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Abstract—It is crucial to predict the outputs of a thickening1

system, including the underflow concentration and mud pressure,2

for optimal control of the process. The proliferation of industrial3

sensors and the availability of thickening-system data make4

this possible. However, the unique properties of thickening5

systems, such as the non-linearities, long-time delays, partially6

observed data, and continuous time evolution pose challenges7

for building data-driven predictive models. To address the above8

challenges, we establish an integrated, deep-learning, continuous9

time network structure that consists of a sequential encoder, a10

state decoder, and a derivative module to learn the deterministic11

state space model from thickening systems. Using a case study, we12

examine our methods with a tailing thickener manufactured by13

the FLSmidth installed with massive sensors and obtain extensive14

experimental results. The results demonstrate that the proposed15

continuous-time model with the sequential encoder achieves16

better prediction performances than the existing discrete-time17

models and reduces the negative effects from long time delays18

by extracting features from historical system trajectories. The19

proposed method also demonstrates outstanding performances20

for both short and long term prediction tasks with the two21

proposed derivative types.22

Index Terms—ODE-net, Recurrent Neural Network, Industrial23

Paste Thickener, Time Series Prediction24

I. INTRODUCTION25

AS a core procedure in modern mineral separation, a thick-26

ening process produces a paste with high concentration27

for subsequent tailing storage or backfilling [1]–[3]. During28

this thickening process, an industrial paste thickener achieves29
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di.wu@ntnu.no).

N. Q. Wu is with the Institute of Systems Engineering, and Collaborative
Laboratory for Intelligent Science and Systems, Macau University of Science
and Technology, Macau 999078, China (e-mail: nqwu@must.edu.mo).

H.-N. Dai is with the Department of Computing and Decision Sciences,
Lingnan University, Hong Kong, China (email: hndai@ieee.org).

H. Wang is with the Department of Computer Science, Norwegian Univer-
sity of Science and Technology, 2802 Gjøvik, Norway (email: hawa@ntnu.no).

solid–liquid separation based on gravity sedimentation. The 30

purpose of the industrial paste thickener is to efficiently control 31

the final underflow concentration. Most closed-loop control 32

systems manipulate the underflow slurry pump speed and 33

flocculant pump speed as the inputs to stabilize the underflow 34

concentration within its specified range during operation. 35

Previous studies [4], [5] showed that model prediction control 36

(MPC) can facilitate the control process of thickening systems 37

owing to the advantages of its high robustness and applicabil- 38

ity. Hence, the accurate prediction of thickening systems has 39

received extensive attention for the analysis and control of 40

thickeners [5]–[7]. 41

A complex industrial system such as the thickening system 42

typically has the following key features: 43

1) Non-linear system dynamics: Most industrial systems 44

have extremely complex high-order dynamical equations 45

that are not affine or linear systems. 46

2) Partially observed data: The information extracted from 47

sensors or other available methods is incomplete. In 48

particular, a number of unknown hidden variables exist 49

in such systems. 50

3) Influence of long delays: The system states are influ- 51

enced by external inputs or internal states that occur 52

over a long previous time. 53

4) Continuous-time (CT) evolution: Because real industrial 54

systems follow various physical laws, their time evolu- 55

tion can be expressed via CT differential equations. 56

The above features of a thickening system create challenges 57

for predictive control. There are a number of studies address- 58

ing these challenges. Data-driven methods are emerging as 59

one of the most successful techniques for modeling complex 60

processes [8]. Traditional data-based CT system prediction 61

methods focus on fitting high-order differential equations 62

based on sampled noisy data from real systems. However, they 63

lack the ability to cope with partially observed and extremely 64

complex system dynamics. Recent advances of deep neural 65

networks (DNNs) have shown their strengths in addressing 66

these issues owing to their strong feature representation abil- 67

ities and scalable parameter structures, leading to the wide 68

usage of DNNs in computer vision [9]–[11], natural language 69

processing [12], [13], time series prediction [5], [14]–[17], 70

and fault diagnosis [18]. However, most DNN-based system- 71

modeling methods are based on discrete time, disregarding the 72

CT properties of a system. The lost prior information from 73

physical insights undoubtedly leads to the deterioration of the 74

model accuracy. 75



2 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X

Studies of prediction control can be categorized into two1

types. The first type provides short-term predictions for model-2

based control algorithms [5], such as model predictive con-3

trol (MPC). The learned system provides deterministic prior4

knowledge of the dynamical systems, thereby approximating5

the infinite-horizon optimal control as a short-term optimiza-6

tion problem. The second type is mainly based on simulations,7

which imitate the outputs of an unknown system under a8

long-term feed of inputs [19]. Compared with short-term9

predictions, simulations require higher robustness and stability10

to provide long-term predictions. However, there are few11

studies on designing predictive models for short and long term12

predictions to support subsequent applications, such as MPC13

and simulations.14

To address the above challenges, we propose a deep CT15

network composed of a sequential encoder, a state decoder,16

and a derivative module to learn the auto-regressive processes17

and influences from the system inputs based on real thickening18

data in an end-to-end manner. Specifically, the long-time19

system delay motivated us to utilize a sequential encoder20

to extract features from historical system trajectories. We21

designed the derivative module for the CT state space model22

based on a DNN. This module fits the non-linear CT evolution23

of the system and infers the non-observable information by24

introducing hidden states. Moreover, the problems of short25

and long term predictions are solved by feeding historical26

system trajectories and system inputs with arbitrary lengths to27

the model after incorporating the designed non-stationary and28

stationary systems into the trained model. The future system29

outputs are then predicted. The contributions of this paper are30

threefold:31

1) We propose a novel deep-learning-based CT predictive32

model for a paste thickener. The deep learning network33

consists of three components: a sequential encoder, a34

state decoder, and a derivative module.35

2) We design two kinds of derivative modules, named36

stationary and non-stationary systems, to handle the37

short- and long-term prediction tasks, respectively.38

3) We conducted extensive experiments on real industrial39

data collected from a real industrial copper mining40

process. The results demonstrated the outstanding per-41

formance of the proposed model in providing predictions42

for the thickener system with non-linear and time-delay43

properties. In addition, we conducted ablation studies44

to evaluate the effectiveness of each module in the45

proposed model.46

The rest of the paper is organized as follows. We briefly47

introduce the related work in Section II. We then present the48

problem formulation in Section III. We next present the CT49

deep sequential model in Section IV. Experimental results are50

shown in Section V. We then summarize the paper and discuss51

future directions in Section VI.52

II. PRELIMINARIES AND RELATED WORK53

As a core device in a thickening system, a paste thickener is54

generally composed of a high sedimentation tank and a raking55

system. Fig. 1 depicts the general structure of a thickener56
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Fig. 1. Crude slurry flow with a low concentration is fed into the mix
tank accompanied by flocculant. Under the effect of the flocculant, particles
agglomerate to larger clumps and concentrate at the bottom. The paste
thickener continuously produces underflow with a high concentration and clear
water in an overflow pipe located at the top of the thickener.

