels with ours, they rely on encryption rather than the often
more efficient notion of KEMs. Moreover, they do not allow mixing of different
authentication methods as we do, nor provide KEM-based concrete passively
secure protocols. Furthermore, their proofs require a key derivation function
modelled as a random oracle. Interestingly, they dismiss the CK01 modular ap-
proach stating that it necessarily results in increased number of rounds; below
we will explain why this is not the case.

Several recent works show that KEM-based approaches are suitable for re-
placing signatures in real-world applications. The KEMTLS protocol of Schwabe,
Stebila and Wiggers [23] is for instance a complete reworking of the TLS 1.3
handshake without using signatures, showing that this would in theory require
only half the bandwidth compared to a classical approach — with additional
improvements to be gained if the public keys are exchanged in advance [24].
Some of these theoretical improvements turned out to be less impactful when
looking at a real-world implementation [9].

Using KEM as a building block for AKE is also done in some other purpose-
specific works: examples of this include Post-Quantum Noise [2], FSXY [14]
and Post-Quantum WireGuard [18]. These are generic in the sense that any
suitable KEMs can be used, but they do not allow the flexibility of different
authenticators that we obtain. Specifically, they do not provide re-usable and
interchangable components for passive security and for authentication.

There exist many formal security models for AKE, amongst which several are
incomparable [10] in the sense that any one model is often neither stronger nor

4 Colin Boyd, Bor de Kock B, and Lise Millerjord

weaker than another. The modular approach that we use [8] achieves security
in the well-established model known widely as the CK-model. This encompasses
fundamental security properties of session key indistinguishability against active
attackers who can obtain non-target session keys and adaptively corrupt non-
target parties. Forward secrecy is also captured. This model can be adapted [21]
if other security properties, such as ephemeral key leakage, are desirable.

2 Background

The main goal of this section is to present the background necessary to un-
derstand the modular approach of (Bellare), Canetti and Krawczyk [3,8]. This
includes our method to optimise, in a rigorous way, protocols obtained through
the approach.

2.1 Standard definitions

We make use of standard definitions such as KEM, MAC, signatures etc. These
can be found in, for example, the textbook of Katz and Lindell [20].

Definition 1. A key encapsulation mechanism (KEM) is a tuple of PPT algo-
rithms (Gen, Encap, Decap) such that:

1. The key generation algorithm Gen takes the security parameter 1n and out-
puts a public-/private-key pair (sk, pk): (sk , pk)← Gen(1n).

2. The encapsulation algorithm Encap takes as input a public key pk. It outputs
a ciphertext c and a key k ∈ {0, 1}l(n): (c, k)← Encap(pk).

3. The deterministic decapsulation algorithm Decap takes as input a private key
sk and a ciphertext c, and outputs a key k or the special symbol ⊥ denoting
failure: k ← Decap(sk , c).

We require correctness from the KEM: If (sk , pk) ← Gen(1n) and (c, k) ←
Encappk (1n), and k′ ← Decapsk (c), then k′ = k except with negligible probability.

Furthermore we show the CPA (resp. CCA) indistinguishability experiment(s)
for KEMs.

Definition 2. The CPA resp. CCA indistinguishability experiment proceeds as

follows:

1. The key generation algorithm is run: (pk , sk)← Gen(1n).
2. The encapsulation algorithm is run: (c, k)← Encap(pk), with k ∈ {0, 1}n.
3. A uniform bit b ∈ {0, 1} is chosen. If b = 0, set k′ = k. Otherwise, if b = 1,

choose a uniform k′ ∈ {0, 1}n.
4. The experiments outputs (pk , c, k′) to A.

Modular Design of KEM-Based Authenticated Key Exchange 5

A is also given access to a decapsulation oracle, Decapsk (·), but cannot
query the decapsulation oracle on the ciphertext c.

5. A outputs a bit b′. If b′ = b, A wins and the experiment outputs 1. Otherwise,
A loses and the experiment outputs 0.

The advantage of the adversary A in the CPA CCA experiment is defined
to be:

Adv
CPA CCA

KEM (A) = 2 · |Pr [b′ = b]− 1/2| .

Definition 3. A message authentication code or MAC consists of three proba-
bilistic polynomial-time algorithms (Gen,Mac,MacVer) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1n

and outputs a key k with |k| ≥ n.
2. The tag-generation algorithm Mac takes as input a key k and a message

m ∈ {0, 1}∗, and outputs a tag t. Since this algorithm may be randomized,
we write this as t← Mack(m).

3. The deterministic verification algorithm MacVer takes as input a key k, a
message m and a tag t. It outputs a bit b, with b = 1 meaning valid and
b = 0 meaning invalid. We write this as b := MacVerk(m, t).

It is required that for every n, every key k and output by Gen(1n) and every
m ∈ {0, 1}, it holds that MacVerk(m,Mac(m)) = 1.

Definition 4. The existential unforgeability under chosen message attacks (EUF-CMA)
experiment for MAC(Gen,Mac,MacVer) proceeds as follows:

1. A key is generated: k ← Gen(1n).
2. The adversary A gets oracle access to Mack(·). Let Q be the set of all queries
A made to the oracle. The adversary eventually outputs (m, t).

3. A wins if and only if
(a) MacVerk(m, t) = 1, and
(b) m /∈ Q.
In that case the experiment outputs 1. Otherwise, the experiment outputs 0.

The advantage of the adversary A in the EUF-CMA experiment is defined to be:

AdvEUF-CMA
MAC (A) = Pr

[
GEUF-CMA
MAC (A) = 1

]
.

Definition 5. A (digital) signature scheme is a tuple of three PTT-algorithms
(Gen,Sign,SigVer) such that:

1. The key generation algorithm Gen takes the security parameter 1n and out-
puts a public-/private-key pair (sk, pk): (sk , pk)← Gen(1n).

2. The signing algorithm Sign takes as input a private key sk and a message m
from some message space (that may depend on pk). It outputs the signature
σ and we write this as σ ← Signsk (m).

6 Colin Boyd, Bor de Kock B, and Lise Millerjord

3. The deterministic verification algorithm SigVer takes as input a public key
pk, a message m and a signature σ. It outputs a bit b, with b = 1 meaning
valid and b = 0 meaning invalid. We write this as b := SigVerpk (m,σ).

We require correctness from the scheme: If (sk , pk)← Gen(1n) then, except with
negligible probability, SigVerpk (m,Signsk (m)) = 1.

For brevity we often denote the key generation algorithms from the various
primitives as Gen(), omitting the security parameter.

