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Abstract

We propose a three stage learning-based approach for High Dynamic

Range (HDR) video reconstruction with alternating exposures. The first

stage performs alignment of neighboring frames to the reference frame by

estimating the flows between them, the second stage is composed of multi-

attention modules and a pyramid cascading deformable alignment module

to refine aligned features. The final stage merges and estimates the final

HDR scene using a series of dilated selective kernel fusion residual dense

blocks (DSKFRDBs) to fill the over-exposed regions with details. The

proposed model variants give HDR-VDP-2 values on a dynamic dataset of

79.12, 78.49, and 78.89 respectively, compared to Chen et al. (2021) 79.09,

Yan et al. (2019) 78.69, Kalantari et al. (2013) 70.36, and Kalantari and

Ramamoorthi (2019) 77.91. We achieve better detail reproduction and

alignment in over-exposed regions compared to state-of-the-art methods

and with a smaller number of parameters.
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1 Introduction

There is a difference and mismatch of dynamic range information when captur-

ing a physical scene. This means that more visual information is available in

the scene than what can be captured and reproduced as conventional camera

system’s capabilities are limited in simultaneously covering the wide range of

luminance in a single exposure. Additionally, a large part of the digital con-

tent currently used is stored and captured using 8-bit integer values, offering

28 = 256 distinct levels. These device-referred formats such as JPEG, PNG,

TIFF, etc. are constructed according to the limitations of display devices and

accommodate according to the capabilities of the imaging device with minimum

care for loss of visual information that the imaging device cannot display [1].

High Dynamic Range (HDR) video can be done through reconstruction using

single or multiple Low Dynamic Range (LDR) frames captured using conven-

tional cameras by alternating the exposure of each frame using software solu-

tions or using specialized single-shot HDR cameras. HDR reconstruction using

single exposure is further divided into three unique sub-problems of decontour-

ing Daly and Feng [2], Song et al. [3], Luzardo et al. [4], Mukherjee et al. [5],

tone expansion Banterle et al. [6, 7], De Simone et al. [8], Masia et al. [9], and

filling of details in over-exposed regions from its adjacent non-exposed pixels

[10, 11]. Time-sequential multi-exposure techniques are another way to capture

HDR images, by taking a sequence of images with different exposures. Although

an LDR sensor may only record a small portion of the whole luminance range

of a scene at any given time, it has a functional range with the potential to

include the entire luminance range by adjusting the exposure of each capture.
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The images are further combined to generate an image with a higher dynamic

range. For video, one can obtain alternate exposures between subsequent video

frames, this had resulted in multi-exposure techniques for video. In the case of

HDR reconstruction of video, the problem of frame alignment to compensate for

camera and object motion arises. This is often solved by methods that rely on

pixel-level alignment with optical flow [12–15]. Recently, several learning-based

methods have been used for reconstructing HDR video. [13–15] addresses the

problem of HDR reconstruction by using Convolutional Neural Network(CNN)

with optical flow to learn the HDR video reconstruction. Wu et al. [16] aligned

LDR frames by performing homography, which is a non-flow-based approach.

Yan et al. [17] applied attention mechanism for content alignment and gave

importance to only those features that are similar to the reference image and

excluded regions with motion and severe saturation. Later, they introduced a

non-local neural network [18]. Despite these appraoches it still remains a big

challenge to reconstruct ghost-free HDR videos from sequences with alternating

exposures.

In this paper, we introduce a learning-based approach to address the issue

of HDR video reconstruction with two alternating exposures. The goal is to

obtain ghost-free videos with good detail preservation. Our approach has three

main stages, the first stage performs alignment of neighboring frames to the

current frame by estimating the flows between them, recovering a large part

of missing details from the input LDR images, and the second stage is com-

posed of multi-attention modules and a Pyramid Cascading Deformable (PCD)

alignment module[19] to refine previously aligned features by performing a so-

phisticated feature alignment. The final stage performs merging by estimating

the final HDR scene based on a series of Dilated Selective Kernel Fusion Resid-

ual Dense Blocks (DSKFRDBs) blocks with global residual learning strategy
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[17, 20] that allows the network to fill the over-exposed regions with rich de-

tails. The entire network is trained in an end-to-end fashion to reconstruct

HDR video. We employ L1 and a combined L1MS − SSIM [21] loss function

to minimize the error between the reconstructed and original HDR frames.

The major contributions of our work for HDR video reconstruction are as

follows:

• Introduction of multi-attention (particularly using a selective kernel fusion

module) blocks with the goal of proper image alignment by extracting rich

information spatially, channel-wise, and giving attention to the scale of the

content in the input frames.

• For effective HDR video reconstruction we employ robust Dilated Selective

Kernel Fusion Residual Dense Blocks (DSKFRDBs) in the merge network

for recovering details in over- and under-exposed regions.

• Our proposed model has fewer network parameters than previous learning-

based techniques.

• Model training is performed using L1 and a combined L1MS − SSIM

loss to guide the optimization algorithm by learning more refined network

weight parameters for HDR video reconstruction.

Our proposed multi-attention selective kernel fusion HDR network (SKFH-

DRNet) method showed a fair improvement over existing techniques and makes

it possible to use LDR frames in HDR video reconstruction.

2 Related Work

Different approaches have been proposed for hardware-based HDR video acqui-

sition and computationally-based HDR reconstruction. Nayar and Mitsunaga
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[22] and Nayar et al. [23] proposed different types of per-pixel changeable optical

density masks that were used to vary the spatial exposure to capture the scene

at different exposures. Others [24–26] were able to successfully capture a wider

range of HDR video through internal/external beam-splitters. The sensor’s dy-

namic range capabilities are improved by [27], while some sensors calculate the

logarithm of the irradiance in the analog domain using the logarithmic response

of a sensor [28, 29].