and its key components. After being fed with flocculant 57

and tailing slurry with a low concentration, underflow with 58

a high concentration is discharged from the bottom of the 59

thickener and is then used to produce paste in the subsequent 60

procedures. The prediction of a thickening system refers to 61

the estimation of the future system outputs, such as the under- 62

flow concentration and mud pressure, based on the historical 63

system trajectories and system inputs. The prediction of a 64

thickening system is essentially similar to system identification 65

[8]. For system identification, interpretable model structures 66

are designed based on prior knowledge, and the parameters 67

are determined by fitting real data. As one of the subsequent 68

applications of identified models, the prediction forecasts the 69

system outputs according to the inputs. 70

A. Prediction of thickening systems 71

The prediction methods for thickening systems can be 72

categorized into two types: (1) gray-box thickening system 73

simulations and (2) black-box thickener system predictions. 74

In the gray-box simulations, the sedimentation process is 75

mainly considered from a physical perspective [4], [20], [21]. 76

Theory-based gray-box methods can be exactly explained and 77

implemented effectively for specific systems. However, most 78

are mainly built on many ideal hypotheses and suffer from the 79

complexity of slurry particle dynamics and external unknown 80

environment disturbances. 81

In contrast, the black-box methods do not require prior 82

assumptions or constraints to be given. A complete param- 83

eterized model with a high degree of freedom is defined to 84
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predict the system outputs and learn the optimal parameters1

from real data. Since the offline system trajectories from an2

industrial system are always available and adequate, black-3

box-based methods, including Latent Factor Model [22]–[24],4

imitation learning [25], and deep neural network [26] have5

been widely used in the current industrial systems [27]–[32].6

Moreover, Ridouane et al. [33] use a black-box linear7

dynamic model with a deterministic time delay to identify8

an industrial thickener system using historical data. Such9

parameterized linear model lacks adequate expressivity to10

represent the non-linear properties in thickening system. Most11

recently, random forest model is presented for modeling paste12

thickening system based on a purely data-driven approach for13

modeling and evolutionary strategies [34]. Because random14

forest model only fits the thickening system dynamic in15

single step, it ignores the time delay and the correlations16

between adjacent positions in sequential inputs and outputs. A17

bidirectional gated recurrent unit (BiGRU) with an encoder–18

decoder deep recurrent neural network is introduced to model19

thickening systems [5]. Yuan et al. [6] proposed a dual-20

attention recurrent neural network to model the spatial and21

temporal features of a thickening system, thereby improving22

the prediction accuracy of the underflow concentration. How-23

ever, the above studies [5], [6] only focus on discrete-time24

system predictions rather than a CT thickening system.25

B. Prediction of continuous-time systems26

The prediction of physical systems based on CT models27

directly from sampled data has the following advantages [8]:28

1) transparent physical insights into the system properties, 2)29

inherent data filtering, and 3) the capability of dealing with30

non-uniformly sampled data. For any numerical schemes for31

solving CT differential equations, sophisticated discretization32

methods have high accuracy but suffer from enormous time33

and memory costs. A recently developed advanced ordinary34

differential equation (ODE) solver [35] introduces the reverse-35

mode automatic differentiation of ODE solutions, thereby only36

requiring O(1) memory cost. Meanwhile, this method also37

allows the end-to-end training of ODEs within a large DNN.38

Moreover, Demeester [19] proposed a stationary CT state39

space model for predicting an input–output system when the40

observations from a system are unevenly sampled. Although it41

has successfully improved the accuracy and stability of long-42

term predictions by introducing a stationary system, it did not43

take advantage of a non-stationary system in the short-term44

prediction task.45

Compared with the existing CT models, our model consid-46

ers both short- and long-term predictions, thereby achieving47

outstanding performances.48

III. FORMULATION AND NOTATION OF PASTE THICKENING49

SYSTEM PREDICTION50

In a thickening industrial process, the key system outputs51

y(k) ∈ R2 include the underflow concentration y1(k) and52

mud pressure y2(k), where k is the sampling time index.53

Both y1(k) and y2(k) are influenced by the control inputs54

and other parameters, including the feeding flow rate u1(k),55

feeding concentration u2(k), raking speed u3(k), underflow 56

rate u4(k), and flocculant flow rate u5(k). As the focus of 57

this paper is on the prediction rather than the control problem, 58

we do not distinguish the control inputs and uncontrollable 59

measurable parameters. All of the controllable inputs or mea- 60

surable parameters are regarded as system inputs x(k) ∈ R5. 61

Because some crucial parameters of thickeners are unavail- 62

able due to the limitations on the monitoring sites, thickening 63

systems are partially observed and have non-deterministic 64

dynamics. Meanwhile, the influences of the system inputs are 65

essentially non-linear and time delayed. These key character- 66

istics of thickening systems cause us to employ a black-box 67

data-driven method and utilize sequential data to infer the 68

latent system state in the designed model. As a result, the 69

prediction problem of a thickener is a problem of estimating 70

the future system outputs under known system inputs and 71

historical system trajectories. We first assume that the histori- 72

cal system input XNx
p = [x(−Nx),x(−Nx + 1), . . . ,x(−1)], 73

output YNy
p = [y(−Ny),y(−Ny +1), . . . ,y(−1)], and future 74

input XM
f = [x(0),x(1), . . . ,x(M − 1)] are available. Note 75

that XM
f is available because system inputs are known signals 76

in MPC or simulations. With a symbolic expression, the prob- 77

lem is then formulated as the sequential prediction structure 78

given as follows: 79
h(0) = F(XNx

p ,YNy
p ),

HM = D(h(0),XM
f ),

y(k) = g(h(k)),

(1)