2.2 Canetti–Krawczyk modular design

The modular approach, arising originally in a 1998 paper of Bellare, Canetti and
Krawczyk [3], is to first define protocols secure against a limited adversary which
can then be promoted to protocols secure against a realistic adversary using a
generic compiler. In the authenticated links model (AM) the adversary is not per-
mitted to fabricate messages, but can otherwise control the network and deliver
messages out of order or to different parties from those intended. Compilers, or
authenticators, can be applied to messages in an AM protocol to obtain proto-
cols in the unauthenticated links model (UM) where the adversary can alter or
fabricate messages limited only by the available computational power.

In both the UM and AM, adversaries control the execution of protocols by
initiating parties and then invoking parties with available queries, including with
message inputs. (In Sec. 2.4 we describe the available adversarial queries.) Par-
ties respond to input messages by following the protocol definition and to other
queries as defined by the query. Each party computes local output which is
available to the adversary. The local output includes protocol decisions, such
as whether a message is accepted (see Sec. 2.4 for details).

Bellare et al. [3] provide a theorem showing that a secure protocol, ΠAM, in
the AM maps to a secure protocol in the UM, ΠUM, if the mapping is defined by
a valid authenticator. An authenticator is valid if an observer, or distinguisher, is
unable to distinguish between the world where an adversary A is interacting with
the ΠAM and the world where an adversary U is interacting with the protocol
ΠUM. This is captured in the notion of protocol emulation in Definition 7.

Definition 6. The AM-UM distinguishing experiment, GAM-UM-dist
ΠAM-ΠUM

(D) proceeds
as follows: (1) A uniform bit b ∈ {0, 1} is chosen. If b = 0, D will interact with
A and the AM protocol ΠAM. Otherwise, if b = 1, D will interact with U and the
UM protocol ΠUM. (2) To conclude the experiment, D will halt and output b′.
(3) The experiment will output 1 if and only if b = b′. We define the advantage
of the distinguisher D to be

AdvAM-UM-dist
ΠAM-ΠUM

(D) = 2 ·
∣∣∣∣Pr

[
GAM-UM-dist
ΠAM-ΠUM

(D) = 1
]
− 1

2

∣∣∣∣ .
Definition 7. Let ΠUM and ΠAM be protocols in the UM and AM models re-
spectively. We say that ΠUM ε-emulates ΠAM in unauthenticated networks if

Modular Design of KEM-Based Authenticated Key Exchange 7

for any UM-adversary U interacting with ΠUM, there exists an AM-adversary
A interacting with ΠAM such that for any distinguisher D playing the AM-UM
distinguishing game, AdvAM-UM-dist

ΠAM-ΠUM
(D) ≤ ε.

An authenticator is a specific type of protocol compiler transforming one protocol
into another. The modularity of the approach relies on the observation that an
authenticator will actually preserve protocol security as we will see in Sec. 2.4.

Definition 8 ([3]). An authenticator is a compiler, C, that takes an AM pro-
tocol ΠAM as input and outputs a UM protocol ΠUM, such that ΠUM emulates
ΠAM.

2.3 MT-authenticators

Defining an authenticator for any protocol, regardless of the number of messages,
seems at first a difficult problem. To deal with this, BCK98 [3] define a simpler
notion of an MT-authenticator, designed to authenticate a single arbitrary mes-
sage. They also showed that repeated use of a valid MT-authenticator is a valid
authenticator, so that protocol messages can be treated separately.

A bit more formally we define MT as a message transmission protocol in
authenticated networks that works as follows: when Pi is activated with (Pj ,m),
party Pi sends the message (Pi,Pj ,m) to party Pj and outputs “Pi sent m to Pj”.
Upon receiving (Pi,Pj ,m), Pj outputs “Pj received m from Pi”. Note that the
quoted outputs are local outputs of the parties and are critical in proving proper
emulation; however, when we later show compiled protocols we omit mention of
these local outputs.

An MT-authenticator, λ, is a protocol that emulates MT in unauthenticated
networks. Given a sequence of MT-authenticators, Λ = (λ1, λ2, . . . , λt), the de-
rived protocol compiler, CΛ, uses the next MT-authenticator to authenticate the
next message. More precisely, given a protocol Π in the AM with t messages,
m1,m2, . . . ,mt the protocol Π ′ = CΛ(Π) in the UM is defined as follows. For
each message, mk, sent in Π, λk is run to send the same message from the same
initiator to the same recipient. Whenever a party, Pj , outputs “Pj received m
from Pi” in λk, then Π is activated at Pj with message mk from Pi. If Λ is a
sequence of t MT-authenticators then CΛ is an authenticator. We restate this in
Thm. 1 and give a sketch of the proof, which is given in full in [3].

Theorem 1 ([3]). Let Λ = (λ1, λ2, . . . , λt) be a sequence of tMT-authenticators
so that each λk ε-emulates MT. Then the compiler, CΛ, will be an authenticator
such that for any protocol Π in the AM, CΛ(Π) (t · ε)-emulates Π in the UM.

Proof. Let Π be an AM protocol. Let U be a UM-adversary interacting with
CΛ(Π). A runs U on a simulated interaction. Action requests from U to parties
in the UM can be mimiced by A in the AM and A relays its results back to U .
The only problem with the simulation could occur in the case that U specifies
that a message is received by some party Pj from some party Pi in the UM, but
that message is not in the set of messages waiting for delivery in the AM. But

8 Colin Boyd, Bor de Kock B, and Lise Millerjord

Encryption-based MT-authenticator [3]

Alice Bob

“Alice sent m to Bob” m NB
$←− {0, 1}n

N′B ← DecryptdA(c) m, c = EncrypteA(NB)

m, τ = MacN′
B
(m,B) If MacVerNB(τ,m,B) = 1

“Bob received m from Alice”

Fig. 1: Bob authenticates message m from Alice.

this can happen with probability bounded by ε. Such an event could occur for
any of the t messages and so the probability that the simulation is correct is at
least (1− ε)t ≥ 1− t · ε. Finally, any observer will be able to distinguish between
the run of Π in the AM and CΛ(Π) in the UM with advantage at most ε′ = t · ε.

Note that although we have assumed that each MT-authenticator has the
same security level ε, the theorem is still true if the MT-authenticators have
different security levels ε1, ε2, . . . , εt and we take ε = maxk(εk). In the cases we
are interested in, we will always have t = 2.

An example of an MT-authenticator is the encryption-based authenticator
[3] shown in Fig. 1, where NB denotes a nonce and (eA, dA) an encryption-
decryption keypair. This is a valid MT-authenticator as long as the public key
encryption used is CCA-secure and the MAC is secure. The protocol can be
optimized in various ways, as we will show later.