Many single-exposure computationally-based inverse tone mapping opera-

tors make an effort to solve the issue by applying separate expansion to pixels

that are classified as saturated recovering details in over-exposed regions [6, 30–

34]. Didyk et al. [35] decomposed video frame components into diffuse, reflec-

tions, and light sources using a semi-manual classifier. Zhang and Brainard [10]

and Xu et al. [11] to perform pixel-level image processing. A dithering-based

approach was proposed that adds noise to mask banding artifacts due to quan-

tization [2, 5]. More recently, several methods have employed deep learning

strategies for single-exposure HDR image reconstruction. Eilertsen et al. [36]

used a CNN-based encoder and decoder architecture reconstructing colors, in-

tensities, and details in saturated regions. By merging bracketed LDR images,

Endo et al. [37] indirectly recreates an HDR image from a single LDR input.

Liu et al. [38] developed three deep networks for dequantization, linearization,

and hallucination of missing details in over-exposed regions.

Kang et al. [12] propose the first HDR video reconstruction algorithm for

sequences with alternating exposures using optical flow. Mangiat and Gibson

[39] improve the approach by Kang et al. [12] using a block-based motion es-

timation method coupled with a refinement stage. In follow-up work, Mangiat

and Gibson [40] propose to filter regions with a large motion to reduce block-

ing artifacts. Kalantari et al. [41] propose a patch-based optimization system to
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synthesize the missing exposures at each frame. Gryaditskaya et al. [42] improve

the method of Kalantari et al. [41] by adaptively adjusting the exposures. Li

et al. [43] proposed the HDR video reconstruction problem as maximum a pos-

teriori estimation. Kalantari and Ramamoorthi [14] address the drawbacks of

their previous approach [13] by proposing to use CNNs to learn the HDR video

reconstruction process. Eilertsen et al. [44] improve the temporal stability of

CNNs by introducing a regularization approach that encourages the network to

produce consistent results for consecutive frames in a video. Yan et al. [17] pro-

pose an attention-guided deep neural network with an attention mechanism for

frame alignment for HDR imaging. Kim et al. [45] addresses the reconstruction

of (ultra high definition) UHD HDR videos by simultaneously working on the

content super-resolution and inverse tone-mapping. Introducing GAN (Genera-

tive Adversarial Network) based architecture with multiple subnets for specific

tasks. The super-resolution and inverse tone-mapping (SR-ITM) framework is

further extended by utilizing information at multi-scale to enhance the network’s

local receptive fields. The approach involves downsampling image features at

various scales, enabling to catch complex image patterns from pixels using var-

ied local receptive field sizes [46]. Chen et al. [47] suggested a deep learning

pipeline composed of adaptive global color mapping, local enhancement, and

highlight generation. For adaptive global color mapping, they introduce a color

condition block that extracts global image priors and adapts them to different

images. Beside that, ResNet was used as their network architecture and a GAN

model for local enhancement and highlight generation, respectively. Similarly,

GAN-based framework for HDR video reconstruction from LDR sequences with

alternating exposures was adopted by Anand et al. [48]. Yang et al. [49] intro-

duced a multimodal learning framework for reconstructing HDR videos based

on three components. One component to align the frames, the second a fu-
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sion component based on confidence guided multimodal fusion, and the last

component to suppress flicker. Yang et al. [50] proposed a lightweight-efficient

network based on structural re-parameterization, and a motion alignment loss

to reduce motion artifacts. Cogalan et al. [51] proposed a CNN method for

HDR image and video reconstruction that works for both for single-shot acqui-

sition with spatially-interleaving exposures and for multi-shot acquisition with

spatially-interleaving and temporally-alternating exposures. Their method used

optical flow and is stated to work well also for non-linear motion. Liu et al. [52]

focused on optical flow estimation for LDR images of different exposures, and

they proposed an unsupervised approach that incorporates a model-based al-

gorithm and a data-driven deep network. Martorell and Buades [53] proposed

a variational temporal approach to optical flow estimation that has data and

spatial smoothness terms, as well as a temporal smoothness term and to match

pixels from different frames. Jiang et al. [54] introduced a tri-exposure quad-

bayer sensors. With a larger number of exposure sets uniformly distributed over

each frame, providing robustness to noise and spatial artifacts. [55] produced

high-dynamic range (HDR) video using dual-exposure sensors, which capture

differently exposed and spatially interleaved half-frames in a single shot, elim-

inating the need for exposure alignment. Neural networks are employed for

denoising, deblurring, and upsampling tasks and optical flow is utilized for pre-

cise warping. Recently, Chen et al. [15] came up with a two-stage coarse-to-fine

framework for HDR video reconstruction. Their first stage aligns images using

optical flow and blending in the image space. Their second stage performs more

sophisticated alignment fusion for HDR video using deformable convolution [56]

in PCD module as well as performing fusion temporally.

However, most single exposure-based techniques are not built to handle

videos and cannot handle noise in the dark regions while hallucinating only
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smaller saturated regions. Similarly, solving an issue of frame alignments and

temporal aspects of HDR video reconstruction through single attention is chal-

lenging, and recent models with optical flow have a large number of parameters

and struggle on examples with large motions.

3 Multi-Attention Guided SKFHDRNet for HDR

video Reconstruction

Given an input LDR video/sequential frames {I|i = 1, ...n} with alternating

exposures {t|i = 1, ...n} the Multi-Attention SKFHDRNet reconstructs a high-

quality HDR video {H|i = 1, ...n}. Similar to [13–15], input frames in linear

and LDR domain are stacked and passed to the network for HDR video recon-

struction shown in Fig. 1.

Figure 1: Representation of three consecutive frames with two alternate expo-
sures of the carousel firework scene in [26] HDR dataset. Each frame in three
consecutive frame input contains some missing contents with the presence of
noise in frame Fi − 1 and Fi + 1 in the darker region due to acquisition with
low exposure whereas Fi, which was taken with high exposure, lacks details in
over-saturated and bright regions. The missing content of a final HDR image
has to be reconstructed from neighboring frames with alternating exposures.
For our full model we also used the neighboring frames Fi−2 and Fi +2 as well.