where the module F(·) produces the initial hidden state h(0), 80

which carries the historical information from XNx
p and YNx

p . 81

The entire system state HM is estimated according to the 82

initial hidden state and future system inputs based on the 83

rational module D(·, ·). Each hidden state h(k) in sequence 84

HM carries the system information for index k. In addition, 85

the real system output y(k) is available by decoding h(k) via 86

the non-linear function g(·). 87

Formulation (1) maps the sequences XNx
p , YNy

p , and XM
f 88

to the predicted future system output sequence ŶM
f = 89

[ŷ(1), ŷ(2), ...ŷ(M)], similarly to the Seq2Seq model that 90

is widely used in natural language processing (NLP) [36]. 91

However, there is a slight distinction between a NLP task 92

and input–output system prediction. Under the restriction of 93

online system prediction, the calculation of h(k) depends on 94

{h(i), i ≤ k − 1} and Xk
f = {x(i), i ≤ k − 1} only, and is 95

equivalent to a prediction problem p(h(k)|h(0),Xk
f ) instead 96

of a smoothing problem p(h(k)|h(0),XM
f ). This restriction 97

motivates the use of an auto-regressive system in the model 98

framework. 99

To construct a rational module D in the predictive model, 100

the auto-regressive discrete-time state space model [37] is a 101

simple and effective solution. Similarly, we have the following 102

formulation: 103

h(k) = d
(
h(k − 1),x(k − 1)

)
, (2)

104

y(k) = g(h(k)), (3)

where hidden state h(k) encodes the historical trajectories 105

of the system in a dense and fixed-length vector space. The 106
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influences from external inputs can be viewed as step-by-step1

non-linear transformations on the hidden state. The model can2

predict the internal state h(k) immediately when x(k−1) and3

y(k) are provided simultaneously. However, some previous4

studies [38] [39] point out that a thickening system can5

be modeled as CT differential equations based on physical6

insights. Thus, we follow the prior knowledge from these7

previous studies and define a parameterized CT differential8

equation model to fit the first-order derivative of the hidden9

state as follows:10

ḣ(t) = d(h(t),x(t)). (4)

We replace index k by t to represent that the new time index t11

is continuous in a specific range instead of a discrete integer.12

The formulation of the prediction of the thickening system13

can be summarized by Equations (1) and (4). The goal is14

to learn the parameterized modules, including the sequential15

encoder F(·), CT derivative module d(·, ·), and state decoder16

g(·), based on the collected system trajectories from the real17

thickening system.18

IV. CONTINUOUS-TIME DEEP SEQUENTIAL MODEL FOR19

THICKENING SYSTEM PREDICTIONS20

We propose an integrated deep neural network to implement21

Formulations (1) and (4). Fig. 2 illustrates all components22

and their connections in the network. With specific historical23

trajectories XNx
p and Y

Ny
p in conditional range and XM

f in24

predicted range, the model outputs ŶM
f as an estimation of25

real outputs YM
f .26

The proposed model works in the following steps. First,27

a RNN Encoder, a recurrent neural network (RNN) net-28

work, is introduced to encode historical trajectories XNx
p and29

Y
Ny
p to the hidden state h(t0), where h(t0) is the initial30

state of solved ordinary differential equation. The one-order31

derivative of ordinary differential equation is defined based32

on a Derivative Module, which utilizes the hidden state33

h(t) and external inputs x(t) at arbitrary time t as inputs34

to estimate the instantaneous derivative of hidden state, ḣ(t).35

The external inputs x(t) at arbitrary time t is computed from a36

Parallel Spline Interpolation, which interpolates the discrete37

external inputs XM
f to the continuous-time form. The ordinary38

differential equation defined based on the initial state h(t0)39

and derivative module is solved by ODE solvers and the40

complete continuous-time hidden state h(t) in time range41

[0 ≤ t ≤ T ] is produced. Finally, State Decoder, a multi-layer42

perceptron (MLP) network, is employed to predict the future43

system outputs ŶM
f from the evolved hidden states h(t).44

We next present technical details of each module of our45

proposed model.46

A. Recurrent neural network (RNN) for encoding historical47

sequences48

Because a thickening process suffers from long time delays,49

we introduce historical system trajectories XNx
p and Y

Ny
p as50

parts of the model inputs. We employ a basic RNN model to51

infer the initial value h(0) in ordinary differential equations52

tM
T

ê ú
ê úë û

1tM
T

ê ú -ê úë û

1tM
T

ê ú +ê úë û

2tM
T
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Input:

Interpolating for Discrete external input

Output:

ODE solver

Derivative Module

State Decoder

h t0( )

… …
RNN Encoder

. . 

.

Stationary System

Non-Stationary System

Fig. 2. Proposed model is composed of several components. The recurrent
neural network (RNN) encoder outputs the initial hidden state h(t0) according
to historical sequences from the system. The derivative module is embedded
into the ordinary differential equation (ODE) solver to calculate the hidden
state at an arbitrary time. A parallel interpolation mechanism is embedded
into the derivative module, which interpolates discrete input sequences to a
CT series. Finally, the state decoder module transforms the hidden state to
the predicted system output.

