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Abstract

In the square root velocity framework and similar approaches, the
computation of shape space distances and the registration of curves re-
quires the solution of a non-convex variational problem. In this paper,
we present a new PDE-based method for solving this problem numeri-
cally. The method is constructed from numerical approximation of the
Hamilton-Jacobi-Bellman equation for the variational problem, and has
quadratic complexity and global convergence for the distance estimate.
In conjunction, we propose a backtracking scheme for approximating so-
lutions of the registration problem, which additionally can be used to
compute shape space geodesics. The methods have linear numerical con-
vergence, and improved efficiency compared previous global solvers.

Introduction

A large number of applications require the manipulation and mathematical or
statistical analysis of geometric objects in general and curves in particular. Ex-
amples from mathematical image processing are segmentation, where one wants
to find and classify different objects within an image based on their outlines (see
e.g. [22] for a classical model), or object tracking (see [33]), where one wants to
follow the same object over a sequence of consecutive frames. Other examples
include the analysis of shapes of proteins [26], modelling and analysis of com-
puter animations [4, 11], or also inverse problems concerning the detection of
shapes from indirect measurements [17].

In order to perform these tasks, it is necessary to have a well-defined and
easily computable notion of distance between curves at hand. One important
example is the Square Root Velocity (SRV) distance originally introduced in
[31, 28] (see Section 2 below for a precise definition), which can be interpreted as
a measure for the bending and stretching energy that is required for transforming
one curve into another. For parametrised curves, this distance is defined by
applying first a non-linear transformation—the Square Root Velocity Transform
(SRVT)—to the involved curves, which maps them onto the unit sphere in L2.
Then, the distance of the curves is defined as the unit sphere distance of their
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SRV transformations. Even more, this setting makes it possible to regard the
space of all parametrised curves as a manifold with a Riemannian structure that
is inherited from the unit sphere in L2. In particular, one can define geodesics
between parametrised curves, that is, optimal deformations of one curve into
another.

However, in many applications we are only interested in the image of a curve,
but not the concrete parametrisation. We thus rather require a distance between
shapes, that is, equivalence classes of curves modulo reparametrisations. Within
the SRV framework, this can be achieved by defining the distance between two
shapes as the infimum of the distance between all curves within their equiva-
lence class. Or, given two parametrised curves c1 and c2, we define the distance
between their shapes as the infimum of the distance between all reparametrisa-
tions of c1 and c2. It can be shown that this infimum is positive for all distinct
shapes and thus defines a distance on the set of all shapes. Moreover, it is again
possible to view the space of all shapes as a Riemannian manifold and thus to
define geodesic between shapes. We refer to [32] for a detailed introduction into
shape analysis within the SRV framework; a short overview can also be found
in [3].

The actual computation of the shape distance and of geodesics, though, re-
quires the solution of an optimisation problem over the space of all reparametri-
sations. This problem has the form

inf
ϕ1, ϕ2

∫
I

F (ϕ1(t), ϕ2(t), ϕ′1(t), ϕ′2(t)) dt, (1)

where the infimum is computed over all orientation preserving reparametrisa-
tions of the unit interval I = [0, 1]. Here the integrand F depends on the SRVTs
of the curves c1 and c2 one wants to compare. Due to invariance properties of
the SRV distance, it is sufficient to compute the minimum in (1) only with re-
spect to one of the diffeomorphisms, e.g. w.r.t. ϕ1 while leaving ϕ2 constant
equal to Id. This reduces the dimensionality of the problem, but one is still left
with an optimisation problem over a function space.

For the numerical solution, there are two main approaches: gradient based
methods and dynamical programming. In addition, new approaches based on
deep learning have been suggested recently, and there exists an analytic solution
algorithm for a certain class of curves.

In the dynamic programming approach introduced in [28] (see also [36] for
a similar numerical approach for a different shape distance), one approximates
the diffeomorphism ϕ1 by a piecewise linear approximation with nodal points
and nodal values within a fixed partition 0 = t0 < t1 < . . . < tN = 1 of the
unit interval. The resulting discrete optimisation problem is then solved by a
dynamic programming algorithm. Without further modifications, this algorithm
has a time complexity of O(N4) and thus is not useful for practical applications.
A significant speed-up is possible, though, by limiting the set of possible slopes
ϕ′1/ϕ

′
2 for the linear approximations of ϕ1. In fact, a method with complexity

O(N3) has already been proposed in [28]. Even more, a variant with complexity
O(N) has been presented in [5] (see also [16]), which is an iterative method based
on an adaptive, local refinement of the search grid for the dynamic program.

Gradient based methods usually work on a finite dimensional approximation
of the space of all reparametrisations, e.g. using B-splines or trigonometrical
functions. The optimisation problem (1) is then rephrased as a problem for the
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basis coefficients. This is a finite dimensional optimisation problem, which can,
in principle, be solved with standard methods like gradient descent or quasi-
Newton methods. One difficulty is the constraint that the functions ϕ we are
optimising over are orientation preserving diffeomorphisms and thus monoton-
ically increasing. Thus one has a positivity constraint for ϕ′, which is difficult
to handle numerically. Thus [21] rephrase the problem in terms of γ2 := ϕ′,
which yields an optimisation problem with the single equality constraint that
‖γ‖2L2 = 1.

We note here, though, that the optimisation problem (1) is typically highly
non-convex, as the reparametrisations appear as arguments of the curves or
their SRVTs. Thus it is highly likely that there is a large number of local
minimisers and other critical points. Indeed, an example of such a situation is
shown in our numerical examples in Section 7.1. Since gradient based methods
are local, it is therefore necessary to initialise the iteration with a sufficiently
good initial guess of the solution. The same holds for the adaptively refined
dynamic program suggested in [5]. If the initialisation of that method is too
coarse, it can happen that the refinement strategy is never able to find the true
global minimum.

Recently, deep learning based methods for the computation of shape dis-
tances have been suggested in [30, 20]. Once the networks have been trained,
the resulting algorithms are significantly faster than both dynamic program-
ming and gradient based approaches, and they do not suffer from issues with
the initialisation of iterates. However, they are dependent on the availability of
sufficiently rich training sets, and they do not come with any error estimates
or convergence guarantees. Moreover, these methods are as of now limited to
low dimensional situations: The method in [30] is limited to planar curves. The
method in [20] is in principle able to deal with curves in arbitrary dimensions,
but at the moment the results in higher dimensions are suffering from a lack of
training data.

Finally, there exists an analytic algorithm for the case where both of the
curves c1 and c2 are piecewise linear [25]. In this case, the optimal reparam-
etrisation turns out to be piecewise linear as well, although typically with a
different number of nodal points. Still, this makes it possible to compute the
optimal reparametrisation exactly. Because of the high computational complex-
ity that increases rapidly with the number of nodal points N , this algorithm is
largely limited to applications where the exactness is crucial.

In this paper, we want to present, and analyse, an alternative approach to the
solution of (1) which is based on a formulation as a continuous dynamic program.
This formulation allows us to define a continuous value function u : I × I → R,
where u(x1, x2) measures the minimal (partial) cost of a reparametrisation satis-
fying ϕ(x1) = x2. In particular, u(1, 1) is precisely the value of the optimisation
problem (1). A precise definition of u is given in (18) below. This value func-
tion u has been shown in [10] to satisfy, in the viscosity sense, the associated
Hamilton–Jacobi–Bellman equation, which is a hyperbolic PDE with boundary
values given for x1 = 0 and x2 = 0. Moreover, convergent numerical schemes
for the solution of that PDE have been proposed in [9, 10, 34].

The main contribution of this paper is a generalisation of these schemes
through a Semi-Lagrangian scheme which is closer in spirit to the definition
of u by means of a dynamical program. In particular, our approach allows it
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to recover the optimal reparametrisation in a natural way by solving an ODE.
Since the value function is defined by means of the dynamic programming prin-
ciple, the resulting numerical method will be globally convergent. At the same
time, the formulation as a PDE allows the numerical schemes to have a time
complexity of only O(N2). In Section 2, we will formulate the necessary mathe-
matical background in shape analysis and the SRVT. The value function and the
Hamilton–Jacobi–Bellman equation are introduced in Section 3.1. In Sections 4
and 5, we will first introduce the general numerical framework together with a
convergence analysis, and then propose concrete numerical schemes. Then we
will discuss the recovery of the optimal reparametrisation from the value func-
tion and the construction of geodesics in shape space in Section 6. Finally, we
will present numerical experiments in Section 7.

Preliminaries

In this article, we discuss a PDE based numerical method for solving the problem

sup
ϕ1,ϕ2

∫
I

max
{〈
q1

(
ϕ1(t)

)
, q2

(
ϕ2(t)

)〉
, 0
}√

ϕ′1(t)ϕ′2(t) dt.

Here I is the unit interval, q1, q2 ∈ C(I;Rd) are given functions, and the supre-
mum is taken over all absolutely continuous, non-decreasing functions ϕi : I → I
with ϕi(0) = 0 and ϕi(1) = 1.

In this section, we will discuss how this problem appears naturally during
the computation of various shape distances defined via curve transformations.
We will start with a discussion of one particular curve transformation—the
square-root-velocity-transform (SRVT)—and then see how the main idea can
be extended to more general transforms.