There exist several other MT-authenticators defined in the literature includ-
ing signature-based [3], MAC-based [8] and password-based [17]. We show, in
compressed form, the signature-based MT-authenticator later (Fig. 8). The mod-
ular approach allows combination of any MT-authenticator together with any
AM-protocol, resulting in automatically secure UM protocols. Therefore adding
any new building block, either an MT-authenticator or an AM-protocol, results
in several new protocols of potential interest.

2.4 SK-security

SK-security is the AKE security notion of CK01 [8], capturing session key indis-
tinguishability and correctness of the protocol. To define this notion we need to
state the capabilities of the adversary and the indistinguishability experiment.
Each protocol run at a party A is associated with a session identifier s. In the AM
the value s is an input at the start of a run to the initiator party. Later we will see
that session identifiers can be replaced by protocol messages as long as parties
can verify that no incomplete sessions between the same parties have the same
session identifier. The state of a session consists of the following information:

Modular Design of KEM-Based Authenticated Key Exchange 9

– status – whether or not the session is complete, aborted, or still in progress;
– any ephemeral key material needed to complete the protocol;
– the session key, sk , if the protocol is completed and has not expired.

The global state of a party may include long-term authentication keys pkA, skA.
As in most AKE models, we do not explicitly model distribution of long-term
keys. Furthermore, we assume that long-term public keys are immediately avail-
able to any party that needs them. This may be too strong an assumption in
some real-world protocols, such as TLS, and we remark further on this issue
when we examine concrete protocols in Sec. 5.

Definition 9 (Matching sessions [8]). The two sessions (A,B, s, role) and
(A′,B′, s′, role′) are matching if A = B′, B = A′ and s = s′.

The adversary may issue the following queries, subject to certain restrictions we
will see later.

– NewSession(A,B, s, r): the adversary issues the NewSession query to party
A, specifying its intended partner B, the session identifier1 s, and the role
r (initiator or responder) of A in the session. A will follow the protocol
definition and may return an output message intended for B.

– Send(A,B,m): represents activation of A by an incoming message m (possibly
including a session identifier) from party B. A will follow the protocol and
may reject, accept, or return an output message intended for B.

– Corrupt(A): the adversary learns the whole state of A including any long-term
keys. The corruption event is recorded in the local output of A. Subsequently
A can never be activated but the adversary can take the role of A in the
protocol.

– RevealKey(A,B, s): the adversary learns the session key accepted in the ses-
sion s by A with partner B, if it exists. The reveal event is recorded in the
local output of A.

– RevealState(A,B, s): the adversary learns the state information associated
with session s at A, such as ephemeral keys. The reveal state event is recorded
in the local output of A.

– Expire(A,B, s): if there is a completed session s at A with B then any session
key associated with that session is deleted from the memory of A. The Expire
event is recorded in the local output of A.

– Test(A,B, s): this query can be asked only once and can only be made to a
completed session s at A with partner B. Furthermore there cannot have been
any of the following queries made: RevealKey(A,B, s) or RevealState(A,B, s)
or Corrupt(A) or Corrupt(B). If the bit b specified by the challenger is b = 1
then the session key is returned. Otherwise b = 0 and a random key from
the keyspace are returned.

Now we are in a position to define the SK-security experiment.

1 We remark that instantiation of session identifiers differs between the models. In UM,
s can be blank as the session identifier need not be determined by the adversary.

10 Colin Boyd, Bor de Kock B, and Lise Millerjord

Definition 10. The key indistinguishability experiment, GKey-Ind
Π (A) is defined

as follows: (1) The challenger chooses a random bit b needed to define the Test
query response. (2) The challenger initialises n parties and any long-term keys.
(3) A may issue queries as defined above. (4) Eventually A halts and outputs
a bit b′ to indicate its guess for b, based on the response to the Test query. The
experiment outputs 1 if and only if b′ = b.

Definition 11. A key exchange protocol Π is ε− SK-secure if the following
holds for any adversary A:

– two honest parties (i.e. uncorrupted parties who faithfully execute the proto-
col instructions) completing matching sessions of the protocol Π will output
the same key, except with negligible probability, and

– the advantage of the adversary U in the key indistinguishability experiment
is: AdvKey-IndΠ (A) = 2 · |Pr [b′ = b]− 1/2| ≤ ε.

The final step needed to bring the modular approach together is to show
that emulation preserves SK-security. This was proven in CK01 and we re-state
and re-prove it as Thm. 2 including concrete bounds. Note that using emulation
of an ideal key exchange process as a definition of security, the original idea of
BCK98, results in too strong a definition to allow some well-known protocols to
be proven secure [8, Appendix A].

Theorem 2 ([8]). Let Π be an ε−SK-secure protocol in the AM with t messages.
Let CΛ be the compiler based on MT-authenticators λ1, λ2, . . . , λt such that for
any protocol Π in the AM, CΛ(Π) α-emulates Π in the UM. Then protocol
Π ′ = CΛ(Π) is an ε′ − SK-secure protocol in the UM with ε′ = ε+ α.

Proof. Assume to the contrary that there exists a UM adversary U that has
advantage ε′ in the UM. Using U , we build an AM adversary, A, playing the
game of Defn. 10. When A receives its setup information consisting of system
parameters and public keys from its challenger, A sends the same information to
U . Then A invokes U and mimics its behaviour in the AM, using its challenger
to respond to the action requests when any party is exposed.

When U sends a message to a party Pj from a party Pi in the UM, A sends
the same message between the same parties in the AM. The emulation will be
perfect unless U successfully sends a message m to some party Pj from Pi but
m was never sent by Pi. In this case we will say that U made a forgery and we
let forge be the event that a forgery happens at any time during the run of U .

If forge occurs then A will abort the simulation and return a random bit to
its challenger. Note that this also defines a distinguisher D which will always win
in the case that forge occurs. If forge does not occur then at some point U will
ask its Test query for a session s. A then announces session s for its own Test
query in the AM, receives a real or random key, and returns it to U . Eventually
U will halt and output its bit which A copies as its response. In this case, A

Modular Design of KEM-Based Authenticated Key Exchange 11

wins whenever U wins.

Pr[A wins] = Pr[A wins|forge] · Pr[forge] + Pr[A wins|¬forge] · Pr[¬forge]
= 1/2 · Pr[forge] + Pr[B wins] · (1− Pr[forge])

≥ Pr[B wins]− 1/2 · Pr[forge]

We also implicitly defined a distinguisher, D, which wins when forge occurs or
wins with probability at least 1/2 when forge does not occur: Pr[D wins] ≥
Pr[forge]/2 + 1/2. Putting this together we get:

AdvKey-IndΠ′ (U) ≤ AdvKey-IndΠ (A) + AdvAM-UM-dist
Π−Π′ (D).