by encoding two historical sequences denoted by Y
Ny

P and 53

XNx
p into a fixed-length hidden state. We thus have 54

h(t0) = h(0) = fRNN(Y
Ny

P ,XNx
p , θf ), (5)

where fRNN(·) is a forward RNN network, and Ny and Nx are 55

two important parameters to be configured. Based on industrial 56

experience, we use the system delay as prior knowledge 57

denoted by Td. If we assume a uniform sampling of the sensors 58

for a sampling interval Ts, Ny and Nx can be estimated 59

according to the equation Ny = Nx = N = Td/Ts. The in- 60

fluence of parameter N on the model accuracy is examined in 61

Section V. In the thickening system, the correlations between 62

the current system state and historical trajectories are mostly 63

compressed in the short term. This property encourages us to 64

use a simple and unidirectional RNN to encode the historical 65

trajectories of a thickening system. The solved hidden state 66

h(t0) from encoder involves all necessary information of 67

historical trajectories and will be represented as a initial state 68

of solved ODE. 69

B. Differentiable ordinary differential equation (ODE) solver 70

for modeling state space 71

We employ the parameterized CT state space model to 72

represent the relations between the system inputs, hidden 73

states, and outputs: 74

ḣ(t) = d(h(t),x(t), θd), (6)
75

y(t) = g(h(t)). (7)

The state space model encodes the features from historical 76

sequences to the fixed-length state h(t). The utilization of 77

hidden state h(t) is crucial to handle long time delays and 78

incomplete observations. For a predicted sequence with a 79

length equal to M , we construct a bijective function between 80

the discrete indices of integers [0, 1, . . . ,M ] and time range 81

[t0 ≤ tk ≤ tM ]. Each h(tk) associated with a specific integer 82
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index k is the ODE solution with an initial state h(0) at the1

time t = tk.2

To construct a learnable differential system, we employ a
differentiable ODE-net [35] to learn the above state space
model. For a scalar-valued loss function L(·), which is de-
termined based on any prediction metrics, the input h(tk) is
the estimated hidden state from the ODE solver (denoted by
ODESolve) at time tk. Thus, we have

L (h (tk)) = L

(
h (t0) +

∫ tk

t0

d(h(t),x(t), θd)dt

)
= L (ODESolve (h (t0) , d, t0, tk, θd)) . (8)

To train parameters θd and minimize L(·), we require gradients3

∂L/∂θd from Equation (8). The gradient of the loss, which4

depends on the hidden state, is called the adjoint a(t) =5

∂L/∂h(t). Its dynamics are described by another ODE, which6

can be derived according to the chain rule, as follows:7

da(t)

dt
= −a>(t)

∂d(h(t),x(t), θd)

∂h(t)
. (9)

The gradients from loss L(·) with respect to parameters θd8

can be obtained by performing a third integration,9

∂L

∂θd
= −

∫ tM

0

a>(t)
∂d(h(t),x(t), θd)

∂θd
dt. (10)

Detailed proofs can be found elsewhere [35]. Under the de-10

terministic network structure d and parameter θd, all integrals11

for solving for h(t), α(t), and ∂L/∂θ can be evaluated. Any12

numerical methods for solving ODEs can be used here for13

an approximate solution, including the Euler, Mid-Point, and14

Runge-Kutta methods.15

Generally, an ODE solver with a lower error tolerance16

increases the frequency for calling differential function d.17

It leads to more time consumption but results in a higher18

accuracy. This guideline is also tenable when we construct a19

neural ODE network to fit sequential datasets. The detailed20

comparisons of the time cost and accuracy are shown in21

Section V.22

It is worth investigating the definition of a suitable structure
of d. The most intuitive solution is to employ a basic neural
network to estimate the derivative that is named non-stationary
model:

Non-stationary:
d (h(t),x(t), θd) = MLP (h(t),x(t), θd) , (11)

where MLP(·) denotes a multi-layer perceptron. The combi-23

nation of a non-stationary system with an ODE solver has24

a strong similarity to residual connections, which have been25

widely used in other advanced deep networks [35].26

In the field of stochastic process analysis, non-stationary27

systems are a stochastic process with a mean and covariance28

that vary with respect to time [40]. Differencing [41] is an29

effective way to make non-stationary time series stationary30

by eliminating trend and seasonality. Generally, a thickening31

system has strong trends in the underflow concentration, mud32

pressure, and other core variables. The thickening system is33

an approximation of non-stationary systems, indicating that34

the differencing operation can improve the fitting accuracy.35

In Equation (11), the derivative module intrinsically learns 36

the first-order difference of the hidden states in the latent 37

space. In contrast to the operation of differencing the system 38

outputs directly, a model that differences the hidden states has 39

an equivalent or stronger ability to represent a non-stationary 40

system that is of first or even higher order. However, the 41

non-stationary system (11) also suffers from a severe problem 42

when handling long-term prediction tasks. To solve an ODE 43

over long intervals, repetitive accumulation in a CT range can 44

lead to a significant magnitude increase of the hidden states. 45

Consequently, the estimation error will grow accordingly, 46

resulting in the difficulties in achieving accurate system output 47

from the decoder. 48

Therefore, we devise another derivative module, namely, the
stationary system, to handle the long-term prediction problem.
In particular, we have

Stationary:

d (h(t),x(t), θd) =
1

µt
(GRU (h(t),x(t), θd)− h(t)), (12)

where GRU denotes a gated recurrent unit. 49

In a stationary system, GRU (h(t),x(t), θd) determines a 50

target based on the current external input x(t) and hidden state 51

h(t). The factor µt regularizes the speed toward the target. 52

Specifically, the outputs from the GRU are limited to (−1, 1) 53

according to the network standard. Regardless of how much 54

time has passed, the state h(t) that is sent to the decoder 55

module is stable in the range of the GRU’s output. This 56

property significantly contributes to the stability of a stationary 57

model in a long-term prediction task. 58

In a stationary system, we use a GRU to construct the 59

derivative module because it has a strong ability to carry 60

long-time information. In a non-stationary system, consecutive 61

accumulations diffuse the hidden state in an unconstrained 62

range. Thus, we employ the MLP to learn the first-order 63

difference ḣ(t) directly under h(t) and x(t). 64

C. Parallel spline interpolation 65

Note that the calculation of ḣ(t) in Equations (11) and (12) 66

depends on the external input x(t), which may not exist in 67

our dataset. External input sequences XM
f in the training data 68

are discrete, while the computation of the ODE needs x(t) in 69

a CT range. Before each forward pass of the network, it is 70

necessary to interpolate the external inputs to the continuous 71

form. Deep networks are typically trained in mini-batches to 72

take advantage of efficient data-parallel graphics processing 73

unit (GPU) operations. Therefore, we implement a parallel 74

spline interpolation mechanism on top of PyTorch, which is a 75

well-known deep learning framework. 76

In our dataset, the external input data are evenly sampled, 77

thereby simplifying the implementation of parallel interpola- 78

tion. To simplify the explanation, we assume that the dimen- 79

sion of the external input is equal to 1. 80

We begin with specific input sequences organized in batch 81

X = [x1,x2, ...xm], where m is the batch size and xi = 82

[xi1, x
i
2, ...x

i
M ] is an independent input sequence consisting of 83

M sampled data in discrete steps. We define a time interval 84
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[0, T ] to represent the M steps and for any given time index1