The SRVT

Let I = [0, 1] be the unit interval and d ∈ N, and denote by

Imm(I;Rd) :=
{
c ∈ C1(I;Rd) : |ċ(t)| > 0 for all t ∈ I

}
the space of all C1 immersions of I in Rd. We define the (scaled) Square-Root-
Velocity-Transform (SRVT)

Q : Imm(I;Rd)→ C(I;Rd \ {0})

as

q(t) = Q(c)(t) :=
1√

Length(c)

ċ(t)√
|ċ(t)|

, (2)

where

Length(c) :=

∫
I

|ċ(t)| dt

denotes the length of the curve c. Noting that∫
I

|qi(t)|2 dt =

∫
I

|ċi(t)|
Length(ci)

dt = 1,
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we see that, actually, the SRVT maps a curve to an element of the unit sphere
in L2(I;Rd). The (scaled) Square-Root-Velocity (SRV) distance between c1 and
c2 is now defined as the geodesic distance between q1 and q2, that is,

dist(c1, c2) := arccos
(∫

I

〈q1(t), q2(t)〉 dt
)
. (3)

Obviously, the SRV distance is translation invariant. Moreover, due to the
scaling by the square root of the length of the curves, it is easy to see that it is
scale invariant, that is,

dist(λ1c1, λ2c2) = dist(c1, c2)

for all λ1, λ2 > 0. Since dist is defined by means of a geodesic distance, it
also satisfies the triangle inequality. As a consequence, it follows that dist is
a metric on the pre-shape space Imm(I;Rd)/G, where G denotes the group of
translations and scalings in Rd.

In fact, one can show that it is possible to regard Imm(I;Rd)/G as a Rie-
mannian manifold for which dist is the geodesic distance. This also makes it
possible to construct geodesics between curves: Consider c1, c2 ∈ Imm(I;Rd)/G
with SRVTs q1 = Q(c1) and q2 = Q(c2). If q1(t) 6= −q2(t) for all t ∈ I then the
geodesic between c1 and c2 is given as

τ 7→ cτ := Q−1
(
w(1− τ)q1 + w(τ)q2

)
∈ Imm(I;Rd)/G. (4)

Here Q−1 is the inverse SRVT, which can be explicitly computed as

Q−1(q)(t) =

∫ t

0

|q(t′)|q(t′) dt′,

and

w(τ) =
sin
(
τ dist(c1, c2)

)
sin
(
dist(c1, c2)

) .
We note that (4) still makes sense if q1(t) = −q2(t) for some (though not all)
t ∈ I. In that case, however, the resulting curves cτ will not all be immersions.

Next we define the shape space

S(I;Rd) := Imm(I;Rd)/(Diff+(I)×G),

where

Diff+(I) =
{
ϕ ∈ C∞(I) : ϕ(0) = 0, ϕ(1) = 1, ϕ′(t) > 0 for all t ∈ I

}
is the group of orientation preserving diffeomorphisms of I. Given two shapes
[c1], [c2] ∈ S(I;Rd), we then define their distance as

distS([c1], [c2]) := inf
ϕ1, ϕ2∈Diff+(I)

dist(c1 ◦ ϕ1, c2 ◦ ϕ2). (5)

In fact, it is possible to simplify this expression, as the SRV distance is
invariant under simultaneous reparametrisations in the sense that

dist(c1, c2) = dist(c1 ◦ ϕ, c2 ◦ ϕ) for all ϕ ∈ Diff+(I).
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Thus we have that

distS([c1], [c2]) = inf
ϕ∈Diff+(I)

dist(c1 ◦ ϕ, c2). (6)

Again, one can show that this distance is induced by a Riemannian metric on
the shape space S(I;Rd), which in turn makes it possible to define geodesics
between certain shapes. If the infimum in (6) is attained at a diffeomorphism
ϕopt, then the geodesic between the shapes [c1] and [c2] is the equivalence class
of the geodesic between c1 ◦ ϕopt and c2. Explicitly, this is given as

τ 7→
[
Q−1

(
wS(1− τ)(q1 ◦ ϕopt)

√
ϕ′opt + wS(τ)q2

)]
with

wS(τ) =
sin
(
τ distS([c1], [c2])

)
sin
(
distS([c1], [c2])

) .
In order to find an efficient numerical solution of the optimisation problem

required for the computation of distS in (6), we use we use a more explicit
formulation: By applying the chain rule in (2), one obtains that

Q(c ◦ ϕ)(t) = Q(c)(ϕ(t))
√
ϕ′(t). (7)

Thus, the optimisation problem (6) reads explicitly as

inf
ϕ1, ϕ2∈Diff+(I)

arccos
(∫

I

〈
q1

(
ϕ1(t)

)√
ϕ′1(t), q2

(
ϕ2(t)

)√
ϕ′2(t)

〉
dt
)
.

Since arccos is monotonically decreasing, we can alternatively compute

distS([c1], [c2]) =

arccos

(
sup

ϕ1, ϕ2∈Diff+(I)

∫
I

〈
q1

(
ϕ1(t)

)√
ϕ′1(t), q2

(
ϕ2(t)

)√
ϕ′2(t)

〉
dt

)
.

General transforms

Many of the properties of the SRVT hinge on its behaviour under reparametri-
sations, that is, equation (7). Therefore it makes sense to consider general
transformations

Q : Imm(I;Rd)→ C(I;Rd
′
),

c 7→ q := Q(c),
(8)

that satisfy the condition

Q(c ◦ ϕ)(t) = Q(c)(ϕ(t))
√
ϕ′(t) (9)

for all c ∈ Imm(I;Rd) and every ϕ ∈ Diff+(I).
Specific examples of such transforms and distances that have been considered

in the literature are the following:
• The Square-Root-Velocity-Transform (SRVT) as discussed above.
• The Q-transform, first introduced in [27], is defined as

Q(c)(t) =
√
|ċ(t)|c(t).

Of particular interest is also a generalisation of this transform to surfaces
(see [23, 24]), which, however, falls outside the scope of this article.
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• In [29], the specific case of planar curves d = 2 was considered. After iden-
tifying R2 with C, they define for fixed parameters a, b > 0 the transform

Fa,b(c)(t) = 2b
√
|ċ(t)|

( ċ(t)
|ċ(t)|

) a
2b

.

Here (s)
a
2b denotes the complex exponential of s ∈ C \ {0}, or, more

precisely, a suitable locally defined branch of the exponential. Details on
the precise definition of this transform can be found in [29]. Note that the
parameter choice a = 2b recovers, up to scaling, the SRVT.

• A generalisation of the SRVT framework to Lie group valued curves was
developed in [12]. Given a Lie group G with Lie algebra g, one can define
the SRVT as a mapping from Imm(I;G) to C(I; g) by

Q(c)(t) =
R−1
c(t)∗(ċ(t))√
|ċ(t)|

.

Here Rg is the right translation by g on the Lie group G, and Rg∗ = TeRg
is the tangent map of Rg at the identity e ∈ G. Moreover, |·| is some norm
on g induced by a right invariant metric on G.

For further examples and a detailed discussion of such methods, we refer to [2].

Assume now that Q is some curve transformation satisfying (9). Given two
curves c1, c2 ∈ Imm(I;Rd) with corresponding transforms qi = Q(ci), we can
then define their Q-distance as

dist(c1, c2) :=

∫
I

|q1(t)− q2(t)|2 dt.

Moreover, we can define the shape space

S(I;Rd) := Imm(I;Rd)/(∼ ×Diff+(I)),

where ∼ is the equivalence relation

c1 ∼ c2 :⇐⇒ Q(c1) = Q(c2).

In the cases of the SRVT and the Fa,b-transform, two curves are equivalent if
and only if they are translates of each other; for the Q-transform the equivalence
relation is trivial. Given two shapes [c1], [c2] ∈ S(I;Rd), we then define their
distance as

distS([c1], [c2]) := inf
ϕ1, ϕ2∈Diff+(I)

dist(c1 ◦ ϕ1, c2 ◦ ϕ2). (10)

With qi = Q(ci) and using the property (7) of the transform Q, we can refor-
mulate this as

distS([c1], [c2]) = inf
ϕ1, ϕ2∈Diff+(I)

∫
I

∣∣(q1 ◦ ϕ1)
√
ϕ′1 − (q2 ◦ ϕ2)

√
ϕ′2
∣∣2 dt

= inf
ϕ1, ϕ2∈Diff+(I)

∫
I

∣∣(q1 ◦ ϕ1)
∣∣2|ϕ′1|+ ∣∣(q2 ◦ ϕ2)

∣∣2|ϕ′2|
− 2
〈
q1 ◦ ϕ1, q2 ◦ ϕ2

〉√
ϕ′1ϕ

′
2 dt

= ‖q1‖2L2 + ‖q2‖2L2 − sup
ϕ1, ϕ2∈Diff+(I)

∫
I

2
〈
q1 ◦ ϕ1, q2 ◦ ϕ2

〉√
ϕ′1ϕ

′
2 dt.

(11)

7



As for the SRVT, it is also possible to define scaled variants of these general
transforms, although the geometric meaning of the scaling may be less clear.
There we define the scaled transform

Q̂(c) =
1

‖Q(c)‖L2

Q(c),

which again maps Imm(I;Rd) to the unit sphere in L2(I;Rd). After defining a
corresponding shape space and proceeding as for the SRVT above, we end up
with the scaled shape distance

distS([c1], [c2]) = arccos

(
sup

ϕ1, ϕ2∈Diff+(I)

∫
I

〈
(q1 ◦ ϕ1), (q2 ◦ ϕ2)

〉√
ϕ′1ϕ

′
2, dt

)
.

(12)

The variational problem

We now assume that q1, q2 : I → Rd are given functions, and we define

J(ϕ1, ϕ2) :=

∫
I

〈
q1

(
ϕ1(t)

)
, q2

(
ϕ2(t)

)〉√
ϕ′1(t)ϕ′2(t) dt.

As discussed above, the main difficulty for the computation of both unscaled
and scaled shape distances is the solution of the optimisation problem

sup
ϕ1, ϕ2∈Diff+(I)

J(ϕ1, ϕ2). (13)

In general, though, the supremum in (13) is not attained in Diff+(I). However,
it was shown in [7] that a relaxation of the optimisation problem (13) to a larger
space of reparametrisations attains its maximum. Denote to that end

Φ :=
{
ϕ ∈ AC(I) : ϕ(0) = 0, ϕ(1) = 1, ϕ′(t) ≥ 0 for a.e. t ∈ I

}
.