2.5 Optimising the UM protocol

Simple application of an MT-authenticator to each message of an SK-secure AM
protocol results in an SK-secure UM protocol as proven in Thm. 2. However, such
a protocol is far from optimal. The most obvious drawback is that a two-message
protocol, such as Diffie–Hellman, compiles to a six-message protocol. The obvious
way to optimise such a protocol is to “piggyback” messages going in the same
direction. The resulting protocol may be secure, but formally this process may
break the security proof because it may alter the order of the local output of the
parties, allowing trivial distinguishability outputs of the AM protocol from the
outputs of the compiled UM protocol [17].

Because of such issues, the modular approach of CK01 has been criticised
[11] for not achieving efficient protocols. There is some truth in such criticisms
— for example, when using signature- or encryption-based authenticators it is
not possible to achieve secure 2-message AKE protocols which are often seen
in the literature. Fortunately, rigorous optimisations are not difficult to achieve,
typically resulting in 3-message protocols as efficient as real-world protocols.
Indeed, 3-message AKE protocols are necessary in any case to achieve desirable
security properties such as mutual entity authentication or key confirmation.

Hitchcock et al. [17] designed a general technique for altering message order-
ing in a security-preserving way. This involved defining an intermediate model
between the AM and UM, which they call the hybrid model. Rather than use this
more comprehensive approach, here we apply simple techniques to allow optimi-
sation of the number of messages and re-use message components as session iden-
tifiers. Consequently, the drawbacks of practical application of authenticators are
removed resulting in generic protocols as efficient as standalone protocols.

Compressed authenticators. The first step is to compress the authenticator to
remove redundant elements. Notice that use of the authenticator in Fig. 1 ex-
pands each message m from the AM into three messages in the UM. However,
sending m in all three messages is not actually needed (to achieve security), so
we can simplify the encryption-based authenticator into a compressed version
shown in Fig. 2. It is not hard to see [3,17] that removal of the repeated m
fields does not affect the security of the MT-authenticator. Depending on the

12 Colin Boyd, Bor de Kock B, and Lise Millerjord

Compressed Encryption-based MT-authenticator

Alice Bob

N′B ← DecryptdA(c) c = EncrypteA(NB) NB
$←− {0, 1}n

“Alice sent m to Bob” m, τ = MacN′
B
(m,B)

If MacVerNB(τ,m,B) = 1

“Bob received m from Alice”

Fig. 2: Compressed version of MT-authenticator in Fig. 1.

application scenario, the version in Fig. 1 may remain appropriate. The version
in Fig. 2 is useful in a situation where Bob knows that some message, as yet
unknown, will be authentically received from Alice; this case typically occurs in
AKE protocols. Later we will see that to apply optimisation it is important that
the first message in Fig. 2 is independent of the message to be authenticated, so
that it can be generated and sent early in the protocol.

Session identifiers. In the original formulation of CK01, session identifiers are
sent in each protocol run in the AM. These must be unique for each active
protocol run between the same parties, but it is not defined how they should be
obtained in practice. Although the only property required of session identifiers is
uniqueness, a natural way of obtaining them is to use random values chosen by
each party; in that case the probability that session identifiers are not unique is
negligible. In practice it may not be a burden for each party to ensure that there
are no other incomplete sessions with the same identifier so that uniqueness is
unconditionally guaranteed.

We assume that higher communication layers will provide a mechanism to
ensure that messages get delivered to the correct session. They can also be
explicitly added to the protocol messages if desired.

3 KEM-based building blocks

This section defines and proves security for the basic KEM-based MT-authenticator
and AM protocol, which will be brought together in Sec. 4 as components in
defining generic efficient KEM-based AKE.

3.1 KEM-based MT-authenticator

Fig. 3 illustrates our KEM-based MT-authenticator. The construction is closely
related to the encryption-based authenticator of BCK98.

Next we give a theorem that λKEM is secure, meaning that it emulates MT in
unauthenticated networks, as long as the KEM used achieves CCA security. The

Modular Design of KEM-Based Authenticated Key Exchange 13

KEM-based MT-authenticator

Alice Bob

“Alice sent m to Bob” m (c, k)← Encap(pkA)

m, c

k ← Decap(skA, c) m, τ = MACk(m,B) If MacVerk(τ,m,B) = 1

“Bob received m from Alice”

Fig. 3: KEM-based MT-authenticator, λKEM: Bob authenticates m from Alice.

proof of Thm. 3 follows the proof strategy of Bellare et al. [3, Prop. 5] for their
encryption-based authenticator. The complete proof is given in the full version.

Theorem 3. The KEM-based MT-authenticator, λKEM, in Fig. 3, when instan-
tiated with a CCA-secure KEM and a secure MAC scheme, ε-emulates protocol
MT in unauthenticated networks such that ε ≤ l · (AdvCCAKEM(D) +AdvEUF-CMA

MAC (F))
where l = n2P × nM , nP is the number of parties that run the protocol and nM
is the maximum number of challenge messages that can be sent by any party.

Now that λKEM is proven to be an MT-authenticator we can invoke Thm. 2
to conclude that λKEM can be used to authenticate messages in an SK-secure
AM protocol and results in a SK-secure UM protocol. In order to optimise the
resulting protocol we will want to use a compressed version of the authenticator
(see Sec. 2.5) as shown in Fig. 4.

Compressed KEM-based MT-authenticator

Alice Bob

c (c, k)← Encap(pkA)

k ← Decap(skA, c) m, τ = MACk(m,B) If MacVerk(τ,m,B) = 1

“Alice sent m to Bob” “Bob received m from Alice”

Fig. 4: λKEM, the compressed KEM-based MT-authenticator.

The security proof for the compressed authenticator is identical to the proof
for the full authenticator since the only difference is the deletion of plaintext
messages in the UM which are ignored in the security proof.

Corollary 1. Theorem 3 still holds if the authenticator in Fig. 3 is replaced by
the compressed KEM-based MT-authenticator, λKEM, in Fig. 4.

14 Colin Boyd, Bor de Kock B, and Lise Millerjord

KEM-based AM-protocol

Alice Bob

(pke, ske)← Gen() pke, s (c, sk)← Encap(pke)

sk ′ ← Decap(ske, c) c, s

Fig. 5: KEM-based protocol with any CPA-secure KEM (see Def. 2).

3.2 KEM-based AM protocol

In Fig. 5 we present a KEM-based protocol Π that is SK-secure in the AM. The
protocol is a generalisation of the basic Diffie–Hellman AM protocol of CK01 [8].
We assume that a setup with parameters for the KEM is known already to all
parties. The initiator A will be invoked by the NewSession(A,B, s, r) query and
responds with a new ephemeral KEM public key pke. Upon receipt of (pke, s)
the responder encapsulates a new session key sk in c, and returns it to party A.