t in the interval with constraint 0 ≤ t ≤ T . In the M steps,2

the nearest integer index in the left-hand side of t is k =3

b tMT c. The nth-order spline interpolation can be implemented4

by finding matrix A according to the following equation:5

A ·


k0 · · · kn

(k + 1)0 · · · (k + 1)n

...
. . .

...
(k + n)0 · · · (k + n)n

 =


x1k · · · xmk
x1k+1 · · · xmk+1

...
. . .

...
x1k+n · · · xmk+n

 .
(13)

The interpolated inputs in a batch at time t are obtained as6

follows:7

[
x1(t), x2(t), . . . , xm(t)

]
=

([
1,
tM

T
, · · · , ( tM

T
)n
]
A

)
. (14)

The parallel multiplication of the matrix can be effectively8

implemented in the deep learning framework.9

D. State decoder10

The state decoder mechanism is essentially a fully con-11

nected network. We therefore have the following equation to12

represent the output,13

ŷ(t) = V> tanh (Wht + bw) + bv. (15)

Compared with other state space models that only employ a14

single matrix for decoding, the nonlinear decoder is chosen15

because the accumulative form in Equation (11) causes the16

range of the input h(t) to be non-deterministic. The activation17

function tanh(·) constrains the output of the decoder to a18

rational range.19

E. Model training20

Since all of the operations of the ODE solver in our model21

are smooth and differentiable, we can train the complete22

model by the standard back-propagation algorithm with the23

loss function defined as follows:24

O
(
ŶM ,YM

)
=

1

M

M∑
i=1

|yi − ŷi|2 . (16)

To prepare the tuples (XN
p ,Y

N
p ,X

M
f ,Y

M
f ) for training25

models from the training dataset, a sliding window of size26

N+M moves along the real sequential data. When the window27

reaches position i, four sequences (XN
p = X[i : i + N ],28

YN
p = Y[i : i + N ], XM

f = X[i + N : i + N + M ],29

YM
f = Y[i + N : i + N + M ]) are collected as a piece of30

data for training. We set the moving size of sliding windows31

as D = 1 for generating training, validation, and test datasets.32

In the validation and test datasets, the size of sliding window33

changes to N + L, in which L represents the length of the34

predicted sequence (which may not be equal to M ). The35

model is trained by feeding the only training dataset and36

successively validated and evaluated on different validation37

and test datasets with specific L. The detailed procedure for38

constructing datasets is illustrated in Fig. 3.39

Training dataset Validation set and Test set

Conditioning Range Prediction Range Conditioning Range Prediction Range

Fig. 3. Illustration of the process of building both the training, validation, and
test datasets. An independent data tuple for training or testing is composed of
four vector sequences. X[i : i+N ] and Y[i : i+N ] represent the historical
trajectories in conditional range. X[i + N : i + N +M ] and X[i + N :
i+N+L] represent the inputs sequences, which have equivalent length with
predicted sequences. Y[i + N : i + N +M ] and Y[i + N : i + N + L]
represent the real system outputs. The former is utilized to generate optimized
loss in training and the latter is only used in testing and validation phase for
evaluating the accuracy of prediction.

(a) Top view of the paste thickener (b) Upward view of feeding pipes

Fig. 4. The figures illustrate two identical paste thickeners in our experimen-
tal mining station, including one primary and one alternate thickener. Both
devices operate in closed-loop mode with proportional–integral–derivative
(PID) controllers.

V. EXPERIMENTAL RESULTS 40

This section presents experimental results for the proposed 41

method on the dataset of real thickening systems. We mainly 42

investigate three issues: RQ1: What are the advantages of 43

employing a CT deep sequential network with a high-accuracy 44

ODE solver for modeling a thickening system? RQ2: What 45

are the pros and cons of using stationary and non-stationary 46

systems in prediction tasks? RQ3: How do the different inter- 47

polation methods and sequential encoder affect the accuracy 48

of the proposed CT model? We first describe the dataset, 49

the hyper-parameters of the model, and the training and test 50

configurations. We then present the detailed experimental 51

results. 52

A. Thickening system dataset 53

For our experiments, the dataset was collected from the 54

paste thickener manufactured by the FLSmidth from the NFC 55

Africa Mining PLC, Zambian Copperbelt Province. Fig. 4 56

illustrates two identical thickeners in our experiments. They 57

are used to concentrate copper tailings to produce paste in the 58

backfilling station. Both devices operate in the closed-loop 59

mode with PID controllers. 60

Some key technical parameters of the studied thickener are 61

listed in Tab. II. 62

The measured data are sampled evenly with two-minute 63

intervals from May 2018 to February 2019. A short piece of 64

original dataset is shown in Table I. The collected data come 65
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TABLE I
A TABULAR EXAMPLE OF PASTE THICKENING SYSTEM DATASET

Collected
Timestamp

Feed
flow rate

Feed
concentration

Mud
Pressure

Rake
speed

Flocculant
flow rate

Underflow
rate

Underflow
concentration

2018/5/9 10:20 164.47 16.47 18.41 500.58 4.30 58.96 59.72
2018/5/9 10:22 169.21 15.51 17.99 500.16 4.06 61.56 58.88
2018/5/9 10:24 141.78 15.30 16.41 500.56 4.06 59.97 59.26
2018/5/9 10:26 305.67 25.31 16.11 500.99 4.07 59.46 58.77
2018/5/9 10:28 328.70 28.28 16.43 501.42 4.43 59.68 59.43
2018/5/9 10:30 323.96 25.90 17.11 501.56 4.40 61.40 60.09