3.1 Data preprocessing

Similar to the work of [13–15] the camera response function of the input frames

Ii is assumed to be known. As in [14, 15], we replace the camera response
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function of the input images with a fixed gamma curve as:

Fi = lini(Ii) => (Iiti)
1/γ (1)

where γ is set to 2.2 and lini is a function that transfers the image Ii from the

linear HDR domain into LDR domain at exposure ti. Similarity transforms that

include rotation, translation, and isometric scaling are applied to globally align

adjacent frames to simplify the learning process of our proposed model.

Real-world cameras often produce noisy images and are difficult to cali-

brate. It is necessary for the training dataset to represent these limitations of

conventional camera systems to enable the learning-based model to perform and

generalize effectively on scenes captured with conventional consumer cameras.

[13–15] imitate the flaws of common consumer cameras by introducing noise and

altering the tone of the synthetic images in their synthetic training dataset for

ensuring the generalizability of their proposed network during inference time.

Image acquisition through conventional digital cameras usually contains noisy

pixels in dark regions. Then the information from those darker regions of the

image should be taken from the high-exposure image which has more details in

that region. The input LDR synthetic training dataset usually has the same

amount of noise for both exposures. Using the data set directly without modi-

fication, the content of the high-exposure image in the dark regions will not be

able to use, which eventually produces noisy results in real scenes [14]. Similarly

to Kalantari and Ramamoorthi [14] and Chen et al. [15], Zero-mean Gaussian

noise was added to the input LDR images with low exposure making the models

use the information in the dark regions of a clean high exposure image. The

zero-mean Gaussian noise was specifically applied to the images in the linear

domain. The intention was to magnify the noise in the dark regions after trans-

forming the image into the LDR domain. To account for noise variation similar
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to [14, 15], random Gaussian noise range using the standard deviation between

10×−3 and 3 × 10−3 and the tone of the reference image was perturbed with

γ = exp(d) function, where d is randomly selected from the range [-0.7, 0.7]

for simulation of an inaccurate camera response function. Cropped patches of

size 256 × 256 were given as input to the proposed model along with random

horizontal/vertical flipping and rotation.

Figure 2: Visualization of the network architecture of our proposed Multi-
Attention SKFHDRNet for HDR video reconstruction with two alternating ex-
posures.

3.2 Pipeline

In Fig. 2, the Multi-Attention SKFHDRNet comprises two primary sub-networks.

These sub-networks are designed to align and recover missing content in the ref-

erence (center) frame using attention modules, incorporating spatial, channel,

and attention through adaptive kernel selection and fusion mechanisms. The

Multi-Attention blocks focus solely on the relevant features related to the center

frame. To achieve this, neighboring frame features are fused with the reference

frame, and the resulting features are passed through the Multi-Attention blocks

to extract missing content from surrounding frames in relation to the center

frame. Furthermore, to enhance temporal coherence and alignment, the aligned

features are passed through the PCD [19] alignment module. These refined

features are then fed into the merge network, which is composed of a series of
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DSKFRDBs. These DSKFRDBs with dilation convolutions helps in recovering

details due to over-exposure and motion of objects by enlarging the receptive

field and ultimately estimating high-quality HDR video.

Motivated by the work of Ledig et al. [20] and Yan et al. [17], global residual

learning strategy was adopted by adding the shallow reference frame feature

Fr to OF5 before reconstructing the final HDR frame. Our proposed method

predicts blending weights (see section 4) and produces a 15 channel output.

The input images are averaged using their blending weights to obtain the final

HDRi image at frame i.

3.3 Image alignment using optical flow

We adopted the optical flow network of Chen et al. [15] for efficient frame

alignment. Alignment of frames is done in the initial phase of learning-based

techniques with the reference frame Li. Flows are estimated for neighbouring

frames Li−1 and Li+1, in relation to the reference frame, Li. The nearby frames

Li−1 and Li+1 is then warped with the help of two estimated flows to set a series

of aligned images Li−1, i and Li+1, i in relation to the reference frame Li for

efficient treatment of non-rigid motion and the inaccuracies introduced by global

alignment.

3.4 Multi-Attention Guided feature alignment

The attention-guided blocks were given five 6-channels input frames in linear

and LDR domain Fi, where i = 1, 2, 3, 4, 5. First neighbouring input frames

Fi−2, Fi−1 and Fi + 1, Fi + 2 were concatenated and fused (see Fig. 2) before

passing to the attention blocks.
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3.4.1 Channel attention

We make use of channel attention proposed by Woo et al. [57] to take advantage

and exploit dependencies among features across channels. The architecture of

the channel attention network is represented in Fig. 3.

Figure 3: The channel attention sub-module uses a combination of max and
average pooling, alongside a shared MLP network.

In the channel attention blocks, spatial information is collected from the fea-

ture maps through both average and max-pooling operations, resulting in two

sets of features Favg and Fmax (refer to Equation 2). These two sets of features

are then fed into a shared Multi-Layer Perceptron (MLP) network with one hid-

den layer for providing attention-guided weights for each channel, represented

as W ∈ RC×1×1. The MLP’s hidden layer parameter size is set to RC/r×1×1,

where r (reduction ratio) is utilized to reduce and control the size of parameters

in the hidden layer. Finally, the output feature vectors from the shared net-

work (MLP) corresponding to the Favg and Fmax features are combined using

element-wise summation.

Ai = σ(MLP (Favg(Fir))) + MLP (Fmax(Fir))))

= σ(W1(W0((Fi, Fr)Favg)) + W1(W0((Fi, Fr)Fmax))),

(2)

where σ denotes the sigmoid function, W0 ∈ R
C/r×C

and W1 ∈ R
C×C/r

represent MLP layer weights, and Fir is the concatenated feature by fusing Fi
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and Fr respectively. The estimated attention maps are point-wise multiplied to

attend the features of the non-reference frames via Equation 3:

F ′′
i = Ai ◦ F ′

i , (i = 1, 3), (3)

where ◦ denotes the point-wise multiplication between Ai and F ′
i , (i = 1, 3).

Attention-guided features F ′′
i − 1 and F ′′

i + 1 are concatenated and fused with

the reference frame Fr to get the final stack of channel attention-guided feature

Fca using Equation 4.