Lemma 1 (Bruveris 2016). Assume that q1, q2 ∈ C(I;Rd). Then

sup
ϕ1, ϕ2∈Diff+(I)

J(ϕ1, ϕ2) = sup
ϕ1, ϕ2∈Φ

J(ϕ1, ϕ2). (14)

Moreover the optimisation problem

sup
ϕ1, ϕ2∈Φ

J(ϕ1, ϕ2) (15)

attains a solution.

Proof. Equality (14) follows from the density of Diff+(I) in AC(I) together with
the continuity of J with respect to the strong topology on AC(I). The existence
of a solution in AC(I) has been shown in [7, Prop. 15] for the case where
q1 and q2 are SRV transforms of functions in C1(I;Rd). However, the proof
immediately generalises to the case of arbitrary continuous functions qi.

In this paper we will discuss a solution method for (15) that is based on a
reformulation as a Hamilton–Jacobi–Bellman equation. In order to be able
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apply this theory, it is necessary that the integrand in is concave with re-
spect to the (ϕ′1, ϕ

′
2) variable. However, this is only the case at points where

〈q1(ϕ1(t)), q2(ϕ2(t))〉 ≥ 0. We therefore need one further modification of our
problem. To that end, we define

Jc(ϕ1, ϕ2) :=

∫
I

max
{〈
q1

(
ϕ1(t)

)
, q2

(
ϕ2(t)

)〉
, 0
}√

ϕ′1(t)ϕ′2(t) dt,

where we set the integrand to zero whenever 〈q1(ϕ1(t)), q2(ϕ2(t))〉 is negative.
Note that this is precisely the concave hull of the integrand with respect to the
(ϕ′1, ϕ

′
2) variable.

The following result shows the relation between the two functionals J and
Jc.

Lemma 2. Let ϕ1, ϕ2 ∈ Φ. Then there exist ϕ̃1, ϕ̃2 ∈ Φ such that

J(ϕ̃1, ϕ̃2) = Jc(ϕ1, ϕ2).

Proof. See [7, Lemma 16].

Since Jc ≥ J , this shows in particular that J and Jc have the same maximal
value. Moreover, the proof in [7] is constructive in that it provides an explicit
method for constructing the reparametrisations ϕ̃1 and ϕ̃2. This allows us to
consider instead the problem of solving

sup
ϕ1, ϕ2∈Φ

Jc(ϕ1, ϕ2). (16)

A General Variational Problem

The problem (16) can be seen as a special case of the variational problem

sup
ϕ∈A

(
J(ϕ) :=

∫
I

f(ϕ1(t), ϕ2(t))
√
ϕ′1(t)ϕ′2(t) dt

)
. (17)

Here, we denote ϕ = (ϕ1, ϕ2) and A = Φ × Φ. Moreover, f : I × I → R≥0 is
a continuous, non-negative function. Although with a different motivation, this
problem has been studied in [10, 9, 34, 15]; within the context of shape matching,
a variant where ϕ2 is set to be the identity has been discussed in [35]. In [10], a
Hamilton-Jacobi-Bellman (HJB) formulation of this problem was derived, and
HJB-based solvers were constructed in [10, 9, 34]. In the following, we recall
the main HJB-related results from [10], and provide some useful generalisations
of the results.

Dynamic Programming and the Value Function

For variational problems of the type (17), the solution can be described using
dynamic programming. The starting point is the introduction of a value function
u : [0, 1]2 → R defined as

u(t,x) := sup
ϕ∈A(t,x)

∫ t

0

f(ϕ1, ϕ2)
√
ϕ′1ϕ

′
2 dt (18)
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with

A(t,x) :=
{
ϕ ∈ AC(I; R2) : ϕ(0) = 0, ϕ(t) = x, ϕ′(s) ≥ 0 for a.e. s ∈ I

}
.

Due to the reparametrisation invariance of the integral, we have that u(t,x) is
independent of t. We will therefore omit the time variable in the definition of u
and A and simply write u(x) = u(1,x).

In the case when either x1 = 0 or x2 = 0, we have that ϕ′1ϕ
′
2 = 0 a.e. for all

admissible paths. Consequently, the integrand is zero almost everywhere, mean-
ing that we obtain the boundary values u(0, x2) = u(x1, 0) = 0. Furthermore,
the value function satisfies the dynamic programming principle

u(ϕ(t)) ≥ u(ϕ(t− h)) +

∫ t

t−h
f(ϕ1, ϕ2)

√
ϕ′1ϕ

′
2 dt, (19)

for all ϕ ∈ A. Moreover, ϕ is a solution of (17) if and only if we have equality
for all t and h.

Dividing by h, and taking the limit as h→ 0, this means that a solution ϕ
formally satisfies the differential equation

− d

dt
u(ϕ) + f(ϕ)

√
ϕ′1ϕ

′
2 = 0,

which for smooth u reads

−Du(ϕ) ·ϕ′ + f(ϕ)
√
ϕ′1ϕ

′
2 = 0.

This means that it is possible to reconstruct ϕ from the value function.
We will now discuss some properties of the value function that will be needed

later in the paper. First of all, the dynamic programming principle (19) implies
immediately that u is monotone non-decreasing in the sense that u(x) ≥ u(y)
whenever x ≥ y. Additionally, wherever f(x) > 0, the value function is locally
strictly increasing: if xi > yi element-wise, we can always find a path ϕ from y
to x for which

√
ϕ′1ϕ

′
2 > 0 whenever f(ϕ) > 0, which implies that u(x) > u(y).

In particular, this implies that u(x) > 0 if (and only if) there exists y < x with
f(y) > 0.

Next it has been shown that u(x) is Hölder continuous with exponent 1
2 [10,

Lemma 1] while v(x) := u(x)2 is Lipschitz continuous [9, Lemma 9]. Finally,
we have the bound 0 ≤ u(x) ≤ ‖f‖∞

√
x1x2.

The HJB equation

For variational problems such as (17), the value function can often be described
as the unique solution of the associated Hamilton-Jacobi-Bellman equation. For
a general problem of the form

sup
ϕ

∫ 1

0

`(ϕ(t),ϕ′(t))dt

with associated time dependent value function u(t,x), this reads

−ut(t,x) + sup
α∈A

(
−Du(x) ·α+ `(x,α)

)
= 0.
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Here, x and α correspond to ϕ(t) and ϕ′(t), respectively.
As discussed above, the value function is in our case time independent. Thus,

we would expect a stationary Hamilton-Jacobi-Bellman equation of the form{
H(x, Du) = 0, in (0, 1]2,

u(0, x2) = u(x1, 0) = 0,

with the Hamiltonian

H(x,p) = sup
α∈R2

≥0

−p ·α+ f(x)
√
α1α2. (20)

The restriction α ∈ R2
≥0 follows from the fact that ϕ′(t) takes values in R2

≥0.
However, since the functional is positively homogeneous in α, this leads to
a degenerate Hamiltonian which only takes values H(x,p) ∈ {0,+∞}. This
property is a consequence of the reparametrisation invariance of the problem,
and will be a problem for uniqueness of viscosity solutions of the HJB equation.
On the other hand, due to the reparametrisation invariance, we are able to
impose restrictions to the admissible space. Therefore, for some well chosen
set A representing the admissible derivatives of the paths ϕ, we define the
Hamiltonian as

H(x,p) = sup
α∈A
−max{p ·α, 0}+ f(x)

√
α1α2. (21)

Here, we have also followed the idea of [9] by replacing the inner product with its
positive part in order to guarantee the uniqueness of the solution. In addition,
this ensures that the viscosity subsolution property extends to the point (1, 1),
and, since the value function already is monotonically non-decreasing, it will
still be a viscosity solution of the HJB equation. This could also be fixed by
changing the domain to (0, 1)2 as done in [13].

We require A to have certain properties.
• First of all, A should reflect the admissible directions of the path ϕ. In

particular, we must allow for all monotone increasing directions, which
means that we must have that coneA = R2

≥0.
• Secondly, we want the admissible set to permit both negative and positive

values for the Hamiltonian (to avoid redundancy of viscosity sub- and
supersolutions). This requires that the set A is bounded away from the
origin.

• Lastly, we want the admissible set to be compact to allow for the Hamil-
tonian to have a maximiser α. This is not needed for the viscosity char-
acterisation of the value function, but will be a necessary assumption in
the construction of numerical solvers.

Together, this can be summarised in the following two assumptions:

Assumption 1. A satisfies the following:
(a) A ⊂ R2

≥0 such that coneA = R2
≥0 and infA |α| > 0.

(b) A compact.

There are a few examples of admissible sets which satisfy these assumptions.
The natural choices are

Ar = {α ∈ R2
≥0 | |α|r = const.},

11



with r ∈ {1, 2,+∞}. More generally, for 1 ≤ r ≤ +∞, Ar satisfies both assump-
tions 1a and 1b. Additionally, there are options satisfying only assumption 1a
including

A = {α ∈ R2
≥0 | α1α2 = const.},

A = {α ∈ R2
≥0 | α1 = const.}.

The first choice is (implicitly) used in [10], while the second choice corresponds
to the restriction ϕ′1 = 1, which is common in the literature of shape analysis.
However, both these cases lead to special situations where the maximum of H
is not necessarily attained by any α.

We have the following result:

Theorem 3. Assume that A is such that assumption 1a holds. Then, the value
function u is the unique viscosity solution of the hyperbolic PDE{

H(x, Du) = 0 in (0, 1]2,

u(0, x2) = u(x1, 0) = 0.
(22)

Proof. In [10, Theorems 2, 3], it has been shown that u is the unique viscosity
solution of the PDE{

H̃(x, Du) = 0 in (0, 1]2,

u(0, x2) = u(x1, 0) = 0,

where the Hamiltonian H̃ is given as

H̃(x,p) = −max{p1, 0}max{p2, 0}+
1

4
f(x)2.