TABLE II
SOME KEY TECHNICAL PARAMETERS OF THE THICKENER

parameter value

Diameter 18 m
Height 22.27 m
Height of straight cylinder 10.06 m
Height of zone 7.1 m
Maximum capacity 2,983 m3

Overflow level (from ground) 15.3 m
Maximum underflow speed 260 m3/h
Maximum feeding speed 1,500 m3/h

from seven monitoring sensors just as the defined y(k) and1

x(k) in Section III. After deleting the records corresponding to2

the time when the system was out of service, there are 24,6733

data pieces remaining.4

We employ the first 70% of the entire dataset to train the5

model. In the remaining 30% portion, the first 15% is used6

for validation to determine the best training epochs, and the7

other 15% is the test dataset for evaluating the model accuracy.8

By splitting and building the inputs–outputs sequential tuples9

according to Fig. 3, there are 17,131 tuples left for training and10

3561, 3421, 3121 tuples left for testing and validation for L =11

60, 200, 500, respectively. All the datasets are normalized to12

standard normal distributions with a unified mean and variance13

before the training and test phases.14

B. Experimental setup15

We use the mini-batch stochastic gradient descent (SGD)16

with the Adam optimizer [44] to train the models. The batch17

size is 512, and the learning rate is 0.001 with an exponential18

decay. The decay rate is 0.95, and the period for decay is 1019

epochs. The size of the hidden state h(t) in ODE is 32. The20

RNN encoder module has a single hidden layer and the size21

is equal to 32 that is consistent with the size of hidden state22

h(t). The size of hidden layer in state decoder is 64. In the23

both adaptive ODE solvers, the time for solving the ordinary24

differential equations will increase if we reduce the tolerance25

of approximate error. For balancing the time cost and accuracy,26

we set the relative tolerance to 1e− 4 and absolute tolerance27

to 1e− 5 in all of experiments.28

During the training procedure, the length of the historical
sequences denoted by N is 80, and the length of predicted
outputs denoted by M is 60. The best-performing model in
the validation dataset is chosen for further evaluation with
the test dataset. The training and test phases were performed
on a single Nvidia V100 GPU. Our implementation uses the

PyTorch framework. We defined the CT range as 0 ≤ t ≤Mδt
for given discrete integral indices [0, 1, . . . ,M ]. The time
interval δt of the adjacent data points is set to 0.1. Accordingly,
the normalized factor µt in Equation (12) is also set to 0.1.
When we use the Euler approximation to solve an ODE
equation in a stationary system, the predicted hidden state in
the next time step is equal to the output of the GRU cell
corresponding to the discrete-time system:

h(t+ δt) = h(t) + δt ·
GRU

(
h(t), x(t), θd

)
− h(t)

µt

= GRU
(
h(t), x(t), θd

)
. (17)

We use the averaged root relative squared error (RRSE) and 29

mean squared error (MSE) of the underflow concentration to 30

evaluate the performances of the different models. The RRSE 31

is defined by the equation (18) with the prediction length L: 32

RRSE =

√√√√ L∑
j=1

e2j

(ŷj − ȳ)
2 , ej = ŷj − yj . (18)

The RRSE can be interpreted as the normalized root mean 33

squared (RMS) error. 34

C. Results and discussion 35

1) Main results: 36

We investigate the influence of the types of ODE solvers 37

and system types. We select four ODE solvers: Euler, 38

Mid-Point, fourth-order Runge–Kutta (RK4), Dormand–Prince 39

(Dopri5) [35], and 3-order Bogacki–Shampine(Bosh) [45]. We 40

investigate the performances of those ODE solvers in both 41

non-stationary and stationary systems. To make a trade-off 42

between the model accuracy and time consumption, we set 43

the relative tolerance to 1 × 10−4 and the absolute tolerance 44

to 1 × 10−5. Moreover, we also consider the discrete-time 45

deep sequential model for the state space (DT-State-Space), the 46

attention-based Seq2Seq model (Attention-Seq2Seq) [5], and 47

Transformer [43] for comparison. The DT-State-Space [42] 48

model employs a parameterized per-time-series linear state 49

space model based on a Recurrent Neural Network (RNN) 50

to forecast the probabilistic time series. The sizes of state 51

space and RNN hidden layer are set to 16 and 32 respectively. 52

The hyperparameters setting of Transformer and Attention- 53

Seq2Seq are kept with the original literatures. 54

We conduct three groups of experiments to investigate 55

the RRSEs, MSEs, and time consumption of models with 56

prediction lengths of L = 60, 200, and 500. 57
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TABLE III
ROOT RELATIVE SQUARED ERROR (RRSE), MEAN SQUARED ERROR (MSE), AND TIME CONSUMPTION OF PREDICTED UNDERFLOW CONCENTRATION.

Models
L = 60 (120 minutes) L = 200 (400 minutes) L = 500 (1000 minutes)

RRSE MSE Time (s) RRSE MSE Time (s) RRSE MSE Time (s)