Fsk = Concat(F ′′
i − 1, Fr, F

′′
i + 1), (4)

3.4.2 Soft attention using selective kernel fusion

We utilize the work proposed by [58] as an adaptive soft attention technique.

This method involves employing multiple kernels with varying receptive field

sizes to effectively capture information from objects of different scales within

the input. The selective kernel fusion block consists of three main operations:

splitting, fusing, and selecting, as depicted in Figure 4.

Figure 4: Represents selective kernel fusion attention block involving three main
operations specifically, split, fuse and select.

Split: Through split operation, the incoming features F ′
i , Fr of size H ′ ×

W ′ × C ′ are transformed to U3 and U5 features based on the receptive field
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sizes of 3x3 and 5x5 and applying efficient depthwise convolutions [59], followed

by ReLU activation function performing convolution with dilation size of 2.

Fuse: Fuse module adaptively controls the information flow of different

scales of the two branches that have different receptive fields into the activation

functions in the upcoming layer.

The data from the two branches is combined via element-wise summation.

Following this, global average pooling is applied to incorporate global informa-

tion and produce channel-wise statistics represented as S ∈ RC (see Equation

5).

S = F gp(U ′) =
1

H ×W

H∑
i=1

W∑
j=1

U ′(i, j), (5)

Moreover, the feature vector obtained from global average pooling is then fed

into a fully connected layer to enable accurate and adaptive feature selection,

resulting in Z ∈ Rd×1. Additionally, a dimensionality reduction parameter is

incorporated in Equation 6 for improving the efficiency of the attention block.

Z = F fc(S) = δ((WS)), (6)

where δ is the ReLU function and W ∈ Rd×C represent fully connected (fc)

layer parameters.

d = max(C/r, L), (7)

where C represents channel and d represents reduction ratio which is controlled

by parameter r for modifying the parameter size of the fully connected layer

and L = 32 represent the minimal value of variable d.

Select: The last step involves the adaptive selection of informative con-

tent from the guided feature descriptor Z by applying a channel-wise softmax
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operator, as described in Equation 8. Focusing on different scales of valuable

information.

a = softmax(Z), b = softmax(Z) (8)

The softmax-based attention-guided feature maps are multiplied with U3

and U5 features which was retrieved previously through split process and then

summed to obtain the final attention-guided feature map using Equation 9.

Ai = a · U3 + b · U5, (9)

where Ai represents soft attention-guided features that are then pointwise mul-

tiplied with non-reference features F ′
i using Equation 10.

F ′′
i = Ai ◦ F ′

i , (i = 1, 3), (10)

Attention guided features F ′′
i − 1 and F ′′

i + 1 are concatenated and fused with

the reference frame Fr to get selective kernel fusion based soft attention guided

features Fsk by using Equation 11.

Fsk = Concat(F ′′
i − 1, Fr, F

′′
i + 1), (11)

3.4.3 Spatial attention

We also utilize the findings of [17] to acquire spatial attention maps for the

non-reference frames as depicted in Fig. 2. Fused features F ′
i , i = 1, 3 of

the non-reference images are introduced to the convolutional attention module

ai(·), i = 1, 3 along with the reference frame feature map Fr, obtaining attention
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maps Ai , i = 1, 3 for the non-reference frames using Equation. 12.

Ai = ai(F
′
i , Fr), (i = 1, 3). (12)

The predicted attention maps are used to attend to the features of the non-

reference images via Equation 13:

F ′′
i = Ai ◦ F ′

i , (i = 1, 3), (13)

where ◦ denotes the point-wise multiplication between Ai and F ′
i , (i = 1, 3).

The F ′′
i denotes the feature maps with attention guidance. The reference feature

map Fr (i.e. Fi) and the attention-guided features of the non-reference images

F ′′
i − 1 and F ′′

i + 1 are stacked and fused to get the final 64 channel attention-

guided feature map Fs.

3.5 Refined deformable feature alignment

Recently, for the task of video super-resolution, researchers [56] introduced de-

formable convolution, which has been effectively employed by [19] and [60]. The

fundamental idea behind deformable alignment is to predict an offset using an

offset prediction module defined by Equation 14. This module employs general

convolutional layers and takes two features as input, our fused features Fs, Fca,

and Fsk, along with a reference frame feature map Fi.

∆pi − 1 = func([fused(Fs, Fca, Fsk), Fi]) (14)

After acquiring the learned offset, the fused multi-attention guided features

Fs, Fca, and Fsk can be sampled and aligned to the reference frame Fi using

deformable convolution introduced by [56] using Equation 15:
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F̃i = DFConv(fused(Fs, Fca, Fsk),∆pi − 1). (15)

Figure 5: Represents architecture of PCD [19] alignment module.

The overall structure of the PCD alignment module is represented in Fig. 5

where the alignment is performed at multiple scales between the fused refined

features and the reference frame. The final HDR video reconstruction is opti-

mized by implicit learning capabilities of deformable convolution offsets for this

alignment process.

3.6 Merge network for HDR image reconstruction

The primary goal of the merge network is to reconstruct a high-quality HDR

frame using the attention-guided aligned features. This network is designed to
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identify and eliminate any alignment artifacts that may still be present in the

registered images and to restore missing content in the over and under-exposed

regions, resulting in the final HDR image.

We introduce the selective kernel fusion network, which is based on a residual

dense network architecture, similar to the approach presented in [61]. Our merge

network comprises convolution layers and DSKFRDBs with the incorporation

of skip connections, as illustrated in Fig. 6.

Figure 6: Represents merge network composed of series of dilated selective kernel
fusion residual dense blocks with skip connections.

The merging network takes the stacked features from the PCD alignment

module. The merge network first applies a Conv layer to produce a 64-channel

feature maps. These feature maps are then passed to three DSKFRDBs out-

putting three corresponding feature maps OF1, OF2 and OF3. All three feature

maps are then concatenated to get OF4. Then convolution operations are ap-

plied for extracting more relevant information from all the three merged feature

maps produced from DSKFRDBs to get OF5.