This Hamiltonian is equivalent in the viscosity sense to

H(x,p) = −
√

max{p1, 0}max{p2, 0}+
1

2
f(x),

which is the explicit expression for (21) in the case where A = {α ∈ R2
≥0 |

α1α2 = 1
4}. Moreover, as used in the proof of [10, Theorem 2], the positive

homogeneity of the functional of H with respect to α implies equivalence of
viscosity solutions for all choices of A satisfying assumption 1a.

Monotone Schemes for the HJB Equation

We will now construct a new family of schemes for solving the HJB equation.
The schemes have can be interpreted both as finite difference approximations to
the HJB equation similar to the schemes of [9, 10, 34], but also as approximations
to the dynamic programming principle (19).

Schemes based on Du

We start by constructing numerical schemes for approximating solutions to the
HJB equation. As in [9, 10, 34], we discretise the unit square into a square

12



grid [0, 1]2h := {0, h, 2h, . . . , 1}2. Here, we assume that h = 1/N , N + 1 being
the number of discretisation points. For each grid node x, we solve a finite
difference approximation to the HJB equation, which takes the form

max
α∈A
−max{D−u(x)α, 0}+ f(x)

√
α1α2 = 0. (23)

Here we use the backward difference approximation

D−u(x)α :=
u(x)− u(x− hα)

h
. (24)

For smooth u, this is a first order approximation to −Du(x)α. However, the
term u(x − hα) needs to be approximated as x − hα will not coincide with
a grid point for all values of α. We will denote the approximation of u as
gx,h[u]. Typically, this will be a interpolation-type approximation. Inserting
the approximation (24) into (23), this then gives the general scheme

max
α∈A

−max
{
u(x)− gx,h[u](x− hα), 0

}
h

+ f(x)
√
α1α2 = 0. (25)

In the case where u(x) ≥ gx,h(x − hα) for all α ∈ A, this results, after rear-
ranging the terms, in the expression

u(x) = max
α∈A

gx,h[u](x− hα) + hf(x)
√
α1α2. (26)

Such schemes are typically referred to as Semi-Lagrangian schemes (see for
example [18, 19, 14] for related Semi-Lagrangian schemes).

Semi-Lagrangian schemes can be seen as generalisations of the typical ap-
proach as in [9, 10, 34]. There Du(x), interpreted as a gradient, is approximated
numerically, and the directional derivative is then computed as the inner prod-
uct of α with the approximation to Du(x). By using the approximation

gx,h[u](x− hα) = u(x)− hD−u(x) ·α

for some approximate gradient D−u(x), this approach reduces to our setting.
In order to prove convergence of the schemes, we will use the classical proof

of Barles & Souganidis for so-called monotone schemes (see [1]). Moreover, we
will follow the standard notation for such schemes. To that end, we define the
function Sh : [0, 1]2 × R× R[0,1]2h → R,

Sh(x, t, u) = max
α∈A

−max
{
t− gx,h[u](x− hα), 0

}
h

+ f(x)
√
α1α2.

The approximation uh(x) is then defined as the largest solution t ∈ R of the
equation Sh(x, t, uh) = 0. We want to use [1, Theorem 2.1], which states that
a scheme that is monotone, stable and consistent is also convergent. Here, we
define:

• Monotonicity : Sh is non-decreasing in u.
• Stability : The scheme Sh

(
x, uh(x), uh

)
= 0 has a solution uh which is

bounded in the sense that ‖uh‖∞ ≤ const. independent of h. Additionally,
the boundary constraints uh(x1, 0) = uh(0, x2) = 0 also hold in the limit
as h→ 0.

13



• Consistency : For every ψ ∈ C∞, we have that

lim
t→0,h→0,y→x

Sh
(
y, ψ(y) + t, ψ + t

)
= H(x, Dψ(x)).

Here we identify a function ψ ∈ C∞ with its evaluation on the grid [0, 1]h.
Given A, the scheme is completely determined by gx,h. Accordingly, mono-

tonicity, stability and consistency of the scheme can be inferred from the prop-
erties of gx,h. In the following, define

B−Ch(x) := {y ∈ [0, 1]2 | y < x, |y − x| ≤ Ch}.

Assumption 2. For every y = x− hα for α ∈ A and x ∈ [0, 1]2h, the approxi-
mation gx,h satisfies the following properties:

(a) Monotonicity: gx,h[u](x− hα) is non-decreasing in u.
(b) Localisation: there exists C > 0 such that for all functions ψ, ξ for which

ψ = ξ on B−Ch(x), we have that gx,h[ψ](y) = gx,h[ξ](y).
(c) Boundedness: if 0 ≤ u(z) ≤ C

√
z1z2 for all z ∈ (0, 1)2 and some C ≥ 0,

then it holds that 0 ≤ gx,h[u](y) ≤ C√y1y2.
(d) Superlinear consistency: for every ε > 0 and ψ ∈ C∞[0, 1]2, there exists a

modulus of continuity ωψ,ε, such that∣∣∣∣gx,h[ψ + t](y)− ψ(y)− t
h

∣∣∣∣ ≤ ωψ,ε(h)

for every |t| ≤ ε.
Assumption 2a ensures that the scheme is monotone, assumption 2c ensures

that the scheme is bounded and that the boundary conditions hold in the limit as
h→ 0, and assumption 2d ensures that the scheme is consistent. assumption 2b
ensures that the scheme is explicit in that the approximation uh(x) only depends
of values uh(y) with y < x. The locality, although a natural property of many
numerical solvers, is actually not required for the convergence of the scheme.
We will, however, make use of this condition for the type of schemes discussed
in Section 4.2. Note moreover that, in view of the monotonicity, assumption 2c
needs only hold for the function u(z) = C

√
z1z2.

Theorem 4. Under assumptions 1 and 2, the scheme (25) is convergent.

Proof. The scheme satisfies the following properties:
• Monotonicity : Sh is increasing in gx,h and gx,h is non-decreasing in u.

Hence Sh is non-decreasing in u.
• Stability : Let x ∈ (0, 1]2. Due to assumption 2b, the approximation
gx,h only depends on points y < x, and therefore the scheme is explicit.
Moreover, we obtain the explicit expression

uh(x) = max
α∈A

gx,h[uh](y − hα) + hf(x)
√
α1α2.

We now want to show that 0 ≤ uh(x) ≤ ‖f‖∞
√
x1x2 for all x. Assume

to that end that 0 ≤ uh(y) ≤ ‖f‖∞
√
y1y2 for all y < x. Then, using

assumptions 2b and 2c, we obtain that

0 ≤ uh(x) ≤ max
α∈A

gx,h[uh](y − hα) + hf(x)
√
α1α2

≤ max
α∈A
‖f‖∞

√
(x1 − hα1)(x2 − hα2) + h‖f‖∞

√
α1α2

≤ ‖f‖∞
√
x1x2.
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Since this holds on the initial boundary {x | x1x2 = 0}, the estimates

0 ≤ uh(x) ≤ ‖f‖∞
√
x1x2,

hold by induction. These estimates hold for all h > 0 and therefore also
in the limit as h→ 0. This means that the limit of solution of the scheme
does actually satisfy the boundary condition u = 0 where x1 = 0 or x2 = 0
since the upper bound ‖f‖∞

√
x1x2 evaluates to zero at this boundary.

• Consistency : Since A is compact, we have that

lim
h→0
t→0
y→x

Sh
(
y, ψ(y) + ξ, ψ + t

)
= lim

h→0
t→0
y→x

max
α∈A

max{gx,h[ψ + t](y − hα)− ψ(y)− t, 0}
h

+ f(y)
√
α1α2

= lim
h→0
t→0
y→x

max
α∈A

max
{ψ(y − hα)− ψ(y)

h
+ ωψ,ε(h), 0

}
+ f(y)

√
α1α2

(∗)
= max
α∈A

lim
h→0
t→0
y→x

max{ψ(y − hα)− ψ(y), 0}
h

+ ωψ,ε(h) + f(y)
√
α1α2

= max
α∈A

max{−Dψ(x)(α), 0}+ f(x)
√
α1α2

= H(x, Dψ(x)).

In (∗), we used that the functional is uniformly continuous in y,α, h, t to
exchange the limit and maximisation.

Due to [1, Theorem 2.1], this proves convergence.

Schemes based on D(u2)

Recall that u is only Hölder continuous with exponent 1
2 while u2 is Lipschitz

continuous. This means that one might expect more accurate schemes based on
an approximation of u2 rather than u. This is done in [9], where schemes are
constructed for v := u2.1

The idea is to utilise that D(u2) = 2uDu, meaning that Du = D(u2)/2u
wherever u ≥ 0. In such, one would expect v to be a viscosity solution of

max
α∈A

−max{D(u(x)2)(α), 0}
2u(x)

+ f(x)
√
α1α2 = 0.

Already, this equation has problems with the singularity at u(x) = 0. However,
we proceed by assuming for now that u(x) > 0. We can then follow the above
idea and construct schemes for v based on the approximation

max
α∈A

−max{u(x)2 − gx,h[u2](x− hα), 0}
2u(x)h

+ f(x)
√
α1α2 = 0.

We define therefore

1Additionally, a scheme for the Lipschitz continuous term w := u/
√
x1x2 is also constructed

in [9]. However, we deem this idea ill-suited for our approach due to the lack of simple closed-
form expressions.
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Sh(x, t, u) =

max
α∈A

−max{t2 − gx,h[u2](x− hα), 0}
2th

+ f(x)
√
α1α2 if t > 0,

f(x)
√
α2α2 if t ≤ 0,

(27)
and consider the scheme Sh(x, uh(x), uh) = 0. Again, we define the approxima-
tion uh(x) to be the largest solution of this equation.

In the following, we will derive an explicit expression for uh(x). To that end
note first that we will always have that uh(x) ≥ 0, and uh(x) = 0 if and only if
f(x) = 0 and gx,h[u2](x− hα) ≤ 0 for all α ∈ A.