Non-stationary

System

Euler 3.18 9.07 1.71 5.09 80.25 3.81 3.95 152.21 4.65

Mid-Point 3.10 8.95 3.23 5.24 80.29 7.36 4.16 172.43 9.15

RK4 3.10 8.97 6.95 5.24 83.90 14.82 4.16 172.64 18.76

Bosh 3.08 8.57 12.8 5.84 84.60 19.0 4.61 172.39 24.75

Dopri5 2.83 6.40 9.63 5.31 84.60 13.8 4.19 175.39 25.75

Stationary

system

Euler 3.18 9.06 1.63 3.75 34.78 3.58 1.63 37.77 4.66

Mid-Point 3.18 9.08 3.22 3.73 34.64 7.17 1.62 38.36 9.3

RK4 3.18 8.96 6.80 3.58 32.90 15.17 1.61 34.88 18.66

Bosh N/A N/A >50 N/A N/A >200 N/A N/A >3000

Dopri5 N/A N/A >50 N/A N/A >200 N/A N/A >3000

Attention-Seq2Seq [5] 3.13 8.97 0.41 4.02 33.90 0.41 1.82 40.53 0.42

DT-State-Space [42] 3.22 9.36 0.06 4.69 41.11 0.07 3.35 45.64 0.08

Transformer [43] 3.16 8.36 0.02 3.99 40.23 0.02 2.55 44.23 0.03

a) Comparison of proposed and other baseline models:1

We first examine the performances of the Attention-Seq2Seq2

model, the DT-State-Space model, and Transformer, which3

are defined in discrete-time settings in Table III. Although4

they perform competitively, better than the proposed models5

with the Euler ODE solver, they perform worse than the6

models with high-order ODE solvers, especially for long-term7

predictions. The results also indicate that employing a CT8

model is consistent with the features of the CT evolution in9

thickening systems, thereby improving the prediction accuracy.10

b) Comparison of different ODE solvers:11

We analyze the comparisons of different ODE solvers12

respectively from stationary system and non-stationary system.13

When the derivative module is defined as a non-stationary sys-14

tem and we only focus on short-term prediction with L = 60,15

we find that the Euler method achieves relatively higher RRSE16

and MSE values (i.e., poorer prediction performances) than17

the other four ODE solvers, though it has a much lower time18

consumption than the other solvers. As the simplest method19

for solving ODEs, the Euler method evaluates the derivative20

network only once between two adjacent time points. Mean-21

while, the Mid-Point and RK4 methods have higher prediction22

accuracies than the Euler method, since they evaluate the23

derivative network two and four times, respectively, between24

two adjacent time points. Moreover, the Dopri5 and Bosh25

methods achieve better accuracies, though they have larger26

time consumptions. Dopri5 performs slightly better than Bosh.27

As adaptive methods in the Runge––Kutta family, the Dopri528

and Bosh methods ensure that the output is within a given29

tolerance of the true solution. Their time consumptions for30

solving an ODE equation increase as the accuracy tolerance31

is decreased.32

Strangely, with the increase in the prediction length, we find33

that the accuracies of non-stationary models crash gradually34

and the degradation of Euler is slightly lower than the others.35

The reason of this inconsistent phenomenon is that non-36

stationary system brings accumulative errors in long-term 37

predictions. High-order ODE solvers evaluate the derivative 38

module more times recursively, which brings more accumula- 39

tive errors. Not only do the high-order solvers not improved the 40

accuracies of non-stationary system in long-term predictions, 41

they made the accuracies worse. 42

When the derivative module is switched to a stationary 43

system. It is worth mentioning that the time consumption 44

for the two adaptive methods, Bosh and Dopri5, to solve 45

an ODE equation significantly increases. We do not list the 46

accuracies of the Dopri5 and Bosh for the stationary systems 47

in Table III because the extremely slow speed makes the 48

method ineffective for practical applications. According to the 49

comparison of the ODE solvers, the high-order ODE solver, 50

such as RK4, results in lower fitting errors than the low- 51

order methods while requiring more time to evaluate the ODE 52

equations intensively. 53

c) Comparison of stationary models and non-stationary 54

models: 55

For comparing the distinctions between stationary mod- 56

els and non-stationary models more intuitively, we further 57

visualize the prediction performances of the non-stationary 58

and stationary systems with different ODE solvers. Fig. 5 59

depicts the predicted sequences of the non-stationary and 60

stationary systems with different ODE solvers for the short- 61

term prediction task with L = 60. The results show that 62

the non-stationary models outperform the stationary models in 63

short-term prediction tasks. The estimated sequences from the 64

non-stationary models are slightly closer to the real system 65

output than those from the stationary models. The learning 66

process of a non-stationary system is essentially equivalent 67

to differencing the hidden state and employing the MLP 68

network to learn the relatively stationary first-order difference. 69

Furthermore, the non-stationary models can predict the system 70

outputs smoothly because the non-stationary structure limits 71

the hidden states to only changing in a continuous and slow 72
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(a) Stationary system with fourth-order Runge–Kutta (RK4) ODE solver
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(b) Non-stationary system with RK4 ODE solver
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(c) Non-stationary system with Dormand–Prince (Dopri5) ODE solver

Fig. 5. In the short-term prediction task with L = 60, the non-stationary
models output more stable and accurate sequences than the stationary models.

manner. This constraint is consistent with the properties of a1

slow thickening system yet shrinks the searching space of the2

model parameters to prevent overfitting.3

Fig. 6 also presents the experimental results of a long-term4

prediction task with L = 200 (similar results with L = 5005

can be found in Table III). The tabular results in Table III6

demonstrate that the RRSE and MSE of non-stationary models7

are much higher than those of the stationary ones in long-8

term prediction task, which is consistent with the graphical9

results. Compared to the excellent results of non-stationary10

models in Fig. 5, Fig. 6(a) shows that the prediction accuracy11

for the non-stationary system decays significantly, and the12

predicted outputs deviate from the true outputs gradually with13

the increase in the prediction length. However, the predicted14

results of stationary models are stabilized and closed to the15

true system outputs, which confirms the excellent accuracies16

of stationary models in the long-term prediction problem. The17

structure of non-stationary ODE leads to the hidden state18

in progressive evolution that is unconstrained and gradually19

expanding. Although we embed a tanh function for the20

decoder network to restrict the final prediction of the underflow21

concentration and pressure to a rational range, it is impossible22

for the decoder module to learn an effective mapping function23

from an extremely large hidden state space to the system24
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(a) Non-stationary system with RK4 ODE solver
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(b) Stationary system with Euler ODE solver
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(c) Stationary system with RK4 ODE solver

Fig. 6. In the long-term prediction task with L = 200, Fig. 6(a) illustrates
that non-stationary models only performed well in the early time horizon.
In the late horizon, the predicted sequences deviated from the true system
outputs significantly compared with those of the stationary models, which
are shown in Figs. 6(b) and 6(c). The results also indicate that the models
with high-order ODE solvers performed better than the models with low-order
ODE solvers in long-term prediction tasks.