Global residual learning with the reference features:

Motivated from the work of [17, 20], global residual learning strategy was

adopted by adding the shallow reference frame feature Fr to OF5 where the

representation of the original reference information is integrated before recon-
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structing the final HDR image from OF5 to optimize the accuracy of the model.

OF6 = OF5 + Fr, (16)

The final feature map OF6 contains almost all the ingredients for reconstruct-

ing the final HDR image without ghosting artifacts with details recovered in

over and under-exposed regions with large motion. The final HDR image is es-

timated in the HDR domain after two convolution layers followed by activation

funtion.

Dilated selective kernel fusion residual dense block:

The merging network requires a larger receptive field for hallucinating details

since the reconstruction of some local regions of the HDR images cannot receive

enough information from the LDR images due to the occlusion of moving objects

and saturation. Thus, we used a dilated residual selective kernel fusion block

having two branches with dilation. The proposed DSKFRDBs, which is repre-

sented in Fig. 7, perform final HDR video reconstruction by adaptive feature

selection using two different receptive fields using the Split, Fuse, and Select

strategy with dense concatenation based skip-connections where the input for

each layers is the concatenation of all feature maps from preceding layers.

4 Pixel blending

To our full multi-Attention SKFHDRNet we provided five 6-channel input im-

ages in both LDR and linear domains making a 30 channel input. Then, for

these five images, our network predicts the blending weights and produced a 15

channel output. To effectively utilize the information in each color channel, we

estimated blending weights for each color channel in a manner similar to the

methods already proposed by [41, 62]. The five input images are averaged using
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Figure 7: Illustration of a three-layer dilated selective kernel fusion residual
dense block structure following the residual dense block strategy of [61] as a
framework.

their blending weights to get the final HDR image HDRi at frame i by using

Equation 17.

HDRi =
w1Li − 1 + w2L̂i − 1 + w3Li + w4L̂i + 1 + w5Li + 1∑5

K=1 wk
, (17)

where, wk is the estimated blending weight for each image.

5 Loss function

Following the works of [14, 15, 36] the linear HDR images are transformed

into log domain for boosting the pixel values in the dark regions of the image.

Directly applying the loss function on the images in the linear HDR domain

will produce inaccuracies by underestimating the error in the pixel values of

the dark regions. We specifically employ the differentiable µ-law function using

Equation 18:

Ti =
log(1 + µHDRi)

log(1 + µ)
, (18)
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where HDRi represent linear HDR frame with the pixel values in range of [0,

1]. The parameter µ is set to 5000 to control the rate of compression range. The

model parameter are updated by minimizing the L1 distance between the esti-

mated, T̂i, and ground truth, Ti, HDR frames in the log domain with Equation

19:

E = ∥T̂i − Ti∥1, (19)

5.1 L1MS−SSIM loss function

According to [21], MS−SSIM preserves the contrast in high-frequency regions

better than the other loss functions. On the other hand, L1 preserves colors and

luminance and error are weighted equally regardless of the local structure but

does not produce quite the same contrast as MS−SSIM. To capture the best

characteristics of both error functions, [21] propose a combined L1MS−SSIM

loss function which is represented by Equation 20:

Lmix = αLMS−SSIM + (1 − α)GM
σ G.L1, (20)

where α is empirically set to 0.84 with point-wise multiplication between

GM
σ G and L1. GM

σ G which represents the computation of mean and standard

deviations with a Gaussian filter. We adopted the work of [21] to optimize the

training of our model. The parameters or weights of the networks are modified

using these computed gradients continuously until convergence.

6 Implementation details

PyTorch framework is being used to implement the Multi-Attention SKFH-

DRNet model architecture. We integrated the flow network implemented by

[15] using Pytorch into our pipeline for HDR video reconstruction. End-to-end
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training is done for both optical flow and Multi-Attention SKFHDRNet. The

technique used by [63] is used to initialize the initial weights of the network

parameters. Using ADAM with default settings of β1 = 0.9 and β2 = 0.999

with a learning rate of 0.0001, to solve the optimization problem. Mantiuk et al.

[64] approach was used for tone-mapping the results. Given training images, we

randomly crop the images of size 256 × 256 for training. The model was trained

for 20 epochs on two NVIDIA Tesla V100 32Gb of NTNU cluster [65].

7 Experiment Results

We conducted experiments and performed an evaluation on synthetic Test HDR

scenes and real-world dataset (dynamic and static scenes from [15], being under

CC BY-NC-SA 4.0 license) to verify the effectiveness of the proposed method.

All models are visually compared, and the predicted HDR frame is evaluated in

terms of multiple image quality metrics. We specifically used µ-law tone-mapped

PSNR, HDR−VDP2 [40] and HDR-VQM [66] (HDR-VQM for full model com-

parison). We followed the HDR-VQM design of [15] to assess the quality of HDR

videos. Additionally, all models were evaluated based on color difference error

between estimated and ground truth HDR using CIEDE2000 [67]. All visual re-

sults in the experiment are tone-mapped using Mantiuk et al. [64] tone-mapping

method.

7.1 Evaluation of baseline models

We perform our initial comparisons with [17] in the case of no optical flow

and no pixel blending where the model estimated a 3-channel final HDR im-

age. This is specifically done to check and compare the effectiveness of our

proposed attention modules against [17] AHDRNet. The proposed attention

modules effectiveness is represent in Fig. 8 indicating better performance in
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frame alignment against reference frame with less ghosting artifacts in compar-

ison to AHDRNet [17] attention module. In Fig. 8 this is seen especially in the

hand and racket with fewer ghosting artifacts.

Figure 8: Visualization of the model’s outputs having consecutive frames as an
input with local motion and a conv layer feature maps after passing through
attention modules.

Similarly, the robustness of our proposed DSKFRDBs to filling rich details

in over-exposed regions is illustrated in Fig.9 against AHDRNet [17]. Our pro-

posed DSKFRDBs enable the model to produce results with rich details while

achieving more accurate content in over-saturated areas. This can be seen by

the proposed model having less color difference in the highlights compared to

AHDRNet.