Assume now that this is not the case and thus uh(x) > 0. Then we can
multiply the equation Sh(x, uh(x), uh) = 0 by 2uh(x)h and obtain the equation

max
α∈A
−max{uh(x)2 − gx,h[u2

h](x− hα), 0}+ 2uh(x)hf(x)
√
α1α2 = 0. (28)

For fixed α ∈ A, the sign of the argument does not change if we replace uh(x)2

by max{uh(x)2, gx,h[u2](x−hα)}. Since we are interested in the largest solution
of the equation, it follows that (28) is equivalent to

max
α∈A
−uh(x)2 + gx,h[u2

h](x− hα) + 2uh(x)hf(x)
√
α1α2 = 0. (29)

Now we can rewrite (29) by completing the square w.r.t uh(x) to obtain that

max
α∈A

[
gx,h[u2

h](x− hα)− uh(x)2 + 2uh(x)hf(x)
√
α1α2

]
= max
α∈A

[
−
(
uh(x)− hf(x)

√
α1α2︸ ︷︷ ︸

=:F (α)

)2

+ h2f(x)2α1α2 + gx,h[u2
h](x− hα)︸ ︷︷ ︸

=:G(α)2

]
= max
α∈A

[
−F (α)2 +G(α)2

]
= 0,

where F (x), G(x) ≥ 0. We must have that

−F 2(α) +G2(α) = (F (α) +G(α))(−F (α) +G(α)) ≤ 0

for all α ∈ A with equality if and only if α is optimal. From F (x), G(y) ≥ 0,
it then follows that −F (x) + G(x) ≤ 0 with equality whenever α is optimal.
Accordingly, the above scheme is identical to

max
α∈A
−F (α) +G(α)

= max
α∈A
−uh(x) + hf(x)

√
α1α2 +

√
h2f(x)2α1α2 + gx,h[u2

h](x− hα) = 0,

which gives the closed form expression

uh(x) = max
α∈A

hf(x)
√
α1α2 +

√
h2f(x)2α1α2 + gx,h[u2

h](x− hα). (30)

In particular, we have that uh(x) ≥ hf(x)
√
α1α2 for all α ∈ A.

Assumption 2*. The approximation gx,h satisfies assumptions 2a, 2b and 2d
and in addition:
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(c*) If 0 ≤ u(z) ≤ C
√
z1z2 for all z ∈ (0, 1)2 and some C ≥ 0, then it holds

that 0 ≤ gx,h[u2](y) ≤ C2y1y2.

Theorem 5. Under assumptions 1 and 2*, the scheme (27) is convergent.

Proof. As in the proof of Theorem 4, we prove monotonicity, stability and con-
sistency separately.

Monotonicity is similar to the proof of Theorem 4.
Stability is similar to the proof of Theorem 4, with some exceptions: we now

assume that uh(y) ≤ 2‖f‖∞
√
y1y2 for all y < x, to obtain the estimates that

0 ≤ uh(x) = max
α∈A

hf(x)
√
α1α2 +

√
hf(x)2α1α2 + gx,h[u2

h](x− hα)

≤ max
α∈A

2hf(x)
√
α1α2 +

√
gx,h[u2

h](x− hα)

≤ max
α∈A

2h‖f‖∞
√
α1α2 + 2‖f‖∞

√
(x1 − hα1)(x2 − hα2)

= 2‖f‖∞
√
x1x2.

This proves stability with a similar induction argument.
Consistency requires us to consider the cases u(x) = 0 and u(x) > 0 sepa-

rately. Consider

u(x) = lim sup
x→y
h→0

uh(y), u(x) = lim inf
x→y
h→0

uh(y).

The case with u(x) > 0 corresponds to comparison with ψ(x) > 0 in [1, Theorem
2.1]. In this case, the proof of consistency as in Theorem 4 still works using
the scheme (27). Wherever u(x) = 0, we do not have consistency due to the
singularity of the scheme at this point. However, we have that the exact value
function satisfies u(x) = 0 if and only if f(y) = 0 for all y ≤ x. Accordingly, it
is sufficient to prove that this property holds for u and u as well.

Case 1: f(y) = 0 for all y ≤ x. Then it easily follows by induction that
uh(y) = 0 for all y ≤ x: Indeed, assume that, for some y ≤ x we have that
uh(z) = 0 for all z < y. Then we can use assumption 2c with C = 0, which
implies that gy,h[u2

h](y − hα) = 0. Inserting this into (30) gives uh(y) = 0 for
all h. Inductively, this gives that uh(x) = 0 for all h.

Case 2: Assume that f(y) > 0 for some y < x. Then, there is a ball B−K(y)
such that f(y) ≥ f0 > 0 on B−K(y). Now let h > 0 be fixed and consider
the nested balls B−mCh(y) for m = 1, 2, . . ., where C defines the locality of the
scheme (see assumption 2b). The nested balls have two important properties:

• For every 0 ≤ m ≤M := bK/(Ch)c, we have that B−mCh(y) ⊂ B−K(y).
• For every z ∈ B−(m−1)Ch(y), we have that B−Ch(z) ⊂ B−mCh(y).

See Figure 1 for an illustration of the balls of interest.
We will show by induction that

uh ≥
1

2
h(M −m)f0Amin on B−mCh(y), (31)

where Amin := minα∈A
√
α1α2. Since uh ≥ 0 by construction, this trivially holds

for m = M .
Assume now that (31) holds for some 0 < m ≤M . Moreover, assume with-

out loss of generality that h is sufficiently small such that ω0,ε(h) ≤ 1
2hf0Amin
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z

y

B−mCh(y)

B−(m−1)Ch(y)

B−Ch(z)

Figure 1: The balls used in the proof of Theorem 5.

where ε = (Mf0Amin)2. Here, ω0,ε is the modulus of continuity for the constant
function ψ = 0 as in assumption 2d.

For every z ∈ B−(m−1)Ch(y), we have that

uh(z) ≥ max
α∈A

hf(z)
√
α1α2 +

√
gz,h[u2

h](z − hα)

≥ max
α∈A

hf(z)
√
α1α2 +

√
gz,h

[(
1
2h(M −m)f0Amin

)2]
(z − hα)

≥ max
α∈A

hf(z)
√
α1α2 +

√(
1
2h(M −m)f0Amin

)2 − ω0,ε(h)

≥ hf0Amin + 1
2h(M −m)f0Amin − ω0,ε(h)

≥ hf0Amin + 1
2h(M −m)f0Amin − 1

2hf0Amin

≥ 1
2h(M − (m− 1))f0Amin.

In the second inequality, we have used the locality of the approximation together
with the induction assumption. In the third inequality, we have used the super-

linear consistency assumption 2d with ψ = 0 and t =
(

1
2h(M −m)f0Amin

)2
.

By induction, we therefore obtain (31), and in particular that uh(y) ≥
1
2hMf0Amin. Since hM = bK/(Ch)c ≥ K

2C for sufficiently small h, it follows

that uh(y) ≥ KAmin

4C for all sufficiently small h.
With a similar argumentation, and using the non-negativity of f , we can

now show that uh(x) ≥ KAmin

8C for all sufficiently small h. This implies that

u(x) ≥ KAmin

8C > 0, which concludes the proof.

Proposed Schemes

Now, it remains to choose A and gx,h so that we obtain efficient schemes. In
particular, we desire closed form expressions for both uh and the optimal α used
in each step.

For the closed form expressions for the schemes, it is useful to denote x1
1 = x

as the current grid point for which we are solving the schemes. In addition, let
x0

1 = x − he2, x1
0 = x − he1 and x0

0 = x − he1 − he2 denote the other three
corners of the associated grid cell. Figure 2 illustrates these grid notes in relation
to each other. Lastly, denote uji = u(xji ) and f ji = f(xji ). Until now, we have

18



x0
0

x1
0

x0
1

x = x1
1

x− hα

Figure 2: The stencil illustrates the approximation of Du(x)(α). The
blue triangle illustrates the interpolation region used in the approxima-
tion gx,h(x,α, u) ≈ u(x− hα).

assumed that f ji is evaluated exactly. For an approximation of this term, see
appendix A.

We start by letting gx,h be the linear interpolation of u through the points
x1

0, x0
1 and x0

0, which reads

gx,h[u](x− hα) = u0
0 + (1− α1)(u0

1 − u0
0) + (1− α2)(u1

0 − u0
0)

= (α1 + α2 − 1)u0
0 + (1− α1)u0

1 + (1− α2)u1
0.

(32)

Since we base the approximation on a linear interpolation of u on a triangle,
we want to choose A such that x− hα is inside this triangle, formally speaking
(see Figure 2). This holds whenever both 0 ≤ α1, α2 ≤ 1 and α1 + α2 ≥ 1. For
instance, each α ∈ Ar := {α ∈ R2

≥0 | |α|r = 1} for 1 ≤ r ≤ +∞ satisfies this
property.

Lemma 6. Assume that A satisfies assumption 1 and that 0 ≤ α1, α2 ≤ 1 and
α1 + α2 ≥ 0. Then, the approximation (32) satisfies assumptions 2 and 2*,
meaning that the resulting schemes (25) and (27) are convergent.

Proof. Assumptions 2a, 2b and 2d are easy to prove: The coefficients of the
terms uji are always positive, implying monotonicity. Localisation follows di-
rectly with for example C = 2. A linear interpolation is of quadratic order,
therefore also superlinear and consistent.

The approximation (32) is a linear interpolation. Since the function x 7→
C
√
x1x2 is concave, we immediately obtain that gx,h[C

√
y1y2](y) ≤ C√y1y2 for

all y = x− hα. Hence assumption 2c holds.
Assumption 2c* can be seen algebraically. Let u(x) = C2x1x2. Then, we

have that

u0
0 = C2(x1 − h)(x2 − h),

u1
0 = C2x1(x2 − h),

u0
1 = C2(x1 − h)x2.