output space. Similarly, Fig. 6 also demonstrates that high- 25

order ODE solvers, such as the 4th-order Runge–Kutta, still 26

perform slightly better than the low-order solvers, such as 27

Euler, in long-term prediction. 28

We conduct five other groups of experiments with different 29

values of the prediction length to evaluate the prediction per- 30

formance (i.e., the MSE) of the underflow concentration and 31

ground-truth for both stationary and non-stationary systems. 32

The results in Fig. 7 show that the non-stationary system 33

performs better than the stationary system in the short-term 34

prediction task (e.g., L < 100), although the stationary system 35

outperforms the non-stationary system in long-term prediction 36

tasks. For example, when L exceeds 120, the errors from the 37

non-stationary system increase with the predicted length, while 38

the stationary system significantly stabilizes the accumulative 39

errors in the long-term prediction. 40

2) Experiments for evaluating interpolation order: 41

We next investigate the effect of the interpolation method 42

on the prediction accuracy. We test four spline interpolation 43

methods with different orders and compare the prediction 44
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Fig. 7. Predicted length L affected the accuracy (log10 MSE±2σ, computed
across five runs) of predicted underflow concentration for both stationary and
non-stationary systems.

accuracies on test datasets. The results in Table IV demonstrate1

that the higher-order interpolations slightly outperform the2

lower-order ones. This proves that the system input of the3

thickening system is a non-linear complex process, and that4

the information from external inputs is essential for predicting5

the outputs of the system. Higher-order spline interpolations6

exploit more correlational features from adjacent inputs and7

interpolate the empty area with a better accuracy than the8

lower-order interpolations.9

TABLE IV
ACCURACY COMPARISONS WITH DIFFERENT ORDERS OF INTERPOLATIONS

L = 60

(120 minutes)

L = 200

(400 minutes)

L = 500

(1000 minutes)

Models RRSE MSE RRSE MSE RRSE MSE

Cubic 3.083 8.565 3.581 32.90 1.615 34.88

Quadratic 3.097 8.993 3.593 32.585 1.613 36.741

Slinear 3.098 8.999 3.763 33.530 1.627 37.778

Zero 3.115 9.050 3.791 33.585 1.628 37.695

3) Ablation experiments for studying system time delays and10

improvements from sequential encoder:11

Finally, we investigate the significance of introducing the12

sequential encoder to confront the system time delay. We in-13

vestigate the influence of N on the model accuracy. Specially,14

when N is set to 1, the sequential encoder is replaced by a15

neural network with one hidden layer that encodes the system16

output x(k−1) in a single time step to the initial hidden state17

h(t0). When N is set to 0, the initial state h(t0) is a learnable18

or zero vector [19] that had no relationship with historical19

system trajectories. We examine the different choices of N in20

experiments with L = 60, 200, and 500, respectively. In the21

experiments with L = 60, the derivative module is set to be22

a non-stationary system with an MLP cell. We change it to a23

stationary system with a GRU cell when L = 200 and 500.24

The ODE solver is the fourth-order Runge–Kutta solver for25

all of the models.26

The results shown in Table V demonstrate that the intro-27

duction of the sequential encoder to extract features from the28

historical sequence leads to a better performance than those in29

the cases with N = 1 or 0. The intuitive explanation is that the30

predicted output sequences have strong statistical correlations31

with historical system trajectories. The optimal length of32

the encoded sequence is approximately N = 80, which is33

TABLE V
ACCURACY COMPARISONS WITH DIFFERENT METHODS FOR GENERATING

THE INITIAL HIDDEN STATE h(t0)

N

L = 60

(120 minutes)

L = 200

(400 minutes)

L = 500

(1000 minutes)

RRSE MSE RRSE MSE RRSE MSE

160 3.11 9.08 3.56 34.13 1.61 35.88

80 3.10 8.97 3.58 32.92 1.61 34.88

40 3.19 8.99 3.65 36.07 1.71 41.26

1 4.06 10.71 4.97 51.09 1.77 63.56

N = 0 with

learnable h(t0)
5.26 20.68 4.84 58.68 1.77 63.91

N = 0 with

h(t0) = 0
5.26 23.11 5.84 64.49 1.77 63.53

consistent with our prior experience of 2–3-h time delays 34

in thickening systems. When the length of input sequence 35

exceeds the optimal value, the accuracy slightly decreases. 36

Intuitively, the short-term prediction task benefits more from 37

historical system trajectories than the long-term prediction 38

task. When the length of the predicted sequence increases, the 39

advantage brought by the sequential encoder also decreases. 40

In the task with L = 500, the profit of employing sequential 41

encoder decreases obviously. 42

VI. CONCLUSION 43

This paper focuses on the prediction of the outputs of 44

a thickening system based on deep neural sequence mod- 45

els. We introduced a CT network composed of a sequen- 46

tial encoder, a state decoder, and a derivative module, with 47

internal computation processes including interpolation and a 48

differential ordinary differential equation solver, to describe 49

the complex dynamics of a thickening system. Experiments 50

on datasets from real thickening systems demonstrated that 51

the introduction of the sequential encoder and parallel cu- 52

bic spline interpolation played a crucial role in our model 53

architecture. We conducted extensive experiments to evaluate 54

the proposed models for both stationary and non-stationary 55

systems with different ODE solvers. The results showed that 56

the non-stationary system outperformed the stationary system 57

for short-term prediction tasks. However, the non-stationary 58

model suffered from the accumulation of errors from the 59

incremental calculation, thereby leading to inferior results in 60

long-term prediction tasks. This demonstrated that the model 61

with the non-stationary system was more suitable for being 62

embedded in a model-based feedback controller (e.g., MPC 63

controller) while the stationary system avoided this problem 64

and performed better in long-term prediction tasks. Therefore, 65

the model with the stationary system is a better choice when 66

a stable and robust identified system is required to predict 67

long-term sequences (e.g., simulations or controller testing). 68

In the industrial data processing field, it is a common 69

requirement to process unevenly spaced data. Although the 70

dataset employed in this paper was sampled evenly, we can 71

extend our method to deal with uneven data naturally by 72
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adjusting the time intervals. This extension deserves further1

experimental verification in future work. Another promising2

research direction is to extend the method to probabilistic3

generative models and perturbed time-varying models [46] for4

determining the unknown sampling noise and uncertainty in5

thickening systems. Moreover, it is worth investigating our6

method for other dynamical industrial systems.7
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