Similarly, the zoomed regions of the CAROUSEL FIREWORKS frame rep-

resented in Fig. 10 shows poor performance of Yan et al. [17] AHDRNet. It

struggles in reducing ghosting artifacts due to large motion which ultimately in-

troduces higher color difference errors, which can be seen in color difference maps

of the images. However, our proposed Multi-Attention SKFHDRNet model per-

formed better alignment in case of large motions and produced a smaller color
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Yan et al. (2019) Ours GT HDR

CIEDE2000 Color difference error

Figure 9: Dynamic scene Ground Truth (GT) test sample and its estimated
HDR scene of AHDRNet [17] and our proposed Multi-Attention SKFHDRNet.
The top shows the full image, the middle images are a zoomed in area, and the
bottom show the CIEDIE2000 color difference map.
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difference error in relation to the ground truth HDR frame.

Yan et al. (2019) Ours GT HDR

CIEDE2000 Color difference error

Figure 10: Represents visual and color difference error results of baseline models
on synthetic dataset (CAROUSEL FIREWORKS) scene.

Our baseline model SKFHDRNet performed fairly well in case of the static

dataset. From the visual results, the Yan et al. [17] model struggles to recover

details in over-exposed regions which are illustrated in the zoomed regions of

static dataset scene in Fig. 11. Multi-attention SKFHDRNet recovers much of

the missing information in the over-exposed regions with a small color difference

error as shown in Fig. 11. This indicates that using DSKFRDBs in the merge

network for filling missing content in the over-exposed regions works better

compared to the dilated residual dense block of [17].

Quantitative results in terms of µPSNR and HDR−VDP2 are represented

in Table 1. Our multi-attention SKFHDRNet showed better performance in
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Yan et al. (2019) Ours GT HDR

CIEDE2000 Color difference error

Figure 11: Represents visual and color difference error results on the static
dataset scene.

terms of visual results as well as image/video quality metrics, where the values

are higher than Yan et al. in all datasets for both µPSNR and HDR−VDP2.

This indicates our multi-attention modules efficiency which guides more relevant

features from the neighbouring frames in relation to the reference frame and

robustness of our DSKFRDBs in merge network in filling missing content in the

over-exposed regions.

7.2 Per frame objective metric results visualization of our

baseline model without optical flow and pixel blending

Fig.12 represents our baseline model performance in relation to Yan et al. [17]

AHDRNet on all the three datasets. Blue violin plots represent [17] model

and orange violin plots represent our baseline Multi-Attention SKFHDRNet.

The data points represent per frame image quality metrics results specifically,

µPSNR and HDR−VDP−2. The median is represented by (the red point), and
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Table 1: Quantitative results of our baseline Multi-Attention SKFHDRNet and
Yan et al. [17] AHDRNet on test datasets are represented. Bold text indicates
the better among models.

Model performance on synthetic dataset

Models µPSNR HDR−VDP−2

Yan et al. [17] 28.78 63.56
Multi-Attention SKFHDRNet 32.11 65.65

Model performance on dynamic dataset

Yan et al. [17] 34.68 68.42
Multi-Attention SKFHDRNet 40.77 73.81

Model performance on static dataset

Yan et al. [17] 33.06 69.81
Multi-Attention SKFHDRNet 36.76 71.34

the first and third quartile are represented by the black bar where the lower

region of the bar represent first quartile and the upper region of the black bar

represents the third quartile. Our baseline model predicted better per frame

quality metrics’ results considering the median in a violin plot which is higher

than Yan et al. [17] AHDRNet on all three datasets. From the results, we

clearly see an intersection between data points, especially in case of Synthetic

and Dynamic dataset. This represents the performance of models on low and

high exposure samples. The model shows higher performance for samples with

low exposure, which is represented mostly in the third quartile region of the

violin plot above the median. Samples with center frame having high exposure

are represented below the median red point in the first quartile region of violin

plot. It is worth to pay attention to the proposed model being able to generate

higher values in the synthetic dataset, as seen in HDR-VDP-2 the lowest values

are approximately the same between the two models, but the proposed model

has higher maximum values. In µPSNR we see a shift from a bottom heavy

distribution to values being increased. For the static dataset we see that a

similar behaviour for HDR-VDP-2, with a larger concentration of values being
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towards the top end, while in µPSNR it is in general a shift upwards. Lastly for

the dynamic dataset, the proposed model shifts the values upwards for µPSNR

with more values concentrated towards the higher end, while in HDR-VDP-

2 the values have a larger spread with more values being above the highest

values in AHDRNet. In general, our model performance based on µPSNR and

HDR−VDP−2 was higher than Yan et al. [17] AHDRNet.

7.3 Evaluation of our Full Model

We compared our full model performance with [13], [14], [17] and [15] along

with its individual networks CoarseNet and RefineNet. We re-implemented

Yan et al. [17] method for alternating-exposure HDR video reconstruction and

used the already trained Chen et al. [15] network parameters for comparison.

For Kalantari et al. [13] and Kalantari and Ramamoorthi [14], we took the

results of the model from [15] since we are also using the same datasets for

comparison. All models are visually compared and the predicted HDR image is

evaluated in terms of multiple image quality metrics. We specifically used µ-law

tone-mapped PSNR, HDR−VDP2 [40] and HDR-VQM [66]. Additionally, all

models were evaluated based on the color difference error between estimated

and ground truth HDR using CIEDE2000 [67].

7.4 Synthetic dataset for training

Following the work of [13–15], we used 13 HDR video scenes from [26] and

eight downsampled video scenes of resolution 1280x720 from [68] for training

purposes. Furthermore, we also used a high-quality Vimeo-90K [69] dataset as

training samples similar to [15] due to the limited size of the training HDR video

dataset.
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Figure 12: Per frame representation of image quality objective metric results on
all three datasets using violin plot of our baseline architecture (orange) against
Yan et al. [17] AHDRNet (blue).
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7.5 Evaluation on Synthetic Dataset

Our proposed multi-attention SKFHDRNet with re-implemented AHDRNet

[17] is evaluated on a synthetic test dataset which is composed of two HDR

videos (i.e., POKER FULLSHOT and CAROUSEL FIREWORKS) of [26] HDR

dataset with random Gaussian noise added to low-exposure images like [15].