Inserting these terms into (32), we obtain after some simplifications that

gx,h[C2y1y2](x− hα) = C2(x1 − hα1)(x2 − hα2)− C2h2(1− α1)(1− α2)

≤ C2(x1 − hα2)(x2 − hα2)

as desired.
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We find that for the choices A = A1 and A = A∞, we can solve the schemes
analytically.

Schemes based on Du

Choosing A = A1, we obtain the following solution for the scheme, and the
optimal α∗:

hSh = u1
1 −

1

2

(
u1

0 + u0
1 +

√
(u1

0 − u0
1)2 + (hf1

1 )2

)
,

u1
1 =

1

2

(
u1

0 + u0
1 +

√
(u1

0 − u0
1)2 + (hf1

1 )2

)
,

α∗ =

(
1

2

(
1 +

u1
0 − u0

1

(u1
0 − u0

1)2 + (hf1
1 )2

)
,

1

2

(
1− u1

0 − u0
1

(u1
0 − u0

1)2 + (hf1
1 )2

))
.

(U1)

Interestingly, this is exactly the original scheme proposed in [10]. Using A =
A∞, we obtain with the abbreviation

u∗∗ := max{u1
0, u

0
1}

that

hSh = u1
1 −

u∗∗ +
(hf1

1 )2

4(u∗∗ − u0
0)
, 2(u∗∗ − u0

0) >
√

(hf1
1 )2,

u0
0 + hf1

1 , otherwise,

u1
1 =

u∗∗ +
(hf1

1 )2

4(u∗∗ − u0
0)
, 2(u∗∗ − u0

0) >
√

(hf1
1 )2,

u0
0 + hf1

1 , otherwise,

α∗ =



(
1,

hf1
1

2(u1
0 − u0

0)

)
, u1

0 ≥ u0
1, 2(u1

0 − u0
0) >

√
(hf1

1 )2,(
hf1

1

2(u0
1 − u0

0)
, 1

)
, u0

1 > u1
0, 2(u0

1 − u0
0) >

√
(hf1

1 )2,

(1, 1), otherwise.

(U∞)

Schemes based on D(u2)

For the scheme (27), it is useful to express the schemes for vji := (uji )
2. Choosing

A = A1, we obtain:

2h
√
v1

1Sh = v1
1 −

1

2

(
v1

0 + v0
1 +

√
(v1

0 − v0
1)2 + (hf1

1 )2

)
,

v1
1 =

1

2

(
v1

0 + v0
1 + h2f2 +

√
(v1

0 − v0
1)2 + 2(v1

0 − v0
1)(hf1

1 )2 + (hf1
1 )4

)
,

α∗ =

(
1

2

(
1 +

v1
0 − u0

1

(v1
0 − v0

1)2 + 4v1
1(hf1

1 )2

)
,

1

2

(
1− v1

0 − u0
1

(v1
0 − v0

1)2 + 4v1
1(hf1

1 )2

))
.

(V1)
Again, we have that the scheme using A1 is identical to that of [9]. For A = A∞,
we have with

v∗∗ := max{v1
0 , v

0
1}
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that

2h
√
v1

1Sh = v1
1 −

v∗∗ +
v1

1(hf1
1 )2

v∗∗ − v0
0

, v∗∗ − v0
0 >

√
v1

1hf
1
1 ,

v0
0 + hf1

1 , otherwise,

v1
1 =


v∗∗(v

∗
∗ − v0

0)

v∗∗ − v0
0 − (hf1

1 )2
(v∗∗ − v0

0)(v∗∗ − v0
0 − (hf1

1 )2) > v∗∗hf
1
1 ,

u0
0 + hf1

1 , otherwise,

α∗ =



(
1,

√
v1

1hf
1
1

v1
0 − v0

0

)
, v1

0 ≥ v0
1 , v

1
0 − v0

0 >
√
v1

1hf
1
1 ,(√

v1
1hf

1
1

v0
1 − v0

0

, 1

)
, v0

1 > v1
0 , v

0
1 − v0

0 >
√
v1

1hf
1
1 ,

(1, 1), otherwise.

(V∞)

Higher Order Filtered Schemes

It is known that one typically cannot construct higher order schemes for solving
HJB equations, as one requires monotone schemes to obtain convergence. Still,
it is common to construct so-called filtered schemes. These schemes are based
on a high-order (possibly non-monotone) scheme Sah, and a monotone scheme
Smh . The idea is to choose the higher order scheme only if its approximation
to the Hamiltonian is sufficiently close to that of the monotone scheme. The
selection criterion is typically chosen as |Sah − Smh | ≤ k

√
h for some constant k

to preserve the theoretical
√
h convergence which is typical for schemes for HJB

equations. Therefore, we define the filtered scheme as

Sfh :=

{
Sah, |Sah − Smh | ≤ k

√
h,

Smh , |Sah − Smh | > k
√
h.

This can be implemented by first solving Sah = 0. If this solutions satisfies

|Smh | ≤ k
√
h, we keep the solution. Otherwise, we use the solution of Smh = 0.

To construct the high order scheme, we use the same idea as in section 4,
except that we use central differences, rather than backward differences. In
practice, this means that we approximate

Du(x)α =
u(x+ h

2α)− u(x− h
2α)

h

with a similar approximation toD(u2). Approximating u(x−h2α) and u(x+h
2α)

using gh
2
, we obtain the two general schemes:

Sah = max
α∈A

−max{gx,h2 [u](x+ hα)− gx,h2 [u](x− hα), 0}
h

+ f(x)
√
α1α2 = 0

(33)

Sah = max
α∈A

−max{gx,h2 [u2](x+ hα)− gx,h2 [u2](x− hα), 0}
2u(x)h

+ f(x)
√
α1α2 = 0.

(34)
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These schemes will be solved with x being the centre of a grid cell.
We approximate gx,h2 [u](x+ hα) using a linear interpolation of u1

0, u0
1 and

u0
0 for positive α and a linear interpolation of u1

0, u0
1 and u1

1 for negative α.
Interestingly, this gives a scheme which is independent of A, reading

u1
1 = u0

0 +
√

(u1
0 − u0

1)2 + (hf1
1 )2,

α∗ =

(
1

2

(
1 +

u1
0 − u0

1

(u1
0 − u0

1)2 + (hf1
1 )2

)
,

1

2

(
1− u1

0 − u0
1

(u1
0 − u0

1)2 + (hf1
1 )2

))
.

With similar linear approximations in (34), we need an approximation of u(x),
present in the denominator, since x does not coincide with a grid cell. Approx-
imating 2u(x) = u1

0 + u0
1, we obtain

v1
1 = v0

0 +
1

2
h2f2 +

√
(v1

0 − v0
1)2 + (2v0

0 + v1
0 + v0

1)(hf1
1 )2 +

1

4
(hf1

1 )4,

α∗ =

(
1

2

(
1 +

v1
0 − u0

1

(v1
0 − v0

1)2 + 4v1
1(hf1

1 )2

)
,

1

2

(
1− v1

0 − u0
1

(v1
0 − v0

1)2 + 4v1
1(hf1

1 )2

))
.

Fully Discretised Schemes

The scheme (25) can in fact be used to formulate fully discretised schemes with
some modification. We start by replacing A with a variable admissible space
A = Ah ⊂ N2

0 \0, i.e., the set of pairs of non-negative integers. With this choice,
x− hα coincides with other grid points of the square grid (as long as x lies on
a grid point). In such, the scheme

u(x) = max
α∈Ah

u(x− hα) + hf(x)
√
α1α2 (35)

can be solved without the need for an approximation to u(x− hα). By setting
x = xji ∈ [0, 1]2h, this scheme reads

uji = max
(k,l)∈Ah

uj−li−k + hf ji
√
kl. (DDP)

This is exactly the discretised dynamic programming method commonly used in
the literature. Under certain assumptions on Ah, we can still use the HJB based
approach to prove convergence of this scheme. See assumption 3 and Theorem 7
in Appendix B for details.

Choosing Ah requires a compromise between accuracy and complexity. We
want Ah to include as many directions as possible for optimal accuracy. How-
ever, the larger the set Ah, the higher the computational cost. One example of
a set satisfying assumption 3 is

Ah = {α ∈ N2
0 | |α| ≤ kh−r}

for constants k > 0 and 0 < r < 1. Here, r = 1
2 will typically give a good

compromise between accuracy and efficiency.
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Numerical Computation of Geodesics

The numerical solution of the value function gives an estimate to u(1), which in
turn can be used to approximate the geodesic distance through distS([c1], [c2]) =
arccos(u(1)). Additionally, through a backtracking method, we can use the
value function to obtain an estimate of the solution ϕ of the variational problem
(17). This can then be used to estimate the shape space geodesic between c1
and c2.

Backtracking

To retrieve the optimal reparametrisation path ϕ, we propose a piecewise con-
stant interpolation of the maximiser α∗ of the approximated HJB equation,
where α∗ is constant on each grid cell (xi, xi+1]× (xj , xj+1]. With ϕ′(t) = α∗,
this gives a first order piecewise constant differential equation for ϕ′, which
therefore can be computed explicitly.

In practice, the path ϕ will be piecewise linear, only changing direction when
intersecting a grid line, meaning that the path can be represented by a sequence
{ϕk} with length at most 2N . Assume that the backtracking procedure has
reached the point ϕk ∈ (xi, xi+1]× (xj , xj+1]. In order to obtain the next point
in the sequence, we construct the line ψ(t) = ϕk − tα∗, defined for t ≥ 0
where α∗ is optimal for the given grid cell. Then, we find the intersection point
between ψ and the vertical line (xi, ·) and the intersection point between ψ
and the horizontal line (·, xj). The next point in the sequence will then be the
maximum of these points. This reads

ϕk−1 = max
{

(xi, ϕ2,k − (ϕ1,k − xi)α∗2/α∗1), (ϕ1,k − (ϕ2,k − xj)α∗1/α∗2, xj)
}
.