Theorem 4. Let A be an adversary against the SK-security of protocol Π shown
in Fig. 5. Let A interact with at most q sessions of Π for each pair of parties.
Let n be the maximum number of parties involved in the protocol run. Then the
advantage of A can be bounded by: AdvSKΠ (A) ≤ n2q · AdvCPAKEM(B).

The proof of Theorem 4 is in the full version.

4 Generic KEM-based AKE protocols

With the building blocks from Sec. 3 we now apply MT-authenticators to AM
protocols and optimise them to obtain protocols which are both SK-secure in
the realistic UM security model and efficient in comparison with other protocols
in the literature. There is no restriction to apply the new MT-authenticator in
Fig. 4 only to the new AM protocol in Fig. 5; the authenticator can be applied to
any SK-secure AM protocol and any authenticator can be applied to the KEM-
based AM protocol. Furthermore, we may apply different MT-authenticators to
each of the messages in an AM protocol [17, Thm. 6] resulting in yet more ways
to construct different secure protocols.

Due to our field’s focus on post-quantum security in recent years, we em-
phasise KEM-based and signature-based components in this section, allowing
us to apply any of the primitives from the NIST competition library. We illus-
trate this usage with several different examples in this section, applying both
our new KEM-based authenticator and the existing signature-based authentica-
tor to achieve a variety of protocols. Another example, also with potential for
post-quantum security, is to apply the MAC-based authenticator of CK01 to
our KEM-based AM protocol. This results in a protocol suitable for pre-shared

Modular Design of KEM-Based Authenticated Key Exchange 15

Generic authenticated KEM-based protocol (unoptimised)

Alice Bob

(pke, ske)← Gen() c1 (c1, k1)← Encap(pkA)

k′1 ← Decap(skA, c1)

m1 ← (pke ‖ s)

τ1 ← Mack′
1
(m1 ‖ B) m1, τ1 m′1 ← (pke ‖ s)

If MacVerk1(τ1,m
′
1 ‖ B) = 0

Abort

(c2, k2)← Encap(pkB) c2 k′2 ← Decap(skB, c2)

(c∗, k∗)← Encap(pke)

m2 ← (c∗ ‖ s)

m′2 ← (c∗ ‖ s) m2, τ2 τ2 ← Mack′
2
(m2 ‖ A)

If MacVerk2(τ2,m
′
2 ‖ A) = 0

Abort

k∗ ← Decap(ske, c
∗)

Fig. 6: Generic 4-message protocol obtained by compiling the KEM-based AM
protocol with the compressed KEM-based MT-authenticator.

key environments which is a common scenario, for example in TLS and IPSec.
Details of a MAC-based generic protocol construction are available in Appendix
3.

4.1 Compiled KEM-based protocol and optimization

We start with the AM-secure protocol from Fig. 5 and then apply the compiler
consisting of application of the compressed MT-authenticator to each of its two
messages. This leads to the 4-message protocol of Fig. 6.

Messages 1 and 2 are the result of applying the compressed MT-authenticator
to authenticate the ephemeral public key pke generated by Alice. Messages 3 and
4 are the result of applying the compressed MT-authenticator to authenticate
the encapsulated shared key c∗ generated by Bob. The difference between m1

and m′1 (resp. m2 and m′2) in Fig. 6 is that both players have their own version
of s — the MAC verifies the integrity of both the message and the session.

To optimise the 4-message protocol in Fig. 6 we take four simple steps: (1)
The messages that were numbered 2 and 3 will be sent in parallel as a new
message with number 2. This does not change the order or contents of any

16 Colin Boyd, Bor de Kock B, and Lise Millerjord

Optimised KEM-based UM protocol

Alice Bob

(c1, k1)← Encap(pkB) c1 (pke, ske)← Gen()

(c2, k2)← Encap(pkA)

s← c1 ‖ c2
k′1 ← Decap(skB, c1)

s← c1 ‖ c2 pke, τ1, c2 τ1 ← Mack′
1
(pke ‖ s ‖ A)

If MacVerk1(τ1, pke ‖ s ‖ A) = 0

Abort

k′2 ← Decap(skA, c2)

(c∗, k∗)← Encap(pke)

τ2 ← Mack′
2
(c∗ ‖ s ‖ B) c∗, τ2 If MacVerk2(τ2, c

∗ ‖ s ‖ B) = 0

Abort

k∗ ← Decap(ske, c
∗)

Fig. 7: Optimised UM protocol from the KEM-based AM protocol and the KEM-
based MT-authenticator.

messages. (2) The session identifier, s, will be constructed by the parties as part
of the protocol, instead of taking it as an external input to the protocol. Recall
that the only requirements on s are to be unique between the parties amongst
any incomplete protocol session between the two parties. We choose s = c1 ‖ c2
where c1 and c2 are the (randomised) encapsulations (ciphertexts) generated
by each party. (3) Repeated message fields and fields previously generated by
message receivers are removed from messages. (4) The protocol parties are re-
labelled so that Alice becomes the protocol initiator. Combining all of these steps
we obtain the optimised protocol shown in Fig. 7.

As far as we are aware, the precise protocol of Fig. 7 is new in the literature.
There are several existing protocols also aimed at achieving AKE based only on
KEMs [14,23,18] or encryption [11]. Several of these are motivated by the desire
to avoid signatures, which tend to suffer efficiency disadvantages compared with
KEMs in the post-quantum examples from the NIST competition. The security
varies between of each these protocols. For example, the FSXY protocol [14]
provides security against ephemeral key leakage whereas KEMTLS [23], like the
protocol of Fig. 7, lacks this property. On the other hand, our protocol does allow
state reveals from non-target sessions. KEMTLS is also designed to provide only
one-way (server) authentication. Making a judgement on which of these protocols
is “better” is therefore difficult since it depends on the security requirements and
implementation details. In Sec. 5 we compare efficiency using concrete KEMs and
signature schemes to get a better feel for the relative efficiencies.

Modular Design of KEM-Based Authenticated Key Exchange 17

Compressed Signature-based MT-authenticator

Alice Bob

NB NB
$←− {0, 1}n

σ ← SignskA
(m,B, NB) m,σ If SigVerpkA

(σ,m,B) = 1

“Alice sent m to Bob” “Bob received m from Alice”

Fig. 8: λSign, a compressed signature-based MT-authenticator.

4.2 Generic protocols using signatures

We now look at two further generic protocols which we can obtain by using
signatures in combination with our KEM-based AM protocol. We will need to
apply the compressed signature-based authenticator shown in Fig. 8.