Fig. 13 illustrates the model performance on POKER FULLSHOT HDR scene.

Multi-Attention
SKFHDRNet

 
PCD (L1) GT HDR

Yan et al. (2019) Chen et al. (2021)

Multi-Attention
SKFHDRNet

Multi-Attention
SKFHDRNet

PCD (L1+MS-SSIM)

CIEDE2000 color difference error

Figure 13: Visual and color difference error results on the synthetic dataset.

From the visual results, the color difference error is more prominent in Yan

et al. [17] AHDRNet estimated HDR image. The reconstructed scene is noisy

and the color difference map shows error across the scene. Similarly, There is

higher color difference error in the saturated regions specifically in the edges and

the curtain of the table in the scene reconstructed by [15] where some pixels

are still over-saturated which is detected by the CIEDE-2000 color difference

metric. However, the reconstructed HDR scenes of our model variants have less

over-saturated pixels in the edges and the curtain on the table. This indicates

DSKFRDBs robustness to filling rich details in the over-exposed regions with

50% less model parameters compare to Chen et al. [15] and providing better

performance in accuracy.

Quantitative results using HDR-VDP2, HDR-VQM and µPSNR of our
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multi-attention SKFHDRNet variants on the synthetic dataset are represented

in Table 2.

Our multi-attention SKFHDRNet showed better performance on all three

image and video quality metrics. This indicates our multi-attention modules’

efficiency regarding noise reduction and filling details in over-exposed regions.

Multi-Attention
SKFHDRNet GT HDRYan et al. (2019) Chen et al. (2021)

Multi-Attention
SKFHDRNet

PCD (L1)

Multi-Attention
SKFHDRNet

PCD 
(L1+MS-SSIM)

CIEDE2000 Color difference error

Figure 14: Represents visual and color difference error results on the static
dataset.

7.6 Evaluation on Real World Static Dataset

We test our multi-attention SKFHDRNet variants on a static dataset that is

composed of random global motions. Random translation was performed for

each frame in the range of [0, 5] pixels. For all methods, no pre-alignment is

done on input frames similar to Chen et al. [15] to evaluate their robustness

to input with inaccurate global alignment. The Yan et al. [17] model produce

results with noise and the error is captured and visualised in Fig. 14 in the color

difference error map. While Chen et al. [15] model produce results with out noise

in the reconstructed frame but showed higher color difference error in the over-

31



saturated regions in the scene which can seen in the color difference error maps

represented in Fig. 14. Our model variants produce better performance in case

of noise and filling rich details in over-saturated regions producing smaller color

difference error.

Similarly [15] model struggle to perform proper alignment in the zoomed and

highlighted regions in Fig. 15. The straight lines are distorted in the highlighted

region of [15] reconstructed frame. In case of Yan et al. [17] model apart from

distortions in the straight lines there is also more prominent color fringe pat-

terns at the highlighted and zoomed region in Fig. 15. However, our proposed

model variants showed better performance with reduced distortion and without

prominent color fringe patterns in the highlighted region of reconstructed frame

and the error is recorded by CIEDE2000 color difference error maps.

Figure 15: Represents visual and color difference error results on the static
dataset.

Our multi-attention SKFHDRNet variants performed better than Yan et al.

[17] AHDRNet and [13, 14] learning-based methods using objective image and

video quality metrics represented in Table 2. Our models also performed bet-

ter than the [15] single models (CoarseNet and RefineNet). However, Chen

et al. [15] full showed slightly better results compared to our multi-attention
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SKFHDRNet variants using image/video quality metrics.

14.

Our proposed model showed comparable results on static scenes in compar-

ison to prior work with half the size of network parameter than [15] full model,

which can be seen in Table 2.

7.7 Evaluation on Real World Dynamic Dataset

The dynamic dataset contains large local motions, making it challenging for

the models to perform well in those cases. Fig.16 visualizes the results of our

multi-attention SKFHDRNet variants along with [17] and [15] models. All of

our models clearly show high performance in large local motion regions in the

dynamic dataset scene apart from our model variant SKFHDRNet having L1

and MS − SSIM loss. which can be seen in the zoomed region of the dynamic

dataset scene in Fig. 16. The arrow pointing to regions where we can see the

ghosting artifacts and blur in the reconstructed scene of [15] results. Similarly,

there is ghosting artifact of whole racket in the reconstructed scene of [17] results.

This shows our Multi-attention and PCD module effectiveness regarding feature

alignment of neighbouring frames in to the reference frame. The color difference

error maps also show large deviation in color information from the original HDR

image in the motion regions of the estimated HDR frames of [17] and [15] models.

The performance of our proposed model variants was better than Yan et al.

[17] AHDRNet, [13, 14], and Chen et al. [15] learning-based methods using

objective image/video quality metrics on Dynamic dataset represented in 2. Our

models also showed better performance than the [15] single models (CoarseNet

and RefineNet).

This again indicates our model’s DSKFRDBs fusion block effectiveness in

filling the missing content in large over-exposed regions with local motion (see
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GT HDRYan et al. (2019) Chen et al. (2021)

CIEDE2000 Color difference error

Multi-Attention
SKFHDRNet

Multi-Attention
SKFHDRNet PCD 

(L1)

Multi-Attention
SKFHDRNet PCD 

(L1+MS-SSIM)

Figure 16: Represents visual and color difference error results on the dynamic
dataset.

results in Table 2).

7.8 Per frame objective metric results visualization of our

full architecture.

Fig. 17 represents violin plots of our Multi-Attention SKFHDRNet variants

specifically, Multi-Attention SKFHDRNet with L1 loss, Multi-Attention SKFH-

DRNet with L1 loss and PCD alignment module, Multi-Attention SKFHDRNet

with L1MS−SSIM loss along with PCD alignment module. The performance of

the mentioned model is compared to [15] network.