Note that since the path ϕ is monotone increasing, one of the intersection points
will actually be maximal with respect to the standard partial ordering of R2.

The terminal condition for the path ϕ is ϕ(1) = 1, which also acts as
the starting point for the backtracking procedure. With the convention that
α∗ = (1, 0) wherever x = (x1, 0) and α∗ = (0, 1) wherever x = (0, x2), we
ensure that the (inferred) initial condition ϕ(0) = 0 is met.

Computing Geodesics and Geodesic Distances

Now that we have an estimate of ϕ, we can estimate the SRVTs after reparam-
etrisation. Similar to the reparametrisation path, we construct a sequence of
points of the form

qi,k := qi(ϕi,k)

√
ϕi,k − ϕi,k−1

∆tk
,

for i = 1, 2. Note that this expression requires ∆tk, representing the joint
parametrisation of ϕ1 and ϕ2. Since the problem is reparametrisation invariant,
this can be chosen based on the application. One natural option is to choose
∆tk = 1

2 (ϕ1,k − ϕ1,k−1 + ϕ2,k − ϕ2,k−1), motivated from the assumption that
|ϕ′|1 = 1. This constraint is especially useful since ϕ′ is bounded and the
domain I remains unchanged.

Using the point estimates of the SRVTs, we can approximate the objective
function and the geodesics. First of all, for the objective function, we have the

23



following estimate:

Jh(ϕh) =
∑
k

〈q1,k, q2,k〉∆tk

=
∑
k

〈q1(ϕ1,k), q2(ϕ2,k)〉
√

(ϕk,1 − ϕk−1,1)(ϕk,2 − ϕk−1,2).

Observe in particular that this expression is independent of ∆tk, as desired.
Similarly, we can pointwise approximate the geodesic using

γk(τ) = wSh (1− τ)q1,k + wSh (τ)q2,k

= wSh (1− τ)q1(ϕ1,k)

√
ϕ1,k − ϕ1,k−1

∆tk
+ wSh (τ)q2(ϕ2,k)

√
ϕ2,k − ϕ2,k−1

∆tk
,

where wSh (τ) = sin(τ arccos Jh(ϕh))/ sin(arccos Jh(ϕh)). In the pre-shape space,
the geodesic can be approximated using

Q−1(γ(τ))(tk) ≈
k∑
l=1

γl(τ)|γl(τ)|∆tl =

k∑
l=1

γl(τ)
√

∆tl
∣∣γl(τ)

√
∆tl
∣∣.

Similarly to the objective function, this estimate is independent of ∆t, as desired.

Numerical Experiments

In Figure 3, some examples of pairs of curves and their SRVT geodesics are
illustrated. The geodesics have been computed using the (V∞) scheme. The first
three pairs of curves are used as numerical experiments, labeled A, B, C. Test
problems (A) and (C) uses C1 composite Bézier curves while test problem (B)
uses C2 composite Bézier curves. For each of the test problems, the schemes
were run with grid sizes N = h−1 = 5·22, . . . , 5·210 (for the discretised dynamic
programming, the smallest two step sizes were omitted due to computational
complexity).

For test problems (A) and (B), we use arc length parametrisation as the
initial parametrisation of the curves. For these problems, we do not have
analytic solutions for any of the variables of interest. The analytic solutions
were therefore approximated using the filtered scheme with a fine grid size
h−1 = ε−1 = 5 · 211. For test problem (C), we compare two curves with equal
shape but different initial parametrisations. In particular, we let c1 = c0 ◦ ψ1

and c2 = c0◦ψ2 with c0 being the arc length parametrisation of the curve. Here,
we use the Möbius transformations

ψ1(t) = 3t/(1 + 2t), ψ2(t) = t/(3− 2t),

which are each other’s inverses. Hence, one solution of the reparametrisation
problem is given by ϕ1 = ψ−1

1 = ψ2 and ϕ2 = ψ−1
2 = ψ1. For this problem,

we have the exact geodesic distance d(c1, c2) = 1 and exact expressions for the
geodesics (which are constant in τ).

It has been demonstrated in [34] that filtered schemes can give an improve-
ment for simple problems. However, for our experiments, we found that there
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(A)

(B)

(C)

(D)

Figure 3: Left: pairs of curves coloured by initial parametrisation. Right:
shape space geodesics computed using the (V∞) scheme.

was no significant improvement of the filtered schemes compared to the best
performing of the monotone schemes.2 It seems that filtered schemes require
higher-order schemes which are stable, or close to stable, on their own. While
some second order schemes have been found to be stable without filtering (see
[34]), this is not the case for the schemes we have considered. Therefore, we
will only compare the four monotone schemes presented together with the fully
discretised dynamic programming.

To implement the schemes, we used Python using NumPy with vectorised
updates. The fully discretised schemes were tested for many different choices
of Ah. The choice which on average gave the best performance of precision
vs computation time across different test problems (including test problems
in addition to the three presented here), was Ah = {α ∈ N2

0 | |α| ≤ kh−r}
for k = 3

4 and r = 1
2 . For all schemes, we found that the approximation of

f as described in appendix A gave better results compared to using an exact
evaluation of f . These approximations were therefore used in the following
experiments.

Presence of Local Solutions

For fixed computational resources available, gradient based methods have the
potential to be more precise than dynamic programming based methods, given a
good balance between number of discretisation points and number of iterations.
However, gradient based methods will not necessarily find global solutions, if
local solutions are present. Therefore, it is important to assess whether this is
the case for our variational problem. In order to do this, we consider the total
value function

utot(x) := sup
ϕ∈A

∫ 1

0

f(ϕ1, ϕ2)
√
ϕ′1ϕ

′
2dt s.t. ϕ( 1

2 ) = x.

2There is in some cases a small improvement, but this is outweighed by the added compu-
tational time.
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Figure 4: The total value function (a), some local maxima of (17) (b),
and three local maxima near the diagonal (c).

(a)
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Figure 5: Pre-shape geodesics with parametrisation corresponding to the
three local maxima visualised in Figure 4c.

This variant of the value function measures the similarity between the curves
c1, c2 given a landmark constraint at x, that is, requiring that the point c1(x1)
is registered to c2(x2). If utot has a local maximum at x, there is a local
solution of (17) passing through x. This means that utot can be used to find
local solutions. The total value function will not characterise all local solutions,
but the number of local maxima of utot is an indication of the number of local
solutions of (17). Note that all maxima of utot are inherently flat, meaning that
the maxima actually come as paths of maxima.

The total value function is easy to compute. The “standard” value function
(18) was defined by maximising over all paths from 0 to x. Alternatively, we
can define a reversed value function where we optimise over all paths from x
to 1. Since the problem is fundamentally invariant to reparametrisations, these
are identical problems up to replacing f(x1, x2) with f(1 − x1, 1 − x2). Then,
the sum of the standard and reversed value functions together gives the total
value function. For each local maximum of utot, one can run the backtracking
algorithm in both directions to obtain a local solution of (17).

For test problem (B), the total value function was estimated using h =
5·10−4. The estimate is visualised in Figure 4a and the local maxima of (17) are
visualised in Figure 4a. Note that a highly nonlinear colormap has been used in
Figure 4a to accentuate the local maxima. Using this method, 27 local maxima
were found. However, this method of finding local maxima is conservative, and
there are likely a lot more. We chose three local maxima close to the diagonal,
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and computed the resulting curve space geodesics. The result is visualised in
Figure 5. As one can see, the resulting geodesics are very different. A priori, it
is hard to tell which one of these solutions a local, gradient based methods will
find. This accentuates the importance of global solvers.

Convergence of the Value Function

For the value function, we have theoretical point-wise uniform convergence.
Therefore, the natural metric for evaluating convergence is the L∞-error. We
approximate this error by a point-wise maximum between uh and uε through
‖uh − uε‖L∞ ≈ maxx∈[0,1]2h

|uh(x)− uε(x)|. Since we only consider h as integer

multiples of ε, we have hat [0, 1]2h ⊂ [0, 1]2ε , meaning that this can be evaluated
exactly.

The convergence plots can be seen in Figure 6. We seem to have numer-
ical convergence for all variables. Among the semi-discretised schemes, (V∞)
performs the best for all test problems. Apart from test problem (C), which is
to some extent less interesting anyways, the scheme (V∞) also performs better
than the discretised dynamic programming.

In [9], it was demonstrated that the schemes based on D(u2) have a higher
numerical convergence rate than the schemes based on Du. At first glance, we
do not seem to have this property. However, the difference between the schemes
becomes apparent in test problem (B), where the convergence rate of the scheme
(U∞) flattens out for h−1 ≥ 103. There are multiple factors contributing to
the error of the schemes: the regularity of u (not being Lipschitz), the local
variation of f and the number of shocks apparent in the value function. In [9],
the problems considered were very regular, with little to no variation in f and
at most one shock solution. The test problems (A) to (C) are substantially
more complex, meaning that the error contributed from the lack of Lipschitz
continuity of u is in most cases irrelevant.
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(U∞)

(V∞)
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Figure 6: Convergence of uh for test problems (A) to (C).
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Convergence of the Geodesic Distance

By construction, we have that J(ϕ) = u(1) whenever ϕ is optimal. This gives
us two ways to approximate the shape space distance:

distS([c1], [c2]) ≈ arccosuh(1),

distS([c1], [c2]) ≈ arccos Jh(ϕh).

For the fully discretised schemes, these quantities are the same by construction
of the scheme. For the semi-discretised schemes, however, these are different
quantities and might have different convergence properties. The approximations
were computed for each scheme and step size h. For test problems (A) and (B),
we measured the error by comparison with arccosuh(1). For test problem (C),
we have the exact solution arccosu(1) = arccos J(ϕ) = 0. Convergence plots
can be found in figures 7 and 8, respectively.

We seem to have numerical convergence for all methods considered. The
error does not decrease monotonically in all cases (e.g. schemes U∞ and DDP
for test problem (A) and V∞ for test problem (B)), but we believe this to be
due to cancellation effects. This can occur when two sources of numerical errors,
one contributing positively, the other negatively, cancel each other out, leading
to a superficially low apparent error.