The authenticator λSign is derived from the authenticator of BCK98 by re-
moving the unnecessary message components in exactly the same way as for the
encryption- and KEM-based authenticators. As before, the existing proof that
the full authenticator is a valid MT-authenticator [3] still holds.

The optimised protocol for the KEM-based AM protocol compiled with the
signature-based authenticator is shown in Fig. 9. The optimisation follows the
same process as described in Sec. 4.1. Although more general, the resulting
protocol has much in common with the signed Diffie–Hellman protocol which
has been widely known and deployed for many years and is today the usual
AKE in the latest version of TLS (though with only one-sided authentication).

We have another way to authenticate the KEM-based AM protocol, namely
to authenticate its two messages with different MT-authenticators. As far as we
are aware there are no examples of such a protocol in the existing literature.
There can be practical usages, for example when signatures are very expensive
to generate but very cheap to verify. In such a case, when a powerful server
authenticates its AM message it can shift computation away from a lightweight
client by using the signature-based authenticator, while the client can avoid
generating signatures by using a different KEM-based authenticator. In Fig. 10
we show the optimised protocol using the KEM-based authenticator for the
first message and the signature-based authenticator for the second message. A
mirror protocol results from using the two authenticators the other way around.
For completeness this optimised protocol is given as Fig. 13 in Appendix 2.

5 Concrete post-quantum secure AKE protocols

In the previous section we have presented optimised generic AKE protocols which
will be secure as long as the KEM, signature and MAC primitives are instantiated
with secure instances. Even restricting to a handful of currently best-trusted

18 Colin Boyd, Bor de Kock B, and Lise Millerjord

Optimised KEM-based UM protocol with signature authentication

Alice Bob

NA
$←− {0, 1}n NA (pke, ske)← Gen()

NB
$←− {0, 1}n

s← NA ‖ NB

s← NA ‖ NB
pke, NB , σ1 σ1 ← SignskB

(pke ‖ s ‖ A)

If SigVerpkB
(σ1, pke ‖ s ‖ A) = 0

Abort

(c∗, k∗)← Encap(pke)

σ2 ← SignskA
(c∗ ‖ s ‖ B) c∗, σ2 If SigVerpkA

(σ2, c
∗ ‖ s ‖ B) = 0

Abort

k∗ ← Decap(ske, c
∗)

Fig. 9: Optimised UM protocol from the KEM-based AM protocol and the
signature-based MT-authenticator.

post-quantum primitives, this leads to hundreds of potential concrete protocols,
bearing in mind that we have shown that different KEMs and signatures can
be mixed in the same protocol and observing that the generic protocols are
not symmetric between initiator and responder. The question of whether the
concrete instantiated protocols are practical in terms of computational efficiency
and message size is a natural one.

5.1 Computational cost

To give an impression of the computational costs of our new protocols we sum-
marize the number of public key operations needed in each of our optimised
protocols in the upper part of Table 1. The lower part of the same table includes
the number of similar operations for some prominent existing protocols.

All of the protocols in Table 1 use three passes and three rounds. However,
they do not all have the same goals or assumptions. TLS and KEMTLS only
aim for server-side authentication while our protocol in Fig. 13 assumes pre-
shared keys. PQ-WireGuard [18] is a variant of the WireGuard protocol using
only KEMs. Its design is based on the FSXY protocol [14]. All of the protocols
in the lower half of Table 1 use only KEMs, both for authentication and key

2 Using Diffie-Hellman as an ephemeral KEM. Unilateral authentication
3 Unilateral authentication
4 Assuming that our KEM-based AM protocol is used as the base protocol.
5 Encryption is needed in the full protocol, not encapsulation

Modular Design of KEM-Based Authenticated Key Exchange 19

Optimised KEM-based UM protocol with KEM/SIG authentication

Alice Bob

(c1, k1)← Encap(pkB) c1 (pke, ske)← Gen()

NB
$←− {0, 1}n

s← c1 ‖ NB

k1 ← Decap(skB, c1)

s← c1 ‖ NB
pke, NB , τ1 τ1 ← Mack1(pke ‖ s ‖ A)

If MacVerk1(τ1, pke ‖ s ‖ A) = 0

Abort

(c∗, k∗)← Encap(pke)

σ2 ← SignskA
(c∗ ‖ s ‖ B) c∗, σ2 If SigVerpkA

(σ2, c
∗ ‖ s ‖ B) = 0

Abort

k∗ ← Decap(ske, c
∗)

Fig. 10: Optimised UM protocol from the KEM-based AM protocol and the KEM-
based MT-authenticator used for the first message, and the signature-based MT-
authenticator for the second message.

Table 1: The number of public key operations for ours and existing protocols.
Initiator Responder

Gene Encap Decap Sign SigVer Gene Encap Decap Sign SigVer

Fig 7. KEM/KEM 0 2 1 0 0 1 1 2 0 0
Fig 9. Sig/Sig 0 1 0 1 1 1 1 0 1 1
Fig 10. KEM/Sig 0 2 0 1 0 1 0 2 0 1
Fig 11. Sig/KEM 0 1 1 0 1 1 1 1 1 0
Fig 13. MAC/MAC 0 1 0 0 0 1 0 1 0 0

TLS 1.32 1 0 1 0 1 0 1 0 1 0
KEMTLS3 [23] 1 1 1 0 0 0 1 1 0 0
KEMTLS-pdk [24] 1 1 2 0 0 0 2 1 0 0
PQ-WireGuard [18] 1 1 2 0 0 0 2 1 0 0
SSW174[11] 1 15 2 0 0 0 2 1 0 0

exchange. When comparing with our KEM-only protocol of Fig. 7 we see that
the main computational effort is the same as in the three bottom protocols which
are all KEM-only protocols. We conclude that our protocols are comparable in
computation to existing ones. Another difference between the various protocols is
on which side most computations are performed, e.g. in Fig. 10 the initiator Alice
encapsulates twice while Bob performs computationally heavier decapsulations
and generation of the ephemeral key.

20 Colin Boyd, Bor de Kock B, and Lise Millerjord

The most obvious difference between the upper and lower part of the table is
that our designs have the responder generating the ephemeral KEM key while all
existing protocols shown give this task to the initiating party. We do not believe
that either option is inherently better, rather it depends on the relative costs
of generation, encapsulation and decapsulation of the instantiating ephemeral
KEM. For some well-known KEMs (Table 3a), key generation is far more costly
than encapsulation or decapsulation. To minimise the overall protocol cost to
both parties it seems better to use an algorithm with more uniform cost for the
three KEM operations, but if it is desired to reduce the cost of one party at the
expense of the other then different algorithms can be better.