Figure 17 represents violin plot where the blue violin plots represent our

multi-attention SKFHDRNet with L1 loss. The orange violin plot represents

multi-attention SKFHDRNet with L1 loss and PCD alignment module. The

yellow violin plot represents Multi-Attention SKFHDRNet with L1MS−SSIM

loss function and PCD alignment module. Purple violin plots represent Chen

et al. [15] model results. Our model variants produce consistent or in some

cases showed better results from [15] full model considering µPSNR and HDR-

VDP2 per frame image quality results. By looking at the median point in
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red, all the model’s performance looks almost equivalent. However, in some

cases like the result of our Multi-Attention SKFHDRNet with PCD and L1 loss

(orange) in terms of HDR−VDP−2 image quality metric produce better results

by considering the median (red point) point of a violin plot. It is also worth

to mention that for the dynamic dataset (bottom) the Chen et al. [15] model

produces higher minimum values than the three others for HDR-VDP-2, but

that the three others have slightly higher maximum HDR-VDP-2 values. A

similar behaviour can also be seen on the synthetic dataset (top). Overall, the

behaviour of all models were similar, where all the models performed well in the

case of HDR test scenes with a center frame under-exposed. While producing

inferior results in the case of scenes with a center frame highly over-exposed

with large motions.

8 Network Parameters analysis

The full model of Chen et al. [15] is composed of 6.1 million parameters, with

3.1M parameters for CoarseNet and 3.0M for RefineNet. While Yan et al. [17]

model contains 1.9M parameters and Kalantari and Ramamoorthi [14] model

has 9.0M parameters mentioned by [15]. However, our full model without the

PCD module has 1.3M parameters. Our other model variants having the PCD

module have 2.9M parameters providing almost similar or even surpassing per-

formance of the Chen et al. [15] model which has network parameters more than

half the size of our model. However, our full model variants had a high inference

time on the test images, which is represented in Table 3.
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Figure 17: Per frame representation of image quality objective metric results
on all three datasets using violin plot of our Multi-Attention SKFHDRNet vari-
ants blue violin represent our multi-attention SKFHDRNet with L1 loss, orange
represents multi-attention SKFHDRNet with L1 loss and PCD alignment mod-
ule, and yellow represents Multi-Attention SKFHDRNet with L1MS−SSIM loss
function and PCD alignment module against purple points of Chen et al. [15]
model results.
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9 Limitations of our proposed methodology

In general our approach performs better and produces high quality HDR video.

However, some use cases were harder, and the model struggled to produce sat-

isfactory HDR video reconstruction. One typical example of our model poor

performance is observed in cases where the center (reference) frame has highly

over-exposed regions and there is apparently large movement of objects dur-

ing consecutive frames with large occlusion. As can be seen in Fig. 18, our

method results in ghosting and other distortions, such as decolorized pixels.

Other methods from the results also encounter difficulties in these regions and

provided estimated HDR with a similar type of artifacts.

Figure 18: The top row represent estimated HDR scenes for CAROUSEL FIRE-
WORKS scene using two alternating exposures. The bottom row shows the
zoomed region where all the models introduced decolorized pixels. By looking
at the model inputs, where the center (reference) frame Li is over-exposed in
the highlighted region and the missing content should be recovered from the
neighboring frames with low exposure, Li − 2,Li − 1 and Li + 1,Li + 2. Be-
cause of significant displacement of objects due to large motions along with
high exposure in that region none of the methods are able to properly register
and reconstruct details in that region of the image, producing ghosting artifacts
which can be seen from the bottom row. Therefore, our method similar to other
approaches contains artifacts in this region.
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Moreover, in cases where the center (reference) image has low exposure and

the neighboring frames with high exposure contain darker pixels in the same

region, This scenario makes it harder for the models to recover detail in darker

regions because the information is very limited in all the frames which produce

noise in those regions. This is illustrated in the zoomed region of the static

dataset scene in Fig. 19. However, our full model results are still considerably

better than the other learning-based techniques.

Figure 19: The top row represent estimated HDR scenes for static scene using
two alternating exposures. The bottom row shows the zoomed region where all
the models introduced noise in the dark region. By looking at the model inputs,
where the center(reference) frame Li is under-exposed and the highlighted region
have very dark pixels. Upon that the neighboring frames with high exposure,
Li−2,Li−1 and Li +1,Li +2 also have darker pixel values in the same regions.
Due to less information in the middle as well as neighbouring frames, The mod-
els produced noisy texture in those regions which is visualized in the zoomed
sections in the bottom row. Therefore, our method similar to other approaches
contains artifacts in this region. However, our multi-attention SKFHDRNet
variants have less noisy estimated HDR scene than the other methods.
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10 Future work

Considering the real-time scenarios, there is further research needed by making

the model more interactive by minimizing the inference time of the model. As

an example, performing HDR video estimation without an optical flow network

will further reduce the model inference time.

Although our methodology showed improved performance regarding recov-

ering details in over-exposed regions of LDR images, further improvement is

required as most of the prior work similar to our proposed method showed

inferior performance in recovering missing details in challenging over-exposed

examples.

In the future, we will extend the evaluation by conducting a psychophysical

study to evaluate model performance. Additionally, it would be interesting to

modify our system to work with different types of capturing setups, for example,

stereo cameras with various exposures.

11 Conclusion

We proposed a learning-based technique having optical flow, multi-attentions,

and PCD alignment modules for improved model performance regarding image

alignment and ghosting artifacts. For recovering lost details in under and over-

exposed regions, we merged the previously refined aligned features using a series

of (DSKFRDBs) for estimating high-quality final HDR scenes. We demonstrate

the performance of our method on a number of HDR test datasets containing

challenging cases with over-exposed regions and large motions. Our learning-

based method achieves better results in most cases than recent state-of-the-

art methods with model parameters half the size of the recent state-of-the-art

method.
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