The scheme V∞ performs the best among the semi-discretised schemes while
the fully discretised scheme has quite variable convergence properties. Generally,
it is hard to determine the exact convergence properties as we are essentially
solving a PDE, but only measure convergence of the solution at a single point.
For test problem (C), we only seem to have an O(

√
h) convergence rate for the

semi-discretised schemes. This is due to the non-differentiability of arccos J at
J = 1, which only occurs when the shape space distance is zero.3

For Jh(ϕh), all semi-discretised schemes perform almost identically. This
might be due to the simple backtracking scheme we have proposed. Higher
order backtracking schemes were tested without any significant improvement.
For test problem (A), the convergence is too non-regular for a convergence rate
to be estimated, for test problem (B), we seem to have a superlinear numerical
convergence rate, and for test problem (C), we have a linear numerical con-
vergence rate. Note also that apart from V∞, the distance estimates based on
Jh(ϕh) are more accurate than those based on uh(1). Finally, also for the dis-
tance estimate based on uh(1), we have worse convergence properties for test
problem (C) compared to test problems (A) and (B). Again, this is explained
by the non-differentiability of arccos. Consequently, we expect the schemes to
perform worse for curves with equal shapes than for curves with non-zero shape
space distance.

Convergence of the Geodesics

Although we have numerical convergence of the geodesic distance estimate, this
need not imply numerical convergence of the geodesics. Therefore, we consider
numerical convergence of the geodesics as well. Consider the two approximate

3The function arccos J is also non-differentiable at J = −1. This value, however, can never
occur as the solution of the optimisation problem.
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Figure 7: Convergence of arccosuh(1) for test problems (A) to (C).
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Figure 8: Convergence of arccos Jh(ϕh) for test problems (A) to (C).

geodesics

γh(τ) = wh(1− τ)q1,h + wh(τ)q2,h,

γε(τ) = wε(1− τ)q1,ε + wε(τ)q2,ε.

To measure the difference between these geodesics, we use the maximal pre-
shape distance over τ . Since the unit sphere distance is at most π times larger
than the L2 distance, we have that

max
τ∈[0,1]

arccos〈γh(τ), γε(τ)〉L2 ≤ max
τ∈[0,1]

π‖γh(τ)− γε(τ)‖L2

= πmax
{
‖γh(0)− γε(0)‖L2 , ‖γh(1)− γε(1)‖L2

}
= πmax

{
‖q1,h − q1,ε‖L2 , ‖q2,h − q2,ε‖L2

}
.

In other words, we can easily compute an upper bound to the maximal unit
sphere distance between the geodesics. Note that it would be even better to use
the maximal shape space distance between the geodesics. However, since the
shape space distance requires the minimisation of the pre-shape distance, the
upper bound is also an upper bound for the shape space distance.
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From the convergence plots in Figure 9, we observe numerical convergence.
Again, we have no observable difference between the semi-discretised schemes.
However, in this case, the semi-discretised schemes perform better than the
discretised dynamic programming.
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Figure 9: Convergence of γh for test problems (A) to (C).

Computational Complexity

Until now, we have evaluated performance in terms of error vs step size. How-
ever, there is a significant difference in computational complexity between the
semi-discretised and the fully discretised methods. For the fully discretised dy-
namic programming scheme, the computational complexity is asymptotically
O(|Ah|N2), while for the semi-discretised schemes, the computational complex-
ity is O(N2). If Ah is fixed in size, the two methods are asymptotically equal
in complexity. However, in this case, the fully discretised scheme will converge
to solutions of a different HJB equation, namely

max
α∈Ah

−max{Du(x)α, 0}+ f(x)
√
α1α2 = 0.

In order for the fully discretised scheme to converge to the solution of the correct
HJB equation, Ah must extend in size as N →∞. A possible set of conditions
for this can be found in appendix B. Regardless of the choice of Ah, this will
lead to a method with a computational complexity strictly worse than O(N2).

We note that dynamic programming methods with linear computational
complexity have been developed [16, 5]. However, these methods are not global
solvers, meaning that they are more suitable to be compared to other non-
global solvers. If the semi-discretised schemes discussed in this article are to be
compared with fully discretised schemes, they should be compared to the fully
discretised schemes with global convergence.

From the three test problems, it is test problem (C) where the fully discre-
tised scheme performs best compared to the semi-discretised schemes. Work-
precision diagrams for this problem are visualised in Figure 10. As one can see,
the semi-discretised scheme (V∞) performs significantly better than the fully
discretised method. We recognise that this does not prove that our method is
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Figure 10: Work-precision diagrams for test problem (C). T denotes the
computation time.

always more efficient, and there might be choices of Ah which performs better
than the choice used in these experiments. However, the choice of Ah is a hyper-
parameter which must be chosen selectively for the given problem in order to
have optimal performance. Our schemes have no hyper-parameters and work
well “out of the box”.

Conclusion

In this article, we have shown how a PDE based method can be applied to the
computation of shape space distances of open shapes. The method has global
convergence and runs inO(N2) time, which is strictly better than existing global
solvers. Additionally, the numerical experiments indicate a linear convergence
in practice, although we expect a lower theoretical convergence rate.

First, we presented a family of schemes which generalises the schemes of
[10, 9]. These are based on the Hamilton-Jacobi-Bellman equation for the value
function of the problem. However, whereas the schemes of [10, 9] approximate
the gradient of the value function using finite difference approximations, we
approximate its directional derivatives. This allows for greater flexibility in the
construction of the schemes. The resulting family of schemes has theoretical
convergence, and we show that two instances of the scheme are more accurate
than previous approaches.

In conjunction with the schemes for the value function, we presented a back-
tracking scheme to obtain the solution of the reparametrisation problem. This
is then used to estimate the shape space geodesics numerically. For different
problems, the scheme seems to converge numerically, and the work-precision
efficiency is better than that of previous global solvers.

From here, there is a number of interesting topics for future work, including
the following:

• Assessment of the typical O(
√
h) convergence rate for the HJB schemes,

similar to [9, schemes S2, S3].
• Assessing theoretical convergence of the backtracking method similar to

the work done in [8].
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• Construction of iterative solvers with adaptive grid refinement, where the
HJB equation is solved on smaller and smaller strips around the solution
of the reparametrisation problem, as has been done with great success for
the fully discretised schemes [16, 5, 6].
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Approximating the SRVTs

The schemes presented in this article are based on exact computation of the forc-
ing term f(x), which in turn requires access to the SRVTs q1 and q2. Whenever
these are not available, we can use finite difference approximations of the curves
c1 and c2. Here, we suggest using backward differences of the form

qi(t) ≈
ci(t)− ci(t− h)√
h|ci(t)− ci(t− h)|

,

leading to the approximation

hf(x) ≈ max

{〈
c1(x1)− c1(x1 − h)√
|c1(x1)− c1(x1 − h)|

,
c2(x2)− c2(x2 − h)√
|c2(x2)− c2(x2 − h)|

〉
, 0

}
.
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For the fully discretised schemes, we suggest using backwards differences of the
form

qi(t)
√
k ≈ ci(t)− ci(t− kh)√

h|ci(t)− ci(t− kh)|
,

leading to the approximation

hf(x)
√
kl ≈ max

{〈
c1(x1)− c1(x1 − kh)√
|c1(x1)− c1(x1 − kh)|

,
c2(x2)− c2(x2 − lh)√
|c2(x2)− c2(x2 − lh)|

〉
, 0

}
.

As long as the curves are immersions, i.e., that |c′i| > 0 everywhere, these are
consistent approximations, meaning that the proofs for convergence still hold.
Moreover, we find that these approximations actually give better convergence
properties for all implementations of the schemes as compared to using exact
evaluations of f .

Convergence for Fully Discretised Schemes

We express the scheme (35) as the largest solution of Sh = 0 with

Sh = max
α∈Ah

max{u(x− hα)− u(x), 0}
h|α|

+ f(x)

√
α1α2

|α|
. (36)

Assumption 3. Ah satisfies the following:
(a) Ah ⊂ N2

0 \ {0}.
(b) Ah is finite for all h > 0.
(c) limh→0 maxα∈Ah

h|α| = 0.
(d) For every β ∈ R2

≥0 with |β| = 1 and every ε > 0, there exists h0 > 0 such
that for every 0 < h ≤ h0, there is α ∈ Ah with |α/|α| − β| < ε.

Theorem 7. Under assumption 3, the scheme (36) is convergent.

Proof. The scheme satisfies the following properties:
• Monotonicity : Sh is clearly non-decreasing in u(y).
• Stability : For all grid points x, there exists a grid point y < x, such that

uh(y) ≤ uh(x) = uh(y) + f(x)
√

(x1 − y1)(x2 − y2)

≤ uh(y) + ‖f‖∞
√

(x1 − y1)(x2 − y2).

Inductively, this gives that 0 ≤ u(x) ≤ ‖f‖∞
√
x1x2.

• Consistency : We have that

Sh
(
y, ψ(y) + ξ, ψ + ξ

)
= max
α∈Ah

max{ψ(y − hα)− ψ(y), 0}
h|α|

+ f(y)

√
α1α2

|α|

= max
α∈Ah

−max
{
Dψ(y)

α

|α|
+O(h|α|), 0

}
+ f(y)

√
α1α2

|α|
.

Due to assumption 3c, we have that maxα∈Ah
O(h|α|) = o(1). Moreover,

we have that Dψ and f are uniformly continuous in y. This, combined
with assumption 3d, gives that

lim
h→0
y→x
ξ→0

Sh
(
y, ψ(y) + ξ, ψ + ξ

)
= max
α∈Ar

−max{Dψ(x)α, 0}+ f(x)
√
α1α2
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with r = 2. Due to [1, Theorem 2.1], this proves convergence.
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