It can be argued that implementation is most efficient when the same concrete
KEM is used for all three of the KEM instances in the all-KEM protocols. This
should be true at least with regard to the codebase needed in any implementa-
tion. However, this may not be the case when it comes to counting computation
cycles. Recall that the AM protocol includes generation of an ephemeral public
key, while the long-term keys are generated only once before the protocol runs.
Therefore it can make sense to use a KEM with an efficient key generation algo-
rithm for the ephemeral KEM, and a different one with a much less efficient key
generation algorithm for the KEM using the long-term keys. PQ-WireGuard [18]
does exactly this, using Classic McEliece for the long-term KEM and a variant
of Saber for the ephemeral KEM. The size of its public key (Table 3a) shows
why using Classic McEliece for the ephemeral KEM seems to be a bad idea.

Current known post-quantum signatures tend to be computationally less effi-
cient than KEM constructions (Table 3b) where signing is much more expensive
than decapsulation in known algorithms. It is therefore natural that KEM-based
authentication currently is seen favourably. This can change in the future, and
the NIST focus on new post-quantum signature proposals may well lead to more
efficient post-quantum secure signature algorithms. To our knowledge, there is
no analog to our KEM/Sig or Sig/KEM protocols in the literature, neither are
we aware of post-quantum proposals for the pre-shared key case.

5.2 Communications cost

In Table 2 we take an inventory of the message fields in each of our abstract
protocols. Due to the optimisation techniques explained earlier, the number of
fields sent and received by each party is three in all cases. Informally, at least,
this is a minimum since the ephemeral public key needs to communicated and
then used in the response, and each of these two messages must be authenticated
using a fresh value chosen by the other party.

The size of these fields depends on the parameters of the concrete primi-
tives chosen. In July 2022, NIST announced a first list of selected candidates
as a result of its Post-Quantum Cryptography competition [1], pointing out
CRYSTALS-Kyber as their selected KEM and CRYSTALS-Dilithium as their
selected signature algorithm. Using the real-world efficiency of the Kyber KEM
and the Dilithium signature scheme, in Tables 3a and 3b and naively adding up
these numbers, all messages in our Fig. 10 protocol would be under 5 kB for

Modular Design of KEM-Based Authenticated Key Exchange 21

Table 2: What comprises the messages sent in each protocol.
Message 1 Message 2 Message 3

Fig 7. KEM/KEM ct pk , ct , MAC ct , MAC
Fig 9. Sig/Sig N pk , N, σ ct , σ
Fig 10. KEM/Sig ct pk , N, MAC pk , MAC
Fig 11. Sig/KEM N pk , σ, ct ct , MAC
Fig 13. MAC/MAC N pk , N, MAC ct , MAC

Kyber-1024, which definitely is practical. Another look at the ephemeral public
key sizes in Table 3a shows why the choice of Saber in PQ-WireGuard [18] is an
obvious one. We note that before its recent demise, SIKE looked an even more
promising candidate to minimise the ephemeral key size.

Just as for computation efficiency, currently accepted post-quantum secure
signature candidates do not look attractive for communications efficiency as
shown in Table 3b. To minimise signature size FALCON is a better choice than
Dilithium, but requires a trade-off with computation.

We reiterate that Table 2 assumes that authentic long-term public keys are
available to all parties by some external channel. This fits some real-world pro-
tocols (such as WireGuard) but not others (such as TLS). Post-quantum signa-
tures used to certify the long-term public keys can be chosen independently of
other concrete choices in the protocol. This choice will obviously affect both the
computation for each party and the size of the protocol messages. Although reg-
istration of public keys can avoid use of post-quantum signatures [16], it seems
necessary to use signatures to achieve usual certificate properties.

Appendix 1 ETSI Tables

Tables 3a and 3b present the computational efficiency of various KEMs and
signatures from the NIST competition. The figures are taken from two recent
reports from ETSI [25,26]. They are not intended as definitive efficiency com-
parisons — indeed some of the figures have already been improved upon —
but rather to illustrate typical ballpark figures and highlight the big variation
between many of the existing proposals.

We find it interesting to remark on a major difference regarding the sym-
metry of the computation requirements between Diffie–Hellman and the AM
protocol (Fig. 5) which can be regarded as a generalisation. The computational
requirements for Diffie–Hellman are the same for both initiator and responder.
In the AM protocol the initiator runs Gen and Decap while the responder runs
only Encap. Of itself this is not significant, since Encap really has two purposes:
to generate the new key for the responder and to generate the encapsulation for
the initiator. Thus in the Diffie–Hellman case the cost of Encap is the same as
the cost of Gen plus the cost of Decap. However, in all the examples in Table 3a
this is nowhere close to being true. Indeed Encap is always significantly cheaper

22 Colin Boyd, Bor de Kock B, and Lise Millerjord

Table 3: The efficiency of selected post-quantum algorithm proposals. Algorithms
Gen, Encap, Decap, Sign and SigVer, are measured in clock cycles on a standard
processor. Parameters public key size (pk), ciphertexts (encapsulations) (ct) and
signatures (σ) are measured in bytes.

(a) The efficiency of various KEMs [25].

NIST security
Gen Encap Decap pk ct category

mceliece348864 36641040 44 350 134 745 261120 128 1
mceliece460896 117067765 117 782 271 694 524160 188 3

KYBER512 33856 45 200 59 088 800 768 1
KYBER1024 73544 97 324 115 332 1568 1568 3

ntruhps2048677 309216 83 519 59 729 930 930 1
ntruhps4096821 431667 98 809 75 384 1230 1230 3

LightSaber 45152 49 948 47 852 672 736 1
Saber 66727 79 064 76 612 992 1088 3

(b) The efficiency of various signature schemes [26].

NIST security
Sign SigVer σ category

Dilithium-3 269 000 118 000 3293 3
Dilithium-5 429 000 179 000 4595 5

FALCON-512 386 678 82 340 666 1
FALCON-1025 789 564 168 498 1280 5

than Gen plus Decap, which may be important when deciding which party take
the role of initiator in a protocol run.

Appendix 2 Optimised KEM-based UM protocol with
SIG/KEM authentication

We give here in Fig. 11 an optimized protocol using the signature-based authen-
ticator for the first message and the KEM-based authenticator for the second.
This is reversed from the protocol in Fig. 10.

Appendix 3 MAC-based MT-authenticator

Canetti and Krawczyk [8] present also a MAC-based MT-authenticator (interest-
ingly described only in compressed form) as shown in Fig. 12. This authenticator
can be useful in scenarios where pre-shared keys exist such as in many use-cases
of TLS with lightweight entities and also in session resumption in the latest TLS
1.3 version.

Modular Design of KEM-Based Authenticated Key Exchange 23

Optimised KEM-based UM protocol with SIG/KEM authentication

Alice Bob

NA
$←− {0, 1}n NA (pke, ske)← Gen()

(c1, k1)← Encap(pkA)

s← NA ‖ c1

s← NA ‖ c1 pke, σ1, c1 σ1 = SignskB
(pke ‖ A ‖ s)

If SigVerpkB
(σ1, pke ‖ A ‖ NA) = 0

Abort

k′1 ← Decap(skA, c1)

(c∗, k∗)← Encap(pke)

τ2 ← Mack′
1
(c∗ ‖ s ‖ B) c∗, τ2 If MacVerk1(τ2, c

∗ ‖ s ‖ B) = 0

Abort

k∗
′ ← Decap(ske, c

∗)

Fig. 11: Optimised UM protocol from the KEM-based AM protocol and the
signature-based MT-authenticator used for authenticating the first message, and
the kem-based MT-authenticator authenticating the second message.

Compressed MAC-based MT-authenticator [8]

Alice Bob

NB
$←− {0, 1}n

NB

τ ← MACk(m,B,NB)

m, τ

“Alice sent m to Bob” If MacVerk(σ,m,B) = 1

“Bob received m from Alice”

Fig. 12: λMAC, a compressed MAC-based MT-authenticator with shared key k.

24 Colin Boyd, Bor de Kock B, and Lise Millerjord

Since MACs are expected to remain secure in the post-quantum setting it
makes sense to combine this authenticator with our KEM-based AM protocol to
obtain a post-quantum secure AKE protocol suitable for pre-shared key appli-
cations. Fig. 13 show the resulting optimised protocol.

Optimised KEM-based UM protocol with MAC authentication using pre-shared MAC key k

Alice Bob

NA
$←− {0, 1}n NA (pke, ske)← Gen()

NB
$←− {0, 1}n

s← NA ‖ NB

s← NA ‖ NB
pke, NB , τ1 τ1 ← MACk(pke ‖ s ‖ A)

If MacVerk(τ1, pke ‖ s ‖ A) = 0

Abort

(c∗, k∗)← Encap(pke)

τ2 ← MACk(c∗ ‖ s ‖ B) c∗, τ2 If MacVerk(τ2, c
∗ ‖ s ‖ B) = 0

Abort

k∗ ← Decap(ske, c
∗)

Fig. 13: Optimised UM protocol from the KEM-based AM protocol and the MAC-
based MT-authenticator.

References

1. Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John
Kelsey et al. Status Report on the Third Round of the NIST Post-Quantum
Cryptography Standardization Process. Technical report, National Institute of
Standards and Technology, 2022.

2. Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and Florian
Weber. Post quantum noise. Cryptology ePrint Archive, Report 2022/539, 2022.

3. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the design
and analysis of authentication and key exchange protocols (extended abstract). In
30th ACM STOC, pages 419–428. ACM Press, May 1998.

4. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
CRYPTO’93.

5. Florian Bergsma, Tibor Jager, and Jörg Schwenk. One-round key exchange with
strong security: An efficient and generic construction in the standard model. In
PKC 2015.

6. Daniel J Bernstein and Tanja Lange. Post-quantum cryptography. Nature, 2017.
7. Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria

Nikolaenko et al. Frodo: Take off the ring! Practical, quantum-secure key exchange
from LWE. In ACM CCS 2016.

Modular Design of KEM-Based Authenticated Key Exchange 25

8. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. In EUROCRYPT 2001.

9. Sof́ıa Celi, Armando Faz-Hernández, Nick Sullivan, Goutam Tamvada, Luke Va-
lenta, Thom Wiggers et al. Implementing and measuring KEMTLS. Cryptology
ePrint Archive, Report 2021/1019, 2021.

10. Cas Cremers. Examining indistinguishability-based security models for key ex-
change protocols: the case of CK, CK-HMQV, and eCK. In ASIACCS 11.

11. Cyprien Delpech de Saint Guilhem, Nigel P. Smart, and Bogdan Warinschi. Generic
forward-secure key agreement without signatures. In ISC 2017.

12. Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook.
Provably secure password authenticated key exchange based on RLWE for the
post-quantum world. In CT-RSA 2017.

13. Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure key exchange
scheme based on the learning with errors problem. Cryptology ePrint Archive,
Paper 2012/688, 2012.

14. Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Strongly
secure authenticated key exchange from factoring, codes, and lattices. In
PKC 2012.

15. Federico Giacon, Felix Heuer, and Bertram Poettering. KEM combiners. In
PKC 2018, Part I.

16. Tim Güneysu, Philip Hodges, Georg Land, Mike Ounsworth, Douglas Stebila, and
Greg Zaverucha. Proof-of-possession for KEM certificates using verifiable genera-
tion. Cryptology ePrint Archive, Report 2022/703, 2022.

17. Yvonne Hitchcock, Colin Boyd, and Juan Manuel González Nieto. Modular proofs
for key exchange: rigorous optimizations in the Canetti-Krawczyk model. Appl.
Algebra Eng. Commun. Comput., 16(6):405–438, 2006.

18. Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R.
Zimmermann. Post-quantum WireGuard. Cryptology ePrint Archive, Report
2020/379, 2020.

19. Tibor Jager, Eike Kiltz, Doreen Riepel, and Sven Schäge. Tightly-secure authen-
ticated key exchange, revisited. In EUROCRYPT 2021.

20. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second
Edition. CRC Press, 2014.

21. Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
CRYPTO 2005.

22. Chris Peikert. A decade of lattice cryptography. Cryptology ePrint Archive, Paper
2015/939, 2015.

23. Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without
handshake signatures. In ACM CCS 2020.

24. Peter Schwabe, Douglas Stebila, and Thom Wiggers. More efficient post-quantum
KEMTLS with pre-distributed public keys. In ESORICS 2021.

25. ETSI Technical Committee Cyber Security. Quantum-safe public-key encryption
and key encapsulation. ETSI TR 103823, ETSI, October 2021.

26. ETSI Technical Committee Cyber Security. Quantum-safe signatures. ETSI TR
103616, ETSI, September 2021.

	Modular Design of KEM-Based Authenticated Key Exchange
	Introduction
	Modular design of AKE
	Contributions
	Related work

	Background
	Standard definitions
	Canetti–Krawczyk modular design
	MT-authenticators
	SK-security
	Optimising the UM protocol

	KEM-based building blocks
	KEM-based MT-authenticator
	KEM-based AM protocol

	Generic KEM-based AKE protocols
	Compiled KEM-based protocol and optimization
	Generic protocols using signatures

	Concrete post-quantum secure AKE protocols
	Computational cost
	Communications cost

	ETSI Tables
	Optimised KEM-based UM protocol with SIG/KEM authentication
	MAC-based MT-authenticator

